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Preface to the 

First Edition 
/ 

A glance at the table of contents will reveal the somewhat unconventional 
nature of this introductory book on analysis , so perhaps we should explain 
our philosophy and motivation for writing a book that has elementary in
tegration theory together with potential theory, rearrangements, regularity 
estimates for differential equations and the calculus of variations all sand
wiched between the same covers . 

Originally, we were motivated to present the essentials of modern analy
sis to physicists and other natural scientists , so that some modern develop
ments in quantum mechanics , for example , would be understandable . From 
personal experience we realized that this task is little different from the task 
of explaining analysis to students of mathematics . At the present time there 
are many excellent texts available, but they mostly emphasize concepts in 
themselves rather than their useful relation to other parts of mathematics . 
It is a question of taste , but there are many students (and teachers) who, 
in the limited time available, prefer to go through a subject by doing some
thing with the material , as it is learned, rather than wait for a full-fledged 
development of all basic principles . 

The topics covered here are selected from those we have found useful in 
our own research and are among those that practicing analysts need in their 
kit-bag, such as basic facts about measure theory and integration, Fourier 
transforms, commonly used function spaces (including Sobolev spaces) , dis
tribution theory, etc . Our goal was to guide beginning students through 
these topics with a minimum of fuss and to lead them to the point where 

-. . 
XVll 



XVlll Preface to the First Edition 

they can read current literature with some understanding. At the same time 
everything is done in a rigorous and, hopefully, pedagogical way. 

Inequalities play a kev role in our presentation and some of them are 
less standard, such as the Hardy-Littlewood-Sobolev inequality, Hanner's 
inequality and rearrangement inequalities . These and other unusual topics, 
such as H112- and Hi-spaces , are included for a definite pedagogical reason: 
They introduce the student to some serious exercises in hard analysis (i .e . , 
interesting theorems that take more than a few lines to prove) , but ones that 
can be tackled with the elementary tools presented here . In this way we hope 
that relative beginners can get some of the flavor of research mathematics 
and the feeling that the subject is open-ended . 

Throughout , our approach is 'hands on' , meaning that we try to be as 
direct as possible and do not always strive for the most general formulation. 
Occasionally we have slick proofs ,  but we avoid unnecessary abstraction, 
such as the use of the Baire category theorem or the Hahn-Banach theo
rem, which are not needed for £P-spaces . Our preference is to understand 
£P-spaces and then have the reader go elsewhere to study Banach spaces 
generally (for which excellent texts abound) ,  rather than the other way 
around. Another noteworthy point is that we try not to say, "there exists 
a constant such that . . .  " .  We usually give it , or at least an estimate of it . 
It is important for students of the natural sciences , and mathematics, to 
learn how to calculate. Nowadays, this is often overlooked in mathematics 
courses that usually emphasize pure existence theorems. 

From some points of view, the topics included here are a curious mixture 
of the advanced-specialized together with the elementary but the reader will , 
we believe, see that there is a unity to it all . For example, most texts make 
a big distinction between 'real analysis ' and 'functional analysis ' , but we 
regard this distinction as somewhat artificial. Analysis without functions 
doesn't go very far. On the other hand, Hilbert-space is hardly mentioned, 
which might seem strange in a book in which many of the examples are 
taken from quantum mechanics . This theory (beyond the linear algebra 
level) becomes truly interesting when combined with operator theory, and 
these topics are not treated here because they are covered in many excellent 
texts . Perhaps the severest rearrangement of the conventional order is in 
our treatment of Lebesgue integration. In Chapter 1 we introduce what is 
needed to understand and use integration, but we do not bother with the 
proof of the existence of Lebesgue measure; it suffices to know its existence. 
Finally, after the reader has acquired some sophistication, the proof is given 
in Exercise 6.5 as a corollary of Theorem 6 .22 (positive distributions are 
measures) .  



Preface to the First Edition 
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XIX 

Things the reader is expected to know : While we more or less start from 
'scratch' , we do expect the reader to know some elementary facts ,  all of 
which will have been learned in a good calculus course . These include : 
vector spaces , limits , lim inf, lim sup, open, closed and compact sets in 
]Rn, continuity and differentiability of functions (especially in the multi
variable case) , convergence and uniform convergence ( indeed, the notion of 
'uniform' ,  generally) , the definition and basic properties of the Riemann 
integral, integration by parts (of which Gauss 's theorem is a special case) . 

How to read this book : There is a great deal of material here but the 
following selection hits the main points . It is possible to cover them conve
niently in a year's course of 25 weeks . 

CHAPTER 1 .  The basic facts of integration can be gleaned from 1 . 1 ,  
1 . 2 ,  1 . 5-1 .8 ,  1 . 10 ,  1 . 1 2 (the statement only) , 1 . 13 .  

CHAPTER 2 .  The essential facts about £P-spaces are in 2 . 1-2 .4, 2 .7 , 
2 .  9 ' 2 . 1  0 ' 2 . 14-2 . 19 .  

CHAPTER 3 .  3 . 3 ,  3 .4 , 3 . 7  are enough for a first reading about rear
rangements. This serves as a useful exercise in manipulating integrals . 

CHAPTER 4. Read the nonsharp proofs of Young's inequality, 4 .2 ,  and 
the HLS inequality, 4 .3 . 

CHAPTER 5 .  Fourier transforms are basic in many applications . Read 
5 . 1-5 .8 . 

CHAPTER 6. 6. 1-6 . 18 ,  6 .20y{).21 ,  6 . 22 (statement only) . 
CHAPTER 7. 7. 1-7. 10 ,  7. 17, 7 . 18 .  H112 spaces and H1 spaces are 

specialized examples , useful in quantum mechanics , and can be ignored at 
first . 

CHAPTER 8. All except 8 .4 .  Sobolev inequalities are essential for 
partial differential equations and it is necessary to be familiar with their 
statements, if not their proofs .  

CHAPTER 9 .  Potential theory is classical and basic to physics and 
mathematics . 9 . 1-9 .5 ,  9 . 7, 9 .8 are the most important . 9 . 10 is a useful 
extension of Harnack's inequality and is worth studying. 

CHAPTER 10 .  It is important to know how to go from weak to strong 
solutions of partial differential equations . 10 . 1 and the statements of 10 .2 ,  
10 .3 , if not the proofs, should be learned. 

CHAPTER 1 1 .  The calculus of variations , especially as a key to solving 
some differential equations , is extremely useful and important . All the ex
amples given here , 1 1 . 1-1 1 . 1 7 are worth learning, not only for their intrinsic 
value, but because they use many of the topics presented earlier in the book. 
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A word about notation. The book is organized around theorems, but 
frequently there are some pertinent remarks before and after the statement 
of a theorem. The symbol e is used to denote the introduction of a new 
idea or discussion, while • is used for the end of a proof. Equations are 
numbered separately in each section. The notation 1 .6 (2) , for example, 
means equation number (2) in Section 1 .6 .  Exercise 1 . 1 5 ,  for example means 
exercise number 15 in Chapter 1 .  To avoid unnecessary enumeration, (2) 
means equation number (2) of the section we are presently in; similarly, 
Exercise 15 refers to Exercise 15 of the present chapter. Bold-face is used 
whenever a bit of terminology appears for the first time. 

According to Walter Thirring there are three things that are easy to 
start but very difficult to finish. The first is a war. The second is a love 
affair . The third is a trill . To this may be added a fourth: a book. Many 
students and colleagues helped over the years to put us on the right track on 
several topics and helped us eliminate some of the more egregious errors and 
turgidities . Our thanks go to Almut Burchard , Eric Carlen, E. Brian Davies , 
Evans Harrell , Helge Holden, David Jerison,"Richard Laugesen, Carlo Mor
purgo, Bruno N achtergaele , Barry Simon, A vraham Soffer, Bernd Thaller , 
Lawrence Thomas, Kenji Yaj ima, our students at Georgia Tech and Prince
ton, several anonymous referees , to Lorraine Nelson for typing most of the 
manuscript and to Janet Pecorelli for turning it into a book. 

For the reader's convenience there is a Web page for this book where additional exercises and 
errata are available. The URL is http:/ /www.math.gatech.edu/-loss/ Analysis.html 



Preface to the 
Second Edition 

Since the publication of our book four years ago we have received many 
helpful comments from colleagues and students. Not only were typographi
cal errors pointed out - and duly published on our web page , whose URL is 
given below - but interesting suggestions were also made for improvements 
and clarification. 

We, too, wanted to add more topics which, in the spirit of the book, are 
hopefully of use to students and practitioners . 

This led to a second edition, which contains all the corrections and some 
fresh items . Chief among these is Chapter 12 in which we explain several 
topics concerning eigenvalues of the Laplacian and the Schrodinger operator, 
such as the min-max principle , coherent states , semiclassical approximation 
and how to use these to get bounds on eigenvalues and sums of eigenvalues . 
But there are other additions , too, such as more on Sobolev spaces (Chapter 
8) including a compactness criterion, and Poincare , Nash and logarithmic 
Sobolev inequalities . The latter two are applied to obtain smoothing prop
erties of semigroups . 

Chapter 1 (Measure and integration) has been supplemented with a 
discussion of the more usual approach to integration theory using simple 
functions , and how to make this even simpler by using 'really simple func
tions' . Egoroff's theorem has also been added. Several additions were made 
to Chapter 6 (Distributions) including one about the Yukawa potential . 

There are, of course , many more Exercises as well . 

-
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In order to avoid conflict and confusion with the first edition we made 
the conscious decision to place the new material at the end of any given 
Chapter, which is not always the best place , logically, and insertions in the 
first edition text are kept to a minimum. (The chief exceptions are the 
evaluation of exp{ -tJp2 + m2} in Sect. 7. 1 1  and a new proof of Theorem 
2 . 16 . )  

We are most grateful to our numerous correspondents . Rather than 
inadvertently leaving someone out , we have not listed the names , but we 
hope our friends will be satisfied with our thanks and that they will once 
again let us know of any errors they find in this second edition. These will 
be posted on our web page . 

We are especially grateful to Eric Carlen for helping us in many ways . 
He encouraged us to add material to Chapter 1 about the usual 'simple 
function' treatment of measure theory, and allowed us to use his notes freely 
about 'really simple functions '. He encouraged us , also ,  to add the material 
in Chapter 8 mentioned above. 

Many thanks go to Donald Babbitt , the AMS publisher, who urged us 
to write a second edition and who made the necessary resources of the AMS 
available. We are extremely fortunate again in having Janet Pecorelli help 
us , and we are grateful to her for lending her admirable talents to this 
project and for patiently enduring our numerous changes . Thanks also go 
to Mary Letourneau for superb copy editing and Daniel Ueltschi for help 
with proofreading. 

January, 2001 

For the reader's convenience there is a Web page for this book where additional exercises and 
errata are available. The URL is http: / /www.math.gatech.edu/ -loss/ Analysis.html 



Measure and 
Integration 

1.1 INTRODUCTION 

Chapter 1 

The most important analytic tool used in this book is integration. The 
student of analysis meets this concept in a calculus course where an integral 
is defined as a Riemann integral. While this point of view of integration may 
be historically grounded and useful in many areas of mathematics , it is far 
from being adequate for the requirements of modern analysis . The difficulty 
with the Riemann integral is that it can be defined only for a special class of 
functions and this class is not closed under the process of taking pointwise 
limits of sequences (not even monotonic sequences) of functions in this class . 
Analysis , it has been said, is the art of taking limits, and the constraint of 
having to deal with an integration theory that does not allow taking limits 
is much like having to do mathematics only with rational numbers and 
excluding the irrational ones . 

If we think of the graph of a real-valued function of n variables , the 
integral of the function is supposed to be the ( n + 1 )-dimensional volume 
under the graph. The question is how to define this volume. The Riemann 
integral attempts to define it as 'base times height ' for small , predetermined 
n-dimensional cubes as bases , with the height being some 'typical ' value of 
the function as the variables range over that cube. The difficulty is that it 
may be impossible to define this height properly if the function is sufficiently 
discontinuous . 

The useful and far-reaching idea of Lebesgue and others was to compute 
the (n + I )-dimensional volume ' in the other direction' by first computing 

-
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2 Measure and Integration 

then-dimensional volume of the set where the function is greater than some 
number y. This volume is a well-behaved, monotone nonincreasing function 
of the number y, which then can be integrated in the manner of Riemann. 

This method of integration not only works for a large class of functions 
(which is closed under taking pointwise limits), but it also greatly simplifies 
a problem that used to plague analysts: Is it permissible to exchange limits 
and integration? 

In this chapter we shall first sketch in the briefest possible way the 
ideas about measure that are needed in order to define integrals. Then we 
shall prove the most important convergence theorems which permit us to 
interchange limits and integration. Many measure-theoretic details are not 
given here because the subject is lengthy and complicated and is presented 
in any number of texts, e.g. [Rudin, 1987]. The most important reason for 
omitting the measure theory is that the intricacies of its development are 

not needed for its exploitation. For instance, we all know the tremendously 
important fact that 

Ju +g) = (/ 1) + (/g), 
and we can use it happily without remembering the proof (which actually 
does require some thought); the interested reader can carry out the proof, 
however, in Exercise 9. Nevertheless we want to emphasize that this theory 
is one of the great triumphs of twentieth century mathematics and it is the 
culmination of a long struggle to find the right perspective from which to 
view integration theory. We recommend its study to the reader because it 
is the foundation on which this book ultimately rests. 

Before dealing with integration, let us review some elementary facts and 
notation that will be needed. The real numbers are denoted by �' while 
the complex numbers are denoted by C and z is the complex conjugate of 
z. It will be assumed that the reader is equipped with a knowledge of the 
fundamentals of the calculus on n-dimensional Euclidean space 

]Rn == {(x1, ... , xn) :  each Xi is in JR}. 

The Euclidean distance between two points y and z in JRn is defined to 
be IY - zl where, for x E JRn, ( n ) 1/2 

lxl := �x; . 

(The symbols a :== b and b ==: a mean that a is defined by b.) We ex
pect the reader to know some elementary inequalities such as the triangle 

inequality, 

lxl + IYI > lx- Yl· 



Section 1.1 3 

The definition of open sets (a set , each of whose points is at the center of 
some ball contained in the set) , closed sets (the complement of an open set) , 
compact sets (closed and bounded subsets of JRn) ,  connected sets (see 
Exercise 1 .23) , limits , the Riemann integral and differentiable functions are 
among the concepts we assume known. [a, b] denotes the closed interval 
in JR, a < x < b, while (a, b) denotes the open interval a < x < b. The 
notation {a : b} means, of course , the set of all things of type a that satisfy 
condition b . We introduce here the useful notation 

to describe the complex-valued functions on some open set 0 c JRn that are k 
times continuously differentiable ( i .e . , the partial derivatives [)k f / 8xi1 , • • •  , 
8xik exist at all points x E 0 and are continuous functions on 0) . If a 
function f is in Ck (O) for all k, then we write f E C00(0) . 

In general, if f is a function from some set A (e .g . , some subset of JRn) 
with values in some set B (e .g . , the real numbers) ,  we denote this fact by 
f :  A� B.  If x E A, we write x � f (x) ,  the bar on the arrow serving to 
distinguish the image of a single point x from the image of the whole set A. 

An important class of functions consists of the characteristic func
tions of sets . If A is a set we define { 1 if X E A, 

XA (x) = 0 if x rf_ A. ( 1 )  

These will serve as building blocks for more general functions (see Sect . 1 . 13 , 
Layer cake representation) . Note that XAXB == XAnB· 

Recall that the closure of a set A C ]Rn is the smallest closed set in JRn 
that contains A. We denote the closure by A. Thus , A == A. The support 
of a continuous function f : JRn � C, denoted by supp{f} , is the closure 
of the set of points x E JRn where f(x ) is nonzero, i .e . , 

supp{f} == {x E JRn : f(x) # 0} . 

It is important to keep in mind that the above definition is a topological 
notion. Later, in Sect . 1 . 5 ,  we shall give a definition of essential support 
for measurable functions . We denote the set of functions in C00 (0) whose 
support is bounded and contained in 0 by Cgo (O) . The subscript c stands 
for 'compact ' since a set is closed and bounded if and only if it is compact . 

Here is a classic example of a compactly supported, infinitely differen
tiable function on JRn; its support is the unit ball {x E JRn : lx l < 1 } :  

if l x l < 1 ,  
if l x l > 1 .  

(2) 
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The verification that j is actually in coo (JRn) is left as an exercise. 
This example can be used to prove a version of what is known as 

Urysohn's lemma in the JRn setting . Let 0 c JRn be an open set and 
let K c 0 be a compact set . Then there exists a nonnegative function 
1/J E C�(O) with 1/J(x) == 1 for x E K. An outline of the proof is given in 
Exercise 15. 

1 .2 BASIC NOTIONS OF MEASURE THEORY 

Before trying to define a measure of a set one must first study the struc
ture of sets that are measurable, i .e . , those sets for which it will prove 
to be possible to associate a numerical value in an unambiguous way. Not 
necessarily all sets will be measurable. 

We begin, generally, with a set 0 whose elements are called points. For 
orientation one might think of 0 as a subset of JRn , but it might be a much 
more general set than that , e .g . , the set of paths in a path-space on which 
we are trying to define a ' functional integral' . 

A distinguished collection, �' of subsets of 0 is called a sigma-algebra 
if the following axioms are satisfied: 

(i) If A E �' then AcE �' where Ac : ==  0 rv A is the complement of A 
in 0. (Generally, B rv A : == B n Ac.) 

( ii) If AI, A2, . . .  is a countable family of sets in �' then their union 
U� I Ai is also in �. 

(iii) n E �. 
Note that these assumptions imply that the empty set 0 is in � and 

that � is also closed under countable intersections , i .e . , if AI, A2, ... E �' 
then n� I A2 E �. Also, AI rv A2 is in �. 

It is a trivial fact that any family :F of subsets of 0 can be extended 
to a sigma-algebra (just take the sigma-algebra consisting of all subsets 
of 0) . Among all these extensions there is a special one. Consider all 
the sigma-algebras that contain :F and take their intersection, which we 
call �' i .e . , a subset A c 0 is in � if and only if A is in every sigma
algebra containing :F. It is easy to check that � is indeed a sigma-algebra. 
Indeed it is the smallest sigma-algebra containing :F; it is also called 
the sigma-algebra generated by :F. An important example is the sigma
algebra B of Borel sets of JRn which is generated by the open subsets of 
JRn. Alternatively, it is generated by the open balls of JRn, i .e . , the family 
of sets of the form 

Bx,R == {y E JRn : j x - y j < R} . ( 1 )  



Sections 1. 1-1.2 5 

It is a fact that this Borel sigma-algebra contains the closed sets by (i) above. 
With the help of the axiom of choice one can prove that B does not contain 
all subsets of JRn, but we emphasize that the reader does not need to know 
either this fact or the axiom of choice. 

A measure (sometimes also called a positive measure for emphasis) 
J.L, defined on a sigma-algebra � ' is a function from � into the nonnegative 
real numbers ( including infinity) such that J.L(0) == 0 and with the following 
crucial property of countable additivity . If A1 , A2 , . . .  is a sequence of 
disjoint sets in � ' then 

(2) 

The big breakthrough, historically, was the realization that countable 
additivity is an essential requirement . It is , and was , easy to construct 
finitely additive measures ( i .e . , where (2) holds with oo replaced by an ar
bitrary finite number) , but a satisfactory theory of integration cannot be 
developed this way. Since J.L(0) == 0, equation (2) includes finite additivity 
as a special case . Three other important consequences of (2) are 

if A c B, ( 3) 

The reader can easily prove (3)-(5) using the properties of a sigma-algebra. 
A measure space thus has three parts: A set 0, a sigma-algebra � and 

a measure J.L. If 0 == JRn (or, more generally, if 0 has open subsets , so that 
B can be defined) and if � == B, then J.L is said to be a Borel measure. 
We often refer to the elements of � as the measurable sets .  Note that 
whenever O' is a measurable subset of 0 we can always define the measure 
subspace (0' ,  ��, J.L) , in which �' consists of the measurable subsets of 0' . 
This is called the restriction of J.L to O'. 

A simple and important example in JRn is the Dirac delta-measure, 
8y , located at some arbitrary, but fixed, point y E JRn: { 1 if y E A, 8y (A) = 0 if y tj A. 
In other words , using the definition of characteristic functions in 1 . 1  ( 1 ) , 

8y (A) == XA (y) .  

(6) 

( 7) 
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Here, the sigma-algebra can be taken to be B or it can be taken to be all 
subsets of JRn . 

The second, and for us most important , example is Lebesgue measure 
on JRn . Its construction is not easy, but it has the property of correctly 
giving the Euclidean volume of 'nice' sets . We do not give the construction 
because it can be found in many, many books , e .g . , [Rudin, 1987] . However, 
the determined reader will be invited to construct Lebesgue measure as 
Exercise 5 in Chapter 6 , with the aid of Theorem 6 .22 (positive distributions 
are positive measures) . � is taken to be B and the measure (or volume) of 
a set A E B is denoted by en (A) or by the symbol 

The Lebesgue measure of a ball is 

where 

2 n/2 n 1 rn ( ) I I n 7r r l §n-1 1 n L Bx,r = Bo,I r = nr(n/2) = n r ' 

l§n-1 1 == 27rn/2 jr( n/2) 
is the area of §n-1 , which is the sphere of radius 1 in JRn . 

(8) 

This measure is translation invariant-meaning that for every fixed y E 
]Rn' en (A) == en ( {X +  y : X E A}) . Up to an over-all C011Stant it is the only 
translation invariant measure on JRn . The fact that the classical measure (8) 
can be extended in a countably additive way to a sigma-algebra containing 
all balls is a triumph which, having been achieved, makes integration theory 
relatively painless . 

A small annoyance is connected with sets of measure zero , and is caused 
by the fact that a subset of a set of measure zero might not be measurable. 
An example is produced in the following fashion: Take a line I! in the plane 
JR2 . This set is a Borel set and e2 (1!) == 0. Now take any subset 1 C I! 
that is not a Borel set in the one-dimensional sense. One can show that 
1 is also not a Borel set in the two-dimensional sense and therefore it is 
meaningless to say that e2 (r) == 0. One can get around this difficulty by 
declaring all subsets of sets of zero measure to be measurable and to have 
zero measure . But then, for consistency, these new sets have to be added 
to, and subtracted from, the Borel sets in B. In this way Lebesgue measure 
can be extended to a larger class than B, and it is easy to see that this 
class forms a sigma-algebra (Exercise 10) .  While this extension (called the 
completion) has its merits , we shall not use it in this book for it has no 
real value for us and causes problems , notably that the intersection of a 
measurable set in JRn with a hyperplane may not be measurable. For us , en 
is defined only on B. 
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There is , however, one way in which subsets of sets of zero measure 
play a role. Given ( 0, � , J.L) we say that some property holds I-t-almost 
everywhere (or J.L-a.e. , or simply a.e. if J.L is understood) whenever the 
subset of 0 for which the property fails to hold is a subset of a set of 
measure zero. 

Lebesgue measure has two important properties called inner regularity 
and outer regularity. (See Theorem 6 .22 and Exercise 6 .5 . )  For every 
Borel set A 

_cn (A) == inf{L:n (O) : A c 0 and 0 is open} outer regularity, (9) 
_cn (A) == sup{L:n (C) : C c A and C is compact} inner regularity. ( 10) 

The reader will be asked to prove equations (9) and ( 10) in Exercise 26, 
with the help of Theorem 1 . 3  (Monotone class theorem) and ideas similar 
to those used in the proof of Theorem 1 . 18 .  

Another important property of Lebesgue measure is its sigma-finite
ness . A measure space (0, � ' J.L) is sigma-finite if there are countably many 
sets A1 , A2 , . . .  such that J.L(Ai ) < oo for all i == 1 ,  2 ,  . . .  and such that 
0 == U� 1 Ai . If sigma-finiteness holds it is easy to prove that the Ai 's can 
be taken to be disjoint . In the case of _cn we can, for instance, take the Ai 's 
to be cubes of unit edge length. 

As a final topic in this section we explain product sigma-algebras 
and product measures. Given two spaces 01 , 02 with sigma-algebras �1 
and �2 we can form the product space 

A good example is to think of 01 as JRm and 02 as JRn and 0 == JRm+n . The 
product sigma-algebra � == �1 X �2 of sets in 0 is defined by first declaring 
all rectangles to be members of � .  A rectangle is a set of the form 

where A1 and A2 are members of �1 and �2 · Then � ==  �1 x �2 is defined 
to be the smallest sigma-algebra containing all these rectangles, i .e . , the 
sigma-algebra generated by all these rectangles . We shall see that the fact 
that � is the smallest sigma-algebra is important for Fubini 's theorem (see 
Sects . 1 . 10 and 1 . 12) . 

Next suppose that (01 , �1 , J.L1 ) and (02 , �2 , J.L2 ) are two measure spaces . 
It is a basic and nontrivial fact that there exists a unique measure J.L on the 
product sigma-algebra � of 0 with the 'product property' that 
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for all rectangles. This measure J.L is called the product measure and is 
denoted by J.-LI x J.l2· It will be constructed in Theorem 1.10 (product mea
sure) . The sigma-algebra � has the section property that if we take an 
arbitrary A E � and form the set AI ( x2) c ni defined by AI ( X2) == {XI E 

OI :(xi, x2) E A}, then AI(x2) is in �I for every choice of x2. An analogous 
property holds with 1 and 2 interchanged. 

The section property depends crucially on the fact that � is defined 
to be the smallest sigma-algebra that contains all rectangles. To prove the 
section property one reasons as follows. Let �� C � be the set of all those 
measurable sets A E � that do have the section property. Certainly, 0 is in 
�I and ni X 02 is also in �I. Moreover' all rectangles are in �I. From the 
identity 

which holds for any family of sets it follows that countable unions of sets in 
�� also have the section property. And from A2(xi) == (A2(xi))c one infers 
that if A E ��, then Ac E �1• Hence �� c � is a sigma-algebra and since 
it contains all the rectangles it must be equal to the minimal sigma-algebra 
�- This way of reasoning will be used again in the proof of Theorem 1.10. 

In the same fashion one easily proves that for any three sigma-algebras 
�I, �2, �3 the smallest sigma-algebra � == �I x �2 x �3 that contains all 
cubes also has the section property, i.e., for A E �' 

for every XI E OI, etc. By cubes we understand sets of the form AI x A2 x A3 
where Ai E �i, i == 1, 2, 3. 

If we turn to Lebesgue measure, then we find that if Bm is the Borel 
sigma-algebra of JRm then Bm x Bn == Bm+n. Note, however, that if we first 
extend Lebesgue measure to the nonmeasurable sets contained in Borel sets 
of measure zero, as described above, then the section property does not hold. 
A counterexample was mentioned earlier, namely a nonmeasurable subset 
of the real line is, when viewed as a subset of the plane, a subset of a set 
of measure zero. This failure of the section property is our chief reason for 
restricting the Lebesgue measure to the Borel sigma-algebra. It also shows 
that the product of the completion of the Borel sigma-algebra with itself is 
not complete; if it were complete it would contain the set mentioned above, 
but then it would fail to have the section property which, as we proved above, 
the product always has. On the other ha11d, if we take the completion of the 
product, then the section property can be shown to hold for almost every 
section. 
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e Up to now we have avoided proving any difficult theorems in measure 
theory. The following Theorem 1 . 3 , however, is central to the subject and 
will be needed later in Sect . 1 . 10 on the product measure and for the proof 
of Fubini 's theorem in 1 . 12 .  Because of its importance, and as an example 
of a 'pure measure theory' proof, we give it in some detail . The proof, but 
not the content , of Theorem 1 . 3  can be skipped on a first reading. 

A monotone class M is a collection of sets with two properties : 
if A2 E M for i == 1 ,  2 ,  . . .  , and if A1 c A2 c · · · , then U2 Ai E M; 

if Btt E M for i == 1 ,  2 ,  . . .  , and if B1 � B2 � · · · , then n2 Bi E M. 

Obviously any sigma-algebra is a monotone class , and the collection of 
all subsets of a set 0 is again a monotone class . Thus any collection of 
subsets is contained in a monotone class . 

A collection of sets , A, is said to form an algebra of sets if for every 
A and B in A the differences A rv B, B rv A and the union A U B are 
in A. A sigma-algebra is then an algebra that is closed under countably 
many operations of this kind. Note that passage from an algebra, A, to a 
sigma-algebra amounts to incorporation of countable unions of subsets of A, 
thereby yielding some collection of sets , A1 , which is no longer closed under 
taking intersections . Next , we incorporate countable intersections of sets 
in A1 . This yields a collection of sets A2 which is not closed under taking 
unions . Proceeding this way one can arrive at a sigma-algebra by 'transfinite 
induction' , which is enough to cause goose-bumps . The following theorem 
avoids this and simply states that sigma-algebras are monotone ' limits ' of 
algebras . The key word in the following is ' sigma-algebra' . 

1 .3 THEOREM (Monotone class theorem) 

Let 0 be a set and let A be an algebra of subsets of 0 such that 0 is in A 
and the empty set 0 is also in A. Then there exists a smallest monotone 
class S that contains A. That class, S, is also the smallest sigma-algebra 
that contains A. 

PROOF. Let S be the intersection of all monotone classes that contain A, 
i .e . , Y E S if and only if Y is in every monotone class containing A. We 
leave it as an exercise to the reader to show that S is a monotone class 
containing A. By definition, it is then the smallest such monotone class . 

We first note that it suffices to show that S is closed under forming 
complements and finite unions . Assuming this closure for the moment , we 
have, with AI, A2 , . . .  in s, that Bn : ==  u� 1 Ai is a monotone increasing 
sequence of sets in S. Since S is a monotone class U� 1 Ai is in S. Thus S 
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is necessarily closed under forming countable unions . The formula 

implies that S, being closed under forming complements, contains also 
countable intersections of its members . Thus S is a sigma-algebra and since 
any sigma-algebra is a monotone class, S is the smallest sigma-algebra that 
contains A. 

Next , we show that S is indeed closed under finite unions . Fix a set 
A E A and consider the collection C(A) == {B E S :  B U A E S} . Since A 
is an algebra, C(A) contains A. For any increasing sequence of sets Bn in 
C(A) , AU Bi is an increasing sequence of sets in S. Since S is a monotone 
class, 

Au (�Bi) = �AUBi 

is inS and therefore U� 1 Bi is in C(A) . The reader can show that C(A) is 
closed under countable intersections of decreasing sets, and we then conclude 
that C(A) is a monotone class containing A. Since C(A) C S and S is the 
smallest monotone class that contains A, C(A) == S. 

Again, fix a set A, but this time an arbitrary one in S, and consider the 
collection C(A) == {B E S : B U A E S} . From the previous argument we 
know that A is a subset of C (A) . A verbatim repetition of that argument to 
this new collection C(A) will convince the reader that C(A) is a monotone 
class and hence C(A) == S. Thus S is closed under finite unions , as claimed. 

Finally, we address the complementation question. Let C == { B E S : 
Be E S} . This set contains A since A is an algebra. For any increasing 
sequence of sets Bi E C, i == 1 ,  2 ,  . . .  , Bf is a decreasing sequence of sets in 

S. Since S is a monotone class , 

is in S. Similarly for any decreasing sequence of sets Bi E C, i == 1 ,  2 ,  ... , 
Bf is an increasing sequence of sets in S and hence 

is inS. Again C == S. 
Thus S is closed under finite intersections and complementation. • 
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As an application of the monotone class theorem we present a uniqueness 
theorem for measures . It demonstrates a typical way of using the monotone 
class theorem and it will be handy in Sect . 1 . 10 on product measures. 

1 .4 THEOREM (Uniqueness of measures) 

Let 0 be a set, A an algebra of subsets of 0 and � the smallest sigma-algebra 
that contains A. Let J.LI be a sigma-finite measure in the stronger sense that 
there exists a sequence of sets Ai E A ( and not merely Ai E �), i == 1 ,  2 ,  . . .  , 
each having finite /-LI measure, such that U� I Ai == 0 .  If J.L2 is a measure 
that coincides with J.LI on A, then J.LI == /-L2 on all of �. 

PROOF. First we prove the theorem under the assumption that /-LI is a 
finite measure on 0. Consider the set 

M == {A E � : /-LI (A) == J.L2 (A) } .  

Clearly this collection of sets contains A and we shall show that M is a 
monotone class . By the previous Theorem 1 . 3  we then conclude that M == 
�. Let AI C A2 C · · · be an increasing sequence of sets in M. Define 
BI == AI , B2 == A2 rv AI , . . .  ' Bn == An rv An-I , . . . .  These sets are mutually 
disjoint and U� I Bi == An , in particular 

00 00 

UBi = UAi . 
i=I i=I 

By the countable additivity of measures , 

/Ll (�Ai) = � JLI (Bi ) = !��� JLI (Bz ) 

== lim /-LI (An) == lim /-L2 (An) == J.-L2 (U
oo 

Ai) . 
n�oo n�oo i=I 

Hence U� I Ai is in M. Now, with A EM, its complement Ac is also in M, 
which follows from the fact that J.Li (Ac) == J.Li (O) - J.Li (A) , i == 1 ,  2 ,  and that 
J.LI (O) == J.L2 (0) < oo .  From this , it is easy to show that M is a monotone 
class . We leave the details to the reader . 

Next , we return to the sigma-finite case. The theorem for the finite case 
I 

implies that J.LI (BnAo) == J.L2 (B nAo) for every Ao E A with J.L(Ao) < oo and 
every B E �. To see this, simply note that Ao n � is a sigma-algebra on Ao 
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which is the smallest one that contains the algebra Ao n A. (Why?) Recall 
that , by assumption, there exists a sequence of sets Ai E A, i == 1 ,  2 ,  . . .  , 
each having finite J.L1 measure, such that U� 1 Ai == 0. Without loss of 
generality we may assume that these sets are disjoint . (Why?) Now for B E � ' 

/-LI(B) = I-Ll (Q(Ai n B)) = �1-LI(A�nB) = �/-L2(AinB) = 1-L2(B). • 

1 . 5  DEFINITION OF MEASURABLE FUNCTIONS 
AND INTEGRALS 

Suppose that j : 0 --+ JR is a real-valued function on 0. Given a sigma
algebra L;, we say that f is a measurable function (with respect to L;) if 
for every number t the level set 

St (t) : ==  {x E 0: f(x) > t} ( 1 )  
is measurable, i .e. , St (t) E L;. The phrase f is �-measurable or, with an 
abuse of terminolo�;, f is J.L-measurable (in case there is a measure J.L on 
�) is often used to denote measurability. Note, however, that measurability 
does not require a measure! 

More generally, if f : 0 --+ C is complex-valued, we say that f is mea
surable if its real and imaginary parts, Re f and Im f, are measurable. 
REMARK. Instead of the > sign in ( 1) we could have chosen > , < or < . All 
these definitions are in fact equivalent . To see this , one notes , for example, 
that 

00 

{x E n: f (x) > t} = U{x E n: f(x) > t + 1/J} . 
j=l 

If � is the Borel sigma-algebra B on JRn , it is evident that every 
continuous function is Borel measurable, in fact St (t) is then open. Other 
examples of Borel measurable functions are upper and lower semicontinuous 
functions . Recall that a real-valued function f is lower semicontinuous 
if St (t) is open and it is upper semicontinuous if {x E 0 : f (x) < t} 
is open. f is continuous if it is both upper and lower semicontinuous. To 
prove measurability when f is upper semi continuous, note that the set { x : 

f (x) < t + 1/j }  is measurable . Since 
00 

{x E n: f(x) < t} = n{x : f (x) < t + 1/j } ,  
j=l 
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the set { x : f ( x) < t} is measurable . Therefore 
St (t) == 0 rv {x : f (x) < t} 

is also measurable . 

13 

By pursuing the above reasoning a little further , one can show that for 
any Borel set A c JR the set {x : f (x) E A} is �-measurable whenever f is 
�-measurable . 

An amusing exercise (see Exercises 3 , 4, 18) is to prove the facts that 
whenever f and g are measurable functions then so are the functions x �----+ 

Af ( x) + 1 g ( x) for A and 1 E C, x �----+ f ( x) g ( x) , x �----+ I f ( x) I and x �----+ ¢ ( f ( x) ) , 
where ¢ is any Borel measurable function from C to C. In the same vein 
x �----+ max{f(x) , g (x) } and x �----+ min{f (x) , g (x) } are measurable functions . 
Moreover , when f1 , f2 , f3 , . . . is a sequence of measurable functions then 
the functions lim supj--+oo fi ( x) and lim inf j--+oo fi ( x) are measurable . 

Hence, if a sequence fi (x) has a limit f(x) for J.L-almost every x, then 
f is a measurable function. (More precisely, f can be redefined on a set of 
measure zero so that it becomes measurable . )  The reader is urged to prove 
all these assertions or at least look them up in any standard text . 

That a measurable function is defined only almost everywhere can cause 
some difficulties with some concepts, e .g . , with the notion of strict positivity 
of a function. To remedy this we say that a nonnegative measurable function 
f is a strictly positive measurable function on a measurable set A, if 
the set {x E A :  f (x) == 0} has zero measure . 

Similar difficulties arise in the definition of the support of a measurable 
function. For a given Borel measure J.L let f be a Borel measurable function 
on JRn, or on any topological space for that matter .  Recall that the open 
sets are measurable, i .e . , they are members of the sigma-algebra. Consider 
the collection 0 of open subsets W with the property that f (X) == 0 for 
J.L-almost every x E w and let the open set w* be the union of all the w's 
in 0. Note that 0 and w* might be empty. Now we define the essential 
support of f, ess supp{f} , to be the complement of w* . Thus, ess supp{f} 
is a closed, and hence measurable, set . Consider, e .g . , the function f on JR, 
defined by f (x) == 1, x rational, and f (x) == 0, x not rational, and with J.L 
being Lebesgue measure . Obviously f (x) == 0 for a.e . x E JR, and hence 
ess supp{f} == 0. Note also that ess supp{f} depends on the measure J.L 
and not just on the sigma-algebra. It is a simple exercise to verify that 
for J.L being Lebesgue measure and f continuous, ess supp{f} coincides with 
supp{f} , defined in Sect . 1 . 1 .  

In the remainder of this book we shall, for simplicity, use supp{f} to 
mean ess supp{f} . 

Our next task is to use a measure J.L to define integrals of measurable 
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functions . (Recall that the concept of measurability has nothing to do with 
a measure . )  

First , suppose that f : 0 --+ JR+ is a nonnegative real-valued, �-measur
able function on n. (Our notation throughout will be that JR+ = {X E JR : 
x > 0} . )  We then define 

Ft (t) = �(St (t) ) ,  
i .e . , Ft (t) is the measure of the set on which f > t .  Evidently Ft (t) is 
a nonincreasing function of t since Sf ( t 1 ) C Sf ( t2 ) for t 1 > t2 . Thus 
Ft (t) : JR+ --+ JR+ is a monotone nonincreasing function and it is an elemen
tary calculus exercise (and a fundamental part of the theory of Riemann 
integration) to verify that the Riemann integral of such functions is always 
well defined (although its value might be +oo) . This Riemann integral de
fines the integral off over n, i .e . , 

k f(x)J.L(dx) := laoo Fj(t) dt . (2) 

(Notation: sometimes we abbreviate this integral as J f or J f d�. The 
symbol �( dx) is intended to display the underlying measure, �· Some au
thors use d�(x) while others use just d�x . When � is Lebesgue measure, 
dx is used in place of _en ( dx) . )  A heuristic verification of the reason that 
(2) agrees with the usual definition can be given by introducing Heaviside's 
step-function 8( s) = 1 if s > 0 and 8( s) == 0 otherwise . Then, formally, 

laoo F1(t) dt = laoo {in 8(f (x) - t)J.L(dx) } dt 
= k { fof(x) dt} J.L(dx) = k f(x)J.L(dx) . 

(3) 

If f is measurable and nonnegative and if J f d� < oo, we say that f is 
a summable (or integrable) function. 

It is an important fact (which we shall not need, and therefore not prove 
here) that if the function f is Riemann integrable, then its Riemann 
integral coincides with the value given in (2) . See, however , Exercise 21 for 
a special case which will be used in Chapter 6 .  

More generally, suppose f : 0 --+ C is a complex-valued function on 0. 
Then f consists of two real-valued functions , because we can write f(x) = 
9 (x) + ih(x) , with 9 and h real-valued. In turn, each of these two functions 
can be thought of as the difference of two nonnegative functions , e .g . , 

9 (x) = 9+ (x) - 9- (x) where 

X _ { 9( X) if 9( X) > 0, 
9+ ( ) - 0 if 9(x) < 0 .  

(4) 

(5) 
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Alternatively, 9+ (x) == max(g (x) , 0) and g_ (x) = - min(g (x) ,  0) . These are 
called the positive and negative parts of g . If f is measurable , then all 
four functions are measurable by the earlier remark. If all four functions 
9+ , g_ ,  h+ , h_ are summable, we say that f is summable and we define 

(6) 

Equivalently, f is summable if and only if x �----+ l f (x) l E JR+ is a summable 
function. It is to be emphasized that the integral of f can be defined only if 
f is summable. To attempt to integrate a function that is not summable is 
to open a Pandora's box of possibly false conclusions and paradoxes . There 
is, however , a noteworthy exception to this rule : If f is nonnegative we shall 
often abuse notation slightly by writing J f = +oo when f is not summable . 
With this convention a relation such as J g < J f (for f > 0 and g > 0) is 
meant to imply that when g is not summable, then f is also not summable. 
This convention saves some pedantic verbiage . 

Another amusing (and not so trivial) exercise (see Exercise 9) is the 
verification of the linearity of integration. If f and g are summable, then 
Aj + 19 are summable (for any A and 1 E C) and 

(7) 

The difficulty here lies in computing the level sets of linear combinations of 
summable functions . 

An important class of measurable functions consists of the characteristic 
functions of measurable sets , as defined in 1 . 1  ( 1) . Clearly, 

and hence XA is summable if and only if JL(A) < oo. 
Sometimes we shall use the notation X{ . . . } , where { · · · } denotes a set 

that is specified by condition · · · . For example, if f is a measurable function, 
X{f>t} is the characteristic function of the set Sf ( t) , whence J X{f>t} is 
precisely Ft (t) for t > 0 .  

For later use we now show that X{f>t} is a jointly measurable function of 
x and t .  We have to show that the level sets of X{f>t} are � x B1-measurable, 
where B1 is the Borel sigma-algebra on the half line JR+ . The level sets in 
(x, t)-space are parametrized by s > 0 and have the form 

{ (x, t) E 0 X JR+ : X{f>t} (x) > s} . 
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If s > 1 ,  then the level set is empty and hence measurable. For 0 < s < 1 
the level set does not depend on s since X{f>t} takes only the values zero or 
one. In fact it is the set 'under the graph of f ' , i .e . , the set G == { (x, t) E 
0 x JR+ : 0 < t < f(x) } .  This set is the union of sets of the form St (r) x [0 , r] 
for rational r . (Recall that [a , b] denotes the closed interval a < x < b while 
(a ,  b) denotes the open interval a < x < b. ) Since the rationals are countable 
we see that G is the countable union of rectangles and hence is measurable. 
Another way to prove that G c JRn+l is measurable, but which is secretly 
the same as the previous proof, is to note that 

G == { (x , t) : f (x) - t > 0} n {t : t > 0} , 

and this is a measurable set since the set on which a measurable function 
(/ ( x) - t, in this case) is nonnegative is measurable by definition. (Why is 
f(x) - t _cn+1-measurable?) 

Our definition of the integral suggests that it should be interpreted as 
the 'J.L x £1 ' measure of the set G which is in � x B1 . It is reasonable to 
define 

(J-L X .C1 ) (G) : = fooo in X{f>a} (X)J-L(dx) da = in f(x)J-L(dx) . (8) 

A necessary condition for this to be a good definition is that it should not 
matter whether we integrate first over a or over x . In fact , since for every 
x E 0, J000 X{f>a} (x) da == f (x) (even for nonmeasurable functions) ,  we 
have (recalling the definition of the integral) that 

This is a first elementary instance of Fubini's theorem about the inter
change of integration. We shall see later in Theorem 1 . 10 that this inter
change of integration is valid for any set A E � x B1 and we shall define 
(J.L x £1 ) (A) to be JIR J.L({x : (x , a) E A}) da . We shall also see that J.L x £1 
defined this way is a measure on � x B1 . 

e With this brief sketch of the fundamentals behind us , we are now ready 
to prove one of the basic convergence theorems in the subject . It is due to 
Levi and Lebesgue. (Here and in the following the measure space (0, �' J.L) 
will be understood. )  

Suppose that f1 , f2 , j3 , . . . is an increasing sequence of summable func
tions on (0, �' J.L) , i .e . , for each j ,  Ji+1 (x) > Ji (x) for J.L-almost every x E 0. 
Because a countable union of sets of measure zero also has measure zero, it 
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then follows that the sequence of numbers f1 (x) , f2 (x) , . . .  is nondecreasing 
for almost every x . This monotonicity allows us to define 

f (x) := .lim fj (x) 
J ----+00 

for almost every x, and we can define f (x) := 0 on the set of x 's for which 
the above limit does not exist . This limit can, of course, be +oo, but it is 
well defined a.e . It is also clear that the numbers Ij :=  In fi dJL are also 
nondecreasing and we can define 

I := .lim Ii . J ----+00 

1 .6 THEOREM (Monotone convergence) 

Let f1 , f2 , f3 , . . . be an increasing sequence of summable functions on 
(0, �' JL) , with f and I as defined above . Then f is measurable and, more
over, I is finite if and only if f is S'ummable, in which case I = In f dJL . In 
other words, 

( 1 )  

with the understanding that the left side of ( 1 )  is +oo when f is not sum
mable .  

PROOF. We can assume that the fi are nonnegative; otherwise , we can 
replace fi by fi - f1 and use the summability of f1 . To compute I fi we 
must first compute 

FfJ (t) = JL( {x : fj (x) > t} ) .  
Note that , by definition, the set {x : f (x) > t} equals the union of the 
increasing, countable family of sets {x : fi (x) > t} .  Hence, by 1 . 2 (4) , 
limj--+oo F11 (t) = Ft (t) for every t .  Moreover, this convergence is plainly 
monotone. 

To prove our theorem, it then suffices to prove the corresponding theorem 
for the Riemann integral of monotone functions . That is , 

.lim (XJ Fp (t) dt = {oo 
F1 (t) dt 

J--+oo Jo lo 
(2) 

given that each function F11 (t) is monotone (in t) , and the family is mono
tone in the index j ,  with the pointwise limit Ft ( t) . This is an easy exercise; 
all that is needed is to note that the upper and lower Riemann sums con-
verge. • 
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e The previous theorem can be paraphrased as saying that the functional 
f �----+ J f on nonnegative functions behaves like a co11tinuous functional with 
respect to sequences that converge pointwise and monotonically. It is easy 
to see that f �----+ J f is not continuous in general, i .e . , if fi is a sequence 
of positive functions .1.nd if fi --+ f pointwise a.e . it is not true in general 
that limi�oo J fi == J f , or even that the limit exists (see the Remark after 
the next lemma) . What is true, however, is that f �----+ J f is pointwise lower 
semicontinuous, i .e . , lim infi�oo J fi > J f if fi --+ f pointwise (see Exercise 
2) . The precise enunciation of that fact is the lemma of Fatou. 

1 . 7  LEMMA (Fatou's lemma) 

Let f1 , f2 , . . .  be a sequence of nonnegative, summable functions on (0, � '  J.L) . 
Then f(x) : ==  lim infi�oo fi (x) is measurable and 

li�rl inf r fj (x )J.L( dx) > r f(x )J.L( dx) 0 
J�oo Jn ln 

in the sense that the finiteness of the left side implies that f is summable . 

� Caution: The word 'nonnegative' is crucial . 

PROOF. Define Fk (x) == infi>k fi (x) . Since 

we see that Fk (x) is measurable for all k == 1 ,  2 ,  . . .  by the Remark in 1 .5 .  
Moreover Fk (x) is summable since Fk (x) < fk (x) . The sequence pk is 
obviously increasing and its limit is given by supk>1 infi>k fi (x) which is , 
by definition, lim infi�oo fi (x) . We have that 

li� inf r fj (x)J.L(dx) := sup �nf r fj (x)J.L(dx) 
J�oo Jn k>I 1>k ln 

> lim { Fk (x)J.L(dx) = { f(x)J.L(dx) .  
k�oo }n Jn 

The last equality holds by monotone convergence and shows that f is sum
mable if the left side is finite. The first equality is a definition. The middle 
inequality comes from the general fact that infi J hi > infi J (infi hi ) == 

J ( inf i hi ) ,  since ( inf i hi ) does not depend on j .  • 
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REMARK. In case fi (x) converges to f (x) for almost every x E 0 the 
lemma says that 

lim.inf r fj (x )J.L(  dx) > r f(x )J.L(  dx) . 
J ln ln 

Even in this case the inequality can be strict . To give an example , consider 
on � the sequence of functions fi (x) = 1/j for lx l < j and fi (x) == 0 
otherwise. Obviously J� fi ( x) dx = 2 for all j but fi ( x) --+ 0 pointwise for 
all x. 

e So far we have only considered the interchange of limits and integrals 
for nonnegative functions . The following theorem, again due to Lebesgue, is 
the one that is usually used for applications and takes care of this limitation. 
It is one of the most important theorems in analysis . It is equivalent to the 
monotone convergence theorem in the sense that each can be simply derived 
from the other. 

1.8 THEOREM (Dominated convergence) 

Let f1 , f2 , . . .  be a sequence of complex-valued summable functions on (0 , � '  
J.L) and assume that these functions converge to a function f pointwise a .  e .  
If there exists a summable, nonnegative function G(x) on (0 , � '  J.L) such that 
l fi (x) l < G(x) for all j = 1 ,  2 ,  . . .  , then l f (x) l < G(x) and 

.lim r j j (X) J.L( dx) = r j (X) J.L ( dx) . 
J---+oo Jn ln 

� Caution : The existence of the dominating G is crucial! 

PROOF . It is obvious that the real and imaginary parts of fi , Ri and Ji , 
satisfy the same assumptions as fi itself. The same is true for the positive 
and negative parts of Ri and Ji . Thus it suffices to prove the theorem for 
nonnegative functions fi and f. By Fatou's lemma 

Again by Fatou's lemma 

li� inf { (G(x) - Ji (x) )J.L(dx) > { (G(x) - f(x) )J.L(dx) ,  
J---+oo ln ln 
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since G (X) - f j (X) > 0 for all j and all X E n. Summarizing these two 
inequalities we obtain 

li� inf r Ji (x)!-l(dx) > r f (x)l-l(dx) > lim sup r Ji (x)!-l(dx) , 
J�00 Jn Jn j�oo Jn 

which proves the theorem. • 

REMARK. The previous theorem allows a slight , but useful, generalization 
in which the dominating function G(x) is replaced by a sequence Gi (x) with 
the property that there exists a summable G such that 

in IG(x) - Gi (x) il-l(dx) --+ 0 as j --+  oo 

and such that 0 < I Ji ( x) I < Gi ( x) . Again, if Ji ( x) converges pointwise a.e. 
to f the limit and the integral can be interchanged, i .e . , 

.lim r j j (X) /-l ( dx) = r j (X) /-l ( dx) . 
J�oo }n Jn 

To see this assume first that Ji ( x) > 0 and note that 

since (G - Ji )+ < G, using dominated convergence. Next observe that 

since Gi - Ji > 0 . See 1 . 5 (5) . The last integral however tends to zero as 
j --+ oo, by assumption. Thus we obtain 

since clearly f(x) < G(x) . The generalization in which f takes complex 
values is straightforward. 

e Theorem 1 .8 was proved using Fatou's lemma. It is interesting to note 
that Theorem 1 .8 can be used , in turn, to prove the following generalization 
of Fatou's lemma. Suppose that Ji is a sequence of nonnegative functions 
that converges pointwise to a function f .  As we have seen in the Remark 
after Lemma 1 .  7, limit and integral cannot be interchanged since , intuitively, 
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the sequence fi might 'leak out to infinity' . The next theorem taken from 
[Brezis-Lieb ] makes this intuition precise and provides us with a correction 
term that changes Fatou's lemma from an inequality to an equality. While it 
is not going to be used in this book, it is of intrinsic interest as a theorem in 
measure theory and has been used effectively to solve some problems in the 
calculus of variations . We shall state a simple version of the theorem; the 
reader can consult the original paper for the general version in which, among 
other things , f �----+ l f iP is replaced by a larger class of functions , f �----+ j (f) . 

1 .9 THEOREM (Missing term in Fatou's lemma) 

Let fi be a sequence of complex-valued functions on a measure space that 
converges pointwise a. e. to a function f ( which is measurable by the remarks 
in 1 . 5) . Assume, also, that the fi 's are uniformly pth power summable for 
some fixed 0 < p < oo, i . e . , 

in l fi (x) IPJ.L(dx) < C for j = 1 ,  2 , . . .  

and for some constant C. Then 

.lim { i l fi (x) IP - lfi (x) - f(x) IP - l f(x) IP i J.L(dx) = 0 . ( 1 ) 
J---+oo ln 

REMARKS.  ( 1 ) By Fatou's lemma, f l f iP < C. 
(2) By applying the triangle inequality to ( 1 ) we can conclude that 

j l fj lp = j l f iP + j I f - fj lp + o( 1 ) , (2 ) 

where o( 1 ) indicates a quantity that vanishes as j --+ oo.  Thus the correction 
term is J I f - f1 IP , which measures the ' leakage' of the sequence fi . One 
obvious consequence of (2) , for all 0 < p < oo, is that if J I f - fi IP --+ 0 and 
if fi --+ f a.e. , then 

(In fact , this can be proved directly under the sole assumption that 
J I f - fi IP --+ 0. When 1 < p < oo this a trivial consequence of the triangle 
inequality in 2 .4(2) . When 0 < p < 1 it follows from the elementary in
equality I a + b iP < l a iP + l b iP for all complex a and b. ) Another consequence 
of (2) , for all 0 < p < oo, is that if J l fi iP --+ J l f iP and fi --+ f a.e . , then 

j I f - fj lv -+ o . 
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PROOF . Assume, for the moment , that the following family of inequalities , 
(3) , is true: For any c > 0 there is a constant Cc. such that for all numbers 
a, b E C 

(3) 

Next , write Ji = f + gi so that gi --+ 0 pointwise a.e . by assumption. We 
claim that the quantity 

(4) 

satisfies limj�oo J G� = 0. Here (h)+ denotes as usual the positive part of 
a function h. To see this , note first that 

I I ! + gi jP - lgj lp - I J IP I 
< I I ! + gi jP - lgi iP I + I J IP < E jgi jP + ( 1  + Cc.) I J IP 

and hence G� < ( 1  + Cc.) l f iP .  Moreover G� --+ 0 pointwise a.e. and hence 
the claim follows by Theorem 1 . 8 (dominated convergence) . Now 

We have to show J j gi IP is uniformly bounded. Indeed, 

Therefore, 

liJ? SUpj I I ! + gi jP - lgj lp - I J IP I < ED.  
J�OO 

Since c was arbitrary the theorem is proved. 
It remains to prove (3 ) . The function t �----+ ! t iP is convex if p > 1 .  Hence 

I a + b iP < ( l a l + l b i )P < ( 1 - ..\) 1-P ia i P + ..\1-P i b iP for any 0 < ,\ < 1 .  The 
choice ,\ = ( 1  + c) -1/ (P-1 ) yields (3) in the case where p > 1 .  If 0 < p < 1 
we have the simple inequality I a + b iP - l b iP < I a lP whose proof is left to the 
reader . • 

e With these convergence tools at our disposal we turn to the question 
of proving Fubini 's theorem, 1 . 12 .  Our strategy to prove Fubini's theorem 
in full generality will be the following: First , we prove the 'easy' form in 
Theorem 1 . 10 ;  this will imply 1 . 5 (9) . Then we use a small generalization of 
Theorem 1 . 10 to establish the general case in Theorem 1 . 12 .  



Sections 1 .9-1.10 23 

1.10 THEOREM (Product measure) 

Let (01 , �1 , ILl ) , (02 ,  �2 ,  IL2 ) be two sigma-finite measure spaces.  Let A be a 
measurable set in � 1 x �2 and, for every x E 02 , set f(x) : =  1L1 (A1 (x) ) and, 
for every y E 01 , g(y) : = �L2 (A2 (y) ) . (Note that by the considerations at the 
end of Sect. 1 . 2 the sections are measurable and hence these quantities are 
defined) . Then f is �2 -measurable, g is �1 -measurable and 

( 1-L 1 X /-L2 ) (A) : = r f (X) /-L2 ( dx) = r g ( y) 1-L 1 ( d y) . ( 1 )  
ln2 ln1 

Moreover, ILl x 1L2 , the product of the measures ILl and 1L2 , defined in ( 1 ) ,  is 
a sigma-finite measure on �1 x �2 . 

PROOF. The measurability of f and g parallels the proof of the section 
property in Sect . 1 . 2  and uses the Monotone Class Theorem; it is left to 
Exercise 22.  

Consider any collection of disjoint sets Ai , i = 1 ,  2 ,  . . .  , in �1 x �2 . 
Clearly their sections Ai (x) , i = 1 ,  2 ,  . . .  , which are measurable (see Sect . 1 . 2) , 
are also disjoint and hence 

The monotone convergence theorem then yields the countable additivity of 
ILl x IL2 . Similarly, the second integral in ( 1 )  also defines a countably additive 
measure. 

We now verify the assumptions of Theorem 1 .4 (uniqueness of measures) . 
Define A to be the set of finite unions of rectangles , with 01 x 02 and the 
empty set included. It is easy to see that this set is an algebra since the 
difference of two sets in A can be written again as a union of rectangles . 
Simply use the identities 

and 

By assumption there exists a collection of sets Ai c 01 with ILl (Ai ) < oo 

for i = 1 ,  2 ,  . . .  and with 00 
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Similarly, there exists a collection Bj c 02 with J.L2 (Bj )  < oo for j = 1 ,  2 ,  . . .  
and with 

Clearly the collection of rectangles Ai x Bj is countable, covers 01 x 02 and 

Thus, the two measures defined by the two integrals in ( 1 )  are sigma-finite 
in the stronger sense of Theorem 1 .4 .  Now, note that the two integrals in 
( 1 )  coincide on A. Since, by definition , �1 x �2 is the smallest sigma-algebra 
that contains A, Theorem 1 .4 yields ( 1 ) on all of �1 x �2 · • 

e The following generalization of the previous theorem is useful and is an 
important step in proving Fubini's theorem. 

1 . 1 1  COROLLARY (Commutativity and associativity of 
product measures) 

Let ( oi ' �i ' J.li ) for i = 1 ' 2 '  3 be sigma-finite measure spaces. For A E �1 X �2 
define the reflected set 

RA : = { (x, y) :  (y , x) E A} . 

This defines a one-to-one correspondence between �1 x �2 and �2 x �1 · 
Then the formation of the product measure J.l1 x J.L2 is commutative in the 
sense that 

(J.L2 X /-L1 ) ( RA) = (J.L1 X /-L2) (A) 

for every A E �1 x �2 . Moreover, the formation of product measures is 
associative, i . e .  

( 1 )  

PROOF . The proof of the commutativity is an obvious consequence of the 
previous theorem. To see the associativity, simply note that the sigma
algebras associated with (J.-L1 x J.-L2 ) x J.-l3 and J.-l1 x (J.-L2 x J.-L3) are the smallest 
monotone classes that contain unions of cubes . Hence ( 1 )  follows, since the 
two measures coincide on cubes . • 
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1 . 12 THEOREM (Fubini 's theorem) 

Consider two sigma-finite measure spaces ( Oi , �i , J-li ) ,  i = 1, 2 ,  and let f be 
a �1 x �2 measurable function on 01 x 02 . If f > 0 ,  then the fol lowing 
three integrals are equal ( in the sense that all three can be infinite) : 

{ j(x, y) (J.LI X J.L2 ) ( dx dy ) ,  Jn1 xn2 
( 1 )  

(2) 

(3)  

If f  is complex-valued, then the above holds if one assumes in addition that 

r I J (x, Y) I (J.Ll X J.L2 ) (dx dy) < 00 .  Jn1 xn2 
(4) 

REMARK. Sigma-finiteness is essential! In Exercise 19 we ask the reader 
to construct a counterexample. 

PROOF. The second part of the statement follows from the first applied 
to the posit ive and negative parts of the Re f and Im f separately. As 
for ( 1) ,  (2) , (3) , recall that by Theorem 1 . 10 (product measure) and the 
considerations at the end of Sect . 1 .5 the value of the integral in ( 1 ) is given 
by 

(5)  

where G = { (x , y , t) E 01 X 02 X JR :  0 < t < f (x, y) } , i .e . , G is the set 
under the graph of f. Note that by the previous corollary the sequence of 
the factors in ( 5) is of no concern. Hence one can interpret ( 5) in three ways 
as 

and 

where R1 and R2 are the appropriate reflections . By the previous corollary 
these numbers are all equal and thus the theorem follows from the definitions 
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and similarly with J.-LI and J.-L2 interchanged . • 

e The next theorem is an elementary illustration of the use of Fubini 's 
theorem. It is also extremely useful in practice because it permits us , in 
many cases , to reduce a problem about an integral of a general function to 
a problem about the integration of characteristic functions , i .e . , functions 
that take only the values 0 or 1 .  

1 . 13 THEOREM (Layer cake representation) 

Let v be a measure on the Borel sets of the positive real line [0, oo) such that 

cjJ(t) : ==  v ( [O ,  t) )  ( 1 )  

is finite for every t > 0 .  ( Note that ¢(0) == 0 and that ¢, being mono
tone, is Borel measurable . ) Now let (0 ,  � '  J.-L) be a measure space and f any 
nonnegative measurable function on 0 .  Then 

In </>(f(x) )f-l(dx) = 1= 11( {x : f (x) > t} )v (dt) . (2) 

In particular, by choosing v (dt) == ptP- l dt for p > 0, we have 

(3) 

By choosing J-l to be the Dirac measure at some point x E JRn and p == 1 we 
have 

f (x) = 1= X{f>t} (x) dt. (4) 

REMARKS . ( 1) It is formula ( 4) that we call the layer cake representation 
of f.  (Approximate the dt integral by a Riemann sum and the allusion will 
be obvious . )  
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(2) The theorem can easily be generalized to the case in which v is 
replaced by the difference of two (positive) measures , i .e . , v = VI - v2 . 
Such a difference is called a signed measure . The functions ¢ that can be 
written as in ( 1 ) with this v are called functions of bounded variation . 
The additional assumption needed for the theorem is that for the given f, 
and each of the measures VI and v2 , one of the integrands in (2)  is summable. 
As an example , 

In sin[! ( x) ] J.L ( dx) = 100 
(cos t) J.L ( { x : f ( x) > t}) dt . 

(3) In the case where ¢(t) == t , equation (2) is just the definition of the 
integral of f .  

(4) Our proof uses Fubini 's theorem, but the theorem can also be proved 
by appealing to the original definition of the integral and computing the J.-L
measure of the set {x : ¢(f (x) ) > t} . This can be tedious (we leave this to 
the reader) in case ¢ is not strictly monotone . 

PROOF. Recall that 

100 
J.L( {x : f (x) > t} ) v (dt) = 100 in X{f>t} (x)J.L(dx) v(dt) 

and that X{f>t} (x) is jointly measurable as discussed in Sect . 1 . 5 .  By ap
plying Theorem 1 . 1 2 (Fubini 's theorem) the right side equals 

The result follows by observing that 

roo rt(x) 
Jo X{f>t} (x) v(dt) = Jo v(dt) = <j>(f(x) ) . II 

e Another application of the notion of level sets is the 'bathtub principle ' . 
It solves a simple minimization problem - one that arises from time to 
time, but which sometimes appears confusing until the problem is viewed in 
the correct light (see, e.g. , Sects . 12 . 2  and 12 .8) . The proof, which we leave 
to the reader, is an easy exercise in manipulating level sets. 
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1 . 14 THEOREM (Bathtub principle) 

Let (0, � '  J-L) be a measU'1 ·e space and let f be a real-valued, measurable func
tion on n such that J-L( { x : f ( x) < t} ) is finite for all t E JR. Let the number 
G > 0 be given and define a class of measurable functions on n by 

C = { g :  0 < g(x) < 1 for all x and ln g(x)JL(dx) = G} . 

Then the minimization problem 

is solved by 

and 

where 

I =  inf { f (x)g(x)JL(dx) gEC }0 

I =  { f (x)JL( dx) + CSJL( {X : f(x) = S} ) ,  
Jf<s 

s = sup{t : J.-L( {x : f(x) < t} ) < G} , 

CJ.-L( {X : f (X) == s} ) = G - J.-L( {X : f (X) < s} ) . 

( 1 )  

(2) 

(3) 

(4) 

(5) 
The minimizer given in (2) is unique if G == J.-L({x : f(x) < s} )  or if G = 
J.-L( {X : f (X) < S} ) . 

In order to understand why this is like filling a bathtub (and also for the 
purpose of constructing a proof of Theorem 1 . 14) think of the graph of f as 
a bathtub, take J-l to be Lebesgue measure , and think of filling this bathtub 
with a fluid whose density g is not allowed to be greater than 1 ,  but whose 
total mass , G, is given. 

e The following theorem can be skipped at first reading for it will not be 
needed until Chapter 6 in the proof of Theorem 6 .22 (positive distributions 
are measures) . It provides a tool for constructing measures . Usually one 
is given a 'measure' on some collection of sets that is only finitely additive . 
The first step is to extend this 'measure ' to an outer measure (defined by 
(i) , ( ii) and (iii) in Theorem 1 . 15 below) on all subsets. (Note: an outer 
measure is not necessarily finitely additive. ) The second step is to restrict 
this outer measure to a class of sets that form a sigma-algebra in such a way 
that it is countably additive there . This construction is very general and 
the idea is due to Caratheodory. 
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1.15 THEOREM (Constructing a measure from an outer 
measure) 

Let 0 be a set and let J-l be an outer measure on the collection of subsets 
of 0, i . e . , a nonnegative set function satisfying 

(i) J.-L(0) = 0, 
(ii) J.-L(A) < J.-L(B) if A c B, 
( iii) 

for any countable collection of subsets of 0 .  
Define � to be the collection of sets satisfying Caratheodory's crite

rion, namely A E � if 

( 1 )  

for every set E c 0 .  
Then � is a sigma-algebra and the restriction of J-l to � is a countably 

additive measure. The sets in � are called the measurable sets .  

PROOF. Clearly � is not empty since 0 E � and 0 E � .  Obviously with 
A E �' Ac E � .  It is an instructive exercise for the reader to show that any 
finite union and any finite intersection of measurable sets is measurable (see 
Exercise 8) . Thus � is an algebra. 

We show next that J-l is a finitely additive measure on � .  Let E be any 
set in 0 and let B1 , B2 , . . .  , Bm be a collection of disjoint measurable sets. 
Then 

(2) 

The equality holds since , by the above, finite unions of measurable sets are 
measurable and the inequality holds because of (iii) . Further, since the Bi 's 
are disjoint , we have for every i = 1 ,  2 ,  . . .  , 

E n Bi = E n n Bj n Bi 
j<i 
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and hence the right side of (2)  equals 

I: 11 E n ( n Bj) n Bi + 11 E n ( .n Bj) n Bm 
2=1 1 <2 J <m 

By the measurability of Bm the sum of the last two terms in (3) equals 

(3) 

(4) 

and hence the right side of (2) is not changed when m is replaced by m - 1 .  
By peeling off the sets Bj , j == m ,  m - 1 ,  . . .  , 1 in this fashion, we see that 
the right side of (2) equals J.-L(E) . Hence, 

(5) 

In particular, with E == 0, ( 5) establishes finite additivity. 
Now, for a countable collection of disjoint sets B1 , B2 , . . .  

by ( iii) . Thus, by (ii) , 

is an increasing sequence and 

From this and (5) we conclude that 

00 (6) 
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Since 

the measurability of U;n 1 B2 together with (5) and (6) yields 

In case J.-L(E) == oo equation ( 1 ) holds for any set A by ( iii) and, in 
particular, for any union (countable or not) of sets. Equation ( 5) is trivial 
in case J.-L(E n U� 1 Bi) == oo. If J.-L(E n U� 1 Bi) is finite, simply replace E 
by E' :== E n  U� 1 Bi , and then the case J.-L(E) < oo applied to E' yields (5) . 
Thus, (6) and (7) hold generally and, by (iii) , U� 1 Bi is measurable. 

By setting E == 0 in (6) we obtain the countable additivity, i .e . , 

� (Q Bi) = ��(Bi) · (8) 

Having established that countable unions of disjoint measurable sets are 
measurable, it is straightforward to show that � is a sigma-algebra and J-l is 
a countably additive measure on � .  • 

e Several theorems in this chapter and the next are concerned with the 
pointwise convergence of a sequence of measurable functions . One might 
expect that such convergence can be quite 'wild' and irregular, and this 
is certainly possible. Uniform convergence, as would be appropriate for 
suitable sequences of continuous functions , is the exception rather than the 
rule . Nevertheless, a remarkable and useful theorem of [Egoroff] asserts that 
if the space has finite measure , and if one is prepared to ignore a subset of 
arbitrarily small measure, then pointwise convergence is always uniform. 

1 . 16 THEOREM (Uniform convergence except on small 
sets) 

Let (0, � ' J.-L) be a measure space with J.-L(O) < oo, let f, f1 , f2 , . . .  be complex
valued, measurable functions on 0, and assume fi ( x) ---+ f ( x) as j ---+ oo 
for almost every X E n. Then, for every c > 0 there is a set Ac: c n 
with J-L(Ac:) > J.-L(O) - c such that fj (x) converges to f (x) uniformly on Ac: . 
That is, for every 6 > 0 there is an N8 such that when j > N8 we have 
l fi (x) - f(x) l < 6 for every x E Ac: . 
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PROOF. Choose 6 > 0 .  Pointwise convergence at x means that there is 
an integer M(6, x) such that I Ji (x) - f(x) l < 6 for all j > M(6, x) . For 
integer N define the sets 8(6, N) = {x : M(6, x) < N} ,  which obviously 
are nondecreasing with respect to N and 6 .  These sets are measurable since 

N . 
{x : M(6, x) < N} = UM=1 nj>M Bj , where Bj = {x : l f1 (x) - f(x) l < 6} . 
Next , we define 8(6) = UN 8(6, N) . Since almost every x is in some 8(6, N) , 
we have that J-L(8(6) ) = J-L(O.) . Countable additivity is crucial here . 

Thus, for every 6 > 0 and T > 0 there is an N such that J-L(8(6, N) ) > 
J-L(O.) - T .  Let 61 > 62 > · · · be a sequence of 6 's tending to 0 , and let Nj be 
such that J-L(8(6j , Nj ) )  > J-L(O.) - 2-ic. Set Ac: := ni 8(6j , Nj ) · Obviously, 
by construction, Ji converges to f uniformly on Ac: . 

To complete the proof we have to show that J-L(A�) < c .  This is an im
mediate consequence of de Morgan's law, ( ni 8(6j , Nj ) ) c = Ui 8(6j , Nj ) c , 
and the fact that the measure of the right side is less than c. • 

1 . 17 SIMPLE FUNCTIONS AND REALLY SIMPLE 
FUNCTIONS 

The beauty and power of measure theory and the Lebesgue integral allows 
us to deal with functions and their limits economically and elegantly. Nev
ertheless , Theorem 1 . 16 suggests that the expanded concept of measurable 
functions has not really taken us far from the kinds of functions , mostly con
tinuous, that mathematicians thought about in the nineteenth century. We 
shall explore this idea a little further and also say a little about the connec
tion between our presentation of integration theory and the more customary 
approach via simple functions . In fact , we shall take a step even further in 
that direction by tracing the path back to 'really simple functions' - a 
concept we learned from E. Carlen. 

Given a measure space (0. ,  � '  J-L) , we know what a measurable function is , 
what a measurable set is , and what the characteristic function of such a set 
is . The integral of a characteristic function of a measurable set is defined 
to be the measure of the set . Next , we can define a simple function f 
to be a measurable function that takes on only finitely many values . I .e . , 
f (x) = �f 1 CjXj (x) where Cj E C and Xj is the characteristic function of 
some measurable set Aj . (Since such an f can be thus written in several 
ways, it is customary to require the Aj to be disjoint sets and the Cj to be all 
different ; this makes the representation unique but it is often advantageous 
not to do so - and we shall not impose this requirement . )  We can, in 
any case , define fn fdJ.L = �f 1 CjJ.L(Aj ) ,  and check that this 'definition' is 
independent of the representation. Finally, the integral of a nonnegative, 
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measurable function, f, is defined to be the supremum of the integrals of 
simple functions , g, with the property that 0 < g(x) < f (x) for all x. 
Evidently this definition agrees with the one in 1 .5 (2) ; it is only necessary 
to look at simple functions whose sets Aj are the sets St (t) (see 1 . 5 ( 1 ) )  for 
suitably chosen values of t .  The equivalence of the two definitions stems from 
the fact that the integral on the right side of 1 .5 (2)  is a Riemann integral 
and thus can be approximated by a finite sum. We also note that any 
nonnegative function f can be approximated from below by an increasing 
sequence of nonnegative simple functions j1 , i .e . , f > j1+1 > j1 > 0 .  

This way of developing integration theory is not without its advantages . 
For instance, it makes it easier to prove that J (f + g) == J f + J g . One 
is still left with the problem of understanding measurable sets , however. A 
measurable set can be weird but , as we shall see, it is not far from a 'nice ' 
set - in the sense of measure. 

Let us recall that we start with an algebra of sets A (containing 0 and 
the empty set ; see the end of Sect . 1 . 2) and then define the sigma-algebra 
� to be the smallest sigma-algebra containing A. The monotone-class the
orem identifies � as a more 'natural' object - the smallest monotone class 
containing A, but it would be helpful if we could define integration in terms 
of A directly. To this end we define a really simple function f to be 

N 
f(x) = L CjXj (x) , 

j=l 
where C1 E C and x1 is the characteristic function of some set A1 in the 
algebra A. (Again, we can, if we wish, choose the Aj to be disjoint sets and 
the C1 to all be different . )  

An important example is 0 == JRn and a member of A is a set consisting 
of a finite union (including the empty set) of half open rectangles, by 
which we mean sets of the form 

( 1 )  

with ai < bi for all 1 < i < n .  Finite unions of such sets form an algebra 
(why?) but not a sigma-algebra, and confusion about this distinction caused 
problems in times past . We can even make A into a countable algebra by 
requiring the ai , bi to be rational . The sigma-algebra generated by A is the 
Borel sigma-algebra. (This sigma-algebra is also generated by open sets , 
but the collection of open sets in JRn is not an algebra. If we want to make 
an algebra out of the open sets , without going to the full �-algebra, we 
can do so by taking all open sets and all closed sets and their finite unions 
and intersections . Unlike ( 1 ) , this algebra has the virtue that it can be 
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defined for general metric spaces , for example, but this algebra is not as 
easy to picture as ( 1 ) . )  We can take the measure to be Lebesgue measure 
en , whose definition for a set in A is evident , but we can also consider any 
other measure J-l defined on this sigma-algebra. 

In the general case we suppose that a set 0 and an algebra A - and 
hence � - are given. We suppose also that the measure J-l is given, but we 
make the additional assumption that 0 is sigma-finite in the strong sense 
of Theorem 1 .4 (uniqueness of measures) , namely that 0 can be covered by 
countably many sets in A of finite measure (without using other sets in �) . 
This is certainly true of JRn with Lebesgue measure and the algebra A just 
mentioned. For the purposes of what we want to do in the following, it is 
convenient to replace A by the subalgebra consisting of those sets in A that 
have finite J.-L-measure. Thus, we shall assume henceforth that 

J.-L(A) < oo for all A EA. (2) 

Sigma-finiteness in the strong sense means now that 0 can be covered by 
count ably many sets in A (since all sets in A now have finite measure) . All 
really simple functions are bounded and summable. 

The question to be answered is whether summable functions can be 
approximated by really simple functions in the sense of integrals (or, to use 
the terminology of the next chapter , in the £1 (0) sense) . The next theorem 
answers this affirmatively, and the heuristic implication of this is that while 
there may be many more sets in � than in A, the additional sets are not 

. 
critically important for evaluating an integral . 

1 . 18 THEOREM (Approximation by really simple func
tions) 

Let (0 ,  �'  J.L) be a measure space with � generated by an algebra A. As
sume that 0 is sigma-finite in the strong sense mentioned above. Let f be 
a complex-valued summable function and let c > 0 .  Then there is a really 
simple function he: such that 

fn I f - hc: l dJL < c .  ( 1 )  

PROOF .  The proof will show, once again, the utility of Theorem 1 . 3  (mono
tone class theorem) . Without loss of generality we can suppose that f is 
real-valued and f > 0 (why?) .  In view of what was said in Sect . 1 . 17 about 
the fact that there is a simple function fc: for which fn I f - fc: l dJ.L < c for 
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any c > 0, it suffices to prove ( 1 ) when f is the characteristic function of 
some measurable set C of finite J.L-measure. 

Let us define B to be the family of sets B E � such that J.L(B) < oo and 
such that for every c > 0 there is an Ac: E A satisfying the condition 

(2) 

where X �y :== (X rv Y) U (Y rv X) denotes the symmetric difference of 
the sets X and Y. 

,...._, ,...._, 
Clearly, A c B. Our goal is to show that B == � ' where � denotes the 

sets in � with finite J.L-measure . 
Assume, provisionally, that J.L(fl) < oo. If Bj is an increasing family in 

B, set {3 == Uk Bk . Since J.L(fl) < oo, we have that J.-L(f3) < oo. We want to 
show that J.L({3�A) < c for some A E A. 

We set O"j : ==  {3 rv Bj and choose j large enough so that J.L(aj ) < c/2 .  
By definition, we can find an Aj E A so that J.L(Bj�Aj ) < c/2 .  Now we 
compute the measure of {3�Aj == ({3 rv Aj ) U (Aj rv {3) . First , we have 
that Aj rv {3 c Aj rv Bj , so J.L(Aj rv {3) < J.L(Aj rv Bj ) · Second, we set 
X ==  Bj rv Aj and Y == ai rv Aj c aj , so {3 rv Aj == X u Y. Then 

J.L({3 rv Aj ) < J.L(X) + J.L(Y) < J.L(X) + J.L( ai ) 
== J.L(Bj rv Aj ) + J.L(aj ) < J.L(Bj rv Aj ) + c/2 . 

If we add our inequalities for J.L(Aj rv {3) and J.L(f3 rv Aj ) we obtain 

Similarly, we can show that the intersection of a decreasing family in B is 
in B, and, therefore, B is a monotone class . If we also assume, provisionally, 
that fl is in A, then, by the monotone class theorem, B == � and we are 
done. 

The obstacle to using the monotone class theorem in the general case is 
the condition fl E A. Recall that we only need to approximate the set C 
mentioned at the beginning, and that J.L( C) < oo. By assumption, there are 
sets AI , A2 , . . .  in A such that n == Uj 1 Aj . Therefore , there is a finite 
number J such that if we define n' = Uf 1 Aj , then the set C' : = n' n C c C 
is close to C in the sense that J.L( C rv C') < c /2 . We can now carry out the 
previous proof with the following changes : ( 1 )  replace n by fl' ; (2) replace 
C by C' ; (3) replace the algebra A by the subalgebra A' c A, consisting of 
the sets A c fl' with A E A. (Check that A' is an algebra. )  Since fl' E A' , 
we see that we can find an A E A' so that J.L(C'�A) < c/2 . • 
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1 . 19 COROLLARY (Approximation by C00 functions) 

Let 0 be an open subset of JRn and let J.L be a measure on the Borel sigma
algebra of 0 . Let A be the algebra of half open rectangles of 1 . 17 (1 ) and 
assume that 0 is sigma-finite in the strong sense . Assume, also, that every 
finite, closed rectangle that is contained in 0 has finite J.L-measure . If f is a 
J.L-summable function, then, for each c > 0, there is a C00(JRn) function g£ 
such that 

fn I f - 9c: l dJ.L < c. ( 1 )  

REMARKS . ( 1 )  Since 9£ is in C00(JRn) , it is automatically in C00(0) . 
( 2) This Corollary gives a different approach to C00 (JRn) approximation 

than the one presented in Theorem 2 . 16 .  Approximation by convolution, as 
in 2 . 16 , is, however , useful in many contexts . 

PROOF. From Theorem 1 . 18, it suffices to prove that the characteristic 
function of a half open rectangle H c 0 of finite measure can be approx
imated to arbitrary accuracy, in the sense of ( 1 ) ,  by a C00 (JRn) function. 
This is easily accomplished. We shall demonstrate it in JR1 for convenience; 
the extension to ]Rn is trivial . 

The "rectangle" H is , e .g . , the interval H = (a, b] . Since 0 is open, 
it contains some closed rectangle G = [a + 6, b + 6] and J.L( G) < oo by 
assumption. 

Let hc (x) : =  f(x/c) , where 

exp [- {exp [x/ ( 1 - x)] - 1}-1] , if O < x < 1 ,  

1 ,  
if X < 0, 
if X > 1 ,  

which is an infinitely differentiable function. Let 

h£ ( x - a - c) , if x < a + c, 
9c (x) = 1 ,  if a +  c < x < b, 

hc (x - b) ,  if x > b. 

It is easy to check that 9£ is infinitely differentiable. As c --+ 0, 9c (x) --+ 
XH(x) for every x. The convergence is monotone decreasing if x > b and 
monotone increasing if x < b, but this is of no consequence . The important 
point is that 0 < 9c (x) < Xa(x) + XH (x) when c < 6 .  Thus, ( 1 )  follows by 
the dominated convergence theorem. • 
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Exercises for 
Chapter 1 

1 .  Complete the proof of Theorem 1 . 3 (monotone class theorem) . 
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2. With regard to the remark about continuous functions in Sect . 1 . 5 , show 
that f is continuous (in the sense of the usual c, 8 definition) if and only 
if f is both upper and lower semicontinuous . Show that f is upper semi
continuous at x if and only if, for every sequence x1 , x2 , . . . converging 
to x, we have f (x) > lim supn�oo f(xn) · 

3 . Prove the assertion made in Sect . 1 . 5  that for any Borel set A c JR and 
any sigma-algebra � the set {x : f (x) E A} is �-measurable whenever 
the function f is �-measurable . 

4. (Continuation of Problem 3) : Let ¢ : C --+ C be a Borel measurable 
function and let the complex-valued function f be �-measurable . Prove 
that ¢(! ( x) ) is �-measurable . 

5 .  Prove equation (2) in Theorem 1 .6 (monotone convergence) . 
6 . Give the alternative proof of the layer cake representation, alluded to in 

Remark (4) of 1 . 13 , that does not make use of Fubini 's theorem. 
7. Prove Theorem 1 . 14 (bathtub principle) . 
8 . Prove the statement about finite unions and intersections in the first 

paragraph of the proof of Theorem 1 . 15 (constructing a measure from an 
outer measure) . 
...., Hint. For any two measurable sets A, B and E arbitrary, show that 

J-L(E) == J-L(E n A n  B) + J-L(E n Ae n B) + J-L(E n A n  Be) 
+ J-L(E n Ae n Be) . 

Use this to prove that A n B is measurable . 
9 . Verify the linearity of the integral as given in 1 . 5 (7) by completing the 

steps outlined below. In what follows, f and g are nonnegative summable 
functions . 
a) Show that f + g is also summable . In fact , by a simple argument 

f(f + g) < 2 (f f + f g) .  
b) For any integer N find two functions f N and gN that take only finitely 

many values, such that I f f - f !N I  < C/N, I f  g - f gN I  < C/N and 
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I J (f + g) - J (!N + gN) I < C/N for some constant C independent of 
N.  

c) Show that for !N and gN as above J (!N + gN) == J !N + J gN , thus 
proving the additivity of the integral for nonnegative functions. 

d) In a similar fashion, show that for j, g > 0, J(f - g) == J f - J g . 
e) Now use c) and d) to prove the linearity of the integral . 

10 .  Prove that when we add and subtract the subsets of sets of zero measure 
to the sets of a sigma-algebra then the result is again a sigma-algebra 
and the extended measure is again a measure. 

1 1 .  Prove that the measure constructed in Theorem 1 . 15 is complete, i .e . , 
every subset of a measurable set that has measure zero is measurable. 

12 .  Find a simple condition on fn (x) so that 

�in fn (X)JL(dx) = in {� fn (x) } JL(dx) . 

13 .  Let f be the function on JRn defined by f(x) == l x l -pX{ Ix l < l} (x) . Compute 
J f d.Cn in two ways: (i) Use polar coordinates and compute the integral 
by the standard calculus method. ( ii) Compute .en ( { x : f ( x) > a} ) and 
then use Lebesgue's definition . 

14 .  Prove that j (x) , defined in 1 . 1 (2) , is infinitely differentiable. 

15 .  Urysohn's lemma. Let n c JR.n be open and let K c n be compact . 
Prove that there is a 'ljJ E Cgo (O) with 'l/J(x) == 1 for all x E K . 

...., Hints. (a) Replace K by a slightly larger compact set Kc: , i .e . , K c 
Kc: c 0; (b) Using the distance function d(x, Kc:) == inf{ lx - Y l : 
y E K c:} ,  construct a function 'l/Jc: E C� ( 0) with 'l/Jc: == 1 on Kc: and 
'l/Jc: (x) == 0 for x rJ. K2c: c 0; (c) Take }c: (x) == c-nj (x/c) , with j given 
in Exercise 14 and J j == 1 (here J denotes the Riemann integral from 
elementary calculus) .  Define 'l/J(x) == J }c: (x - y)'l/Jc: (Y) dy (again, the 
Riemann integral) ; (d) Verify that 'ljJ has the correct properties . To 
show that 'ljJ E Cgo ( 0) it will be necessary to differentiate 'under the 
integral sign' , a process that can be justified with standard theorems 
from calculus . 

16 .  Let 0 c JRn be open and ¢ E Cgo(O) . Show that there exist nonnegative 
functions cPl and ¢2 , both in cgo (O) , such that ¢ = cPl - cP2 · 

17. Show that the infimum of a family of continuous functions is upper semi
continuous .  



Exercises 39 

18. Simple facts about measure : 
a) Show that the condition { x : f ( x) > a} is measurable for all a E JR 

holds if and only if it holds for all rational a. 
b) For rational a, show that 

{x : f (x) + g(x) > a} = U ( {x : f (x) > b} n {x : g (x) > a - b} ) .  
b rational 

c) In a similar way, prove that f g is measurable if f and g are measur
able . 

19 .  Give a 'counterexample ' to Fubini 's theorem in the absence of sigma
finiteness . 
...., Hint. Take Lebesgue measure on [0 , 1] as one space and counting 

measure on [0 , 1] as the other. (The counting measure of a set is 
just the number of elements in the set . )  

20. If f and g are two continuous functions on a common open set in JRn that 
agree everywhere on the complement of a set of zero Lebesgue measure , 
then, in fact , f and g agree everywhere . 

2 1 .  Prove that if f : JRn --+ C is uniformly continuous and summable , then 
the Riemann integral of f equals its Lebesgue integral . 

22 . Theorem 1 . 10 (product measure) asserts that f and g are measurable 
functions . Prove this by imitating the proof of the section property in 
Sect . 1 . 2  and by using the Monotone Class Theorem. 

23. A concept we shall need later on is a connected open set . In elementary 
topology one learns that there are two notions of a topological space 0 
being connected: 
1 ) Topologically connected, i .e . , that 0 =/=- Au  B with A n  B == f/J and 

where A and B are botl1 open (in the topology of 0) . 
2) Arcwise connected, i .e . , it is possible to connect any two points of 

0 by a continuous curve lying entirely in 0 . Arcwise connectedness 
implies topological connectedness , but the converse does not hold, 
generally. 

a) Define "continuous curve" . 
b) Prove that if 0 c JRn is open, then topological connectedness 

implies arcwise connectedness . 
...., Hint. Arcwise connectedness defines a relation among points. 

24 . With the same assumptions as in Egoroff's theorem, show that if 

in l fj l 2 dJL < 1 and in 1 ! 1 2 dJL < oo, 
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then fn l fi - f iP dJ-L --+ 0 as j --+ oo for any 0 < p < 2 .  Construct a 
counterexample to show that this can fail for p == 2 .  

25 . A theorem closely related to Egoroff's theorem is Lusin's theorem. Let 
J.L be a Borel measure on ]Rn and let 0 be a measurable subset of JRn with 
J.L(O) < oo .  Let f be a measurable, complex-valued function on 0 . Then 
for each c > 0 there is a continuous function fc: such that fc: (x ) == f(x) 
except on a set of measure less than c .  Prove this . 
...., Hint. Urysohn's lemma can be helpful . 

26 . Using the monotone class theorem, imitate the proof of Theorem 1 . 18 to 
prove that Lebesgue measure is inner and outer regular . 

27 . Referring to Theorem 1 . 18 , it would be false to assert that a measurable 
set B can be approximated from the inside by a member of the algebra 
A. Consider ]Rn and the half open rectangle algebra in 1 . 17( 1 ) . Find a 
closed set in JRn of finite measure that contains no member of A. 

28 . Verify that the sigma-algebra � generated by the half open rectangles in 
1 . 17 ( 1 )  is the Borel sigma-algebra on JRn . Show explicitly that open and 
closed rectangles are in � .  



Chapter 2 

LP- Spaces 

This and the next two chapters contain basic facts about functions , the 
objects of principal interest in the rest of the book. The main topic is the 
definition and properties of pth_power summable functions . 

This topic does not utilize any metric properties of the domain, e .g . , the 
Euclidean structure of JRn, and therefore can be stated in greater generality 
than we shall actually need later . This generality is sometimes useful in 
other contexts, however . On a first reading it may be simplest to replace 
the measure J.-L( dx) on the space 0 by Lebesgue measure dx on JRn and to 
regard 0 as a Lebesgue measurable subset of JRn. 

2.1 DEFINITION OF LP-SPACES 

Let 0 be a measure space with a (positive) measure J-l and let 1 < p < oo .  

We define LP (O, dJ.-L) to be the following class of measurable functions : 

£P(O, dJ.-L) == {! : f :  n ---+ c, f is J.-L-measurable and I J IP is J.-L-Summable} . 
( 1 )  

Usually we omit J-l in the notation and write instead £P (O) if there is no am
biguity. Most of the time we have in mind that 0 is a Lebesgue measurable 
subset of ]Rn and J-l is Lebesgue measure. 

The reason we exclude p < 1 is that 3(c) below fails when p < 1 .  

On account of the inequality I a  + J3 IP < 2P-1 ( I a iP + IJ3 1P) we see that 
for arbitrary complex numbers a and b, af + b g is in £P (O) if f and g are . 
Thus LP (O) is a vector space . 

-

41 
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For each f E LP ( 0) we define the norm to be 

I I J I IP = (in l f (x) IPJ-L(dx)) l/p · (2) 

Sometimes we shall write this as I I  f I I  LP (O) if there is possibility of confusion. 
This norm has the following three crucial properties that make it truly a 
norm: 

(a) 1 1 ,\f l lp == 1 ,\ 1 1 1 / l lp for ,\ E C . 

(b) I I ! l i P == 0 if and only if f (x) == 0 for J-L-almost every point x . (3) 

(c) I I ! + 9 l lp < I I ! l iP + I IY I I p · 

(Technically, (2 )  only defines a semi-norm because of the 'almost every' 
caveat in 3 (b) , i .e . , 1 1 / l lp can be zero without f 0 .  Later on, when we 
define equivalence classes , (2) will be an honest norm on these classes . )  
Property (a) is obvious and (b) follows from the definition of the integral . 
Less trivial is property (c) which is called the triangle inequality. It will 
follow immediately from Theorem 2 .4 (Minkowski's inequality) . The triangle 
inequality is the same thing as convexity of the norm, i .e . , if 0 < ,\ < 1 ,  
then 

We can also define £00 (0, dJ-L) by 

L00 (0, dJ-L) == {f : f :  0 ---+ C , f is J-L-measurable and there exists 
a finite constant K such that I f (X) I < K for J-L-a.e . X E 0} . 

For f E L00 (0) we define the norm 

(4) 

l l f l loo == inf{K : l f (x) l < K for J-L-almost every x E 0} .  (5) 

Note that the norm depends on 1-l · This quantity is also called the essen
tial supremum of 1 ! 1 and is denoted by ess supx lf (x) l . (Do not confuse 
this with ess supp-which has one more p . )  Unlike the usual supremum, 
ess sup ignores sets of J-L-measure zero. E .g . , if 0 == JR and f(x) == 1 if x is 
rational and f (x) == 0 otherwise, then (with respect to Lebesgue measure) 
ess supx lf (x) l == 0 ,  while supx lf (x) l == 1 .  

One can easily verify that the L00 norm has the same properties (a) , (b) 
and (c) as above. Note that property (b) would fail if ess sup is replaced by 
sup . Also note that l f (x) l < 1 1 / l loo for almost every x . 
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We leave it as an exercise to the reader to prove that when f E £00 (0) n 
Lq (O) for some q then f E £P (O) for all p > q and 

I I  ! I I  oo == lim I I  ! I I  p • p---+00 
(6) 

This equation is the reason for denoting the space defined in (4) by £00 (0) . 
An important concept , whose meaning will become clear later , is the 

dual index to p (for 1 < p < oo, of course) . This is often denoted by p' , 

but we shall often use q , and it is given by 
1 1 - + - == 1 .  
p p' 

Thus, 1 and oo are dual, while the dual of 2 is 2 .  

(7) 

Unfortunately, the norms we have defined do not serve to distinguish all 
different measurable functions , i .e . , if I I /  - g l iP == 0 we can only conclude 
that f(x) == g (x) J-L-almost everywhere . To deal with this nuisance we can 
redefine LP (O, dJ-L) so that its elements are not functions but equivalence 
classes of functions . That is to say, if we pick an f E £P (O) we can define ,...._, 
f to be the set of all those functions that differ from f only on a set of 
J-L-measure zero. If h is such a function we write f rv h;,...._,moreo�er if f rv h 
and h rv g ,  then j rv g.  Consequently, two such sets j and k are either 
identical or disjoint . We can now define 

,...._, 
l l f l lp :== l l f l lp 

,...._, 
for some f E j. The point is that this definition does not depend on the 
choice of f E f.  

Thus we have two vector spaces . The first consists of functions while the 
second consists of equivalence classes of functions . (It is left to the reader to 
understand how to make the set of equivalence classes into a vector space . )  
For the first , I I ! - 9 l lp == 0 does not imply f == g ,  but for the second space 
it does . Some authors distinguish these spaces by different symbols , but all 
agree that it is the second space that should be called £P (O) . Nevertheless 
most authors will eventually slip into the tempting trap of saying ' let f be a 
function in £P ( 0) ' which is technically nonsense in the context of the second 
definition. Let the reader be warned that we will generally commit this sin. 
Thus when we are talking about £P-functions and we write f == g we really 
have in mind that f and g are two functions that agree J-L-almost everywhere. 
If the context is changed to, say, continuous functions , then f == g means 
f (x ) == g (x) for all x .  In particular , we note that it makes no sense to ask 
for the value f(O) , say, if f is an £P-function. 
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e A convex set K c ffi.n is one for which .Ax+ ( 1 - ,\)y E K for all x, y E K 
and all 0 < ,\ < 1 .  A convex function, f, on a convex set K c ffi.n is a 
real-valued function satisfying 

f(,\x + ( 1 - .A)y) < .Af (x) + ( 1 - .A)f (y) (8) 

for all x, y E K and all 0 < ,\ < 1 .  If equality never holds in (8) when y =/= x 
and 0 < ,\ < 1 ,  then f is strictly convex. More generally, we say that f 
is strictly convex at a point x E K if f(x) < ,\f (y) + ( 1 - ,\)f(z) whenever 
x == ,\y + ( 1 - ,\) z for 0 < ,\ < 1 and y =/=- z . If the inequality (8) is reversed, f 
is said to be concave (alternatively, f is concave {:::::=> -f is convex) . It is 
easy to prove that if K is an open set , then a convex function is continuous . 

A support plane to a graph of a function f : K ---+ JR at a point x E K 
is a plane ( in ffi.n+ 1 ) that touches the graph at ( x ,  f ( x) ) and that nowhere 
lies above the graph. In general, a support plane might not exist at x, but 
if f is convex on K, its graph has at least one support plane at each point 
of the interior of K. Thus there exists a vector V E ffi.n (which depends on 
x) such that 

f(y) > f(x) + V · (y - x) (9) 
for all y E K. If the support plane at x is unique it is called a tangent 
plane. If f is convex, the existence of a tangent plane at x is equivalent to 
differentiability at x .  

If n == 1 and if f is convex, f need not be differentiable at x .  However, 
when x is in the interior of the interval K, f always has a right derivative, 
f� (x) , and a left derivative , J!_ (x) , at x ,  e .g . , 

f� (x) :== lim [f (x + c) - f(x) ] /c . c:�O 

See [Hardy-Littlewood-P6lya] and Exercise 18 .  

2 . 2  THEOREM (Jensen's inequality) 

Let J : JR ---+ JR be a convex function. Let f be a real-valued function on 
some set 0 that is measurable with respect to some �-algebra, and let J-l 
be a measure on � .  Since J is convex, it is continuous and therefore ( J o 

f) (x) : ==  J(f(x) ) is also a �-measurable function on 0. We assume that 
J.-L(O) == fn J.-L( dx) is finite . 

Suppose now that f E £1 (0) and let (f) be the average of j, i . e . ,  



Sections 2. 1-2.3 

Then 
(i) [J o f] - , the negative part of [J o f] , is in £1 (0) , whence 

(ii) 

f0 (J o f) (x)J.-L(dx) is well defined although it might be +oo . 

( J 0 f) > J ( (f) ) . 
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( 1 )  

If J is strictly convex at (f) there is equality in ( 1 )  if and only if f is a 
constant function. 

PROOF. Since J is convex its graph has at least one support line at each 
point . Thus , there is a constant V E JR such that 

J(t) > J( (f) ) + V(t - (f) ) (2) 

for all t E JR. From this we conclude that 

[J(f)] - (x) < I J( (f) ) l  + I V I I (f) l + I V I I f (x) l , 

and hence, recalling that J.-L(O) < oo ,  ( i) is proved. 
If we now substitute f(x) for t in (2) and integrate over 0 we arrive at 

( 1 ) . 

Assume now that J is strictly convex at (f) . Then (2)  is a strict in
equality either for all t > (f) or for all t < (f) . If f is not a constant , then 
f(x) - (f) takes on both positive and negative values on sets of positive 
measure . This implies the last assertion of the theorem. II 

e The importance of the next inequality can hardly be overrated. There 
are many proofs of it and the one we give is not necessarily the simplest ; we 
give it in order to show how the inequality is related to Jensen's inequality. 
Another proof is outlined in the exercises . 

2.3 THEOREM (Holder's inequality) 

Let p and q be dual indices, i . e . ,  1/p + 1/q == 1 with 1 < p < oo.  Let 
f E LP(O) and g E Lq (O) . Then the pointwise product, given by (fg) (x) == 
f(x)g (x) , is in £1 (0) and 

( 1 )  
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The first inequality in ( 1 )  is an equality if and only if 

( i) f (x)g (x) == ei0 1f (x) l lg (x) l for some real constant (} and for J-L
almost every x .  

If f "# 0 the second inequality in ( 1 )  is an equality if and only if there is a 
constant ,\ E JR such that: 

( iia) If 1 < p < oo ,  j g (x) l == .A i f (x) I P-I for J-L-almost every x .  

( iib) If p == 1 ,  j g (x) l < ,\ for J-L-almost every x and j g (x) l == ,\ when 
f(x) =1- 0 .  

( iic) If p == oo ,  l f (x) l < ,\ for J-L-almost every x and l f (x) l == ,\ when 
g (x) =/= 0 .  

REMARKS. ( 1 )  The special case p == q == 2 is the Schwarz inequality 

(2) 

( 2) If /I , . . .  , fm are functions on 0 with fi E £P� (O) and �j I 1/p2 == 1 
then 

m m 1 II fi df1 < II I I  fi l l v. · n j=I j=I 
(3) 

This generalization is a simple consequence of ( 1 )  with f :== !I and g :== 
llj 2 fi · Then use induction on In j g jP . 

PROOF . The left inequality in ( 1 )  is a triviality, so we may as well suppose 
f > 0 and g > 0 (note that condition (i) is what is needed for equality here) . 
The cases p == oo and q == oo are trivial so we suppose that 1 < p, q < oo .  

Set A ==  {x : g (x) > 0} c 0 and let B == 0 rv A ==  {x : g (x) == 0} . Since 

In jP df1 = L jP df1 + L jP df1, 

since In gP dJ-L == I A gP dJ-L, and since In f g dJ-L == I A f g dJ-L, we see that it 
suffices-in order to prove ( 1 )-to assume that 0 == A. (Why is I f g dJ-L 
defined?) Introduce a new measure on 0 == A  by v (dx) == g (x)qJ-L(dx) . Also, 
set F(x) == f (x)g (x) -qfp (which makes sense since g (x) > 0 a.e . ) . Then, 
with respect to the measure v ,  we have that (F) == In fg dJ-L/ In gq dJ-L. On 
the other hand, with J(t) == ! t iP ,  In J o F  dv == In fP dJ-L. Our conclusion ( 1 )  
is then an immediate consequence of Jensen's inequality-as is the condition 
b e��� • 
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2.4 THEOREM (Minkowski's inequality) 

Suppose that n and r are any two spaces with sigma-finite measures J-l and 
l/ respectively. Let f be a nonnegative function on n X r which is J-l X 1/
measurable . Let 1 < p < oo. Then 

[ (In f (x , y)PJ-L(dx)) 1/P v(dy) 

> (In ([ f(x , y )v (dy)) P J-L(dx)) 1/P 
( 1 )  

in the sense that the finiteness of the left side implies the finiteness of the 
right side . 

Equality and finiteness in ( 1 ) for 1 < p < oo imply the existence of a 
J-L-measurable function Q : n ---+ JR+ and a v-measurable function {3 : r ---+ JR+ 
such that 

f(x ,  y) == a(x ){3 (y) for J-l x v-almost every (x, y) . 

A special case of this is the triangle inequality . For j, g E £P(O, dJ.-L) 
(possibly complex functions) 

(2) 

If f ¢ 0 and if 1 < p < oo, there is equality in (2) if and only if g == Aj for 
some A > 0 .  

PROOF. First we note that the two functions 

In f(x , y)PJ-L(dx) and H(x) : = [ f(x ,  y) v(dy) 

are measurable functions . This follows from Theorem 1 . 12 (Fubini 's theo
rem) and the assumption that f is J-l x v-measurable . We can assume that 
f > 0 on a set of positive J-l x v measure , for otherwise there is nothing to 
prove . We can also assume that the right side of ( 1 )  is finite; if not we can 
truncate f so that it is finite and then use a monotone convergence argument 
to remove the truncation. Sigma-finiteness is again used in this step. 
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The right side of ( 1 )  can be written as follows: 

In H(x)PJ-L(dx) = In (fr f(x , y)v (dy)) H(x)P-1J.-L(dx) 

= fr (in f(x , y)H(x)p-lJ-L(dx)) v(dy) .  

LP-Spaces 

The last equation follows by Fubini 's theorem. Using Theorem 2 .3  (Holder's 
inequality) on the right side we obtain 

In H(x)PJ-L(dx) < fr (in f(x , y)PJ-L(dx)) l/P 
E.=! 

x (in H(x)PJ-L(dx)) v v(dy) .  

Dividing both sides of ( 3) by 

( r ) (p-1) /P 
Jn H(x)PJ-L (dx) , 

(3) 

which is neither zero nor infinity (by our assumptions about f) , yields ( 1 ) . 
The equality sign in the use of Holder's inequality implies that for v

almost every y there exists a number A (y) ( i .e . , independent of x) such that 

A(y)H(x) == f(x , y) for J-L-almost every x . (4) 

As mentioned above, H is J-L-measurable . To see that A is v-measurable we 
note that 

A(y) In H(x)PJ-L(dx) = In f(x , y)PJ-L(dx) ,  

and this yields the desired result since the right side is v-measurable (by 
Fubini 's theorem) . 

It remains to prove (2) . First , by observing that 

l f (x) + g (x) l < l f (x) l + j g (x) l , (5) 

the problem is reduced to proving (2) for nonnegative functions. Evidently, 
( 5) implies (2 )  when p == 1 or oo ,  so we can assume 1 < p < oo .  We set 
F(x , 1 )  == l f (x) l , F(x , 2) == j g (x) l and let v be the counting measure of the 
set r == { 1 ,  2} ,  namely v (  { 1 } )  == v (  {2})  == 1 .  Then the inequality (2) is seen 
to be a special case of ( 1 ) .  (Note the use of Fubini's theorem here. )  
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Equality in (2) entails the existence of constants ..\1 and ..\2 (independent 
of x) such that 

I f ( x) I == .A 1 ( I f ( x) I + I g ( x) I ) and I g ( x) I == .A 2 ( I f ( x) I + I g ( x) I ) · ( 6) 

Thus, l g (x) l == .A i f (x) l almost everywhere for some constant ..\ .  However, 
equality in (5) means that g (x) == ..\f (x) with ,\ real and nonnegative. • 

e If 1 < p < oo, then £P (fl) possesses another geometric structure that 
has many consequences, among them the characterization of the dual of 
LP(fl) (2 . 14) and, in connection with weak convergence , Mazur's theorem 
(2 . 13) .  This structure is called uniform convexity and will be described 
next . The version we give is optimal and is due to [Hanner] ; the proof is in 
[Ball-Carlen-Lieb] . It improves the triangle (or convexity) inequality 

2 .5  THEOREM (Hanner's inequality) 

Let f and g be functions in LP(fl) . If 1 < p < 2, we have 

I I ! + g i l� + I I ! - g i l� > ( l l f l l p + l l g l l p )P + l l l f l l p - l l g l l p l p , ( 1 )  

( I I ! + g l lp + I I ! - g l lp )P + I l l ! + g l l p - I I ! - g l lp lp < 2P ( I I f l l � + l l g l l � ) .  (2) 
If 2 < p < oo, the inequalities are reversed. 

REMARK. When l l f l l p == l l g l lp , (2) improves the triangle inequality 
I I ! + g l lp < I I J I I P + l l g l lp because , by convexity of t �----+ l t iP ,  the left side 
of (2) is not smaller than 2 1 1 / + g i l� · To be more precise , it is easy to prove 
(Exercise 4) that the left side of (2) is bounded below for 1 < p < 2 and for 
I I  f - g I I  p < I I  f + g I I p by 

2 I I  f + g I I� + P (p - 1 )  I I  f + g I I �-2 I I  f - g I I; . 

The geometric meaning of Theorem 2 . 5  is explored in Exercise 5 .  

PROOF. ( 1 )  and (2) are identities when p == 2 ( ( 1 )  is then called the 
parallelogram identity) and reduce to the triangle inequality if p == 1 .  
(2) is derived from ( 1 )  by the replacements f ---+ f + g and g ---+ f - g . Thus, 
we concentrate on proving ( 1 ) for p =/=- 2 .  We can obviously assume that 
R :== l l g l lp/ l l f l lp < 1 and that l l f l l p == 1 .  For 0 < r < 1 define 

a(r) == ( 1  + r)p-l + ( 1 - r )P-1 
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and 
{3(r) == [ ( 1  + r)P-l - ( 1 - r)P-1 ] r1-P , 

with {3(0) == 0 for p < 2 and {3(0) == oo for p > 2 .  We first claim that the 
function FR(r) == a(r) + {3(r)RP has its maximum at r == R (if p < 2) and 
its minimum at r == R ( if p > 2) . In both cases FR(R) == ( 1 +R)P + ( 1 - R)P . 
To prove this assertion we can use the calculus to compute 

dFR(r) /dr == a' (r) + {3' (r)RP 
== (p - 1 ) [( 1  + r)P-2 - ( 1 - r)P-2] ( 1 - (R/r)P) ,  

which shows that the derivative of FR(r) vanishes only at r == R and that the 
sign of the derivative for r =/=- R is such that the point r == R is a maximum 
or minimum as stated above . Furthermore, for all 0 < r < 1 we have that 
{3(r) < a(r) ( if p < 2) and {3(r) > a(r) ( if p > 2) and thus, when R > 1 ,  

a(r) + {3(r)RP < a(r)RP + {3(r) ( if p < 2) 

and 
a(r) + {3(r)RP > a(r)RP + {3(r) ( if p > 2) . 

Thus, in all cases we have for all 0 < r < 1 and all nonnegative numbers A 
and B 

a(r) IA IP + {3(r) IB IP < l A + B IP + lA - B IP , p < 2 ,  (3) 

and the reverse if p > 2 .  It is important to note that equality holds if 
r == B/A < 1 . 

In fact , (3) and its reverse for p > 2 hold for complex A and B (that 
is why we wrote (3) with IA I , IB I , etc . ) . To see this note that it suffices to 
prove it when A == a and B == bei0 with a, b > 0 .  It then suffices to show 
that ( a2 + b2 + 2ab cos 0)�12 + ( a2 + b2 - 2ab cos ())P/2 has its minimum when 
() == 0 ( if p < 2) or its maximum when () == 0 ( if p > 2) . But this follows 
from the fact that the function x �----+ xr is concave ( if 0 < r < 1 )  or convex 
( if r > 1 ) . 

To prove ( 1 )  it suffices, then, to prove that when 1 < p < 2 

J { l f + g iP + I f - g iP } dJ.L > a(r) j i J IP dJ.L + f3(r) f i g iP dJ.L (4) 

for every 0 < r < 1 ,  and the reverse inequality when p > 2. But to prove 
(4) it suffices to prove it pointwise, i .e . , for complex numbers f and g . That 
is , we have to prove 

I f + g iP + I f - g iP > a(r) l f iP + {3(r) l g iP for p < 2 

(and the reverse for p > 2) . But this follows from (3) . • 
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e Differentiability of I I ! +tg l l� == J I f +tg iP with respect to t E JR will prove 
to be useful . Note that this function of t is convex and hence always has a 
left and right derivative. In case p == 1 it may not be truly differentiable, 
however, but it is so for p > 1 ,  as we show next . 

2 .6 THEOREM (Differentiability of norms) 

Suppose f and g are functions in LP(fl) with 1 < p < oo .  The function 
defined on JR by 

N(t) = In l f (x) + tg (x) IPJ.L (dx) 

is differentiable and its derivative at t == 0 is given by 

d
d N == 

p
2 { i f (x) IP-2 { f (x)g (x) + f (x)g(x) }J.L(dx) . ( 1 )  t t=o ln 

REMARKS. ( 1 ) Note that I J IP-2 f is well defined for 1 < p, even when 
f == 0, in which case it equals 0 .  This convention will occur frequently in 
the sequel. Note also that I J IP-2 f and I J IP-2 f are functions in LP' (0) . 

(2) This notion of derivative of the norm is called the Gateaux- or 
directional derivative. 

PROOF . It is an elementary fact from calculus that for complex numbers 
f and g we have 

i .e . , I f + tg iP is differentiable . Our problem, then, is to interchange differen
tiation and integration. To do so we use the inequality (for l t l < 1 )  

which follows from the convexity of x ---+ xP (e .g . , I f +  tg iP < ( 1 - t) I J IP + 
t l f + g iP) . Since I J IP ,  I f + g iP and I f - g iP are fixed, summable functions, 
we can do the necessary interchange thanks to the dominated convergence 
theorem. • 
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2 .  7 THEOREM (Completeness of LP-spaces) 

Let 1 < p < oo and let fi , for i == 1 ,  2 , 3, . . .  , be a Cauchy sequence in 
LP (O) , i . e . ,  l l fi - fi i i P ---+ 0 as i , j ---+ oo .  ( This means that for each c > 0 
there is an N such that I I  fi - fi l i P < c when i > N and j > N. ) Then there 
exists a unique function f E £P(O) such that l l fi - f l i P ---+ 0 as i ---+ oo .  We 
denote this latter fact by 

fi ---+ f as 'l ---+ oo '  

and we say that fi converges strongly to f in £P (O) . 
Moreover, there exists a subsequence fi1 ,  fi2 , • • • (with i1 < i2 < · · · , of 

course) and a nonnegative function F in LP (O) such that 

( i) Domination : l fik (x) l < F(x) for all k and J-L-almost every x .  ( 1 )  
( ii) Pointwise convergence: lim fik (x) == f(x) for J-L-almost every x. (2) k--+oo 

REMARK. 'Convergence' and 'strong convergence ' are used interchange
ably. The phrase norm convergence is also used. 

PROOF .  The first , and most important remark, concerns a strategy that 
is frequently very useful . Namely, it suffices to show the strong convergence 
for some subsequence . To prove this sufficiency, let fik be a subsequence 
that converges strongly to f in LP(O) as k ---+ oo .  Since , by the triangle 
inequality, 

we see that for any c > 0 we can make the last term on the right side less 
than c/2 by choosing k large . The first term on the right can be made smaller 
than c /2 by choosing i and k large enough, since fi is a Cauchy sequence. 
Thus, I I  fi - f l iP < c for i large enough and we can conclude convergence 
for the whole sequence, i .e . , fi ---+ f .  This also proves, incidentally, that the 
limit-if it exists-is unique. 

To obtain such a convergent subsequence pick a number i 1 such that 
l l fi 1 - fn i iP < 1/2 for all n > i 1 . That this is possible is precisely the 
definition of a Cauchy sequence . Now choose i2 such that l l fi2 - fn i iP < 1/4 
for all n > i2 and so on. Thus we have obtained a subsequence of the 
integers, ik , with the property that I I  fik - fik+1 l iP < 2-

k for k == 1 ,  2 ,  . . . .  
Consider the monotone sequence of positive functions 

l 
Fz (x) : = l fi1 (x) l + L l fik (x) - fik+l (x) l . (3) 

k= l 
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By the triangle inequality 
l 

I ! Fd lv < l l fi 1 1 1 v + L 2-k < l l fi1 1 1v + 1 .  
k=l 

Thus, by the monotone convergence theorem, Fz converges pointwise J.-L
a.e . to a positive function F which is in LP(O) and hence is finite almost 
everywhere . The sequence 

thus converges absolutely for almost every x ,  and hence it also converges for 
the same x 's to some number f (x) . Since l fik (x) l < F(x) and F E  LP(O) , 
we know by dominated convergence that f is in £P (f2) . Again by dominated 
convergence l l fik _ f l iP ---+ 0 as k ---+ oo since l fik (x) - f (x) l < F(x) + l f (x) l E 
LP(O) . Thus , the subsequence Jik converges strongly in LP(O) to f .  • 

e An example of the use of uniform convexity, Theorem 2 .5 ,  is provided 
by the following projection lemma, which will be useful later. 

2.8 LEMMA (Projection on convex sets)  

Let 1 < p < oo and let K be a convex set in LP (f2) ( i. e . , j, g E K ==> 
tj + ( 1  - t)g E K for all 0 < t < 1)  which is also a norm closed set 
( i . e. , if {gi } is a Cauchy sequence in K, then its limit, g ,  is also in K) . Let 
f E LP(O) be any function that is not in K and define the distance as 

D == dist (f, K) == inf I I  f - g l ip · 
gEK 

Then there is a function h E K such that D == I I ! - h l lp · 
Every function g E K satisfies 

( 1 )  

(2) 

PROOF. We shall prove this for p < 2 using the uniform convexity result 
2. 5 (2) and shall assume f == 0 .  We leave the rest to the reader. Let hi ,  j == 
1 ,  2 , . . .  be a minimizing sequence in K, i .e . , I I  hi l iP ---+ D. We shall show that 
this is a Cauchy sequence. First note that l l hi + hk i iP ---+ 2D as j, k ---+ oo 
(because I I  hi +hk l iP < I I  hi l iP+ I I  hk l ip , which converges to 2D, but I I  hi +hk l iP > 
2D since ! (hi + hk ) E K) . From 2 .5 (2) we have that 

( I I  hi + hk l iP + I I  hi - hk l iP )P + I I I  hi + hk l iP - I I  hi - hk l i P l
p 

< 2P { I I  hi I I � + I I  hk I I � } . 
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The right side converges as j , k -t oo  to 2P+1DP . Suppose that l l hi - hk i iP 
does not tend to zero, but instead (for infinitely many j 's and k's) stays 
bounded below by some number b > 0 .  Then we would have 

I 2D + b iP + I 2D - biP < 2p+l DP , 

which implies that b = 0 (by the strict convexity of x ---+ j 2D + x iP ,  which 
implies that I 2D+x iP+ I 2D-x iP > 2 j 2D IP unless x = 0) . Thus, our sequence 
is Cauchy and, since K is closed, it has a limit h E K. 

To verify ( 2) we fix g E K and set gt = ( 1  - t)h  + tg E K for 0 < t < 1 .  
Then (with f = 0 as before) N (t) := I I ! - gt l l� > DP while N(O) = DP. 
Since N(t) is differentiable (Theorem 2 .6) we have that N' (O) > 0,  and this 
is exactly (2) (using 2 . 6 ( 1 ) ) .  • 

2 .9  DEFINITION (Continuous linear functionals and 
weak convergence) 

The notion of strong convergence just mentioned in Theorem 2 .  7 (complete
ness of £P-spaces) is not the only useful notion of convergence in £P (O) . The 
second notion, weak convergence, requires continuous linear functionals
which we now define. (Incidentally, what is said here applies to any normed 
vector space-not just LP (O) . )  Weak convergence is often more useful than 
strong convergence for the following reason. We know that a closed, bounded 
set , A, in JRn is compact , i .e . , every sequence x1 , x2 , • • • in A has a subse
quence with a limit in A. The analogous compactness assertion in £P (JRn) , 
or even LP (O) for 0 a compact set in JRn , is false. Below, we show how to 
construct a sequence of functions , bounded in LP (JRn) for every p, but for 
which there is no convergent subsequence in any LP (JRn) .  

If weak convergence is substituted for strong convergence, the situa
tion improves . The main theorem here, toward which we are headed, is the 
Banach-Alaoglu Theorem 2 . 18 which shows that the bounded sets are com
pact, with this notion of weak convergence, when 1 < p < oo .  

A map, L, from £P (O) to the complex numbers is a linear functional 
if 

( 1 )  
for all /1 , /2 E LP (O) and a ,  b E  C .  It is a continuous linear functional 
if, for every strongly convergent sequence, fi , 

(2) 

It is a bounded linear functional if 

I L (f) l < K l l f l lp (3) 
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for some finite number K. We leave it as a very easy exercise for the reader 
to prove that 

bounded � continuous (4) 

for linear maps . 
The set of continuous linear functionals (continuity is crucial) on LP (O) 

is called the dual of LP (O) and is denoted by LP (O) * .  It is also a vector 
space over the complex numbers (since sums and scalar multiples of elements 
of LP (O) * are in LP (O) * ) .  This new space has a norm defined by 

I l L I I  = sup{ jL(f) l : l l f i i P < 1 } . (5 )  

The reader is asked to check that this definition (5)  has the three crucial 
properties of a norm given in 2. 1 (a,b ,c) : I I  .AL I I  = I .A I I l L I I , I l L I I  = 0 � L = 0, 
and the triangle inequality. 

It is important to know all the elements of the dual of LP (O) (or any other 
vector space) . The reason is that an element f E LP (O) can be uniquely 
identified (as we shall see in Theorem 2. 10 (linear functionals separate) ) if 
we know how all the elements of the dual act on f ,  i .e . , if we know L(f) for 
all L E LP (O) * .  

Weak convergence. 

If f, f1 , f2 , f3 , . . .  is a sequence of functions in LP (O) , we say that fi con
verges weakly to f (and write fi � f) if 

.lim L(fi ) = L(f) (6) 't�OO 
for every L E LP (O)* . 

An obvious but important remark is that strong convergence implies 
weak convergence, i .e . , if l l fi - f l iP ---+ 0 as i ---+ oo ,  then limi�oo L(f"' ) = L(f) 
for all continuous linear functionals L. In particular , strong limits and weak 
limits have to agree, if they both exist (cf. Theorem 2 . 10) . 

Two questions that immediately present themselves are (a) what is 
LP (O)*  and (b) how is it possible for fi to converge weakly, but not strongly, 
to f? For the former, Holder 's inequality (Theorem 2 . 3) immediately implies 
that LP' (0) is a subset of V(O) * when ;, + � = 1 .  A function g E LP' (0) 
acts on arbitrary functions f E £P (O) by 

L9 (f) = In g(x)f (x)J-L(dx) . (7) 

It is easy to check that L9 is linear and continuous . A deeper question is 
whether (7) gives us all of LP (O) * .  The answer will turn out to be 'yes ' for 
1 < p < oo, and 'no' for p = oo .  
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If we accept this conclusion for the moment we can answer question (b) 
above in the following heuristic way when 0 = JRn and 1 < p < oo. There 
are three basic mechanisms by which fk � f but fk f+ f and we illustrate 
each for n = 1 .  

( i) fk 'oscillates to death' : An example is fk (x) = sin kx for 0 < x < 1 
and zero otherwise. 

( ii) fk 'goes up the spout ' : An example is fk (x) = k11Pg (kx) , where g is 
any fixed function in LP (JR 1 ) .  This sequence becomes very large near 
X =  0 .  

(iii) fk 'wanders off to infinity' : An example is fk (x) = g (x + k) for some 
fixed function g in LP (JR 1 ) .  

In each case fk � 0 weakly but fk does not converge strongly to zero 
(or to anything else) . We leave it to the reader to prove this assertion; some 
of the theorems proved later in this section will be helpful . 

We begin our study of weak convergence by showing that there are 
enough elements of LP (O) *  to identify all elements of LP (O) . Much of what 
we prove here is normally proved with the Hahn-Banach theorem. We 
do not use it for several reasons . One is that the interested reader can eas
ily find it in many texts. Another reason is that it is not necessary in the 
case of £P (O) spaces and we prefer a direct 'hands on' approach to an ab
stract approach-wherever the abstract approach does not add significant 
enlightenment . 

2 . 10 THEOREM (Linear functionals separate) 

Suppose that f E £P (O) satisfies 

L(f) = 0 for all L E £P (O) * . ( 1 )  

( In the case p = oo we also assume that our measure space is sigma-finite, 
but this restriction can be lifted by invoking transfinite induction. ) Then 

f = 0 .  

Consequently, if fi � k and Ji � h weakly in LP(O) ,  then k = h .  

PROOF .  If 1 < p < oo define 

g (x) = l f (x) IP-2f(x) 

when f(x) =/=- 0, and set g(x) = 0 otherwise. The fact that f E LP (O) 
immediately implies that g E v' (0) .  We also have that J gf = I I I I I� · 
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But, as we said in 2 .9 (7) , the functional h ---+ J gh is a continuous linear 
functional . Hence, J gf = l l f l l p = 0 by our hypothesis ( 1 ) , which implies 
f = 0. 

If p = 1 we take 
g (x) = f(x) / l f (x) l 

if f(x) =/=- 0, and g(x) = 0 otherwise. Then g E L00 (0) and the above 
argument applies . If p = oo set A = {x : l f (x) l > 0} . If f "# 0, then 
J-L(A) > 0 . Take any measurable subset B c A such that 0 < J-L(B) < oo; 
such a set exists by sigma-finiteness . Set g(x) = f(x) / l f (x) l for x E B 
and zero otherwise. Clearly, g E L1 (0) and the previous argument can be 
applied. • 

2.11 THEOREM (Lower sernicontinuity of norms) 

For 1 < p < oo the LP-norm is weakly lower semicontinuous, z . e . ,  if 
fi � f weakly in LP(O) , then 

( 1 ) 

If p = oo we make the extra technical assumption that the measure J-L is 
sigma finite . 

Moreover, if 1 < p < oo and if limj�oo l l fi l iP = I I  f l iP , then fi ---+ f 
strongly as j ---+ oo .  

REMARK. The second part of this theorem is very useful in practice be
cause it often provides a way to identify strongly convergent sequences . For 
the connection with semicontinuity as in Sect . 1 . 5 ,  cf. Exercise 1 . 2 .  Com
pare, also, Remark (2) after Theorem 1 . 9 .  

PROOF. For 1 < p < oo consider the functional 

L(h) = j gh with g(x) = l f (x) IP-2 f (x) 

as in the proof of the separation theorem, Theorem 2 . 10 .  Since L(f) = I I  f I I� , 
we have, by Holder's inequality with 1/p + 1/q = 1 ,  

which, since l l 9 l l q = l l f l l �-1 , gives ( 1 ) .  
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For p == oo assume 1 1 / l loo  == : a > 0 and consider the set 

Ac: == {X E n : I f (X ) I > a - c} . 

LP-Spaces 

Since the space (0 ,  J.-L) is sigma-finite, there is a sequence of sets Bk of finite 
measure such that Ac: n Bk increases to Ac: . Set 9k ,c: == f(x) / l f (x) l if x E 
Ac: n Bk and zero otherwise. Now by Holder 's inequality 

where the last equation follows from the weak convergence of jJ to f. But 

and hence lim infj�oo 1 1 /j l l oo > 1 1 / l l oo - c for all c > 0 .  

Thus far we have proved ( 1 ) . To prove the second assertion for 1 < p < 
oo we first note that lim I I JJ I IP == 1 1 / l lp implies that lim l l fj + f l iP == 2 1 1 / l l p 
(clearly jJ + f � 2/ and, by ( 1 ) ,  lim inf l l fj + f l iP > 2 1 1 / l l p , but l l fj + f l iP < 
I I  jJ l iP + I I  f l iP by the triangle inequality) . For p < 2 we use the uniform 
convexity 2 .5 (2) (we leave p > 2 to the reader) with g == jJ . Taking limits 
we have (with Aj == I I ! + fj i iP and Bj == I I ! - fj l lp ) 

lim sup { (AJ + Bj )
P + IAJ - BJ IP } < 2P+1 I I f l l� · j�oo 

Since x �----+ l A + x iP is strictly convex for 1 < p < oo ,  and since Aj ---+ 2 1 1 / I IP , 
Bj must tend to zero. • 

e The next theorem shows that weakly convergent sequences are , at least , 
norm bounded. 

2 . 1 2  THEOREM (Uniform boundedness principle) 

Let f1 , f2 , • • .  be a sequence in LP (O) with the following property: For each 
functional L E £P(O) *  the sequence of numbers L(f1 ) ,  L(/2 ) ,  • • •  is bounded. 
Then the norms l l fj i i P are bounded, i . e . ,  I I JJ I IP < C for some finite C > 0 .  

PROOF .  We suppose the theorem is false and will derive a contradiction. 
We do this for 1 < p < oo ,  and leave the easy modifications for p == 1 and 
p == oo to the reader. 
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First , for the following reason, we can assume that I I Ji l iP 4J . By 
choosing a subsequence (which we continue to denote by j = 1 ,  2 , 3, . . .  ) we 
can certainly arrange that I I Ji i iP > 4i . Then we replace the sequence Ji by 
the sequence 

pi = 4jfj/ l l fj l l p , 
which satisfies the hypothesis of the theorem since 

which is certainly bounded. Clearly I I Fi l i P = 4i and our next step is to 
derive a contradiction from this fact by constructing an L for which the 
sequence L(Fi ) is not bounded. 

Set Tj (x) = 1Fi (x) IP-2Fi (x) / 1 1Fi l l�-l and define complex numbers an of modulus 1 as follows: pick a1 = 1 and choose an recursively by requiring 
an J TnFn to have the same argument as 

Thus, 

n 
L 3-jO"j J TjFn > 3-n J TnFn = 3-n i iFn l lp = (4/3)n . 
J=l 

Now define the linear functional L by setting 
00 

L(h) = L 3-jO"j J Tjh, 
j=l 

which is obviously continuous by Holder 's inequality and the fact that 
I ITj l i p' = 1 .  

We can bound IL(Fk) l from below as follows . 

k 00 
I L(Fk ) l > L 3-jO"j J TjFk - L 3-3 4k 

j=l j=k+l 

which tends to oo as k ---+ oo. 
L(Fk ) .  

This contradicts the boundedness of 
• 
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e The next theorem, [Mazur] , shows how to build strongly convergent 
sequences out of weakly convergent ones . It can be very useful for proving 
existence of minimizers for variational problems. In fact , we shall employ 
it in the capacitor problem in Chapter 1 1 .  The theorem holds in greater 
generality than the version we give here, e .g . , it also holds for £1 (0) and 
£00 (0) . In fact it holds for any normed space (see [Rudin 1991] , Theorem 
3. 13) .  We prove it for 1 < p < oo by using Lemma 2 .8 (projection on convex 
sets) . For full generality it is necessary to use the Hahn-Banach theorem, 
which involves the axiom of choice and which the reader can find in many 
texts . The proof here is somewhat more constructive and intuitive . 

2 . 13 THEOREM (Strongly convergent convex 
combinations) 

Let 1 < p < oo and let f1 , f2 , .  . . be a sequence in LP (O) that converges 
weakly to F E LP(O) . Then we can form a sequence F1 , F2 , . . .  in LP(O) 
that converges strongly to F, and such that each Fi is a convex combination 
of the functions f1 , . . .  , fi . I. e . ,  for each j there are nonnegative numbers 
c{ ,  . . .  , cj such that �{=1 <{ = 1 and such that the functions 

j 
pi == L CL!k 

k=1 
converge strongly to F .  

PROOF. First , consider the set K c £P (O) which consists of all the fi 's 
together with all finite convex combinations of them, i .e. , all functions of 
the form �� 1 dkf

k with m arbitrary and with �� 1 dk = 1 where dk > 0. 
,...._, ,...._, ,...._, 

This set K is clearly convex, i .e .  f, g E K ==> Af + ( 1  - A)g E K for all 
0 < A <  1 .  - - ,...._, 

�ext , let K denote the union of K and all its limit points, i .e. we add 
to K all functions in £P (O) that are limits of Cauchy sequences of elements 

,...._, 
of K. We claim that (a) K is convex and (b) K is closed. To prove (a) we 
note that if fi ---+ f and gi ---+ g (with fi , gi E k) then Afi + ( 1 - A)gi E K 
and converges to Af + ( 1 - A)g .  To prove (b) , the reader can use the triangle 
inequality to prove that 'Cauchy sequences of Cauchy sequences are Cauchy 
sequences ' . (Our construction here imitates the construction of the reals 
from the rationals . )  

Our theorem amounts to the assertion that the weak limit F is in K. 
Suppose otherwise. By Lemma 2 .8 (projection on convex sets) there is a 
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function h E K such that D = dist (F, K) = I IF - h l lp > 0 . In 2 . 8 (2) we 
considered the function 

f(x) = [F(x) - h(x)] IF(x) - h(x) IP-2 

which is in LP' (0) and showed that the continuous linear function L(g) := 
J £ g satisfies 

Re L(g) - Re L(h) < 0 ( 1 )  

for all g E K. However , L(F - h) = I I F - h l l� , and hence 

Re L(F) - Re L(h) > 0 (2) 

because F - h is not the zero function. (2) contradicts ( 1 ) because L(fi ) ---+ 
L(F) by assumption, and the fi 's are in K. • 

e At last we come to the identification of £P (O) * ' the dual of £P (O) , for 
1 < p < oo. This is F .  Riesz's representation theorem. The dual of 
£00 (0) is not given because it is a huge, less useful space that requires the 
axiom of choice for its construction. 

2 . 14 THEOREM (The dual of LP (f!) ) 

When 1 < p < oo the dual of LP (O) is Lq (O) , with 1/p + 1/q = 1 ,  in the 
sense that every L E LP (O) * has the form 

L(g) = In v (x)g (x)J.L(dx) ( 1 )  

for some unique v E Lq (O) . (In case p = 1 we make the additional technical 
assumption that (0, JL) is sigma-finite . )  In all cases, even p = oo, L given 
by ( 1) is in LP (O) * and its norm ( defined in 2 .9 (5) ) is 

(2) 

PROOF. 1 1  < p < oo :  I With L E £P (O)* given, define the set K = {g E 
LP (O) : L(g) = 0} c LP (O) . Clearly K is convex and K is closed (here is 
where the continuity of L enters) . Assume L =/=- 0, whence there is f E £P (O) 
such that L(f) =/=- 0, i .e . , f tJ_ K. By Lemma 2 .8 (projection on convex sets) 
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there is an h E K such that 

Re j uk < 0 (3) 

for all k E K. Here u(x) == l f (x) - h(x) IP-2 [f (x) - h(x)] , which is evidently 
in Lq (O) . However , K is a linear space and hence -k E K and ik E K 
whenever k E K. The first fact tells us that Re J uk == 0 and the second 
fact implies J uk == 0 for all k E K. 

Now let 9 be an arbitrary element of £P (O) and write 9 == 91 + 92 with 
L(9) 91 = L (f _ h) (f - h) and 92 = 9 - 91 · 

(Note that L(f - h) == L(f) =!=- 0 . )  One easily checks that £(92 ) == 0, i .e. , 
92 E K, whence 

J u9 = J u91 + J u92 = J u91 = L(9)A, 

where A == J u(f - h)/ L(f - h) =/=- 0, since J u(f - h) == J If - h jP . Thus, 
the v in ( 1 )  equals u /A. The uniqueness of v follows from the fact that if 
J (v - w)9 == 0 for all 9 E £P (O) , and with w E  Lq (O) , then we could obtain 
a contradiction by choosing 9 == (v - w) l v - w l q-2 E £P (O) . The easy proof 
of ( 2) is left to the reader . 

IP == 1 : I Let us assume for the moment that 0 has finite measure. In 
this case, Holder 's inequality implies that a continuous linear functional L 
on £1 (0) has a restriction to LP (O) which is again continuous since 

(4) 
for all p > 1 .  By the previous proof for p > 1 ,  we have the existence 
of a unique Vp E Lq (O) such that L(f) == J vp (x)f(x)JL(dx) for all f E 
LP (O) . Moreover , since Lr (O) c LP (O) for r > p (by Holder 's inequality) the 
uniqueness of Vp for each p implies that Vp is , in fact , independent of p, i .e . , 
this function (which we now call v) is in every Lr (O)-space for 1 < r < oo. 

If we now pick some dual pair q and p with p > 1 and choose f == lv l q-2v 
in ( 4) we obtain 

J l v l q = L(f) < C(J.L(0) ) 1fq (! l v l (q- 1)p) 1/p = C(J.L(0) ) 1/q l l v l lr\ 

and hence l l v l l q < C(JL(0) ) 1fq for all q < oo. We claim that v E £00 (0) ; 
in fact l l v l l oo < C. Suppose that JL( {x E 0 : jv (x) l > C + c}) == M > 0 . 
Then l l v l l q > (C + c)M1fq ,  which exceeds CJL(0) 1fq if q is big enough. 
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Thus v E L00 (0) and L(f) == I v (x)f (x) dJ-L for all f E £P (O) for any 
p > 1 .  If f E £1 (0) is given, then I l v (x) l l f (x) l dJ-L < oo. Replacing 
f (x) by fk (x) == f (x) whenever lf (x) l < k and by zero otherwise, we note 
that lfk (x) l < l f (x) l and fk (x) � f (x) pointwise as k � oo; hence, by 
dominated convergence, fk � f in £1 (0) and vfk � vf in £1 (0) . Thus 

The previous conclusion can be extended to the case that J-L(O) == oo but 
0 is sigma-finite. Then 

00 

with J-L(Oj ) finite and with Oj n Ok empty whenever j =/=- k. Any £1 (0) 
function f can be written as 

00 
f(x) = L fi (x) 

j=1 

where f1 == Xi f and Xi is the characteristic function of Oj . fi � L(fi ) 
is then an element of L1 (0j ) * ,  and hence there is a function Vj E L00 (0j ) 
such that L(/j ) == In vifi == In vif · The important point is that each Vj 

J J 

is bounded in L00 (0j ) by the same C == I l L I I . Moreover , the function v ,  
defined on all of 0 by v (x) == Vj (x) for X E Oj , is clearly measurable and 
bounded by C. Thus, we have L(f) == In vf by the countable additivity of 
the measure 1-l· Uniqueness is left to the reader . • 

e Our next goal is the Banach-Alaoglu Theorem, 2 . 18 , and, although 
it can be presented in a much more general setting, we restrict ourselves 
to the particular case in which 0 is a subset of JRn and J-L( dx) is Lebesgue 
measure. To reach it we need the separability of LP (O) for 1 < p < oo and 
to achieve that we need the density of continuous functions in £P (O) . The 
next theorem establishes this fact , and it is one of the most fundamental ; 
its importance cannot be overstressed. It permits us to approximate LP (O) , 
functions by ego-functions (Lemma 2 . 19) . Why then, the reader might 
ask, did we introduce the £P-spaces? Why not restrict ourselves to the 
C00-functions from the outset? The answer is that the set of continuous 
functions is not complete in LP ( 0) ' i .e . ' the analogue of Theorem 2 .  7 does 
not hold for them because limits of continuous functions are not necessarily 
continuous. As preparation we need 2 . 15-2 . 17. 
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2 . 15 CONVOLUTION 

When f and g are two (complex-valued) functions on JRn we define their 
convolution to be the function f * g given by 

f * g (x) = r f(x - y)g (y) dy . }JRn ( 1 )  

Note that f * g == g * f by changing variables .  One has to be careful 
to make sure that ( 1 )  makes sense. One way is to require f E £P(JRn ) 
and g E v' (JRn ) , in which case the integral in ( 1 ) is well defined for all 
x by Holder's inequality. More is true, as Lemma 2 . 20 and Theorem 4 .2 
(Young's inequality) show. In case f and g are in L1 (JRn ) , ( 1 ) makes sense 
for almost every x E JRn and defines a measurable function that is in L1 (JRn ) 
(see Exercise 7) . Indeed, Theorem 4 .2  shows that when f E LP (JRn) and 
g E Lq (JRn) with 1 I p+ 1 I q > 1 ,  then ( 1 )  is finite a.e . and defines a measurable 
function that is in Lr (JRn) with 1 + 1 I r == 1 I p + 1 I q.  In the following theorem 
we prove this for q == 1 .  

2 . 16 THEOREM (Approximation by C00-functions) 

Let j be in L1 (JRn ) with fJRn j == 1 .  For c > 0, define Jc: (x) :==  E-nj (xlc) , so 
that fJRn Jc: == 1 and I IJc: I I 1 == l lj I I  1 · Let f E LP (JRn) for some 1 < p < oo and 
define the convolution 

Then 

fc: :==  Jc: * f. 

fc: E LP (JRn ) and I I  fc: l iP < l lj I I  1 I I  f l i p · 
fc: ---+ f strongly in £P (JRn ) as c ---+ 0 .  

If j E Cgo (JRn ) , then fc: E C00 (JRn ) and (see Remark (3) below) 

Da fc: == ( Da Jc: ) * f. 

( 1 )  
(2) 

(3) 

REMARKS.  ( 1 ) The above theorem is stated for JRn but it applies equally -
well to any measurable set 0 c JRn . Given f E LP (O) we can define f E - -
LP (JRn ) by f (x) == f(x) for X E n and f(x) == 0 for X tJ_ n. Then define 

-
fc: (x) == (jc: * f) (x) for X E 0. 

Equation ( 1 )  holds in £P (O) since 
-

I I  fc: I I  LP (0) < I I  fc: I I  LP (JRn) < I IJ I I  1 I I  f I I  LP (JRn) == I IJ I I  1 I I  f I I  LP (0) • 
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Likewise , (2) is correct in LP(O) . If 0 is open (so that coo (0) can be defined) , 
then the third statement o�viously holds as well with coo (JRn) replaced by 
coo ( n) and f replaced by f. 

(2 ) We shall see in Lemma 2 . 19 that Theorem 2 . 16 can be extended in 
another way: The C00(JRn) approximants, Jc: * j, can be modified so that 
they are in Cgo (JRn) without spoiling conclusions ( 1 ) and (2 ) . The proof of 
Lemma 2 . 19 is an easy exercise , but the lemma is stated separately because 
of its importance. 

(3) In Chapter 6 we shall define the distributional derivative of an LP 
function, j , denoted by Da f .  It is then true that (D0jc: ) * f = Jc: * Da f .  

(4) In Theorem 1 . 19 (approximation by coo functions) we proved that 
any f E L1 (JRn) can be approximated (in the L1 (JRn) norm) by C00(JRn) 
functions. One of our purposes here is to be more explicit by showing that 
C00(JRn) can be generated by convolution. This is not our only concern, 
however; statement (2 ) will also be important later . Theorem 1 . 18 (approx
imation by really simple functions) will play a key role in our proof. 

PROOF. Statement ( 1 ) is Young's inequality, which will be proved in 
Sect 4. 2 .  Only the "simple version" proved in part (A) of the proof, is 
needed, i .e . , 4 .2 (4) , but with Cp' ,q,r;n replaced by 1 .  This version is only a 
simple exercise using Holder 's inequality. We shall use it freely in our proof 
here and ask the readers 's indulgence for this forward leap to Chapter 4 . 

To prove (2) we have to show that for every 6 > 0 we can find an c > 0 
such that l i fe: - f l iP < 106 .  

Step 1 .  We claim that we may assume that j and f have compact support 
and that l f l is bounded, i .e . , f E L00(JRn) .  If j does not have compact 
support we can (by dominated convergence) find 0 < R < oo and C > 1 such 
that jR(x) := CX{ Ix i <R} (x)j (x) satisfies fJRn jR = 1 and 1 1 / l l p l lj - JR I I 1 < 6 .  
Define j{i = E-njR (x/c) (which has support in {x : l x l < Rc}) , and note 
that the number I IJc: - J[i l l l is independent of c. By Young's inequality, 
I IJc: * f - j{i * f l iP = I I (Jc: - j{i) * f l iP < 6 .  By the triangle inequality, if 
we can prove that I IJ[i * f - f l iP < 6 for small enough c we will have that 
I IJc: * f - f l iP < 26 . Henceforth, we shall omit the R and just assume that j 
has support in a ball of radius R. 

In a similar fashion, to within an error 26 we can replace f ( x) by 
X{ lx i <R'} (x)f(x) for some sufficiently large R' . The compact support of 
f implies that f E L1 (JRn) ;  in fact , l l f l l 1 < ( l§n-1 1 /n) (R')nfp' I I  f l ip · 

Using Young's inequality and dominated convergence once again we can 
also replace f(x) by the cut off function X{ l f l <h} (x)f (x) for some sufficiently 
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large h at the cost of an additional error 6 .  The fact that now 1 1 / l l oo < h 
implies that I IJc: * f l loo  < h and that 

I I  j c * f - f I I  p < ( 2 h) 1 I p' I I  j c * f - f I I  1 · 

Our conclusion in tl_js first step is the following: To prove (2) it suffices 
to assume that j has support in a ball of radius R and to assume that p == 1 .  
We shall now prove ( 2) under these conditions . 

Step 2. By Theorem 1 . 18 there is a really simple function F (using the 
algebra of half open rectangles in 1 . 17 ( 1 ) )  such that I I  F - f I I  1 < 6 ,  and hence 
(by Young's inequality) I IJc: * F - Jc: * f l l 1 < 6 .  By the triangle inequality, 
it suffices to prove that I I Jc: * F - F l l  < 6 for sufficiently small c, but since 
F is just a finite linear combination of characteristic functions of rectangles 
(say, N of them) it suffices to show that for every rectangle H 

lim I IJc: * XH - XH I I 1 == 0 ,  
c�o 

(4) 

where XH is the characteristic function of H. (As far as (4) is concerned it 
does not matter whether H is closed or open. )  

Recall that Jc: has support in a ball of radius r == Rc and this r can be 
made as small as we please. We choose r so small that the sets A_ == { x E 
H : distance( x, He) < r} and A+ == { x tJ_ H : distance( x, H) < r} satisfy 
.cn (A_ U A+ ) < 6/ I IJ I I I · Clearly, if x tJ_ A_ U A+ , then Jc: * XH (x) == XH (x) 
since fJRn j == 1 .  If x E A_ U A+ , then 

IJc: * XH(x) - XH (x) l = r j (y) [H(x - y) - H(x) ]dy < r IH }JRn }JRn 
Since .cn (A_ U A+ ) < 6/ I IJ I I I , this proves (2) . 

Step 3. To prove (3) we shall prove that 

(5) 

and that this function is continuous. This will imply that fc: E C1 (JRn) and, 
by induction (since 8jc:/8xi E C00 (JRn) ) ,  that fc: E C00 (JRn) . The continuity 
is an elementary consequence of the dominated convergence theorem. Since 
the support of Jc: is compact , the difference quotient 

�£ ,8 (X) : == [j c ( . . .  ' Xi + 6' . . .  ) - j c ( . . .  ' Xi ' . . .  ) ] I 6 
is uniformly bounded in 6 and of compact support and it is obviously 
bounded by some fixed LP' -function. The desired conclusion follows again 
by dominated convergence . • 
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2 . 17  LEMMA (Separability of LP (ffi.n) ) 

There exists a fixed, countable set of functions F == { ¢1 , c/J2 , . . .  } (which will 
be constructed explicitly) with the following property: For each 1 < p < oo 
and for each measurable set 0 C JRn, for each function f E £P (O) and for 
each c > 0 we have I I ! - cPj l iP < c for some function cPj in F. 

REMARK. The separability of £1 (0) is an immediate consequence of The
orem 1 . 18 , using the algebra generated by the half open rectangles 1 . 17( 1 ) . 
This can be easily extended to £P (O) for general p. The proof below, how
ever , yields a useful and fairly explicit construction of the family F. 

PROOF. It suffices to prove this for 0 == JRn since we always can extend 
f E LP ( n) to a function in LP (JRn) by setting f (X ) == 0 for X tf_ n. 

To define F we first define a countable family, r, of sets in JRn as the 
collection of cubes rj,m , for j == 1 ,  2 , 3 , . . .  and for m E  zn , given by 

For each j , the rj,m 's obviously cover the whole of JRn as m ranges over 
zn , the points in JRn with integer coordinates . The family r is a countable 
family (here we use the fact that a countable family of countable families is 
countable) .  

Next , we define the family of functions Fj to consist of all functions f 
on ]Rn with the property that j(x) == Cj,m == constant for X E rj,m and, 
moreover, the numbers Cj,m are restricted to be rational complex numbers . 
Again this family Fj is countable. F is defined to be Uj 1 Fj , which is again 
countable. 

Given f E £P (JRn) ,  we first use Theorem 2 . 16 to replace f by a continuous 
function f E £P(JRn) such that J I f - J IP < c/3 .  Thus, it suffices to find 

,...._, 
fi E F such that J I f - fi iP < 2c/3 . We can also assume (as in the proof of 
2 . 16) that f(x) == 0 for x outside some large cube 1 of the form {x : -2J < 
Xi < 2J} for some integer J. 

For each integer j we define 

,...._, ,...._, ,...._, 
i .e . , /j is the average of f over r j,m · Since f is continuous , it is uniformly 
continuous on 1.  This means that for each E1 > 0 there is a 6 > 0 such that ,...._, ,...._, 

l f (y) - f(x) l < E1 whenever l x - Y l < 6 .  Therefore , if j is large enough so 
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that 6 > fo2-j , we have 

,...._, 
We can choose E1 to satisfy ( 2c' )P volume('Y) < c/3 . Thus, J I f - fi iP < c/3 . 

,...._, -
The final step is to replace fj by a function fi that assumes only rational 

,...._, -complex values in such a way that J l fi - fi iP < c/3 .  This is easy to do 
,...._, 

since only finitely many cubes (and hence only finitely many values of fi ) -are involved. Since fi E F, our goal has been accomplished. • 

e The next theorem is the Banach-Alaoglu theorem, but for the special 
case of LP-spaces . As such, it predates Banach-Alaoglu (although we shall 
continue to use that appellation) .  For the case at hand, i .e . , LP-spaces , the 
axiom of choice in the realm of the uncountable is not needed in the proof. 

2 . 18 THEOREM (Bounded sequences have weak limits) 

Let 0 E JRn be a measurable set and consider LP (O) with 1 < p < oo. Let 
f1 , f2 , . .  . be a sequence of functions, bounded in LP(O) . Then there exist a 
subsequence fn1 ,  fn2 , • • •  (with n1 < n2 < · · · ) and an f E LP(O) such that 
fn2 � f weakly in LP (O) as i ---1- oo, i . e . , for every bounded linear functional 
L E £P (O) *  

PROOF. We know from Riesz 's representation theorem, Theorem 2 . 14, 
that the dual of £P (O) is Lq (O) with 1/p + 1/q == 1 .  Therefore, our first 
task is to find a subsequence fnJ such that J fnJ (x)g (x) dJ-L is a convergent 
sequence of numbers for every g E Lq (O) . In view of Lemma 2 . 17 (sepa
rability of LP (JRn) ) ,  it suffices to show this convergence only for the special 
countable sequence of functions ¢) given there. 

Cantor's diagonal argument will be used. First , consider the se
quence of numbers cf == f fi ¢1 , which is bounded (by Holder 's inequality 
and the boundedness of I I Ji l ip ) · There is then a subsequence (which we de-. . 
note by f{ ) such that Ci converges to some number C1 as j ---1- oo. Second, 
starting with this new sequence fl , f[ , . . .  , a parallel argument shows that 
we can pass to a further subsequence such that cg == J fi ¢2 also converges 
to some number C2 . This second subsequence is denoted by fi , f? , f� , . . . .  
Proceeding inductively we generate a countable family of subsequences so 
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that for the kth subsequence (and all further subsequences) J fi¢k converges 
as j ---1- oo. Moreover , Jff is somewhere in the sequence Ji; ,  j'f , . . .  if k < f. 

Cantor told us how to construct one convergent subsequence from all 
these . The kth function in this new sequence fnk (which will henceforth 
be called Fk) is defined to be the kth function in the kth sequence , i .e . , 
pk : ==  f� . It is a simple exercise to show that J Fk¢£ ---1- Ct as j ---1- oo. 

Our second and final task is to use the knowledge that J pig converges 
to some number (call it L(g) ) as j ---1- oo for all g E Lq (JRn) in order to show 
the existence of an f E £P to which pi converges weakly. To do so we note 
that L(g) is clearly a linear functional on Lq (JRn) and it is also bounded (and 
hence continuous) since I I Pi i i P is bounded. But Theorem 2 . 14 tells us that 
the dual of Lq (JRn ) is precisely LP (JRn ) ,  and hence there is some f E £P (JRn) 
such that J pig ---1- L(g) == J f g .  • 

REMARK. What was really used here was the fact that the 'double dual' 
(or the 'dual of the dual ' ) of LP (JRn ) is LP (JRn ) . For other spaces , such 
as £1 (JRn ) or L00 (JRn ) , the double dual is larger than the starting space , 
and then the analogue of Theorem 2 . 18 fails . Here is a counterexample in 
L1 (JR1 ) . Let Ji (x) == j for 0 < x < 1 /j and zero otherwise . This sequence 
is certainly bounded: J I Ji I == 1 .  If some subsequence had a weak limit , 
f , then f would have to be zero (because f would have to be zero on all 
intervals of the form ( - oo , 0) or ( 1 /n, oo) for any n. But J Ji · 1 == 1 f+ 0 ,  
which is a contradiction since the function f (x ) 1 is in the dual space 
£00 (JR1 ) .  

2.19 LEMMA (Approximation by C�-functions) 

Let 0 c JRn be an open set and let K c 0 be compact. Then there is a 
junction JK E Cgo (O) such that 0 < JK (x) < 1 for all X E 0 and JK(x) == 1 
for x E K. 

As a consequence, there is a sequence of functions g1 , 92 ,  . . .  in Cgo (O) 
that take values in [0 , 1] and such that limi�oo 9i (x) == 1 for every x E 0. 

As a second consequence, given any sequence of functions !1 , /2 , • • • in 
C00 (0) that converges strongly to some f in LP (O) with 1 < p < oo, the 
sequence given by hi (x) == gi (x)fi (x) is in Cgo (O) and also converges to f 
in the same strong sense .  If, on the other hand, fi � f weakly in LP (JRn ) 
for some 1 < p < oo, then hi � f weakly in LP (JRn ) . 

PROOF. The first part of Lemma 2 . 19  is Urysohn's Lemma (Exercise 1 . 15) 
but we shall give a short proof using the Lebesgue integral instead of the 
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Riemann integral. Since K is compact , there is a d > 0 such that { x : 
l x - Y l < 2d for some y E K} c 0. Define K+ == {x : lx - y j < d for some 
y E K} ::> K and note that K+ c 0 is also compact . Fix some j E Cgo (JRn) 
with support in {x : lx l < 1 }  and such that 0 < j (x) < 1 for all x and 
J j == 1 (see 1 . 1 ( 2) for an example) . Then, with c == d, we set JK == ]c: * X , 
where X is the characteristic function of K+ . It is evident that JK has the 
correct properties . 

It is an easy exercise to show that there is an increasing sequence of 
compact sets Kl c K2 c . . .  c 0 such that each X E 0 is in Km(x) for some 
integer m ( x) . Define 9i : == J K2 • 

The strong convergence of hi to f is a consequence of dominated con
vergence. The weak convergence is also a consequence of dominated conver
gence provided we recall that the dual of £P (O) is LP

' (0) , with 1 < p' < oo ,  

and that the functions of compact support are dense in LP
' (0) . • 

2 .20 LEMMA (Convolutions of functions in dual 
LP (ffi.n )-spaces are continuous) 

Let f be a function in £P (JRn) and let g be in LP
' (JRn) with p and p' > 1 and 

1/p + 1/p' == 1 .  Then the convolution f * g is a continuous function on JRn 
that tends to zero at infinity in the strong sense that for any c > 0 there is 
Rc: such that 

sup I (/ * g) (x) l < c.  
l x i >Rc: 

PROOF . Note that (/ * g) (x) is finite and defined by J f(x - y)g (y) dy 
for every x .  This follows from Holder 's inequality since f E £P (JRn) and 
g E LP

' (JRn) .  For any 6 > 0 we can find, by Lemma 2 . 19 (approximation by 
Cgo (O)-functions) ,  /8 and 98 , both in Cgo (JRn) ,  such that 1 1 !8 - f l iP < 6 and 
I I  g 8 - g I I  p' < 6 .  If we write 

f * g - /8 * 98 == (! - !8) * g + !8 * (g - 98) , 

we see , by the triangle and Holder 's inequalities , that 

I I  f * g - f 8 * g 8 I I  oo < I I  f - f 8 I I  p I I  g I I  p' + I I  f 8 I I  p I I  g - g 8 I I  p' , 

which is bounded by ( l l g i i P' + l l / l l p)6 .  Since /8 * 98 is in cgo (JRn) ,  j * g is 
uniformly approximated by smooth functions . Hence f * g is continuous 
and the last statement is a trivial consequence of the fact that !8 * 98 has 
compact support . • 
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2.21 HILBERT-SPACES 

The space £2 (0) has the special property, not shared by the other £P_ 
spaces , that its norm is given by an inner product-a concept familiar from 
elementary linear algebra. The inner product of two £2 (0) functions is 

(!, g) : = In f(x)g (x)J-L(dx) 

in terms of which the norm is given by 1 1 / 1 1 2 == vTJ:l). Note that the 
complex conjugate is on the left ; often it is on the right , especially in math
ematical writing . Note also that the function fg is integrable , by Schwarz 's 
inequality. 

Hilbert-spaces can be defined abstractly in terms of the inner product , 
without mentioning functions , similar to the way a vector space can be 
defined without any specific representation of the vectors . In this section we 
shall outline the beginning of that theory. 

Generally speaking, an inner product space V is a vector space that 
carries an inner product ( · , · ) : V x V ---1- C having the properties 

( i) (X , y + Z) == (X , y) + (X , Z) for all X , y , Z E V; 
(ii) (x, ay) == a(x, y) for all x, y E V, a E C ;  
( iii) ( y, X) == (X , y) ; 
(iv) (x, x) > 0 for all x, and (x , x) == 0 only if x == 0 .  

Clearly, J f g dJ-L satisfies all these conditions . 
The Schwarz inequality l (x , y) l < yf(x,X)J{Y:Y) can now be deduced 

from (i)-(iv) alone. If one of the vectors , say y , is not the zero vector , then 
there is equality if and only if x == Ay for some A E C .  As an exercise the 
reader is asked to prove this . If we set l l x l l  == yf(x,X), then, by the Schwarz 
inequality, 

and hence the triangle inequality l l x + Y l l  < l l x l l  + I I Y I I  holds . With the help 
of (ii) and (iv) the function x �----+ l l x l l  is seen to be a norm. 

We say that x, y E V are orthogonal if (x , y) == 0. Keeping with the 
tradition that every deep theorem becomes trivial with the right definition, 
we can state Pythagoras' theorem in the following way: When x and y 
are orthogonal, l l x + y l l 2 == l l x l l 2 + I I Y I I 2 . 

An important property of £2 (0) is its completeness . A Hilbert-space 
'H is by definition a complete inner product space , i .e . , for every Cauchy 
sequence xi E 'H (meaning that l l xi - xk l l  ---1- 0 as j ,  k ---1- oo) there is some 
x E 'H such that l l x - xi I I  ---1- 0 as j ---1- oo .  
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With these preparations , we invite the reader to prove , as an exercise , 
the analogue of Lemma 2 .8 (projection on convex sets) for Hilbert-spaces : 
Let C be a closed convex set in 'H .  Then there exists an element y of smallest 
norm in C ,  i .e . , such that I I Y I I  == inf{ l l x l l  : x E C} .  

The uniform convexity, which is needed for the projection lemma, is 
provided by the parallelogram identity 

As in Theorem 2 . 14, the projection lemma implies that the dual of 'H, i .e . , 
the continuous linear functionals on 'H ,  is 'H itself. 

A special case of a convex set is a subspace of a Hilbert-space 'H, i .e . , a 
set M c 'H that is closed under finite linear combinations . Let M j_ be the 
orthogonal complement of M, i .e . , 

Mj_ :== {x E 'H :  (x , y) == O, y E M} . 
It is easy to see that Mj_ is a closed subspace, i .e . , if xi E Mj_ and 
xi ---1- x E 'H ,  then x E M j_ . If M denotes the smallest closed subspace that 
contains M, then we have from the projection lemma that 

( 1 )  
This notation, E9 (called the orthogonal sum ) , means that for every x E 'H 
there exist Yl E M  and Y2 E Mj_ such that x == Yl +Y2 · Obviously, Yl and Y2 
are unique. y2 is called the normal vector to M through x . The geometric 
intuition behind ( 1 )  is that if x E 'H and M is a closed subspace, then the 
best least squares fit to x in M is given by x - y2 . 

To prove ( 1 ) , pick any x E 'H and consider C == { z E 'H : z == x - y, y E 
M} .  Clearly, C is a closed convex set and hence there is z0 E C such that 
l l zo l l  == inf{ l l z l l  : z E C} . Similar to the proof in Sect . 2 .8 ,  we find that zo is 
orthogonal to M, Yo :== x - zo E M and thus ( 1 )  is proved. It is easy to see 
that Mj_ == M j_ . 

The reader is invited to prove the principle of uniform boundedness . 
That is , whenever {li } is a collection of bounded linear functionals on 'H 
such that for every x E 'H supi l li (x) l < oo, then supi l l li l l  < oo. 

Up to this point our comments concerned analogies with £P-spaces ; with 
the exception of ( 1 ) , Hilbert-spaces have not seemed to be much different 
from LP-spaces . The essential differences will be discussed next . 

An orthonormal basis is a key notion in Euclidean spaces (which them
selves are special examples of Hilbert-spaces) and this can be carried over 
to all Hilbert-spaces . Call a set S == { w1 , w2 , . . .  } of vectors in 'H an or
thonormal set if (wi , wi ) == 6i ,i for all Wi , wi E S. Here 6i ,i == 1 if i == j 
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and bi ,j == 0 if i =/=- j .  If x E 'H is given, one may ask for the best quadratic 
fit to x by linear combinations of vectors in S.  If S is a finite set , then the 
answer is XN = �f 1 (wj , x)wj as is easily shown. Clearly, 

N 
0 < l l x - XN I I 2 = l l x l l 2 - 2 Re(x , xN) + l l xN I I 2 = l l x l l 2 - L i (wj , xW 

j=I 

and we obtain the important inequality of Bessel 

N 
L i (wj , xW < l l x l l 2 • 
j=I 

From now on we shall assume that 'H is a separable Hilbert-space, 
i .e . , there exists a countable , dense set C == { ui , u2 , . . .  } c 'H. (Nonseparable 
Hilbert-spaces are unpleasant , used rarely and best avoided. ) Thus , for every 
element x E 'H and for c > 0,  there exists N such that l l x - uN I I  < c. From 
C we can construct a countable set B == {WI , w2 , . . .  } as follows . Define 
WI : ==  UI / l lui I I , and then recursively define wk : ==  vk/ l l vk I I , where 

k-I 
Vk := uk - L(wj , uk )wj . 

j=I 

If vk == 0,  then throw out uk from C and continue on. The set B is easily seen 
to be orthonormal and this constructive procedure for obtaining orthonormal 
sets is called the Gram-Schmidt procedure. 

Suppose there is an x E 'H such that (x , wk ) == 0 for all k. We claim that 
then x == 0 .  Recalling that C c 'H is dense , pick c > 0 and then find UN E C 
such that l l x - uN I I  < c. By the Gram-Schmidt procedure we know that 

N-I 
UN = VN + L (wj , uN)Wj for any N. 

j=I 

Since VN is proportional to WN , the condition (x , wk ) == 0 for all k implies 
that (x, UN) == 0 .  Since c2 > l l x - UN 1 1 2 == l l x l l 2 + l l uN 1 1 2 , we find that 
l l x l l  < c. But c is arbitrary, so x == 0 ,  as claimed. 

By Bessel 's inequality, the sequence 

M 
XM := L(wj , x)wj 

j=I 



74 LP-Spaces 

is a Cauchy sequence and hence there is an element y E 'H such that 
I I Y - XM I I  � 0 as M � oo .  Clearly, (x - y , wj )  == 0 for all j ,  and hence 
x == y. Thus we have arrived at the important fact that the set B is an 
orthonormal basis for our Hilbert-space , i .e . , every element x E 'H can be 
expanded as a Fourier series 

D 

x = ,L)wj , x)wj ,  
j=l 

(2) 

where D ,  the dimension of 'H , is finite or infinite (we shall always write 
oo for brevity) . The numbers ( Wj , x) are called the Fourier coefficients 
of the element x (with respect to the basis B, of course) . It is important to 
note that 

00 

2)wj , X)Wj 
j=l 

stands for the limit of the sequence 

in 'H as M � oo .  

M 
XM = 2)wj , X)Wj 

j=l 

It is now very simple to show the analogue of Theorem 2. 18 ,  that every 
ball in a separable Hilbert-space is weakly sequentially compact . To be 
precise , let Xi be a bounded sequence in 'H . Then there exists a subsequence 
Xik and a point x E H such that 

lim (X k , y) == (X , y) 
k--+oo 

for every y E 'H . Again, we leave the easy details to the reader . 
There are many more fundamental points to be made about Hilbert

spaces , such as linear operators , self-adjoint operators and the spectral the
orem. All these notions are not only fairly deep mathematically, but they 
are also the key to the interpretation of quantum mechanics ; indeed, many 
concepts in Hilbert-space theory were developed under the stimulus of quan
tum mechanics in the first half of the twentieth century. There are many 
excellent texts that cover these topics . 
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Exercises for 
Chapter 2 

1 .  Show that for any two nonnegative numbers a and b 
1 1 ab < -aP + -bq - p q 

75 

where 1 < p, q < oo and � + � == 1 .  Use this to give another proof of 
Theorem 2 .3 (Holder 's inequality) . 

2 .  Prove 2 . 1 (6) and the statement that when oo > r > q > 1 ,  f E Lr (n) n 
Lq (fl) ==? f E £P (fl) for all r > p > q .  

3 . [Banach-Saks] proved that after passing to a subsequence the c{ in The
orem 2 . 13 can be taken to be c{ == 1/j . Prove this for £2 (0) , i .e . , for 
Hilbert spaces . 

4 . The penultimate sentence in the remark in Sect . 2 . 5  is really a statement 
about nonnegative numbers . Prove it , i .e . , for 1 < p < 2 and for 0 < b < a 

5 . Referring to Theorem 2 .5 ,  assume that 1 < p < 2 and that f and g lie on 
the unit sphere in LP, i .e . , I I  f l iP == I I  g l i P == 1 .  Assume also that I I  f - g l i P is small . Draw a picture of this situation. Then, using Exercise 4, explain 
why 2 .5 (2) shows that the unit sphere is 'uniformly convex' . Explain also 
why 2 . 5 ( 1 ) shows that the unit sphere is 'uniformly smooth' , i .e . , it has 
no corners . 

6 . As needed in the proof of Theorem 2 . 13 (strongly convergent convex 
combinations) ,  prove that 'Cauchy sequences of Cauchy sequences are 
Cauchy sequences ' . (In particular, state clearly what this means . )  

7. Assume that f and g are in L1 (JRn) .  Prove that the convolution f * g in 
2 . 15 ( 1 )  is a measurable function and that this function is in L1 (JRn) .  

8. Prove that a strongly convergent sequence in LP (JRn) is also a Cauchy 
sequence . 

9 . In Sect . 2 . 9 three ways are shown for which an LP (JRn) sequence Jk can 
converge weakly to zero but fk does not convergence to anything strongly. 
Verify this for the three examples given in 2 .9 .  
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10 . Let f be a real-valued, measurable function on JR that satisfies the equa
tion 

f(x + y) == f(x) + f(y) 
for all x , y in JR. Prove that f (x) == Ax for some number A . 
...., Hint. Prove this when f is continuous by examining f on the 

rationals . Next , convolve exp [if (x) ] with a Jc: of compact support . 
The convolution is continuous ! 

1 1 .  With the usual Jc: E C� ,  show that if f is continuous then Jc: * f(x) 
converges to f (x) for all x ,  and it does so uniformly on each compact 
subset of JRn . 

12 .  Deduce Schwarz 's inequality l (x , y) j < V(X:X)v'{ii:Y) from 2 .21 (i)-(iv) 
alone. Determine all the cases of equality. 

13 .  Prove the analogue of Lemma 2 .8 (Projection on convex sets) for Hilbert
spaces . 

14 . For any (not necessarily closed) subspace M show that Mj_ is closed and 
that Mj_ == M j_ . 

15 .  Prove Riesz 's representation theorem, Theorem 2. 14, for Hilbert-spaces . 
16 .  Prove the principle of uniform boundedness for Hilbert-spaces by imitat

ing the proof in Sect . 2 . 12 .  
17. Prove that every bounded sequence in a separable Hilbert-space has a 

weakly convergent subsequence . 
18 . Prove that every convex function has a support plane at every x in the 

interior of its domain, as claimed in Sect . 2 . 1 .  See also Exercise 3 . 1 .  
19 .  Prove 2 .9 (4) . 
20. Find a sequence of bounded , measurable sets in JR whose characteristic 

functions converge weakly in £2 (JR) to a function f with the property 
that 2/ is a characteristic function. How about the possibility that f /2 
is a characteristic function? 

21 . At the end of the proof of Theorem 2 .6 (Differentiability of norms) there 
is a displayed pair of inequalities , valid for l t l < 1 :  

Write out a complete proof of these two inequalities . 
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22 . Prove the p, q, r theorem: Suppose that 1 < p < q < r < oo and that 
f is a function in LP (O, dJ-L) n Lr (o, dJ-L) with l l f l lp < Cp < oo, l l f l l r < 
Cr < oo, and l l f l l q > Cq > 0 .  Then there are constants c > 0 and M > 
0, depending only on p, q , r, Cp , Cq , Cr , such that J-L( {x : l f (x) l > c} ) > 
M. 

In fact , if we define S, T by q CCsq-p == (q - p)C3 /4 and q c;rq-r == 

(r - q)C3 /4, then we may take c == s and M == ITq - Sq i - 1Cqj2 . (See 
[Frohlich-Lieb-Loss] . )  

Show, conversely, that without knowledge of Cq , J-L( {x : lf (x) l > c} )  
can be arbitrarily small for any fixed number c > 0 . 
...., Hint. Use the layer cake principle to evaluate the various norms . 

23 . Find a sequence of functions with the property that Ji converges to 0 
in £2 (0) weakly, to 0 in £312 (0) strongly, but it does not converge to 0 
strongly in £2 (0) . 





Rearrangelllent 

Inequalities 

3 .1  INTRODUCTION 

Chapter 3 

In Chapters 1 and 2 we laid down the general principles of measure the
ory and integration. That theory is quite general, for much of it holds 
on any abstract measure space ; the geometry of JRn did not play a cru
cial role . The subject treated in this chapter - rearrangements of func
tions - mixes geometry and integration theory in an essential way. From 
the pedagogic point of view it provides a good exercise (as in the proof of 
Riesz 's rearrangement inequality) in manipulating measurable sets . More 
than that , however , these rearrangement theorems (and others not men
tioned here) are extremely useful analytic tools . They lead, for example , 
to the statement that the minimizers for the Hardy-Littlewood-Sobolev 
inequality (see Sect . 4.3) are spherically symmetric functions . Another con
sequence is Lemma 7. 17 which states that rearranging a function decreases 
its kinetic energy. This , in turn, leads to the fact that the optimizers of the 
Sobolev inequalities are spherically symmetric functions . Rearrangement in
equalities lead to the well-known isoperimetric inequality (not proved here) 
that the ball has the smallest surface area among all bodies with a given vol
ume. In many other examples rearrangement inequalities also tell us that 
spherically symmetric functions are , indeed, minimizers , e .g . , we show in 
Sect . 1 1 . 17 that balls minimize electrostatic capacity. Many more examples 
are given in [P6lya-Szego] . Thus , while this topic is usually not considered 
a central part of analysis , we place it here as an example of conceptually 
interesting and practically useful mathematics . 

-

79 
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3 .2  DEFINITION OF FUNCTIONS VANISHING AT 
INFINITY 

The functions appropriate for the definition of rearrangements are those 
Borel measurable functions that go to zero at infinity in the following very 
weak sense . If f : JRn ---1- C is a Borel measurable function, then f is said 
to vanish at infinity if .cn ({x : l f (x) l > t}) is finite for all t > 0 .  (Recall 
that _cn denotes Lebesgue measure . ) This notion will also be used in the 
definition of D1 and D112 spaces , which will be the natural function spaces 
for Sobolev inequalities . 

3 .3  REARRANGEMENTS OF SETS AND 
FUNCTIONS 

If A c JRn is a Borel set of finite Lebesgue measure, we define A* , the 
symmetric rearrangement of the set A, to be the open ball centered at 
the origin whose volume is that of A. Thus , 

A* == {x : l x l < r} with ( l §n-1 1 /n)rn == _cn (A) , 

where l§n-1 1 is the surface area of §n-1 . 
...., Note. The use of open balls is nnt essential. Closed balls could have been 

used as well , but some choice is necessary for definiteness. With our choice, 
the characteristic function, XA* (Y) is lower semicontinuous (see Sect . 1 . 5) . 

This definition, together with the layer cake representation (Theorem 
1 . 13) allows us to define the symmetric-decreasing rearrangement, f* ,  
of a function f as follows. 

The symmetric-decreasing rearrangement of a characteristic function of 
a set is obvious , namely 

* XA :== XA* · 

Now, if f : JRn ---1- C is a Borel measurable function vanishing at infinity we 
define 

j* (x) = 1oo x{ I J I >t} (x) dt , 

which is to be compared with (see 1 . 13 (4) ) 

l f (x) l = 100 X{ l f l >t} (x) dt. 

The rearrangement f* has a number of obvious properties : 
( i) f* (x) is nonnegative. 

( 1 )  

(2) 
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(ii) f* (x) is radially symmetric and nonincreasing, i .e . , 

and 
j* (X) == j* ( y) if I X I == I y I 

j* (x) > j* (y) if l x l < I Y I · 
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Incidentally, we say that f* is strictly symmetric-decreasing if 
f* (x) > f* (y) whenever l x l < I Y I ; in particular , this implies that 
f* (x) > 0 for all x . 

( iii) f* (x) is a lower semicontinuous function since the sets {x : f* (x) > t} 
are open for all t > 0. In particular, f* is measurable (Exercise 9) . 

( iv) The level sets of f* are simply the rearrangements of the level sets of 
l f l , i .e . , 

{X : /* (X) > t} == {X : I f (X ) I > t} * . 
A tautological , but important , consequence of this is the equimea
surability of the functions I f I and f* , i .e . , 

_cn ( {x : l f (x) l > t} ) == L:n ( {x : j* (x) > t} ) 

for every t > 0. This , together with the layer cake representation 
1 . 13 (2) yields 

f ¢( 1 f (x) l ) dx = f ¢(f* (x) )  dx }�n }�n (3) 

for any function ¢ that is the difference of two monotone functions ¢1 
and ¢2 and such that either f�n ¢I ( I f (x) l ) dx or f�n ¢2 ( 1 / (x) l ) dx is 
finite . In particular we have the important fact that for f E £P(JRn) ,  

(4) 
for all 1 < p < oo. 

(v) If .P : JR+ --+ JR+ is nondecreasing, then (.P o I ! I ) * == .P o  f* , i .e . , in 
a slightly imprecise notation, (.P ( I f (x) l ) ) * == .P(f* (x) ) . This obser
vation yields another proof of equation (3) . Simply note that by the 
equimeasurability of (¢ o 1 / 1 ) * and (¢ o 1 / 1 ) we have (3) for all mono
tone nondecreasing functions ¢ and hence for differences of monotone 
nonincreasing functions ¢. 

(vi) The rearrangement is order preserving, i .e . , suppose f and g are 
two nonnegative functions on JRn , vanishing at infinity, and suppose 
further that f(x) < g (x) for all x in JRn . Then their rearrangements 
satisfy f* (x) < g* (x) for all x in JRn . This follows immediately from 
the fact that the inequality f ( x) < g ( x) for all x is equivalent to the 
statement that the level sets of g contain the level sets of f . 
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3.4 THEOREM (The simplest rearrangement inequality) 

Let f and g be nonnegative functions on JRn , vanishing at infinity, and let 
f* and g* be their symmetric-decreasing rearrangements . Then 

r J(x)g (x) dx < r f* (x)g* (x) dx , }�n }�n ( 1 )  

with the understanding that when the left side is infinite so is the right side . 
If f  is strictly symmetric-decreasing ( see 3 .3 ( ii) ) , then there is equality 

in ( 1 )  if and only if g == g* . 

PROOF. In the following Fubini 's theorem will be used freely. 
We use the layer cake representation for j, g ,  f* and g* . Inequality ( 1 ) 

becomes 

(XJ roo r X{f>t} (x)X{g>s} (x) dx ds dt 
Jo Jo }�n 

< roo roo r X{J>t} (X) X{g>s} (X) dx ds dt . 
Jo Jo }�n 

The general case of ( 1 )  will then follow immediately from the special case in 
which f and g are characteristic functions of sets of finite Lebesgue measure . 
Thus , we have to show that for measurable sets A and B in JRn , J XAXB < 
J XA_XB or , what is the sarne thing, .cn (A n B) < .cn(A* n B* ) .  Assume that 
.cn (A) < .en ( B) . Then A* c B* and .cn (A* n B* ) == _cn (A* ) == .cn (A) . But 
_cn (A n B) < .en ( A) , so ( 1 ) is proved. 

The proof of the second part of the theorem, in which f is strictly 
symmetric-decreasing , is slightly more complicated. To have equality in 
( 1 ) it is necessary that for Lebesgue almost every s > 0 

r fX{g>s} = r fX{g>s} · }�n }�n (2) 

We claim that this implies that X{g>s} == X{g>s} for almost every s, and 
hence that g == g* (by the layer cake representation) . Since f is strictly 
symmetric-decreasing, every centered ball , Bo,r , is a level set of f .  In fact 
there is a continuous function r (t) such that {x : f(x) > t} == Bo,r(t) · This 
implies that Fc(t) : ==  J X{f>t} (x)Xc (x) dx is a continuous function of t for 
any measurable set C. (Why? ) 

Now fix some s > 0 for which (2) holds and take C == {x : g (x) > s } .  
By ( 1 ) , Fc (t) < Fc* (t) . From (2) we have that J Fc (t) dt == J Fc* (t) dt 
and hence Fc(t) == Fe* (t) for almost every t > 0 .  In fact , by the continuity 
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of Fe and Fe* , we can conclude that Fe(t) == Fe* (t) for every t > 0. As 
before , this implies that for every r > 0 either C C Bo,r and C* C Bo,r or 
else C :J Bo,r and C* :J Bo,r (up to sets of zero en measure) . Thus , C == C* , 
up to a set of zero en measure . Hence g == g* . • 

REMARK. There is a reverse inequality which is expressed most simply for 
the characteristic functions of g .  It is the following (for f and g nonnegative) : 

{ fX{g<s} > { J*X{g* <s} · (3) }�n }�n 
(Note the g < s in place of the usual g > s . )  One proof is to write X{g<s} == 
1 - X{g>s} and then to use ( 1 ) ,  provided f is summable . However, (3) is true 
even if f is not summable and the proof is a direct imitation of the proof 
above leading to ( 1 ) . Again, equality in (3) for all s in the case that f is 
strictly symmetric-decreasing implies that g == g* . 

e The next rearrangement inequality is a refinement of ( 1 )  and uses (3) . 
To motivate it , suppose f and g are nonnegative functions in L2 (JRn) .  Then 
their £2 (JRn) difference satisfies 

(4) 
because the difference of the square of the two sides in (4) is twice the 
difference of the two sides in ( 1 ) .  The obvious generalization is 

(5) 
for all 1 < p < oo, which means , by definition, that rearrangement is non
expansive on LP (JRn) .  The crucial point is that ! t iP is a convex function 
of t E JR. The following inequality validates (5) and generalizes this to 
arbitrary (not necessarily symmetric) convex functions , J. It is a slight 
generalization of a theorem of [Chiti] and [Crandall-Tartar] who proved it 
when J(t) == J( -t) . 

3.5 THEOREM (Nonexpansivity of rearrangement) 

Let J : JR --+ JR be a nonnegative convex function such that J(O) == 0 .  Let f 
and g be nonnegative functions on JRn , vanishing at infinity. Then 

r J(f (x) * - g(x) * ) dx < r J(f (x) - g(x) ) dx . }�n }�n ( 1 )  

If we also assume that J is strictly convex, that f == f* and that f is strictly 
decreasing, then equality in ( 1 ) implies that g == g* . 
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PROOF. First , we can write 
J = J+ + J_ 

where J+ (t) = 0 for t < 0 and J+ (t) = J(t) for t > 0, and similarly for 
J_ . Both are convex and hence it suffices to prove the theorem for J+ and 
J _ separately. Since J + is convex, it has a right derivative J� ( t) for all t 
and J + is the integral of J� , i .e . , J + ( t) == J� J� ( s) ds .  The convexity of J + 
implies J� (t) is a nondecreasing function of t; the strict convexity of J+ for 
t > 0 would imply that J� (t) is strictly increasing for t > 0 . Therefore we 
can write 1f(x) 1oo 
J+ (f(x) - g (x) ) = J� (f(x) - s) ds = J� (f(x) - s)X{g<s} (x) ds . g (x) 0 

(2) 
Now integrate (2) over JRn and use Fubini 's theorem to exchange the s 

and x integrations . By 3 .4(3) and Remark 3 .3 (v) we see that for each fixed 
s the JRn-integral is not increased when f is replaced by f* and g by g* . A 
similar argument applied to J _ will yield ( 1 ) . 

Now assume that f = f* , f is strictly decreasing and J� is strictly 
increasing for t > 0 . If ( 1 )  is an equality we must have that for a. e. s 

{ J� (f (x) - s)X{g<s} (x) dx = { J� (f(x) - s)X{g* <s} (x) dx . }�n }�n 
Since J� is strictly increasing, we have, by the same argument as in the 
proof of Theorem 3.4 , that for a.e .  r > s either Fr :J Gs or Fr C G8 , where 
Fr = {x : f (x) > r} and Gs == {x : g(x) > s} .  Likewise, by considering J_ , 
we conclude that for a.e. r < s either Fr :J Gs or Fs C Gr . Since the sets 
Fr are centered balls whose radii vary continuously with r (here we use that 
f is strictly decreasing) , we conclude that G s is a centered ball for a.e. s 
(by simply choosing r such that IFr l  = IGs l ) .  • 

e The next two rearrangement inequalities are much deeper and go back 
to F .  Riesz [Riesz] . They have far-reaching consequences . For other proofs 
see [Hardy-Littlewood-Polya] . 

3 .6 LEMMA (Riesz's rearrangement inequality in 
one-dimension) 

Let j, g and h be three nonnegative functions on the real line, vanishing at 
infinity. Denote J� J� f (x)g (x - y)h(y) dx dy by l(j, g , h) .  Then 

I(j, g , h) < I(j* , g* , h* ) , 
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with the understanding that I (f* , g* , h* ) = oo if I(j, g , h) = oo .  

PROOF. Using the layer cake representation (and Fubini 's theorem) we 
can restrict ourselves to the case where j, g , h are characteristic functions of 
measurable sets of finite measure . We denote these functions by F, G, H and 
shall use the same letters to denote the corresponding sets. By the outer 
regularity of Lebesgue measure (see 1 . 2 (9) )  there exists a sequence of open 
sets Fk with F C Fk C Fk-1 for all k and limk---too .C1 (Fk) == .C1 (F) . In 
particular all Fk have finite measure. Similarly, we choose sets Gk and Hk . 
The dominated convergence theorem shows that 

lim I(Fk ,  Gk , Hk) = I(F, G, H) . k---too 
Clearly 

lim I ( Fk , Gk , Hk ) == I ( F* , G* , H* ) .  k---too 
Thus it suffices to prove the lemma in the case where F, G, H are open sets 
of finite measure . 

Now every open subset F of the real line is the disjoint union of countably 
many intervals . We leave the proof of this fact as an exercise for the reader . 
Denote these intervals by I1 , I2 , . . .  where the numbering is chosen such that 
.C1 (Ik+1 ) < .C1 (Ik ) . If we set 

we have that 00 
lim .C1 (Fm) = '""" .C1 (Ik )  = .C(F) 

m---too � k=1 
and, by the monotone convergence theorem, we learn that 

lim I(Fm , Gm, Hm) = I(F, G, H) 
m---too 

and that 
lim I(F:n , c:n , H:n) = I(F* , G* , H* ) .  

m---too 
The essence of all this , is that it suffices to prove the lemma for functions 
F, G, H that are characteristic functions of finite disjoint unions of open 
intervals . 

Thus, we can write 
k 

F(x) = L fi (x - aj ) 
j=1 
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where fi is the characteristic function of an interval centered at the origin 
and the aj ' s are real numbers . Similarly we write 

l m 

G(x) = L gj (X - bj )  and H(x) = L hj (x - Cj ) · 
j=l j=l 

Now I ( F, G, H) is a sum of terms of the form 

L L f(x - a)g (x - y - b)h(y - c) dx dy . 

We want to show that J(F, G, H) is largest if we join each family of intervals 
into one, which we then center at the origin . To this end consider the 
family of functions Ft (x) , Gt (x) , Ht (x) where fj (x - aj ) has been replaced 
by fj (x - taj ) ,  0 < t < 1 ,  etc. Now, 

Ijkl (t) = L L fi (x - ta) gk (x - y - tb)hz (y - tc) dx dy 

= L L fi (x)gk (x - y)hz (y + (a - b - c)t)dx dy 

= L Ujk (y)hz (y + (a - b - c)t) dy . 

Here, Ujk (Y) = J fj (x) gk (x - y) dx is a symmetric-decreasing function. It 
is easy to see that Ijkz (t) is nondecreasing as t varies from 1 to 0 .  Hence 
I(Ft ,  Gt , Ht) is nondecreasing as t varies from 1 to 0 .  (Essentially, this is 
Theorem 3 .4 . ) As t starts decreasing, the intervals associated with Ft , Gt 
and Ht start moving along the line toward the origin . As soon as any two 
intervals associated with the same function touch we stop the process and 
redefir1e it with these two intervals joined into one. Repeating this process 
a finite number of times will leave us eventually with three intervals , each 
one centered at the origin . Clearly this process did not change the total 
measure of these sets and J(F, G, H) has not been decreased. This proves 
the lemma. • 

For later use we state the following. 

REMARKS.  ( 1 )  J(f, g , h) = fJRn f(x) (g * h) (x)  dx . 
( 2) Defining hR (x) : = h( -x) , we have 

I(f, g ,  h) = I(f, h, g) = I(g, f, hR) = I(h, 9R , f)  = I(h, f, 9R) == I(g ,  hR , f) . 
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3.7 THEOREM (Riesz 's rearrangement inequality) 

Let j, g and h be three nonnegative functions on JRn . Then, with 

we have 

I(f, g , h) := { { f (x)g (x - y)h(y) dx dy, }�n }�n 

I(j, g , h) < I(j* , g* , h* ) ,  
with the understanding that I(f* , g* , h* ) == oo if I(f, g ,  h) == oo . 
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( 1 )  

PROOF. We shall give two proofs of this theorem in order to illustrate some 
of the principles about convergence developed in Chapter 2 . The first uses 
an argument that , for want of a better word, we call a ' compactness argu
ment' and is related to the proof in [Brascamp-Lieb-Luttinger] . The second 
is related to a proof in [Sobolev] which utilizes ideas due to Lusternik and 
Blaschke. It also uses ideas about competing symmetries from [Carlen-Loss , 
1990] that will prove useful in Sects . 4 .3 et seq. on the Hardy-Littlewood
Sobolev inequality. The starting point is Lemma 3 .6 , the one-dimensional 
version of our theorem. In the following , Fubini 's theorem will be used 
freely and, by utilizing the layer cake representation, we can restrict our
selves to the case in which j, g , h are characteristic functions of measurable 
sets F, G, H of finite measure . We shall denote I(XF , Xc , XH) simply by 
I(F, G, H) . Our proof will be a bit sketchy at some points , but the reader 
should have no difficulty filling in the details . 

First we define Steiner symmetrization of any measurable function 
f with respect to some direction e in JRn (with l e i  == 1 ) . Rotate JRn by any 
rotation p such that pe == ( 1 ,  0, 0, . . .  , 0) . Let (P/) (x) :== J (p-1x) , and then 
replace (P/) (xi ,  . . .  ; Xn) by (P/) *1 (xi ,  . . .  , Xn) ,  which is defined to be the 
one-dimensional symmetric-decreasing rearrangement of (P f) with respect 
to x1 , keeping the variables x2 , . . .  , Xn fixed. The final step is to perform 
the inverse rotation p-1 on JRn . The resulting function p- 1 ( (P/) * 1 ) is the 
required Steiner symmetrization, and we denote it by f*e . Equivalently, we 
can say that we rearrange f along every line in JRn that is parallel to the 
e-axis . The Steiner symmetrization of a measurable set , F*e , is, of 
course , the set corresponding to the rearranged characteristic function Xpe . 

Any set F*e (and hence any f*e) is measurable for the following reason: 
First , it suffices to show that F*1 can be thought of as the graph of a 
function, m, on JRn-l defined by 
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This function, m, is measurable since 

(by the definition of the rearrangement) and m is measurable (by Fubini 's 
theorem) . Second, as noted in Sect . 1 .5 ,  the set under the graph of a mea
surable function is a measurable set . 

Analogously to Steiner symmetrization, one can define the Schwarz 
symmetrization of functions and sets. Instead of replacing p f by its one
dimensional symmetric-decreasing rearrangement , we replace p f for each 
value of XI by its (n - I )-dimensional rearrangement with respect to the 
variables x2 , . . .  , Xn . 

For each e we can consider the triple of sets F*e , G*e and H*e . By 
Lemma 3 .6 and Fubini 's theorem I(F, G, H) < I(F*e , G*e , H*e) . Our goal 
in the following proofs will be to find a sequence of axes ei , e2 , . . . such 
that the repeated Steiner rearrangement (by ei , e2 , etc . ) of F converges in 
an appropriate sense to the ball F* . Note that G and H get rearranged 
along with F. By passing to a further subsequence we can assume that 
the sequences of G and H converge to some sets . Having done so , we will 
know that the supremum of J(F, G, H) over all sets with given measures 
cn (F) , en ( G) , cn (H) occurs when F = F* . Then, employing the argument 
again, we will conclude that G = G* is optimal. (Note here that when F = 
F* , further rearrangements do not change F, i .e . , ( F* ) *e = F* . )  Finally, 
we conclude that H = H* is optimal, and ( 1 )  will be proved. The main 
difference between the following two proofs is that the first one merely asserts 
the existence of such a sequence while in the second we actually construct 
one . 

The difficult part is the n = 2 case, and we do that first . 

! COMPACTNESS PROOF . 1  Assume, for simplicity, that £2 (F) = 1 .  By a simple 
approximation argument using the monotone convergence theorem it suffices 
to prove the theorem for bounded sets only. If F =/=- F* , then £2 ( F n F* ) = 
J XFXp = P < 1 .  We wish to select a rearrangement axis ei such that , 
with FI := F*e1 and XI :=  XF1 , the integral J XIXp = P + 6 with 6 > 0. To 
find such an ei we set A =  Xp ( l - Xp) and B = ( 1 - Xp)Xp and consider 
the convolution C(x) = J A(x - y)B(-y) dy . Since J C  = ( 1 - P)2 , C is 
not the zero function . There is then some x =/=- 0 such that C(x) > 0, and 
we set ei = xf lx l . It is now an elementary exercise, using the definitions 
of Steiner symmetrization, to show that symmetrization in the ei direction 
has the desired effect-with 6 > C(x) ,  in fact (see Exercise 8) . 
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The supremum of all such 6 's is denoted by 6I > 0 and (since we do 
not wish to prove that 6I can actually be achieved) we settle for an im
provement 6I > �6I ,  which certainly can be achieved for some choice of ei . 
Thus, J XIXp > P + 6I . Next we perform a Steiner symmetrization parallel 
to the XI-axis, ( 1 ,0) ,  followed by a symmetrization parallel to the x2-axis , 
(0 , 1 ) .  This, of course , cannot decrease J XIXp ·  After these last two sym
metrizations , the set FI now lies between a certain nonnegative symmetric
decreasing function, X2 = 8I (xi ) ,  and its reflection, X2 = -8I (xi ) ·  

Having done this , we repeat the process , i .e . , we seek an axis e2 so that , . * I- -w1th X2 := XF2 ,  we have J X2Xp > P + 6I + 62 and 62 > 2 62 , where 62 > 0 
is the supremum of all possible increases . 'I'his symmetrization is followed, 
as before, by the two symmetrizations in the two coordinate axes, thereby 
giving rise to a new symmetric-decreasing function x2 == 82 (xi ) ·  

This process is repeated indefinitely, giving us a sequence of sets FI , F2 , 
F3 , . . .  and functions 8I , 82 , 83 , . . .  which form the boundaries of these sets . 
Note that since F is bounded, it is contained in some centered ball B. By 
3 .3 (vi) all the Fj 's are contained in the same ball and hence the functions 
8j are uniformly bounded and have support in a fixed interval . We claim 
that J XjXp converges to 1 ,  as required. 

To prove this , we suppose the contrary, i .e . , J XjXp ---+ Q < 1 .  From the 
sequence of functions 8j , we can select a subsequence, which we continue to 
denote by 8j , so that 8j converges pointwise to some symmetric-decreasing 
function 8. [To see this , note that since the 8j 's are uniformly bounded and 
have support in some fixed interval, we can find a subsequence that con
verges on all the rational points XI =/=- 0, since these are countable . Because 
the 8j are symmetric-decreasing, they converge for irrational XI as well . 
This argument is called Helly's selection principle . ] The subsequence 
necessarily converges in £I (JR I ) to 8 by dominated convergence and hence, 
if W denotes the set lying between 8 and -8, we have that 

! XwXp = _lim j xiXF = Q, )---tOO 

while J Xw = 1 .  
To obtain a contradiction, we first note, by the 'convolution' argument 

given at the beginning of this proof, that there is a 6 > 0 and an axis e such 
that W* := W*e ,  with characteristic function Xw* , satisfies f Xw* Xp > 
Q + 6 .  On the other hand, using the stated convergences , we can find an 
integer J such that FJ satisfies two conditions : 

(a) J XFJXF > Q - 6/8 . 
(b) I I XFJ - Xw l l 2  < 6/4. 



90 Rearrangement Inequalities 

Let FJ* : ==  Fje .  By Theorem 3 .5  (nonexpansivity of rearrangement) or 
3 .4(4) we have that I I XFJ* - Xw* l l 2 < 614. By using the Schwarz and triangle 
inequalities we easily conclude (proof left to the reader) that J XFJ* Xp > 
Q + 36 I 4. This implies that the maximum improvement at the Jth step , 6 J ,  
is greater than 36 I 4. On the other hand, 

which implies that 6J < 614, and which is a contradiction. 
The proof of the theorem for n > 2 is the same. We merely use 

Schwarz symmetrization in place of the third Steiner symmetrization, so that 
our boundary functions 81 , 82 , 83 , . . .  are symmetric-decreasing functions of 
x1 , . . .  , Xn- 1 · Induction on n is used to insure that (n - I )-dimensional 
Schwarz symmetrization increases the integral J(F, G, H) .  Otherwise the 
proof is identical to that for n == 2 .  • 

I SYMMETRY PROOF . I For given sets F, G and H we shall construct sequences 
of sets Fk , Gk and Hk , all of them converging to balls , and such that 
I(Fk , Gk , Hk) is an increasing sequence . The hard part is , again, the step 
from one to two dimensions , as already noted in the previous proof. Never
theless we shall indicate at the end how the higher-dimensional generaliza
tion works . For the present we concentrate on two-dimensions . 

Fix a rotation Ra , a indicating the angle. We choose a to be an ir
rational multiple of 21r . Next , for a given set F c JR2 of finite Lebesgue 
measure, form the set F1 == T8RaF, where 8 is the Steiner symmetriza
tion about the x-axis and T the one about the y-axis . F1 is a set with the 
same measure as F. It is reflection symmetric about the x- and y-axes and 
the part of F1 contained in the upper half-plane is below the graph of a 
symmetric , nonincreasing function which we are free to choose to be lower 
semicontinuous . Note that this function is not necessarily bounded. The 
sets Fk , Gk , Hk are generated by applying this operation T8Ra k times to 
F, G and H. 

We want to show that these sequences converge strongly in L2 (JR2) to 
balls of the same volume. We note the inequalities 

and the equality 

(3) 
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valid for any two sets of finite measure . In fact the first two follow from 
3.4(4) and the last one follows from the fact that rotations are measure 
preserving. From this we conclude that it suffices to prove the convergence ......., 
result for bounded sets . Indeed, for c > 0 given, we can find F contained 
in some centered ball such that I I XF - Xff l l 2 < c . By (2) we have that 
I I XFk - Xpk 1 1 2 < c for all k and hence Fk converges once we have shown 

,..._, 
that Fk converges . Thus we can assume F, G and H to be bounded sets 
contained in some ball . By 3 .3 (vi) we know that the sequences Fk , Gk and 
H k are contained in that very same ball . 

The upper half-space part of Fk is bounded by the graph of a symmetric , 
nonincreasing lower semicontinuous function hk which is uniformly bounded. 
As in the previous proof there exists a subsequence denoted by hk(l) ( x) that 
converges everywhere to a lower semicontinuous function h which bounds 
the upper half-space part of a set D. The problem is to show that D is a disk . 
Consider any function, g, that is strictly symmetric-decreasing (for example , 
g (x) = e- l x l 2 ) and define �k = 1 1 9 - XFk l l 2 . Note that Tg = Sg = Rag =  g .  
Thus, by Theorem 3.4 , �k is nonincreasing and hence it has a limit �.  
By the previous consideration we know that XFk(l ) converges pointwise a.e. 
to the characteristic function, Xv , of D. Since XFk(z ) is dominated by the 
characteristic function of a fixed ball , we conclude by dominated convergence 
that 

By (2) and (3) we also know that 

Hence, by the montonicity of �k , � == l l g - TSRaXD 1 1 2 . On the other hand, 
since g is rotation invariant , l l g - RaXv l l 2 = l l g - Xv l l 2 == �. Thus 

Since g is strictly decreasing , �,.e conclude, using Fubini 's theorem and The
orem 3.4 , that TSRaXD = RaXD a.e. In particular RaXD is symmetric 
with respect to reflection P about the x-axis and hence RaXD = P RaXD = 
R-aPXv = R-aXD , i .e . , R2aXD = Xv , or Xv is invariant under the rotation 
R2a .  The angle {3 = 2a is , by assumption, an irrational multiple of 27r and it 
is well known that any number 0 < 0 < 27r can be approximated arbitrarily 
closely by multiples of {3 mod 21r . Hence the function J.-L( 0) := I I  Xv -RoXD 1 1 2 
has zeros which are dense in the interval [0 , 21r) . We shall show that J-l is a 
continuous function which implies that Xv = RoXv a.e. for every 0 .  Thus, 
D = F* . 
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It suffices to show that J XvRoXv = r (O) is continuous . By Theo
rem 2 . 16 there is a sequence of differentiable functions uk such that 6k = 
I I Xv - uk 1 1 2 --+ 0 as k --+ oo. By Schwarz 's inequality 

J (Xv - uk)RoXv < 8k l i Xv l i 2 , 

which says that the functions rk (O) = J ukRoXv converge to r (O) uniformly. 
But rk ( 0) = J ( R_ouk) Xv , which is easily seen to be continuous, and hence 
r (  0) is continuous . 

Recall that a subsequence of the XFk sequence converges pointwise a.e. 
to Xv , and each set Fk is contained in some fixed ball . Therefore, for 
this subsequence, l l xv - XFk l l 2 converges to zero by dominated convergence. 
By Theorem 3 .5 (nonexpansivity of rearrangements) , the whole sequence 
l l xv - XFk l l 2 is a decreasing sequence. Since a subsequence converges to 
zero, the whole sequence converges to zero . 

Precisely the same arguments apply to Gk and Hk , and hence XFk ' Xak and XHk converge strongly in L2 (JR2 ) to XF* , XG* and XH* · From this it 
follows easily that 

lim I (Fk , Gk , Hk) = I(F* , G* , H* ) .  k--HXJ 
By the one-dimensional Riesz rearrangement inequality I(Fk , Gk , Hk) is a 
nondecreasing sequence and our theorem is proved. 

The generalization to higher dimensions is proved by induction. T cor
responds to Steiner symmetrization along the n-axis and S is the Schwarz 
symmetrization perpendicular to the n-axis . The sequence to consider is 
{ (T SR)kXF} where R is any rotation that rotates the n-axis by 90° . Trac
ing all the steps of the two-dimensional argument one obtains a limiting set 
D that has the following two properties : It is rotationally symmetric about 
the n-axis and RD is also rotationally symmetric about the n-axis . In other 
words , D is rotationally symmetric about two perpendicular axes , and the 
respective cross sections are n - !-dimensional balls . To see that D is a ball , 
consider Xc: = Jc: * Xv where Jc: (x) = E-nj (x/c) and j (x) is a smooth radial 
function with fJRn j = 1 .  We know from Theorem 2 . 16 that Xc: is smooth 
and Xc: --+ Xv in £2 (JRn ) as c --+ 0 . Moreover Xc: has the same symmetry 
properties as Xv . Thus setting p2 = xr + · · · + x;_2 we find that 

Xc: (X1 , . . .  , Xn) = f ( J P2 + X�_1 , Xn) = g (  J P2 + X� , Xn-1 ) 
for some continuous functions f and g .  We have chosen the n - 1-axis as 

the other axis of symmetry. Setting Xn = 0 we obtain 

g (P, Xn-1 ) = f ( J P2 + x�-1 > 0) for all P > 0 
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and hence 
Xc (XI , . . .  , Xn) = f( J X� + · · · + X� , 0) , 

i .e . , Xc: is radial. 
functions . 

Hence Xv is radial too, since it is a limit of radial 
• 

e The Riesz inequality, 3 .7( 1 ) ,  concerns three functions, j, g ,  h and two 
variables x and y in JRn . This was generalized in [Brascamp-Lieb-Luttinger] 
to m functions and k variables in JRn , as given in Theorem 3 .8 (without 
proof) . The proof there follows the same strategy as in Lemma 3 .6 and 
Theorem 3 .7, namely first do the JR1 case and then pass to ]Rn by repeated 
use of the JR1 theorem. In fact , the proof given here of Lemma 3 .6 originated 
in that paper. 

3.8 THEOREM (General rearrangement inequality) 

Let !1 , /2 , . . .  , fm be nonnegative functions on JRn, vanishing at infinity. Let 
k < m and let B = { bij } be a k x m matrix (with 1 < i < k, 1 < j < m) . 
Define 

l(JI , . . .  , fm) := { n · · · { n ft fJ (t bijXi) dx1 · · · dxk . ( 1 )  
J� J� . 1 . 1 J = 2= 

Then I ( f 1 , . . . , f m) < I ( f i , · · · , f :n) · ( 1 1 0 ) REMARK. Theorem 3 .7 corresponds to m =  3 ,  k = 2 and b = 
0 _1 1 . 

3.9 THEOREM (Strict rearrangement inequality) 

Let j, g and h be three nonnegative measurable functions on JRn with g 
strictly symmetric-decreasing. Then there is equality in 3 .7( 1) only if f (x) = 
f* (x - y) and h(x) = h* (x - y) for some y E JRn . 
REMARK. By 3 .6 , Remark (2) , the theorem holds if any one of the three 
functions j, g and h is radially symmetric and strictly decreasing . The word 
'strictly' is important . One could ask whether it is possible to eliminate the 
requirement that one of the functions be radially symmetric and/ or strictly 
decreasing. The answer is 'yes ' , with some caveats, as proved in [Burchard] . 
For example, if j, g and h are characteristic functions of three homothetic , 
homocentric ellipsoids , equality can be achieved in 3 . 7 ( 1) ; this can be easily 
seen merely by making a linear change of coordinates in JRn . 
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PROOF. By Theorem 1 . 13 (layer cake representation) the result follows 
(why?) from the one in which f and h are characteristic functions of mea
surable sets A, B of finite measure-which we assume henceforth. 

First we prove the theorem for characteristic functions of a single vari
able . The general case will follow by induction on the dimension. Since g is 
strictly symmetric-decreasing, it follows from the layer cake representation 

• 

and the Riesz rearrangement inequality that equality in 3 .7( 1 ) demands that 

I(J, gr , h) = I(j* , gr , h* ) ,  ( 1 )  

where 9r is the characteristic function of the centered interval of length r .  
The symbol I is explained in Lemma 3 .6 .  If 

r > I A I + IB I = l f + l h, 

then I(f* ,  9r , h* ) = I A I IB I . However, I(J, 9r , h) < I A I I B I with equality only 
if 

9r (x) l f (x + y) h(y) dy = l f(x + y)h(y) dy, 

i .e . , if the support of f f (x + y)h (y) dy is contained in the interval given by 
9r ·  Note that , by Lemma 2 . 20, fiR f (x + y)h(y) dy is a continuous function. 
Let JA be the smallest interval such that l A n JA I = IA I , and similarly for 
B.  It is an easy exercise to see that the length of the smallest interval 
that contains the support of fiR f(x + y)h(y) dy is I JA I + I Jn l ·  Therefore 
I JA I + I Jn l < r for any r > I A I + I B I and hence I JA I == I A I and I Jn l = I B I . 
Thus both A and B are intervals and ( 1 )  can only hold if they are centered 
at the same point . This proves the theorem in one-dimension. 

To prove it in n > 2-dimensions we assume its truth in ( n - 1 ) . Equality 
in 3 .  7 ( 1 )  can be expressed as 

j f (x' , Xn)g (x' - y' , Xn - Yn)h(y' , Yn) dx' dy' dxn dyn 

= j f* (x' , xn)g (x' - y' , xn - Yn)h* (y' , Yn) dx' dy' dxn dYn -
(2) 

The primed variables indicate integration over JRn-l . The Riesz rearrange
ment inequality, together with (2) , implies that 

J f(x' , Xn )g (x' - Y1 , Xn - Yn)h(y' , Yn) dx' dy' 

= J j* (x' , Xn)g (x' - y' , Xn - Yn)h* (y' , Yn) dx' dy' 
(3) 
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for Lebesgue a. e. Xn and Yn in JR. For any fixed Xn , g (x' , Xn) is a strictly 
symmetric-decreasing function of x' . Thus , by the induction hypothesis , for 
a. e. Xn , Yn the sets A�n , B�n corresponding to the characteristic functions 
f(x' , Xn) and h(y' ,  Yn) must be balls in JRn-1 centered at some common 
point-which is independent of Xn , Yn · (Why?) In other words , up to sets of 
measure zero in JRn, the sets A and B must be rotationally invariant about 
some common axis, en , parallel to the n-direction. Similarly the two sets 
must be rotationally symmetric about some other common axis , say en-1 
in the ( n - 1 )  direction. In particular the two axes must intersect in some 
point y. (Why?) We have shown at the end of the second proof of Theorem 
3 .  7 that ar1y measurable set in JRn, n > 3,  with two perpendicular symmetry 
axes must be spherically symmetric . Thus, the two sets A and B must be 
balls centered at y . The fact that A and B must be discs in the n == 2 case 
follows from the fact that every direction is a symmetry axis (as is the case 
for n > 3) and they all intersect pairwise (and hence at one common point) 
because of the nature of two-dimensional geometry. • 

Exercises for 
Chapter 3 

1 .  Show that a convex function, J, on an open interval of the real line , 
�' has a right and left derivative J; , J� at every point . Also show that 
J(t) - J(to) = It: J� ( s) ds = It: J� ( s ) ds . 

2 .  Show that every open subset of the real line is a countable disjoint union 
of open intervals . 

3 .  Let A and B be measurable sets in JR and let J A and J B be the smallest 
intervals such that IA n JA I == I A I and IB n Jn l == IB I , respectively. Show 
that the smallest interval that contains the support of XA * Xn has length 
I JA I + I Jn l · 

4. In the proof of Theorem 3 .4 it is asserted that r(t) is continuous . Prove 
this . 

5 .  In the remark after the proof of Theorem 3 .4 it is asserted that (3) holds 
even if f is not summable . Write out a proof of this fact . 

6 .  Show that if a set in JRn has strictly positive but finite measure and is 
rotationally symmetric about two axes , these two axes must have a point 
1n common. 



96 Rearrangement Inequalities 

7. Construct three functions , j, g and h, none of which is a translate of a 
symmetric-decreasing function, such that I (f, g ,  h) = I (!* ,  g* , h* ) .  

8 .  In the first paragraph of the 'compactness proof ' of Theorem 3. 7 (Riesz 's 
rearrangement inequality) it was asserted that by choosing e1 = xf lx l 
the overlap integral J x1x=p increased from P to P + 6 with 6 > C(x) . 
Prove this statement . 

..._ Hint. Show that along each line parallel to the e1-axis , the overlap 
increases by at least min {a , b} ,  where a is the £1 measure of the 
intersection of the set F rv F* with this line, and b is the £1 measure 
of the intersection of the set F* rv F with this line. 

9 .  Prove assertion ( iii) in Sect . 3 .3 ,  namely that f* (x) is lower semicontin
uous . Consequently, {x : f* (x) > t} = {x : l f (x) l > t}* , as in assertion 
( iv) . 



Integral 

Inequalities 

4. 1 INTRODUCTION 

Chapter 4 

Several important integral inequalities were already mentioned : Theorem 
2 .2 (Jensen's inequality) , Theorem 2 .3 (Holder 's inequality) and Theorem 
2.4 (Minkowski 's inequality) . These are all based essentially on convexity 
arguments , and we had no difficulty in giving them in their sharp forms 
(i .e . , the inequalities in question fail to be true if the constants are decreased 
from the specified sharp values) . We could also specify the cases of equality 
completely. These inequalities were presented in Chapter 2 because they 
were needed in the development of LP -space theory. 

The inequalities to be given now are far more intricate and do not follow 
from simple convexity. The Euclidean structure of JRn plays a role here. 
More noticeably, the determination of the sharp (or optimal) constants and 
the cases of equality are formidable problems . It is not too difficult to 
derive these inequalities (and we do so) if sharp constants are not demanded 
(although it has to be said that historically even the nonsharp version of 
Theorem 4.3 was not easy) . We give these simple proofs as well . The 
determination of the sharp constants in Theorem 4.3 , however , requires the 
rearrangement inequalities of Chapter 3-and that is why these integral 
inequalities are presented after Chapter 3 .  Not all the constants mentioned 
in Theorem 4.3 have been determined completely, however , and they present 
interesting open problems . 

-

97 
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It is not obvious , or even necessarily true in all cases , that the sharp 
forms of inequalities can be achieved by certain specific functions . Such 
functions , for which the inequality becomes an equality, are called maxi
mizers or minimizers, as the case may be. The word optimizer is also 
often used . In the cases /ureated in this chapter the maximizers are all deter
mined completely. Other examples are given in Chapter 1 1  on the calculus 
of variations . 

These analyses of sharp constants are in this book for two reasons . One 
is that they are occasionally useful , and even important . The main reason, 
however , is that they provide us with good examples of 'hard analysis ' prob
lems that can be carried to completion-which is usually not the case-and 
with the methods at our disposal. In other words , the reader is invited to 
use the material presented so far actually to construct and compute the so
lution to a minimization problem. The sharp constants are not needed in 
the rest of this book, however, and disinterested readers can guiltlessly omit 
this discussion. 

Another point is that some elementary but useful facts about Gaussian 
functions , conformal transformations and stereographic projections wlll be 
introduced and used . Thus, we will be led to an example of the interplay 
between geometry and analysis . 

A Gaussian function g : JRn ---+ C is a bounded function that is the 
exponential of a quadratic plus linear form. That is , 

g (x) = exp{ - (x , Ax) + i (x ,  Bx) + (J, x) + C} , ( 1) 

where A and B are real, symmetric matrices with A positive-semidefinite 
(i .e . , (x , Ax) > 0 for all x E ]Rn ) and with J E en . If g E £P (JRn) for some 
p < oo, then A must be positive-definite. 

Recall that f * g denotes convolution, defined in Sect . 2 . 15 .  

4.2 THEOREM (Young's inequality) 

Let p, q , r > 1 and 1/p + 1/q + 1/r = 2 .  Let f E £P (JRn) ,  g E Lq (JRn) and 
h E  Lr (JRn) .  Then 

Ln f(x) (g * h) (x) dx = Ln Ln f (x)g (x - y) h(y) dx dy 
( l )  

< Cp,q,r ;n l l f l l p l l 9 l l q l l h l l r · 
The sharp constant Cp,q,r ;n equals (CpCqCr)n , where (with 1/p + 1/p' = 1) , 

(2) 
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If p, q, r > 1 ,  then equality can occur in ( 1 ) if and only if f, g and h are 
Gaussian functions 

f(x) == A exp [-p' (x - a, J(x - a) ) + i k · x] , 

g (x) == B exp [-q' (x - b, J(x - b) ) - i k · x] , 

h(x) == C exp [-r' (x - c, J(x - c) ) + i k · x] , 

(3 ) 

where A, B , C E C; a, b , c ,  k E JRn with a == b + c; and J is any real, sym
metric, positive-definite matrix. 

REMARKS. ( 1 )  Cp == 1/Cp' · 
(2) Using Holder 's inequality, it is easy to see that when g and h are 

given, the best choice for f (up to a constant ) is 

f(x) == e-iO(x) j (g * h) (x) jP'!P , 

where O(x) is defined by g * h == ei9 j g * h j . Thus , Young's inequality can be 
rephrased as follows ( in which we switch p and p') : 

with 1/q + 1/r == 1 + 1/p. 
(3) The sharp constant was found simultaneously by [Beckner] and by 

[Brascamp-Lieb] . The condition for equality was given in the latter. 
(4) Symmetry: Let us denote the integral in ( 1 ) by J(f, g ,  h) and by fR 

the function fR(x) == f( -x) . Then, by a simple change of variables (using 
Fubini 's theorem) 

I(f, g , h) == I(g , f, hR) == I(f, h, g) == I(h , gR , f) . ( 5) 

(5) Instead of viewing Young's inequality as a statement about convo
lution, let us consider the second integral in ( 1 ) and view it as an integral 
over JR2n ( instead of JRn) of a product of three functions , each of which is 
a composition of a linear map from JR2n to ]Rn with a function from ]Rn to 
C. The ultimate generalization of Young's inequality is the following [Lieb, 
1990] . 
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Fully generalized Young's inequality. Fix k > 1 ,  integers n1 , . . .  , nk 
and numbers PI ,  . . .  , Pk > 1 .  Let M > 1 and let Bi (for i = 1 ,  . . .  , k) be a 
linear mapping from JRM to JRnt . Let Z : JRM 

----+ JR+ be some fixed Gaussian 
function, 

Z(x) = exp{ - (x , Jx) } 
with J a real, positive-semidefinite M x M matrix (possibly zero) . 

For functions fi in £Pt (JRnt ) consider the integral Iz and the number Cz 

k 
Iz(h , . . .  , Jk ) = LM Z(x) n fi (Bix) dx (6) 

Cz :=  sup{Jz (fi , . . .  , fk ) : l l fi l l p2 = 1 for i =  1 ,  . . .  , k} . (7) 
Then C z is determined by restricting the f 's to be Gaussian functions, i. e . ,  

with Ji a real, symmetric, positive-definite ni x ni matrix} .  
(8) 

To get Young's inequality take J = 0, k = 3, B1 = ( 1 ,  0) , B2 = ( 1 ,  - 1 ) 
and B3 = (0, 1 ) . 

Although the sharp constant Cz is not given explicitly, (8) contains 
an algorithm for computing Cz since integrals of Gaussian functions are 
computable by well-known means (see the Exercises) .  The proof of the 
generalized Young's inequality (even without the sharp constant) is much 
more involved than the proof of the usual one , Theorem 4 .2 .  The condition 
on the Pi , Bi and Z so that Cz < oo is complicated to state , but the theorem 
is correct as stated above in the sense that ( 7) and (8) are both finite or 
infinite together. 

PROOF OF THEOREM 4. 2 .  
(A) I SIMPLE VERSION WITHOUT THE SHARP CONSTANT . 1  We can obvi

ously assume that f, g and h are real and nonnegative . Write the double 
integral in ( 1 ) as I := JJRn JJRn a(x , y)(3(x , y)!(x, y) dx dy with 

a(x, y) = f (x )Pir' g (x - y ) qlr' ' 
{3 (X, y) = g (X - y) q I p' h ( y) rIp' , 

I (X' Y) = f (X )PI q' h ( Y) r I q' . 

(9) 
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Noting that 1/p' + 1 /q' + 1/r' = 1 ,  we can use Holder's inequality for 
three functions to obtain I I I < l l a l l r' I I J3 1 1p' I I 'Y I I q' · But 

( 10) 

and similarly for J3 and 'Y· The right equality in ( 10) is , of course , a con
sequence of changing variables from y to y - x and doing the y-integration 
first . The final result is ( 1 )  with the sharp constant (CpCqCr)n replaced by 
the larger value 1 .  • 

(B) ! FULL VERSION WITH THE SHARP CONSTANT . 1  We start with an 
auxiliary problem that has the virtue that we can show that maximizers 
j, g , h exist and that we can compute them. The next part of the proof 
will consist in deriving the original problem from the auxiliary problem by 
a limiting procedure . We will not prove that the only maximizers are the 
functions given in (3) , and will leave that to the reader, who can consult 
[Brascamp-Lieb] or [Lieb, 1990] . 

It is more convenient to prove Young's inequality in the form ( 4) rather 
than ( 1 ) .  Our auxiliary problem consists in replacing g on the left side of 
( 4) by jc: * g ,  as in Sect . 2 . 16 with jc: a Gaussian with J jc: = 1 .  Furthermore, 
we multiply g and h on the left side of ( 4) by Gaussians e-8x2 • Thus, our 
auxiliary problem consists in examining the function 

with 

Our goal is to compute the sharp constant C�'8 in the inequality 

( 1 1 )  

with 1 + 1/p = 1/q + 1/r as in (4) . Since p, q ,  r are fixed, the dependence of 
Cc: 8 . d l . . 

n' on p, q ,  r IS not rna e exp 1c1t . 
Note that 

( 12)  

The first inequality is obvious and the second follows from l ljc: * g l iP < l l g l iP , 
which is a consequence of the nonsharp Young's inequality proved in part 
(A) above. 
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First , we show that the sharp constant is attained, i .e . , that there exist 
two functions g and h with l l g l l q = l l h l l r  = 1 such that I IK;;� I IP = C�'8 . 
Let 9i , hi be a maximizing sequence of function pairs , i .e . ,  1 1Kg

c:,8h l i P ---+ C�'8 
2 )  1, 

under the assumption that l l 9i l l q = l l hi l l r  = 1 .  By Theorem 2 . 18 (bounded 
sequences have weak limits) there exist g E Lq(JRn) ,  h E Lr (JRn) such that 
9i � g and hi � h weakly in Lq (JRn) ,  respectively Lr (JRn) .  

By Exercise 6 ,  K;:�h, converges strongly in LP (JRn) to the function K;;� . 
By Theorem 2 . 1 1  (lower semicontinuity of norms) we know that l l 9 l l q < 1 
and l l h l l r  < 1 .  In fact , l l 9 l l q = l l h l l r  = 1 because if they were strictly less 
than 1 the ratio I IK;;� I I P/ I I g l l q l l h l l r  would be strictly bigger than c�·8 , which 
is a contradiction. Thus, g and h are a maximizing pair and C�'8 is attained, 
as asserted above. 

The next step is to use Theorem 2 .4 (Minkowski's inequality) to show 
that 

and that the optimizers g and h must be Gaussian functions. This equality 
may seem obvious, but it is not trivial and requires proof. We write a 
point x E JRn+m as x = (xi ,  x2 ) , where XI E JRn and x2 E JRm . Now, by 
Minkowski's inequality, 

( 13) 

p ) Ijp 
X l l h ( · , z2 ) l l r  dy2 dz2 dx2 

< C�'8 C�8 l l g " q l l h l l r ' 

and hence c�'!m < C�'8 c:n8 • Conversely, if (gn , hn) and (gm , hm) are the 
optimizers for the n- and m-dimensional problems, the functions 
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and 
h(z1 , z2 ) : == hn (ZI )hm (z2 ) 

are optimizers for the m + n-dimensional problem and hence c��m == 

Cc,8cc,8 n m · 

Next , suppose that g (y1 , Y2 ) and h(z1 ,  z2 ) are any pair of optimizers of 
the m + n-dimensional problem. Certainly they must be of one sign, which 
we take to be positive, and we must have equality everywhere in the chain of 
equalities above . In particular there must be equality in the application of 
Minkowski 's inequality, which means that the function on the right side of 
( 13) must factorize in the following way: There exist two functions Ax2 (XI ) 
and Bx2 (y2 , z2 ) such that 

J�8 (x2 , Y2 , Z2 ) { J�·8 (x1 , Yl , Z1 )g (y1 , Y2 )h(  Zl , Z2 ) dy1 dz1 }JR2n 
== Ax2 (x1 )Bx2 (y2 , z2 ) . 

From this we conclude that the function 

does not depend on x2 and hence must be of the form C(x1 )D(y2 , z2 ) for 
some functions C and D. Thus 

{ J�8 (x2 , Y2 , Z2 ) { J�·8 (x1 , Yb Z1 )g (y1 , Y2 )h(z1 , Z2 ) dy1 dz1 dy2 dz2 }JR2rn }JR2n 

= r J�8 (x2 , Y2 , Z2 )C(xl )D(y2 , Z2 ) dy2 dz2 }JR2rn 
== C(x1 )E(x2 ) 

for some function E. 
If we interpret our inequality in the form 

the preceding statement amounts to saying that if j, g and h are optimizers , 
then, by Holder 's inequality, j (x1 , x2 ) == d[C(x1 )E(x2 ) ]P- l where d is some 
constant . Since j, g and h play a symmetric role we can conclude that 
all the optimizers must factorize. Clearly, each of these factors must be an 
optimizer of the corresponding n- or m-dimensional problem. An immediate 
consequence is that the optimizers must be products of optimizers of the 
one-dimensional problem. 
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Now, let g and h be any optimizers of the one-dimensional problem. We 
can get new and interesting optimizers for the two-dimensional problem by 
considering 

and 
H(x1 , x2 ) = h(1-;/2 ) h ( x1-;/2 ) . 

We urge the reader to check, by changing variables , that G and H are indeed 
optimizers of the two-dimensional problem. The formula 

Jf'8 (xi ,  YI , ZI ) Jf'8 (x2 , Y2 , Z2 ) 
= Jc.,8 ( XI + X2 YI + Y2 ZI + Z2 ) Jc.,8 ( XI - X2 YI - Y2 ZI - Z2 ) I J2 ' J2 ' J2  I J2 ' J2 ' J2  

is crucial , and it is here that we first use the fact that Jf'8 (x, y ,  z )  is a 
Gaussian function. By the previous argument , since G is an optimizer, we 
have that 

( 14) 

for some functions u and v . Note that u(xi )v(x2 ) E Lq (JR2 ) . We shall prove 
that this relation implies that g must be a Gaussian function. 

Assume for the moment that g is in coo and strictly positive .  Then the 
functions TJ (x) := log g (x ) ,  J-L(X) := log u(x) and v(x) := log v (x) are also in 
coo and satisfy the relation 

Differentiating this equation twice with respect to XI and x2 yields 

for all XI and x2 , which implies that 1]11 ( x) must be a constant -2a and 
hence 17(x) = -ax2 + 2bx + c for some constants b and c. Thus 

g (x) = exp [-ax2 + 2bx + c] , 
i .e . , g is a Gaussian function. 

To apply this argument to the original function g which is only in Lq (JR) 
we consider 
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and note that ( 14) holds with 9>-. ,  U).. , V>-. in place of g , u ,  v .  (Why? ) Since g 
is nonnegative, 9>-. is strictly positive and clearly in coo . Hence 

with a>-. > 0 .  By Theorem 2 . 16 there exists a sequence Aj ---+ oo such that 
9>-.J (x) ---+ g(x) for a.e. x E JR. Hence a>-.J , b>-.J and C)..J must converge and we 
call the limits a, b and c with a > 0 .  

The result for h is completely analogous and we can summarize our 
result by saying that the optimizers of inequality ( 1 1 ) are given by Gaussian 
functions . In principle these optimizers and the constant can be explicitly 
computed, but this is quite difficult to do. Instead, we consider first the limit 
of Cf '8 as 6 tends to zero. Clearly, Cf ' 8 is nonincreasing in 6 and is bounded 
by Cf'0 . In fact , lim8�o Cf '8 == Cf '0 , which can be seen as follows: For any 
17 > 0 there exist nonnegative , normalized g, h such that I lK;;� l iP > c:·0 - 17. 
Clearly, c:·" > I IK;;� I I P and, using the monotone convergence theorem, we 
conclude that 

This proves the claim since 17 is arbitrarily small . Thus, 

Cf '0 == sup Cf '8 == sup sup{ I I  Kc:,� l iP : g and h 
8>0 8>0 g, 

are nonnegative Gaussians l l 9 l l q , l l h l l r == 1 } . 

By interchanging the two suprema (why is this allowed? ) we see that Cf '0 
can be computed by taking the supremum over Gaussian functions. The 
result of this computation, which we leave to the reader , is 

( 15) 

Note that the right side does not depend on c. 
Again, we have to show that limc:�o Cf '0 == Cp' ,q,r ; 1 ·  We already know 

that Cf '0 < Cp' ,q,r; 1 .  Now we argue as before , i .e . , for each given 1J > 0 
there exist normalized g, h such that l l g * h l l p > Cp' ,q,r ; 1 - 1] . Again, Cf '0 > 
I IJc: * g * h l l p · Since , by Theorem 2 . 16 , Jc: * g ---+ g in Lq (JR) , and since the 
right side of the preceding inequality is continuous (by the nonsharp Young's 
inequality) , we have that lim infc:�o Cf '0 > Cp' ,q,r; 1 - 'TJ ·  This shows that 
Cp' ,q,r; 1 == CqCrCp' . By a direct computation, one can check that the 
Gaussians given in the statement of Theorem 4 .2 are optimizers . • 
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4.3 THEOREM {Hardy-Littlewood-Sobolev inequality) 

Let p, r > 1 and 0 < ,\ < n with 1/p + A./n + 1/r == 2 .  Let f E £P(JRn ) and 
h E Lr (JRn) .  Then there exists a sharp constant C ( n, ..\, p) , independent of 
f and h, such that 

The sharp constant satisfies 

n 
n-1 )..jn 

/\ n /\ n 1 ( ( ' / ) )..jn ( ' / ) )..jn) 
C(n, A , p) < 

(n - >..) ( j§ 1 /n) 
pr 1 - 1/p 

+ 
1 - 1/r 

. 

If p == r == 2n/ (2n - >..) , then 

C( ,\ ) == C( ..\) == )../2 r(n/2 - .A/2) { r(n/2) } -1+)../n 
(2) n ,  , p  n, 1r 

r(n - .A/2) r(n) 
. 

In this case there is equality in ( 1 )  if and only if h (const. )f and 

for some A E <C, 0 =/= 1 E JR and a E JRn . 

REMARKS . ( 1 )  Inequality ( 1 )  (not in the sharp form) was proved in 
[Hardy-Littlewood, 1928 , 1930] and [Sobolev] . The sharp version with the 
constant given by (2) was proved in [Lieba , 1983] . There it was also shown 
that in the case p =/=- r there exist optimizers, i .e . ,  functions which, when 
inserted into ( 1 ) , give equality with the smallest constant . However, neither 
this constant nor the optimizers are known when p =/=- r. 

(2) The inequality ( 1 )  is sometimes referred to as the weak Young in
equality. Note that ( 1 )  looks almost like Young's inequality, Theorem 4 .2 ,  
with g(x) replaced by lx l -).. . This function is, however, not in any £P-space , 
but nevertheless we have an inequality analogous to Young's inequality. The 
term 'weak' stands for the fact that l x l -).. is in the weak Lq-space L� (JRn) 
with q == n/ ..\. This space is defined as the space of all measurable functions 
f such that 

sup a j {x : l f (x) l > a} j 1/q < oo . (3) a>O 
Any function in Lq (JRn) is in L� (JRn) .  Simply note that for any a 

(4) 
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The expression given by (3) does not define a norm. For q > 1 there is an 
alternative expression, equivalent to (3) , that is indeed a norm. It is given 
by 

l l f l l q ,w = sup IA I - 1/q' r l f (x) l dx , 
A }A 

(5 ) 

where 1/ q + 1/ q' == 1 and A denotes an arbitrary measurable set of measure 
IA I < oo. Using Theorem 1 . 14 (bathtub principle) it is not hard to see that 
(3) and (5) are equivalent . That (5) is a true norm is an easy exercise . In 
particular, we note that 

l l f l l n;A,w = n : A 
[ i§n-1 1 /n] Afn when f (x) = l x i -A · (6) 

Here l §n-1 1 is the area of the unit sphere §n-1 C JRn . See 1 . 2 (8) . 
The weak Young inequality states that for g E L{v (JRn) and oo > 

p, q , r > 1 with 1/p + 1/ q + 1/r == 2 , the following inequality holds : 

for some number Kp,q,r;n · To find the sharp Kp,q,r ;n we can use Theorem 
3 .7 and thereby assume that f == j* , g == g* , h == h* . Let b == f * h, whence 
b == b* . By the layer cake representation, b(x) == J000 Xt (x) dt , where Xt is a 
centered ball of radius Rt . The left side of (7) is (with ,\ == n/q) 

1 1oo 1 1oo ( l §n- 1 1 ) 1/q' b g == Xt (x)g(x) dx dt < R�/q' l l 9 l l q ,w dt JRn 0 JRn 0 n 
= :, c§:-1 1 ) 

1
1
q 100 Ln Xt (x) lx i -A dx dt l l 9 l l q ,w 

= Ln b(x) lx i -A dx :, c§:-1 1 ) 
1
1
q 
l l 9 l l q ,w · 

By combining (6) and (8) , Kp,q,r ;n = ( 1/ q' ) ( n/ l§n-1 1 ) 1/q C( n, n/ q ,  p) . 

(8) 

As in Remark (2) , 4 .2 ,  we can also view the HLS inequality as the 
statement that convolution is a bounded map from LP(JRn) x L{v (JRn) to 
Lr (JRn) .  In other words, replacing r by r' in (7) , 

1 ( n ) 1/q 1 1 9 * f l l r  < q' l §n-1 l C(n, n/q, p) l l 9 l l q,w l l f l lv 

with 1/p + 1/q == 1 + 1/r . 

(9 ) 
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(3) Returning to ( 1 )  we note that when p == r we are allowed to take 
h == f in ( 1 ) because , we claim, this quadratic form is positive -definite , i .e . ,  
when f E L2nf(2n-.\) (JRn) and f "# 0, 

{ }{ f(x) ix - y i -Af(y) dx dy > O . }JRn JRn ( 10) 

The proof is easy: We can write 9.\ (x) : ==  lx l-.\ as a convolution 9.\ == 

(const . )9(n+.\) /2 * 9(n+.\)j2 · Then, with V : ==  9(n+.\)/2 * j, we see that the 
integral in ( 10 ) is proportional to J IV I2 . (These remarks are sketchy, but 
the assertion ( 10) and the proof are essentially the same as Theorem 9.8 
(positivity properties of the Coulomb energy) ; full details are given there . )  

( 4) We shall give two proofs of ( 1 ) . The first one is quite elementary but 
it will not reveal what the sharp constant is . The second proof, which is in 
Sect . 4 .7, works only in the case p == r, but it will yield the sharp constant 
(2) . 

I FIRST PROOF . 1  The idea is to write the left side of ( 1 ) in terms of the 
layer cake representation and then estimate the integrals that occur . We 
can assume that both f and h are nonnegative functions and, without loss 
of generality, we may assume that 1 1 / l l p == l l h l l r == 1 .  

We have the following formulas: 

l x i -A = A 1oo 
c-A-lX{ i x l <c} (x) de, 

f(x) = 100 
X{f>a} (x) da , 

h(x) = 100 
X{h>b} (x) db. 

Inserting these on the left side of ( 1 ) we obtain 

I := r r f(x) ix - y i -Ah(y) dx dy }JRn }JRn 

= A roo roo roo r r c-A-IX{f>a} (x)X{h>b} (Y) Jo Jo Jo }JRn }JRn 
X X{ l x l <c} (x - y) dx dy da db dc. 

( 1 1 ) 

( 12) 

( 13) 

( 14) 

The integrals over x and y in ( 14) can be estimated from above by replacing 
one of the three x 's in ( 14) by the number 1 .  Thus, 

I <  A j j j c-A-1I(a , b, c) da db dc 
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and 
I (a ,  b, e) : == v (a) w (b) u (e) /  max { v (a) , w (b) , u (e) } , ( 15) 

with 

and 
v(a) = { X{f>a} }JRn 

The norms of f and h can be written as 

l l f l l � = p 100 aP-1v (a) da = 1 ,  l l h l l � = r 100 br-1w(b) db = 1 .  ( 16) 

To do the e-integration we assume first that v(a) > w(b) ,  the other case 
being similar . Using ( 15) we compute 

100 c-A-1 J(a ,  b, c) de 

< 1 e-.\- 1w(b)u(e) de + 1 e-.\-1w(b)v (a) de 
u(c)<v(a) u(c) >v(a) ( l §n-1 1 ) 1 (v(a)n/ l§n- 1 1 ) 1 /n 

== w(b) e-.\- 1+n de n o 

+ w(b)v (a) 100 c-A-1 dc ( 17) 
( v (  a )n/l§n- 1 1 )  1 /n 

1 ( l§n-1 1 /n)Afnw(b)v (a) 1-Ajn 
n - A 
+ I_ ( l§n-1 1 /n)Afnw(b)v (a) 1-Ajn 

A 
n ( l§n-1 1 /n).\fnw(b)v (a) 1-.\fn . A(n - A) 

By repeating the same computation over the range where w(b) > v (a) and 
collecting terms, one obtains 

I <  n ( l§n-1 1 /n).\fn (n - A) 
X 100 100 min{ w(b)v (a) 1-Afn , w(b) 1-Afnv (a) } da db. 

( 18) 

Note that w(b) < v(a) if and only if w(b)v(a ) 1-.\fn < w(b) 1-.\fnv(a) . 
Next, we split the b-integral into two integrals, one from zero to apfr and 

the other from apfr to infinity. Thus , the integral in ( 18) is bounded above 
by 

100 1ap/r 100 100 v(a) w(b) 1-.\jn db da + v (a) 1-.\jn w(b) db da .  
0 0 0 aP/r 

( 19 ) 



1 10 Integral Inequalities 

It is easy to see (Exercise 3) that the second term in ( 19) can be rewritten 
as laoo w(s) fosr/p v (t) 1-A/n dt ds . (20) 

By Holder 's inequality with m == (r - 1) ( 1 - Ajn) 

It is easy to see that mn/ A < 1 and hence the first term in ( 19) is bounded 
above by 

( A ) )..jn ( roo ) ( roo ) 1-A/n 
n - r(n - ..\) Jo v (a)ap- 1  da Jo 

w(b)br-1 db 

1 ( Ajn ) )..jn 
== 

pr 1 - 1/p 
· 

(22) 

An analogous computation using (20) shows that the second term in 
( 19) is bounded above by 

1 ( Ajn ) )..jn 
pr 1 - 1/r 

· (23) 

The desired estimate is proved by collecting terms and returning to ( 18) and 
( 1 9) .  • 

In Sect . 4 . 7  we shall give the proof of ( 1 )  which yields the sharp constant 
(2) . But first some geometric concepts have to be introduced . 

4.4 CONFORMAL TRANSFORMATIONS AND 
STEREOGRAPHIC PROJECTION 

A fundamental technique is to exploit the symmetries of 4 .3( 1 ) . Some of 
them are obvious. If we replace f(x) and h(x) by (Ta f) (x) : == f(x - a) and 
(Tah) (x) : ==  h(x - a) for a E JRn, we see that both sides of ( 1 )  do not change 
their value . We then say that the inequality 4 .3 ( 1 )  is translation invariant . 
Similarly for R E O(n) , the orthogonal group of rotations and reflections 
of JRn, we can replace j, h by (Rf) (x) : == f(R-1x ) ,  (Rh) (x) : == h(R-1x) and 
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again we do not change the value . Thus our inequality is invariant under 
the following action of the Euclidean group: 

[(R, a) , f (x ) ] r-t f (R-1x - a ) , R E O(n) , a E JRn , 

and similarly for h. 
Another simple symmetry is the scaling symmetry. If we replace 

f(x) , h(x) by snfp f(sx) , snfrh(sx) for s > 0, then 4 .3 ( 1 )  is again invariant . 
The reader is urged to check this . Note that stretching is not a member 
of the Euclidean group because geometric figures do not stay congruent 
under scaling. It is, however , a member of another important group of 
transformations, the conformal group, namely, the group of deformations 
that preserve angles . There are many more maps that preserve angles and 
one of them is the inversion on the unit sphere, I : JRn ---+ JRn , 

X x f-> l x l 2 
= :  I(x) . ( 1 )  

There are some remarks to be made about the inversion map. As stated 
it is not defined on JRn but only on JRn without the origin. One can, however , . extend I to JRn , the one-point compactification of JRn; this is nothing but 
JRn U { oo} where oo is defined to be an element which is contained in all 
unbounded open sets . If we define I(O) == oo and I( oo) == 0, I extends to 

Now note that 

2 X y II(x) -I(y) l = 
lxf - IYf  

2 

If we pick two C1 curves x(t) , y(t) in ffi.n with x(O) == y(O) == z =!=- 0, then . 
u(t) :== I(x (t) ) and v (t) :== I(y (t) ) define two new curves in JRn . We have 
to check that the angle between the tangent vectors of u(t) and v (t) (which 
are u and v) has the same value at t == 0 as the angle between ±(t) and y(t) 
at t == 0 .  But ,  by (2) , 

l it - V I = lim � II(x (t) ) - I(z) + I(z) - I(y(t) ) l = -1
1
1 2 1± - iJ I ( 3) 

t�o t z 
and, in particular , l u i == 1± 1 / l z l 2 , l v l == l iJ I / I z l 2 , from which we find that 

. . . . U · V X · y 
lu l l v l l ± l l iJ I ' 

i .e . ,  I is conformal. An attentive reader will actually point out that I is 
anticonformal since it reverses the orientation. But this distinction does 
not play a role in our considerations. 
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. There is a very nice description of ffi.n by means of stereographic pro-
jection. Define s == ( s1 , s2 , . . .  , Sn+1 ) by 

2xi . 1 - lx l 2 Si = 1 + lx l 2 
for t = 1 ,  . . .  , n  and Sn+I = 1 + lx l 2

. (4) 

If x == oo, then Si == 0 for i == 1 ,  . . .  , n and sn+1 == -1 .  A simple calculation 
shows that 2:�+11 sr == 1 .  Thus S : x t---t s is a map from in ---+ §n . The 
inverse of S is given by 

Si Xi = 1 + Sn+I
, i = 1 ,  . . .  , n .  (5) 

With considerable abuse of notation we shall call s- 1 stereographic co
ordinates for §n . Of course there is no single coordinate patch that covers . §n nor is there one that covers ffi.n . The topology of these two spaces is, in 
fact , quite different from the topology of ffi.n (e .g . , they are not contractible) . 
For our purposes we do not need a coordinate description for the whole of 
§n , and thus the introduction of 'oo' is a convenient way to avoid carrying 
around two coordinate systems. A simple calculation shows that 

n+1 4 ft ( si - ti ) 2 = I s - t 1 2 = ( 1  + lx l 2 ) ( 1  + I Y I 2 ) lx - Y l 2 , (6) 

where s == S(x) and t == S(y) . Again, as in the case of the inversion, . S is conformal! If we consider a tiny triangle in ffi.n and its image on §n 
under stereographic projection, we see from (6) that the lengths of the cor
responding edges have changed, but the ratio of the corresponding edges 
are the same for all three edges . Thus, the small triangle has undergone a 
stretching without changing its geometric shape . The term conformal stems 
from this fact . 

Thus from the point of view of conformal geometry, i .e . ,  by consider
ing figures as ' congruent ' if they can be transformed into each other by a . conformal map, we cannot distinguish between §n and ffi.n . 

It is a theorem (see , e .g . ,  [Dubrovin-Fomenko-Novikov] ) that the Eu
clidean group together with scaling and inversion generates all conformal 
transformations . It is another theorem that the conformal group on ffi.n 
is isomorphic to the Lorentz group in (n + 1 ,  1 )  dimensions , also called 
O(n + 1 ,  1) . 

The reader can relax at this point . Most of the information given above 
is meant as background, and it is not necessary for what follows . What is 
important , however , is that certain conformal transformations are easier to . visualize on §n and certain others on ffi.n . 

It is an easy and instructive exercise to see that the inversion I induces 
a reflection of §n into itself. In fact s 0 I 0 s- 1 ( s ) == ( s 1 , . . .  ' Sn , -Sn+1 ) · 
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An isometry of a space , generally speaking, is a map that preserves 
distances between points, e .g . , an isometry of LP(O.) is a map of functions 
that preserves the norm I I ! - g l lp · The set of isometries of §n is the group 
O(n + 1 ) .  The elements of the conformal group that are missing from this 
set are the translations and scaling, all of which are easier to visualize on . 
JRn . If the dimensions of these groups are added we get 

_(n_+_1)_n + n + 1 = (n + 2) (n + 1 )  = dim O(n + 1 1 )  2 2 ' ' 
i .e . , the dimension of the whole conformal group, which we now denote by 
c .  . . If 1 : JRn --+ JRn is in C ,  then we can define an action of 1 on functions 
f in LP(JRn) as follows . Pick a sequence Jk E £P (JRn) such that Jk vanishes 
outside a ball Bk for all k == 1 ,  2 ,  . . .  and such that Jk --+ f in LP (JRn) .  Next 
we observe that 

(7) 
is well defined for all k . Here J'Y- 1 (x) is the Jacobian of the transformation 
1- 1 . This map 1* is linear and, by a change of variables , it is seen that 

l l1* fk l i P == l l fk l i p · (8) 
Thus it follows that 1* fk converges strongly in LP (JRn) to a function 1* f 
and this limit is independent of the approximating sequence fk . Thus 1* 
extends to an invertible isometry on LP (JRn) .  

In the same fashion we can lift functions in LP (JRn) to the sphere §n . 
Simply define 

F(s) == (S* f) (s) == IJs- 1 ( s) I 1/P f(S- 1 ( s) ) .  (9) 
Again 

( 10) 
It is necessary to compute the Jacobian of the stereographic projection 
Js (x) . To this end we derive from (6) that 9ij , the standard metric on 
§n (i .e . , the one inherited from JRn+l ) is expressed in terms of stereographic 
coordinates by 

9ij = ( 1 +
2
1x l 2 ) 2 Oij · 

Hence the standard volume element on §n is 
ds = ( 1 +

2
1x l 2 ) n dx 

and therefore 

( 1 1 ) 

( 12) 

.Js (x) = ( 1 +
2
lx l 2 ) n and .Js- 1 ( s) = (1 + Sn+I ) -n . ( 13) 

Armed with (4) , (7) , ( 1 1 ) and ( 12) we can state the following. 
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4. 5 THEOREM {Conformal invariance of the 
Hardy-Littlewood-Sobolev inequality) 

Assume that p == r in 4 .3 ( 1 )  and that F E LP (§n) and f E LP (JRn) are related 
by 4.4(9) . Let H and h be another pair related in the same way. Then 

{ { f(x) j x - y j -Ah(y) dx dy = { { F (s ) j s - t j -AH (t) ds dt ( 1 )  }JRn }JRn }§n }§n 

and 
(2) 

Here I s - t 1 2 == 2:�+1
1 (si - ti ) 2 is the Euclidean distance of JRn+l ( and not 

the geodesic distance on §n) .  Manifestly, this shows the invariance under 
all isometries of §n , i . e . , invariance under the group O(n + 1 ) . Moreover, 
the HLS inequality is con formally invariant, i. e . , for 1 E C 

and 

PROOF. We can write the left side of ( 1 )  as 

r r ( 1 + l x l 2 ) nfp ( 2 2 2 ) -)../2 
}JRn }IRn 2 

J (x) 
1 + j x j 2 1 x - y j  

1 + j y j 2 
( 1 + I 1 2 ) njp ( 2 ) n ( 2 ) n x 

2 
y h(y) 

1 + l x l 2 
dx 

1 + j y j 2 dy 

(3) 

(4) 

(5) 

using that 2/p + Ajn == 2. By (6) , (9) and ( 12)  of Sect . 4.4 this can be 
rewritten as 

(6) 

which proves ( 1 ) . Equations (2 )  and (4) are repetitions of 4.4( 10) and 4.4(8) 
respectively. As explained in Sect . 4 .4 ,  invariance under the isometries of 
§n , the translations and the scaling, implies invariance under the whole 
conformal group C. • 
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e We turn next to the problem of finding the sharp constant in 4. 3 ( 1 )  if 
p == r. As explained in Remark (3) , 4. 3( 10) , we can restrict our attention to 
the case h == f and f > 0. In other words , we are interested in the quantity 

where 
C( n, ..\) == sup{H (f) : f E £P (JRn) ,  f > 0 ,  f ¢. 0} , (7) 

H(f) := { { f(x) jx - y j ->.J (y) dx dy j l l f l l� · }JRn }JRn (8) 

Furthermore, we are interested in whether or not the supremum is a maxi
mum, i .e . , whether there exists a function fo such that C(n, ..\) == 1-l(fo ) .  

Note that in (7) the seemingly innocuous condition that f is not iden
tically zero is crucial . If fk is a maximizing sequence it might happen that 
this sequence converges to zero . One could not , then, conclude that the 
supremum in (7) is attained . To show that there is a maximizing sequence 
whose limit is nonzero is one of the key elements in the original proof [Lieba , 
1983] .  

Here we take an approach that exploits as fully as possible the symme
tries of the problem (see [Carlen-Loss , 1990] ) .  There are two observations 
to be made: 

( i) If we replace f by its symmetric-decreasing rearrangement f* (see 
Sect . 3 .3) , then, by Theorem 3 .7 (Riesz 's rearrangement inequality) , 
1-l(f) < 1-l(f* ) .  Thus, in order to compute C(n, ..\) it suffices to 
optimize within the class of symmetric-decreasing functions . 

( ii) The functional (8) is conformally invariant , by the previous theorem. 
The key observation is that ( i) and ( ii) contradict each other in the sense 

that if we apply a general conformal transformation to a radial function, the 
result will generally no longer be radial. We shall only give the argument 
here for n > 2 and shall relegate the one-dimensional case to the exercises . 
Pick f radial in LP(JRn) .  Lifting it to the sphere by the prescription 4.4(9) 
results in the function 

expressed in terms of stereographic coordinates . This function is invariant 
under rotations of §n that keep the 'north pole axis ' n == (0 , . . .  , 0 , 1 )  fixed . 
Those rotations correspond to the usual rotations in JRn . Consider now a 
different rotation, namely the rotation by 90° 

D ·. §n --+ §n , Ds (s s s s ) == 1 , · · · , n- 1 , n+ 1 , - n , (9) 

which maps the north pole n-axis into the vector e == (0 , . . .  , 0, 1 , 0) . The 
function F(D-1s) is now rotationally symmetric about the e-axis . Should 
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F (D-1 s) correspond to a symmetric-decreasing function on JRn via 4.4(9) , 
then it must also be syn1metric about the n-axis . Thus, on one hand, 

F(s) == ¢(sn+I ) for some ¢ : §n --+ JR 

and, on the other hand, 

Consequently, 

F (D-1s ) == �(sn+I ) for some � :  §n --+ JR. 

( 10) 

( 1 1 ) 

for all s E §n , which is only possible if F is a constant on §n and hence 

It is easy to see that the function on JRn corresponding to F(D-1s ) is 
given by 

* ( 2 ) njp ( 2xl 2Xn-1 l x l 2 - 1 ) (D f) (x) 
= l x + a l 2 f lx + a l 2 ' · . .  ' lx + a l 2 ' lx + a l 2 ( 12) 

where a == (0 , . . .  , 0 , 1) E JRn . The representation of D* on §n is , however, 
more illuminating. For convenience we shall drop the * in the notation and 
call the right side of ( 12) (Df) (x ) . If F is the function on §n corresponding 
to f via (9) , we set 

(DF) (s ) == F (D-1 s ) , ( 13) 
and we denote the symmetric-decreasing rearrangement of f by 

(Rf) (x) == j* (x ) . 

Recall that R is norm-preserving, i .e . , I IRJ I IP == l l f l lp · By the previous 
considerations we know that DRf is no longer radially symmetric. We 
may thus iterate these two maps and ask for the behavior of the sequence 
(DR)k f . Does it converge? 

For reasons that will become clear later we shall consider the map 

( 14) 

The following theorem was first proved in [Carlen-Loss, 1990] . 
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4.6 THEOREM (Competing symmetries) 

Let 1 < p < oo and let f E LP (JRn) be any nonnegative function. Then 
the sequence Jk == (RD)k f converges strongly in LP (JRn) , as k --+ oo, to the 
function hJ : == l l f l lph, with 

h(x) = j §n j - 1/p ( 1 +2
jx j 2 ) nfp . ( 1 )  

REMARKS. ( 1 )  The theorem above says that the map RD can be viewed 
first of all as a discrete dynamical system on sets of the form {! E £P (JRn) : 
1 1 / l l p == C == const . } , and that the 'attractor' consists of a single element , 
the function Ch. 

(2) The name 'competing symmetries ' alludes to the fact that the 'sym
metrization' due to the rearrangement and the conformal symmetry strive 
together to produce the limiting function h f .  

PROOF. We have to show that l l hJ -fk i iP --+ 0 as k --+ oo for every function 
f E LP (JRn) .  Actually it suffices to show this for a dense set of functions in 
LP (JRn) . To prove this sufficiency, fix f E LP (JRn) and suppose g E £P (JRn) 
is such that I I ! - g l lp < c/2 .  Obviously 

since l l h l lp == 1 .  It follows from the definition of D that 

(2) 

and by Theorem 3.5 (nonexpansivity of rearrangement) we know that 

(3) 

With these two inequalities we have that 

(4) 

and therefore by the triangle inequality 

Consider now the bounded functions that vanish outside a bounded set . 
Obviously these functions are dense in LP (JRn) . 
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If f is such a function, then there exists a constant C such that 

f (x) < ChJ (x) for almost every x E JRn , (5) 

since hJ is strictly positive . Thivially the map D is order-preserving, i .e . , 

f(x) < g(x) almost everywhere implies 
(D f) (x) < (Dg) (x) almost everywhere. 

Furthermore, the same is true for the rearrangement (see Remark 3 .3 (vi) ) . 
Since h 1 is invariant under both of these operations separately, we have that 
(5) holds along the whole sequence, i .e . , for all k == 0, 1 ,  2 ,  . . .  

(6) 

The constant is the same as in (5) ! This relation is crucial since it says that 
the whole sequence is uniformly bounded by a function which is pth_power 
summable . 

Define 
(7) 

The second equality follows from (2) and (3) . Each of these functions fk is a 
radially symmetric-decreasing function. Therefore, by using Helly's selection 
principle as in the compactness proof of Theorem 3 . 7 (Riesz 's rearrangement 
inequality) , we can pass to a further subsequence in which Jk (x) converges 
for almost every x . 

Thus, we have a subsequence Jkz such that Jkz (x) --+ g(x) as l --+ oo 
pointwise for almost every x E JRn . Moreover , by (6) , Jkz (x) < ChJ (x) 
and hence, by dominated convergence, we have that g E £P(JRn) ,  radially 
symmetric-decreasing, and 

(8) 

Now we show that g == hJ .  To see this apply the operation RD once to 
g . By (2) and (3) we have that in £P (JRn) 

RDg == lim fkz+l , l--700 

and therefore, since D h 1 == h 1 and Rh 1 == h 1 ,  

A < l l hJ - RDg i iP == I IRDhJ - RDg i iP 
< I I DhJ - Dg l lp == l l hJ - 9 l lp == A. 

(9) 

( 10) 
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Thus the equality sign must hold everywhere in ( 10) . This says in particular 
that 

Since ht is strictly symmetric-decreasing, Theorem 3 . 5  tells us that 

RDg == Dg. 

However, as explained towards the end of Sect . 4. 5 the only radial functions , 
g ,  for which Dg is also radial have the form Ch. Since 

we have C == l l f l lp and g == ht . Thus A == 0 and fkz --+ ht in LP (JRn) . By 
(2) and (3) we have that 

and therefore the entire sequence fk converges to ht in LP (JRn) . • 

4. 7 PROOF OF THEOREM 4.3 {Sharp version of the 
Hardy-Littlewood-Sobolev inequality) 

By 4.3 ( 10) we may assume h == f. Theorem 4.3 ( 1 ) and (2) for p == r will now 
be shown to be a corollary of Theorem 4. 6 (competing symmetries) . Recall 
that H(f) denotes the HLS-functional for any function f E £P (JRn) that is 
not identically zero. Replace f by fm (x) == min(f(x) , mht (x) ) so that fm 
converges monotonically to f(x) pointwise as m --+  oo. If we can show that 
H(fm) < C(n, ..\) , then, by monotone convergence, H(fm) --+ H(f) and thus 
H(f) < C(n, ..\) . For convenience we drop the m. Since H(D f) == H(f) and 
H(Rf) > H(f) by Theorem 3 .7 (Riesz 's rearrangement inequality) , we have 
that H(fk) is a nondecreasing sequence where fk == (RD)k f. Since, by the 
previous theorem, fk converges to ht in LP (JRn) as k --+ oo, we can pass to a 
subsequence (again denoted by k) and assume that fk converges pointwise 
to ht . Since 

fk < C ( 1 + l x l 2 ) -nfp for all k , 
we know, by dominated convergence, that as k --+ oo, H(fk) converges to 
H(ht) from below. The last expression can be explicitly computed and 
yields 4 .3 (2) . 

It remains to determine the case of equality. It is easy to see that 
f == (const . ) x (a nonnegative function) . In short , equality in 4. 3 ( 1 ) can 
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occur only if h == (const . ) f and if H(f) == C(.A, n) . Then, by the strict 
rearrangement inequality, Theorem 3 .9 ,  we know that f must be a translate 
of a symmetric-decreasing function. Moreover the same is true for D f since 
it is also an optimizer by the conformal invariance of H(f) . Thus, the 
operation RD acting on f does nothing but translate D f to the origin, and 
hence RD f is nothing but a conformal transformation of f . The same is true 
for the whole sequence, i .e . , fk 

== (RD)k f is a conformal image of f and we 
can write fk 

== Ckf , where Ck is a sequence of conformal transformations . 
Since fk converges strongly to h f by Theorem 4 .6 ,  and since the conformal 
transformations (the way we have defined them) act as isometries on LP (JRn) ,  
we have that 

( 1 )  

In Lemma 4.8 (action of the conformal group on optimizers) below, we 
shall prove that , due to the special nature of the function ht in ( 1 ) ,  

for sequences Ak =/=- 0 and ak E JRn . Since, by ( 1 ) ,  Ci:1ht converges strongly 
to f, it is plain that ,\k and ak must converge to some ,\ =/= 0 and some 
a E JRn . Hence 

( 2 ) njp 
,\2 + lx - a j 2 . 

4.8 LEMMA {Action of the conformal group on 
optirnizers) 

• 

Let C E C be a conformal transformation and let h be given by 4.6( 1 ) . If C 
acts on h, then there exist ,\ =/=- 0 and a E JRn ( depending on C) such that 

PROOF. Every element in C is a product of elements of the Euclidean 
group, scalings and inversions . The result is obvious for scalings and for 
Euclidean transformations . What remains to be checked is that the inversion ( ) njp I (see 4 .4 ( 1 ) )  maps the function u (x) = j§n j - lfpf.Lnfp 112+ l;-bl2 into a 
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function of the same type. But 

Exercises for 
Chapter 4 

1 .  Prove that 4. 3 (5) actually defines a norm-the weak Lq-norm. 

121  

2 .  Prove the equivalence of the two definitions of weak Lq given in Sect . 4. 3 .  
That is, if (/)p,w denotes the left side of 4 .3 (3) , then 

where 1 1 / l l p,w is given by 4. 3 (5) and cl and c2 are two universal constants 
independent of f. Find explicit values for these constants . 

3 . Use Fubini 's theorem to prove that the second integral in 4. 3 ( 19) is given 
by 4 .3(20) . 

4. Gaussian integrals appear frequently and it is important to know how to 
compute them. 
a) Show that 1: exp ( -Ax2) dx = � 

by evaluating the square of the integral by means of polar coordinates . 
b) For A a symmetric n x n matrix whose real part is positive definite , 

show that 

{ exp [- (x, Ax) ] dx = 1rn/2 jv'DetA }JRn 
where Det denotes the determinant . In the real, symmetric case this 
can be done by a simple change of variables . The complex case re
quires either an analytic continuation argument or else the argument 
in Sect . 5 .2 .  
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c) For V a vector in en show, by 'completing the square' ,  that 

Ln exp [- (x, Ax) + 2(V, x) ] dx = ( 7rn/2 jv'DetA) exp [(V, A-1 V) ] . 

5 .  Use Exercise 4 to verify formula 4.2 ( 15) for the sharp constant in inequal
ity 4 .2 ( 1 1 ) when 6 == 0 .  

6 . Show that K;��h, converges strongly in LP (JR.n) as i --+ oo to the function 

K;;� , as required in proof (B) of Theorem 4.2 (Young's inequality) . 

...., Hint. First show that K9£'8h converges pointwise and that it is uni-
7, ,  1, 

formly bounded (in x and in i) . Next , show that the same is true 
even if we multiply K;��h, by exp( +yx2 ) for some sufficiently small 
'Y > 0 .  

7 .  Competing symmetries in one dimension. Let f E £P (JR) and denote by 
F E £P (§1 )  the function defined on the unit circle corresponding to f via 
4.4(9) . Pick an angle a which is not a rational multiple of 1r and denote 
by Uaf the function that corresponds to F(O - a) via 4.4(9) . 

Prove that Ji 
== (RUa)i f converges strongly to 

Proceed as follows : 
a) By tracing the steps in the proof of Theorem 4.6 ,  show that Ji con

verges to some symmetric-decreasing function g E £P (JR) which has 
the property that U a9 is also symmetric-decreasing. 

b) Deduce from a) that U2a g == g and show that this implies that the 
function G corresponding to g via 4.4(9) must be constant , and hence 
that g == h.  It is at this point that the fact that a is not a rational 
multiple of 1r is used . 



The Fourier 

Tr ansform 

Chapter 5 

The Fourier transform is a versatile tool in analysis , much loved by ana
lysts , scientists and engineers . (In fact , in our definition below we use the 
engineer's convention about the placement of 21r, which eliminates the an
noyance of having to multiply integrals by 21r. )  The virtue of the Fourier 
transform is that it converts the operations of differentiation and convolution 
into multiplication operations. In particular it allows us to define the rela
tivistic operators FfS. and J-� + m2 and the space H112 (JRn) in Chapter 
7. Some references for the Fourier transform are [Hormander] , [Rudin, 1991] , 
[Reed-Simon, Vol. 2] , [Schwartz] and [Stein-Weiss] . 

5 . 1  DEFINITION OF THE L1 FOURIER 
TRANSFORM 

-
Let f be a function in £1 (JRn) . The Fourier transform of f, denoted by f, 
is the function on JRn given by 

where 

] (k) = r e-21n(k ,x) f (x) dx }JRn 

n 
(k , x) : = L kzXz . 

z=l 

( 1 )  

-

123 
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The following algebraic properties are the main motivation for studying 
the Fourier transform. They are very easy to prove. 

-
The map f t---t f is linear in j, 
-;;:}(k) = e-21ri(k,h)f(k) , h E JRn ' 

(2) 

(3) 

(4) 

where Th is the translation operator , ( rhf) ( x) = f ( x - h) , and 6.\ is the 
scaling operator, (6.\f) (x) = f(xj..\) . 

Two other easy to prove facts are 

..-
! is a continuous (and hence measurable) function. (6) 

The latter follows from dominated convergence. In fact it is part of the -
Riemann-Lebesgue lemma, which also states that f(k) --+ 0 as l k l --+ oo -
(see Exercise 2) . Note that 1 1 / l l oo equals l l f l l 1 whenever f is any nonnegative 
function; in that case 

I I J i i oo = ](0) = J J = I I J I I 1 · 

Recall from Sect . 2 . 1 5  that the convolution of two functions f and g , 
both in L1 (JRn) ,  is given by 

(f * g) (x) = r f(x - y)g(y) dy. }JRn 

By Fubini 's theorem f * g E L1 (JRn) ,  and also by Fubini 's theorem 

(J:g)(k) = r e-21ri (k ,x) r f(x - y)g(y) dy dx 
}JRn }JRn 

(7) 

= r e-21ri(k,y)g (y) r e-2?ri(k, (x-y) ) j (x - y) dx dy (8) 
}JRn }JRn 
..-

= f( k)g(k) . 

The following is an important example . 
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5.2 THEOREM {Fourier transform of a Gaussian) 

For ,\ > 0, denote by 9).. the Gaussian function on JRn given by 

for x E JRn . Then 

REMARK. This is a special case of Exercise 4.4 . 

PROOF. By 5 . 1 (4) it suffices to consider ,\ =  1 .  Since 

n 
91 (x) = IT exp [-7r(xi ) 2] ,  

i=1 
it suffices to consider n = 1 .  By definition (since 91 E £1 (JR) ) 

91 (k) = l e-21ri (x ,k) exp [-1rx2] dx = 91 (k)j (k) ,  

where 
f(k) = l exp [-1r(x + ik)2] dx . 
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( 1 )  

(2) 

A simple limiting argument using the dominated convergence theorem allows 
us to differentiate (2) under the integral sign as many times as we like. 
Therefore f E C00 (JR) and 

�� (k) = -27ri l (x + ik) exp [-1r(x + ik)2] dx 

= i l d� exp [-1r(x + ik) 2] dx 
00 = i exp [-1r(x + ik)2] = 0, 
- oo 

i .e. , f(k) is constant . But / (0) = fiR exp [-1rx2] dx = 1 .  • 

e The Fourier transform can be defined for functions for which 5 . 1 ( 1 )  does 
not make sense. In particular , it is important for quantum mechanics to -
define f for f E L2 (JRn) .  One route to this definition goes via the Schwartz 
space S (which we will not discuss here) . The method below uses only 
Theorem 2 . 16 (approximation by C00-functions) .  We begin by considering 
functions in £1 (JRn ) n £2 (JRn) ' which are dense in £2 (JRn ) . 
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5 .3 THEOREM {Plancherel's theorem) 

If f E L1 (JRn) n L2 (JRn) ,  then f is in L2 (JRn) and the following formula of 
Plancherel holds: -

1 1 / 1 1 2 = 1 1 / 1 1 2 · ( 1 )  
-

The map f t---t f has a unique extension to a continuous, linear map from 
L2 (JRn) into L2 (JRn) which is an isometry, i . e . , Plancherel 's formula ( 1 )  -
holds for this extension. We continue to denote this map by f t---t f ( even if 
J t/: £1 (JRn) ) . 

If f and g are in L2 (JRn) ,  then Parseval 's formula holds, 

(f, g ) := r f (x)g (x) dx = r ](k)9(k) dk = (} , g) . (2) }�n }�n 

-
PROOF. For f E L1 (JRn) nL2 (JRn) ,  the function f(k) is bounded, by 5 . 1 (5) , 
and hence 

(3) 

is defined . Since f E L1 (JRn) ,  the function f(x)f (y) exp [-c7r l k l 2] of three 
variables is in L1 (JR3n) .  Using Fubini 's theorem and Theorem 5 .2 we can 
express ( 3) as 

r j (x )f (y ) e21ri(k , (x-y) ) exp [ -c1rk2] dx dy dk 
}�3n 

= c-n/2 exp - f(x)f (y) dx dy . 1 [ 1r(x _ y) 2 ] _ 

�2n c 

Using Theorem 2 . 16 (approximation by C00-functions) 

(4) 

in L2 (JRn) as c --+ 0, and hence (using Fubini's theorem again) (3) tends to 
J�n lf (x) l 2 dx . This shows that (3) is uniformly bounded in c and the mono--
tone convergence theorem therefore shows that f E L2 (JRn) with 

-
1 1 ! 1 1 2 = 1 1 ! 1 1 2 · (5) 

Now let f be in L2 (JRn) but not in L1 (JRn) n L2 (JRn) .  Since L1 (JRn) n 
£2 (JRn) is dense in £2 (JRn) ,  there exists a sequence fj E £1 (JRn) n £2 (JRn) 
such that I I ! - fJ l l 2 --+ 0 .  By (5) l l fj - ]m l l 2 = l l fj - fm l l 2 and hence f

j 
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is a Cauchy sequence in £2 (JRn) that converges to some function in £2 (JRn) ,  - -
which we call f . It is obvious from (5) that f does not depend on the choice 
of the sequence f j . Moreover , 

The continuity (in £2 (JRn) )  and the linearity of this map is left to the reader . 
Relation (2) follows from ( 1 )  by polarization, i .e . , the identity 

1 (!, g) =  2 { I I ! + 9 1 1 � - i l l ! + ig l l � - ( 1 - i) l l f l l � - ( 1 - i) l l g i iD · 

Applying ( 1 )  to each of these four norms yields (2) . 

5.4 DEFINITION OF THE L2 FOURIER 
TRANSFORM 

• 

-
For each f in L2 (JRn) ,  the L2 (JRn)-function f defined by the limit given in 
Theorem 5 .3 is called the Fourier transform of f . 

Theorem 5 .3 is remarkable because it states that for any given f E -
L2 (JRn) one can compute its Fourier transform f by using any L1 (JRn)-
approximating sequence whatsoever and one always obtains , as an L2 (JRn) -
limit , a function f which is independent of the approximation. Here are two 
examples with the index j = 1 ,  2 , 3, . . .  : 

jJ (k) = f e-21ri (k,x) f(x) dx , ( 1 )  Jlx i <J 
hJ (k) = { cos( l x l 2 jj ) exp [- lx l 2 jj] e-21ri (k,x) f(x) dx . (2) }�n 

The assertion is that there is an L2 (JRn)-function 7 such that 1 1 7j - 7 1 1 2 --+ 0, ..- . - ..- . ..- . 
l l h1 - f l l 2 --+ 0 and l l f1 - h1 l l 2 --+ 0 as j --+ oo. No assertion is made that ..- . ..- . the sequences fl ( k) and hl ( k) converge for any k as j --+ oo. However , 
by Theorem 2 .7  (completeness of £P-spaces) , there is always a subsequence 
j ( l ) with l = 1 ,  2 , 3, . . .  such 7J (l) (h) and hj (l) ( k) converge for almost every 
k E JRn to 7(k) .  

-
As we show next, the map f t---t f is not just an isometry but it is , in fact , 

a unitary transformation, that is, an invertible isometry. The following 
is an explicit formula for the inverse . 



128 The Fourier Transform 

5 .5  THEOREM {Inversion formula) 

For f E L2 (JRn) ,  we use definition 5 .4 to define 

fv (x) := f( -x) 
(which amounts to changing i to -i in 5 . 1 ( 1 ) ) . Then 

f = (f) v . 

(Note that the right side is well defined by Theorem 5 .3 . )  

PROOF .  For f E L2 (JRn) the following formula holds : 

( 1 )  

(2) 

{ 9>. (Y - x)f(y) dy = { g;.. (k)] (k)e21r
i (k ,x) dk, (3) 

}�n }�n 

where gA (k) = exp [-.A1r j k j 2] and hence gA (y - x) = ,\ -n/2 exp [-1r jx - y j 2 / ..\] . 
To verify (3) , approximate f by a sequence of functions Ji in L1 (JRn) n 
L2 (JRn) .  For each of these functions formula (3) follows by Fubini's theorem. 
By Theorem 5 .3  (Plancherel 's theorem) we know that Ji --+ f in L2 (JRn) 
implies that ]i --+ f in L2 (JRn) .  Because gA and gA are in L2 (JRn) the 
integrals converge to those in (3) , and thus (3) is established in the general 
case. 

As ,\ � 0 the left side of (3) tends to f(x) in L2 (JRn) by Theorem 2 . 16 
(approximation by C00-functions) .  Since gAf --+ 7 in L2 (JRn) as ,\ --+ 0 
(by dominated convergence) , we know, on account of Theorem 5 .3, that 

..- ..-

(gAj)V --+ (j)v in L2 (JRn) .  Equating the ,\ --+  0 limit of the two sides of (3) 
gives us (2) . • 

5 .6 THE FOURIER TRANSFORM IN LP (JRn) 

The Fourier transform has been defined for L1 (JRn)-functions (with range in 
L00 (JRn) )  and L2 (JRn)-functions (with range in L2 (JRn) ) .  Can it be extended 
to some other £P (JRn)-space so that its range is in some Lq (JRn)-space? 

Let us recall the properties that have been proved so far . 

but the L1 Fourier transform is not an invertible mapping (i .e . , not ev
ery L00 (JRn)-function is the Fourier transform of some L1 (JRn)-function; the 
constant function is an example) . 
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-
and the Fourier transform is invertible with f = (f) v . 

One way to extend the Fourier transform for p < oo would be to imitate 
the £2 (JRn) construction. The goal would then be to find a constant Cp,q 
such that for every f E £P (JRn) n L1 (JRn) the Fourier transform is in Lq (JRn) 
and satisfies -

l l f l l q < Cp,q l l f l lp · ( 1 )  
Using the continuity argument of Theorem 5 .3 (and the density of LP (JRn) n 
L1 (JRn) in £P (JRn) )  one can then extend the Fourier transform to all of 
LP (JRn) and ( 1 )  will continue to hold . 

The first remark is that q cannot be arbitrary, in fact q must be p' 
(with 1/p + 1/p' = 1 ) . This is a simple consequence of the scaling property -5 . 1 (4) ; if q =/=- p' , then l l f l l q/ l l f l lp can be made arbitrarily large-even for 
f E L1 (JRn) .  The second remark is that counterexamples show that no 
bound of type ( 1 ) can hold when p > 2 ;  see Exercise 9 .  When 1 < p < 2 ,  
however, ( 1 )  is true, as the following theorem (which is usually called the 
Hausdorff-Young inequality) states . 

5 .7 THEOREM {The sharp Hausdorff-Young inequality) 

Let 1 < p < 2 and let f E £P (JRn) n L1 (JRn) .  Then, with 1/p + 1/p' = 1 ,  

( 1 ) 

with 
(2 ) 

Furthermore, equality is achieved in ( 1 ) if and only if f is a Gaussian func
tion of the form 

f(x) = A exp[- (x, M x) + (B , x ) ] (3) 
with A E C, M any symmetric, real, positive-definite matrix and B any 
vector in en . 

-
Using the construction in Theorem 5 . 3 , together with ( 1 ) , f can be ex-

tended to all of LP (JRn) but, in contrast to the p = 2 case, this map is not 
I invertible, i . e . , the map is not onto all of LP (JRn) .  

REMARK. The proof of Theorem 5 . 7  is lengthy and we shall not attempt to 
give it here. The shortest proof is probably the one in [Lieb, 1990] ; the basic 
idea is similar to that in the proof of Theorem 4 .2 (Young's inequality) ,  but 
the details are more involved . Inequality ( 1 ) was first proved with Cp = 1 
by [Hausdorff] and [W. H. Young] for Fourier series by using the Riesz
Thorin interpolation theorem (see [Reed-Simon, Vol. 2] ) .  It was extended 
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to Fourier integrals by [Titchmarsh] with Cp = 1 .  [Babenko] derived (2) 
as the sharp constant for p' == 4, 6 , 8 , . . . and [Beckner] proved (2) for all 
1 < p < 2 .  The fact that equality holds in ( 1 )  only when f is a Gaussian 
as in (3) was proved in [Lieb, 1990] . Note that Cp = 1 if p = 1 or p = 2 ,  
in agreement with our errlier results, but in those two cases there are many 
functions that give equality in ( 1 ) ;  indeed all L2 (JRn)-functions give equality 
when p == 2 .  

5 .8  THEOREM {Convolutions) 

Let f E £P (JRn) and g E Lq (JRn) ,  and let 1 + 1/r == 1/p + 1/q .  Suppose 
1 < p, q , r < 2 .  Then ----- -

f * g(k) == f( k) g(k) . ( 1 )  

PROOF .  By Young's inequality, Theorem 4 . 2 ,  f * g E Lr (JRn) .  By Theorem 
5 . 7, f E LP' (JRn) and g E Lq' (JRn) ,  so fg  E Lr' (JRn) by Holder's inequality. 
Since h : =  f * g is in Lr (JRn) ,  h E Lr' (JRn) by Theorem 5 .7 . If both f and 
g are also in L 1 (JR n) ,  then ( 1 )  is true by 5 . 1  ( 8) . The theorem follows by an 
approximation argument that is left to the reader . • 

e The function jx j 2-n on JRn with n > 3 is very important in potential 
theory (Chapter 9) and as the Green's function in Sect . 6 .20 .  Hence, it is 
useful to know its 'Fourier transform' , even though this function is not in 
any LP (JRn) for any p. However , its action in convolution or as a multiplier 
on nice functions can be expressed easily in terms of Fourier transforms. 

5 .9  THEOREM (Fourier transform of l x l a-n) 

Let f be a function in C� (JRn) and let 0 < a < n .  Then, with 
Ca :=  7r-a/2r( a/2) , ( 1 )  

Ca ( l k l -a](k) )v (x) = Cn-a { l x - Y la-n f(y) dy . (2 ) 
}JRn 

-
REMARK. Since f E C� (JRn) ,  the Fourier transform f is a very nice func-
tion; it is in C00 (JRn) (it is analytic , in fact) and , as l k l --+ oo, it , and all its 
derivatives , decay faster than the inverse of any polynomial in k. (The ver
ification of these two facts is recommended as an exercise using integration -by parts and dominated convergence. ) Therefore, the function l k l -a f(k) is 
in L1 (JRn) ,  and thus it has a Fourier transform. The function on the right 
side of (2) is well defined and is also in C00 (JRn) ,  but it decays , as l x l --+ oo, 
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only as l x la-n ( in general) . Thus, generally speaking, the right side of (2 )  
is not in LP(JRn) for any p < 2 ,  unless a < n/2 and, therefore, it does not 
generally have a well-defined Fourier transform. Nevertheless, (2) is true . 

PROOF. Our starting point is the elementary formula 

-
Since l k l -a f(k) is integrable, we have, by Fubini 's theorem, 

Ca ( l k l -a](k) )v (x) = Ln e2
7ri(k,x) { 1oo 

exp [-7r j k j 2A] Aa/2-1 dA} ] (k) dk 

= 1oo { Ln e2
7ri(k,x) exp [-7r j k j 2 A]](k) dk} Aa/2-1  dA 

(3) 

= 1oo A-n/2_\a/2-1 {Ln exp[-7r jx - y j 2/A] J(y) dy} dA 

= Cn-a { j x - y j -n+a f (y) dy . }JRn 
In the penultimate equation we have used Theorem 5 . 2  and the convolution 
theorem 5 .8 ( 1 ) . The last equation holds by Fubini 's theorem. • 

5 .10  COROLLARY (Extension of 5 .9  to LP (JRn) ) 

lf O < a < n/2 and if f E LP (JRn) with p = 2n/ (n + 2a) , then ] exists ( by 
Theorem 5 .7) . Moreover, with Ca defined in 5 . 9 ( 1 ) ,  the function 

is an L2 (JRn) -function ( by Theorem 4 .3  (HLS inequality) ) and hence has a 
Fourier transform g. -

Our new result is that the relation between g and f is given by 

( 1 ) 

Moreover, 
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REMARK. The case a ==  1 and n > 3 is especially important for potential 
theory (Chapter 9) and for the Green's function of the Laplacian (before 
6 . 20) . The right side of (2) , without Cn-2a , is twice the Coulomb potential 
energy of the 'charge distribution' j ,  9 . 1 (2) . 

PROOF . By Theorem 2 . 16 (approximation by C00-functions) we can find 
a sequence f1 , /2 , . . .  of functions in C�(JRn) such that jJ --+ f strongly in 
LP (JRn) . By Theorem 4 .3 (HLS inequality) the functions g and 

gj :== l x la-n * Jj 

are in L2 (JRn) ;  this follows from Fubini 's theorem and the fact that , for 
0 < a < n, 0 < {3 < n and 0 < a + {3 < n, we have 

( l x l a-n * l x i ,B-n) (y) :=  { i z i a-n iY - z i,6-n dz }�n 
== Cn-a-{3 Ca Cf3 jy j a+f3-n , Ca+{3 Cn-a Cn-{3 

(3) 

which can be verified by a tedious but instructive computation using 5 .9 (3) . 
. ..- .  -

Since /1 --+ j, we have f1 --+ f in Lq (JRn) with q == 2n/ (n - 2a) (by -
Theorem 5 . 7) .  By the HLS inequality gJ --+ g in L2 (JRn) ,  and hence gJ --+ g 
in L2 (JRn) (by Theorem 5 . 3 (Plancherel) ) .  By Theorem 5 .9 , we also know 
that - -

gJ ( k) == Ca I k , -a f j ( k) . 
Our problem is to show that 

- - -
To do this , we pass to a subsequence so that gJ ( k) --+ g( k) and jJ ( k) --+ f ( k) 
pointwise a.e . (by Theorem 2 .7( ii) (completeness of £P-spaces) ) .  Thus, 

for almost every k. This proves ( 1 ) . 
Formula (2) is just an application of Plancherel 's theorem to ( 1 ) ,  together 

with Fubini 's theorem and (3) . • 
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Exercises for 
Chapter 5 

1 .  Prove that the Fourier transform has properties 5 . 1 (2) ,  (3) and (4) . 
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2 .  Prove the Riemann-Lebesgue lemma mentioned in Sect . 5 . 1 ,  i .e . , for f E 
L1 (�n) ,  f (k) � 0 as l k l � oo . 

...., Hint. 5 . 1 (3) is useful . 
3 . Show that the definition of the Fourier transform for functions in £2 (�n) ,  

given in Sect . 5 .4, does not depend on the approximating sequence . 
4. Show that the definition of the Fourier transform for functions in £2 (�n) -

gives rise to a linear map f t---t f. 
5 . Complete the proof of Theorem 5 .8 ,  i .e . , work out the approximation 

argument mentioned at the end of Sect . 5 .8 .  
-6 . For f E Cgo (�n) show that its Fourier transform f is also in coo ( in fact - -

f is analytic) . Show also that 9a (k) :=  l l k l af (k) l is a bounded function 
for each a > 0 . 

- ? .  Verify formula 5 . 10(3) . 
8 . This concerns an example of an extension of Theorem 5 .8 (convolution) 

to the case in which r > 2 . Suppose that f and g are £2 (�n) .  Then we - ----
know that f * g E L00(�n) and fg  E L1 (�n) .  Although f * g may not be 
obviously well defined, show that 5 . 1 (8) holds , nevertheless , in the sense 
of inverse Fourier transforms, i .e . , 

f * g = (f g)v . 

9 . Verify that 5 . 6 ( 1 ) cannot hold when p > 2 by considering Gaussian func
tions, as in 5 .2 ( 1 ) ,  with ,\ = a + ib and with a > 0 . 





Chapter 6 

Distributions 

6. 1 INTRODUCTION 

The notion of a weak derivative is an indispensable tool in dealing with 
partial differential equations . Its advantage is that it allows one to dispense 
with subtle questions about differentiation, such as the interchange of partial 
derivatives . Its main point is that every locally integrable function can 
be weakly differentiated indefinitely many times, just as though it were a 
C00-function. The weakening of the notion of a derivative makes it easier 
to find solutions to equations and, once found, these 'weak' solutions can 
then be analyzed to find out if they are , in fact , truly differentiable in 
the classical sense . An analogy in elementary algebra might be trying to 
solve a polynomial equation by rational numbers . It is extremely important , 
at the beginning of the investigation, to know that solutions always exist 
in the larger category of real numbers ; many techniques are available for 
this purpose, e .g. Rolle's theorem, that are not available in the category 
of rationals . Later on one can try to prove that the solutions are , in fact , 
rational . 

A theory developed around the notion that every Lf0c-function is differen
tiable is the theory of distributions invented by [Schwartz] (see [Hormander] , 
[Rudin, 1991 ] , [Reed-Simon, Vol. 1 ] ) .  Although we do not present some of 
the deeper aspects of this theory we shall state its basic techniques . In the 
following, for completeness , we define distributions for an arbitrary open set 
n in ]Rn but , in fact , we shall mainly need the case n == ]Rn in the rest of 
the book. 

-

135 
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6.2 TEST FUNCTIONS (The space V(!l) ) 

Let n be an open, nonempty set in JRn ; in particular n can be JRn itself. 
Recall from Sect . 1 . 1  that Cgo(n) denotes the space of all infinitely differen
tiable, complex-valued functions whose support is compact and in n. Recall 
also that the support of a continuous function is defined to be the closure of 
the set on which the function does not vanish, and compactness means that 
the closed set is also contained in some ball of finite radius . Note that n is 
never compact . 

The space of test functions, V(O) , consists of all the functions in 
Cgo (n) supplemented by the following notion of convergence : A sequence 
c/Jm E Cgo (O) converges in V(O) to the function cjJ E Cgo (O) if and only 
if there is some fixed, compact set K C n such that the support of c/Jm - ¢ is 
in K for all m and, for each choice of the nonnegative integers a1 , . . .  , an , 

as m --+ oo, uniformly on K. To say that a sequence of continuous functions 
�m converges to � uniformly on K means that 

sup l �m (x) - �(x) l --+  0 as m --+ oo. 
xEK 

V(O) is a linear space , i .e . , functions can be added and multiplied by (com
plex) scalars . 

6.3 DEFINITION OF DISTRIBUTIONS AND THEIR 
CONVERGENCE 

A distribution T is a continuous linear functional on V(O) , i .e . , T : V(O) --+ 
C such that for ¢, ¢1 , ¢2 E V(O) and ,\ E C 

T(¢1 + ¢2 ) = T(¢1 ) + T(¢2 ) and T(.A¢) = .AT(¢) ,  ( 1 )  

and continuity means that whenever cpn E V(O) and cpn --+ ¢ in V(O) 

Distributions can be added and multiplied by complex scalars . This 
linear space is denoted by V' (O) ,  the dual space of V(O) . 

There is an obvious notion of convergence of distributions : A sequence 
of distributions TJ E V' (O) converges in V' (O) to T E  V' (O) if, for every 
¢ E V(O) , the numbers TJ (cp) converge to T(¢) . 
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One might suspect that this kind of convergence is rather weak. Indeed, 
it is ! For example , we shall see in Sect . 6 .6 ,  where we develop a notion of the 
derivative of a distribution, that for any converging sequence of distributions 
their derivatives converge too, i .e . ,  differentiation is a continuous operation 
in V' (O) . This contrasts with ordinary pointwise convergence because the 
derivatives of a pointwise converging sequence of functions need not , in 
general, converge anywhere . 

Another instance, as we shall see in Sect . 6 . 13 ,  is that any distribution 
can be approximated in V' (O) by functions in C00 (0) . To make sense of 
that statement , we first have to define what it means for a function to be a 
distribution. This is done in the next section. 

6.4 LOCALLY SUMMABLE FUNCTIONS, Lfoc (n) 
The foremost example of distributions are functions themselves . We begin 
by defining the space of locally pth_power summable functions , Lfoc (n) , 
for 1 < p < oo .  Such functions are Borel measurable functions defined on 
all of n and with the property that 

l l f i i LP (K) < 00 ( 1 )  

for every compact set K c n .  Equivalently, it suffices to require ( 1 )  to hold 
when K is any closed ball in n. 

A sequence of functions f1 , f2 , . . . in Lfoc (0) is said to converge (or 
converge strongly) to f in Lfoc (O) (denoted by fi --+ f) if fi --+ f in 
LP (K) in the usual sense (see Theorem 2 .7) for every compact K c n.  
Likewise, fi converges weakly to f if fi � f weakly in every LP (K) 
(2 .9(6) ) . 

Note (for general p > 1 )  that Lfoc (O) is a vector space but it does not 
have a simply defined norm. Furthermore, f E Lfoc (O) does not imply that 
f E £P(f2) . Clearly, Lfoc (O) =:) £P (O) and, if r > p, we have the inclusion 

by Holder's inequality (but it is false-unless n has finite measure-that 
LP (O) =:) Lr (n) ) . 

As far as distributions are concerned, Lfoc (O) is the most important 
space. Let f be a function in Lfoc (O) . For any ¢ in V(O) it makes sense to 
consider 

TJ ( </>) := In f</> dx , (2) 
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which obviously defines a linear functional on V(O). Tt is also continuous . since 

I T, (</>) - r, (</>m) l = In (</>(x) - </>m (x) )f(x) dx 

< sup 1 </>(x) - </>m(x) l r l f (x) l dx , 
xEK jK 

which tends to zero by the uniform convergence of the c/Jm 's . Thus Tt is in 
V'(O). If a distribution T is given by (2) for some f E Lfoc(O), we say that 
the distribution T is the function f. This terminology will be justified 
in the next section. 

An important example of a distribution that is not of this form is the 
so-called Dirac 'delta-function' , which is not a function at all : 

(3) 

with X E 0 fixed. It is obvious that c5x E V'(O). Thus, the delta-measure of 
Sect . 1 . 2 (6) , like any Borel measure, can also be considered to be a distri
bution. In fact , one can say that it was partly the attempt to understand 
the true mathematical meaning of the delta function, which had been used 
so successfully by physicists and engineers, that led to the theory of distri
butions . 

Although V(O), the space of test functions, is a very restricted class of 
functions it is large enough to distinguish functions in V'(O), as we now 
show. 

6 .5  THEOREM (Functions are uniquely determined by 
distributions) 

Let 0 c JRn be open and let f and g be functions in Lfoc(O) . Suppose that 
the distributions defined by f and g are equal, i. e . ,  

( 1 )  

for all ¢ E V(O) . Then f(x) == g(x) for almost every X in 0. 

PROOF. For m == 1 ,  2 ,  . . .  let Om be the set of points X E 0 such that 
X + y E 0 whenever I Y I  < �.  Om is open. Let j be in cgo (JRn) with 
support in the unit ball and with fJRn j == 1 .  Define Jm(x) = mnj (mx) . 
Fix M. If m > M, then, by ( 1 )  with ¢(y) = Jm (x - y) , we have that 
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(Jm * f) (x) == (Jm * g) (x) for all x E OM (see Sect . 2 . 15 for the definition 
of the convolution * ) . By Theorem 2 . 16 , Jm * f --+ f and Jm * g --+ g in 
Lfoc (OM) as m --+ oo. Thus f == g in Lfoc (OM) and therefore f (x) == g(x) 
for almost every x E OM . Finally let M tend to oo. • 

6.6 DERIVATIVES OF DISTRIBUTIONS 

We now define the notion of distributional or weak derivative . Let 
T be in V' (O) and let a1 , . . .  , an be nonnegative integers . We define the 
distribution (8/8x1 )a1 • • • (8j8xn)anT, denoted by naT, by its action on 
each ¢ E V(O) as follows: 

( 1 )  

with the notation n 
(2) 

The symbol 

denotes naT in the special case ai == 1 ,  ai == 0 for j =/=- i . 
The symbol "\\T, called the distributional gradient of T, denotes the 

n-tuple ( 81T, 82T, . . .  , 8nT) . 
If f is a cla i (O)-function (not necessarily of compact support) ,  then 

where the middle equality holds by partial integration. Hence the notion 
of weak derivative extends the classical one and it agrees with the classical 
one whenever the classical derivative exists and is continuous (see Theorem 
6 . 10 (equivalence of classical and distributional derivatives) ) .  Obviously, in 
this weak sense, every distribution is infinitely often differentiable and this 
is one of the main virtues of the theory. Note however , that the distribu
tional derivative of a nondifferentiable functior1 (in the classical sense) is not 
necessarily a function. 

Let us show that naT actually is a distribution. Obviously it is linear , 
so we only have to check its continuity on V(O) . Let cpm --+ ¢ in V(O) . Then 
nacpm --+ na¢ in V(O) since 
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and 

converges to zero uniformly on compact sets . [Here {3 + a simply denotes 
the multi-index given by ({31 + a1 , {32 + a2 , . . .  , f3n + an) ] . Thus, D0cp and 
D0cpm are themselves functions in V(O) with D0cpm --+ D0cp as m --+ oo. 
Hence , as m --+ oo, 

We end this section by showing that differentiation of distributions is a 
continuous operation in V' (O) . Indeed , if Ti (¢) --+ T(¢) for all ¢ E V(O) , 
then, by the definition of the derivative of a distribution 

(D0Tj ) (¢) = (- 1 ) 1a 1Ti (D0¢) . --+ (- 1) 1a i T(D0cp) = (D0T) (¢) 
J----+00 

since D0cp E V(O) . 

Lfoc (O)-functions are an important class of distributions , but we can usefully 
refine that class by studying functions whose distributional first derivatives 
are also Lfoc (O)-functions . This class is denoted by W1�'; (n) . Furthermore, 
just as Lfoc (O) is related to Lfoc (O) we can also define the class of functions 
W1�': (n) for each 1 < p < oo. Thus , 

W1�': (n) = { f : 0 --+  C :  f E Lfoc (O) and oif, as a distribution 
in V' (O) ,  is an Lfoc (O)-function for i = 1 ,  . . .  , n } . 

We urge the reader not to use the symbol \7 f at first , since it is tempting to 
apply the rules of calculus which we have not established yet . One should 
just think of \7 f as n functions g = (g1 , . . .  , 9n) ,  each of which is in Lfoc (O) , 
such that 

In f'\lcf> = - In gcf> for all cf> E V(O) . 

This set of functions , W1�': (n) , forms a vector space but not a normed one. 
We have the inclusion W1�': (n) =:) W1�'; (n) if r > p. 
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We can also define W1,P (O) c W1�'� (0) analogously : 

W1,P (O) = {! : n --+  <C : f and Oif are in £P (O) for i = 1 ,  . . .  ' n  } . 

We can make W1,P (O) into a normed space, by defining 

n 
l l f l l w1 ·P (f!) = l l f l li,P (f!) + L l l 8if l li,P (f!) 

j=1 

1/p 
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( 1 )  

and it is complete, i .e. , every Cauchy sequence in this norm has a limit 
in W1,P (O) . This follows easily from the completeness of £P (O) (Theorem 
2 .7) together with the definition 6 .6 of the distributional derivative, i .e . , if 
Ji --+ f and oifj --+ gi ,  then it follows that 9i = oif in V' (O) . The proof 
is a simple adaptation of the one for W1,2 (0) = H1 (0) in Theorem 7 .3 (see 
Remark 7.5) . We leave the details to the reader . 

The spaces W1,P (O) are called Sobolev spaces. In this chapter only 
wl�'; (n) will play a role . 

The superscript 1 in W1,P (O) denotes the fact that the first derivatives 
of f are pth_power summable functions . 

As with £P (O) and Lf0c (O) , we can define the notions of strong and 
weak convergence in the spaces W1�'� (0) or W1,P (O) of a sequence of 
functions f1 , f2 , . . . to a function f .  Strong convergence simply means 
that the sequence converges strongly to f in £P (O) and the n sequences 
{ 81fi } , . . .  ' { Onfi } , formed from the derivatives of Ji ' converge in £P (O) to 
the n functions 81/, . . .  , onf in £P (O) . In the case of W1�'� (0) we require 
this convergence only on every compact subset of 0. Similarly, for weak con
vergence in W1,P (O) we require that for every L E £P(O)* , L(Ji - f) --+ 0 
and, for each i, L(oifi - oif) --+ 0 as j --+  oo. For W1�'� (0) we require weak 
convergence in W1,P (O) for every open set 0 with 0 C K C 0 where K is 
compact . (Recall Theorem 2 . 14 for LP (O)* when 1 < p < oo. ) 

Similar definitions apply to wm,P (O) and W1�dP (O) with m > 1 .  The 
first m derivatives of these functions are LP (O)-functions and, similarly to 
( 1 ) ' 

n 
I I J I Ifvm,p (f!) := I I J I Ii,P (f!) + L l l 8jJ I Ii,P (f!) 

j=1 
n n 

+ . . .  + L . . .  L l l 8il . . .  aim f l li,P (f!) ' 
)1=1 )rn=1 

(2) 
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e In the following it will be convenient to denote by c/Jz the function ¢ 
translated by z E JRn , i .e . , 

c/Jz (x) : ==  ¢(x - z) . 

6.8 LEMMA {Interchanging convolutions with 
distributions) 

Let 0 c JRn be open and let ¢ E V(O) . Let 0¢ c JRn be the set 

0¢ == {y : supp{ c/Jy} C 0} . 

(3) 

It is elementary that 0¢ is open and not empty. Let T E V' (O) . Then the 
function y �---+ T (c/Jy)  is in C00 (0¢) · In fact, with D� denoting derivatives 
with respect to y , 

Now let � E £1 (0¢) have compact support. Then 

1 �(y)T(c/Jy) dy == T(� * ¢) . 
0¢ 

( 1 ) 

(2) 

PROOF.  If y E 0¢ and if c > 0 is chosen so that y + z E 0¢ for all l z l < E ,  

we have that for all X E 0 

lc/Jy (x) - ¢y+z (x) l == l c/J(x - y) - cp(x - y - z) l < Cc (3) 

for some number C < oo .  This is so because ¢ has continuous derivatives and 
(since it has compact support ) these derivatives are uniformly continuous. 
For the same reason, (3) holds for all derivatives of ¢ (with C depending on 
the order of the derivative) . This means that ¢y+z converges to c/Jy as z --+ 0 
in V(O) (see Sect . 6 .2 ) . Therefore, T(¢y+z ) --+ T (c/Jy) as z � 0,  and thus 
y �---+ T( c/Jy) is continuous on 0 ¢ · 

Similarly, we have that 

[¢(x + 6z) - cp(x) ] /6 - \lcp(x) · z < C'b l z l 

and thus , by a similar argument , y �---+ T (c/Jy)  is differentiable. Continuing in 
this manner we find that ( 1 ) holds . 
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To prove (2) it suffices to assume that � E Cgo(O¢) · To verify this , we 
use Theorem 2. 16 to find, for each J > 0, 'ljJ8 E cgo (O<t>) so that fo¢ l 'l/J8 -'l/J I < 
6. In fact , we can assume that supp{ �8 } is contained in some fixed compact 
subset , K, of 0¢, independent of 6 .  Then 

j { '1/J(y) - 'ljJ8 (y) }T(</>y ) dy < J sup { IT(</>y ) i : y E K} . 

It is also easy to see that �8 * cjJ converges to � *  cjJ in V(O) and therefore 
T(�8 * ¢) � T(� * ¢) . 

With � now in Cgo(O¢) we note that the integrand in (2)  is a product 
of two ego-functions . Hence the integral can be taken as a Riemann integral 
and thus can be approximated by finite sums of the form 

m 
�m L '1/J(Yj )T( </>y3 ) with �m --> 0 as m --> oo .  

j=1 

Likewise, for any multi- index a, (Da (� * cjJ) ) (x) is uniformly approx
imated by Llm �j 1 � (yj )DacjJ(x - Yj ) as m � oo (because cjJ E Cgo(O) ) .  
Note that for m sufficiently large every member of this sequence has support 
in a fixed compact set K C 0. Since T is continuous (by definition) and the 
function 1Jm (x) == Llm �j 1 � (Yj )c/J(x - Yj ) converges in V(O) to (� * cjJ) (x) 
as m � oo ,  we conclude that T(1Jm) converges to T(� * ¢) as m � oo .  • 

6.9 THEOREM {Fundamental theorem of calculus for 
distributions) 

Let 0 c JRn be open, let T E V' (0) be a distribution and let cjJ E V(O) be 
a test function. Suppose that for some y E JRn the function cPty is also in 
V(O) for all 0 < t < 1 ( see 6 .7(3) ) . Then 

{1 n 
T(</>y) - T(¢) = J

o L Yj (OjT) (</>ty ) dt . ( 1 )  
0 j=1 

As a particular case of ( 1 ) ,  suppose that f E W1�'; (JRn) .  Then, for each 
y in JRn and almost every x E JRn , 

f(x + y) - f(x) = 1 1 
y · \1 f(x + ty) dt . (2) 
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PROOF. Let 0¢ = {z E JRn : c/Jz E V(O) } .  It is clearly open and 
nonempty. Denote the right side of ( 1 )  by F(y) . Observe that by Lemma 6 .8 , 
z t-t (8jT) (¢z )  is a C00-function on O<t> and 8(8jT(¢z ) ) /8zi = -8jT(oi¢z ) .  

With this infinite differentiability in mind we can now interchange deriva
tives and integrals , and compute 

n {1 {1 
OiF(y) = - L Jo t(OjT) (Oic/>ty )Yj dt + Jo (OiT) (c/>ty ) dt . 

j=1 0 0 
The first term is , by the definition of the derivative of a distribution, 

n { 1 {1 n L Jo tT(OjOic/>ty )Yj dt = - Jo L t (OiT) (Ojc/>ty )Yj dt , 
j=1 0 0 j=1 

which can be rewritten (for the same reason as before) as 

11 
t :t ( OiT) ( c/>ty ) dt . 

A simple integration by parts then yields OiF(y) = ( OiT) ( c/Jy) .  The function 
y t-t G(y) = T(c/Jy ) - T(¢) is also coo in y (by Lemma 6.8) and also has 
(8iT) (¢y ) as its partial derivatives . Since F(O) = G(O) = 0, the two coo
functions F and G must be the same. This proves ( 1 ) . 

To prove (2) , note that since 

( 1 )  implies that 

ln cf>(x) [f (x + y) - f(x) ] dx = 11 � Yj { ln cf>(x) (Oj f) (x + ty) dx} dt . 

Since ¢ has compact support , the integrand is ( t , x) integrable (even if Oj f tJ_ 
L1 (JRn ) ) ,  and hence Fubini 's theorem can be used to interchange the t and 
x integrations . Conclusion (2) then follows from Theorem 6. 5 . • 

6. 10 THEOREM {Equivalence of classical and 
distributional derivatives) 

Let 0 c JRn be open, let T E V' (O) and set Gi : =  oiT E V' (O) for i = 
1 ,  2 ,  . . .  , n .  The following are equivalent. 

( i) T is a function f E C1 (0) . 
( ii) Gi is a function 9i E C0 (0) for each i = 1 ,  . . .  , n .  

In each case, 9i is a f I OXi ' the classical derivative of f . 
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REMARK. The assertion f E C1 (0) means , of course, that there is a 
C1 (0)-function in the equivalence class of f. A similar remark applies to 
9i E C0 (0) . 

PROOF. I ( i ) ==> ( ii )  . I Gi (¢) = (oiT) (¢) = - f0 (oi¢)f by the definition 
of distributional derivative. On the other hand, the classical integration by 
parts formula yields 

since ¢ has compact support in 0 and f E C1 (0) . Therefore, by the termi
nology of Sect . 6 .4 and Theorem 6 .5 ,  Gi is the function of joxz .  

I ( i i )  ==> ( i )  . I  Fix R > 0 and let w == {x E n : lx - z l > R for all 
z tJ_ 0} . Clearly w is open and nonempty for R small enough, which we 
henceforth assume. Take ¢ E V (w ) C V(O) and I Y I  < R. Then cPty E V(O) 
for - 1  < t < 1 .  By 6 .9 ( 1 )  and Fubini 's theorem 

1 n 
T(</>y) - T(</>) =  r L Yj 1 9j (x)cjJ(x - ty) dx dt lo . 1 w J= 

( 1 ) 
= 1 

Pick � E C�(JRn ) nonnegative with supp{ �} C B := {y : IY I < R} 
and J � = 1 .  The convolution fn � (y)cjJ(x - y) dy with ¢ E V (w ) defines 
a function in V(O) . Integrating ( 1 )  against � we obtain, using Fubini 's 
theorem, 

L '1/J(y )T( </>y) dy - T( </>) 

= 1 � L '1/J(y) 11 
YJ9J (x + ty) dt dy </>(x) dx .  

(2 ) 

The first term on the left is fw cjJ(x)T(�x ) dx , which follows from Lemma 6 .8 
by noting that �x for x E w is an element of V(O) . Hence 

T(</>) = 1 T('l/Jx) - � L '1/J(y) 1 1 
YJ9j (X + ty) dt dy </>(x) dx , 

which displays T explicitly as a function, which we denote by f .  
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Finally, by Theorem 6 .9 (2) 
1 n 

f (x + y) - f (x ) = 1 L g3 (x + ty)y3 dt 0 j==l 

for x E w and IY I < R. The right side is 
n 

L gJ (x)yJ + o( j y j )  
j==l 

(3) 

and this proves that f E C1 (w ) with derivatives 9z · This suffices , since x 
can be arbitrarily chosen in 0 by choosing R to be small enough. • 

The following is a special case of Theorem 6. 10 , which we state separately 
for emphasis . 

6 . 1 1  THEOREM (Distributions with zero derivatives are 
constants) 

Let 0 c JRn be a conrtected, open set and let T E V' (0) . Suppose that 
OzT = 0 for each i = 1 ,  . . .  , n .  Then there is a constant C such that 

for all ¢ E V(O) . (See Exercise 1 .23 for 'connected ' and Exercise 6 . 12 for a 
generalization. ) 

PROOF . By Theorem 6 . 10 , T is a C1 (0)-function, f, and of fox"' = 0 . 
Application of 6 . 10(3) to f shows that f is constant . • 

6. 1 2  MULTIPLICATION AND CONVOLUTION OF 
DISTRIBUTIONS BY C00-FUNCTIONS 

A useful fact is that distributions can be multiplied by C00-functions . Con
sider T in D' (O) and � in C00 (0) . Define the product �T by its action on 
¢ E V(O) as 

(�T) (¢) := T(�¢) ( 1 ) 
for all ¢ E V(O) . That �T is a distribution follows from the fact that the 
product �¢ E C� (O) if ¢ E C� (O) . Moreover , if cpn --+ ¢ in V(O) , then 
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'lj;cpn � 'lj;¢ in V(O) . To differentiate 'lj;T we simply apply the product rule, 
namely 

(2 )  

which is easily verified from the basic definition 6 .6 ( 1 ) and Leibniz 's differ
entiation formula oi ( 'lj;¢) = ¢oi'l/J + 'l/Joi¢ for C00-functions . 

Observe that when T = Tt for some f in Lfoc(O), then 'lj;T = T'l/Jt · If, 
moreover , f E W1�'%(0) , then 'lj;f E W1�'% (0) and (2) reads 

(3) 

for almost every x . The same holds for W1,P (O) and it also clearly extends 
to W1�:(0) and Wk ,P (O) . 

The convolution of a distribution T with a C� (JRn)-function j 
is defined by 

(j * T) (c/>) := T(jR * c/>) = T (Ln j (y)c/>-y dy) (4) 

for all ¢ E V(JRn) , where JR (x) := j (  -x) . Since JR * ¢ E C� (JRn) , j * T 
makes sense and is in V' (JRn) . The reader can check that when T is a 
function, i .e . , T = Tt , then, with this definition, (j * Tt ) (¢) = Tj*f (¢) where 
(j * f) (x) = fJRn j (x - y)f(y) dy is the usual convolution . 

...., Note the requirement that j must have compact support . 

6. 13 THEOREM {Approximation of distributions by 
C00 -functions) 

Let T E V' (JRn) and let j E C� (JRn) . Then there exists a function t E 
C00(I�n ) ( depending only on T and j )  such that 

(j * r) (¢) = r t(y)cf>(y) dy }}Rn ( 1 ) 

for every ¢ E V(JRn) . If we further assume that fJRn j = 1 ,  and if we set 
]c: (x) = c-nj (x/c) for c > 0, then Jc: * T converges to T in V' (JRn) as c --+  0 .  

PROOF. By definition we have that 

(j * T) (c/>) : =  T(jR * c/>) = T (Ln j (y - · )c/>(y) dy) 
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which, by Lemma 6 .8 , equals fJRn T(j (y - · ) )cjJ(y) dy .  If we now define t (y) := 
T (j (y - · ) ) , then, by 6 .8( 1 ) , t E C00(JRn) .  This proves ( 1 ) .  To verify the 
convergence of jc: * T to T, simply observe that 

(je * T) (</>) := T (in je (Y)</>-y dy) 
= { je (y)T(</>-y) dy = { j (y)T(</>-ey) dy }JRn }JRn 

(2) 

by changing variables . It is clear that the last term in (2) tends to T (¢) 
since T(c/J-y) is coo as a function of y, and j has compact support . • 

e The kernel or null-space of a distribution T E V' (O) is defined by 
Nr = {¢ E V(O) : T(¢) = 0} . It forms a closed linear subspace of V(O) .  
The following theorem about the intersection of kernels is useful in connec
tion with Lagrange multipliers in the calculus of variations . (See Sect . 1 1 .6 . ) 

6. 14 THEOREM (Linear dependence of distributions) 

Let 81 , . . .  , SN E V' (O) be distributions . Suppose that T E V' (O) has the 
property that T( ¢) = 0 for all ¢ E nf 1 Ns2 . Then there exist complex 
numbers c1 , . . .  , CN such that 

N 
T = L eis� . 

i=1 
( 1 ) 

PROOF . Without loss of generality it can be assumed that the Si 's are 
linearly independent . First , we show that there exist N fixed functions 
u1 , . . .  , UN E V(O) such that every ¢ E V(O) can be written as 

N 
</> = v + L A� (</>)ui (2) 

'l=1 

for some .Ai (¢) E C, i = 1 ,  . . .  , N, and v E nf 1 Ns2 • To see this consider 
the set of vectors 

V = {S(¢) : ¢ E V(O) } ,  (3) 
where S(¢) = (81 (¢) , . . .  , SN (¢) ) .  It is obvious that V is a vector space 
of dimension N since the Si 's are linearly independent . Hence there exist 
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functions u1 , . . .  , UN E V(O) such that S( u1 ) ,  . . .  , S( UN) span V. Thus , the 
N X N matrix given by Mij = si ( Uj ) is invertible. With 

N 
)..i (¢) = L)M-1 )ijSj (c/>) ,  

j==l 
it is easily seen that (2) holds . 

Applying T to formula (2) yields (using T(v) = 0) 

N 
T(cf>) = L (M-1 )ijT(ui )Sj (c/>) ,  

i,j==l 

6.15 THEOREM (C00 {f!) is 'dense' in W1�'% (f!) ) 

(4) 

• 

Let f be in Wi�'�(O) . For any open set (') with the property that there exists 
a compact set K c 0 such that (') c K c 0, we can find a sequence 
/1 , /2 , f3 , . . .  E coo ( 0) such that 

I I ! - fk i i LP (O) + L l l 8d - Odk i i LP (O) -+ 0 as k -+ oo .  ( 1 )  
i 

PROOF . For c > 0 consider the function Jc: * j, where Jc: (x) = c-nj (x/c) 
and j is a C00-function with support in the unit ball centered at the origin 
with fJRn j (x) dx = 1 .  For any open set (') with the properties stated above 
we have that Jc: * f E coo ( (')) if c is sufficiently small since, on ('), 

Da (jc * f) (x) = { (Dajc) (x - y)f (y) dy }JRn 
for derivatives of any order a .  Further, since (') c K C 0 with K compact , 
we can assume, by choosing c small enough, that 

(') + supp{jc: } := {x + z :  x E (') , z E supp{jc: } }  C K. 

Thus, since 

8i [ jc (X - y)f (y) dy = [ jc (X - y) (Oif) (y) dy , 

and since f and oif are in LP(K) for i = 1 ,  . . .  , n ,  ( 1 ) follows from Theorem 
2 . 16 by choosing c = 1/k with k large enough. • 
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e The reader is invited to jump ahead for the moment and compare 
Theorem 6 . 1 5  for p == 2 with the much deeper Meyers-Serrin Theorem 7.6 
(density of coo (0) in H1 (0) ) .  The latter easily generalizes to p -1- 2, i .e . , 
to W1 ,P (0) and, in each case , implies 6 . 15 .  The important point is that 
if f E H1 ( 0) ' then V' f (X) can go to infinity as X goes to the boundary of 
0.  Thus, convergence of the smooth functions fk to f in the H1 (0)-norm, 
as in 7 .6 ,  is not easy to achieve . Theorem 6 . 15 only requires convergence 
arbitrarily close to, but not up to, the boundary of 0.  The sequence fk in 
6 . 15  is allowed to depend on the open subset (') c 0. In contrast , in 7.6 the 
fixed sequence fk must yield convergence in H1 (0) . On the other hand, a 
function in W1�'; (o) need not be in H1 (0) ; it need not even be in £1 (0) . 

6. 16  THEOREM {Chain rule) 

Let G : �N --+ C be a differentiable function with bounded and continuous 
derivatives. We denote it explicitly by G ( s1 , . . . , s N) .  If 

u(x) == (u1 (x) , . . .  , uN (x) ) 

denotes N functions in W1�': ( 0) , then the function K : 0 --+ C given by 

K(x) == (G o  u) (x) == G(u(x) ) 

in V' (O) . 

( 1 )  

If ul , . . .  , UN are in W1,P (O) ,  then K is also in W1,P (O) and ( 1 )  holds
provided we make the additional assumption, in case 1 0 1 == oo ,  that 
G(O) == 0 .  

PROOF . It suffices to prove that K E W1,P ((')) and verify formula ( 1 )  for 
any open set (') with the property that (') c C c 0, with C compact . 

By Theorem 6 . 15  we can find a sequence of functions cpm == ( ¢1 , . . .  , c/J'N) 
in (C00 (0) )N such that (with an obvious abuse of notation) 

(2) 

as m --+ oo .  By passing to a subsequence we may assume that c/Jm --+ u 
· t · d a A..m a · t · £ ll · - 1 S t poin wise a.e .  an -a 'P --+ -a u poin wise a.e . or a 2 - , • • •  , n .  e 

x2 x2 

Km (x) == G(¢m (x) ) .  Since 
oG 

max < M, 
i OSi 
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a simple application of the fundamental theorem of calculus and Holder 's 
inequality in JRN shows that for s , t E JRN 

IG (s) - G(t) l  < MN11P' (� l sz - ti iP) 1/P . 

Here 1/p + 1/p' = 1 .  Since (') C C and G is bounded , K is in Lfoc (O) .  
Next , for r¢ E V(O) 

{ O'lj; Km dx = - { 'lj;� Km dx 
ln oxk ln oxk 

N 
= - '"""' f '1j; OG ( qr) � <//[ dx . � ln osz oxk l==l 

(3 ) 

(4) 

In (4) the ordinary chain rule for C1-functions has been used. Using (3) 
we find that 

IK (x) - Km(x) l < MN11P' (� l ui (x) - </>i (x) IP) 1/P , 

which implies that Km --+ K in LP ( (')) , and therefore the left side of ( 4) 
tends to J0 at�:) K(x) dx. Each term on the right side can be written as 

1 'lj; OG (</>m) �ul dx + 1 'lj; OG (</>m) (�</>l - �uz) dx . (5) 
0 osz oxk 0 osz oxk oxk 

The first term tends to 
1 'lj; OG (u) Ouz dx 

0 osz oxk 
by dominated convergence and the second tends to zero since 8

8° is uniformly 
sz 

bounded and ��: -g:! --+ 0 in £P ( 0) . Clearly g� ( u) g:! , which is a bounded 
function times an £P(CJ)-function, is itself in LP ((')) . 

To verify the second statement about W1,P (O) , note that oGjosk is 
bounded for all k = 1 ,  2 ,  . . .  , N and, since \luk E £P (O) , it follows from ( 1 )  
that \1 K E £P(n) also. The only thing to check is that K itself is in £P (O) . 
It follows from (3) that 

N 
IK(x) IP < A + B L luk (x) IP , (6) 

k==l  
where A and B are some constants . If 1 0 1 < oo, (6) implies that K E LP (O) . 
If 10 1  = oo we have to use the assumption G(O) = 0, which implies that we 
can take A =  0 in (6) . Again, K E £P (O) . • 
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6. 17  THEOREM (Derivative of the absolute value) 

Let f be in W1,P (O) . Then the absolute value of j, denoted by l f l and defined 
by l f l (x) = l f (x) l , is in W1,P (O) with \7 l f l being the junction 

(\7 1 / l ) (x) = 
IJI(x) (R(x)\lR(x) + I(x)\ll(x) ) if f (x) =/= 0, 

0 if f (x) = 0; 
( 1 ) 

here R(x) and I(x) denote the real and imaginary parts of f . In particular, 
if f is real-valued, 

\7 f(x) if f(x) > 0, 
(\7 1 / l ) (x) = -\7f(x) if f(x) < 0, 

0 if f(x) = O. 
(2) 

Thus l\7 1! 1 1 < l\7 ! I a. e . if f is complex-valued and l\7 1! 1 1 = l\7 ! I a. e . if f 
is real-valued. 

PROOF . We follow [Gilbarg-Thudinger] . That l f l is in £P (O) follows from 
the definition of I I  f l i p ·  Further, since 

2 
l� l (R\7 R + I\7 I) < (\7 R)2 + (\7 !)2 (3) 

pointwise , \7 l f l is also in £P (O) once the claimed equality ( 1 ) is proved. 
Consider the function 

(4) 

Obviously Gc: (O , 0) = 0 and 

(5) 

Hence, by 6 . 16 , the function Kc: (x) = Gc: (R(x) , J (x) ) is in W1,P (O) and for 
all ¢ in V(O) 

In \l<f>(x)Ke (x) dx = - In <f>(x)\7Ke (x) dx 

= _ f <f>(x) R(x)\7 R(x) + I(x)\7 I(x) dx. 
ln Jc2 + l f (x) l 2 

(6) 
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Since Kc: (x) < l f (x) l and 
R(x)\1 R(x) + I(x)\1 I (x) < j\7 f (xW , 

v'c2 + l f (x) l 2 
and since the two functions ( 4) and ( 5) converge pointwise to the claimed 
expressions as c --+ 0, the result follows by dominated convergence . • 

6.18 COROLLARY (Min and Max of W1,P-functions are 
in W1,P) 

Let f and g be two real-valued functions in W1,P (O) . Then the minimum of 
(f (x) , g (x) ) and the maximum of (f (x) , g (x) ) are functions in W1,P (O) and 
the gradients are given by 

\1 f (x) when f (x) > g(x) , 
\l max(f (x) , g (x) ) = \lg(x) when f (x) < g (x) , ( 1 )  

\1 f(x) = \1 g (x) when f (x) = g (x ) ,  

\lg(x) when f (x) > g(x) , 
\l min(f (x) , g (x) ) = \lf(x) when f(x) < g(x) , (2) 

\lf(x) = \lg(x) when f(x) = g(x) . 

PROOF. That these two functions are in W1,P (O) follows from the formulas 

and 

. 1 
mm(f(x) , g (x) ) = 2 [ (f (x) + g(x) ) - l f (x) - g (x) l ] 

1 
max(f(x) , g (x) ) = 2 [ (f (x) + g(x) ) + l f (x) - g(x) l ] . 

The formulas ( 1 )  and (2) follow immediately from Theorem 6 . 17  in the 
cases where f(x) > g (x) or f(x) < g (x) . To understand the case f (x) = g (x) 
consider 

1 h(x) = (f (x) - g(x) )+ = 
2 { l f (x) - g (x) l + (f (x) - g (x) ) } . 

Obviously j h j (x) = h(x) , and hence by 6 . 17  
\lh(x) = \l j h j (x) = 0 when f(x) < g(x) . 

But again by 6 . 17 \lh(x) = � (\l (f - g) ) (x) , when f(x) = g(x) and hence 
(\lf) (x) = (\lg) (x) when f(x) = g (x) , 

which yields ( 1 )  and (2) in the case f (x) = g(x) . • 



154 Distributions 

It is an easy exercise to extend the above result to truncations of 
W1,P (O)-functions defined by 

f<a (x) = min(f(x) , a) . 

The gradient is then given by 

{ \7 f(x) if f (x) < a , 
(\7 f <a) ( x) = 

0 otherwise. 

Analogously, define 

Then 

f>a (x) = max(f(x) , a) . 

{ \7 f(x) if f (x) > a,  
(\7 f>a) (x) == 

0 th . o erw1se. 

Note that when 0 is unbounded f <a E W1,P (O) only if a > 0 ,  and f>a E 
W1,P (O) only if a < 0 .  

The foregoing implies that if u E W1�'; (0) , if a E JR and if u(x) == a  on a 
set of positive measure in JRn , then (\7 u) ( x) == 0 for almost every x in this set . 
This can be derived easily from 6. 18 .  The following theorem, to be found in 
[Almgren-Lieb] , generalizes this fact by replacing the single point a E JR by 
a Borel set A of zero measure . Such sets need not be 'small' , e .g . , A could 
be all the rational numbers , and hence A could be dense in JR. Note that 
if f is a Borel measurable function, then f-1 (A) : ==  {x E JRn : f(x) E A} 
is a Borel set , and hence is measurable . This follows from the statement in 
Sect . 1 . 5  and Exercise 1 . 3  that x t---t XA(f (x) ) is measurable. 

6. 19  THEOREM (Gradients vanish on the inverse of small 
sets) 

Let A C JR be a Borel set with zero Lebesgue measure and let f : n --+ JR be 
in W1�'; (n) . Let 

B = f-1 (A) : =  {x E r2 :  f(x) E A} C fl. 

Then \7 f(x) = 0 for almost every x E B .  

PROOF. Our goal will be to establish the formula 

l cf>(x)Xo (f (x) )\7 f(x) dx = - l  'Vcf>(x)Go (f(x) ) dx ( 1 ) 
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for each open set (') C JR. Here Xo is the characteristic function of (') and 
Ga (t) = J� Xo (s) ds . Equation ( 1 )  is just like the chain rule except that Go 
is not in C1 (JR) . Assuming ( 1 )  for the moment , we can conclude the proof 
of 011r theorem as follows . By the outer regularity of Lebesgue measure we 
can find a decreasing sequence (')1 :J (')2 :J (')3 :J · · · of open sets such that 
A c (')i for each j and £1 (CJi ) --+ 0 as j --+ oo .  Thus A c C :=  nj 1 (')i 
(but it could happen that A is strictly smaller than C) and £1 (C) = 0 .  By 
definition, Gi (t) := GaJ (t) satisfies IGi (t) l < £1 ((')i ) ,  and thus Gi (t) goes 
uniformly to zero as j --+ oo. The right side of ( 1 )  (with (') replaced by 
(')i ) therefore tends to zero as j --+ oo .  On the other hand, Xi := XoJ is 
bounded by 1 ,  and Xi (f (x) ) --+ Xj- I (c) (x) for every x E JRn . By dominated 
convergence, the left side of ( 1 )  converges to fn cPXJ- l (C) '\1 j, and this equals 
zero for every ¢ E V(O) .  By the uniqueness of distributions , the function 
XJ- l (C) (x)'V'f(x) = 0 for almost every x, which is what we wished to prove. 

It remains to prove ( 1 ) .  Observe that every open set (') C JR is the union 
of countably many disjoint open intervals . (Why?) Thus (') = Uj 1 Ui 
with Ui = (ai , bi ) · Since f is a function, f-1 (Ui ) is disjoint from f-1 (Uk) 
when j -=f. k. By the countable additivity of measure, therefore, it suffices to 
prove ( 1 )  when (') is just one interval (a ,  b) .  We can easily find a sequence 
x1 , x2 , x3 , . . . of continuous functions such that xi ( t) --+ Xo ( t) for every 
t E JR and 0 < xi (t) < 1 for every t E JR. The everywhere (not just almost 
everywhere) convergence is crucial and we leave the simple construction of 
{xi } to the reader. Then, with Gi = J� xi , equation ( 1 ) is obtained by 
taking the limit j --+ oo on both sides and using dominated convergence. 
The easy verification is again left to the reader. • 

e An amusing-and useful-exercise in the computation of distributional 
derivatives is the computation of Green's functions. Let y E JRn, n > 1 ,  and 
let Gy : JRn --+ JR be defined by 

Gy (x) = - 1§1 1 -J ln( lx - Y l ) ,  

Gy (x) = [ (n - 2) l§n- 1 1 ] - 1 1 x - Y l 2-n , 

where l§n-1 1 is the area of the unit sphere §n-1 C JRn . 

n = 2 ' (2 ) 
n =!=- 2 , 

These are the Green's functions for Poisson's equation in JRn . Recall 
that the Laplacian, �' is defined by � :=  2:::� 182 I ax; .  The notation 
notwithstanding, Gy (x) is actually symmetric, i .e . , Gy(x) = Gx (y) .  



156 Distributions 

6.20 THEOREM (Distributional Laplacian of Green's 
functions) 

In the sense of distributions, 

where by is Dirac 's delta measure at y ( often written as 6 (x - y) ) .  

PROOF. To prove ( 1 )  we can take y = 0. We require 

I := { ( 6.¢ )Go = -</>(0) 
}�n 

when ¢ E C�(JRn) .  Since Go E Lfoc (JRn) ,  it suffices to show that 

-¢(0) = limJ(r) , r�o 

where 
I(r) := 1 �cp(x)Go (x) dx . 

l x l >r 

( 1 ) 

We can also restrict the integration to l x l < R for some R since ¢ has 
compact support . However , when l x l > 0 ,  Go is infinitely differentiable 
and �Go = 0 .  We can evaluate J(r) by partial integration, and note that 
boundary integrals at l x l = R vanish. Thus, denoting the set {x : r < l x l < 
R} by A, 

J(r ) = { (6.</>)Go = - { \1</> · \!Go + 1 Go "\1¢ · v 
}A }A l x l=r 

= - 1 ¢\!Go · v + 1 Go"\1¢ · v, 
l x l=r lx l=r 

(2) 

where v is the unit outward normal to A. On the sphere l x l = r, we have 
\!Go · v = j §n- l l - lr-n+l , and therefore the penultimate integral in (2) is 

which converges to -¢(0) as r --+ 0, since ¢ is continuous . The last integral 
in ( 2) converges to zero as r --+ 0 since "\1 ¢ · v is bounded by some constant , 
while l l x l n- lGo (x) l < j x j 112 for small jx j .  Thus, ( 1 )  has been verified. • 
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6.21  THEOREM {Solution of Poisson's equation) 

Let f E Lfoc (JRn) ,  n > 1 .  Assume that for almost every x the function 
y t---t Gy(x)f (y) is summable ( here, Gy is Green's function given before 6 .20) 
and define the function u : JRn --+ C by 

Then u satisfies: 

u(x) = f Gy (x)J (y) dy . ( 1 )  }JRn 

U E Lfoc (JRn) , 
-�u = f in V' (JRn) .  

(2)  
(3) 

Moreover, the function u has a distributional derivative that is a func
tion; it is given, for almost every x, by 

aiu(x) = f (8Gyj8xz ) (x)J (y) dy . (4) }JRn 
When n = 3, for example, the partial derivative is 

1 
I 3 (8Gyj8xi ) (x) = - 47r l x - y - (xi - Yi ) · (5)  

REMARKS. ( 1 )  A trivial consequence of the theorem is that JRn can be 
replaced by any open set 0 C JRn . Suppose f E Lfoc (O) and y t---t Gy (x)f (y) 
is summable over n for almost every X E n. Then (see Exercises) 

is in Lfoc (O) and satisfies 

u(x) : = In Gy (x)f (y) dy (6)  

-�u = f in V' (O) . (7) 

(2) The summability condition in Theorem 6 .21  is equivalent to the 
condition that the function Wn (y) f (y) is summable. Here 

( 1  + I Y I ) 2-n , n > 3, 

Wn(Y) = ln ( 1 + j y j ) ,  n = 2 ,  (8) 
I Y I , n = 1 .  

The easy proof of this equivalence is left to the reader as an exercise. (It 
proceeds by decomposing the integral in ( 1 )  into a ball containing x, and 
its complement in JRn . The contribution from the ball is easily shown to be 
finite for almost every x in the ball, by Fubini 's theorem. ) 

(3) It is also obvious that any solution to equation (7) has the form u+h, 
where u is defined by (6) and where �h = 0.  Hence h is a harmonic function 
on 0 (see Sect . 9 .3) . Since harmonic functions are infinitely differentiable 
(Theorem 9 .4) ,  it follows that every solution to (7) is in Ck (O) if and only 
if u E Ck(O) . 
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PROOF. To prove (2) it suffices to prove that In := fn l u i < oo for each 
ball B C JRn . Since lu(x) l < fJRn I Gy (x)f (y) l dy, we can use Fubini's theorem 
to conclude that 

IB < r HB (Y) i f (y) i dy with HB (Y) = r IGy (x) l dx. }JRn Jn 
It is easy to verify (by using Newton's Theorem 9 .7, for example) that if 
B has center xo and radius R, then Hn (Y) = I B I IGy (xo ) l for IY - xo l > R 
for n #- 2 and Hn(Y) = I B I IGy (xo ) l when IY - xo l > R + 1 when n = 2 (in 
order to keep the logarithm positive) . Moreover, Hn(y) is bounded when 
IY - xo l < R. From this observation it follows easily that In < oo. (Note: 
Fubini 's theorem allows us to conclude both that u is a measurable function 
and that this function is in Lfoc (JRn) . )  

To verify (3) we have to show that 

(9) 

for each ¢ E Cgo (JRn) .  We can insert ( 1 )  into the left side of (9) and use 
Fubini 's theorem to evaluate the double integral . But Theorem 6.20 states 
that - fJRn 6.¢(x)Gy (x) dx = cp(y) , and this proves (9) . 

To prove ( 4) we begin by verifying that the integral in ( 4) (call it Vi ( x) ) 
is well defined for almost every x E JRn . To see this note that l (oGyjoxi ) (x) l 
is bounded above by c lx - y l 1-n , which is in Lfoc (JRn) .  The finiteness of Vi (x) 
follows as in Remark (2) above. Next , we have to show that 

{ Oi</>(x)u(x) dx = - { </>(x)Vi (x) dx }JRn }JRn ( 10) 

for all ¢ E Cgo (JRn) .  Since the function (x, y) --+ (oi¢) (x)Gy (x)f(y) is 
JRn x JRn summable , we can use Fubini 's theorem to equate the left side of 
( 10) to 

( 1 1 )  

A limiting argument , combined with integration by parts , as in 6 .20(2) , 
shows that the inner integral in ( 1 1 ) is 

for every y E JRn . Applying Fubini's theorem again, we arrive at (4) . • 
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e The next theorem may seem rather specialized, but it is useful in 
connection with the potential theory in Chapter 9 .  Its proof (which does 
not use Lebesgue measure) is an important exercise in measure theory. We 
shall leave a few small holes in our proof that we ask the reader to fill in as 
further exercises . Among other things, this theorem yields a construction of 
Lebesgue measure (Exercise 5) . 

6.22 THEOREM {Positive distributions are measures) 

Let 0 c JRn be open and let T E V' (O) be a positive distribution (meaning 
that T(¢) > 0 for every ¢ E V(O) such that cjJ(x) > 0 for all x) . We denote 
this fact by T > 0 .  

Our assertion is that there is then a unique, positive, regular Borel mea
sure J-L on 0 such that J-L (K) < oo for all compact K c 0 and such that for 
all ¢ E V(O) 

T ( </>) = In </> ( x) f1 ( dx) . ( 1 )  

Conversely, any positive Borel measure with J-L (K) < oo for all compact 
K c 0 defines a positive distribution via ( 1 ) . 

REMARK. The representation ( 1 )  shows that a positive distribution can 
be extended from C� (O)-functions to a much larger class , namely the Borel 
measurable functions with compact support in 0.  This class is even larger 
than the continuous functions of compact support , Cc (O) . 

The theorem amounts to an extension, from Cc(O)-functions to C� (O)
functions, of what is known as the Riesz-Markov representation theo
rem. See [Rudin, 1987] . 

PROOF.  In the following, all sets are understood to be subsets of 0.  For 
a given open set (') denote by C ( (')) the set of all functions cjJ E C� ( 0) with 
0 < ¢(x) < 1 and supp ¢ c ('). Clearly, this set is not empty. (Why?) Next 
we define for any open set (') 

J.-L (O) = sup{T(¢) :  ¢ E C (O) } .  (2 )  

For the empty set 0 we set J.-L (0 ) = 0. The nonnegative set function J-l has 
the following properties : 

(i) J.-L((')1 ) < J.-L((')2) if (')1 C (')2 , 
( ii) J.-L( (')1 u (')2) < J.-L( (')1 ) + J.-L( (')2 ) ' 

( iii) J-l (U� 1 (')i ) < 2:::� 1 J.-L((')tt )  for every countable family of open sets (')i · 
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Property (i) is evident . The second property follows from the following 
fact (F) whose proof we leave as an exercise for the reader: 

(F) For any compact set K and open sets 01 , 02 such that K C 01 U 02 
there exist functions ¢1 and ¢2 , both coo in a neighborhood 0 of K, such 
that c/J1 (x) + ¢2 (x) = 1 for x E K and ¢ ·  cP1 E C� (01 ) ,  ¢ · ¢2 E C� (02) for 
any function ¢ E C� (O) .  

Thus, any ¢ E C ( 01 U 02 ) can be written as ¢1 + ¢2 with ¢1 E C ( 01 ) and 
¢2 E C (02 ) .  Hence T(¢) == T(¢1 ) + T(¢2 ) < JL(01 ) + JL(02 ) and property 
(ii) follows. By induction we find that 

To see property (iii) pick ¢ E C (U� 1 Oi ) · Since ¢ has compact support , we 
have that ¢ E C (UiEI Oi ) where I is a finite subset of the natural numbers . 
Hence, by the above, 

which yields property (iii) . 
For every set A define 

JL (A) = inf{JL(O) : 0 open, A C 0} . (3) 

The reader should not be confused by this definition. We have defined 
a set function, JL, that measures all subsets of 0, but only for a special 
sub collection will this function be a measure, i .e . , be countably additive. 
This set function Jl will now be shown to have the properties of an outer 
measure , as defined in Theorem 1 . 15 (constructing a measure from an outer 
measure) , i .e . , 

(a) JL(0) = 0 , 
(b) JL(A) < JL(B) if A c B, 
(c) JL ( U� 1 A'/, ) < 2:::� 1 JL ( Ai ) for every countable collection of sets A 1 , 

A2 , . . . . 
The first two properties are evident . To prove (c) pick open sets 01 , 

02 , . . .  with A2 c Oi and JL(Oi ) < JL(A2 ) + 2-ic for i = 1 ,  2 ,  . . . .  Now 
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by (b) and (iii) , and hence 

which yields (c) since c is arbitrary. By Theorem 1 . 15 the sets A such that 
J.-L(E) = J-L(E n A) + J-L(E n A c) for every set E form a sigma-algebra, � ' on which J-l is countably additive. 

Next we have to show that all open sets are measurable, i .e . , we have to 
show that for any set E and any open set (') 

(4) 

The reverse inequality is obvious . First we prove (4) in the case where E is 
itself open; call it V. 

Pick any function ¢ E C(V n O) such that T(¢) > J.-L(V n (') ) - c/2. Since 
K := supp ¢ is compact , its complement, U, is open and contains oc. Pick 
� E C (U n V) such that T(�) > J-L(U n V) - c/2 . Certainly 

J.-L(V) > T(¢) + T(�) > J-L(V n 0) + J-L(V n U) - c 
> J-L(V n 0) + J-L(V n (')c) - c 

and since c is arbitrary this proves ( 4) in the case where E is an open set . 
If E is arbitrary we have for any open set V with E c V that E n (') C 
v n (') , E n  (')C c v n oc, and hence J.-L(V) > J-L(E n (') ) + J-L(E n (')C) . This 
proves (4) . Thus we have shown that the sigma-algebra � contains all open 
sets and hence contains the Borel sigma-algebra. Hence the measure J-l is a 
Borel measure. 

By construction, this measure is outer regular (see (3) above) . We show 
next that it is inner regular , i .e . , for any measurable set A 

J.-L(A) = sup{J.-L(K) : K C A, K compact} .  (5) 

First we have to establish that compact sets have finite measure. We 
claim that for K compact 

J.-L(K) = inf{T(�) : � E C� (O) , � (x) = 1 for x E K, � > 0} . (6) 

The set on the right side is not empty. Indeed for K compact and K c (') 
open there exists a C�-function � such that supp � C (') and � := 1 on 
K. (Such a � was constructed in Exercise 1 . 15 without the aid of Lebesgue 
measure. )  
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Now (6) follows from the following fact which we ask the reader to prove 
as an exercise: J.-L(K) < T(�) for any � E C� (O) with � = 1 on K and 
� > 0. Given this fact , choose c > 0 and choose (') open such J.-L(K) > 
J.-L(O) - c. Also pick � E C� (O) with supp � C (') and � 1 on K. Then 
J.-L(K) < T( �) < J.-L( (')) < J.-L(K) + c. This proves (6) . 

It is easy to see that for c > 0 and every measurable set A with J.-L(A) < oo 
there exists an open set (') with A c (') and J.-L((') rv A) < c. Using the 
fact that 0 is a countable union of closed balls , the above holds for any 
measurable set , i .e . , even if A does not have finite measure. We ask the 
reader to prove this . 

For c > 0 and a measurable set A we can find (') with A c C (') such that 
J.-L( (') rv (A c) )  < c .  But 

and (')c is closed. Thus for any measurable set A and c > 0 one can find a 
closed set C such that C C A and J.-L(A rv C) < c. Since any closed set in JRn 

is a countable union of compact sets, the inner regularity is proven. 
Next we prove the representation theorem. The integral fn ¢(x)J.-L( dx) 

defines a distribution R on V ( 0) . Our aim is to show that T ( ¢) = R ( ¢) for 
all ¢ E C� (O) . Because ¢ = ¢1 - ¢2 with c/J1 ,2 > 0 and c/J1 ,2 E C�(O) (as 
Exercise 1 . 15 shows) ,  it suffices to prove this with the additional restriction 
that ¢ > 0 .  As usual, if ¢ > 0, 

R(¢) = m (a) da = lim - " m(j/n) 100 1 
0 n�oo n � .> 1 J _  

(7) 

where m( a) = J.-L( { x : ¢( x) > a} ) .  The integral in (7) is a Riemann integral ; 
it etJways makes sense for nonnegative monotone functions (like m) and it 
always equals the rightmost expression in (7) . For each n, the sum in (7) 
has only finitely many terms, since ¢ is bounded. 

For n fixed we define compact sets Kj , j = 0, 1 ,  2 ,  . . .  , by setting K0 = 
supp ¢ and Kj = { x : ¢( x) > j / n} for j > 1 .  Similarly, denote by Qi the 
open sets {x : ¢(x) > jfn} for j = 1 , 2 , . . . .  Let Xj and xi denote the 
characteristic functions of Kj and Qi . Then, as is easily seen, 

1 L .  1 L - x1 < ¢ < - x · . n n 1 
· > 1 ·>o J _  J _  

Since ¢ has compact support , all the sets have finite measure by (6) . 
For c > 0 and j = 0, 1 ,  . . .  pick Uj open such that Kj C Uj and J.-L(Uj ) < 

J-L(Kj ) + c. Next pick �j E C� (JRn ) such that �j _ 1 on Kj and supp �j C 
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Uj . We have shown above that such a function exists . Obviously ¢ < 
� Lj>O �j and hence 

By the inner regularity we can find, for every open set ()i of finite measure , 
a compact set Ci c Oj such that J.-L(Ci ) > J-L(Oi ) - c and, in the same 
fashion as above, conclude that T(¢) > � Lj>1 J-L(Oi ) - c. Since c > 0 is 
arbitrary, 

By noting that Kj c ()i-1 for j > 1 ,  we have 

1 1 2 - L m(j/n) < T(cf>) < - L m(jjn) + -f-l(Ko) , n n n .>1 .>1 J _ J _  

which proves the representation theorem. The uniqueness part is left to the 
reader. • 

e In Sects . 6. 19-6.2 1  the Green's function Gy for -� was exhibited. As 
a further important exercise in distribution theory, which will be needed in 
Sect . 12 .4 , we next discuss the Green's function for -� + J.-L2 with J-l > 0. It 
satisfies ( cf 6 .20 ( 1 ) )  

(8) 
This function is called the Yukawa potential, at least for n = 3, and 
played an important role in the theory of elementary particles (mesons) ,  for 
which H. Yukawa won a Nobel prize. As in the case of Gy , the function G� 
is really a function of x - y (in fact , a function only of l x - y j ) which we call 
GJ.t (x - y) . In the following, Go is Gy with y = 0. 

6.23 THEOREM (Yukawa potential) 

For each n > 1 and J-l > 0 there is a function G� that satisfies 6 .22 (8) zn 
V' (JRn) and is given by 

G� (x) = Gl-t (x - y) , 

Gl1. (x) =  100 (47rt)-nf2 exp {- 1��2 - 112t} dt . 

( 1 ) 

(2) 
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The function GJ.t , which (2) shows is symmetric decreasing, satisfies 
( i ) GJ.t ( x) > 0 for all x .  
( ii) JJRn GJ.t (X )dx = J-L-2 . 
(iii) As x --+ 0, 

Gf..t (x) --+ 1/2J-L for n = 1 ,  

GJ.L (x) 
--> 1 for n > 1 .  Go (x) 

( iv) - [log GJ.t (x) ] / (J-L i x l ) --+  1 as l x l --+ oo .  

(3) 

(4) 

From (3) , (4) we see that GJ.t is in Lq(JRn) if 1 < q < oo (n = 1 ) ,  1 < q < oo 

(n = 2) , and 1 < q < n/ (n - 2) (n > 3) . Also, GJ.t E L�(n-2) (JRn) (n > 3) . 
(See Sect. 4 .3 for L{v . )  

(v) If f E LP (JRn) , for some 1 < p < oo, then 

u(x) = f G� (x)f (y)dy }JRn 
is in Lr (JRn) and satisfies 

(5) 

(6) 

with p < r < oo ( n = 1 ) ; p < r < oo when p > 1 and 1 < r < oo when p = 1 
(n = 2) ; and p < r < npj (n - 2p) when 1 < p < n/2 , p < r < oo when 
p > n/2 , and 1 < r < n/(n - 2) when p = 1 (n > 3) . Moreover, (5) is the 
unique solution to (6) with the property that it is in Lr (JRn) for some r > 1 .  

(vi) The Fourier transform of GJ.t is 

ffo(p) = ( [27rp] 2 + Jl?) -l . (7) 

REMARKS. ( 1 ) The function ( 47rt) -n/2 exp { - lx l 2 / 4t } is the 'heat kernel' , 
which is discussed further in Sect . 7.9 . 

(2) The following are examples in one and three dimensions, respectively. 

n = 1 ' 

n = 3. (8) 
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PROOF. It is extremely easy to verify that the integral in (2) is finite for 
all x =!=- 0 and that (i) and ( ii) are true. To prove 6 . 22 (8) we have to show 
that 

{ QIL (x) ( -� + f12 )¢(x)dx = </>(0) }JRn (9) 

for all ¢ E C�(JRn) . We substitute (2) in (9) , do the x-integration before 
the t-integration, and then integrate by parts in x . For t > 0 ,  

Thus , the left side of (9 )  is 

- lim 100 [ r ¢(x) � (47rt) -n12 exp {- lx l 2 - /12t} dx] dt 
c:�o £ }JRn ut 4t 

= - lim 100 � [ r ¢(x) (47rt) -nl2 exp {- lx l 2 - /12t} dx] dt c�o c ot }JRn 4t 

= + lim r ¢(x) (4mo) -nl2 exp {- lx l 2 } dx c:�o }JRn 4c 
¢(0) 

since ( 47rc) -n/2 exp { - lx 1 2/ 4c} converges in V' to bo as c --+ 0 (check these 
steps! ) .  Thus (9) is proved, and hence 6 .22 (8) . 

The proof of (6) is even easier than the proof of Theorem 6 .21 ( 1-3) .  
Again, Fubini 's theorem plus integration by parts does the job. The r
summability of u follows from Young's (or the Hardy-Littlewood-Sobolev) 
inequality and the fact that GI-L E L1 (JRn) .  Since u E LP (JRn) ,  and hence 
vanishes at infinity, the uniqueness assertion after (6) is equivalent to the 
assertion that the only solution to ( -� + J.-L2 )u = 0 in some Lr (JRn) is u = 0. 
This will be proved in Sect . 9 . 1 1 .  

We leave items (iii) and (iv) as exercises . They are evidently true for 
n = 1 and 3. 

Item (vi) can be proved either by direct computation from (2) or else by 
multiplying 6 .22 (  8) by exp{-27ri (p, x) } and integrating. • 

e In Sect . 6 . 7 we defined the weak convergence of a sequence of functions 
j1 , j2 , . . .  in W1,P (O) with 1 < p < oo by the statement that Ji converges to 
f if and only if Ji and each of its n partial derivatives Oiji converges in the 
usual sense of weak £P(O) convergence . While such a notion of convergence 
makes sense, the reader may wonder what the dual space of W1,P (O) actually 
is and whether the notion of convergence, as defined in Sect . 6 .  7, agrees with 
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the fundamental definition in 2 .9 (6) . The answer is 'yes ' , as the next theorem 
shows . 

The question can be restated as follows . Let go , g1 , . . .  , gn be n + 1 
functions in £P' (0) and, for all f E W1,P (O) , set 

n 
L(f) = In gof + H In g/Jd, (9) 

which, obviously, defines a continuous linear functional on W1,P (O) .  If every 
continuous linear functional has this form, then we have identified the dual 
of W1,P (O) and the Sect . 6 .7 definition agrees with the standard one . 

Two things are worth noting. One is that , with L given, the right side of 
(9) may not be unique because f and '\1 f are not independent . For example, 
if the gi are c� functions, then the n + 1-tuple go , g1 , . . .  ' gn gives the same 
L as go - L:i Oigi , 0, . . .  , 0 . Another thing to note is that (9) really defines a 
continuous linear functional on the vector space consisting of n + 1 copies of 
£P(O) (which can be written as X (n+1 ) £P(O) or as £P (O; (C(n+1) ) ) . In this 
bigger space a continuous linear functional defines the gi uniquely. In other 
words , W1,P (O) can be viewed as a closed subspace of X (n+1 ) £P (O) and our 
question is whether every continuous linear functional on W1,P (O) can be 
extended to a continuous linear functional on the bigger space . The Hahn
Banach theorem guarantees this , but we give a proof below for 1 < p < oo 
that imitates our proof in Sect . 2 . 14. 

6 .24 THEOREM {The dual of W1,P (f!) ) 

Every continuous linear functional L on W1,P (O) ( 1 < p < oo) can be 
written in the form 6 .23 (9) above for some choice of go , g1 , . . .  , gn in LP' (0) . 

PROOF. Let 'H = X (n+1 ) £P(O) , i .e . , an element h of 'H is a collection of 
n + 1 functions h = (ho , . . .  , hn) ,  each in £P(O) . Likewise , we can consider 
the space B == 0 X {0 , 1 ,  . . .  ' n } , i .e . , a point in B is a pair y = (x ,  j ) with 
X E 0 and j E {0 , 1 ,  2 ,  . . .  ' n } .  We equip B with the obvious prodliCt sigma
algebra, an element of which can be viewed as a collection of n + 1 elements 
of the Borel sigma-algebra on 0, i .e . , A = (Ao , . . .  , An) with Ai c 0. 
Finally, we put the obvious measure on A, namely J-L(A) = L:j cn(Aj ) ·  
Thus, 'H = £P(B, dJ-L) and l l h l l � = L:j 0 l l hj 1 1 � -

Think of W1,P (O) as a subset of 'H = £P(B ,  dJ-L) , i .e . , f E W1,P (O) is 
,...._, 

mapped into f = (f, 81f, . . .  , onf ) . With this correspondence, we have 
that W, the imbedding of W1,P (O) in 'H ,  is a closed subset and it is also 
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a subspace (i .e . , it is a linear space) . Likewise , the kernel of L, namely 
K = {f E W1 ,P (O) : L (f) = 0} C W1,P (O) , defines a closed (why?) 

,...._, ,...._, 
subspace of 1-i (which we call K) . L corresponds to a linear functional L on 
---- ,...._, 
W whose kernel is K. 

Consider , first , 1 < p < oo. Lemma 2.8 (Projection on convex sets) is 
,....._,.. .....-.._.,.... ,....._,.. ,....._,.. 

valid and (assuming that L =/=- 0) we can find an f E W so that L(f) =/=- 0, 
i .e . , 7 tj K. Then, by 2 .8 (2) , there is a function Y E LP' (B, dJ.-L) such that 
Re J3 (g - h)Y < 0 for some h E K and for all g E K. Since K is a linear 
space (over the complex numbers) this implies that J3 (g - h)Y = 0 for all 
g E K (why?) , which, in turn, implies that J3 ] Y = 0 for all 7 E K (why?) .  

The proof is now finished in the manner of Theorem 2 . 14. For p == 1 the 
second part of Theorem 2. 14 also extends to the present case . • 

Exercises for 
Chapter 6 

1 .  Fill in the details in the last paragraph of the proof of Theorem 6. 19 , i .e . , 
(a) Construct the sequence xi that converges everywhere to X(interval) ; 
(b) Complete the dominated convergence argument . 

2 . Verify the summability condition in Remark (2) , equation (8) of Theorem 
6.21 . 

3. Prove fact (F) in Theorem 6 .22 .  

4 .  Prove that for K compact , J.-L(K) (defined in 6 .22 (3) )  satisfies J.-L(K) < 
T( 'ljJ) for 'ljJ E C� (0) and 'ljJ = 1 on K. 

5. Notice that the proof of Theorem 6 .22 (and its antecedents) used only the 
Riemann integral and not the Lebesgue integral . Use the conclusion of 
Theorem 6 .22 to prove the existence of Lebesgue measure . See Sect . 1 . 2 . 

6. Prove that the distributional derivative of a monotone nondecreasing 
function on JR is a Borel measure . 
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7. Let Nr be the null-space of a distribution, T. Show that there is a 
function c/Jo E V so that every element ¢ E V can be written as ¢ = 
Ac/Jo + � with � E Nr and A E C. One says that the null-space Nr has 
'codimension one ' . 

8 . Show that a function j is in W1'00 (0) if and only if j = g a.e. where g is 
a function that is bounded and Lipschitz continuous on 0, i .e . , there 
exists a constant C such that 

j g (x) - g(y) j < Cjx - y j for all x, y E 0. 

9 .  Verify Remark (1 )  in Theorem 6 .21 that in this theorem ]Rn can be re
placed by any open subset of JRn . 

10 . Consider the function f (x) = lx l -n on JRn . Although this function is not 
in Lfoc (JRn) , it is defined as a distribution for test functions on JRn that 
vanish at the origin, by 

a) Show that there is a distribution T E V' (JRn) that agrees with T1 for 
functions that vanish at the origin. Give an explicit formula for one 
such T. 

b) Characterize all such T's . Theorem 6. 14 may be helpful here. 
1 1 .  Functions in W1 ,P (JRn) can be very rough for n > 2 and p < n. 

a) Construct a spherically symmetric function in W1,P (JRn) that diverges 
to infinity as x --+ 0. 

b) Use this to construct a function in W1,P (JRn) that diverges to infinity 
at every rational point in the unit cube . 

...., Hint. Write the function in b) as a sum over the rationals . How do 
you prove that the sum converges to a W1,P (JRn) function? 

12 .  Generalization of 6. 1 1 .  Show that if 0 c JRn is connected and if T E 
V' (O) has the property that DaT = 0 for all l a l = m + 1 ,  then T is a 
multinomial of degree at most m , i .e . , T = I:lal <m Caxa . 

13 .  Prove 6 . 23 (4) in the case n > 2 .  
14 . Prove 6 . 23(4) in the case n = 2 .  
15 .  Prove 6 .23 ,  item (iv) . 
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16 . Carry out the explicit calculation of the Fourier transform of the Yukawa 
potential from 6 .23 (2) , as indicated in the last line of the proof of The
orem 6 .23 .  Likewise, justify the alternative derivation, i .e . , by multi
plying 6 .22 (8) by exp{-27ri (p, x) } and integrating. The point is that 
exp{-27ri (p, x) } does not have compact support and so is not in V(JRn) . 

17. Verify formulas 6 .23 (8) for the Yukawa potential . 

18 . The proof of Theorem 6 .24 is a bit subtle . Write up a clear proof of the 
"why's" that appear there. 

19 .  Using the definition of weak convergence for W1,P (O) (see Sect . 6 . 7) 
formulate and prove the analog of Theorem 2 . 18 (bounded sequences 
have weak limits) for W1,P (O) .  

20 . Hanner's inequality for wm,p .  Show that Theorem 2 .5  holds for 
wm,P (O) in place of £P (O) . 

21 .  For n > 2 and p < n construct a nonzero function f in W1,P (JRn) with the 
property that , for every rational point y,  limx�y f (x) exists and equals 
zero . (Can an f E C0 (JRn) have this property?) 





The Sobolev S p aces 

H1 and H112 

7. 1 INTRODUCTION 

Chapter 7 

Among the spaces W1,P ,  particular importance attaches to W1,2 because 
it is a Hilbert-space, i .e . , its norm comes from an inner product . It is also 
important for the study of many differential equations ; indeed, it is of central 
importance for quantum mechanics , which is the study of Schrodinger 's 
partial differential equation. A similar Hilbert-space that is less often used 
is H112 and it is discussed here as well . This is done for two reasons : it 
provides a good exercise in fractional differentiation, which means going 
beyond operators that , like the derivative, are purely local . Another reason 
is that the space can be used to describe a version of Schrodinger 's equation 
that incorporates some features of Einstein 's special theory of relativity. 

We begin by recalling, for completeness , the basic definition of W1,2 
which we now call H1 (but see Remark 7 .5 below about the Meyers-Serrin 
Theorem 7.6) . 

7.2 DEFINITION OF H1 (!1) 

Let 0 be an open set in JRn . A function f : 0 ---+ C is said to be in H1 ( 0) 
if f E £2 (0) and if its distributional gradient , "\1 j, is a function that is in 
£2 (0) . 

-

171 
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Recall from Chapter 6 that 'V' f E £2 (0) means that there exist n func
tions bi ' . . .  ' bn in £2 ( 0) ' collectively denoted by 'V' f '  such that for all ¢ in 
V(O) 

r f (x) �¢> (x) d -r  = - r bz (x)cf> (x) dx , 
ln uxi ln 

i = 1 , . . .  , n . ( 1 )  

HI (O) is a linear space since , with fi , j2 in HI (O) , the sum /I + j2 is in 
£2 (0) and further , since in V' (O) 

the distributional gradient of !I + j2 is an £2 (0)-function. It is clear that 
for ,\ in C and f in HI (O) the function ,\f is in HI (O) too. HI (O) can be 
endowed with the norm 

(2) 

Obviously it is true that f is in HI (O) if and only if l l f i i Hl (O) < oo. 

The last integral in (2) , i .e . , fn I 'Y' / 1 2 , is called the kinetic energy 
of f . 

The next theorem and remark show that HI (O) is , in fact , a Hilbert
space . 

7.3 THEOREM (Completeness of H1 (!l) ) 

Let fm be any Cauchy sequence in HI (O) , i . e . , 

I I  fm - fn I I  Hl (0) ---+ 0 as m, n ---+ oo. 

Then there exists a function f E HI (O) such that limm�oo fm = f in HI (O) ,  
z . e . , 

PROOF . Since fm is a Cauchy sequence in HI (O) , it is also a Cauchy 
sequence in £2 (0) , which, by Theorem 2 .7 , is complete. Hence there 
exists a function f E £2 (0) such that limm�oo l lfm - f i i £2 (0) = 0 .  In 
the same fashion we find functions b = (bi , . . .  , bn ) E £2 (0) such that 
limm�oo I I 'Y' fm - b l l £2 (0) = 0 .  We have to show that b = 'V' f in V' (O) . For 
any ¢ E V(O) 

r "Vcf> (x)f (x) dx = lim r "\lcf>(x)fm (x) dx , 
ln m�oo ln 
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which can be seen using the Schwarz inequality 

In \1¢>(x) (f (x) - fm (x) ) dx < l l\1¢ i l £2 (n) l i f - fm i iP (f!) , 
where the right side tends to zero as m ---+ oo. l l \7 ¢ 1 1 £2 (0) is finite since ¢ is 
in V(O) . In the same fashion it is established that 

Hence 
r ¢>(x)b(x) dx = lim r ¢>(x)bm (x) dx . 

ln m--+oo ln 

r \1¢>(x)f (x) dx = lim r \1 ¢> (x)fm (x) dx 
ln m--+oo ln 

:= - lim r ¢>(x)bm (x) dx = - r ¢>(x)b(x) dx 
m--+oo }n ln 

where the middle equality holds because fm E H1 (0) for all m. • 

REMARKS.  ( 1 )  H1 (0) can be equipped with an inner (or scalar) 
product 

(f, g)Hl (JRn) = (! f(x)g (x) dx + � J a�;�) a���) dx) 
and thus becomes a Hilbert-space (thanks to Theorem 7 .3) . 

(2) In Theorem 7.9 (Fourier characterization of H1 (JRn) ) we shall see 
that H1 (JRn) is really just an £2-space on JRn , but with a measure that 
differs from Lebesgue's . This fact , together with Theorem 2 .7 , yields an 
alternative proof of the completeness of H1 (JRn) .  

7.4 LEMMA (Multiplication by functions in CCXJ (O) ) 

Let f be in H1 (0) and let � be a bounded function in C00(0) with bounded 
derivatives . Then the pointwise product of � and f, 

(� · f) (x) = �(x) f(x) , 

( 1 )  

is in V' (O) . 

PROOF. Recall that by the product rule 6 . 12 (2) , ( 1 )  above holds since � 
has bounded derivatives and the right side of ( 1 ) is in £2 (0) . Therefore � · f 
is in H1 (0) . • 
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7.5 REMARK ABOUT H1 (0) AND W1,2 (0) 

Our definition above of H1 (0) was called W1,2 (0) in Sect . 6 . 7 and in the 
literature (see [Adams] , [Brezis] , [Gilbarg-Trudinger] , [Ziemer] ) .  H1 (0) is 
normally defined differently as the completion of C00 (0) in the norm given 
by 7 . 2 (2) . That these two definitions are equivalent (and hence H1 (0) = 

W1,2 (0) ) is the content of the following theorem. 

7.6 THEOREM {Density of C00 {0) in H1 (0) ) 

If f is in H1 (0) , then there exists a sequence of functions fm in C00 (f2) n 
H1 (0) such that 

( 1 )  

Moreover, if 0 = JRn, then the functions fm can be taken to be in C� (JRn) . 

REMARKS . ( 1 )  This theorem is due to Meyers and Serrin [Meyers-Serrin] 
and a proof can also be found, e .g . , in [Adams] . The analogous theorem 
holds for W1 ,P (f2) ,  not just W1,2 (0) . The proof for general open sets n is 
tricky because of difficulties caused by the boundary of 0,  which accounts 
for the fact that it took some time to identify the completion of C00 (0) in 
W1 ,2 (0) with H1 (0) . Here we content ourselves with a proof for the case 
n = JRn . 

(2)  The density of C� (JRn) in H1 (JRn) is useful because the test functions 
themselves can now be used to approximate functions in H1 (JRn) . 

( 3) If 0 =!=- JRn, then C� (O) = V(O) is not necessarily dense in H1 (0) . 
The completion of C� (O) is a subspace of H1 (0) called HJ (O) and is 
the subspace one uses to discuss differential equations with ' zero boundary 
conditions' on an, the boundary of n. 

PROOF OF THEOREM 7 .6 FOR THE CASE 0 = JRn . Let j : JRn ---+ JR+ 
be in C� (JRn) with JIRn j = 1 and let Jc: (x) := c-nj (x/c) for c > 0 as in 
Theorem 2 . 16 .  Then, since f and \7 f are L2 (JRn)-functions, fc: := Jc: * f ---+ f 
and 9c: := Jc: * \7 f ---+ \7 f strongly in L2 (JRn) as c ---+ 0 .  Thus, we have that 
fc: ---+ f strongly in H1 (JRn) provided 9c: = \7 fc: · But this is true by 2 . 16(3) , 
and Lemma 6 .8 ( 1 ) . 

The functions fc: are in coo (JRn) and our first goal , namely ( 1 ) , is achieved 
by setting c = 1/m. However, the fc: do not necessarily have compact 
support and to achieve this we first take some function k : JRn ---+ [0 , 1] in 
C� (JRn) with k(x) == 1 for l x l  < 1 .  Then define gm (x) = k(x/m)f (x) . By 
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Lemma 7.4, gm is in H1 (JRn) . Furthermore gm has compact support and 

and 

I I ! - gm l l 2 < 1 l f (x) l 2 dx ---+ 0 as m ---+ oo 
lx l >m 

Thus, gm ---+ f strongly in H1 (JRn) . Finally, we take 

Fm(x) := k(x/�fi;m(x) 

which is in C�(JRn) , and it is an easy exercise to prove that pm ---+ f strongly 
in H1 (JRn) . • 

7.7 THEOREM (Partial integration for functions in 
Hl (JRn) )  

Let u and v be in H1 (JRn) .  Then 

for i = 1, . . .  , n . 

( 1 )  

Suppose, in addition, that �v is a function (which, by definition, is 
necessarily in Lfoc (JRn) )  and that v is real. If we assume that u�v E L1 (I�n) ,  
then 

(2) 

Alternatively, if we assume that �v can be written as �v = f + g with f > 0 
in Lf0c (JRn) and with g in L2 (JRn) , then u�v E L1 (JRn) for all u in H1 (JRn) ,  
and hence (2) holds . 

REMARKS. ( 1 )  The reader should note the distinction, in principle, be
tween �v as a function and �v as a distribution. Here the distinction may 
appear to be pedantic, but at the end of Sect . 7 . 15 , where FfS v is consid
ered, this kind of distinction will be important . 

(2) In general , u�v need not be in L1 (JRn) . Here is an example in JR1 
due to K .  Yajima: v (x) == ( 1  + l x l 2 ) - 1 cos ( lx l 2 ) and u(x) = ( 1  + l x l 2 ) - 112 . 
Even if we assume �v E L1 (JRn) ,  u�v need not be in L1 (JRn) for n > 2 .  
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Take u = l x l -b exp [- lx l 2 ] and v = exp[i l x l -a - jx j 2 ] ,  with a, b < (n - 2)/2 
and with 2a + b > (n - 2) . 

( 3) Statement (2) is important in the study of the Schrodinger equation. 
There, we have a function � E H1 (JRn) that solves Schrodinger's (time 
independent) equation 

(3) 

We shall want to multiply this equation by some ¢ E H1 (JRn) to obtain 

(4) 

Equation ( 4) is correct with suitable assumptions on V, as will be seen in 
Sect . 1 1 .9 , and (2) is its justification . 

PROOF .  Notice that ( 1 )  makes sense since u, v , oujoxi and ovjoxi are all 
in L2 (JRn) .  According to Theorem 7.6 there exists a sequence um in C�(JRn) 
such that 

l l um - u i i Hl (JRn) ---+ 0 as m ---+ oo. (5) 
Therefore, by the Schwarz inequality, we have 

and 

(6) 

ln (:� - �::) v dx < :� - �:: 
2 
l l v l l 2 · (7) 

The right sides of both (6) and (7) tend to zero as m ---+ oo by (5) . Hence 

u- dx = l1m um- dx 1 ov . 1 ov 
}Rn OXi m�oo JRn OXi . 1 aum 1 ou := - hm 8 v dx = - �v dx, 

m�oo }Rn Xi }Rn UXi 
using the fact that um E C� (JRn) for all m and the definition of the distri
butional derivative .  

To prove (2) , note first that the assumption u�v E L1 (JRn) implies that 
(Re u)+ (�v)+ E L1 (JRn) , (Re u)_ (�v)+ E L1 (JRn) , etc . By Corollary 6. 18, 
(Re u )± are functions in H1 (JRn) .  Thus, it suffices to prove the theorem 
in the case in which u is real and nonnegative . Again, by Corollary 6 . 18 , 
Ji (x) := min(u(x) , j )  is in H1 (JRn) and Ji ---+ u in H1 (JRn) . Pick ¢ E C�(JRn) 
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with ¢ radial and nonnegative and with ¢(x) = 1 for l x l < 1 .  By Lemma 
7.4, the truncated functions ui (x) := cp(x/j )fi (x) are in H1 (JRn) and, as in 
Sect . 7 .6 , it follows that ui ---+ u in H1 (JRn) and the convergence is pointwise 
and monotone . Clearly, ui (�v)± < u(�v)± E L1 (JRn) and hence 

.lim jui (�v)± = j u(�v)± 
J ----+00 

by dominated convergence . Thus , it suffices to prove (2) in the case in which u is bounded and has compact support . As in the proof of Theorem 7 .6 ,  we 
replace u by Uc: := jc: * u and note that Uc: E C� (JRn) is bounded, uniformly 
in c,  and its support lies in a fixed ball , independent of c .  Again, as in 
Sect . 7 .6 ,  Uc: ---+ u in H1 (JRn) and, by Theorems 2 .7  and 2 . 16 ,  there exists 
a subsequence, which we again denote by uk , such that uk ---+ u pointwise 
almost everywhere . Hence, J u�v = lim J uk �v = - lim J '\luk · '\lv = - J '\lu · '\lv . k--+oo k--+oo 

The nonnegative truncated functions ui can be used to prove the last 
assertion of the theorem. By the above, we know that - J ui �v 
J '\lui · '\lv, since ui is bounded and has bounded support . Clearly, 

j '\lui · '\lv --+ j '\lu · '\lv 
and, by monotone convergence, J ui f ---+ J uf . Likewise , J ui g ---+ J ug . 
Since J ug < oo (because g E L2 (JRn) ) ,  we must have that J uf < oo .  

Consequently, u�v E L1 (JRn) ,  and thus (2) is proved . • 

7.8 THEOREM (Convexity inequality for gradients) 

Let f, g be real-valued functions in H1 (JRn) .  Then 

r vJJ2 + g2 2 (x) dx <  r ( l'\lf l 2 (x) + l'\lg j 2 (x) ) dx. ( 1 ) }TR.n }TR.n 
If, moreover, g(x) > 0, then equality holds if and only if there exists a 
constant c such that f (x) = c g (x) almost everywhere .  

REMARKS. ( 1 ) g > 0 means , by definition, that for any compact K C JRn 
there is an c > 0 such that the set { x E K : g(  x) < c} has measure zero. 

(2) Inequality ( 1 ) is equivalent to 

ln j'\l jF j (x) l 2 < ln l'\1 F(x) l 2 

for complex-valued functions . 
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PROOF. By Theorem 6 . 17  the function J f (x) 2 + g(x)2 is in H1 (JRn) and 
{ f(x)Vf (x)+g(x)Vg(x) ( \7 J j2 + g2) (x) = 

0 
J f(x) 2+g(x)2 

Now, the following identity is obvious : 

if j (X) 2 + g (X) 2 =/=- 0, 
otherwise . 

(2) 

from which ( 1 )  is immediate . Let us assume that g > 0 and that equality 
holds in ( 1 ) .  This means that 

g(x)\1 f (x) == f (x)\1 g(x) (3) 

a.e. on JRn by (2) . 
For ¢ in C� (JRn) consider the function h == ¢/g . It is easy to see that h 

is in H1 (JRn) and that the following holds in V' (JRn) : 

r7h( ) == _ \1 g(x) ,�. ( ) \1 ¢(x) 
v x g(x)2 'f' 

x + 
g(x) . 

To prove this , one approximates h(x) by 

(4) 

and applies Theorem 6 . 16 and a simple limiting argument using the fact 
that g > 0 .  Thus h8 ---+ h in H1 (JRn) as 6 ---+ 0 .  

Now 

since f (x)\1g(x) jg(x) 2 == \lf(x)jg(x) almost everywhere , by (3) . 
By Theorem 7. 7 

r \7 f(x)h(x) dx = - r \7h(x)f (x) dx, }�n }�n 
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from which we conclude that 

1 f (x) 
( ) 

\ltj>(x) dx = 0. 
JRn g X 

Since g > 0, we conclude that f(x)/g(x) is in Lfoc(JRn) and is therefore a 
distribution. Since ¢ is an arbitrary test function, 

\7(f /g) == 0 

in V' (JRn) and, by Theorem 6. 1 1 , f (x)jg(x) is constant almost every
where. • 

7.9 THEOREM (Fourier characterization of H1 (JRn) )  

Let f be in L2 (JRn) with Fourier transform 7 . Then f is in H1 (JRn) ( i. e . , 
the distributional gradient \7 f is an L2 (JRn) vector-valued function) if and 
only if the function k �----+ l k l7(k) is in L2 (JRn) .  If it is in L2 (JRn) , then 

and therefore 

....- -
\7 f(k) == 2nikf(k) , ( 1 ) 

(2 )  

PROOF. Suppose f E H1 (JRn) . By Theorem 7 .6  there is a sequence fm 
in C� (JRn) for m = 1 , 2 , . . .  that converges to f in H1 (JRn) . Since fm E 

u --- -
C� (JRn) , a simple integration by parts shows that \7 fm (k) == 2nikfm (k) .  ----- ....- -
By Plancherel's Theorem 5 .3 , \7 fm converges to \7 f and fm converges to 
7 in L2 (JRn) . For a subsequence, we can also require that both of these - -
convergences be pointwise . Therefore kfm (k) ---+ kf(k) ,  pointwise a.e . Also, - ....- ....- -
2nikfm(k) ---+ \7 f(k) pointwise a.e . Therefore , \7 f(k) == 2nikf(k) . 

Now suppose h(k) = 2nik7(k) is in L2 (JRn ) . Let h := (h)v and ¢ E 
C� (JRn) . Then 

The first and fourth equality is Parseval's formula 5. 3 (2) . The second equal--
ity is the integration by parts formula for \7¢ mentioned above. The distri-
butional gradient of f is thus h (see 7 .2 ( 1 ) ) .  • 
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e Heat Kernel 

Theorem 7 .9 yields the following useful characterization of I I V' f l l 2 in 7 . 10 (2) .  
Define the heat kernel on ]Rn x ]Rn to be 

The action of the heat kernel on functions is , by definition, 

(etLl f) (x) = r etLl (x, y)f (y) dy . }�n 

If f E £P (JRn) with 1 < p < 2 ,  then, by Theorem 5 .8 ,  

(4) 

(5) 

(6) 

Equation (6) explains why the heat kernel is denoted by et� .  The action 
of � on Fourier transforms is multiplication by - 1 21rk l 2 (see Theorem 7.9) , 
while the heat kernel is multiplication by exp [-t l 27rk l 2] . 

From (4) and (5) it is evident that when f E £P (JRn) with 1 < p < oo ,  

then the function 9t , defined in (5) is an infinitely differentiable function of 
x, t ,  for x E JRn and t > 0,  and the limit 

d l. -1 [ ] -d 9t := Im c 9t+c: - 9t t c:�o 

exists as a strong limit in £P (JRn) . This function satisfies the heat equation 

d f:l.gt = dt 9t 

classically for t > 0,  and with the ' initial condition' (as a strong limit) 

lim gt = f. tlO 

(7) 

(8) 

The heat equation is a model for heat conduction and 9t is the temperature 
distribution (as a function of x E JRn) at time t .  The kernel, given by (4) , 
satisfies (7) for each fixed y E JRn (as can be verified by explicit calculation) 
and satisfies the initial condition 

(9) 
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7. 10 THEOREM (-a is the infinitesimal generator of the 
heat kernel) 

A function f is in H1 (JRn) if and only if it is in L2 (JRn) and 

( 1 ) 

is uniformly bounded in t .  (Here ( · , · ) is the L2 ,  not the H1 , inner product. ) 
In that case 

(2) 

PROOF.  By Theorem 7 .9 it is  sufficient to show that f E L2 (JRn) and It ( !) 
is uniformly bounded in t if and only if 

(3) 

Note that by Plancherel 's Theorem 5 .3  

(4) 

It is easy to check that y- 1 ( 1 - e - Y ) is a decreasing function of y > 0, and 
hence 1/t times the factor [ ] in (4) converges monotonically to j 21rk j 2 as 
t � 0 . Thus if f E H1 (JRn) ,  It (!) is uniformly bounded. Conversely if 
It (!) is uniformly bounded, Theorem 1 .6 (monotone convergence) implies 
that supt>O It (f) = limt�o It (f)  = fJRn j 27rk l 2 l f(k) l 2 dk < oo. By Theorem 
7.9 ,  f E H1 (JRn) .  • 

Theorem 7 .9 motivates the following. 

( 1 ) 

By combining ( 1 )  with 7 .9 (2 ) we have that 

3 2 2 2 1 1 J I I Hl (JRn) > I I J I I H1/2 (JRn) (2 ) 
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since 21r jk j < � [(21r j k j )2 + 1] .  This , in turn, leads to the basic fact of inclu-. SlOn: 
(3) 

The space H112 (JRn) endowed with the inner product 

(4) 

is easily seen to be a Hilbert-space . (The completeness proof is the same as 
for the usual L2 (JRn ) space except that the measure is now ( 1  + 21r j k j )  dk 
instead of dk. ) H112 (JRn ) is important for relativistic systems , in which one 
considers three-dimensional 'kinetic energy' operators of the form 

(5) 

where p2 is the physicist 's notation for -�, and m is the mass of the par
ticle under consideration. The operator (5) is defined in Fourier space as 
multiplication by y'j 21rk j 2 + m2 , i .e . , 

(6) 

The right side of (6) is the Fourier transform of an L2 (JR3 )-function (and thus 
y'p2 + m2 makes sense as an operator on functions ) provided f E H1 (JR3 ) 
( not H112 (JR3 ) ) . However , as in the case of p2 = -�, we are more interested 
in the energy, which is the sesquilinear form 

and this makes sense if f and g are in H112 (JR3 ) . 
The sesquilinear form (g, IP i f) is defined by setting m = 0 in (7) . 
Note the inequalities 

N N N 
L Ai < L JiC < v'N L Ai 
i=l i=l i=l 

which hold for any positive numbers Ai ·  Consequently, a function f is in 
H112 (JR3N ) if and only if 
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is finite . This fact is always used when dealing with the relativistic many
body problem, i .e . , the obvious requirement that the above integral be finite 
is no different from requiring that f E H112 (JR3N ) .  

We wish now to derive analogues of Theorems 7.9 and 7. 10 for IP I in 
place of jp j 2 . First , the analogue of the kernel et� = e-tp2 is needed. This 
is the Poisson kernel [Stein-Weiss] 

e-t iPI (x , y) := (e-t iP I ) V (x - y) = { exp [-27r l k l t + 27rik · (x - y)] dk . (8) }�n 

This integral can be computed easily in three dimensions because the an
gular integration gives 47r l k l -1 lx - y j - 1  sin( l k l l x - y j )  and then the l k l 2 d l k l 
integration is just the integral of l k l times an exponential function. The 
three-dimensional result is 

-t lp l - __!_ t e (x, y) - 7r2 [t2 + lx - y j2 ] 2 ' n = 3 .  

Remarkably, (8) can also be evaluated in n dimensions . The result is 

(9) 

-t lp l ( ) _ (n + 1 ) - (n+1)/2 t e x, y - r 2 7r [t2 + l x - Y l 2j (n+l )/2 . ( 10) 

It can be found in [Stein-Weiss , Theorem 1 . 14] , for example . 
Another remarkable fact is that the kernel of exp { -tJp2 + m2 } can 

also be computed explicitly. The result , in three dimensions , is [Erdelyi
Magnus-Oberhettinger-Tricomi] 

e-ty'p2+m2 (x y) = m2 t 
K (m [ lx-y j 2+t2] 1f2 ) ' 27r2 t2 + lx - Y l 2 2 ' 

where K2 is the modified Bessel function of the third kind. 

n = 3, ( 1 1 )  

In fact , this can be done in any dimension as was pointed out to us by 
Walter Schneider . The answer is 

-ty'p2+m2 ( ) e x, y 
_ ( m ) (n+1)/2 t _ 2 2 1/2 - 2 27r [t2 + l x - Y I 2J (n+l)/4 K(n+l)j2 (m [ lx Y l + t ] ) , 

for x, y E JRn . This follows from 
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and from 

fooo xv+l lv (xy) e-aJx2+f32 dx 

= (!) 112 a{3v+3/2 (y2 + a2 ) -vf2-3/4yvKv+3j2 (f3Jy2 + a2 ) .  

Here lv is the Bessel function of v-th order . Using that 

as z ---+ 0 and Re J-L > 0 ,  we easily obtain formula ( 10) . 

The kernels (9) , ( 10) and ( 1 1 ) are positive, L1 (JRn)-functions of (x - y) 
and so, by Theorem 4.2 (Young's inequality) , they map LP (JRn) into LP (JRn) 
for all p > 1 by integration, as in 7 .9 (5) . In fact , for all n, 

( 12) 

since the left side of ( 12) is just the inverse Fourier transform of ( 1 1 ) evalu
ated at k = 0.  

The analogues of Theorems 7.8 and 7 .9 can now be stated. 

7.12 THEOREM (Integral formulas for (/, IP I /) and 
(f, Jp2 + m2 f) ) 

(i) A function f is in H112 (JRn) if and only if it is in L2 (JRn) and 

If;2 (f) = lim � [ (!, f) - (!, e -t iP I f)] 
t---70 t 

is uniformly bounded, in which case 

(ii) The formula ( in which ( · , · )  is the L2 inner product) 

( 1 ) 

(2) 

� [ (f f) _ (f -t iP i f) ] _ 
r (�) { { i f (x) - f (y) l 2 d d ( ) t ' ' e - 27r(n+l)/2 }!Rn }!Rn (t2 + (x - y)2 ) (n+l)/2 X y 3 

holds, which leads to 

r ( n!l ) r r l f (x) - f (y) j 2 (!, IP I J) = 27r(n+l)/2 }JR.n }JR.n l x - Y ln+l dx dy . (4) 
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( iii) Assertion (i) holds with IP I replaced by Jp2 + m2 in ( 1 ) and (2) , 
for any m > 0 .  

(iv) If n = 3, the analogue of ( 4) is 

(f, [Jp2 + m2 - m] f) = 4
m: { { i f (

�
) - f

i�
) I 2 K2 (m lx - y i ) dx dy .  

1r }JR3 }JR3 X - y 
(5) 

REMARK. Since I a - b l > l l a l - l b l l for all complex numbers a and b, (4) 
tells us that 

(6) 

PROOF. The proofs of (i) and (iii) are virtually the same as for Theorem 
7. 10 . Equation (3) is just a restatement of ( 1 ) obtained by using 7 . 1 1 (8) 
and 7. 1 1 ( 10) with m = 0 . Equation (4) is obtained from (3) by using (2) 
and monotone convergence. Equation (5) is derived similarly since K2 is a 
monotone function. Equation 7. 1 1 ( 12) is used in (5) . • 

7. 13 THEOREM (Convexity inequality for the relativist ic 
kinetic energy) 

Let f and g be real-valued functions in H112 (JR3)  with f ¢. 0 .  Then, with 
T(p) = Jp2 + m2 - m, and m 2:: 0, we have that 

( J j2 + g2 ,  T(p) J j2 + g2) < (!, T(p)f) + (g , T(p)g) .  ( 1 ) 
Equality holds if and only if f has a definite sign and g = cf a. e . for some 
constant c .  

PROOF. Using formula 7. 12 (5) and the fact that K2 is strictly positive, 
the Schwarz inequality 

f (x)f(y) + g (x)g (y) < J f(x)2 + g (x)2 J f (y) 2 + g (y)2 (2) 
yields ( 1 ) . To discuss the cases of equality we square both sides of (2 ) to see 
that equality amounts to 

f (x)g (y) = f (y)g (x) (3) 
for almost every point (x, y) in JR6 . By Fubini 's theorem, for almost every 
y E JR3 equation (3) must hold for almost every x in JR3 . Picking Yo such 
that f(yo) =/=- 0 equation (3) shows that g (x) = Af (x) for the constant 
A = g(y0)/  f(y0) . Inserting this back into (2 ) (with equality sign) we see 
that f must have a definite sign. • 
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e We continue this chapter by stating the analogue of Theorem 7.6 for 
Hlf2 (JRn) . 

If f is in H112 (I�n) ,  then there exists a sequence of functions fm in C�(JRn) 
such that 

PROOF.  On account of Theorem 7.6 it suffices to show that H1 (JRn) c 
H112 (JRn) densely and that the embedding is continuous (i .e . , l l fm-f i iHl (JRn) 
----t 0 implies l l fm -J I IHI/2 (JR.n) ----t 0) . By definition, f E H112 (1�n) if ] satisfies 

r ( 1  + 27r l k l ) l7(k) l 2 dk < oo. }}Rn 
Pick ]m (k) = e-k2fm] (k) and note that , by Theorem 7 .9 , fm E H1 (JRn) . 
But ,  by dominated convergence, 

I I J - Jm l l �l/2 (JR.n) 
= r ( 1  + 27r l k l ) ( 1 - e-k2/m) l](k) l 2 dk ----t 0 as m ----t ()() . • }}Rn 

7. 15 ACTION OF -v'=A AND J-a + rn2 - rn 
ON DISTRIBUTIONS 

If T is a distribution, then it has derivatives , and thus it makes sense to 
talk about �T. It is a bit more difficult to make sense of �T since , by 
definition, � T would be given by 

V-ET(¢) := T(V-ZS ¢) ( 1 )  
for ¢ in V(JRn) . This is not possible , however, since the function 

is not generally in C�(JRn) .  Therefore ( 1 ) does not define a distribution. As 
an amusing aside, note that the convolution 

(V-ZS ¢) * (V-ZS ¢) = -�(¢ * ¢) 
is always in C� (JRn) when ¢ is . 
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If T is a suitable function, however, then ( 1 ) does make sense . More 
precisely, if f E H112 (JRn) ,  then FE f ( and ( J -� + m2 - m)f) are both 
distributions, i .e . , the mapping 

¢ f-t r-;s. J (¢) := r 1 27rk l7(k)¢;( -k) dk }�n 

makes sense (since Jlkl] E L2 (JRn) by definition) , and we assert that it is 
continuous in V(JRn) . To see this , consider a sequence cj) � ¢ in V(JRn) .  
By the Schwarz inequality and Theorem 5 . 3  

,r-;s. ! (¢ - ¢J) I < 1 1 1 1 1 2 (Ln , 27rk l 2 1¢(k) - ¢i (k) l 2 dk) 112 
= 1 1 / 1 1 2 1 1\7 (¢ - ¢j ) l l 2 · 

But l l\7 (¢ - <f) ) l l 2 � 0 as j � oo; hence FE /(¢ - <f) ) � 0 as j � oo 
and thus FE f is in V' (JRn) .  A similar definition and proof applies to 
(v'-� + m2 - m)f .  

An important consequence of this discussion is the analogue of 7. 7(3) : 
the modified 'Schrodinger ' equation 

(2) 
makes sense when � is in H112 (JRn) .  (Alternatively, we can have n = 3N 
and replace the first term by �f 1 v=Ki � . )  

Another important fact is that the density of C� (JRn) in H112 (JRn) (The
orem 7. 14) allows us to imitate the proof of 7 .7 (2) and conclude that 

f ur-fS. v = f j 27rk jV(k)U(-k) dk }�n }�n (3) 

when FE v E Lfoc (JRn) and uFE v E £1 (JRn) . The latter condition is 
guaranteed by the condition FE v = f + g with f < 0 in Lf0c (JRn) and 
with g in L2 (JRn) .  See Exercise 3 .  

7. 16 THEOREM (Multiplication of H112-functions by 
C00-functions) 

Let � be a bounded function in C00(JRn) with bounded derivatives, and let f 
be in H112 (JRn) . Then the pointwise product of � and j, 

(� · f) (x) = �(x)f (x) , 
is also a function in H112 (JRn) . 



188 The Sobolev Spaces H1 and H112 

PROOF. It is obvious that � ·  f is in L2 (JRn) . Using 7. 12 (4) , it remains to 
show that 

I : = r r I ( '1/J . f) (X) - ( '1/J . f) ( y) 1 2 1 X - y 1 -n-l dx dy ( 1 ) }�n }�n 
is finite . Using 

1 l ab - cd l 2 = 4 1 (a - c) (b + d) +  (a + c) (b - d) l 2 
< I a - c l 2 ( l b l 2 + l d l 2 ) + ( l a l 2 + l c l 2 ) l b - d l 2 , 

we have that 

Since � is uniformly bounded, the second term in (2) is bounded by a con
stant times (/, IP i f ) . The first term is easily estimated by considering the 
regions in JRn x JRn where l x - Y l < 1 and where l x - Y l > 1 separately. In 
the former we use the estimate I� ( x) - � ( y) 1 2 < C I x - y 1 2 for some constant 
C (since � is differentiable with uniformly bounded derivative) to find the 
bound 

C { l x - Y l -n+l l f (x) l 2 dx dy = C { l x l -n+l dx l l f i i � -J ix-y l < l Jlx l < l 
In the other region we use the fact that � is uniformly bounded to get the 
estimate 

C f l x - y l -n-1 l f (x) l 2 dx dy = C  f l x l -n-1 dx l l f l l � , Jlx-y l>l Jlx l > l 
which proves the theorem. • 

e Next , we give one of the most important applications of the concept of 
symmetric-decreasing rearrangement expounded in Chapter 3 .  

7. 17 LEMMA (Symmetric decreasing rearrangement 
decreases kinetic energy) 

Let f : JRn � JR be a nonnegative measurable function that vanishes at 
infinity ( cf. 3 .2) and let f* denote its symmetric-decreasing rearrangement 
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( cf. 3 .3) . Assume that \7 f, in the sense of distributions, is a function that 
satisfies l l \7 f l l 2 < oo.  Then \7 f* has the same property and 

l l \7 f 1 1 2 > l l\7  j* 1 1 2 · 
Likewise if (f, IP if )  < oo, then 

(j, IP i f) > (!* ' IP i f* ) .  

( 1 ) 

(2) 
Note that it is not assumed that f E L2 (JRn) . The inequality in (2) is strict 
unless f is the translate of a symmetric-decreasing function . 
REMARKS. ( 1 ) To define (f, IP if) for functions that are not in L2 (I�n) , 
we use the right side of 7 . 12 (4) , which is always well defined (even if it is 
infinite) . 

(2) Equality can occur in ( 1 ) without f = f* . However, the level sets , 
{ x : f ( x) > a} , must be balls [Brothers-Ziemer] . 

(3) Inequality (2) and its proof easily extend to J p2 + m2 . 
(4) It is also true, but much more difficult to prove, that ( 1 ) extends to 

gradients that are in LP (JRn) instead of L2 (JRn) , namely l l \7f l l p > l l\7f* l lp , 
for 1 < p < oo ( [Hilden] , [Sperner] , [Talenti] ) ,  and to other integrals of the 
form J 'll ( l\7  f l ) for suitable convex functions W (cf. [Almgren-Lieb] , p .  698) . 
Part of the assertion is that when \ll ( I \7 f I ) is integrable , then \7 f* is also a 
function and 'll ( l\7f* l ) is integrable . 

PROOF ! PART 1 ,  REDUCTION TO £2 . 1  First we show that it suffices to 
prove ( 1 ) and (2) for functions in L2 (JRn) . For any f satisfying the assump
tions of our theorem we define 

fc (x) = min[max(f(x) - c, O) , 1/c] 
for c > 0 . It follows from the definition of the rearrangement that (fc) * = 
(f* ) c · Since f vanishes at infinity, fc is in L2 (JRn) . By Theorem 6 . 19 , 
\7fc(x) = 0 except for those x E JRn with c < f (x) < 1/c + c ; for such 
x, \7 fc (x) equals \7 f (x) . Thus , by the monotone convergence theorem 
limc---70 I I  \7 f c I I  2 = I I  \7 f I I  2 . Like wise , 

limc---70 l l \7 (fc) * l l 2 = limc---70 l l\7 (j* ) c l l 2 = l l \7 f* 1 1 2 · 
To verify the analogous statement for (f, IP i f) we use that , by definition, 

(!, IP IJ) = const . J J l f (x) - f(y) l 2 / lx - Y ln+l dx dy 

together with the fact (which follows easily from the definition of fc) that 
lfc(x) - fc(Y) I < l f (x) - f (y) l for all x ,  y E JRn . Again by monotone conver
gence we have that limc---7o (fc , IP i fc) = (f, IP i f) and the same holds for f* , 
as above . 
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Thus , we have shown that it suffices to prove the theorem for fc , which 
is a function in H1 (JRn) ,  respectively H112 (JRn) .  

! PART 2 ,  PROOF FOR £2 . 1  Inequality ( 1 ) is now a consequence of formula 
7. 10( 1 ) . Indeed, for f E H1 (JRn) we have I I V' f l l 2 = limt---70 It (f) , where 

It (f) = t-1 [(/, f) - (/, e�t f)] . 

The £2 (JRn) norm of f does not change under rearrangements and the second 
term increases by Theorem 3 .7 (Riesz 's rearrangement inequality) . Thus 
It (!* ) < It (!) and by Theorem 7. 10 It (!* ) converges to I I V'/* 1 1 2 · 

Inequality (2) is a consequence of Theorem 7. 12 (4) . We write the kernel 
K(x - y) = l x - y j -n-1 as 

K(x - y) = K+ (x - y) + K_ (x - y) 

with 
K_ (x) : =  ( 1  + lx l 2 ) - (n+1)/2 . 

It is easy to check that both K+ and K_ are symmetric decreasing and 
K_ is strictly decreasing. Let I_ (J) denote the integral in 7. 12 (4) with K 
replaced by K_ , and similarly for K+ . Since K_ is in L1 (JRn) ,  I- (f) is the 
difference of two finite integrals . In the first l f (x) - f (y) j 2 is replaced by 
2 l f (x) l 2 and in the second by 2/ (x) f (y) .  The first does not change if f is 
replaced by f* while the second strictly increases unless f is a translate of 
f* by Theorem 3 .9 (strict rearrangement inequality) . 

This proves the theorem if we can show that I+ (f) > I+ (f* ) .  To do 
this we cut off K+ at a large height c, i .e . , K+ (x) = min(K+ (x) , c) . Since 
K+ E L1 (JRn) ,  the previous argument for K_ gives the desired result for 
K+ . The rest follows by monotone convergence as c � oo .  • 

7.18 WEAK LIMITS 

As a final general remark about H1 (JRn) and H112 (JRn) we mention the gen
eralizations of the Banach-Alaoglu Theorem 2 . 18 (bounded sequences have 
weak limits) ,  Theorem 2 . 1 1  (lower semicontinuity of norms) and Theorem 
2 . 12 (uniform boundedness principle) .  To do so we first require knowledge 
of the dual spaces-which is easy to do given the Fourier characterization 
of the norms , 7 .9 (2) and 7. 1 1 ( 1 ) .  These formulas show that H1 (JRn) and 
H112 (JRn) are just £2 (JRn , dJ-L) with 

J-L(dx) = ( 1  + 47r2 j x j 2 ) dx for H1 (JRn) 
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and 

Thus , a sequence jJ converges weakly to f in H1 (JRn) means that as j ---+ oo 

for every g E H1 (JRn) .  Similarly, for H112 (JRn) ,  

r [Ji (k) - 7 (k) J9(k) ( l + 21r l k l ) dk --. o }�n 

for every g E H112 (JRn) .  

( 1 ) 

The validity of Theorems 2 . 1 1 ,  2 . 12 and 2 . 18 for H1 (JRn) and H112 (JRn) 
are then immediate consequences of those three theorems applied to the case 
p � 2 .  

e The following topics , 7 . 19 onwards, can certainly be omitted on a first 
reading. They are here for two reasons : (a) As an exercise in manipulating 
some of the techniques developed in the previous parts of this chapter ; (b) 
Because they are technically useful in quantum mechanics. 

7. 19 MAGNETIC FIELDS:  THE H1-SPACES 

In differential geometry it is often necessary to consider connections, which 
are more complicated derivatives than \7. The simplest example is a con
nection on a 'U ( 1) bundle' over ]Rn , which merely means acting on complex
valued functions f by (\7 + iA(x) ) , with A(x) : JRn ---+ JRn being some 
preassigned, real vector field . The same operator occurs in the quantum 
mechanics of particles in external magnetic fields (with n � 3) . The intro
duction of a magnetic field B : JR3 ---+ JR3 in quantum mechanics involves 
replacing \7 by \7 + iA(x) (in appropriate units) . Here A is � called a vector 
potential and satisfies 

curl A �  B. 
In general A is not a bounded vector field, e .g. , if B is the constant magnetic 
field (0 ,0 , 1 ) , then a suitable vector potential A is given by A(x) � ( -x2 , 0, 0) . 
Unlike in the differential geometric setting, A need not be smooth either , 
because we could add an arbitrary gradient to A, A ---+ A + \7x, and still get 
the same magnetic field B. This is called gauge invariance . The problem 
is that X (and hence A) could be a wild function-even if B is well behaved. 
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For these reasons we want to find a large class of A's for which we can 
make (distributional) sense of (V' +iA(x) ) and (V' +iA(x) ) 2 when acting on a 
suitable class of £2 (JR3)-functions . It used to be customary to restrict atten
tion to A's with components in C1 (JR3) but that is unnecessarily restrictive, 
as shown in [Simon] (see also [Leinfelder-Simader] ) . 

For general dimension n, the appropriate condition on A, which we as
sume henceforth, is 

Aj E Lfoc (JRn) for j == 1 ,  . . .  , n . ( 1 )  

Because of this condition the functions Aj f are in Lfoc (JRn) for every f E 
Lfoc (JR n) .  Therefore the expression 

(V' + iA)j, 

called the covariant derivative (with respect to A) of j , is a distribution 
for every f E Lfoc (JRn) . 

7. 20 DEFINITION OF H_i (JRn) 

For each A :  JRn ---+ JRn satisfying 7. 19 ( 1 ) ,  the space H1(JRn) consists of all 
functions f : JRn ---+ C such that 

f E L2 (JRn) and (8j + iAJ )f E L2 (JRn) for j == 1 ,  . . .  , n. ( 1 ) 
We do not assume that V' f or Af are separately in L2 (JRn) (but ( 1) does 
imply that Ojj is an Lfoc (JRn)-function) . 

The inner product in this space is 
n 

(h , h ) A = (h , h) + L ( (Oj + iAj )h , (Oj + iAj )h) , (2) 
j=l 

where ( · , · )  is the usual L2 (JRn) inner product . The second term on the right 
side of (2) , in the case that /1 == /2 == j, is called the kinetic energy of f .  
It is to be compared to the usual kinetic energy I I V'/ 1 1 � · 

As in the case of H1 (JRn) (see 7 .3) , H1(JRn) is complete, and thus is a 
Hilbert-space. If fm is a Cauchy-sequence, then, by completeness of £2 (JRn) , 
there exist functions f and bj in L2 (JRn) such that 

as m ---+ oo. We have to show that 
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The proof of this fact is the same as that of Theorem 7 .3 ,  and we leave the 
details to the reader. (Note that for any ¢ E C�(JRn) ,  Aj¢ E L2 (JRn) . ) 

Important Remark: If � E H1(JRn) ,  then (\7 + iA)� is an JRn-valued 
L2 (JRn)-function. Hence (\7 + iA)2� makes sense as a distribution. 

e If f E H1(JRn) ,  it is not necessarily true that f E H1 (JRn) (as we re
marked just after the definition 7. 20 ( 1 ) ) . However , l f l is always in H1 (JRn) 
as the following shows . Theorem 7.2 1  is called the diamagnetic inequality 
because it says that removing the magnetic field (A == 0) allows us to de
crease the kinetic energy by replacing f(x) by l f l (x) (and at the same time 
leaving l f (x) l 2 unaltered) . (Cf. [Kato] . ) 

7.21 THEOREM (Diamagnetic inequality) 

Let A : JRn ---+ JRn be in Lf0c (JRn) and let f be in H1 (JRn) .  Then l f l , the 
absolute value of f, is in H1 (JRn) and the diamagnetic inequality, 

l \7 1/ l (x) l < l (\7 + iA)f (x) l , ( 1 ) 

holds pointwise for almost every x E JRn . 

PROOF. Since f E L2 (JRn) and each component of A is in Lf0c (JRn) ,  the 
distributional gradient of f is in Lfoc (JRn) .  Writing f == R + if we have, 
by, Theorem 6. 17 (derivative of the absolute value) , that the distributional 
derivatives are functions in Lfoc (JRn) ,  and furthermore 

{ Re ( 1� 1 8jf) (x) if f(x) =1- 0, (8j l / l ) (x) == 
0 if j (X) == 0. 

Here f == R - if is the complex conjugate function of f . Since 

we see that (2) can be replaced by 

(2) 

(oi l f l ) (x) == 
{ R

0 
e c�l (8i + iAi )f) (x) if f (x) # 0 , (3) 

if f(x) == 0 . 

Then ( 1 ) follows from the fact that I z I > I Re z I · Since the right side of ( 1 ) 
is in L2 (JRn) ,  so is the left side .  • 



194 The Sobolev Spaces H1 and H112 

7.22 THEOREM (Cg" (IRn) is dense in H_l(IRn) ) 
If f E Hi (JRn) , then there exists a sequence fm E C� (JRn) such that 

I I ! - fm i i L2 (JRn) - t 0 and 1 1 (\7 + iA) (f - fm) I I £2 (JRn) � 0 

as m � oo .  Moreover, l l fm i iP < l l f i iP for every 1 < p < oo such that 
j E £P (JRn) .  

PROOF . Step 1 .  Assume first that f is bounded and has compact support . 
Then I I J I I A < oo implies that f is in H1 (JRn) . This follows simply from the 
fact that Aif E L2 (JRn ) . Now take fm == Jc: * f as in 2 . 16 with c == 1/m 

and with j > 0 and j having compact support . By passing to a subsequence 
(again denoted by m) we can assume that 

fm � f, Oijm � Oij in L2 (JRn ) 
and fm � f pointwise a.e. Since fm (x) is again uniformly bounded in x, 
the conclusion follows by dominated convergence . 

Step 2 .  Next we show that functions in Hi(JRn) with compact support 
are dense in Hi (JRn) .  Pick X E C� (JRn) with 0 < X < 1 and X 1 in the 
unit ball {x E JRn : l x l < 1 } , and consider Xm (x) == x(x/m) . Then, for any 
f E Hi (JRn) ,  Xmf � f in L2 (JRn ) . Further, by 6 . 12 (3) ,  

(\7 + iA)Xmf == Xm (\7 + iA)f - i (\7Xm)f, 

and hence 
1 1 1 (\7 + iA) (f - Xmf) l l 2 < 1 1 ( 1 - Xm) (\7 + iA)f l l 2 + - sup l\7x(x) l l l f l l 2 · m x 

Clearly both terms on the right tend to zero as m � oo .  

Step 3 .  Given f E Hi (JRn) ,  we know by the previous step that it suffices 
to assume that f has compact support . We shall now show that this f can 
be approximated by a sequence, fk , of bounded functions in Hi (JRn) such 
that l fk (x) l < l f (x) l for all x. This , with Step 1 ,  will conclude the proof. 

Pick g E C�(JR) with g(t) 1 for l t l < 1 ,  g(t) 0 for l t l > 2 and 
define 9k (t) : ==  g(t/k) for k == 1 ,  2 , . . . .  Consider the sequence Jk (x) : ==  

f (x)gk ( l f l (x) ) . The function fk is bounded by 2k. Assuming the formula 

( 1 ) 
for the moment , we can finish the proof. First note that in L2 (JRn ) 
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by dominated convergence. Furthermore, 

I f g� ( l f l ) I == l f l lg� ( l f l ) I < xk sup l g' (t) I , t 

where xk == 1 if 1 ! 1 > k and zero otherwise. By Theorem 7 .21 (diamagnetic 
inequality) oi lf l E L2 (JRn) and hence l l f (gk )' ( l f l ) oif l l 2 --+ 0 as k --+ oo. 

The proof of ( 1) is a consequence of the chain rule (Theorem 6 . 16) . If we 
write f == R + if, then fk == ( R + il)gk ( v' R2 + 12 ) which is a differentiable 
function of both R and I with bounded derivatives . By assumption, the 
functions R and I have distributional derivatives in Lfoc (JRn) .  Therefore the 
chain rule can be applied and the result is ( 1 ) . • 

Exercises for 
Chapter 7 

1 .  Show that the characteristic function of a set in JRn having positive and 
finite measure is never in H1 (JRn) ,  or even in H112 (JRn) .  

2 .  Suppose that /1 , /2 , f3 , . . . is a sequence of functions in H1 (JRn) such 
that Ji � f and CV' Ji ) i  � 9i for i == 1 ,  2 ,  . . .  , n weakly in L2 (JRn) .  Prove 
that f is in H1 (JRn) and that 9i == CV' f)i · 

3 . Prove 7. 15 (3) , noting especially the meaning of the two sides of this 
equation and the distinction between y'="K v as a function and as a dis
tribution. Cf. Theorem 7. 7. 

4. Suppose that f E H1 (JRn) .  Show that for each 1 < i < n 

r l 8d l 2 = lim ; r l f (x + tei ) - f (x) l 2 dx , }"M.n t�o t }"M.n 
where ei is the unit vector in the direction i . 

5. Verify equations 7.9 (7) and 7.9 (8) about the solution of the heat equation. 

6. Suppose that 01 , 02 , 03 , . . .  are disjoint , bounded, measurable subsets of 
JRn . Denote by Dj the diameter of Oj ( i .e . , sup{ lx - Y l : x E Oj , Y  E Oj } )  
and by IOi l its volume. Let f E H112 (JRn) and define the average of f in 
Oj to be 
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Prove the strict inequality 

This is an example of a Poincare inequality for H112 (�n) .  

7. Use the result of Exercise 6 to show that for functions /1 , /2 , . . . , f N ,  each 
in H112 (�n) ,  and any measurable set 0 with diameter D, 

N r ( nt 1 ) In  I N 1 2 L/Ji , IP i fi ) < 
2 (n+l )/2 Dn+l L lfi (x) l dx - A , 

· 1 
n · 1 n J= J= 

where ,\ is the largest eigenvalue of the Gram matrix 

...., Hint. This is a problem in linear algebra. 

8.  A distributional inequality reminiscent of the diamagnetic inequality, 
7 . 2 1 ,  is Kato's inequality [Reed-Simon, Vol. 2] . 

We state it in a fairly general setting since it will be useful in 
Sect . 8. 17 .  Let A( x) be a coo (�n) function taking values in the set 
of real, symmetric , n x n matrices , i .e. , AT (x) == A(x) and the matrix 
elements are infinitely often differentiable functions on �n . Further, as
sume that ( ( ,  A( x) () > 0 for all ( E �n , where ( , ) is the usual inner 
product on �n . Consider the differential expression 

n 
Lf = L 8iAi,j (x)8j f . 

i ,j=l 

Note that if A(x) is the identity matrix , then L == �-
Prove that for any function f E Lfoc (�n) with Lf E Lfoc (�n) the 

distributional inequality L l f l > Re (sgnf [Lf] ) holds, i .e . , 

Ln l f (x) IL¢(x) dx > Ln Re (sgnf(x) [Lf(x)] ) ¢(x) dx 

holds for any nonnegative ¢ E C�(�n) .  Here, sgn is the signum func
tion 

s n == { f I I f I if f # o ,  
g f 

0 if f = 0 .  
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...., Hint. First prove the inequality for the case where f E C00(JRn) by 
computing LJIJ(x) l 2 + c2 . In a further step fix c and prove the 
inequality for f E Lfoc (JRn) by approximating it by coo functions 
J8 * f. Then take c to zero . 

9. Prove that there exists a unique function 9a E H1 (JR) such that 

for all functions f E H1 (JR) .  Here a is any real number and ( · ,  · ) Hl (R) is 
the inner product on H1 (JR) . Calculate this function 9a explicitly. Why 
is there no such 9a in higher dimensions? 
...., Hint. By integrating by parts , show that 9a satisfies a simple differen

tial equation that has already been discussed. Why is this integration 
by parts justified? 





Chapter 8 

Sobolev Inequalities 

8. 1 INTRODUCTION 

In general terms, a ' Sobolev inequality' has come to mean an estimation of 
lower order derivatives of a function in terms of its higher order derivatives . 
Such estimates , valid for all functions in certain classes , have become a 
standard tool in existence and regularity theories for solutions of partial 
differential equations , in the calculus of variations , in geometric measure 
theory and in many other branches of analysis . The ideas go back to [Bliss] , 
in one dimension, but achieved their true prominence through the work 
of [Sobolev] , [Morrey] and others . Over the years many variations on the 
original theme have been produced, but here we shall mention only the most 
basic ones and, among these, will prove only the simplest . 

The foremost example of a Sobolev inequality is the one relating the 
£2 (JRn) norm of the gradient of a function, f ,  defined on JRn , n > 3 ,  with an 
Lq (JRn) norm of f for some suitable q , i .e . , 

2n q == 2 ' n -
where Sn is a universal constant depending only on n. 

( 1 ) 

A similar inequality holds for the 'relativistic kinetic energy' ' IP I ' for 
n > 2 , 

(/, IP I !) > s� I I ! I I � , 

where, again, s� is a universal constant . 

2n q == 1 ' n - (2) 

As an example of their usefulness ,  we shall exploit these two inequalities 
in Chapter 1 1  to prove the existence of a ground state for the one-particle 
Schrodinger equation. 

-

199 
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A first and important step in understanding ( 1 ) and (2) is to note that 
the exponents q are the only exponents for which such inequalities can hold. 
Under dilations of ]Rn, 

x r-+ AX and f (x) r-+ f (xl A) ,  

the multiplication operators p and IP I in Fourier space multiply by A -1 , 
while the n-dimensional integrals multiply by An . Thus, the left sides of 
( 1 ) and ( 2) are proportional to An-2 and An-1 respectively. The right sides 
multiply by A2nfq .  Plainly, the two sides can only be compared when they 
scale similarly, which leads to q == 2n I ( n - 2) or q == 2n I ( n - 1) , respectively. 

Another thing to note is that ( 1 ) is only valid for n > 3 and (2) for 
n > 2 .  Hence, the question arises what inequalities should replace ( 1 ) in 
dimensions one and two and (2) in dimension one? There are many different 
answers , the usual ones being 

l l\7  ! I I �+ I I ! I I � > S2,q l l f l l � for all 2 < q < oo for n == 2 (3) 

(but not q == oo ) and 

df 2 
+ 1 1 ! 1 1 � > SI I I ! I I � dx 2 

for n == 1 .  (4) 

For the relativistic case we shall consider an inequality of the form 

(/, IP I !) + I I I I I � > s� ,q l l / 1 1 � for all 2 < q < 00 and n == 1 .  (5) 

In this chapter we shall prove inequalities ( 1 )-(5) . 
As mentioned before, inequalities ( 1 ) and (2) stand apart from inequal

ities (3)-(5) . The main point is that ( 1 ) and to some lesser extent (2) have 
geometrical meaning which is manifest through their invariance under con
formal transformations . See , e.g . , Theorem 4 .5 (conformal invariance of the 
HLS inequality) for a related statement . Additional, related inequalities are 
the Poincare , Poincare-Sobolev, Nash, and logarithmic-Sobolev inequalities , 
discussed in Sects. 8. 1 1-8 . 14. 

The main point of these inequalities , however, is that they all serve as 
uncertainty principles , i .e . , they effectively bound an average gradient 
of a function from below in terms of the ' spread' of the function. These 
principles can be extended to higher derivatives than the first as will be 
briefly mentioned later . 

A related subject , which is of great importance in applications , is the 
Rellich-Kondrashov theorem, 8 .6 and 8 .9 .  Suppose B is a ball in JRn and sup
pose f1 , f2 , . . .  is a sequence of functions in £2 (B) with uniformly bounded 
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L2 (B) norms . As we know from the Banach-Alaoglu Theorem 2 . 18 there 
exists a weakly convergent subsequence . A strongly convergent subsequence 
need not exist. If, however, our sequence is uniformly bounded in H1 (B) 
( i .e . , J8 l \7  fJ 1 2 dx < C) , then any weakly convergent subsequence is also 
strongly convergent in L2 (B) . This is the Rellich-Kondrashov theorem. By 
Theorem 2 .7 (completeness of £P-spaces) we can now pass to a further sub
sequence and thereby achieve pointwise convergence. This fact is very useful 
because when combined with the dominated convergence theorem one can 
infer the convergence of certain integrals involving the fJ 's .  It is remarkable 
that some crude bound on the average behavior of the gradient permits us 
to reach all these conclusions. 

In Chapter 1 1  we shall illustrate these concepts with an application to 
the calculus of variations . 

e Let us begin with a useful, technical remark about function spaces . In 
Sect . 7.2 we defined H1 (JRn) to consist of functions that , together with their 
distributional first derivatives , are in £2 (JRn) .  Most treatments of Sobolev 
inequalities use the fact that the functions are in £2 (JRn) but this , it turns 
out , is not the natural choice. The only relevant points are the facts that 
\7 f is in L2 (JRn) and that f(x) goes to zero, in some sense, as l x l � oo. 
Therefore, we begin with a definition. A very similar definition applies to 
Wl,P (JRn) .  

8.2 DEFINITION OF D1 (JRn) AND D112 (JRn) 

A function f : JRn � C is in D1 (JRn) if it is in Lfoc (JRn) , if its distributional 
derivative, \7 f, is a function in £2 (JRn) and if f vanishes at infinity as in 3 .2 ,  
i .e . ,  {x : f(x) > a} has finite measure for all a > 0 .  Similarly, f E D112 (JRn) 
if f is in Lfoc (JRn) ,  f vanishes at infinity and if the integral 7. 12 (4) is finite. 

REMARKS. ( 1 ) Obviously, this definition can be extended to D1,P (JRn) or 
D1f2 ,P (JRn) by replacing the exponent 2 for the derivatives by the exponent 
p. The integrand in 7. 12 (4) is then replaced by [f (x) - f (y)]P ix - y j -n-p/2 . 
We shall not prove this , however . 

(2) Note that this definition describes precisely the conditions under 
which the rearrangement inequalities for kinetic energies (Lemma 7 . 17) can 
be proved. In other words , Lemma 7. 17 holds for functions in D1 (JRn) and 
D1f2 (Rn) . 

(3) The notion of weak convergence in D1 (JRn) is obvious . The sequence 
fj converges weakly to f E D1 (JRn) if oifj � oif weakly in L2 (JRn) for 
i == 1 ,  . . .  , n . In D112 (JRn) the corresponding notion is the following: fJ 
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.lim r r (Ji (x) - Ji (y) ) (g (x) - g (y) ) lx - y l -n-l dx dy 
J �00 }"M.n }"M.n 

= r r (f (x) - f (y) ) (g (x) - g (y) ) lx - y l -n-l dx dy }"M.n }"M.n 
for every g E D112 (JRn) .  By Schwarz 's inequality all integrals are well de
fined. 

In both cases the principle of uniform boundedness and the Banach
Alaoglu theorem are immediate consequences of their LP counterparts, The
orem 2 . 12 and Theorem 2 . 18 .  The same holds for the weak lower semicon
tinuity of the norms (see Theorem 2 . 1 1 ) .  The easy proofs are left to the 
reader. 

8 .3  THEOREM (Sobolev's inequality for gradients) 

For n > 3 let f E D1 (JRn) .  Then f E Lq (JRn) with q == 2n/ (n - 2) and the 
following inequality holds: 

where 

S = n(n - 2)
1§n l 2/n = n(n - 2) 22/n l+l/nr (n + 1 ) -2/n

. n 4 4 1r 2 

( 1 ) 

(2) 

There is equality in equation ( 1 )  if and only if f is a multiple of the function 
(J.-L2 + (x - a) 2 ) - (n-2) /2 with J-l > 0 and with a E JRn arbitrary. 

REMARK. A similar inequality holds for £P norms of \7 f for all 1 < p < n, 
namely 

. h np 
Wit q == . n - p (3) 

The sharp constants Cp,n and the cases of equality were derived by [Talenti] . 

PROOF. There are several ways to prove this theorem. One way is by 
competing symmetries as we did for Theorem 4 .3  (HLS inequality) . An
other way is to minimize the quotient l l \7 f l l 2/ l l f l l q solely with the aid of 
rearrangement inequalities . Technically this is difficult because it is first 
necessary to prove the existence of an f that minimizes this ratio; this is 
done in [Liebb , 1983] . The route we shall follow here is to show that this 
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theorem is the dual of the HLS inequality, 4 .3 ,  with the dual index p, where 
1/q + 1/p == 1 .  

Recall that Gy (x) == [ (n - 2) j§n-1 I J - 1 Ix - y j 2-n is the Green's function 
for the Laplacian, i .e . , -�Gy (x) == by (see Sect . 6 .20) . We shall use the 
notation 

(G * g) (x) = { Gy (x)g (y) dy }�n 
and (j, g) denotes J�n f (x)g (x) dx . Our aim is the inequality, for pairs of 
functions f and g, 

(4) 
which expresses the duality between the Sobolev inequality and the HLS 
inequality. Assuming (4) we have, by Theorem 2 . 14 (2) , that 

and hence 
l l f l l q == sup{ j (j, g) j : l l g l lp < 1} , 

I I I I I � < l l\7  ! I I �  sup{ (g , G * g) : l l g i i P < 1 } ,  
which is finite by Theorem 4 . 3  (HLS inequality) , and which leads immedi
ately to ( 1 ) .  

We prove inequality (4) first for g E £P (JRn ) n L2 (JRn ) and f E H1 (JRn ) n 
Lq (JRn) . Since f and g are in L2 (JRn) ,  Parseval's formula yields 

u, g) = a, 9) = r { l k i](k) H lk l- 19(k) } dk . }�n 

By Corollary 5 . 10 ( 1 )  of 5 .9 (Fourier transform of l x l a-n) ,  we have 

h (k) : ==  Cn- 1 ( 1x l 1-n * g)v (k) == c1 j k j - 1g(k) .  

(5) 

By Plancherel's theorem and by the HLS inequality, h is square integrable , 
and thus we can apply the Schwarz inequality to the two functions { } {  } 
in (5) to obtain the upper bound 

(Ln j k j 2 j] (k) 1 2 dk) 112 (Ln jk j -2 j9(k) j 2 dk) 112 · 
The first factor equals (27r)- 1 l l \7f l l 2 by Theorem 7 .9 (Fourier characteriza
tion of H1 (JRn) ) , and the second factor equals 21r(g , G * g) 112 by Corollary 
5 . 10 . Thus we have (4) for all f E H1 (JRn)nLq (JRn ) and g E £P (JRn) nL2 (JRn) . 

A simple approximation argument using the HLS inequality then shows 
that (4) holds for all g E £P (JRn ) . Now setting g == fq-1 E £P (JRn ) , one 
obtains from (4) and 4 .3 ( 1 ) , (2) that 

I I J I I �q < l l\7 f l l � (Jq-1 ' G * fq-1 ) < dn l l\7 f i i � I I J I I � (q- 1) ' (6) 
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where 

dn : == sn 1 == [ (n - 2) j§n- 1 1 ] - 17rn/2-1 [r (n/2 + 1 ) ] -1 {r (n/2) jr (n)] }  -2/n . 

Using the fact that j §n- 1 1 == 27rnf2 [r (n/2) ] -1 together with the duplication 
formula for the r-function, i .e . , r(2z) == (27r) -11222z- 1/2r (z)r (z + 1/2) , we 
obtain ( 1 ) and (2 )  for f E H1 (JRn) n Lq (JRn) .  

To show that ( 1 ) holds for f E D1 (JRn) we first note that by Theorem 7.8 
(convexity inequality for gradients) f can be assumed to be a nonnegative 
function. Replace f by 

fc (x) == min [max (f (x) - c, 0) , 1/c] , 

where c > 0 is a constant . Since fc is bounded and the set where it does not 
vanish has finite measure, it follows that fc E Lq (JRn) .  Further by Corollary 
6 . 18 ,  \1 fc (x) == \1 f (x) for all x such that c < f (x) < c+ 1/c, and \1 fc(x) == 0 
otherwise. By Theorem 1 .6 (monotone convergence) it follows that 

which shows that f E Lq (JRn) and satisfies ( 1 ) . The same argument shows 
that ( 6) holds for all nonnegative functions in D1 (JRn) .  

The validity of (6) for D1 (JRn) can then be used to establish all the cases 
of equality in ( 1 ) . To have equality in ( 1 ) and hence in (6) , it is necessary 
that fq- 1 yields equality in the HLS inequality part of (6) , i .e . , f must be 
a multiple of (J.-L2 + l x - a j 2 ) - (n-2) /2 (see Sect . 4 .3) . A direct computation 
shows that functions of this type indeed yield equality in ( 1 ) .  • 

8.4 THEOREM (Sobolev's inequality for IP I ) 

For n > 2 let f E D112 (JRn) .  Then f E Lq (JRn) with q == 2n/ (n - 1) and the 
following inequality holds: 

where 

(f, IP I !) > 8� 1 1 ! 1 1 � � 

S' == 
n - 1

1§n j 1/n == 
n - 1 21/n (n+1) /2nr (n + 1 ) -l/n

. n 2 2 1f 2 

There is equality in ( 1 )  if and only if f is a multiple of the function 
(J.-L2 + l x - a j 2 ) - (n-1 ) /2 with J-l > 0 and with a E JRn arbitrary. 

( 1 ) 

(2) 
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PROOF. Analogously to the proof of the previous theorem, the inequality 

I (!, 9) 1 2 < �7r - (n+l)/2r ( n � 1 ) (!, IP I !) (9 , lx l l-n * 9) (3) 

is seen to hold for all functions f E H112 (JRn) n Lq (JRn) and g E £P (JRn) 
( 1/p + 1/q == 1) . Setting g == fq-1 and using Theorem 4 .3  (HLS inequality) 
we obtain 

which yields ( 1 ) and (2) for f E H112 (JRn) n Lq (JRn) . Note that there can 
only be equality in ( 4) if fq-1 saturates the HLS inequality, i .e . , if f is of 
the form given in the statement of the theorem. A tedious calculation shows 
that for such functions there is indeed equality in ( 1 ) . Finally we have 
to show that ( 1) holds under the weaker assumption that f E D112 (JRn) . 
As in the proof of Theorem 8 .3 it suffices to show this for f nonnegative . 
This follows from Theorem 7 . 13 .  Next , for some constant c > 0, replace f 
by fc (x) == min(max(f (x) - c, 0) , 1/c) . It is a simple exercise to see that 
l fc (x) - fc (Y) I < l f (x) - f (y) l and hence by the definition of (f, IP i f ) , 7 . 1 2 (4) ,  
we see that (fc , IP i fc) < (f, IP i f) . Now fc E Lq (JRn) and hence, by Theorem 
1 .6 (monotone convergence) , f E Lq (JRn) because 

8.5 THEOREM (Sobolev inequalities in 1 and 2 
dimensions) 

(i) Any f E H1 (JR) is bounded and satisfies the estimate 

2 df 
+ 1 1 ! 1 1 �  > 2 1 1 ! 1 1�  dx 2 

( 1 ) 

with equality if and only if f is a multiple of exp [ - lx - a l ] for some a E JR. 
Moreover, f is equivalent to a continuous function that satisfies the estimate 

for all x ,  y E JR. 

df l f (x) - f (y) i < dx l x - y j 1/2 
2 

(2) 
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( ii) For f E H1 (JR2) the inequality 

l l \7 ! I I � + I I I I I �  > S2,q l l f l l � 

holds for all 2 < q < oo with a constant that satisfies 

S2,q > [ ql-2/q (q - 1 ) - 1+1/q ( (q - 2) /87r) l/2-1/q] -2 . 

( iii) For f E H112 (JR) the inequality 

(/, IP I!) + I I I I I �  > s� ,q l l ! l l � 

holds for all 2 < q < oo with a constant that satisfies 

SLq > [ (q - 1) - 1/2+1/2q (q (q - 2)/27r) l/2-1/qr2 . 

(3) 

(4) 

PROOF . For f E H1 (JR) , by Theorem 7.6 (density of CC: in H1 (0) ) there 
exists a sequence fJ E CC: (JR) that converges to f in H1 (JR) . Now 

by the fundamental theorem of calculus . Since Ji � f and dfJ I dx � 
df I dx in L2 (JR) , we see that the right side converges to Jx 

00 f(y)f' (y) dy -
fxoo f (y)f' (y) dy . Using Theorem 2 .7  (completeness of LP-spaces) we can 
assume, by passing to a subsequence, that fj ( x) � f ( x) pointwise for almost 
every x . Thus we have that for a.e .  x E JR 

f(x)2 = 1: f(y)f' (y) dy - 100 
f (y) f' (y) dy (5) 

for functions in H1 (JR) .  Now 

l f (x) l 2 < 1: 1 ! 1 1 !' 1 + 100 
1 ! 1 1 !' 1 = 1: 1 ! 1 1 !' 1 

which, by Schwarz 's inequality, yields 

(6) 

Inequality ( 1 )  is now an immediate consequence of (6) , by using the arithmetic
geometric mean inequality 2ab < a2 + b2 . 

Inequality (2) is proved similarly. (2) shows that f is equivalent to a 
continuous , indeed Holder continuous , function that we also denote by f 
(see the second remark in Sect . 10 . 1 ) . 
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By Theorem 7 .8 (convexity inequality for gradients) there can only be 
equality in ( 1) if f is real . Since f is continuous and vanishes at infinity, 
there exists a E JR such that (f (a) ) 2 == I I I I I � · Hence 

la (ja ) 1/2 (ja ) 1/2 I I J I I � = 2 
-oo 

f J' < 2 
-oo 

f2 
-oo 

(!') 2 

and similarly 

1 1 ! 1 1 � < 2 (100 !2) 1/2 (100 (!' ) 2) 1/2 . 

Equality in ( 1 )  implies equality in the above two expressions and in partic
ular equality in the application of Schwarz's inequality (see Theorem 2 .3) . 
Hence f' (x ) == cf (x ) for some constant c > 0 if x < a and, therefore , 
f (x) == l l f l l oo exp [c(x - a) ] for x < a, with c > 0.  The reader might object 
that the equation f' == cf holds only in the sense of distributions . This 
equation is , however, equivalent to the equation (ecx f)' == 0 and the result 
follows by Theorem 6 . 1 1 .  Similarly f (x ) == l l f l l oo exp [d(x - a) ] for x > a, 
with d < 0. Equality in ( 1 ) implies that c == -d == 1, and thus we have 
proved that equality in ( 1 ) implies f (x ) == exp [- lx - a l ] for some a. 

The proofs of (3) and (4) follow a different line, for they use the Fourier 
transform. By Theorem 7.9 (Fourier characterization of H1 (JRn) )  the left 
side of (3) equals 

Let p < 2 be the dual index of q > 2 , i .e . ,  1/p + 1/q == 1 .  Now by Theorem 
2 .3  (Holder's inequality) 

1 11 1 1P = (l2 17(k) ( 1 + 47r2 l k i 2 ) 1;2 IP ( 1  + 47r2 1 k i 2 ) -PI2 dk) 11p 
< K( l l f l l � + l l \7! 1 1 � ) 112 , 

where K = (JlR2 ( 1  + 47r2 1 k l 2 ) -q/(q-2) dk) (q-2)/2q , which is finite for 2 < q < 
oo.  In fact K == [ (q  - 2) /87r] (q-2) /2q . Finally using Theorem 5 .7  (sharp 
Hausdorff-Young inequality) l l f l l q < Cp l lf l l p with Cp == (p11Pq-1fq ) , which 
yields (3) . 

The proof of ( 4) , starting from 

1 1 ! 1 1 � + (!, IP I J) = L ( 1  + 27r l k l ) l](k) l 2 dk, 

is a word for word translation of the previous proof. • 
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8.6  THEOREM (Weak convergence implies strong 
convergence on small sets) 

Let f 1 , f2 . . .  , be a sequence of functions in D1 (JRn) such that \7 fJ converges 
weakly in L2 (JRn) to some vector-valued function, v .  If n == 1 ,  2 we also 
assume that fj converges weakly in L2 (JRn) . Then v == \7 f for some unique 
function f E D1 (JRn) . 

Now let A c JRn be any set of finite measure and let XA be its charac
teristic function. Then 

( 1 )  

for every p < 2n/ (n - 2) when n > 3 ,  every p < oo when n == 2 and every 
p < oo when n == 1 .  In fact, for n == 1 the convergence is pointwise and 
uniform. 

An analogous theorem for functions in D112 (JRn) also holds, i . e . ,  assume 
that fj converges weakly to f E D112 (JRn) in the sense of Remark (3) in 
Sect. 8. 2 .  Then ( 1 ) holds for every p < 2n/ (n - 1 )  when n > 2 .  In one 
dimension the same conclusion holds for all p < oo if we assume, in addition, 
that fj converges weakly to f in L2 (JRn) . 

PROOF . For n > 3 we first note that the sequence fj is bounded in Lq (JRn) , 
q == 2n/ (n - 2) . This follows from Theorem 2 . 12 (uniform boundedness 
principle) , which implies that the sequence I I  \7 fj I I  2 is uniformly bounded, 
and from Theorem 8 .3  (Sobolev's inequality for gradients) . For n == 1 or 2 
the sequence fj is bounded in L2 (JRn ) . By Theorem 2 . 18 (bounded sequences 
have weak limits) there exists a subsequence fj (k) , k == 1 , 2 ,  . . .  , such that 
fj (k) converges weakly in Lq (JRn) to some function f E Lq (JRn) . We wish 
to prove that the entire sequence converges weakly to f so , supposing the 
contrary, let fi(k) be some other subsequence that converges to, say, g weakly 
in Lq (JRn ) . Since for any function ¢ E C� (JRn ) 

(2) 

and similarly for g we conclude that fJRn (f - g)oi¢ dx == 0, i .e . , oi (f - g) == 0 
in V' (JRn ) for all i .  By Theorem 6. 1 1 , f - g is constant and, since both f 
and g are in Lq (JRn) , this constant is zero . Since every subsequence of fj 
that has a weak limit has the same weak limit , f E Lq (JRn ) , this implies 
that fj � f in Lq (JRn ) . (This is a simple exercise using the Banach-Alaoglu 
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theorem. )  By (2) , \lf == v in V' (JRn) .  The argument for n == 1 , 2 is precisely 
the same. For the sequence Ji in D112 (JRn) we note that by the Banach
Alaoglu theorem (see Remark (3) in Sect . 8 .2) the sequence (fj , IP i fJ )  is 
uniformly bounded . 

We claim that for any f E D1 (JRn) 

where, as in 7 .9 (5) , 

(3) 

(efltf) (x) = (47rt) -n/2 { exp [- jx - y j 2 /4t] f (y) dy . (4) 
}�n 

For f E H1 (JRn) ,  (3)  follows from Theorem 5 . 3  (Plancherel's theorem) , 

the fact that 1-exp [-47r2 j k j 2t] < min( 1 ,  47r2 j k j 2t) , and by using Theorem 7 .9 
(Fourier characterization of H1 (JRn) ) . By considering the real and imaginary 
parts of f, and among those the positive and negative parts separately, it 
suffices to show (3)  for f E D1 (JRn) nonnegative . Replacing f by fc (x) == 
min (max(f (x) - c, 0) , 1/c) , as in the proof of Theorem 8 .3 , we see that 
l l \1 fc l l 2 converges to l l \1 f l l 2 as c � 0 and, by Theorem 1 . 7 (Fatou's lemma) , 
lim infc---70 l i fe - e�t fc l l 2 > I I ! - e�t f l l 2 , since fc E L2 (JRn) .  Thus, we have 
proved (3) . 

In precisely the same fashion one proves that for f E D112 (JRn) 

where, according to 7 . 1 1 ( 10) , 

(5) 

(e-t iP I J) (x) = r ( n � 1 ) 7r-(n+l)/2t J (t2 + (x - y) 2 ) - (n+l) /2 f (y) dy . (6) 

Consider the sequence Ji and note that , since l l \1 Ji l l 2 < C independent 
of j ,  we have that I I Ji - e�tfi l l 2 < Cyi. Let A c JRn be any set of finite 
measure and let XA denote its characteristic function. Assuming for the 
moment that for every t > 0, gi : ==  e�t Ji converges strongly in L2 (JRn) to 
g :== e�t f, we shall show that XA!j also converges strongly to XA! .  Simply 
note that 
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The first and the last term are bounded by Cy't, since lim infj�oo l l\7  jJ l l 2 > 
l l\7  J l l 2 by Theorem 2 . 1 1  (lower semicontinuity of norms) . Thus 

For c > 0 given, first choose t > 0 (depending on c) such that 2Cv't < c/2 
and then j (also depending on e) large enough such that I I XA (gJ -g) l l 2 < c/2 , 
and hence I I XA (fJ - ! ) 1 1 2 < c for j > j (c) .  

It remains to prove that XA9j ---+ XA9 strongly in L2 (JRn) .  To see this 
note that by (4) and Holder 's inequality 

with 1/p == 1 - 1/q .  Using Theorem 8.3 (Sobolev's inequality for gradients) , 
l l fj l l q < Sn 112 l l \7 fJ l l 2 < Sn 112C.  Hence XA9j is dominated by a con
stant multiple of the square integrable function XA (x) .  On the other hand, 
gJ (x ) converges pointwise for every x E JRn since , for every fixed x ,  

exp [- (x - y)2 /2t] is in the dual of Lq (JRn ) and jJ � f weakly in Lq (JRn ) .  
The result follows from Theorem 1 .8 (dominated convergence) .  

The proof of the corresponding result in dimensions 1 and 2 is the same, 
in fact it is simpler since the sequence is uniformly bounded in L2 (JRn ) by 
assumption . 

The proof for D112 (JRn) is the same with minor modifications which are 
left to the reader . Thus the strong convergence of XA!j is proved for p == 2 .  

The inequality 

for 1/p == 1/r + 1/2 proves the theorem for 1 < p < 2 .  Again by Holder's 
inequality 

with a == ( 1/p - 1/q) / ( 1/2 - 1/q) , which is strictly positive if p < q .  If 
fj E D1 (JRn) and n > 3, then 

. . 

I I XA (! - !1 ) " q < I I  f - !1 " q 
< Sn 1/2 ( 1 1\7 ! l l 2 + l l\7  jJ 1 ! 2 ) < C' == some constant , 

by Theorem 8 .3 (Sobolev's inequality for gradients) . Thus I I XA (f - fJ ) I I p < 
ci -a I I XA (! - jJ )  1 1 2  ---+ 0 as j ---+ 00 .  
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The proof for Ji E D112 (JRn) is precisely the same. The reader can easily 
prove the theorem in the remaining cases n == 1 ,  2 using the corresponding 
Sobolev inequalities (Theorem 8.5) . The case that needs special attention is 
the statement that fJ ---+ f pointwise uniformly on bounded sets if d� fJ �----+ 

d� f in L2 (JR) . 
To see that Ji (x) converges to f (x) pointwise we first note that by 

Theorem 6.9 (fundamental theorem of calculus for distributions) 

converges pointwise to f (x) - f (O) .  Next by Theorem 8 .5 (Sobolev in
equalities in 1 and 2 dimensions) the sequence jJ (x) is pointwise uniformly 
bounded and thus , for g E L2 (JR) n L1 (JR) , we have that 

lim { (Ji (x) - Ji (O) )g (x) dx = { (f (x) - f (O) )g (x) dx J �00 J"M. J"M. 

by Theorem 1 . 8  (dominated convergence) .  However , 

.lim r Ji (x)g (x) dx = r f (x)g (x) dx , J �OO J"M. J"M. 

by assumption, and thus Ji (O) ,  and hence Ji (x) , converges pointwise . 
Next we show that the convergence is uniform on any closed, bounded 

interval . First note that by the fundamental theorem of calculus 

l f (x) - f (y) l = 1x (df / dx) (s) ds < l l f' l l 2 lx - Y l 112 . 

Thus we can assume that the functions Ji and f are continuous . Moreover 
since I I  Ji I I  2 is uniformly bounded, the previous estimate is uniform, i .e . , 
l fJ (x) - fJ (y) l < Clx - y j 112 with C independent of j .  Suppose I is a closed , 
bounded interval for which the convergence is not uniform. Then there exists 
an c > 0 and a sequence of points Xj such that I Ji (xj ) - f (xj ) l > c . By 
passing to a subsequence we can assume that Xj converges to x E J. Now 

The first term is bounded by Clx - Xj j 112 with C independent of j and 
hence vanishes as j ---+ oo.  The second tends to zero since Ji ---+ f pointwise . 
The last also tends to zero since f is continuous . Thus we have obtained a 
contradiction. • 
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REMARK. It is worth noting that statement ( 1 ) with p == 2 was derived 
without using Theorems 8.4 and 8 .5  (Sobolev inequalities) . The only thing 
that was used were equations (3) and (5) . The theorem and its proof can 
be extended to any r < p for which we know a-priori that l l fj i i P < C. The 
only role of the Sobolev inequality in Theorem 8 .6 was to establish such a 
bound for p == 2nj (n - 2) , etc .  

8.  7 COROLLARY (Weak convergence implies a. e. 
convergence) 

Let f1 , f2 , . . • be any sequence satisfying the assumptions of Theorem 8.6 . 
Then there exists a subsequence n(j ) , i . e . , fn(l ) (x) , fn(2) (x) , . . .  , that con
verges to f ( x) for almost every x E JRn . 

REMARK. The point , of course, is the convergence on all of JRn, not merely 
on a set of finite measure . 

PROOF . Consider the sequence Bk of balls centered at the origin with 
radius k == 1 ,  2 ,  . . . .  By the previous theorem and Theorem 2 .7 we can find 
a subsequence fn1 (j ) that converges to f almost everywhere in B1 . From 
that sequence we choose another subsequence fn2 (j ) that converges a.e. in 
B2 to f , and so forth. The subsequence fnJ (j) ( x) obviously converges to 
f (x) for a.e . x E JRn since, for every x E JRn, there is a k such that x E Bk . 
• 

e The material, presented so far, can be generalized in several ways . First , 
one replaces the first derivatives by higher derivatives and the £2-norms by 
LP-norms , i .e . , we replace H1 (JRn) by wm,P (JRn) .  One can expect , essentially 
by iteration, that theorems similar to 8 .3-8 .6 continue to hold . Another 
generalization is to replace ]Rn by more general domains (open sets) n c ]Rn' 
i .e . , by considering Wm,P (O) .  

As explained in Sect . 7 .6 ,  HJ (O) is the space of functions in H1 (0) that 
can be approximated in the H1 (0) norm by functions in C� (O) .  We define 
W�'2 (0) :== HJ (O) . For the space W�'2 (0) it is obvious that Theorems 8 .3 ,  
8 .5  and 8 .6 continue to hold . For general 1 < p < oo, WJ'P (O) is defined 
similarly as the closure of C� (O) in the W1,P (O) norm. Corresponding 
theorems are valid for W�'P (O) , which we summarize in the remarks in 
Sect . 8 .8 .  

The spaces wm,P (O) (defined in Sect . 6.7) are more delicate. We remind 
the reader that an f E wm,P (O) is required to be in LP (O) .  A Sobolev 
inequality for these functions will require some additional conditions on 0. 
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To see this , consider a 'horn' , i .e . , a domain in JR3 given by the following 
inequalities : 

0 < x1 < 1 ,  (x� + x�) 112 < xf , with {3 > 1 .  

Note that the function lx l -a has a square integrable gradient for all a < 
{3 - 1/2 but its £6-norm is finite only if a < {3/3 + 1/6 . The computations 
are elementary using cylindrical coordinates . Thus, if we consider the 'horn' 
0 given by {3 = 2 the function lx l - 1 is in H1 (0) but not in £6 (0) and thus 
the Sobolev inequality cannot hold . 

It is interesting to note that the above example is consistent with the 
Sobolev inequality if {3 = 1 ,  i .e . , if the 'horn' becomes a 'cone' . It is a 
fact that the Sobolev inequality does , indeed , hold in this cone case . Our 
immediate task is to define a suitable class of domains that generalizes a 
cone and for which the Sobolev inequality holds . 

Consider the cone 

{x E JRn : x =/=- 0, 0 < Xn < lx l cos O} . 

This is a cone with vertex at the origin and with opening angle 0 .  If one 
intersects this cone with a ball of radius r centered at zero one obtains a 
finite cone Ko,r with vertex at the origin . A domain 0 c JRn is said to have 
the cone property if there exists a fixed finite cone Ko,r such that for every 
X E n there is a finite cone Kx , congruent to Ko,r , that is contained in n 
and whose vertex is x . This cone property is essential in the next theorem. 

The Sobolev inequalities are summarized in the following list . The proofs 
are omitted but the interested reader may consult [Adams] for details . In 
the following, W0,P (O) = LP(O) . 

8.8 THEOREM (Sobolev inequalities for wm,p (!l) ) 

Let 0 be a domain in JRn that has the cone property for some 0 and r . Let 
1 < p < q, m > 1 and k < m .  The following inequalities hold for f E 
wm,P(O) with a constant C depending on m, k, q , p, O, r , but not otherwise 
on n or on f . 

( i) If kp < n, then 
np l l f l l wrn-k ,q (O) < Cl l f l lwrn,p (O) for P < q < . ( 1 )  n - kp 

( ii) If kp = n, then 

l l f l l wrn-k ,q (O) < Cl l f l l wrn,p (O) for P < q < oo. (2 ) 
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( iii) If kp > n, then 

max sup I Da f (x) l < Cl l f l lwm,p (O) · 
O< la l <m-k xEO 

(3) 

REMARKS .  ( 1 )  Inequalities (iii) state that a function in a sufficiently 'high' 
Sobolev space is continuous-or even differentiable (what does this mean, 
precisely?) . These inequalities are due to [Morrey] . In three dimensions, for 
example, a function in W1'2 = H1 is not necessarily continuous, but it is 
continuous if it has two derivatives in £2 , i .e . , if f E W2'2 = : H2 . 

(2 )  A simple, but important remark concerns WJ'P (O) . Since I I V' f i i LP (JRn) 
= I I V' f i i LP (O) and l l f i i Lq (JRn) = l l f i i Lq (O) for each p and q , two theorems are 
true about WJ'P (O) . One is 8 .8  with m = 1 and k = 1 and there are three 
cases depending on whether p < n, p = n or p > n. In Theorem 8 .8 q is 
constrained , but not fixed . The second theorem is 8 .3 (3) with the same Cp,n · 
Here q is fixed to be npj (n - p) and p < n. The important difference is that 
only I I V' f l iP appears in 8 .3 (3) , while l l f l l wl ,p (O) appears in 8 .8 .  The cone 
condition is not needed for either theorem since l l f l l wl ,p (n) = l l f l lwl ,p (JRn) , 
and since ]Rn has the cone property. 

e The next question to address is whether Theorem 8 .6 (weak convergence 
implies strong convergence on small sets) carries over to the spaces wm ,P (O) 
and WJ'P (O) . The following theorem provides the extension of Theorem 8.6 
and again we shall state it without proof. The interested reader can consult 
[Adams] . 

8 .9  THEOREM (Rellich-Kondrashov theorem) 

Suppose that 0 has the cone property for some () and r ,  and let f1 , f2 , . . .  
be a sequence in Wm,P (O) that converges weakly in Wm,P(O) to a function 
f E wm ,P (O) .  Here 1 < p < oo and m > 1 .  Fix q > 1 and 1 < k < m. Let 
w c 0 be any open bounded set. Then 

(i) If kp < n and q < n:�P ' then limj�oo l l fj - f l lwm-k ,q (w) = 0 . 
( ii) If kp = n, then limj�oo l l fj - f l lwm-k ,q (w) = 0 for all q < oo . 

( iii) If kp > n, then fJ converges to f in the norm 

max sup I (Da f) (x) l . 
O< la l <m-k xEO 
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REMARK. Notice that it is sufficient to prove Theorems 8 .8 and 8.9 for 
m = 1 .  The cases m > 1 can be obtained from this by "bootstrapping" . 
E.g. , if m = 2 we can apply the m =  1 theorem to \7 f instead of to f . 

e It is important , in many applications , to know that a sequence fJ in 
W1,P (JRn) has a weak limit that is not equal to zero . The Rellich-Kondrashov 
theorem tells us that this will be so if l l fj i i LP (O) > C > 0 for all j ,  for 
some fixed, bounded domain 0. In the absence of such a domain there is , 
nevertheless , still some possibility of proving nonzero convergence, as given 
in the next theorem. As we explained in Sect . 2 .9 ,  a sequence in £P(JRn) 
can converge weakly to zero in several ways, even if l l fj i i LP (O) > C > 0. 
In the case of W1,P (JRn) ,  however, a sequence cannot 'oscillate to death' or 
'go up the spout ' ;  that is a consequence of the Sobolev inequality or the 
Rellich-Kondrashov theorem. It can, however , 'wander off to infinity' and 
thus have zero as a weak limit . 

The next theorem [Liebb , 1983 ] says that if one is prepared to translate 
the sequence and if one knows a bit more, namely that the functions are 
bounded below by some fixed number c > 0 on sets (which may depend on 
j) whose measure is bounded below by some fixed 6 > 0, then a nonzero 
weak convergence can be inferred . In other words , the theorem shows that if 
the sequence wanders off to infinity, and does not simply decrease to zero in 
amplitude, then the fj 's cannot splinter into widely separated tiny pieces . 
The finiteness of I I  \7 fJ l iP implies that they must contain a coherent piece 
with an £P(O) norm that remains bounded away from zero . 

In many cases , the problem one is trying to solve has translation invari
ance in JRn; this theorem can be useful in such cases . The proof uses an 
'averaging technique' that is independently interesting and can be used in a 
variety of situations (see Exercises in Chapter 12) . 

8. 10 THEOREM (Nonzero weak convergence after trans
lations) 

Let 1 < p < oo and let f1 , f2 , . . . be a bounded sequence of functions in 
W1,P (JRn) .  Suppose that for some c > 0 the set EJ := {x : l fJ (x) l > c } 
has a measure I EJ I > 6 > 0 for some 6 and all j .  Then there is a sequence 
of vectors yj E JRn such that the translated sequence fi ( x ) := fJ ( x + yJ ) has 
a subsequence that converges weakly in W1,P (JRn) to a nonzero function. 
REMARK. The p, q, r theorem (Exercise 2 .22) gives a useful condition for 
establishing the hypotheses of Theorem 8 . 10 . 
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PROOF .  Let By denote the ball of unit radius centered at y E JRn . By 
the Rellich-Kondrashov and Banach-Alaoglu theorems, it suffices to prove 
that w_e can find yJ and J-l > 0 so that I ByJ n EJ I > J-l for all j , for then 
J Bo I JJ I > c J.-L, and hence any weak limit cannot vanish. By considering the 
real and imaginary parts of jJ separately, it suffices to suppose that the jJ 
are real . Moreover , it suffices to consider only the positive part , f� (why?) ,  
and, therefore , we shall henceforth assume that EJ := { x : jJ ( x) > c} . 

Let gj = (jJ - c/2)+ , so that gj > c/2 on EJ and fJRn l gj lp > (c/2)P IEJ I . 
Since fiRn I \7 gj IP is bounded by some number Q, we can define 

with W = Q(c/2) -Pb-1 . 
Let G be a nonzero C� function supported in Bo and let Gy(x) = 

G(x - y) be its translate by y, which is supported in By . We define 1 := 
f}Rn I \7GIP / f}Rn I G IP .  

Let ht = Gygj . Clearly, \7ht = (\7Gy)gJ + Gy \7 gJ , so that 

I Vht lp < 2p-l [ I VGy iP igj lp + I Gy lp l\7gj lp] 
(why?) .  Consider 

Ti := { { iVht iP - 2P (W + 'Y) I ht iP } }JRn 
< 2p-l r { IVGy iP igj lp + I Gy lp l\7gj lp - 2 (w + 'Y) IGy iP igi iP } . ( 1 )  }}Rn 

From this it follows (by doing the y-integration first) that 

We can conclude that there is some yJ (in fact there is a set of positive mea
sure of such y 's) such that l l hj J l i P > 0 and the ratio aj := l l \7hjJ I I P/ I I hjJ l i P < y y y 
2P (W + 'Y) · Note that h�3 is in H{j (By3 ) .  

Consider a( D) := inf l l \7h i i P/ I I h i i P over all h E HJ (D) , where D is an 
open set in JRn . By the rearrangement inequality for l l \7h i i P (Lemma 7. 17 and 
the following remark (4) ) ,  a(Br) < O" (D) for any domain D whose volume 
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equals that of Br , the ball of radius r .  a(Br) =/=- 0 by Theorem 8 . 8  (Sobolev 
inequalities) , and must be a( Br) = C I rP by scaling. Hence, aj > C I rP , 
where r is such that l § l n- lrn In equals the volume of the support of hj J , y 
namely I ByJ n EJ I · Since aj is bounded above, this proves that I ByJ n EJ I 
is bounded below. • 

e Sobolev's inequality in the form of Theorem 8 .3 is important for the 
study of partial differential equations on the whole of JRn, such as the 
Schrodinger equation in Chapter 1 1 .  Many applications are concerned with 
partial differential equations on bounded domains , however , and Sobolev's 
inequality in the form of Theorem 8 .3 cannot hold on a bounded domain for 
all functions . The reason is simply that the constant function has a zero 
gradient but a positive Lq norm and hence the proposed inequality 8 .3 ( 1 )  
is grossly violated for this function. On the other hand, a nonzero function 
whose average over the domain is zero necessarily has a nonvanishing gradi
ent and, therefore, 8 .3 ( 1 )  might be expected to hold for such functions with 
a suitably modified constant replacing Sn . 

Despite the appearance of bounded domains in Sect . 8 .8 , the Sobolev 
inequalities there differ from 8 .3 ( 1 ) in an important respect . The right 
side of 8 .8( 1) , with m == 1 , p = 2 for example , has the W1,2 (0) norm, 
which entails the £2 (0) norm of the function in addition to the £2 (0) norm 
of the gradient . With this added term, the constant function presents no 
contradiction. Our goal, in imitating 8 .3 ( 1) , is to have an inequality without 
the £2 (0) norm of the function on the right side , and have only the £2 (0) 
norm of the gradient . The example of the constant function shows that one 
cannot measure the size of a function in terms of the gradient alone, but 
one can hope to measure the size of the fluctuating part ( i .e . , 'nonconstant 
part ') of a function in terms of its gradient , and this can be useful . 

There are many inequalities of the type we seek, with various names that 
differ somewhat from author to author . In Sect . 8 . 1 1  we prove a version of 
a family of inequalities , usually called Poincare's inequalities . Essentially, 
these inequalities relate the £2 (0) norm of the fluctuation to the £2 (0) 
norm of the gradient . The generalized Poincare inequality, which we pursue 
here, goes further and relates the Lq (O) norm of the fluctuation to the £P (O) 
norm of the gradient - and the wm-l ,q (O) norm of the function to the £P (O) 
norm of the m-th derivatives . The Poincare-Sobolev inequality in Sect . 8 . 12 
takes q up to the critical value npl(n - p) . 
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8 . 1 1  THEOREM (Poincare's inequalities for wm,p (!l) ) 

Let 0 c JRn be a bounded, connected, open set that has the cone property for 
some () and r .  Let 1 < p < oo and let g be a function in LP' (0) such that 
In g == 1 .  Let 1 < q < npj(n - p) when p < n, q < oo when p = n, and 
1 < q < oo when p > n.  Then there is a finite number S >  0,  which depends 
on 0, g ,  p, q ,  such that for any f E W1,P (O) 

( 1 ) 

More generally, let a denote a multi-index as in Sect. 6 .6 and let xa 
I denote the monomial xr1 X�2 • • •  x�n . Let 9a E LP (0) ' with I a I < m - 1 ,  be 

a collection of functions such that 

r 9a (x) xf3 dx = { 1 ' 
ln 0 ,  

if Q = {3, 
if Q =I= {3 . (2) 

Then there is a constant S > 0,  which depends on 0, ga , p, q,  m, such that 
for any f E Wm,P (O) and 1 < q < npj(n - p) if p < n 

If p > n, then the left side of (3) can be replaced by the norm given in case 
(iii) of 8 .9 . 

REMARKS . ( 1) Poincare's inequality is often presented as case ( 1) with 
q == p and with g = constant . In this case In fg is usually written as f or 
(f ) . 

(2) By using Sobolev's inequality 8 .8 ,  wm-l ,q in (3) can be replaced by 
wm-k,q with q < npj (n - kp) . 

PROOF. We shall prove ( 1 ) . The generalization (3) follows by the same 
argument (using the generalization of Theorem 6 . 1 1  in Exercise 6 . 12) .  The 
proof is a nice application of the various compactness ideas in Sects . 2 and 
8 .  

We can suppose that q > p, for if q < p we can first prove the theorem 
for q = p and then use the fact that 0 is bounded and that the p norm 
dominates the q norm by Holder's inequality. Assume, now, that ( 1 ) is false 
for every S > 0 .  Then there is a sequence of functions fJ such that the left 
side of ( 1 ) equals 1 for all j while the right side tends to zero as j � oo. 
Let hj == fJ - In gfJ . The gradient of fJ equals the gradient of hj and, 
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therefore, the sequence hJ is bounded in W1,P (O) . (Here we have to note 
that I I  V' hj l iP is bounded, by assumption; I I  hj l iP is also bounded since the q 
norm of hJ , which is 1 ,  dominates the p norm. ) By Theorem 2 . 18 ,  there is an 
h E  W1,P such that (for a subsequence, again denoted by hJ ) hj � h weakly 
in W1,P (O) . (Why?) Since the LP (O) norm of V'hj goes to zero ( i .e . , strong 
convergence) , we have that V'h == 0 in the sense of distributions . Since 0 
is connected, it follows from Theorem 6 . 1 1  that h is a constant function . 
Furthermore, In hg == 0 (why?) and, since In g == 1 ,  h == 0.  

On the other hand, we can invoke the Rellich-Kondrashov theorem 
and infer that the sequence hj converges strongly to h in Lq (O) . Since 
l l hj i i Lq (n) == 1 ,  we have that l l h i i Lq (n) == 1 ,  which contradicts the fact that 
h == 0 .  • 

e The Rellich-Kondrashov theorem, which was used in the proof of 8 . 1 1 ,  
does not hold when q == npj(n - p) . Nevertheless , Theorem 8 . 1 1  extends to 
this case, as we see next . 

8. 12  THEOREM (Poincare-Sobolev inequality for wm,P(f!)) 

The hypotheses of this theorem are the same as those of 8 . 1 1 .  Then there is 
a finite number S ( depending on 0, g, p, q) so that 8 . 1 1 ( 1 ) and 8 . 1 1 (3) hold 
up to the critical values of q when p < n, namely 1 < q < np/(n - p) . 

PROOF. Sobolev's inequality Theorem 8 .8 yields the estimate 

f - In fg Lq (O) < C f - In fg Wl ·P (O) 

{ r p } 1/p 
= C f - Jn fg LP (O) + I I V f l l�v (n ) 

for all q < npj (n - p) . Combining this with Poincare's inequality 

f - In fg LP (O) < SI I V f i i LP (f2) , 

we obtain the desired inequality. A similar argument works for wm,p with 
m > 1 .  • 
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e An inequality that is quite useful in various contexts is Nash's inequality 
[Nash] , which is an estimate of the L2 (JRn) norm of a function in terms of 
the L2 (JRn) norm of its gradient and its £1 norm. This is in contrast to the 
Sobolev inequality which estimates the L2n/ (n-2) (JRn) norm of a function in 
terms of the L2 (JRn) norm of the gradient alone. Unlike Sobolev's inequality, 
however , which holds only in dimensions three and higher , Nash's inequality 
holds in all dimensions . The proof given below is taken from [Carlen-Loss , 
1993] which in addition yields the sharp constant including the cases of 
equality. 

This constant will be expressed in terms of the following radial N eu
mann problem on the unit ball B1 in JRn . Consider minimizing the ratio 

l l \7 ! I I �  I I I I I I � ( 1 ) 

among all spherically symmetric functions in H1 (B1 ) whose integral is zero. 
An exercise in Chapter 12 asks the reader to prove that a unique minimizing 
function exists (but see the remark after the proof of 8 . 13  to the effect that 
the existence of a minimizing function for ( 1 )  is not really necessary for the 
evaluation of the sharp constant) . The solution u can be expressed in terms 
of Bessel functions; more precisely 

(2) 

The minimum value of ( 1 ) is AN = r;;2 , where "" is the smallest nonzero 
number for which the derivative u' ( 1) == 0 .  The function u is a decreasing 
function of r and is negative at r = 1 .  With these preliminaries we can now 
state Nash's inequality. 

8. 13 THEOREM (Nash's inequality) 

For every function f in H1 (JRn) n £1 (JRn) 

where (with AN being the minimum of 8 . 12 ( 1 ) , as stated above) 

c;, = 2n-1+2/n ( 1 + ;) l+n/2 ).Nl l§n-1 � -2/n . 

( 1 )  

(2) 

Moreover, there is equality in ( 1 ) if and only if after scaling and translating 
{ u( l x l ) - u( 1 ) ,  f (x) = 0 ,  

if l x l < 1 ,  
if lx l > 1 .  (3) 
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PROOF . By Theorem 6 . 17 we can assume that f > 0. Further, by Lemma 
7. 17 (symmetric decreasing rearrangement decreases kinetic energy) and the 
fact that rearrangement preserves LP (JRn) norms we can assume that f is 
radially decreasing. Pick any number R > 0, define g to be the restriction 
of f to the ball BR centered at the origin with radius R, and define h to be 
the function f restricted to BR, the outside of the ball . Certainly, 

Let g denote the average of g over BR. Then h(x) < g and hence 

+2 g lR h(x) dx + 
I;R I (lR h(x) dx) 2 .  

The last three terms add up to 1 1 / l l i / I BR I , and the first term is bounded 
above by 

(4) 

Thus, we have that 

(5) 

which holds for all R > 0. Optimizing (5 ) over R, and recalling that I BR I = 
Rn l§(n-l) 1 /n , we learn that the right side of (2) is an upper bound to Cn . 
Next , we pick R = 1 and the trial function f given by (3) . Then, since 
u = 0, 

(6) 

Thus, Cn must be the sharp constant and f is an optimizer . That f is the 
only optimizer up to translation and scaling follows from a more elaborate 
argument for which we refer the reader to [Carlen-Loss , 1993] . • 
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REMARKS. ( 1 ) Every optimizing function f has compact support . 
( 2) The evaluation of the sharp constant Cn does not logically require 

the existence of a minimizer for the Neumann problem in 8. 12 ( 1 ) . AN is 
then the infimum of the quantity in 8 . 12 ( 1 ) , and all that is needed is the 
existence of a minimizing sequence of functions for 8 . 12(  1) , which exists by 
definition . The inequality (5) is also true by definition and (6) can be proved 
by using the minimizing sequence for 8 . 12 ( 1) instead of the minimizer. The 
statement in the theorem about equality does require a minimizer, of course. 

e A Sobolev inequality turns information about derivatives of functions 
into information about the size of the function. The size is usually mea
sured in terms of an Lq (JRn) norm with q as large as possible. The Sobolev 
exponent given in 8 . 1 ( 1 ) is q == 2n/ (n - 2) , which shows that the Sobolev 
inequality loses much of its effectiveness as the dimension of the space gets 
large. In essence it says that any function whose gradient is square sum
mable is an L2 (JRn) function - which does not amount to very much. The 
following theorem shows that there is , nevertheless , some residual improve
ment in the summability of a Sobolev function in high dimension. It is 
measured in terms of fJRn l f l 2 ln 1 / 1 2 . 

The problem of finding a replacement for Sobolev's inequality that does 
not depend on dimension was solved in the middle seventies by [Starn] , 
who proved the logarithmic Sobolev inequality in the following form 
involving Gauss measure, which is defined to be 

The logarithmic Sobolev inequality is 

where, of course, l l g l l 2 is here (and only here) the norm in L2 (JRn, dm) . The 
remarkable fact about (7) is that it does not depend on the dimension n. 
This is the form in which the logarithmic Sobolev inequality was originally 
used in the context of quantum field theory. There , one has to do analysis 
with functions in ' infinitely' many variables , i .e . , one has to do estimates 
that are uniform in the dimension of the underlying space and here the 
logarithmic Sobolev inequality is a fundamental tool . 

Later, but independently, [Federbush] derived the logarithmic Sobolev 
inequality from the "hypercontractive estimate" of [Nelson] . It was, however , 
[Gross] who realized the full scope of this inequality. He gave a different proof 
of the logarithmic Sobolev inequality using the probabilistic idea of a "two 
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point process" and he also showed that the hypercontractive estimate could 
be derived from it . 

The reader will note that although there does not appear to be a free 
parameter in (7) , the following simple but somewhat formal calculation ex
plains that a choice has really been made of a length scale. Set g( x) == 

exp{7rlx l 2 /2}f(x) and insert this function into (7) . A simple integration by 
parts yields the following inequality for f: 

_!_ r l \7f(x) l 2 dx > r l f (x) l 2 ln( l f (x) l 2 / 1 1 ! 1 1 � ) dx + n l l f l l � , (8) 
1f }�n }�n 

where the £2 norm is now with respect to Lebesgue measure . The reader 
will notice that inequality (8) is not invariant under scaling of x . It can, 
therefore, be replaced by a whole family of logarithmic Sobolev inequalities, 
as in the next theorem - an application of which will be given in Sect . 8 . 18 .  

8. 14 THEOREM (The logarithmic Sobolev inequality) 

Let f be any function in H1 (�n) and let a > 0 be any number. Then 

: Ln l\7  f (x) l 2 dx > Ln l
f (x) l 2 ln C���t) dx + n( 1 + ln a) l l f l l � · ( 1 )  

Moreover, there is equality if and only if f is, up to translation, a multiple 
of exp{ -7r lx l 2 /2a2 } .  

PROOF. Our approach is to derive ( 1 )  from the sharp version of Young's 
inequality, which is similar to the approach taken by [Feder bush] . 

Recall the heat kernel e�t f == Gt * f , where Gt is the Gaussian given 
in 7 .9(4) .  By Young's inequality we see that e�t maps LP (�n) into Lq (�n) 
provided that p < q .  The sharp logarithmic Sobolev inequality ( 1 ) will 
follow by differentiating a sharp inequality (at the point q == p == 2) for the 
heat kernel as a map between LP (�n) and Lq (�n) . (Normally, one cannot 
deduce much by differentiating an inequality, but in this case it works - as 
we shall see. ) To compute the sharp constant for the heat kernel inequality 
we employ the sharp version of Young's inequality in Sect . 4 . 2 .  As stated in 
4 .2 (4) 

with 1 + 1/ q = 1/r + 1/p and with c; = p1/P jp' l/p' . It is elementary to 
evaluate the Gaussian integral l l 9t l l r  and thereby obtain [ 4 t ] -n(l/p-ljq)/2 

l l eLlt f l l q < (CpjCqt ( 1/p : 1/q) I I  f l i P · (2 )  
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We set q = 2 and let t ---+ 0 and 2 > p ---+ 2 in the following way: 
t = a2 ( 1/p - 1/2) /7r. (3) 

From (2) and (3) we obtain the inequality 

I I I I I �  - l l e�t ! I I �  > I I I I I �  - I I I I I� + { 1 - [ (2a) -7rt/a2 Cp/C2 rn} l l f l l� . ( 4) 
Note that as t tends to 0 both sides of (4) tend to 0; in particular, the 
constant { } tends to 0 .  In order to make sense of the various expressions 
in ( 4) , we shall assume that there exists 6 > 0 such that f E £2+8 (JRn) n 
L2-8 (JRn) ,  in addition to f E H1 (JRn) . 

We note, further, that the left side of ( 4) , when divided by 2t, approaches 
I I V' / I I � as t ---+ 0 .  This follows from Theorem 7 . 10 together with the observa
tion that l l e�t ! I I � = (/, e2�t f) .  Formally, differentiating 1 1 ! 1 1 � with respect 
to p at p = 2 yields 

d 2 1 { 2 ( 1 f (x) l 2 ) dp I I  f l iP p=2 = 2 }JR.n l f (x) l ln l l f l l � . (5) 

The formal calculation of the derivative of fJRn l f iP can be justified by noting 
that since the function p �----+ tP is convex, the following inequalities hold for 
all -6 < c < 6 (why?) :  

l f (x) l 2 - l f (x) l 2-8 l f (x) l 2 - l f (x) l 2-c: l f (x) l 2+8 - lf(x) l 2 
------------- < < . 6 -

c 6 
Eq. (5) then follows by dominated convergence (recall that 6 is fixed) . Thus , 
using (3) we have that as t ---+ 0, 

1 1 ! 1 1 � - 1 1 ! 1 1 � 
---? � r l f (x) l 2 ln ( l f (x)t ) . 2t a }JRn l l f l l 2 A straightforward computation shows that 

1 - [(2a) -1rtja2 CpjC2] 2n 7f 

E� 2t = n a2 ( 1  + In a) , 
which proves the inequality for the case f E H1 (JRn) n £2-8 (JRn) n £2+8 (JRn) . 
The general inequality follows by a standard approximation argument of the 
kind we have given many times , but there is a small caveat : ln l f (x) l 2 can 
be unbounded above and below. For c > 0, however, ln l f (x) l 2 < l f (x) l c for 
large enough l f (x) l . This fact , together with Sobolev's inequality for f tells 
us that the integral fJRn 1/ 1 2 (ln 1 / 1 2 )+ is well defined and finite, and hence 
the right side of ( 1 )  is well defined , too - although it could be -oo. 

It is straightforward to check that the functions given in the statement 
of the theorem give equality in the logarithmic Sobolev inequality. This is 
no accident since they arise from 4 .2 (3) . That they are the only ones is 
harder to prove and we refer the reader to [Carlen] for the details . II 
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8. 15 A GLANCE AT CONTRACTION SEMIGROUPS 

There will be much discussion of the heat equation in this and the following 
sections . We include this topic because the heat equation plays a central role 
in many areas of analysis and because the techniques employed are simple , 
elegant , and good illustrations of some of the ideas presented in the previous 
sections. In order to keep the presentation simple and focused, some of the 
developments will only be sketched. 

The heat kernel 7 .9 ( 4) is the simplest example of a semigroup. Clearly, 
equation 7 .9 (7) is a linear equation and et� is an 'operator valued' solution 
of the heat equation, in the sense that for every initial condition f, the 
solution 9t is given by et� f, i .e . , the heat kernel applied to the function f . 
This relation can be written, in an admittedly formal way, as 

( 1 )  

a notation that is familiar when dealing with finite systems of linear ordinary 
differential equations , in which case et� is replaced by a t-dependent matrix 
Pt . The reader is doubtless familiar with the fact that t ---+ Pt is a continuous 
one parameter group of matrices , i .e. , Po is the identity matrix and 
Pt+s = PtPs for all real s and t . In particular, P_t is the inverse matrix 
of Pt . It is very easy to check that the heat kernel 7.9 (4) shares all these 
properties except for the invertibility. The inverse of et� is not defined since, 
generally, there is no solution to the heat equation for t < 0 when the value, 
f, at t = 0 is prescribed. Because of this it is customary to call et� the heat 
semigroup. It follows from Theorem 4 .2 (Young's inequality) that the heat 
kernel is in fact a contraction semigroup on L2 (1Rn) ,  i .e . , with 9t := Ptf, 

(2 ) 
for all t > 0. 

The heat semigroup serves as a motivation for the general definition of 
a contraction semigroup . The usefulness of this concept will be illustrated 
in Sect . 8. 17 . To keep things simple and useful we shall consider £2 (0, J.L) 
where 0 is a sigma-finite measure space, such as JRn with Lebesgue measure. 

A contraction semigroup on £2 (0, J.L) is defined to be a family of 
linear operators Pt on £2 (0, J.L) ( i .e. , Pt(af + bg) = aPtf + bPtg) satisfying 
the following conditions : 

a) Pt+sf = Pt (Psf) = Ps (Ptf) for all s ,  t > 0. 

b) The function t ---+ Ptf is continuous on £2 (0, J.L) , i .e . , 

I I Ptf - Ps/ 1 1 2 ---+ 0 as t ---+ s .  

(3) 

(4) 
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c) 

d) 

Pof = f. 

Sobolev Inequalities 

(5)  

(6) 

The first three conditions define a semigroup while the last defines the 
contraction property. Such families of operators can be considered in a 
general context in which £2 (0., J.L) is replaced by some Banach space, but we 
shall resist the temptation to pursue this generalization. 

Every contraction semigroup has a generator, i .e . , there exists a linear 
map L : £2 (0. ,  J.L) ---+ £2 (0., J.L) , which, generally, is not continuous ( i .e. , not 
bounded) ,  such that 

d -Pt == -LPt dt or (7) 

This formula holds only when applied to functions f such that 9t := Ptf 
is in D( L) , the domain of the generator L which, by definition, is the 
collection of all those functions h for which the limit 

lim 
Pth - h = :  -Lh t�o t (8) 

exists in the £2 (0., J.L) norm. (An example to keep in mind is L = -� and 
D(L) consists of all functions such that �f ( in the sense of distributions) 
is an £2 (0.) function . )  The minus sign in (7) is chosen for convenience. It 
can be shown that D(L) is dense in £2 (0., J.L) . It is also invariant under the 
semigroup Pt (since [Pt (Psh) - (Psh)] /t = P8 [Pth - h] /t ) ; this is convenient 
since it implies that 9t is in D(L) for all t once we know that the initial 
condition f is in D ( L) . There is a remnant of continuity, however , in that 
the domain D(L) endowed with the norm 1 1 ! 1 1 :=  ( 1 1 ! 1 1 � + 1 1 Lf l l � ) 112 is a 
Hilbert space (Sect . 2 . 2 1 ) .  

An immediate consequence of the contraction property (6) is that for all 
functions f E D ( L) 

Re(f, Lf) > 0, (9) 

since Re(f, Ptf - f) < l ( f, Ptf) l - (f, f) < l l f i i 2 { I IPtf l l 2 - l l f l l 2 } .  As usual 
we denote the inner product on £2 (0., dJ.L) by ( · , · ) .  

The first important question is to characterize those linear maps L that 
are generators of contraction semigroups . A major theorem due to Hille 
and Yosida states necessary and sufficient conditions for L to generate a 
contraction semigroup Pt and hence a unique solution to the initial value 
problem defined by (7) on all of £2 (0., J.L) . A precise statement and proof of 
it can be found, e .g . , in [Reed-Simon, Vol. 2] . 
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There is a subtlety about (7) . For any initial condition f E £2 (0 , J-L) , 
9t := Ptf is always a well defined function in £2 (0, J-L) .  It may not satisfy (7) , 
however, and, therefore, when discussing (7) we demand that f E D(L) . For 
the heat equation 7 .9 (7) we are a bit luckier because then Pt maps L2 (1Rn ) 
into D(L) for all t > 0. This nice feature does not always occur for a 
contraction semigroup. 

Keeping the heat equation in mind, the following two additional assump
tions are natural, namely that Pt is also a contraction on £1 (0, J-L) , 

and that Pt is symmetric , 

(g, Pt f) = ( Ptg, f) for all f, g E L 2 ( 0 , dJ-L) . 

( 10) 

( 1 1 ) 

A simple consequence of ( 1 1 ) is that for any functions f and g in D(L) 

(g , Lf) = (Lg , f) , ( 12 ) 

and that (9) simplifies to 
(/, Lf) > 0.  ( 13) 

8. 16 THEOREM (Equivalence of Nash's inequality and 
smoothing estimates) 

Let Pt be a contraction semigroup on £2 (0 , dJ-L) where 0 is a sigma-finite 
measure space and J-L some measure .  Assume that Pt is symmetric and also 
a contraction on £1 (0 , dJ-L) with generator L. Let 1 be some fixed number 
between zero and one .  Then the following two statements are equivalent (for 
positive numbers cl and c2 that depend only on 1) : 

I IPtf l l oo < Clt-T'/(l-f') l l f l l 1 for f E L1 (0 , dJ-L ) , ( 1 ) 

1 1 / 1 1 � < C2 (/, L/), 1 1 / l l � ( l-f') for f E L1 (0 , dJ-L) n D(L) . (2 ) 

REMARKS. ( 1 ) Equation (2) is an abstract form of Nash's inequality 
8. 13(2) . If L = -�, as in the heat semigroup, then (/, Lf) is just I I V' f l l 2 
and (2) is true with 1 = n/ (n + 2 ) . 

(2) Inequality ( 1 ) is called a smoothing estimate because it says that Pt 
takes an unbounded £1 (0, J-L) function into an £00 (0, J-L) function, even for 
arbitrarily small t .  
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PROOF. First we prove that (2) implies ( 1 ) .  Consider the solution 9t = Ptf 
where the initial condition f is in LI (O, dJL) n D(L) . Set X(t) = l l 9t l l � and 
compute 

d 
dt X =  -2(gt , Lgt) · 

Inequality (2 ) leads to the estimate 

_i_x < -2c-1h l l I I -2 ( I-,);, I I 1 1 21, dt - 2 9t I 9t 2 . 

(3) 

Since Pt is an LI contraction we know that l l 9t i i i < I I / I I I , and we obtain the 
differential inequality 

_i_x < -2c-lh l l f i i -2 ( I-,);, x i/, dt - 2 I ' 
which can be readily solved (how?) to yield the inequality 

with 

(4) 

(5) 

(6) 

Note that it is the power of X in ( 4) that determines the time decay, which 
depends only on 'r· The constant in inequality ( 2) is irrelevant for the 
power law of the decay, namely G· Inequality (5) holds for all functions in 
D(L) n LI (O, dJL) and hence , by continuity, it extends to all of LI (O, dJL) . 
Thus, we have shown that 

(7) 

for all initial conditions f E LI (O, dJL) . 
Inequality (7) can be pushed further to yield an estimate of the £00(0, dJL) 

norm of 9t · For any function h in £2 (0 , dJL) n LI (O, dJL) 

by the symmetry of the semigroup. This ,  in turn, is bounded above by 

(8) 

By taking the supremum of I ( h, 9t ) I over all functions h E £I ( 0, dJL) with 
l l h i i i = 1 we obtain, by Theorem 2 . 14 and the assumed sigma-finiteness of 
the measure space, 

(9) 
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I.e. , the semigroup maps £1 (0, dJL) into £00 (0, dJL) , with the t behavior of 
the norm, in agreement with ( 1 ) .  

To prove the converse we note that for every f E D(L) and T > 0 

l l 9r l l � - l l f l l � = -2 1T 
(gt , Lgt ) dt . 

Since 9t is in D(L) the function t t---t (gt , Lgt ) is differentiable and its deriv
ative is -2 I I Lgt l l � , which is negative . Hence , the function t t---t (gt , Lgt ) is 
decreasing and (gt , Lgt ) < (/, Lf) . Therefore, l l 9r l l �  - 1 1 / 1 1 � > -2T(f, Lf) . 
In other words, 

(!, Lf) > 2� [ I I I I I � - l l 9r l l � ] · ( 10) 

By ( 1 ) and the £1 (0,  dJL) contractivity, we know that 

By inserting this in ( 10) ,  and then maximizing the resulting inequality with 
respect to T, inequality (2) is obtained. • 

8.17 APPLICATION TO THE HEAT EQUATION 

As mentioned before , smoothing estimates of the heat kernel , in the sense 
of the previous theorem, can be immediately deduced from 7.9 (5) ; namely, 

( 1 )  

There are, however , situations where no such elementary expression for the 
solution is available and it is here that the full power of the above reasoning 
comes to the fore. 

In this section the example of a generalized heat equation on ]Rn with 
variable coefficients will be considered : 

d n 
dt9t (x) = :2: 8iAij (x)8j9t (x) = divA(x)\7gt (x) =: - (Lgt ) (x) . (2) 

i ,j=1 
Our goal is to derive a smoothing estimate of the type ( 1 )  for the solution of 
equation (2) with exactly the same t-dependence but with a worse constant . 

Equation (2) describes the heat flow in a medium with a conductivity 
that is variable and that may even be different for different directions . The 
matrix A(x) is symmetric , with real matrix elements, which we assume to 
be bounded and infinitely often differentiable with bounded derivatives . It 
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should be emphasized that these assumptions are very restrictive and that 
it is possible to deal with much more general situations at the expense of 
introducing concepts that are outside the scope of this book. An important 
assumption is that this matrix satisfies a uniform ellipticity condition, 
i .e . , that there exist numbers a > 0 and p > 0 (called the ellipticity 
constants) such that for every vector 17 E JRn 

p(TJ, 17) > (TJ , A(x)17) > a(TJ , 17) ,  (3) 
where ( · , · ) denotes the standard inner product on JRn . 

Clearly, L is defined for every function in H2 (1Rn) .  The Hille-Yoshida 
theorem, mentioned before (but not demonstrated here) , shows that L is 
the generator of a symmetric , contraction semigroup Pt on £2 (JRn) and its 
domain is H2 (1Rn) .  Thus ( 2) holds for all initial conditions f E H2 (1Rn) . 

Next , we show that Pt is a contraction on L1 (1Rn) .  This is a bit more 
difficult to see . One of the steps in proving Kato's inequality (exercise in 
Chapter 7) was to show that , for any function f E Lf0c (1Rn) with Lf E 
Lfoc (JRn) ,  

(4) 

in the sense of distributions . Here fc: (x) = Jlf(x) l 2 + c2 . In particular , 
this inequality holds (again in the sense of distributions) for all functions 
f E H2 (1Rn) .  

For any nonnegative function cjJ E C� (JRn) we calculate 

:t (gf , ¢) = ( Re (:; :t9t) , ¢) = - ( Re (:;Lgt) , ¢) < - (gf , L¢) . (5) 

(The left hand equality needs justification, and we leave this as an exercise. 
Notice that since 9t has a strong t derivative we can use Theorem 2 .7 to 
conclude that the difference quotient converges pointwise in a dominated 
fashion to -Lgt . )  Since the function gf is locally in £2 (JRn) and bounded at 
infinity, the inequality 

:t (gf , ¢) < -(gf , L¢) , (6) 

also holds if we set ¢(x) = ¢R (x) := exp [ - Jl + lx l 2 / R] , even though ¢ 
does not have compact support . One easily calculates that 

-Lc/JR(x) 
¢R (x) 

- 1 n n L XjOiAj (x) + L Aii 
i,j=l i=l 

(x, A(x)x) ( 1 1 ) + 
R ( 1 + r2 ) -

R 
+ -V-;::::=1 =+=r::;;2 (7) 
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with r == lx l . From this , and the assumption that the elements of the matrix 
A(x) have bounded derivatives , we get immediately that 

for some constant C independent of R. Thus, we arrive at the differential 
inequality 

:t (gf , cf>R) < � (gf , cf>R) ,  

which is equivalent to the statement that (gf ,  ¢R) exp [-Ct/ R] is a nonin
creasing function of t .  By letting c ---1- 0 (and using dominated convergence) 
the same can be said about the function ( l9t l , ¢R) exp [-Ct/ R] . Thus 

Since f E L1 (1Rn) ,  we can let R ---1- oo and conclude, by monotone 
convergence, that 

(8) 

This is the desired L1 (1Rn) contraction property of Pt . 
By integration by parts the ellipticity bound relates (/, L f) directly 

to the gradient norm of / ,  namely p l l \7f l l � > (f, Lf) == fJRn (\7f, A\7f) > 
a l l\7 ! I I � - Therefore, we can apply Nash's inequality (Theorem 8. 13) to ob
tain, for any f E L1 (1Rn) , 

By Theorem 8. 16 we conclude that the semigroup defined by ( 1 )  satisfies 
the smoothing estimate 

( 10) 

- which was our aim. 

From (8) we can deduce two interesting facts, which we state for later 
use in this chapter . The first is that for any initial condition f E £1 (JRn) , 

r 9t (x) dx is independent of t. }JRn ( 1 1 ) 

This follows from the formula d(gt ,  ¢) /  dt == (gt ,  L¢) , valid for any function ¢ 
in Cgo (JRn) . If we choose ¢(x) == 'l/JR (x) == 'lj;(xj R) , where 'lj; (x) is a Cgo (JRn) 
function that vanishes outside the ball of radius two and is identically one 
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inside the ball of radius one, then, certainly, L� R is uniformly bounded and 
converges pointwise to zero as R ---+ oo .  Since 9t E L1 (1Rn) we can let R tend 
to infinity and get the desired result ( 1 1 ) . 

The second interesting fact is a consequence of the L1 (1Rn) contraction. 
The semigroup Pt associated with ( 1 ) is positivity preserving, i .e . , if the 
initial condition f is a nonnegative function, so is the solution 9t · This is 
the same as saying that the negative part [gt] _ must vanish. This follows at 
once from 

f [gt] + (x) + [gt] - (x) dx = f l 9t (x) l dx < f f(x) dx }�n }�n }�n 

= f 9t (x) dx = f [gt] + (x) - [gt] - (x) dx. }�n }�n 

8 . 18 DERIVATION OF THE HEAT KERNEL VIA 
LOGARITHMIC SOBOLEV INEQUALITIES 

There is much information in 8 . 14( 1 ) , which we shall explore by deriving the 
heat kernel using only 8. 14( 1 )  and two ideas , mainly due to [Davies-Simon] . 
That these ideas yield inequalities with sharp constants and the exact heat 
kernel for 7 .9 (7) was noticed in [Carlen-Loss , 1995] . 

As a first exercise, we use the family of logarithmic Sobolev inequalities 
to prove the sharp estimate about the solutions of the heat equation 7 .9(7) , 
namely, for every T > 0 ,  

( 1 )  

We have seen in the previous section that f �----+ 9t is positivity preserving, 
and hence it suffices to prove ( 1 )  for positive functions only. Let p( t) be a 
smooth increasing function of t with p(O) = 1 and p(T) = oo .  We choose 
p(t) later at our convenience . A simple calculation shows that 

p(t) 2 l l 9t l l ;��� ! l l 9t l l p(t) = d��t) Ln 9t (x)P(
t) ln (9t (x)P(t) / l l9t l l ;�g ) dx 

+ p(t)2 f 9t (x)P(t) -l d
d 9t (x) dx . (2) }�n t 

Using the heat equation and integration by parts on the right side of (2) we 
obtain 

d��t) Ln 9t (x)P(
t) ln (9t (x)P(t) / l l9t l l ;�g ) dx 

- p(t) 2 Ln 'V (9t (x)P(
t) -l) 'Vgt (x) dx . 
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Actually, since 

we end up with the equation 

P2 l l9t l l ��g :t l l9t l l v(t) = d��t) Ln 9t (x)v(
t) ln (gt (x)v(t) / l l 9t i i ���D dx 

+ 4(p(t) - 1 )  r I Vgt (x)p(t) /2 1 2 dx. }�n 
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If we choose a = 47r(p( t) - 1) I ( dp( t) I dt) > 0, we learn from the logarithmic 
Sobolev inequality that 

d n dp(t) ( 1 [47r(p(t) - 1 ) ] )  
dt ln l l 9t l l v(t) < -p(t) 2 dt 1 + 2 ln dp(t)/ dt . 

Integrating both sides from 0 to T we obtain the inequality 

(3) 

With the choice p( t) = T I (T - t) , the integral can be easily evaluated to 
be equal to - (nl2) ln(47rT) , and this proves inequality ( 1 ) .  Evidently this 
is sharp since a bound in the other direction can be found by taking f to be 
a delta-function in 7. 9 ( 5) . 

To be honest , we have intentionally overlooked something in order not 
to obscure the basic idea. We know only that 9t is in L1 (1Rn) n L2 (1Rn) 
and, therefore, the calculation in (2) has to be justified for p(t) > 2. One 
resolution of this problem is to let p(T) = 2 instead of p(T) = oo ,  i .e . , 
p(t) = 2TI(2T - t) .  We then obtain from (4) that l l 9r l l 2 < (87rT) -n/2 l l 9r i i i · 
Finally, by using the duality argument that took us from 8 . 16 (7) to 8 . 16 (9) , 
we arrive at ( 1 ) . 

The reader will object that while we have derived ( 1 ) we have not derived 
the integral kernel 7. 9 ( 4) and the representation 7 .  9 ( 5) from the logarithmic 
Sobolev inequality alone, but this defect will be remedied now in our second 
step. 

First , we show that the smoothing estimate ( 1 ) implies that the solution 
of the heat equation can be written in terms of an integral kernel Pt (x , y) .  
We begin with the remark that for fixed t the solution 9t is a continuous 
function. To see this , note that if f is in Cgo (JRn) , then 9t E coo (JRn) 
because differentiation commutes with the heat equation. Now pick any 
sequence Ji E ego (JRn) such that I I f - Ji I I I ---+ 0 as j ---+ 00 .  It follows from 
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( 1 )  that the corresponding continuous functions gf form a Cauchy sequence 
in L00 (1Rn) and hence converge to a continuous function, which must be 9t 
(because f t---t 9t is a contraction on L1 (JRn) ) . 

Since x t---t 9t (x) is continuous, 9t (x) is defined for all x and hence, for 
every fixed x ,  the functional f t---t 9t ( x) is a bounded linear functional on 
L1 (1Rn) .  By Theorem 2 . 14 (the dual of LP) there exists a function Pt (x, y) E 
L00 (1Rn) for every fixed x, such that 

9t (x) = r Pt (X , y) f (y) dy. }�n (5) 

It is easily established that Pt (x , y) > 0 and that Pt (x, y) = Pt (Y , x) , but 
we shall concentrate on our goal , which is to calculate Pt (x, y) .  

To this end we can utilize an argument due to [Davies] , which is widely 
used to obtain bounds on heat kernels . Pick any nonnegative f E C�(JRn) 
and consider the function fa (x) :== ea·x f(x) , where a is an arbitrary but 
fixed vector in JRn . Clearly fa is in C� (JRn) ;  we now solve the heat equation 
with this initial condition and denote the solution as gf . A simple calculation 
will convince the reader that the function h� (x) = e-a·xgf (x) is a solution 
of the equation 

:t h� = b..h� + 2a · \lh� + l a l 2h� . 

Now we go through the same steps as before when we derived inequality 
( 1 ) . The point to notice is that the term a · '\lh� does not contribute to (2) 

- despite appearances . The reason is that the extra term one would obtain 
on the right side of (2)  is p(t) 2 J�n (h�)P- 1a · '\lh� , and this vanishes since it 
is the integral of a derivative . Consequently, 

(6) 

Thus, using the fact that the heat kernel is given by a bounded function 
Pt (x ,  y) we learn from (6) that 

e-a·x Pt (X , y) ea·y < (47rt)-n/2 e la 1 2t , 
or , rearranging the terms a bit , we see that 

(7) 

Since the vector a is arbitrary, we can optimize the right side of (7) and 
obtain 

(8) 
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Since both expressions in (8) integrate to one , we conclude that they are , in 
fact , equal almost everywhere. The < in (8) is thus an equality, and hence 
the bound (6) , which was derived from the logarithmic Sobolev inequality, 
has led to the existence and precise evaluation of the heat kernel . 

Exercises for 
Chapter 8 

1 .  Let 0 be an open subset of JRn that is not equal to JRn . For functions 
in HJ (O) (see Sect . 7 .6) show that a Sobolev inequality 8 .3 ( 1 )  holds and 
that the sharp constant is the same as that given in 8 .3 (2) . Show also 
that in distinction to the JRn case, there is no function in HJ (O) for which 
equality holds. 

2 .  Suppose somebody tries to define HJ (O) , 0 c JRn as the set of those 
functions in H1 (JRn) that vanish outside the set 0. What difficulty would 
be encountered with such a definition? For each n give an example where 
this definition gives the right answer and one where it does not . 

...., Hint. Consider HJ (O) where 0 = ( -1 ,  1 )  rv {0} and describe all the 
functions in this space. 

3 . Generalization of Theorem 8. 10 (Nonzero weak convergence after transla
tions) : This theorem is stated for a sequence in W1,P (JRn) ,  but [Blanchard
Bruning, Lemma 9 .2 . 1 1] point out that it holds for the larger space 
D1 ,P (JRn) (see Remark ( 1 )  in Sect . 8 . 2) . Prove the generalization. 

4. An example of a nonsymmetric semigroup on £2 ( ( 0, oo ) , dx) is ( Ptf) ( x) = 
f(x + at) with a E JR. Show that this is a contraction semigroup. What 
is the generator and what is its domain? 





Potential Theory 
and Coulon1b 
Energies 

9. 1 INTRODUCTION 

Chapter 9 

The subject of potential theory harks back to Newton's theory of gravitation 
and the mathematical problems associated with the potential function, <I> ,  
of a source function, f, in three dimensions , given by 

<P(x) = { l x - Y l -1  f (y) dy . 
1�3 ( 1 )  

The generalization from JR3 to JRn replaces l x - Y l - 1 by l x - y l 2-n for n > 3 
and by ln l x - Y l  for n = 2 (cf. 6 . 20 (distributional Laplacian of Green's 
functions) ) .  In the gravitational case f ( x) is interpreted as the negative of 
the mass density at x. If we move up a century, we can let f(x) be the 
electric charge density at x,  and <I>(x) is then the Coulomb potential of f 
(in Gaussian units) . 

Associated with <I> is a Coulomb energy which we define for JRn , n > 3,  
and for complex-valued functions f and g in Lfoc (JRn) by 

(2) 

-

237 
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We assume that either the above integral is absolutely convergent or that 
f > 0 and g > 0 ,  in which case D(f, g) is well defined although it might be 
+oo. 

As far as physical interpretation of (2) for n == 3 goes , D(f, f) is the 
true physical energy of a real charge density f . It is the energy needed to 
assemble f from ' infinitesimal ' charges. In the gravitational case the physical 
energy is -GD(f, f) ,  with G being Newton's gravitational constant and f 
the mass density. 

We defer the study of <I> and D(f, g) to Sect . 9 .6 and begin, instead, with 
the definition and properties of sub- and superharmonic functions . This is 
the natural class in which to view <I>; the study of such functions is called 
potential theory. 

9.2 DEFINITION OF HARMONIC , SUBHARMONIC 
AND SUPERHARMONIC FUNCTIONS 

Let 0 be an open subset of JRn, n > 1 ,  and let f : 0 ---+ lR be an Lfoc (O)
function. Here we are speaking of a definite, Borel measurable function, 
not an equivalence class. For each open ball Bx,R c 0 of radius R, center 
x E lRn and volume I Bx,R I , let 

U)x,R := IBx,R I -1 r f(y) dy 
Jnx R ' 

denote the average of f in Bx,R · If, for almost every x E 0, 

f(x) < (f)x,R 

( 1 ) 

(2) 

for every R such that Bx,R c 0, we say that f is subharmonic (on 0) .  If 
inequality (2 )  is reversed ( i .e . , -f is subharmonic) , f is said to be super
harmonic. If (2) is an equality, i .e. , f(x) = (f) x,R for almost every x, then 
f is harmonic. 

Since f is Borel measurable, f restricted to a sphere is ( n-1-dimensional) 
measurable on the sphere. Let Bx,R = 8Bx,R denote the sphere of radius R 
centered at x . If f is summable over Bx,R C 0, we denote its mean by 

[f] x ,R = I Sx,R I -1 r f(y) dy = l §n-1 1 -1 r f(x + Rw) dw . (3) 
Js R }§n- 1 x , 
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Here §n-1 is the sphere of unit radius in JRn and j §n-1 1 is its n - !
dimensional area; I Sx,R I is the area of Sx,R · 

By Fubini 's theorem (and with the help of polar coordinates) , we have 
that for every x E 0 the function f is indeed summable on the sphere for 
almost every R. For each x E 0 we define Rx to be sup{R : Bx,R C 0} .  
The function [f] x,r , defined for 0 < r < Rx , is a summable function of r .  

Recall the definition of upper- and lower-semicontinuous functions in 
Sect . 1 .5 and Exercise 1 . 2 .  Recall, also, the meaning of �f > 0 in D' (O) 
from Sect . 6.22 .  

9.3 THEOREM (Properties of harmonic, subharrnonic, 
and super harmonic functions) 

Let f E Lfoc (O) with 0 c lRn open. Then the distributional Laplacian 
satisfies 

�f > 0 if and only if f is subharmonic . 
......... 

( 1 ) 

In case f is subharmonic, there exists a unique function f : 0 --t lR U { -oo} 
satisfying ......... 

• f(x) = f(x) for almost every X E 0 . ......... 
• f(x) is upper semicontinuous. (Note that even if f is bounded there 

need not exist a continuous function that agrees with f a. e . )  ......... ......... 
• f is subharmonic for all X E n, i . e . , f satisfies 9 . 2 (2) for all x , R 

such that Bx,R c n. 
In addition, 

......... ......... 
( i) f is bounded above on compact sets although f(x) might be -oo for 

some x 's . ......... 
f is summable on every sphere Bx,R for which Bx,R C 0 . ......... ( ii) 

( iii) For each fixed X E n the function r 1----t [f] x,r , defined for 0 < r < Rx , 
is a continuous, nondecreasing function of r satisfying 

......... ......... 
f(x) = lim [f] x,r ·  r�o (2) 

......... 
REMARKS. ( 1 )  An obvious conseq11ence of Theorem 9 . 3  is that f then has 
the property (called the mean value inequality) that 

......... ......... ......... 
[f] x,r > (f) x,r > f(x) . (3) 
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(2) If f is superharmonic, the above results are reversed in the obvious 
way. If f is harmonic, both sets of conclusions apply; in particular, the in---- ......... 

equalities in (2) become equalities and therefore [f] x,r = f (x) is independent 
of r .  By definition , equation ( 1 )  implies that 

�� = 0 if and only if f is harmonic, 
�� < 0 if and only if f is superharmonic. 

(4) 

(5) 

(3) One new feature appears in the harmonic case : f is not only contin
uous , it is also infinitely differentiable. We leave the proof of this fact as an 
exercise. 

( 4) In lR 1 ,  the condition �� > 0 is the same as the condition that a 
Lfoc (JR 1 )-function be convex. In JRn , however, subharmonicity is similar to , 
but weaker than, convexity. The relation is the following. We can define the 
symmetric n x n Hessian matrix 

(in the distributional sense) ; convexity is the condition that H ( x) be positive 
semidefinite for all x while subharmonicity requires only Trace H(x) > 0. 
There is , however , some convexity inherent in subharmonicity. With r(t) 
defined by 

t ,  O < t < Rx if n = 1 ' 

r (t) = -oo < t < ln Rx if n = 2 ' (6) 

if n > 3,  

the function 
t I-t [f] x,r (t) (7) 

is convex. The proof of this convexity is left as an exercise . 
(5) Despite the fact that the original definition 9 .2 (2) defines subhar

monic as a global property (i .e . , 9 .2 (2) must hold for all balls) , ( 1 )  above 
shows that it really is only a local property, i .e . , it suffices to check �� > 0, 
and for this purpose it suffices to check 9 .2 (2) on balls whose radius is less 
than any arbitrarily small number. There is some similarity here with com
plex analytic functions ; indeed, if n c c and f : n --t c is analytic , then 
1 ! 1 : n --t JR+ is subharmonic . 
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PROOF. Step 1 .  At first we assume that f E C00 (0) , so that we can integrate 
by parts freely. Let 

9x,r := r '\lf · v = rn-l r '\lf(x + rw) · w dw , (8) 
Jsx ,r }§n- 1  

where v is the unit outward normal vector. If �� > 0 ,  then, by Gauss 's 
theorem, 

0 < 1 flj = 9x,r , Bx ,r 
(9) 

and hence 9x,r is a non decreasing, nonnegative, continuous function of r . 
Using the right hand formula in 9 .2 (3) , we can differentiate under the integral 
to find that 

_i_ [j] _ l §n-1 1 - 1 1-n 
d x r - r 9x r · r ' ' ( 1 0) 

From ( 1 0) we see that r t---t [f] x,r is continuous and nondecreasing, and (3) 
......... 

is an elementary consequence of �hat fact . If we choose f = f, then all the 
assertions of our theorem about f are easily seen to hold with the exception 
of uniqueness which we shall prove at the end. 

Next , we show that �� > 0 when f is subharmonic. If not , then h : = �� 
is in C00 (0) , and h is negative in some open set O' c 0. By the previous 
result , f is superharmonic in 0' , i .e. , f (x) > [f] x,R when Bx,R C 0' . (The 
reason we can write > instead of merely > is that (9) and ( 10) show that 
- [!] x,R has a strictly positive derivative. ) This relation implies f ( x) > 
(f)x,R in O' , which contradicts the subharmonicity assumption. This proves 
( 1 )  for j E C00 (0) . 

Step 2 .  Now we remove the C00 (0) assumption. Choose some h E 
cgo(JRn) such that h > 0, J h = 1 ,  h (x) = 0 for lx l > 1 ,  and h is spherically 
symmetric. Let us also define hc: (x) = E-nh (xje,) for c > 0. Then the 
function 

!c: := he: * f ( 1 1 )  
is well defined in the set Oc: = {x :  dist (x , 80 ) > c} c 0 and fc: E C00 (0c: ) . 
As usual * denotes the convolution of two functions . Also, �fc: > 0 if 
�� > 0, in fact 

�fc: = he: * �f. 
For this see Theorem 2 . 16 ,  where it was also shown that there exists a se
quence c1 > c2 > · · · tending to zero such that as i --t oo, fc:t ( x) --t f ( x) 
for a.e. x and fc:t --t f in L1 (K) for any compact set K C 0. Henceforth, 
we denote this i --t  oo limit simply by limc:�o - In the following we shall fre
quently introduce integrals , such as in ( 1 1 ) ,  with the implicit understanding 
that they are defined only if c is small enough or X is not too close to 80 , 
etc. 
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If �f > 0, then �fE: > 0, and then (by Step 1 )  fc is subharmonic in 0£ . 
By definition 

for small c .  As c --t 0 the right side converges to IBx,R I -1 JBx R f while 
' 

the left side converges to f(x) for a.e. x. Thus , f is subharmonic as well. 
Conversely, suppose that f is subharmonic. Then fc is subharmonic in 0£ 
because f subharmonic {:} I B i f < XB * f , where XB is the characteristic 
function of a ball , and hence 

XB * fc = XB * (he * f) = hE: * (XB * f) > I B i hE: * f = IB ifE: · 
However , fc subharmonic ==> �f£ > 0 ==> J fc�cP > 0 for any nonnegative ¢ 
in C� (O) and for sufficiently small c. As c --t 0 this integral converges to 
J f �¢, so �f > 0. This proves ( 1 )  for f E Lfoc (O) . 

Step 3 .  It remains to prove the existence of a unique f with the stated 
properties , under the assumptions f E Lfoc (O) and f subharmonic. 

To se� uniqueness , let g be any function satisfying the same three prop
erties as f . Since (f)x ,r = (g) x ,r > g(x) for all x we see that g is bounded 
above on compact sets , in particular there is a constant C independent of r 
such that g < C on all of Bx,r for r sufficiently small . The function C - g 
is positive and lower semicontinuous . This , together with Fatou's lemma, 
implies that lim supr�o (9)x ,r < g (x) . Since g is subharmonic everywhere, 
lim infr�o (g)x ,r > g(x) and therefore limr�o (f)x,r = limr�o (g)x,r = g(x) . ......... 
Obviously the same is true for f which proves uniqueness . 

An important fact , which we show next , is that c � fc (x) is a nonde
creasing function of c .  If f E C00(0) , a simple calculation shows that 

fc (x) = 1 h(y) [f] x , ly lc dy , I Y I<l 
( 12) 

and this is monotone increasing in c,  by virtue of ( 10) , which holds for 
f E C00 (0) . If f tJ_ C00 (0) ,  define 9E:,J-L = hE: * fJ-L · By the foregoing, this 
function is monotone in c for each fixed J-l and, as J.L --t 0, (he * fJ-L) (x) --t 

hE: * f(x) = fc (x) for all x because fJ-L --t f in L1 (K) for every compact 
K c 0. Therefore fc is monotone, even if f rf:. C00 (0) because a pointwise 
limit of monotone functions is monotone. 

Armed with this information, we define 
......... f(x) := inf{fc (x) : n£ c 0} . ( 13) 

This f is upper semicontinuous (because it is the infimum of continuous 
functions) . For any compact K C n, there is an cK > 0 such that fcK (x) 
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......... ......... 
is defined for all x E K (Why?) ;  we then have f(x) < fc:K (x) and hence f ......... 
is bounded above on K by a C00 (0)-function. Moreover, f (x) = f(x) for 
almost every X E 0 because the monotonicity implies 

......... 
f(x) = lim fc: (x) c:�o ( 14) 

for all x E 0,  but this limit equals f (x) almost everywhere as stated above . ......... 
Now, with the usual definition of f± (x) ,  we have f± (x) = limc:�o/±,c: (x) ,  
by ( 14) . If Sx,R c K, then 

......... 
by dominated convergence (since 0 < f+ < f+,c:K ) ,  while 

lim r !- ,£ = r ]_ c:�o } Sx ,R } Sx ,R 

( 1 5) 

( 16) 

by monotone convergence (the monotonicity follows from ( 12) ) .  While the 
limit in ( 15) is finite, the limit in ( 16 ) could conceivably be +oo.  This cannot 
happen, however , because if it were +oo,  then the integral would have to be 
+oo for all r < R (since [fc:] x ,r is nondecreasing in r) . This would contradict 
the fact that f E Lfoc (O) . ......... 

We have arrived at the conclusion that [f] x ,r is defined and finite for all ......... 
r < R such that Bx,R C 0, and it equals limc:�o [fc:] x,r > limc:�ofc: (x) = f (x) . ......... 
Moreover , [f] x,r is the pointwise limit of nondecreasing functions , and hence ......... 
it is itself nondecreasing. Since (f) x,r is an integral over spherical averages , ......... 
we have shown that f is subharmonic at every point x E 0. 

Next , we show that 
......... ......... 

J(x) := lim [f] x ,r = f(x) .  r�o 
......... 

This limit , J(x) , exists for every x since [f] x ,r is nondecreasing in r (although ......... 
it could be -oo) , and by the foregoing we know that J (x) > f (x) .  Suppose 

.,.._, 

there is a point y such that J (y) > f (y ) + C with C > 0.  Then, for all ......... ......... 
small r 's ,  there must be an x (r) E 0 such that f (x (r) ) > f(y) + C (because ......... ......... ......... 
the average of f on Sy,r exceeds f (y) + C) . But f is upper semicontinuous ......... .,.._, 

and hence lim supr�of(x(r) ) < f(y) ;  this is a contradiction, and hence ......... 
J(y) = f(y) .  ......... 

The continuity of the function r t---t [f]x ,r follows now from the convexity 
properties stated in (6) and the fact that a convex function defined on an 
open interval is continuous. • 
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9.4 THEOREM (The strong maximum principle) 

Let 0 c JRn be open and connected ( see Exercise 1 . 23) . Let f : 0 --t lR be ......... ......... 
subharmonic and assume f = f, where f is the unique representative of f 
with the properties given in Theorem 9 .3 .  Suppose that 

F : =  sup{f (x) : x E 0} 
is finite. Then there are two possibilities. Either 

(i) f (x) < F for all x E 0 
or else 

( ii) f (x) = F for all x E 0 .  

( 1 )  

If f is superharmonic, then the sup in ( 1 )  is replaced by inf and the 
inequality in ( i) is reversed. If f  is harmonic, then f achieves neither its 
supremum nor infimum unless f is constant. 

REMARKS. ( 1 )  The 'weak' maximum principle would eliminate (ii) and 
replace (i) by f (x) < F, where F is now the supremum of f over the 
boundary of the domain n. 

(2) If f is subharmonic and continuous in 0 and has a continuous exten
sion to 0 ,  the closure of 0 ,  then Theorem 9 .4 states that f has its maximum 
on an, the boundary of n (which is defined to be n n nc) or at infinity (if 
n is unbounded) . 

(3) The strong maximum principle is well known for the absolute value 
of analytic functions on C .  

( 4) One obvious consequence of the strong maximum principle is known 
as Earnshaw's theorem in the physics literature ( cf. [Earnshaw] , [Thom
son] ) .  It states that there can be no stable equilibrium for static point 
charges . This implies that atoms must be dynamic objects , and it was one 
of the observations that eventually led to the quantum theory. 

PROOF. We have to prove that f(y) = F for some y E 0 implies that 
f (x) = F for all X E n . Let B c n be a ball with y as its center. Then, by 
9 .2 (2) , we have that 

I B IF < L f < L F = IB IF, 

and hence f ( x) = F for almost every x in B. Pick any point x in B. Since 
sets of full Lebesgue measure are dense , there exists a sequence x1 in B 
converging to x such that f(x1 )  = F. By the upper semicontinuity of f it 
follows that 

F = .lim f(xj ) < f(x) < F, 
J �OO 
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and hence f(x) = F . Thus we conclude that f(x) = F for every x E B. 
Now let X be an arbitrary point of n and let r be a continuous curve 

connecting y to x (which exists, since 0 is connected) . This curve can be 
defined by a continuous function 1 : [ 0' 1] --t n such that 1 ( 0) = y and 
1 ( 1 ) = x.  Let T E [0 ,  1 ] be the largest t such that f (1 (t) )  = F. (The 
reader should check, as above, that the existence of this T follows from the 
continuity of 1 and the upper semicontinuity of f. )  We claim that T = 1 ,  
and hence that f(x) = F, as asserted in the theorem. Indeed, if 0 < T < 1 ,  
then there is some ball Br c 0 centered at 1(T) E 0 (since 0 is open) ; by 
the preceding paragraph, f(z) = F for all z E Br. By the continuity of 1, 
Br contains some points 1 (s) with s > T. But then f (1 (s) ) = F, which 
contradicts the assumption that f (1 (t) )  < F for all t > T. 

A more direct proof is the following. Assuming that the theorem is false , 
we can define two nonempty, disjoint subsets of 0 by A = {x : f (x) < F} 
and B = {x : f (x) = F} . We note that A is open because f is upper 
semicontinuous . On the other hand B is also open because of the first part 
of the previous proof. I .e . , one can draw a little ball around the point where 
f = F and in that ball f = F . We conclude, therefore , that 0 is the union 
of two disjoint open sets , A and B, but this is impossible by the definition 
of n being connected. • 

e The following inequality is of great use , for it quantifies the maximum 
principle by setting bounds on the possible variation of a nonnegative har
monic function. This version of Harnack 's inequality is very far from being 
the best of its genre but the proof is simple . 

9.5  THEOREM (Harnack's inequality) 

Suppose f is a nonnegative harmonic function on the open ball Bz,R C JRn . 
Then, for every x and y E Bz,R/3 

3-n f(x) < 2-n f (z)  < f (y) . ( 1 )  

A corollary of ( 1 )  is that when f is harmonic on JRn and, for some 
constant C, either f (x) < C for all x, or f (x) > C for all x, then f is a 
constant function. Therefore, the only semi-bounded harmonic functions on 
]Rn are the constant functions . 

PROOF. Without loss , assume that R = 3 . If y E Bz, l , then we have 

f (y) = (f)y,2 > 2-n (f)z , l = 2-n f(z)  
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since Bz ,3 � By ,2 � Bz,l · On the other hand, 

To prove the corollary, note that ( 1 )  holds for every pair x ,  y E JRn . 
Assuming f > C, let F = inf{f(x) : x E lRn} ,  which is finite. Let g(x) := 
f (x) - F > 0. Given c > 0 there is a y E JRn such that 0 < g(y) < c .  
Then ( 1 )  implies g(x) < 3nc for all x. This obviously implies g(x) = 0, i .e . , 
f(x) = F. • 

e Now we return to the Coulomb potentials and energies discussed in the 
Introduction, 9 . 1 .  

9 .6  THEOREM (Subharrnonic functions are potentials) 

Let n > 3 and let 

( 1 )  

be the Green's function given before Sect. 6 .20 .  Let f : JRn --t [-oo , 0] be a 
nonpositive subharmonic function. By Theorem 9 .3 ,  J-l := �f > 0 in D' (JRn) 
and, by Theorem 6 .22 (positive distributions are measures) , J-l is a positive 
measure on JRn . 

Our new assertion is that ( 1  + l x l ) 2-n is J-L-summable and that 

(2) 

is finite for almost every x .  In fact, there is a constant C > 0 such that 

,..._, 

is the unique f representative of f given in Theorem 9 . 3 .  
Conversely, if J-l is any positive Borel measure on  JRn such that 

( 1  + l x l ) 2-n is J-L-summable, then the integral in (2) defines a subharmonic 
function ft : lRn --t [ -oo, 0] with �ft = J-l in D' (JRn) .  

REMARKS.  ( 1 )  When n = 1 or 2 there are no nonpositive subharmonic 
functions (on all of JRn) other than the constant functions . For n = 1 this 
follows from the fact that such a function must be convex. For n = 2 this 
follows from Theorem 9 . 3(6 ) which says that the circular average, [f] o,exp(t) ' 
must be convex in t on the whole line -oo < t < oo. 
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(2) Obviously, the theorem holds for superharmonic functions by revers
ing the signs in obvious places . 

(3) The condition f (x) < 0 may seem peculiar. What it really means, 
in general , is that when f is subharmonic (without the f(x) < 0 condition) 
then, with �� == J-L, we can write 

(3) 
with jt given by equation (2) and with H harmonic , provided there exists 

,..._, ,..._, 
some harmonic function H with the property that H(x) > f (x) for all x E 
JRn. As a counterexample, let j(x1 , x2 , x3 ) :== l xi i · This f is subharmonic 

,..._, 
but there is no H that dominates f. In this case the integral in equation 
(2) is infinite for all y since �� is a 'delta-function' on the two-dimensional 
plane x1 == 0. 

PROOF. Step 1 . Assume first that �� == m and m is a nonnegative C�(JRn)
function. Clearly, ( 1  + l x l ) 2-nm (x) is summable and we have 

/t (y) = - { Gy (x)m(x) dx = - (Go * m) (y) = - (m * Go) (y) , }�n 
recalling that Gy (x) == Go (y - x) and that convolution is commutative. By 
Theorem 2 . 16 , �ft == -m * (�Go) . But �Go == -bo by Theorem 6.20, 
so �jt == m. We conclude that ¢( x) : == f ( x) - jt ( x) is harmonic (since 
�¢ == 0) . Moreover , l ft (x) l is obviously bounded (by Holder 's inequality, 
for example) and therefore ¢(x) is bounded above (since f (x) < 0) . By 
Theorem 9 .5 ,  ¢(x) == -C . Clearly jt (x) --t 0 as x --t oo , so C > 0. Finally, 
jt E C00(1Rn) by Theorem 2 . 16 , so jt - C is the unique 7 of Theorem 9 .3 . 

Conversely, if m E C� (JRn) then, by 6 .21 (solution of Poisson's equa
tion) , jt , defined by (2) with J.-L(dx) == m (x) dx, satisfies �jt == m. 

Step 2 .  Now assume that �� == m and m E C00 (1Rn) ,  but m does 
not have · compact support . Choose some X E C� (JRn) that is spherically 
symmetric and radially decreasing and satisfies X(x) == 1 for l x l < 1 .  Define 
XR(x) == X(x/ R) and set mR(x) : ==  XR(x)m(x) . Clearly mR E C� (JRn) .  
Let Jk, == -Go * mR as in (2) , and let 7 be as in Theorem 9 . 3 . Then, as 
proved in Step 1 ,  �Jk, == mR, and so cPR :== 7 - Jk, is subharmonic because 
�cPR == m - mR > 0. Since mR(x) is an increasing function of R (because X 
is radially decreasing) ,  Jk, (y) is a decreasing function of R for each y . Also, 
jk_ E C00 (1Rn) ,  as proved in Step 1 ,  and Jk,(x) --t 0 as l x l --t oo. 

Several conclusions can be drawn. 
(i) Jk,(x) > 7(x) a.e. Otherwise, c/JR (x) would be a subharmonic 

function that is positive on a set of positive measure but that satisfies 
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liml x i-H)()¢R(x) < 0 uniformly. (Why?) This is impossible by Theorem 
9 . 3 . 

( ii) Since, by monotone convergence, 

we can conclude from (i) and the definition of Jk that the above integral on 
the left is finite. In fact , for the same reason, jt (y) = limR�oo!k_ (y) and, 
since the limit is monotone, jt is upper semicontinuous . 

(iii) If we define ¢ == ] - jt ,  then, since m(x) - mR(x) --t 0 as R --t oo  
for each x, we have �¢ == 0. (Note that �¢ is defined by J h�¢ = J cp�h 
for h E C� (JRn ) ; but J cp�h == limR�oo J ¢R�h (dominated convergence) 
== limR�oo J �¢Rh == limR�oo J h (mR - m) = 0. ) Thus, ¢ is harmonic and 

. t -- -¢ < 0 a.e. (s1nce JR > f a.e . ) ,  so ¢ - -C. 
Finally, if m E  C00 (1Rn ) is given with ( 1 + j x j ) 2-nm(x) summable , then 

jt is subharmonic and �jt == m. To prove this , introduce mR and Jk as 
above and take the limit R --t oo.  

Step 3 . The last step is the general case that �� == J.L, a measure. With 
he: E C� (JRn) as in the proof of Theorem 9 .3 , we consider fc: :== he: * f E 
coo (JRn) .  fc: satisfies the hypotheses of the theorem, and also fc: > f (by 
the subharmonicity of f as in 9 .3 ( 12 ) ) . Moreover, it is easy to check that 
�fc: = me: E C00 (1Rn) with mc: (Y) = f hc: (Y - x)J.L(dx) . If J1 is given by 
(2) with J.L(dx) == mc: (x) dx, then fc: == !1 - Cc: , with Cc: > 0. As c --t 0 
(through an appropriate subsequence) ,  fc: --t f a. e .  and monotonically and 
also !1 --t jt a.e . (by using !1 == -Go * (he: * J.-L) == -he: * (Go * J.L) , which 
follows from Fubini 's theorem) . Again, jt is a monotone limit of J1 ,  as in 
9 . 3 ( 12 )---- ( 14) , and J1 > fc: > j, so jt is upper semicontinuous . It is also easy 
to check, as above, that �(/ - jt )  == 0. Since f - jt < 0, we conclude that 
f == jt - c. 

The converse is left to the reader. • 

e The following theorem of [Newton] is fundamental. Today we consider 
it simple but it is one of the high points of seventeenth century mathe
matics . We prove it for measures , J-L. Equation (3) says (gravitationally 
speaking) that away from Earth's surface, all of Earth's mass appears to be 
concentrated at its center. 
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9.  7 THEOREM (Spherical charge distributions are 
'equivalent ' to point charges) 

249 

Let J-l+ and J-l- be (positive) Borel measures on JRn and set J-l : ==  J-l+ - J-l- . 
Assume that v : ==  J-l+ + J-l- satisfies JJRn wn (x)dv (x) < oo ,  where wn (x) is 
defined in 6 .21 (8) . Define 

V(x) : =  { Gy (x)J.L(dy) .  }JRn ( 1 )  

Then, the integral in ( 1 )  is absolutely integrable ( i . e . , Gy ( x)  is v -summable) 
for almost every x in ]Rn (with respect to Lebesgue measure) . Hence, V ( x) 
is well defined almost everywhere; in fact, V E Lfoc (JRn) .  

Now assume J-l is spherically symmetric ( i . e . , J.-L(A) == J-L(RA) for any 
Borel set A and any rotation R) . Then 

jV(x) l < IGo (x) l r dv. }JRn (2) 

If BR denotes the closed ball of radius R centered at 0 and if J-L(A) == 0 
whenever A n  BR == 0 ,  then, for all l x l > R, we have Newton's theorem: 

V(x) = Go (x) { dJ.L. }JRn (3) 

PROOF. The proof will be carried out for n > 3 but the statement holds 
in general. Let P(x) : ==  JJRn l x - y j 2-nv (dy ) . To show that P E Lf0c (1Rn) 
it suffices to show that JB P(x) dx < oo for any ball centered at 0. By 
Fubini 's theorem we can do the x integration before the y integration, for 
which purpose we need the formula 

In case n == 3 this formula follows by an elementary integration in polar 
coordinates . The general case is a bit more difficult and we prove ( 4) in a 
different fashion. We note that J ( r, y) is the average of the function l x-y 1 2-n 
in x over the sphere of radius r . The function x t----t l x - y j 2-n is harmonic 
as a function of x in the ball {x : l x l < I Y I } and hence, by the mean value 
property (cf. 9 . 3 (3) with equalities) , J(r, y) == J(O, y) == j y j 2-n . J depends 
only on I Y I and r and is a symmetric function of these variables . Thus , (4) 
follows for r =/= IY I · It is left to the reader to show that J ( r, y) is continuous 
in r and y , and hence that ( 4) is true for r == IY I · 
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It is easy to check that fo
R min(r2-n , IY I 2-n)rn-1 dr < C(R) ( 1 + I Y I ) 2-n, 

where C(R) depends on R but not on I Y I · Thus, by using polar coordinates, 
we have that 

L l x - Y l 2-n dx < C(R) ( l  + I Y I ) 2-n , 

and our integrability hypothesis about J.L guarantees that fn P < oo. Since 
P E Lfoc ORn) ,  P is finite a.e . and the same holds for V since l V I < P. 

To prove (2) we observe that V is spherically symmetric ( i .e. , V(x1 ) == 

V(x2 ) when l x1 l == l x2 l ) so , for each fixed x, V(x) == V( lx lw) for all w E §n-1 . 
We can then compute the average of V( lx lw) over §n-1 and,  using (4) , we 
conclude (2) . To prove (3) we do the same computation with J-l instead of v 

(which is allowed by the absolute integrability) and find that 

V(x) = l x l 2-n r JL(dy) + r IY I 2-nJL(dy) ,  (5) 
}ly l < l x l }IY I > I x l 

from which (3) follows if v ( {y : IY I > l x l } )  == 0. • 

9.8 THEOREM (Positivity properties of the Coulomb 
energy) 

If f : lRn --t C satisfies D( lf l ,  l f l ) < oo, then 

D(f, f) > 0. 

There is equality if and only if f 0 .  Moreover, if D( lg l ,  l g l ) < oo, then 

I D(f, g) 1 2 < D(f, f)D(g, g) ,  

( 1 )  

(2) 

with equality for g "=t 0 if and only if f == cg for some constant c .  The map 
f t--t D(f, f) is strictly convex, i. e . , when f =/= g and 0 < ,\ < 1 

D(..\f + ( 1 - .A)g, ..\f + ( 1 - .A) g) < .AD(f, f) + ( 1 - .A) D(g, g) .  (3) 

REMARK. Theorem 9.8 could have been stated in greater generality by 
omitting the restriction n > 3 and by replacing the exponent 2 - n in the 
definition 9 . 1 ( 2) of D(f, g) by any number 1 E ( - n ,  0) . See Theorem 4 .3 
(Hardy-Littlewood-Sobolev inequality) . The reason for choosing 2 - n is , of 
course, that l x - y l 2-n has a potential theoretic significance as the Green's 
function of the Laplacian ( cf. Sects . 6 . 20 and 9 .  7) . 
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PROOF. By a simple consideration of the real and imaginary parts of f ,  
one sees that to prove ( 1 ) it suffices to assume that f is real-valued. Let 
h E C� (:I�n) with h( X) > 0 for all X and with h spherically symmetric , i .e. , 
h(x) == h(y) when l x l == IY I · Let k be the convolution k(x) :== (h * h) (x) == 
K( jx j ) .  By multiplying h by a suitable constant , we can assume henceforth 
that J000 tn-3 K(t) dt == � - By the simple scaling t t--t t lx l - 1 , 

I (x) :== tn-3k(tx) dt == jx j 2-n tn-3 K(t) dt == - lx l 2-n . 100 100 1 
0 0 2 

However, I(x - y) can also be written as 

I(x - y) : =  ()() en-3 { h(t (z - y) )h(t(z - x) ) dz dt , Jo }�n 

(4) 

where h(x) == h( -x) has been used. Using Fubini 's theorem (the hypothesis 
D( lf l , l f l ) < oo is needed here) ,  

D(f, J) = { { f(x)f (y)I (x - y) dx dy = {oo C3 { l 9t ( z) j 2 dz dt , (5) }�n }�n Jo }�n 

with gt (z) == tn J�n h(t (z - x) )f (x) dx == ht * f(z) and ht (Y) :== tnh(ty) . The 
inequality D(f, f) > 0 is evident from (5) . 

Now assume that D(f, f) == 0. We must show f 0 .  From (5) we see 
that gt 0 for almost every t E (0, oo ) . Suppose h has support in the ball 
BR of radius R, so that the support of ht is also in BR for all t > 1 .  Then, if 
Xw 2R is the characteristic function of the ball Bw 2R of radius 2R centered at ' ' 
w, and if fw (x) == Xw,2R (x)f (x) , we have that if t > 1 and l x - w l < R, then 
(ht * fw) (x) == (ht * f) (x) == gt (x) == 0. However , fw E L1 (JRn) ,  and we can 
use Theorem 2. 16 (approximation by C00-functions) (noting that C :== f ht 
is independent of t) to conclude that ht * fw --t Cfw in L1 (1Rn) as t --t oo  
through a sequence of t's such that gt 0. Thus, as t --t oo, 0 gt --t f in 
L1 (Bw,R) ·  Hence f (x) == 0 a.e. in Bw,R and, since w was arbitrary, f 0. 

The last two statements are trivial consequences of the first two. Inequal
ity (2) is proved by considering D(F, F) with F == f - Ag and A == D(g, f) / 
D(g, g) . To prove (3) note that the right side minus the left side is just 
A( 1 - A)D(f - g, f - g) . • 

e We have seen that �f > 0 implies the mean value inequalities 9 .3 (3) .  As 
an aid in finding effective lower bounds for positive solutions to Schrodinger 's 
equation (see Sect . 9 . 10) it is useful to extend the foregoing Theorem 9 .5 
to functions that satisfy the weaker condition �f > J.L2 f ,  without requiring 
f > 0. 
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9.9 THEOREM (Mean value inequality for a - J.L2) 

Let 0 c lRn be open, let J-L > 0 and let f E Lfoc ( 0) satisfy 

�f - J-L2f > O  in D' (O) . 
,..._, 

( 1 )  

Then there is a unique upper semicontinuous function f on 0 that agrees 
with f almost everywhere and satisfies 

,..._, 1 ,..._, 
f(x) < J(R) [f] x ,R , (2) 

and, moreover, the right side of (2) is a monotone nondecreasing function 
,..._, 

of R. The spherical average [f] x,R is defined in 9 .2 (3) . The function J : 
[O , oo) --t (O , oo) satisfies J(O) == 1 and is the solution to 

(� - J-L2 ) J( Ix l ) == 0. (3) 

In terms of the Bessel function I(n-2);2 , J is given by 

J(r) == r(n/2) (J-Lr /2) 1-n/2 I(n-2)f2 (J-Lr) . (4) 

When n == 3, J(r) == sinh (J-Lr) / J-Lr . Inequality (2) can be integrated over R 
to yield 

,..._, 1 ,..._, 
f(x) < (WR * f) (x) < J(R) [fJ x,R ' 

where WR (x) == x{ l x i <R} (x) /J( Ix l ) .  

(5 ) 

REMARK. If the inequality is reversed in equation ( 1 ) , then clearly (2) 
,..._, 

and (5) are reversed and the corresponding f is lower semicontinuous . 

PROOF.  We shall largely imitate the proof of Theorem 9 .3 .  
Step 1 .  Assume that f E C00(0) , in which case ( 1 )  holds as a pointwise 

inequality. Inequality ( 1 )  is translation invariant , so it suffices to assume that 
0 E n and to prove (2) and (5) for X == 0. We shall show that [f] o ,r/ J(r) is an 

increasing function of r . Let K denote the C00(1Rn) function K (x) == J ( jx j ) , 
and note that ( 1 )  implies 

div (K\1 f - f\1 K) > 0. 

(Here, (div V) (x ) == 2:�8Vi/8xi . )  Integrate (6) over Bo,r to obtain 

d d J ( r) -d [f] o r - [f] o r -d J ( r) > 0 r ' ' r 

(6) 
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which, in turn, implies 
__! [f] o,r > O. dr J(r) -

253 

(7) 

This immediately implies (2) for C00 (0)-functions , for all x ,  and hence (5) . 
Step 2 . For the general case, let j ,  as usual, be a spherically symmetric , 

nonnegative Cgo (JRn)-function with support in the unit ball and let Jm(x) == 
mnj (mx) for m ==  1 ,  2 ,  3, . . . .  Define hm (x) == Jm(x)/ J( jx j ) ,  which is also in 
ego (JRn) ' and let 

fm == hm * J, 

which is in C00(0M) , provided m > M, where 

OM :== {x E 0 :  x + y E 0 for all I Y I < 1/M} . 

Then fm satisfies ( 1 ) pointwise in OM and we want to show that fm (x) is 
a nonincreasing function of m for each x. As before we consider fz ,m : ==  

hz * fm == hm * fz .  For x E OM ,  and when m and l are large, we have that 

{ Jm(Y) { j (y) 
Jz,m (x) = J.JRn J( jy j )  fl (X - Y) dy = }JR.n J( jy j jm) [fz l x , ly l /m dy . (8) 

This is nonincreasing in m because fz E C00(1Rn) and [fz ] x ,r /J(r) is nonde
creasing in r for each x, as proved in Step 1 .  As l --t oo, fzm (x) --t fm (x) for 
all x ,  by Theorem 2 . 16 (approximation by C00-functions) applied to the left 

-
hand integral in (8) . From this we conclude that f(x) = limm�oofm(x) ex-
ists , and it is an upper semicontinuous function because of the monotonicity . 1n m. 

The rest of the proof is as in 9 .3  with some slight modifications . One is 
that the assertion in 9 .3 (iii ) that [f] x,r is increasing in r has to be replaced 
by [f] x,r/J(r) is increasing in r ,  according to ( 2) , ( 7) .  The other is that a 
minor modification of the proof of Theorem 2 . 16 shows that hm * f --+ f in 
Lfoc (OM) as m --t oo. Both modifications are trivial and rely on the facts 
that K E C00(1Rn) and K(O) == J(O) == 1 .  • 

e We shall use Theorem 9 .9 to prove a generalization of Harnack's in
equality to solutions of Schrodinger 's equation. This is a big topic of which 
the following only scratches the surface. The subject has a long history. 
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9. 10 THEOREM {Lower bounds on Schrodinger 'wave' 
functions) 

Let 0 c JRn be open and connected, let J-L > 0 and let W : 0 --t JR be a 
measurable function such that W(x) < J.-L2 for all x E 0.  No lower bound 
is imposed on W .  Suppose that f : 0 --t [0 , oo) is a nonnegative Lfoc (0) 
function such that Wf E Lfoc (O) and such that the inequality 

-�f + Wf > 0 in D' (O) ( 1 ) 

is satisfied. 
,..._, 

Our conclusion is that there is a unique lowe! semicontinuous f that sat-
isfies ( 1 )  and agrees with f almost everywhere. f has the following property: 
For each compact set K c 0 there is a constant C == C(K, 0, J.-L) depending 

,..._, 
only on K, 0 and J-l but not on f ,  such that 

](x) > C L f(y) dy (2) 

for each x E K. 

REMARKS. ( 1 ) The f in ( 1 )  should be  compared with -f in 9 .9 . Thus , 
upper semicontinuous there becomes lower semicontinuous here, etc. The 
signs in 9 .9 and 9 . 10  have been chosen to agree with convention. 

(2) Our hypothesis on W and our conclusion are far from optimal. 
The situation was considerably improved in [Aizenman-Simon] and then 
in [Fabes-Stroock] , [Chiarenza-Fabes-Garofalo] , [Hinz-Kalf] . 

,..._, 
PROOF. The existence of an f is guaranteed by Theorem 9 .9 . Our problem ,..._, 
here is to prove (2) . We set f == f. 

Since K is compact , there is a number 3R > 0 such that Bx,3R c 0 for 
all x E K. Moreover K, being compact , can be covered by finitely many, 
say N, balls Bi : ==  Bx R with Xi E K. Set Fi == JB f . At least one of these 2 )  1, 
numbers , say F1 , satisfies Fi > N-1 JK f. 

As in the proof of Theorem 9 .6 we have , using 9 .9 (4) , that for every 
w E B2 

(3) 
with c5 == [J(2R) IBo,2R I J - 1 . Now let y E K and let ry be a continuous curve 
connecting y to x1 . This curve is covered by balls Bi , say B2 , B3 , . . .  , B M 
with Bi n  Bi+l nonempty for i == 1 ,  2 ,  . . .  , M - 1 .  We then have that 

Fi+l > r f > O IBi n Bi+I IFi 
Jn2nB2+ I 

(4) 
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since each w E  B2 n Bi+l satisfies (3) . From (4) , with a :== min{ IBi n Bj l : 
Bi n Bj nonempty} > 0, we conclude that 

(5) 

We also conclude, by iterating (5) and using (3) , that 

Obviously M < N, and the theorem is proved with C == 6NaN-1jN. • 

e In Sect . 6 .23 we studied solutions to the inhomogeneous Yukawa equation, 
but deferred the proof of uniqueness (Theorem 6 . 23 (v) ) to this chapter. 
There are several ways to prove this , one being an application of Theorem 
9 .9 .  As stated in the proof of Theorem 6. 23, uniqueness is equivalent to 
uniqueness for the homogeneous equation 9 . 1 1  ( 1 ) . 

9. 11  LEMMA (Unique solution of Yukawa's equation) 

For some 1 < p < oo let f in LP (JRn) be a solution to 

( 1 ) 

Then f - 0 .  

PROOF. The function -f also satisfies ( 1 ) ,  so both f and -f satisfy 9 .9 (5) , 
which means that the two inequalities in 9 . 9 (5) are equalities for almost every 
x .  Since I J h i < J l h l for any function h, we conclude that I i i satisfies 

(2) 

a.e . , with WR(x) == x{ l x i <R} (x)/J( Ix l ) .  Since log [J(r) ] rv r for large r ,  we see 
that I IWR I I I < I l l/J i l l < oo. Thus , applying Young's inequality to (2) , for 
every R we have that Rn i i ! I I P < C l l f l l p , which is impossible when R > C11n 
unless f == 0. • 
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Exercises for 
Chapter 9 

1 .  Referring to Remark (3) after Theorem 9 .3 ,  prove that harmonic func
tions are infinitely differentiable . Use only the harmonicity property 
f (x) = (f) x,R for every x .  

2 .  Prove Weyl's lemma: Let T be a distribution that satisfies �T = 0 in 
V' (O) . Show that T is a harmonic function. 

3 . Prove the assertion made in Remark ( 4) after Theorem 9 .3 , namely the ,..._, 
function t t-t [f] x,r (t) ' defined by 9 .3 (7) ,  is convex. 

4. Let f1 , j2 , • • •  be a sequence of subharmonic functions on the open set 
n c ]Rn and consider g (x) = SUPl <i< oo f"' (x) for every X E n. Show that 
g is also subharmonic. Consider the analogous statement for superhar
monic functions. 

5 .  Consider the distribution in V' (JRn) given, for R > 0, by 

By Theorem 6 .22 there exists a unique, regular Borel measure J.L such 
that TR (¢) = J cjJ(x)J.L(dx) . 
a) Compute 9 .7( 1) for this measure J-l and compute D(J-L, J-L) . You have 

to show that lx - y j 2-n is measurable with respect to J.-L(dx) x J.-L(dy) . 
b) Prove that with v(dx) = J.L(dx) - p dx, and p E L1 (1Rn) nonnegative , 

D(v, v) > 0. 
c) Use the above to compute 

inf { D(p, p) :  p(x) > 0, j p = 1 ,  p(x) = 0 for lx l > R} . 

Is the infimum attained? 



Regularity of 

Solutions of 

Poisson 's 

Equation 

10. 1 INTRODUCTION 

Theorem 6 .21 states that Poisson's equation 

Chapter 1 0  

( 1 )  

has a solution for any f E Lfoc (JRn) satisfying some mild integrability con
dition at infinity, e .g . , y t--t wn (Y)f (y) is summable (see 6 .21 (8) for the 
definition of wn (Y) ) .  A solution is then given for almost every x E JRn by 

KJ (x) = { Gy (x)f (y) dy , }�n 

and any other solution to ( 1 ) is given by 

u = Kt + h, 

(2) 

(3) 

where h is an arbitrary harmonic function. The same is true when JRn is 
replaced by an open set 0; in that case we merely replace JRn by 0 in ( 2) . 

-

257 
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The function Kt is an Lfoc ORn)-function. It is not necessarily classi
cally differentiable-or even continuous-but it does have a distributional 
derivative that is a function. The questions to be addressed in this chapter 
are the following. What ddditional conditions on f will insure that K f is 
twice continuously differentiable, or even once continuously differentiable , 
or-most modestly--even continuous? Note that the harmonic function h 
in (3) is always infinitely differentiable (Theorem 9 .3 Remark (3) ) ,  so the 
above questions about Kt apply to the general solution in (3) . These ques
tions will be answered, but , before doing so, some general remarks are in 
order . 

( 1 ) Our treatment here barely scratches the surface of a larger subject 
called elliptic regularity theory. There, the Laplacian � is replaced by 
more general second order differential operators 

n n 

i ,j= l i=l 

The word elliptic stems from the fact that the symmetric matrix aij ( x) 
is required to be positive definite for each x. Furthermore, one considers 
domains n other than ]Rn and inquires about regularity (i .e . , differentiability, 
etc . ) up to the boundary of 0. Questions of this type are difficult and we 
ignore them here by taking JRn as our domain. An alternative way to state 
this is that we can consider arbitrary domains (see (2) ) but we concern 
ourselves only with interior regularity. The books [Gilbarg-Trudinger] 
and [Evans] can be consulted for more information about elliptic regularity. 
In particular , the last part of our proof of Theorem 10. 2  is based on [Gilbarg
Trudinger, Lemma 4.5] . For more information about singular integrals , see 
[Stein] . 

(2) In the present context , a more useful notion than mere continuity (or 
even something stronger like continuous derivative) is local Holder continuity 
(or locally Holder continuous derivative) . A function g defined on a domain 
0 c JRn is said to be locally Holder continuous of order a (with 0 < a < 
1 ) if, for each compact set K in 0, there is a constant b(K) such that 

l f (x) - f(y) j < b(K) Ix - Y la 
for all x and y in K. The special case a = 1 is also called Lipschitz 
continuity. The set of functions on 0 that are k-fold differentiable and 
whose k-fold derivatives are locally Holder continuous of order a are denoted 
by 

c1�� (n) . 
Here are two examples that demonstrate the inadequacy of ordinary 

continuity when n > 1 .  



Section 10. 1 259 

EXAMPLE 1 .  Let B c JR3 be the ball of radius 1/2 centered at the origin 
and let u(x) = w(r) : =  ln [- ln r] with r = jx j .  By computing �u in the 
usual way, i .e . , f (x) = -�u(x) = -w" (r) - 2w' (r) jr , we find that f is 
in L312 (B) . (It is easy to check, as in Sect . 6 .20, that the above formula 
correctly gives �u in the sense of distributions . )  Now the interesting point 
is this : f is in L312 (B) but u is not continuous ; it is not even bounded. 
But Theorem 10 .2 states that if f E L312+c: (B) for any c > 0, then u is 
automatically Holder continuous for every exponent less than 4c/ (3 + 2c) . 
EXAMPLE 2. With B as above, let u(x) = w(r)Y2 (xjr) with w(r) = 
r2ln [-lnr] and Y2 (xjr) the second spherical harmonic x1x2/r2 . Again, as is 
easily checked, 

f (x) = -�u(x) = [-w" (r) - 2r- 1w' (r) + 6r-2w(r)]Y2 (xjr) , 

and f is continuous . f behaves as -5 (ln r) - l Y2 ( x / r) near the origin and 
hence vanishes there. However , u is not twice differentiable at the origin, 
and 82u/ ox1 ox2 even goes to infinity as r --t 0. Thus, continuity of f 
does not imply that u E C2 (0) , as might have been expected, but Theorem 
10. 3 states that if f is locally Holder continuous of some order a < 1 ,  then 
u E C�� (O) . 

(3) Regularity questions are purely local and, as a consequence of this 
fact , we can always assume in our proofs that f has compact support . The 
reason is that if we wish to investigate u and f near some point xo E 0, 
we can fix some function j E C� ( 0) such that j (X) = 1 for X in some ball 
Bl c n centered at Xo and 0 < j (X) < 1 for all X E n. Then write 

f = jj + ( 1 - j)j := /1 + /2 , (4) 

whence Kt = Kt1 + Kt2 • The function Kt1 will be the object of our study. 
On the other hand, Kt2 is a function that , according to Theorem 6 .21 , sat
isfies -�Kf2 = /2 = 0 in B1 . Since Kt2 is harmonic in B1 , it is infinitely 
differentiable there and hence K J2 and K J1 have the same continuity and 
differentiability properties . In conclusion, we learn that the regularity prop
erties of K f in any open set w c 0 are completely determined by f inside w 

alone. The term hypoelliptic is used to denote those operators , L, that , like 
-�, have the property that whenever f is infinitely differentiable in some 
w c 0 all solutions , u, to Lu = f in V' (0) are also infinitely differentiable . 
Ill W .  

A typical application of the theorems below is the so-called 'bootstrap' 
process . As an example , consider the equation 

(5) 



260 Regularity of Solutions of Poisson 's Equation 

where V(x) is a C00 (1Rn )-function. Since u E Lfoc (JRn) ,  by definition, Vu E 
Lfoc (JRn) .  (In any case , Vu must be in Lfoc (JRn) in order for (5) to make sense 
in V' (JRn) . ) By equation (3) , the preceding Remark (3) and Theorem 10 .2 , 
we have that u E Lf�c (JRn) with Qo = n/ (n - 2) > 1 .  Thus Vu E Lf�c (JRn) 
and, repeating the above step, u E Lf�c (JRn) with Ql = n/ (n-4) . Eventually, 
we have Vu E £P (JRn) with p > n/2 .  By Theorem 10. 2 , u is in C0,a (1Rn ) 
with a > 0. Then, using Theorem 10 .3 , u E C2,a (1Rn ) . Iterating this , we 
reach the final conclusion that u E C00 (1Rn ) . 

10 .2 THEOREM (Continuity and first differentiability of 
solutions of Poisson's equation) 

Let f be in LP(JRn) for some 1 < p < oo with compact support, and let Kt 
be given by 10 . 1 (2) . 

( i) Kt is continuously differentiable for n = 1 .  For n = 2 and p = 1 or 
for n > 2 and 1 < p < n/2 

Kt E Lfoc (JR2 ) for all q < oo, for p = 1 ,  n = 2 ,  
n Kf E LfocCIRn) for all q < n _ 2 for p = 1 ,  n > 3, 

pn 
q = n - 2p for p > 1 , n > 3. 

( ii) If n/2 < p < n, then Kt is Holder continuous of every order 
a < 2 - njp, 

( iii) If n < p, then Kt has a derivative, given by 6.2 1 (4) , 

which is Holder continuous of every order a < 1 - njp, i. e . ,  

Here Dn (a, p) and Cn (a, p) are universal constants depending only on a 
and p. 
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PROOF. We shall treat only n > 2 and leave the simple n == 1 case to the 
reader. First we prove part ( i) . For n == 2 we can use the fact that for every 
c > 0 and for x and y in a fixed ball of radius R in JR2 , there are constants c 
and d such that j ln l x - Y l l < c lx - Y l -c: + d : ==  h(x - y) .  Now we can apply 
Young's inequality, 4.2 (4) , to the pair f (y) and H(x) == h(x)X2R (x) , where 
X2R is the characteristic function of the ball of radius 2R. Since H E Lr (JR2 ) 
for all r < 2/c , we have that Kt E Lfoc with 1 + 1/q == 1/p+ 1/r > 1/p+c/2. 

For n > 3 and p == 1 ,  we use the fact that l x l 2-nX2R (x) E Lr (JRn) for 
all r < nj (n - 2) , and proceed as above . If 1 < p < n/2 ,  we appeal to the 
Hardy-Littlewood-Sobolev inequality, Sect . 4.3 .  

For part ( ii) we first note that if b > 1 and 0 < a < 1 ,  we have (using 
Holder's inequality) that for m > 1 

Likewise , 

In( b) =  1b 
c1 dt < (b - 1y)< (100 c11(1-a) dt) 1-a < � (b - l )a .  

Substituting b/a for b, we find (for a > 0) that 

I b-m - a-m i < m l b - a la max( a-m-a ,  b-m-a) ,  
j ln b - ln a l < l b - a la max(a-a , b-a )ja. 

If x, y and z are in JRn , we can use the triangle inequality l l x - z 1 - l y - z I I < 
lx - y j , as well as the fact that max(s ,  t) < s + t , to conclude that 

l l x - z l -m - ly - z l -m l < mix - Y la { lx - z l -m-a + IY - z l -m-a} , 
l ln lx - z j - ln I Y - z l l  < lx - y ja { lx - z l -a + IY - z l -a }/a. (3) 

If we insert (3) into the definition of Kf ,  10 . 1 (2) , we find for n > 2 that 
there is a universal constant Cn such that 

Using Holder's inequality, we then have 

IKt (x) - Kt (Y) I } 1/p' 
< Cn lx - Y la sup {1 l x - Y l (2-n-a)p' dy I I  f l i p · 

x supp{f} 
(5) 
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If p > n/2 ,  then p' < n/ (n - 2) , so j x j (2-n-a) E Lf�c (lRn) if a < 2 - njp . For 
such a , the integral in (5) is largest (given the volume of supp{f} ) when 
supp{f} is a ball and x is located at its center. The proof of this uses the 
simplest rearrangement inequality (see Theorem 3.4) and the fact that I Y I -1 
is a symmetric-decreasing function. ( 5 )  proves ( 1 ) . 

The proof of (2) is essentially the same, except that we have to start 
with the representation 6 .21 (4) for the derivative OiKf . • 

10.3 THEOREM (Higher differentiability of solutions of 
Poisson's equation) 

Let f be in Ck,a (JRn) with compact support, with k > 0 and 0 < a < 1 ,  and 
let Kt be given by 10 . 1 ( 2) . Then 

Kt E ck+2 ,a (1Rn) .  

PROOF. Again we consider only n > 2 explicitly. It suffices to consider 
only k = 0 since 'differentiation commutes with Poisson's equation' , i .e . , 
-�u = f in V' (JRn) implies that -�(8iu) = Oij in V' (JRn) .  This follows 
directly from the fundamental definition of distributional derivative in terms 
of C� (JRn) test functions . We assume k = 0 henceforth. 

By Theorem 10 .2 we know that u E C1 ,a (JRn) with derivative given by 
6 .2 1 (4) . To show that u E C2 (1Rn) it suffices , by Theorem 6. 10, to show 
that Oiu has a distributional derivative that is a continuous function. We 
introduce a test function ¢ in order to compute this distributional derivative , . I .e . ' 

- f (Oj<f>) (x) (Oiu) (x) dx = f J (y) f (8j4>) (x) (8Gyj8xi ) (x) dx dy, ( 1 ) }�n }�n }�n 
where Fubini 's theorem has been used. 

Note that we cannot integrate by parts once more, since OiOjGy (x) has 
a nonintegrable singularity. However , by dominated convergence the right 
side of ( 1 ) can be written as 

lim f J (y) f (8j¢) (x) (8Gyj8xi) (x) dx dy, (2) c:�o }�n Jlx-y l >c: 
and it remains to compute the inner integral over x . Without loss of gener
ality we can set y = 0. If we denote by ej the vector with a one in position 
j and otherwise zeros , this inner integral is given by 

f div(ej¢) (x) (8Go/8xi ) (x) dx (3) Jlx l >c: 
which, by integration by parts and Gauss ' theorem, is expressed as 
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where Wj = Xj/ lx l . 
To understand the second term one computes that 

(5 )  

for all I x I =/=- 0, since 

(fPGo/8xi8Xj ) (x) = 
l §:_1 1 lx l

-n (nwiWj - Oij ) ,  (6) 

where 62j = 1 if i = j and bij = 0 otherwise . Thus , the second term in ( 4) 
can be replaced by 

{ cf>(x) (82Go/8xi8Xj ) (x) dx 
Jlx l > l  

+ 1 (¢(x) - ¢(0) ) (82Go/8xiOXj ) (x) dx. 
l> lx l >c: 

(7) 

Inserting the first term of ( 4) in (2) and replacing 0 by y we obtain, by 
dominated convergence as c --t 0, 

.!.oij r cf>(y)f (y) dy. n }"M.n 
Combining (7) with (2) yields 

{ cf>(x) { f(y) (82Gyj8xi8Xj ) (x) dy dx }"M.n Jlx-y l > l  
+ lim { cf>(x) { (f (y) - f(x) ) (82Gyj8xi8Xj ) (x) dy dx c:�o }"M.n }l> lx-yl >c: 

(8) 

(9)  

by use of Fubini 's theorem. Since f E C0,a (1Rn) ,  the inner integral converges 
uniformly as c --t 0 and hence, by interchanging this limit with the integral 
by Theorem 6 .5  (functions are uniquely determined by distributions) ,  we 
obtain the final formula 

( 10) 

for almost every x in JRn . 
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The first term on the right side of ( 10) is clearly Holder continuous . So, 
too, is the second term, provided we recall that f has compact support . The 
third term is the interesting one. We can clearly take the limit c --t 0 inside 
the integral by dominated convergence because l f (y) - f(x) l < Clx - y ja ,  
and hence the integrand is in L1 (1Rn) .  Let us call this third term Wij (x) . It 
is defined for all x by the integral in ( 10) with c == 0. 

We want to show that 

If we change the integration variable in the integral for Wij (x) from y to 
y + x ,  and in Wij ( z) from y to y +  z ,  and then subtract the two integrals , 
we obtain 

Wij (x) - Wij (z ) = { [f (x) - f(z ) - f(y + x) + f(y + z) ]H(y) dy, ( 1 1 )  }IY I< l 
with H(y) :== (82Go/8xiOXj ) (y) given in (6) . Note that IH(y) j  < C1 IY I -n . 
Obviously, the factor [ ] in ( 1 1 )  is bounded above by 2C2 j y ja ,  where C2 is 
the Holder constant for j ,  i .e . , l f (x) - f(z) l < C2 lx - z ja .  

By appealing to translation invariance, it suffices to assume z == 0 ,  which 
we do henceforth for convenience . The integration domain 0 < I Y I  < 1 
in ( 1 1 ) can be written as the union of A == {y : 0 < I Y I < 4 lx l }  and 
B == {y : 4 lx l < I Y I < 1 } . The second domain is empty if l x l > 1/4. For the 
first domain, A, we use our bound I Y i a to obtain the bound 

{4lx l  
2C1C2C3 Jo 

r-nrarn-l dr = C4 jx ja 

for the integral over A in ( 1 1 ) ,  which is precisely our goal. 
For the second domain, B ,  we observe that JB [f(x) - f(O)]H(y) dy == 0 

since, by (5) , the angular integral of H is zero. For the third term, f(y + x) , 
we change back to the original variables y + x --t y, and thus the third plus 
fourth terms in ( 1 1 ) become 

I := - L f(y)H(y - x) dy + L f(y)H(y) dy, 

where D == {y : 4 lx l < I Y - x l < 1 } . 

( 12) 

To calculate the second integral we can write B == (B n D) U (B rv D) . 
For the first we can write D == (B n D) U (D rv B) . On the common domain 
we have 

h = { f (y) [H(y) - H(y - x) ] dy. JBnD 
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But IH(y) - H(y - x) l < Cs lx l l y l -n-1 when y E B n D and moreover, 
B n D c {y : 3 lx l < I Y I < 1 + j x j } . Thus 

(Recall l x l < 1/4. ) Here, for the first time, we require a < 1 instead of 
merely a < 1 .  

The domain B rv D essentially has two parts. We can write B rv D c 
E U G where E = {y : 4 lx l < I Y I < 5 lx l }  and G = {y : 1 - l x l < I Y I < 1 } . 
Then 

fc f(y)H(y) dy < C1C2C3 { 1 
rar-nrn-1 dr < Cs lx la · }1- lx l 

A similar estimate holds for the D rv B contribution to the second in
tegral in ( 12) . Thus, the last term in ( 10) is Holder continuous of order 
a. • 
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1 1 . 1 INTRODUCTION 

Chapter 1 1  

As an illustration of the use of the mathematics developed in this book, 
we give three additional examples (beyond those of Chapter 4) of solving 
optimization problems . The first comes from quantum mechanics and is the 
problem of determining the energy of an atom-primarily the lowest one . 
The second is a classical type minimization problem-the Thomas-Fermi 
problem-that arises in chemistry. The third is a problem in electrostatics , 
namely the capacitor problem. In all cases the difficult part is showing 
the existence of a minimizer , and hence of a solution to a partial differential 
equation. Needless to say, the following considerations (known as the direct 
method in the calculus of variations) for establishing a solution to 
a differential equation are not limited to these elementary examples , but 
should be viewed as a general strategy to attack optimization problems. 

Historically, and even today in many places , it is customary to dispense 
with the question of existence as a mere subtlety. By simply assuming that a 
minimizer or maximizer exists , however , and then trying to derive properties 
for it , one can be led to severe inconsistencies-as the following amusing 
example taken from [L . C . Young] and attributed to Perron shows: "Let N 
be the largest natural number. Since N2 > N and N is the largest natural 
number, N2 = N and hence N = 1 . "  What this example tells us is that 

-

267 
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even if the 'variational equation' , here N2 = N, can be solved explicitly, the 
resulting solution need not have anything to do with the problem we started 
out to solve. 

Let us continue this overview with some general remarks about mini
mization of functions . A general theorem in analysis says that a bounded 
continuous real function f defined on a bounded and closed set K in JRn 
attains its minimum value. To prove this, pick a sequence of points xi such 
that 

f ( x1 ) --t ,\ : = inf f ( x) as J --t oo. 
xEK 

Since K is bounded and closed, there exists a subsequence, again denoted 
by x1 , and a point x E K such that xi --t x as j --t oo. Hence, since f is 
continuous , 

,\ :=  .lim f(xi ) = f(x) , J �OO 
and the minimum value is attained at x .  

Instead of JRn , consider now £2 (0 , dJL) and let :F('lj;) be some functional 
defined on this space . In many examples :F( 'ljJ) is strongly continuous, i .e . , 
:F ( 'lj;i ) --t :F ( 'ljJ) as j --t oo whenever I I  'lj;i - 'ljJ I I  2 --t 0 as j --t oo. Suppose we 
wish to show that the infimum of :F( 'ljJ) is attained on K :=  { 'ljJ E £2 (0, dJL) : 
l l 'l/J I I 2 < 1 } . This set is certainly closed and bounded, but for a bounded 
sequence 'lj;i E K there need not be a strongly convergent subsequence (see 
Sect . 2 .9) . 

The idea now is to relax the strength of convergence. Indeed, if we 
use the notion of weak convergence instead of strong convergence, then, by 
Theorem 2 . 18 (bounded sequences have weak limits) , every sequence in K 
has a weakly convergent subsequence . In this way, the set of convergent 
sequences has been enlarged-but a new problem arises . The functional 
:F( 1/J) need not be weakly continuous-and it rarely is . Thus, to summarize, 
the more sequences exist that have convergent subsequences the less likely it 
is that :F( 'ljJ) is continuous on these sequences. The way out of this apparent 
dilemma is that in many examples the functional turns out to be weakly 
lower semicontinuous, i .e . , 

li� inf :F ( 'l/Jj ) > :F ( 'ljJ) if 'l/Jj 
� 'ljJ weakly. J �OO 

Thus, if 'l/Jj is a minimizing sequence, i .e . , if 
:F ( 'lj;J ) --t inf { :F ( 'ljJ) : 'ljJ E C} = ..\, 

then there exists a subsequence 'lj;i such that 'lj;J � 'ljJ weakly, and hence 
,\ = .lim :F( 'lj;J ) > :F( 'ljJ) > ,\. 

J �OO 
Therefore, :F( 'ljJ) = ..\, and our goal is achieved! 

( 1 ) 
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• •  
11 . 2  SCHRODINGER'S EQUATION 

The time independent Schrodinger equation [Schrodinger] for a parti
cle in JRn , interacting with a force field F ( x) = -V'V ( x) , is 

-�'l/J (x) + V(x)'lj; (x) = E'lj;(x) . ( 1 )  

The function V : JRn --t lR is called a potential (not to be confused with 
the potentials in Chapter 9) . The 'wave function' 'ljJ is a complex-valued 
function in L2 (1Rn) subject to the normalization condition 

(2)  

The function P'lf; (x) = l 'l/J (x) l 2 is interpreted as the probability density for 
finding the particle at x. An L2 (1Rn) solution to ( 1 )  may or may not exist for 
any E; often it does not . The special real numbers E for which such solutions 
exist are called eigenvalues and the solution, 'lj;, is called an eigenfunction. 

Associated with ( 1 ) is a variational problem. Consider the following 
functional defined for a suitable class of functions in £2 (JRn) (to be specified 
later) : 

(3) 
with 

Physically, T'l/J is called the kinetic energy of 'lj;, V'l/J is its potential 
energy and £ ( 'ljJ) is the total energy of 'ljJ. 

The variational problem we shall consider is to minimize £ ( 'ljJ) subject 
to the constraint I I  'ljJ l l 2 = 1 .  

As we shall show in Sect . 1 1 .5 ,  a minimizing function 'l/Jo , if one exists, 
will satisfy equation ( 1 ) with E = Eo, where 

Eo := inf{ £( '1/J) : j l 'l/J I 2 = 1 } . 

Such a function 'l/Jo will be called a ground state. Eo is called the ground 
state energy. 1 

Thus the variational problem determines not only 'l/Jo but also a corre
sponding eigenvalue Eo , which is the smallest eigenvalue of ( 1 ) .  

1 Physically, the ground state energy is the lowest possible energy the particle can attain. It 
is a physical fact that the particle will settle eventually into its ground state, by emitting energy, 
usually in the form of light. 
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Our route to finding a solution to ( 1 )  takes us to the main problem: 
Show, under suitable assumptions on V, that a minimizer exists, i .e . , show 
that there exists a �0 satisfying (2) and such that 

£ ( �o ) = inf { £ ( �) : I I � I I  2 = 1 } . 

There are examples where a minimizer does not exist , e .g. , take V to be 
identically zero. 

In Sect . 1 1 . 5 we shall prove, under suitable assumptions on V, the ex
istence of a minimizer for £(�) . We shall also solve the corresponding rel
ativistic problem, in which the kinetic energy is given by ( � ' IP I�) instead, 
as defined in Sect . 7. 1 1 .  In the nonrelativistic case ( ( 1 ) ,  (4) ) it will be 
shown that the minimizers satisfy ( 1 )  in the sense of distributions. Higher 
eigenvalues will be explained in Sect . 1 1 .6 .  The content of Sect . 1 1 . 7  is an 
application of the results of Chapter 10 to show that under suitable addi
tional assumptions on V, the distributional solutions of ( 1 )  are sufficiently 
regular to yield classical solutions, i .e . , solutions that are twice continuously 
differentiable. 

A final question concerns uniqueness of the minimizer. In our Schrod
inger example, £ ( �) , uniqueness means that the ground state solution to 
( 1 )  is unique, apart from an 'overall phase' , i .e . , �o (x) -t ei9�o (x) for some 
() E JR. That uniqueness of the minimizer (proved in Theorem 1 1 .8) implies 
uniqueness of the solution to ( 1 )  with E = Eo is not totally obvious; it is 
proved in Corollary 1 1 .9 .  The tool that will enable us to prove uniqueness 
of the minimizer is the strict convexity of the map p -t £( y'P) for strictly 
positive functions p : JRn -t JR+ . (See Theorem 7.8 (convexity inequality for 
gradients) . )  The hard part is to establish the strict positivity of a minimizer. 
Theorem 9 . 10 (lower bounds on Schrodinger wave functions) will be crucial 
here. 

1 1 .3 DOMINATION OF THE POTENTIAL ENERGY 
BY THE KINETIC ENERGY 

Recall that the functional to consider is 

and the ground state energy Eo is 

Eo = inf { £ ( �) : I I � I I  2 == 1 } . ( 1 ) 

The kinetic energy is defined for any function in H1 (lRn) and the second term 
is defined at least for � E C� (JRn) if we assume that V E Lfoc (JRn) .  The first 
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necessary condition for a minimizer to exist is that £ ( �) is bounded below by 
some constant independent of � (when l l � l l 2 < 1 ) .  The reader can imagine 
that when, e.g. , V(x) = - lx l -3 , then £ (�) is no longer bounded below. 
Indeed, for any � E Cgo (JRn) with l l � l l 2 = 1 and f V(x) l� (x) l 2 dx < oo, 
define �A (x) = An/2�(Ax) and observe that I I �A I I 2 = 1 .  One easily computes 

£ ( '1/J >J  = A 2 r I v '1/J (X) 1 2 dx - A 3 r v (X) I '1/J (X) 1 2 dx . }�n }�n 
Clearly, £ (�A )  --t -oo as A --t oo. One sees from this example that the 
assumptions on V must be such that V'l/J can be bounded below in terms of 
the kinetic energy T'l/J and the norm 1 1 � 1 1 2 · 

Any inequality in which the kinetic energy T'l/J dominates some kind of 
integral of � (but not involving 'V'�) is called an uncertainty principle. 
The historical reason for this strange appellation is that such an inequality 
implies that one cannot make the potential energy very negative without 
also making the kinetic energy large, i .e . , one cannot localize a particle 
simultaneously in both JRn and the Fourier transform copy of JRn . The most 
famous uncertainty principle , historically, is Heisenberg's : In JRn 

n2 
( '1/J, p2'1/J) > 4 ( '1/J ' x

2'1/J) -1 (2 )  

for � E H1 (1Rn) and 1 1 � 1 1 2 = 1 .  The proof of this inequality (which uses the 
fact that '\1 · x - x · '\1 = n) can be found in many text books and we shall not 
give it here because (2) is not actually very useful . Knowledge of ( � ' x

2�) 
tells us little about T'l/J . The reason for this is that any � can easily be modi
fied in an arbitrarily small way (in the H1 (1Rn)-norm) so that � concentrates 
somewhere, i .e . , (�, p2�) is not small , but (� ,  x2�) is huge. To see this , take 
any fixed function � and then replace it by �y (x) = v/1 - c2�(x) +c� (x - y) 
with c << 1 and I Y I >> 1 .  To a very good approximation, �Y = � but , as 
IY I --t oo, I I �Y l l 2 --t 1 and ( �y , x2�y) --t oo. Thus, the right side of (2) goes 
to zero as I Y I --t oo while T'l/Jy � T'l/J does not go to zero . 

Sobolev's inequality (see Sects. 8 .3 and 8 .5) is much more useful in this 
respect . Recall that for functions that vanish at infinity on ]Rn , with n > 3 ,  
there are constants Sn such that 

{ r 
} (n-2)/n 

T'lj; > Sn }'ff_{n 
1 '1/J (  X) l 2n/ (n-2) dx = Sn I I P'I/J l i n; (n-2) 

3 
= 

4 
(211'2) 2/3 1 1N 1 1 3 for n = 3. 

For n = 1 and n = 2 ,  on the other hand, we have 

T'l/J + I I� I I � > Sn,p I I P'l/J l i P for all 2 < p < oo, 

T 'ljJ + I I  � I I  � > s 1 I I  P'l/J I I  00 ' 

n = 2  ' 

n = 1 .  

(3) 

(4) 

(5 )  
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Moreover, when n = 1 and 'lj; E H1 (JR 1 ) ,  'lj; is not only bounded, it is also 
continuous. 

An application of Holder's inequality to (3) yields, for any potential 
V E Lnf2 (1Rn) , n > 3,  

An immediate application of (6) is that 

whenever I I V I I n/2 < Sn . 

(6) 

(7) 

A simple extension of (6) leads to a lower bound on the ground state 
energy for V E Lnf2 (1Rn) + L00 (1Rn) , n > 3, i .e . , for V's that satisfy 

V(x) = v (x) + w(x) (8) 

for some v E Lnf2 (1Rn) and w E  L00 (1Rn) .  There is then some constant ,\ such 
that h(x) :=  - (v (x) - ..\) _ = min(v (x) - ..\, 0) < 0 satisfies l l h l ln/2 < �Sn 
(exercise for the reader) . In particular, by (6) , h'l/J > -�T'l/J . Then we have 

£ ( 'l/J) = T'l/J + v'l/J = T'l/J + ( v - .A)'lf; + .A + w'l/J 
1 > T'I/J + h'I/J + >.. + w'I/J > 
2 
T'I/J + >.. - l l w l loo 

(9) 

and we see that ,\ - l l w l l oo is a lower bound to Eo . Furthermore (9) implies 
that the total energy effectively bounds the kinetic energy, i .e . , we have that 

( 10) 

When n = 2, the preceding argument , together with (4) , gives a finite 
Eo whenever V E £P (JR2 ) + L00 (1R2 ) for any p > 1 .  Likewise, when n = 1 
we can conclude that Eo is finite whenever V E L1 (1R1 ) + L00 (1R1 ) .  In fact , 
a bit more can be deduced when n = 1 .  Since 'lj; E H1 (JR 1 ) implies that 'lj; 
is continuous , it makes sense to define J 'lf;(x)IL(dx) when IL = ILl - IL2 and 
when ILl and IL2 are any bounded, positive Borel measures on JR1 . ( 'Bounded' 
means that J ILi ( dx) < oo . ) A well-known example in the physics literature 
is �L(dx) = c b (x) dx where b (x) is Dirac's 'delta function' . More precisely, 
J 'lj; ( x) IL( dx) = c 'lj; ( 0) . Then we can define 

( 1 1 ) 



Section 1 1 . 3 273 

and then (5) et seq. imply that E0 , defined as before , is finite. In short , 
in one dimension a 'potential ' can be a bounded measure plus an L00 (1R) 
function. 

So far we have considered the nonrelativistic kinetic energy T'l/J = ( � ' p2�) . Similar inequalities hold for the relativistic case T'l/J = (�, IP I�) . The 
relativistic analogues of (3)-(5) are ( 12) and ( 13) below (see Sects. 8 .4 and 
8 .5) . There are constants S� for n > 2 and Si,P for 2 < p < oo such that 

n > 2 , ( 12) 

and S� = 21/31r2/3 . When n = 1 ,  

T'l/J + 1 1� 1 1 � > SLp i i P'lfJ l i P for all 2 < p < oo, n = 1 .  ( 13) 

The results of this section can be summarized in the following statement . 
In all dimensions n > 1 ,  the hypothesis that V is in the space 

nonrelativistic 

relativistic 

Lnf2 (1Rn) + £OO (JRn) ,  
£l+c: (JR2 ) + £00 (JR2 ) ,  
Ll (JRl ) + Loo (JRl ) , { Ln (JRn) + £OO (JRn) ,  
£l+c: (JRl ) + £00 (JR1 ) , 

leads to the following two conclusions: 

Eo is finite , 

T'l/J < C£(�) + D I I � I I � 

n > 3, 
n = 2 , 
n = 1 ,  
n > 2 , 
n = 1 ,  

( 14) 

( 15 ) 

( 16) 

( 1 7) 
when � E H1 (lRn) ( non relativistic) , or � E H112 (JRn) ( relativistic) , for suit
able constants C and D. Furthermore, in the non relativistic case in one
dimension, V can be generalized to be a bounded Borel measure . 

The existence of minimum energy-or ground state-functions will be 
proved for the one-body problem under fairly weak assumptions . The prin
cipal ingredients are the Sobolev inequality (Theorems 8 .3-8 .5 ) , and the 
Rellich-Kondrashov theorem (Theorems 8 .7, 8 .9 ) . The following definition 
is convenient : 

# 
{ H1 (JRn) in the nonrelativistic case , H (JRn) denotes H112 (lRn) in the relativistic case. 

The main technical result is the following theorem. 
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1 1 .4 THEOREM (Weak continuity of the potential 
energy) 

Let V(x) be a function O'n JRn that satisfies the condition given in 1 1 . 3 ( 14) 
( non relativistic case) or 1 1 . 3 ( 15 ) ( relativistic case) . Assume, in addition, 
that V ( x) vanishes at infinity, i. e . ,  

l {x : IV(x) l > a} l < oo for al l a > 0. 

If n == 1 in the nonrelativistic case, V can be the sum of a bounded Borel 
measure and an L00 (1R) -function w that vanishes at infinity. Then V� , de
fined in 1 1 . 2 (4) , is weakly continuous in H# (JRn) ,  i. e . , if �i � � as j --t oo, 
weakly in H#(JRn) ,  then V�J --t V� as j --t oo . 

PROOF. Note that by Theorem 2 . 12 (uniform boundedness principle) 
l l �j i i H# is uniformly bounded. First , assume that V is a function. 

Define V8 (when V is a function) by 
if I V(x) l < 1/6, 

if I V(x) l > 1/6, 

and note that V - V8 tends to zero as 6 --t 0 (by dominated convergence) in 
the appropriate LP (JRn) norm of 1 1 . 3 ( 14) , resp. 1 1 . 3 ( 15) . Since l l �j i i H# < t , 
Theorems 8 .3-8 . 5  (Sobolev's inequality) imply that 

j (V - v") l1/lj l 2 < c., ,  

with C8 independent of j and, moreover, C8 --t 0 as 6 --t 0. Thus, our goal 
of showing that v�J --t v� as j --t 00 will be achieved if we can prove that 
V$3 ----+ VJ as j ----+ oo for each J > 0. If n = 1 and V is a measure, then V8 
is simply taken to be V itself. 

The problem in showing that V$3 ----+ VJ as j ----+ oo comes from the fact 
that V8 is known to vanish at infinity only in the weak sense. Fix 6 and 
define the set 

Ac: == { x : 1 v8 ( x) 1 > c} 

for c > 0. By assumption, IAc: l < oo. Then 

v"J = r V" I1/Jj l 2 + r V" I1/Jj l 2 · � }A }Ac € € 
( 1 ) 

The last term is not greater than c J I �j 1 2 == c (independent of j) , and hence 
(since c is arbitrary) it suffices to show that the first term in ( 1 ) converges, 
for a subsequence of �i 's, to fA€ V8 1� 1 2 • 



Sections 1 1 . 4-1 1 . 5  275 

This is accomplished as follows . By Theorem 8 .6 (weak convergence 
implies strong convergence on small sets) , on any set of finite measure (that 
we take to be Ac: ) there is a subsequence (which we continue to denote by 
'lj;i ) such that 'lj;i � 'ljJ strongly in Lr ( Ac:) .  Here 2 < r < p. The reader is 
invited to check, by using the inequality 

that l'l/Jj l 2 � l 'l/J I 2 strongly in Lrf2 (Ac: ) .  Since V8 E L00(1Rn) ,  we have that 
V8 E L8 (Ac:) for all 1 < s < 00 .  Thus, by taking 1/ s + 2/r == 1 ,  our claim is 
proved. When n == 1 we leave it to the reader to check that 'lj;i ( x) � 'ljJ ( x) 
uniformly on bounded intervals in lR 1 , and hence that the same proof goes 
through in the nonrelativistic case when V is a bounded measure plus an 
L00(lR1 )-function. • 

11 .5  THEOREM (Existence of a minimizer for Eo) 

Let V(x) be a function on ]Rn that satisfies the condition given in 1 1 . 3 ( 14) 
(nonrelativistic case) or 1 1 . 3( 15) ( relativistic case) . Assume that V(x) van
ishes at infinity, i. e . , 

l {x : IV(x) l > a} l  < oo for all a > 0. 

When n == 1 in the nonrelativistic case V can be the sum of a bounded 
measure and a function w E L00 (1R) that vanishes at infinity. Let £('lj;) == 
T'l/J + V'l/J as before and assume that 

By 1 1 .3 ( 16) , £('lj;) is bounded from below when l l 'l/J I I 2 == 1 .  
Our conclusion is that there is a function 'l/Jo in H# (lRn) such that 

I I  'l/Jo I I  2 == 1 and 
£ ( 'l/Jo) == Eo . ( 1 )  

(We shall see in Sect. 1 1 .8 that 'l/Jo is unique up to a factor and can be chosen 
to be positive. )  Furthermore, any minimizer 'l/Jo satisfies the Schrodinger 
equation in the sense of distributions: 

H o 'l/Jo + V 'l/Jo == Eo 'l/Jo ,  (2) 

where H0 == -� ( nonrelativistic) and Ho == ( -� + m2 ) 112 - m ( relativistic) . 
Note that (2) implies that the function V 'l/Jo is also a distribution; this implies 
that V 'l/Jo E Lfoc (lRn) .  
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REMARKS. ( 1 )  From (2)  we see that the distribution (Ho +  V)1/Jo is always 
a function (namely Eo'l/Jo) .  This is true in the nonrelativistic case when 
n == 1 ,  even when V is a measure! 

(2) Theorem 1 1 .5  states that a minimizer satisfies the Schrodinger equa
tion (2) . Suppose, on the other hand, that 1/J is some function in H# (ffi..n ) 
that satisfies (2)  in V' , but with Eo replaced by some real number E. Can 
we conclude that E > Eo and, moreover, that E == Eo if and only if 1/J is 
a minimizer? The answer is yes and we invite the reader to prove this by 
taking a sequence q) E CO (lRn) that converges to 1/J as j --t oo and testing 
(2) with this sequence. By taking the limit j --t oo, one can easily justify 
the equality £ ( 1/J) == E I I  1/J I I § . The stated conclusion follows immediately. 

PROOF. Let 1/Jj be a minimizing sequence, i .e . , £(1/JJ ) --t Eo as j --t oo  and 
1 1 1/Jj l l 2 == 1 .  First we note that by 1 1 . 3 ( 17) T'lfJJ is bounded by a constant 
independent of j .  Since I I  1/Jj I I  2 == 1 ,  the sequence 1/Jj is bounded in H# (lRn) .  
Since bounded sets in H112 (1Rn) and H1 (1Rn) are weakly sequentially com
pact (see Sect . 7 . 18) , we can therefore find a function 1/Jo in H# (JRn) and a 
subsequence (which we continue to denote by 1/Jj ) such that 1/Jj � 1/Jo weakly 
in H# (JRn) .  The weak convergence of 1/Jj to 1/Jo implies that I I 1/Jo l l 2 < 1 .  This 
function 1/Jo will be our minimizer as we shall show. Note that , since the 
kinetic energy T'l/J is weakly lower semicontinuous (see the end of Sect . 8 .2) , 
and since, by Theorem 1 1 .4, V'l/J is weakly continuous in H# (JRn) , we have 
that £ ( 1/J) is weakly lower semicontinuous on H# (lRn) . Hence 

Eo == .lim £ ( 1/Jj ) > £ ( 1/Jo ) J �OO 
and 1/Jo is a minimizer provided we know that I I 1/Jo l l 2 == 1 .  By assumption 
however, 

0 > Eo > £ ( 1/Jo) > Eo 1 1 1/Jo I I � -
The last inequality holds by the definition of Eo and, since Eo < 0, it follows 
that I I 1/Jo l l 2 == 1 .  This shows the existence of a minimizer. 

To prove that 1/Jo satisfies the Schrodinger equation (2) we take any 
function f E C� (JRn) and we set 1/Jc: :==  1/Jo + Ej for c E JR. The quotient 
R( c) == £ ( 1/Jc: ) / ( 1/Jc: , 1/Jc:) is clearly the ratio of two second degree polynomials 
in c and hence differentiable for small c . Since its minimum, Eo , occurs (by 
assumption) at c == 0, dR(c)/ de == 0 at c == 0. This yields 

(3) 
c:=O 

which implies that 
( (Ho + V)f, 1/Jo )  == Eo (f, 1/Jo) (4) 
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for f E C� (lRn) and hence, by the definition of distributions and their 
derivatives in Chapter 6, equation (2) above is correct . • 

e The next theorem is an extension of Theorem 1 1 . 5  to higher eigenvalues 
and eigenfunctions . The ground state energy Eo is the first eigenvalue with 
�o as the first eigenfunction. Since £ ( �) is a quadratic form, we can try to 
minimize it over � in H1 (1Rn) (resp . H112 (1Rn) in the relativistic case) under 
the two constraints that � is normalized and � is orthogonal to �o , i .e . , 

( '1/J , '1/Jo) = r '1/J( X )'1/Jo (X) dx = 0. }�n (5) 

This infimum we call E1 , the second eigenvalue, and, if it is attained, we 
call the corresponding minimizer , �1 , the first excited state or second 
eigenfunction. In a similar fashion we can define the (k+ 1 ) th eigenvalue re
cursively (under the assumption that the first k eigenfunctions �o , . . .  , �k-1 
exist) 
E k : == inf { £ ( �) : � E H 1 (JR n ) , I I � I I  2 == 1 and ( � , �i ) == 0, i == 0, . . .  , k - 1 } . 
H1 (lRn) has to be replaced by H112 (lRn ) in the relativistic case . 

In the physical context these eigenvalues have an important meaning 
in that their differences determine the possible frequencies of light emitted 
by a quantum-mechanical system. Indeed, it was the highly accurate ex
perimental verification of this fact for the case of the hydrogen atom (see 
Sect . 1 1 . 10) that overcame most of the opposition to the radical idea of the 
quantum theory. 

11 .6 THEOREM (Higher eigenvalues and eigenfunctions) 

Let V be as in Theorem 1 1 . 5 and assume that the (k + 1 ) th eigenvalue Ek 
given above is negative . ( This includes the assumption that the first k eigen
functions exist. )  Then the ( k + 1) th eigenfunction also exists and satisfies 
the Schrodinger equation 

( 1 ) 
in the sense of distributions. In other words, the recursion mentioned at the 
end of the previous section does not stop until energy zero is reached. Fur
thermore each Ek can have only finite multiplicity, i. e. , each number Ek < 0 
occurs only finitely many times in the list of eigenvalues. Conversely, every 
normalized solution to (Ho + V)� == E� with E < 0 and with � E H1 (1Rn) 
{respectively, � E H112 (1Rn)) is a linear combination of eigenfunctions with 
eigenvalue E .  
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REMARK. There is no general theorem about the existence of a minimizer 
if Ek == 0.  

PROOF. The proof of existence of a minimizer �k is basically the same 
as the one of Theorem 1 1 . 5 .  Take a minimizing sequence �� , j  == 1 ,  2 ,  . . .  , 
each of which is orthogonal to the functions �o , . . .  , �k-1 . By passing to 
a subsequence we can find a weak limit in H1 (1Rn) (resp. H112 (1Rn) in the 
relativistic case) which we call �k · As in Theorem 1 1 .4, £(�k) == Ek and 
l l �k l l 2 == 1 .  The only thing we have to check is that �k is orthogonal to 
�o , . . .  , �k-1 · This , however , is a direct consequence of the definition of the 
weak limit . 

The proof of ( 1 ) requires a few steps . First , as in the proof of Theorem 
1 1 . 5 ,  we conclude that the distribution D : ==  (Ho + V - Ek)�k is a distribu
tion that satisfies D(f)  == 0 for every f E Cgo(JRn) with the property that 
(/, �i ) == 0 for all i == 0, . . .  , k - 1 .  By Theorem 6 . 14 (linear dependence of 
distributions) ,  this implies that 

(2) 
i=O 

for some numbers co , . . .  , ck_1 . Our goal is to show that ci == 0 for all i .  
Formally, this is proved by multiplying ( 2 )  by some �j with j < k - 1 and 
partially integrating to obtain (using the assumed orthogonality) 

r '\1'1/Jj . '\1'1/Jk + r V'l/Jj'l/Jk = Cj . (3) }�n }�n 
On the other hand, taking the complex conjugate of ( 1 ) for �j and multi
plying it by �k yields 

r '\1 '1/Jj . '\1 '1/Jk + r v '1/Jj'l/Jk = o. ( 4) }�n }�n 
The justification of this formal manipulation is left as Exercise 3. 

To prove that Ek has finite multiplicity, assume the contrary. This 
means that Ek == Ek+1 == Ek+2 == · · · . By the foregoing there is then 
an orthonormal sequence �1 , �2 , . . .  satisfying ( 1 ) . By 1 1 . 3 ( 10) the kinetic 
energies T'l/JJ remain bounded, i .e . , T'l/JJ < C for some C > 0. Since the 
�j 's are orthogonal, they converge weakly to zero in L2 (1Rn) ,  and hence 
in H1 (1Rn) as well , as j --t oo .  But in Theorem 1 1 .4 it was shown that 
v'lj;J --t 0 as j --t 00 and hence Ek == limj-H)()T'lj;J + v'lj;J > 0, which is a 
contradiction. 

The proof that any solution to the Schrodinger equation is a linear com
bination of eigenfunctions with eigenvalue E follows the integration by parts 
argument used for the proof of ( 1 ) . See Exercise 3. • 
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11 .7  THEOREM (Regularity of solutions) 

Let B1 C JRn be an open ball and let u and V be functions in L1 (B1 ) that 
satisfy 

-�u + Vu == 0 in V' (B1 ) .  ( 1 ) 
Then the following hold for any ball B concentric with B1 and with strictly 
smaller radius: 

(i) n == 1 :  Without any further assumption on V, u is continuously 
differentiable . 

( ii) n == 2 : Without any further assumptions on V, u E Lq (B) for all 
q < 00 .  

(iii) n > 3 :  Without any further assumptions on V, u E Lq (B) with q < 
n/ (n - 2) . 

(iv) n > 2 :  If V E £P (BI ) for n > p > n/2 , then for all a < 2 - njp, 
lu(x) - u(y) j < Clx - Y la 

for some constant C and all x , y E B . 
(v) n > 1 :  If V E £P (BI ) for p > n, then u is continuously differentiable 

and its first derivatives oiu satisfy 
l ottu(x) - Oiu(y) l < Clx - Y la 

for all a < 1 - njp, all x , y E B and some constant C. 
(vi) Let V E Ck,a (B1 ) for some k > 0 and 0 < a < 1 ( see Remark (2 ) in 

Sect. 10. 1 ) .  Then u E ck+2 ,a (B) . 

PROOF. The assumption ( 1 )  implies that Vu E Lfoc (BI ) · As explained in 
Sect . 10 . 1 regularity questions are purely local. Thus , applying Theorem 
10 .2 (i) , statements (i) , ( ii) and (iii) are readily obtained. To prove (iv) we 
use the 'bootstrap' argument . If n == 2 we know by (ii) that u E Lq (B2 ) for 
any q < oo, and hence Vu E Lr (B2 ) for some r > n/2. Here B c B2 C B1 
and B2 is concentric with B1 . Then Theorem 10 .2 ( ii) implies that u is Holder 
continuous, which shows that in fact Vu E LP(B3) .  Again B c B3 c B2 and 
B3 is concentric with B2 . One more application of Theorem 10 .2 ( ii) yields 
the result for n == 2 ,  since the radii of the balls decrease by an arbitrarily 
small amount . 

If n > 3, we proceed as follows. Suppose that V u E £81 ( B2) for some 
1 < s1 < n/2 and some ball B2 concentric with B1 but of smaller radius . By 
Theorem 10.2 (i) , u E Lt (B3) for any t < ns1 / (n - 2s1 ) and B3 concentric 
with B2 with a smaller radius than that of B2 , but as close as we please. Since 
V E £P (BI ) for n/2 < p < n, we can set 1/p == 2/n - c with 0 < c < 1/n. 
By Holder 's inequality Vu E L82 (B3 ) for any s2 < s i/ ( 1 - cs1 ) and thus , 
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in particular, for any s2 < s1 / ( 1 - c) .  Iterating this estimate we arrive at 
the situation where, for some finite k, Vu E L8k (Bk+I ) ,  Sk > n/2 .  Then, by 
Theorem 10 .2 ( ii) , u is Holder continuous . Now Vu E LP(B) for some ball 
concentric with B1 but of smaller radius , and Theorem 10 .2 (ii) applied once 
more yields the result . 

In the same fashion, by using Theorem 10. 3  in addition, the reader can 
easily prove ( v) and (vi) . • 

1 1 .8  THEOREM (Uniqueness of minimizers) 

Assume that �o E H1 (1Rn) is a minimizer for £, i. e . ,  £(�o ) = Eo > -oo 
and l l'l);o l l 2 = 1 .  The only assumptions we make are that V E L�c (JRn) and 
V is locally bounded from above ( not necessarily from below) and, of course, 
V l�o l 2 is summable . Then �o satisfies the Schrodinger equation 1 1 . 2 ( 1 ) with 
E = Eo . Moreover �o can be chosen to be a strictly positive function and, 
most importantly, �o is the unique minimizer up to a constant phase. 

In the relativistic case the same is true for an H112 (1Rn) minimizer, but 
this time we need only assume that V is in Lfoc (lRn) .  

PROOF. Since 

Eo = £ ( '1/Jo) = r I \7'1/Jo l 2 + r V( X) 1'1/Jo (x) 1 2 }�n }�n 

and �o E H1 (lRn) ,  we must have that both 
f [V(x) ] + I'I/Jo (x) 1 2 dx and f [V(x) J - 1'1/Jo (x ) 1 2 dx }�n }�n 

are finite. Thus, in particular, J�n V(x)�o (x)cp(x) dx is finite for every ¢ E 
Cgo(JRn ) . Next , we compute for any ¢ E Cgo(JRn) 

0 < £(�o + c¢) - Eo l l�o + c¢ 1 1 � 

= £( '1/Jo) - Eo + 2c Re j [\7'1/Jo \7¢ + (V - Eo)'I/Jo¢] 

+ c2 / [ 1\7¢ 1 2 + (V - Eo) l ¢ 1 2 ] .  

Every term is finite and, since £(�o) = Eo , the last two terms add up to 
something nonnegative. Since c is arbitrary and can have any sign, this 
implies that 

( 1 ) 
where W : =  V - Eo . 
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Next we note that with �o == f + ig , f and g separately are minimizers . 
Since, by Theorem 6. 17 (derivative of the absolute value) , £(f) == £( 1 f l ) and 
£(g) == £( lg l ) ,  we also have that c/Jo == I f I +  i lg l is a minimizer. By Theorem 
7.8 (convexity inequality for gradients) £( 1¢o l ) < £(¢o) , and hence there 
must be equality. The same Theorem 7.8 states that there is equality if and 
only if l f l == c lg l for some constant c provided that either l f (x) l or lg (x) l is 
strictly positive for all x E JRn . 

Since these functions are minimizers , they satisfy the Schrodinger equa
tion ( 1 ) and, since V is locally bounded, so is W. By Theorem 9. 10 (lower 
bounds on Schrodinger 'wave' functions) l f (x) l and l g (x) l are equivalent to 

,..._, 
strictly positive lower semicontinuous functions f and g. Thus, up to a ,..._, 
fixed sign, f == f and g == g, and thus f == cg for some constant c, i . e. , 
�o == ( 1  + ic)f .  

The proof for the relativistic case is similar except that the convexity 
inequality, Theorem 7. 13 , for the relativistic kinetic energy does not require 
strict positivity of the function involved. • 

11 .9 COROLLARY (Uniqueness of positive solutions) 

Suppose that V is in Lfoc (JRn) ,  V is bounded above ( uniformly and not just 
locally) and that Eo > -oo . Let � =/= 0 be any nonnegative function with 
1 1 � 1 1 2 == 1 that is in H1 (1Rn) and satisfies the nonrelativistic Schrodinger 
equation 1 1 .2 ( 1) in V' (lRn) or is in H1 12 (lRn) and satisfies the relativistic 
Schrodinger equation 

( 1 )  

Then E == Eo and � is the unique minimizer �o .  

PROOF. The main step is to prove that E == E0 . The rest will then follow 
simply from Remark (2) in Sect . 1 1 . 5  (existence of a minimizer) and from 
Theorem 1 1 .8 (uniqueness of minimizers) . To prove E == Eo , we prove 
that E =!= Eo implies the orthogonality relation J ��o == 0 .  (We know that 
E > Eo by Remark (2) in 1 1 . 5 . )  Since �o is strictly positive and � is 
nonnegative, this orthogonality is impossible. 

To prove orthogonality when E =/= Eo in the nonrelativistic case we take 
the Schrodinger equation for �o ,  multiply it by �' integrate over JRn and 
obtain (formally) 

{ \1 'lj; · \1 'lj;o + { ( V - Eo) 'lj;'lj;o = 0. }�n }�n (2 ) 
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To justify this we note, from 1 1 .2 ( 1 ) , that the distribution �� is a function 
and hence is in Lfoc (lRn) .  Moreover , since � is nonnegative and V is bounded 
above, �� == f + g for some nonnegative function f E Lfoc (JRn) and some 
g E L2 (1Rn) .  Thus (2) follows from Theorem 7. 7. 

If we interchange � and �0 , we obtain (2) with Eo replaced by E. If 
E =I= Eo ,  this is a contradiction unless J ��o == 0. 

The proof in the relativistic case is identical, except for the substitution 
of 7. 15 (3) in place of 7. 7(2) . • 

1 1 . 10 EXAMPLE {The hydrogen atom) 

The potential V for the hydrogen atom located at the origin in JR3 is 

V(x) == - lx l - 1 · ( 1 )  

A solution to the Schrodinger equation 1 1 . 2 ( 1 ) is found by inspection to be 

�o ( x) == exp (- � I x I ) , Eo == - � . ( 2) 

Since �o is positive , it is the ground state , i .e . , the unique minimizer of 

£( 1j;) = r I V1/J I 2 - r _1
1
1 1�(x) 1 2 dx . }JR3 }JR3 X 

This fact follows from Corollary 1 1 .9 (uniqueness of positive solutions) .  It is 
not obvious and is usually not mentioned in the standard texts on quantum 
mechanics . 

We can note several facts about �0 that are in accord with our previous 
theorems. 
( i) Since V is infinitely differentiable in the complement of the origin, x == 0, 

the solution �0 is also infinitely differentiable in that same region. This 
result can be seen directly from Theorem 1 1 . 7  (regularity of solutions) . 
As a matter of fact , V is real analytic in this region (meaning that it can 
be expanded in a power series with some nonzero radius of convergence 
about every point of the region) . It is a general fact , borne out by our 
example , that in this case �0 is also real analytic in this region; this 
result is due to Morrey and can be found in [Morrey] . 

(ii) Since V is in Lfoc (lRn) for 3 > p > 3/2 , we also conclude from Theorem 
1 1 . 7  that �o must be Holder continuous at the origin, namely 

l �o (x) - �o (O) I < c lx l a 
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for all exponents 1 > a > 0. In our example , �0 is slightly better; it is 
Lipschitz continuous, i .e . , we can take a ==  1 .  

e We turn now to our second main example of a variational problem-the 
Thomas-Fermi (TF) problem. See [Lieb-Simon] and [Lieb , 1981] . It goes 
back to the idea of L. H. Thomas and E. Fermi in 1926 that a large atom, 
with many electrons , can be approximately modeled by a simple nonlinear 
problem for a 'charge density' p(x) . We shall not attempt to derive this 
approximation from the Schrodinger equation but will content ourselves with 
stating the mathematical problem. 

The potential function Z / I x I that appears in the following can easily be 
replaced by 

K 

V(x) : ==  L Zj lx - Rj l - 1 
j=l 

with Zj > 0 and Rj E JR3 , but we refrain from doing so in the interest of 
simplicity. 

Unlike our previous tour through the Schrodinger equation, this time we 
shall leave many steps as an exercise for the reader (who should realize that 
knowledge does not come without a certain amount of perspiration) . 

11 . 1 1  THE THOMAS-FERMI PROBLEM 

TF theory is defined by an energy functional £ on a certain class of nonneg
ative functions p on JR3 :  

£(p) : =  � L3 P(x) 513 dx - L3 1!1 p(x) dx + D(P, P) ,  ( 1 )  

where Z > 0 is a fixed parameter (the charge of the atom's nucleus) and 

D(p, p) :== 2
1 { { p(x)P(y) jx - y j -1 dx dy (2) JJR3 JJR3 

is the Coulomb energy of a charge density, as given by 9 . 1 (2) . The class of 
admissible functions is 

c :=  {p : p > 0, L3 p < oo, p E L513 (JR3 ) } · (3) 

We leave it as an exercise to show that each term in ( 1 ) is well defined and 
finite when p is in the class C .  

Our problem is to minimize £ (P) under the condition that J p == N, 
where N is any fixed positive number (identified as the 'number' of electrons 
in the atom) . The case N == Z is special and is called the neutral case. We 
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define two subsets of C :  

Corresponding to these tv10 sets are two energies : The 'constrained' energy 

E(N) = inf{ £(p) : P E CN } ,  

and the 'unconstrained' energy 

E< (N) = inf{ £(p) : P E C<N } . 

Obviously, E< (N) < E(N) . 

(4) 

(5) 

The reason for introducing the unconstrained problem will become clear 
later . A minimizer will not exist for the constrained problem (4) when 
N > Z (atoms cannot be negatively charged in TF theory! ) . But a minimizer 
will always exist for the unconstrained problem. It is often advantageous , in 
variational problems, to relax a problem in order to get at a minimizer; in 
fact , we already used this device in the study of the Schrodinger equation. 
When a minimizer for the constrained problem does exist it will later be 
seen to be the p that is a minimizer for the unconstrained problem. 

1 1 . 12 THEOREM (Existence of an unconstrained 
Thomas-Fermi minimizer) 

For each N > 0 there is a unique minimizing PN for the unconstrained TF 
problem (5) , i . e . ,  £(PN) = E< (N) . The constrained energy E(N) and the 
unconstrained energy E< (N) are equal. Moreover, E(N) is a convex and 
nonincreasing function of N. 

REMARK. The last sentence of the theorem holds only because our prob
lem is defined on all of JR3 .  If JR3 were replaced by a bounded subset of JR3 , 
then E ( N) would not be a nonincreasing function. 

PROOF. It is an exercise to show that £ (p) is bounded below on the set 
C<N , so that E< (N) > -oo.  Let p1 , p2 , . . .  be a minimizing sequence, 
i .e . , £ (pJ ) --t E< (N) . It is a further exercise to show that l lp.i l l 5;3 is also a bounded sequence of numbers . Therefore , by passing to a subsequence we 
can assume that p.i � PN weakly in L513 (JR3) for some PN E L513 (JR3) , by 
Theorem 2 . 1 8  (bounded sequences have weak limits) . Since PN is the weak 
limit of the p.i ,  we can infer that f p N < N, and hence that p N E C<N .  
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(Reason: If J p N > N, then J B p N > N for some sufficiently large ball, B ,  
but this is a contradiction since XB E L512 (JR3) . ) The first term in £ (p) 
is weakly lower semicontinuous (by Theorem 2 . 1 1  (lower semicontinuity of 
norms) ) .  We also claim that the D(p, P) term is lower semicontinuous ,  for 
the following reason. Since the sequence pJ is bounded in L1 (JRn) as well, 
the sequence is bounded in L615 (JRn) ,  by Holder 's inequality. By passing to 
a further subsequence we can demand weak convergence in L615 (JRn) as well 
(to the same PN , of course) . Using the weak Young inequality of Sect . 4 . 3 and 
Theorem 9 .8 (positivity properties of the Coulomb energy) it is an exercise 
to show that D(p, P) is also weakly lower semicontinuous . 

We want to show that the whole functional is weakly lower semicontin
uous . We will then have that p N is a minimizer because 

E< (N) = .lim £(p1 ) > £(PN) > E< (N) . J ----+00 
Since the negative term, -Z JIR3 l x i - 1P(x) dx , is obviously upper semicon
tinuous (because of the minus sign) , we have to show that this term is in 
fact continuous . This is easy to do (compare Theorem 1 1 .4) .  

To prove that PN is unique we note that the functional £(p) is a strictly 
convex functional of p on the convex set C<N . (Why?) If there were two 
different minimizers , p1 and p2 , in C<N , then p = (p1 + p2 ) /2 , which is also 
in C<N , has strictly lower energy than E< ( N) , which is a contradiction. 
This reasoning also shows that E< ( N) is a convex function. That E< ( N) is - -nonincreasing is a simple consequence of its definition. 

As we said above, E (N) > E< (N) , by definition. To prove the reverse 
inequality, we can suppose that J p N = M < N, for otherwise the desired 
conclusion is immediate. Take any nonnegative function g E L513 (JR3) n 
L1 (JR3) with J g = N - M and consider, for each ,\ > 0, the function 
pA (x) :=  PN (x)+..\3g (..\x) . As ,\ --t 0, pA --t PN strongly in every £P (JR3) with 
1 < p < 5/3. Therefore, £(pA ) --t £(PN ) .  On the other hand, £ (pA) > E(N) , 
and hence E(N) < E< (N) . (It is here that we use the fact that our domain 
is the whole of JR3 . )  • 

1 1 . 13 THEOREM (Thomas-Fermi equation) 

The minimizer of the unconstrained problem, p N , is not the zero function 
and it satisfies the following equation, in which J.L > 0 is some constant that 
depends on N: 

PN (x)213 = Zf lx l - [ lx l - 1 * PN] (x) - J.L if PN (x) > 0 ( 1a) 

0 > z I I X I - [ I  X l - 1 * p N J (X) - J.L if p N (X) = 0 . ( 1 b) 
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REMARK. An equivalent way to write ( 1 ) is 

PN (x)213 = [z; lx l - [ l x l - 1 * PN] (x) - J.l]
+

· (2) 

PROOF. Clearly, E< (N) is strictly negative because we can easily con
struct some small p for which £(p) < 0 . This implies that PN � 0. 

For any function g E L513 (JR3) n L1 (JR3) and all 0 < t < 1 consider the 
family of functions 

Pt (x) : =  PN (x) + t (9 (x) - [j 9 I j PN] PN (x)) , 
which are defined since p N � 0 . Clearly, J Pt = J p N , and it is easy to check 
that Pt ( x) > 0 for all 0 < t < 1 provided that g satisfies the two conditions : 
g (x) > -PN (x) /2 and J g < J PN/2 .  Define the function F (t) :=  £(Pt ) ,  
which certainly has the property that F (t) > E< (N) for 0 < t < 1 .  Hence, 
the derivative, F' (t) , if it exists , satisfies F' (O) > 0. Indeed, the J p513 term 
in 1 1 . 1 1 ( 1 ) is differentiable, by Theorem 2.6 (differentiability of norms) . The 
second and third terms in 1 1 . 1 1 ( 1 ) are trivially differentiable, since they are 
polynomials . Thus, if we define the function 

W(x) : =  P�3 (x) - Z lx l - 1 + [ lx l - 1 * PN] (x) , ( 3) 
and set 

J.l := - r PN (x)W(x) dx I r PN (x) dx, 
JJR3 JJR3 

the condition that F' (O) > 0 is 

{ 9(x) [W(x) + J.L] dx > 0 
JJR3 

for all functions g with the properties stated above. 
In particular, (5 ) holds for all nonnegative functions g with 

r 9 < 2
1 r PN , 

JJR3 JJR3 

(4) 

( 5) 

and hence (5) holds for all nonnegative functions in L513 (JR3) nL1 (JR3) .  From 
this it follows that W ( x) + J-L > 0 a.e . , which yields ( 1 b) . From ( 4) we see 
that -J-L is the average of W with respect to the measure PN (x) dx , and 
hence the condition W ( x) + J-L > 0 forces us to conclude that W ( x) + J-L = 0 
wherever PN (x) > 0; this proves ( 1a) .  

The last task is to prove that J-L > 0 . If J-L < 0, then ( 1a) implies that for 
lx l > -J-L/Z, PN (x)213 equals an L6 (JR3)-function plus a constant function, 
i .e . , -J-L . If PN had this property, it could not be in L1 (JR3) .  • 
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e The Thomas-Fermi equation 1 1 . 13 (2) reveals many interesting proper
ties of PN and we refer the reader to [Lieb-Simon] and [Lieb, 1981] for this 
theory. Here we shall give but one example-using the potential theory of 
Chapter 9-which demonstrates the relation between PN and the solution 
of the constrained problem as stated in Sect . 1 1 . 1 1 .  

1 1 . 14 THEOREM {The Thomas-Fermi minimizer) 

As before, let PN be the minimizer for the unconstrained problem. Then 

{ PN (x) dx = N 
JJR3 

PN == Pz 

if 0 < N < Z, 

if N > Z. 

( 1 ) 

(2 )  

In particular, ( 1 ) implies that PN is the minimizer for the constrained prob
lem when N < Z. If N > Z, there is no minimizer for the constrained 
problem. 

The number J-l is 0 if and only if N > Z and in this case PN (x) = 

Pz (x) > 0 for all x E JR3 . 
The Thomas-Fermi potential defined by 

<PN (x) :== Z/ lx l - [ lx l - 1 * PN] (x) (3) 

satisfies <PN (x) > 0 for all x E JR3 . Hence, when J-l = 0, corresponding to 
N == Z, the TF equation becomes 

Pz (x)213 == <Pz (x) . (4) 

PROOF. We shall start by proving that there is a minimizer for the con
strained problem if and only if J PN == N, in which case the minimizer is 
then obviously PN · If J PN == N, then PN is a minimizer for E(N) . If 
the E(N) problem has a minimizer (call it pN) ,  then J pN == N and, by 
the monotonicity statement in Theorem 1 1 . 12 ,  pN is a minimizer for the 
unconstrained problem. Since this minimizer is unique, pN = p N . 

Now suppose that there is some M > 0 for which M > J PM ==: Nc (we 
shall soon see that Nc == Z) . By uniqueness , we have that E (M) == E(Nc) .  
Then two statements are true: 

a) J PN = Nc and PN = PNc for all N > Nc, and 
b) f PN = N for all N < Nc. 

To prove a) suppose that N > Nc. We shall show that E (N) == E (Nc) 
(recall that E (N) = E< (N) ) , and hence that PN == PNc by uniqueness . 



288 Introduction to the Calculus of Variations 

Clearly, E(N) < E(Nc) · If E (N) < E(Nc) and if N < M, we have a 
contradiction with the monotonicity of the function E. If E(N) < E(Nc) 
and if N > M, we have a contradiction with the convexity of the function 
E. Thus, E(N) = E(Nc) and statement a) is proved. Statement b) follows 
from a) , for suppose that J PN = :  P < N. Then the conclusion of a) holds 
with Nc replaced by P and M replaced by N. Thus, by a) , J PQ = P for all 
Q > P. By choosing 

Q = Nc > N > P, 
we find that Nc = J PNc = P, which is a contradiction. 

We have to show that Nc = Z, and this will be done in conjunction with 
showing the nonnegativity of the TF potential . 

Let A = {x E JR3 : <PN (x) < 0} . By Lemma 2 . 20 (convolutions of 
functions in dual LP (JRn )-spaces are continuous) ,  <P N is continuous away 
from x = 0 and vanishes uniformly as lx l --t oo. (Why?) Hence A is an 
open set . In some small neighborhood of x = 0 <PN (x) is clearly positive 
(again using Lemma 2 . 20) , so 0 tJ_ A. From the TF equation (with J-L > 0) , 
we see that PN (x) = 0 for x E A. But 

�<PN = 41fPN = 0 in A, 
and Theorem 9. 3 tells us that <P N is harmonic in A. Since <P N is continuous, 
<P N vanishes on the boundary of A. Since <P N also vanishes uniformly at 
oo, the strong maximum principle , Theorem 9 .4 , states that <PN (x) = 0 for 
x E A. Thus, A is empty, as claimed. We leave the proof that <P N is strictly 
positive as an exercise . 

Let N > Z and consider the unconstrained optimizer PN . We claim that 
J P N < Z. By the fact that p N is a radial function we get from equation 
9 .7(5) (Newton's theorem) , that 

[ lx l - 1 * PN ] (x) = lx l - 1 1 PN (Y) dy + 1 I Y I - 1PN (Y) dy . 
ly l < lx l IY I> Ix l 

From this and the definition of <P N it follows easily that limlx l�oo lx i<P N (x) = 
Z - J P N . Hence J p N < Z, for otherwise it would contradict the positivity 
of <P N . Thus , for N > Z the constrained TF problem does not have a 
minimizer and we conclude that Nc < Z. 

Because E(Nc) is the absolute minimum of £(p) on C, and because PNc is 
the absolute minimizer, a proof analogous to that of Theorem 1 1 . 13 (indeed, 
an even simpler proof) , shows that this PNc satisfies the TF equation with 
J-L = 0. Since <P N is nonnegative, this is equation ( 4) with Pz replaced by 
PNc · We have seen that <PN (x) behaves like (Z - Nc)/ lx l for large lx l . If 
Nc < Z, then, from (4) , PNc tJ_ L513 (JR3) ,  which is a contradiction. • 
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1 1 . 15 THE CAPACITOR PROBLEM 

The following two problems further illustrate some of the ideas developed in 
this book. The first (Sect . 1 1 . 16) has its roots in antiquity while the second 
(Sect . 1 1 . 17) goes back to [P6lya-Szego] , which can be consulted for several 
other problems of this genre. 

The proper definition of the (electrostatic) capacity , Cap(A) , of a 
bounded set A c ]Rn with n > 3 is a subtle matter, so let us begin with 
a heuristic discussion. There are several approaches , and four will be dis
cussed here. The fourth will serve as our final definition, in terms of which 
a theorem will be formulated in Sect . 1 1 . 16 . The definition of capacity for 
sets in 1- and 2-dimensions poses additional problems with which we prefer 
not to deal . 

The first formulation begins by asking the question: How can we spread 
a unit amount of electric charge over A in such a way as to minimize its 
Coulomb energy, as given in 9 . 1 (2 ) ?  This minimum energy is defined to be 
� Cap(A)-1 . Thus, 

2 C:p(A) :=  inf { £(p) : i P = 1 } ( 1 )  

where 
£(p) :=  � i i P(x)p(y) lx - Y l 2-n dx dy . (2) 

Thus, a large set has larger capacity than a small one because the charge can 
be spread out more. It is true, although not obvious , that one can restrict P 
to be nonnegative in ( 1 ) . In other words , allowing both signs of charge (with 
unit total charge) can only increase the energy £ .  It is perfectly correct to 
take ( 1 )  as the definition of capacity, but it has a drawback. A minimizing 
p can be shown to exist if A is a closed set , but it will be a measure, not 
a function. This measure will be concentrated on the 'surface' of A, and 
for this reason we cannot expect a minimizer to exist , even as a measure 
supported in A, if A is not closed. For instance, if A is a ball or a sphere 
of radius R, then the optimum distribution for the charge will be a 'delta 
function' of the radius , l x l , i .e . , 

and Cap(A) = Rn-2 . Thus, in order to prove that a minimizer exists for 
( 1) we will have to extend the class of functions to measures and then take 
limits in this class . That is , we will have to extend (2) to measures , J.L, by 
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defining 
£(J.L) :=  � L L l x - Y l 2-nJ.L(dx)J.L(dy) (3) 

with the side condition J-L(A) = 1 .  While this can certainly always be done, 
and a minimizing measure for ( 1 )  can be shown to exist if A is closed, we 
prefer not to follow this route here because we wish to exploit the machinery 
we have so far developed for functions , and not yet developed for measures, 
and because we do not wish to restrict ourselves to closed sets . 

The second approach is to define the capacity as the largest charge that 
can be placed on A so that the potential is at most 1 everywhere on A. (This 
explains the etymology of the word 'capacity ' . )  The potential generated by . a measure J.L IS 

cf>(x) = L l x - Y l 2-nJ.L(dy) ,  (4) 

and 
Cap(A) = sup {J-L(A) : ¢(x) < 1 ,  for all x E A} . (5) 

The J-L that minimizes ( 1) and the J-L that maximizes ( 5) are the same, in 
fact . The reason, heuristically at least , is that a minimizer for ( 1 )  satisfies an 
equation similar to the Thomas-Fermi equation 1 1 . 13 (2) (and for a similar 
reason) , namely 

[ lx l 2-n * J-L] (x) = ¢(x) = ,\ for all x E A, (6) 

where ,\ is some constant . Integration of ( 6) against J-L( dx) shows that £ (J-L) = 

.A/2 .  The important point is that a minimizer for the first problem yields a 
potential that is automatically constant on A, and this potential must be a 
minimizer for the second problem (because there can be only one solution 
of (6) with ,\ =  1 ,  at least if A has a nonempty connected interior) . 

The third formulation tries to deal directly with the potential, ¢, by 
expressing the energy, £ (P) ,  in terms of ¢. That is , from 6 . 19 (2) and 6. 21 , 
-�¢ = (n - 2) j§n- l jp, and hence 

We can then set 

Cap(A) = inf{ [ (n - 2) l§n-l l ] - 1 Ln I V¢(x) l 2 dx : 

cf> E D1 (1R.n) n C0 (JR.n) and cf>(x) > 1 for all x E A} · 
(7) 
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This might look a bit odd, at first . Instead of 1/ Cap( A) as in ( 1 ) we have 
Cap(A) here. We also have ¢(x) > 1 here instead of ¢(x) < 1 ,  as in (3) . The 
difference arises , of course, from the fact that in one case the total charge 
is fixed, whereas in the other the potential is fixed . The reader is urged to 
work these relations through. 

The condition in (7) that ¢ must be continuous is crucial in many cases . 
For example, without continuity definition (7) would give zero capacity for a 
set of zero measure (because a D1 (JRn)-function can be set equal to zero on 
a set of Lebesgue measure zero without changing the function in the D1 (JRn) 
sense) , but this is certainly not in accordance with the notion of capacity in 
( 1 ) . Indeed, it is a simple exercise to prove that a ball and a sphere of equal 
radii have the same capacity. Another easy exercise leads to the conclusion 
that a set of zero capacity always has zero measure. 

On the other hand, if we include the requirement of continuity, as in 
(7) , then we see that the capacity of a set A and its closure A are the same. 
This 'conclusion' does not agree with the capacities obtained with the first 
formulation, ( 1 ) , which we regard as the most physical and fundamental . An 
amusing and easy exercise is to construct a set in which Cap( A) =/=- Cap( A) in 
the sense of (1 ) . Therefore , while (7) looks reasonable, it is really inadequate. 

Our fourth and, for the purposes of this book, actual definition of Cap(A) 
combines the first three in some way, but it always agrees in the end with 
the first definition ( 1 ) . We shall first give it and then explain what it has to 
do with ( 1 ) . 

Definition of capacity: 

where 

Cap(A) := inf { Cn Ln J2 : J E L2 (JRn) 

and [ l x l 1-n * f] (x) > 1 for all x E A} , 

Cn :=  7rn/2+1r ( (n - 2) /2)/r( (n - 1 ) /2)2 . 

(8) 

Note that with this definition it is not necessary to assume that A be 
measurable. Note, also , that l x l l-n * f E L2n/(n-2) (JRn) by the HLS 
inequality, 4 .3 .  

In some sense, ( 8 ) is a halfway house between the first and third for
mulations . To understand it , think of the charge density p as being known 
and think of f as equal to Cn 1 lx l 1-n *P· From formulas 5 . 10(3) and 5 . 9 ( 1 )  we 
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have that 

Thus, 

¢ = l x l l-n * j, 

and the condition in (8) is the same as the condition in (7) . The inverse 
relation is f = (const . ) J=K ¢, and not f = (const . ) IV'¢1 . 

The significant difference between (7) and (8) is that it is unnecessary 
in (8) to specify any continuity. The function ¢ : =  l x l 1-n * f cannot be 
changed in an arbitrary way on a set of measure zero (although f can be 
changed arbitrarily on such a set) . Indeed, a certain amount of continuity 
will be inherent in ¢. To see this , note first that the ' inf' in (8) can be 
taken over nonnegative f without loss of generality because replacing f by 
l f l  does not change f(x) 2 but it can only increase [ l x l 1-n * f] (x) . If f is 
positive, then ¢ is automatically lower semicontinuous, a fact that follows 
from Fatou's lemma, i .e . , if Xj �----+ x E JRn , then l xj - Y l l-n �----+ l x - Y l l-n 
pointwise everywhere . 

Lower semicontinuity can actually occur . The minimizer, ¢, found in 
Theorem 1 1 . 16 ,  is continuous in 'decent ' cases , but it can sometimes be only 
lower semicontinuous . An example of this occurs at the tip of what is known 
as 'Lebesgue's needle ' . 

Although (7) is not generally correct as it stands , it can be made correct 
by demanding that ¢ only be lower semi continuous rather than ¢ E C0 (JRn) , 
as in (7) . It is an exercise to prove that then (7) will agree with (8) and ( 1 ) . 
However, the imposition of lower semicontinuity rather than continuity in 
(7) might be seen as somewhat artificial . 

We wish to address the question of the existence of a minimizing f 
for (8) . Note the obvious fact that the definition of the capacity of a set 
is independent of the existence of a minimizer. In 'decent ' cases there 
will be a minimizer , but exceptions can occur. As an example, a single point 
xo has zero capacity, cf. Exercise 12 ,  but there is no f with J j2 = 0 and 
[ l x l l-n * f] (xo) > 1 .  What is true is that there always exists an f that 
minimizes J j2 but satisfies the slightly weaker condition that ¢( x) = 
[ l x l 1-n * f] (x) > 1 everywhere on A except for a set of zero capacity (which 
necessarily has zero measure) . In the case of the single point , the zero func
tion is the minimizer in the foregoing sense. 

With these preparations behind us , we are now ready to state our main 
result precisely. 
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1 1 . 16 THEOREM (Solution of the capacitor problem) 

For any bounded set A C JRn , n > 3, there exists a unique f E £2 (JRn) that 
satisfies the following two conditions: 

a) Cap( A) = Cn JJRn f2 . 
b) ¢ : =  l x l l-n * f satisfies cp(x) > 1 for all x E A rv B , where B is some 

(possibly empty) subset of A with Cap(B) = 0 .  

This function satisfies 0 < ¢( x) < 1 everywhere ( in particular, ¢( x) = 1 on 
A rv B) and has the following additional properties: 

c) ¢ is superharmonic on JRn, i . e . ,  �¢ < 0 .  

d) ¢ is harmonic outside of A, the closure of A, i . e . , �¢ = 0 in A c . 
e) Cap(A) = [ (n - 2) j§n- l l ] - 1 JJRn j \7¢(x) j 2 dx . 

REMARK. As stated in Sect . 1 1 . 1 5 ,  f is nonnegative, ¢ is lower semicon
tinuous and ¢ is in L2n/ (n-2) (JRn) . This, together with e) above, says that 
¢ E Dl (JRn ) .  

PROOF. The first goal is to find an f satisfying a) and b) . The uniqueness 
of this f follows immediately from the strict convexity of the map f � J f2 . 

The proof is a bit subtle and it illustrates the usefulness of Mazur's 
Theorem 2 . 13  (strongly convergent convex combinations) .  In order to bring 
out the force of that theorem we shall begin by trying to follow the method 
used in the previous examples in this chapter, i .e . , taking weak limits and 
using lower semicontinuity of J f2 . At a certain point we shall reach an 
impasse from which Theorem 2 . 13 will rescue us . 

We start with a minimizing sequence fi , j = 1 ,  2 , 3, . . .  , . I .e . ' 

and q) : =  l x l l-n * fi satisfies ¢) (x) > 1 for all x E A. [Note that there 
actually exist functions in L2 (JRn ) for which l x l 1-n * f > 1 on A because A is 
a bounded set . ] Since this sequence is bounded in L2 (JRn) ,  there is an f such 
that fi � f weakly. By lower semicontinuity, Cap(A) > Cn fJRn f2 , and thus 
f would be a good candidate for a minimizer provided ¢ : =  l x l 1-n * f > 1 
on A. This need not be true; indeed it will not be true in cases such as 
Lebesgue's needle . The problem is that the function l x l 1-n is not in L2 (JRn) 
and so the weak L2 (JRn) convergence of fi to f is insufficient for deducing 
pointwise properties of ¢. 

Now we introduce Theorem 2 . 13 .  Since fi converges weakly to f , there 
are convex combinations of the Ji 's , which we shall denote by pi , such that 
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pi converges strongly to f in L2 (JRn) .  Thus, 

On the other hand, Cn limi�oo fJRn (Pi )2  > Cap( A) because each pi is an 
admissible function. Therefore , 

( 1 )  

What is needed now is a proof that ¢ = 1 on A ,  except for a set of zero 
capacity. For each c > 0 define the sets 

Be = {x E A : </>(x) < 1 - c:} , 

V/ = {X [ j x j l-n * pi ] (x) - [ j x j l-n * j ] (x) > C: } , 
T1 = {X [ l x l 1-n * jFi : 

f l ] (x) > 1 } . 
Clearly, Be: c vj c Tl for all j , and hence, by the obvious monotonicity of 
capacity, 

Cap(Bc: ) < Cap(Vj )  < Cap(Tj) . 
However , by definition, 

and this converges to zero as j --t oo.  Therefore, Cap(Bc:) == 0 .  
If we now define 

B = {x E A : ¢(x) < 1} , 

we have that B c Ur 1 B1;k · But ,  it is easy to see directly from 1 1 . 15 (8) 
that capacity is countably subadditive ( cf. Exercise 1 1 ) .  Therefore 

00 
Cap( B) < L Cap(B1;k ) = 0, 

k=l 
Cap(A) = Cap(A rv B) , and f is a true minimizer of 1 1 . 15 (8) for the set 
A rv B. 

Our next goal is to deduce properties c)-e) of ¢, as well as ¢ < 1 .  Item c) 
is proved as follows . Let 17 be any nonnegative function in C� (JRn) ,  in which 
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case �'TJ is also in C� (JRn) .  For c > 0 let fc: := f - Eg with g = l x l l-n * �'TJ. 
Correspondingly, 

c/Jc: :=  l x l l-n * fc: = ¢ - c( lx l l-n * l x l l-n) * �1]. 
(We are using Fubini 's theorem here to exchange the order of integration in 
the repeated convolution . ) By Theorem 6 .21 (solution of Poisson's equation) 
and the fact that lx l l-n * l x l l-n = Cn lx l 2-n we have that 

- ( lx l l-n * l x l l-n ) * �1] = C�'T], 
with C� > 0 .  Therefore, fc: is an admissible function for A rv B and every 
c > 0, because c/Jc: > ¢. Since f is a minimizer of 1 1 . 15 (8) for the set A rv B , 

0 < -2c r fg + c:2 r i .  }�n }�n 
This holds for all c > 0, so J�n f g < 0 .  In other words , 

0 > r f lx l 1-n * /).17 = r ¢/).17 }�n }�n 
for every nonnegative 17 E C� (JRn) .  (Fubini 's theorem has been used again . )  
This means, by definition, that �¢ < 0 in the distributional sense, and c) is 
proved. 

A similar argument, but now without imposing the condition that 17 > 0, 
proves d) . 

Item e) is left to the reader as an exercise with Fourier transforms. 
The proof that ¢ < 1 is a bit involved. Since ¢ is superharmonic , 

and since ¢ vanishes at infinity, Theorem 9 .6 (subharmonic functions are 
potentials) shows that ¢ = l x l 2-n * dJ-L, where J-L is a positive measure . 
Therefore, by Fubini 's theorem, 

lx l 2-n * l x l l-n * dJ-L = lx l l-n * cjJ = Cn lx l 2-n * f. 
Taking the Laplacian of both sides we conclude, by Theorem 6 . 2 1 ,  that 
Cnf = lx l 1-n * dJ-L as distributions , and hence as functions by Theorem 6 .5 
(functions are uniquely determined by distributions) .  We conclude, there
fore, that 

Cap(A rv B) = Cap(A) = Cn { j2 = 2£(!-L) = { ¢ df-L. 
}�n }�n 

Now, let ¢0 (x) :=  min{ 1 ,  ¢(x) } ,  which is also superharmonic . (Why?) 
Again, by Theorem 9 .6 ,  c/Jo == l x l 2-n * dJ-Lo . Then 

r ¢ df-l > r c/Jo df-l = r ¢ df-lo [by Fubini] > r c/Jo df-Lo .  }�n }�n }�n }�n 
Thus, if we define fo = l x l 1-n * dJ-Lo , we see that fo satisfies the correct 
conditions and gives us a lower value for Cap(A rv B) = Cap( A) , which is a 
contradiction unless ¢ == c/Jo . • 
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e As an application of rearrangements we shall solve the following problem: 
Which set has minimal capacity among all bounded sets of fixed measure ? 
The answer is given in the following theorem. 

1 1 . 17 THEOREM (Balls have smallest capacity) 

Let A C JRn , n > 3, be a bounded set with Lebesgue measure IA I and let B A 
be the ball in JRn with the same measure .  Then 

Cap(BA) < Cap(A) . 

PROOF. Let ¢ be the minimizing potential for Cap(A) . Since ¢ is non
negative and ¢ E D1 (JRn) ,  the rearrangement inequality for the gradi
ent (Lemma 7. 17) yields that JJRn iV'¢* 1 2 < JJRn iV'¢ 1 2 , where ¢* is the 
symmetric-decreasing rearrangement of ¢ (see Sect . 3 .3) . By the equimea
surability of the rearrangement , ¢* = 1 on BA . 

Let c/Jb denote the potential for the ball problem, B A . We claim that 
fJRn IV'¢* 1 2 > fJRn IV' ¢b l 2 , which will prove the theorem. Both ¢* and c/Jb are 
radial and decreasing functions . Outside of BA , we have ¢b (r) = (R/r)2-n , 
where R is the radius of BA . (Why?) Now 

by Schwarz 's inequality and the fact that ¢* (x) = 1 for x E BA . However, 
with the aid of polar coordinates , we see that �x i>R V' ¢* · V' c/Jb is proportional 
to fr>R(d¢* / dr) dr , which is proportional to ¢* (0) = 1 by the fundamental 
theorem of calculus for distributional derivatives, Theorem 6 .9 .  (Why is ¢* 
continuous?) In other words , fJRn IV'¢* 1 2 is bounded below by a quantity 
that depends only on ¢* (0) , and which is therefore identical to the same 
quantity with ¢* replaced by ¢b · • 
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1 .  Compute the capacity of a ball of radius 1 in JRn by verifying that cPb (x) = 

l x l 2-n as stated in Sect . 1 1 . 17 .  Use c) and d) of Theorem 1 1 . 16 .  

2 .  Prove that the right side of 1 1 . 15 (7) is zero in dimensions 1 and 2 .  

3. Justify the formal manipulations in the proof of Theorem 1 1 . 6  by first ap
proximating �j , and then �k , by a sequence of cgo (JRn)-functions . Justify 
eq. (3) as well as the proof at the end that any solution to the Schrodinger 
equation is a linear combination of eigenfunctions . 

4.  Referring to Sect . 1 1 . 1 1 ,  prove that all terms in the Thomas-Fermi energy 
are well defined when p E C .  

5 .  Prove that £(p) is bounded below on the set c<N ,  as stated in the proof 
of Theorem 1 1 . 1 2 .  

6 .  Use the various inequalities in this book to show that l lp.i 1 1 5;3 is a bounded 
sequence when p.i is a minimizing sequence on C<N ,  as claimed in the 
proof of Theorem 1 1 . 12 .  

7. Show that D(p, p) is weakly lower semicontinuous on L615 (JR3) as asserted 
in the proof of Theorem 1 1 . 12 .  That proof seemed to imply that it is 
necessary to pass to a subsequence of the p.i sequence in order to get the 
£6/5 (JR3) weak limit ; this is not so . (Why?) 

8 .  Show that - JIR3 Z lx l - 1p.i (x) dx converges to - JJR3 Z lx i -1PN (x) dx in the 
proof of Theorem 1 1 . 12 .  

9 .  Prove that the capacity of a ball and a sphere in JRn of the same radius 
have the same capacity. 

10 .  If Cap(A) = 0, then _cn (A) == 0 .  

1 1 .  Prove the countable subadditivity of capacity. That is, let A1 , 
A2 , . . .  be a sequence of bounded subsets of JRn and assume that 

00 
L Cap( A) < oo .  
i=O 

Set A := U� 0 Ai , which is also assumed to be a bounded set . Then 
00 

Cap(A) < L Cap(A) . 
t=O 
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Do not assume here that the Aj are disjoint . Construct a proof that does 
not use the existence of a minimizing f for 1 1 . 15 (8) . 

12 .  Show that a single point has zero capacity. Hence, by Exercise 1 1 ,  the 
capacity of countably many points is zero . 

13 .  Construct a set A for which Cap(A) =!=- Cap(A) . 

14.  Complete the proof of item e) in Theorem 1 1 . 16 (solution of the capacitor 
problem) . 

15 .  Prove that if we replace the condition ¢ E C0(JRn) in 1 1 . 15 (7) by the 
weaker condition that ¢ need only be lower semicontinuous, then the 
minimum in 1 1 . 15 (7) will, indeed, be the same as that in 1 1 . 15 (8) . 

...., Hints. Show that there is a minimizer for 1 1 . 15 (7) ,  in the sense of 'up 
to a set of zero capacity' and that it is super harmonic .  An important 
point will be the verification of countable subadditivity. Verify that 
this superharmonic function is the one in Theorem 1 1 . 16 .  



More Ab out 

Eigenvalues 

Chapter 1 2  

In Sect . 1 1 .6 we introduced higher eigenvalues Eo < E1 < E2 < · · · , and 
corresponding eigenfunctions 1/Ji ,  for Ho + V on L2 (JRn) ,  where Ho is either 
the nonrelativistic kinetic energy -� or the relativistic one vi-� + m2 - m. 
The inconvenient feature of this is that the definition of Ek depends upon 
knowing all the previous k eigenfunctions , which is rarely the case . 

In this chapter we shall present some examples of ways of estimating 
eigenvalues without knowledge of the 1/Ji ,  not only for the Schrodinger prob
lem but also for the eigenvalues of the Laplacian in a domain. We shall 
also make a connection between eigenvalues and the phase space of classical 
mechanics . This latter theory is called the semiclassical approximation 
and has an extensive literature, but our discussion will necessarily be brief. 
We shall introduce and utilize coherent states to prove that the semiclas
sical approximations are, in fact , exact in certain limits . Limits are not 
needed, however, for certain bounds for eigenvalue sums in Sects . 12 .3 and 
12 .4, and one of these leads to inequalities for sums of the kinetic energy of 
orthonormal functions . 

The next theorem about the min-max principles shows a way to obtain 
useful information without knowing the 1/;2 , in that it provides a method to 
obtain upper bounds for all eigenvalues and, to some extent , lower bounds 
as well . There are several equivalent versions of this method. They are 
all exercises in linear algebra applied to the basic definition in Sect . 1 1 .6 .  
Nevertheless, these principles are extremely valuable in many applications , 
including some in this chapter . An additional reference is [Reed-Simon, 
Vol. 4, p . 76] . 

-
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For concreteness we express Theorem 12 . 1 in terms of the Schrodinger 
eigenvalue problem, but it is obvious that the theorem applies to a wide 
variety of eigenvalue problems other than Ho + V. Recall the definition of 
the energy £(�) in 1 1 . 2 (3) .  More importantly, recall our definition of the 
eigenvalues : Eo is defined to be the infimum of £(�) with 1 1 � 1 1 2 = 1 .  Thus, 
Eo is always defined, and it is tautological that £ (�) > Eo (� , �) for all 
� .  If Eo is achieved for some �o we go on to define E1 as the infimum of 
£(�) with 1 1� 1 1 2 = 1 and with (� , �o) = 0, and so on. What is not entirely 
obvious is how to get an upper bound for E1 as easily as we just did for 
E0 .  Theorem 12 . 1 answers this question. Finally, we might come to some 
J for which EJ is not achieved and we have to stop (but EJ is well defined 
as an infimum, as stated in Sect . 1 1 . 5) .  For the purposes of Theorem 12 . 1 
we define Ek = EJ for all k > J. Incidentally, the number EJ (which is not 
achieved for any �) is called the bottom of the essential spectrum. 

12 . 1 THEOREM (Min-max principles) 

Let V be such that V_ (x) := max(-V(x) , O) satisfies the assumptions of 
Sect. 1 1 . 5 .  No assumption is made about V+ (x) := max(V(x) , 0) . Now 
choose any N + 1 functions c/Jo , . . .  , cPN that are orthonormal in L2 (JRn) , and 
suppose that they are in H1 (JRn) ,  resp . H112 (JRn) ,  and with the property that 
l c/Ji i 2V E L1 (JRn) for i == 0, . . .  , N .  Let J > 0 denote the smallest integer j 
for which Ej is not an eigenvalue . 

Version 1: Form the (N + 1) x (N + 1) Hermitian matrix 

hij = { '¢i (k)'¢j (k)T(k) dk + { V(x)<f>i (x)<f>j (x) dx. ( 1 )  }�n }�n 
Then the eigenvalue problem 

hv = AV , v E cN+l , 
has N + 1 eigenvalues Ao < AI < · · · < AN , and these satisfy 

Ai > Ei for i = 0, . . .  , N. 
• In particular, for any (N + 1) L2 (JRn) -orthonormal functions cPi , 

N N N N 
LEi < LAi = Lhi� = L£(¢i ) · 
i=O i=O i=O i=O 

Version 2 (max-min) : If N < J, 

(2) 

(3) 

EN = max min { £ ( ¢ N ) ¢ N j_ c/Jo , . . .  , ¢ N - 1} . ( 4) 
f/Jo , . . .  ,f/JN- 1 
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Version 3 (min-max) : If N < J, 

EN = min max{£(¢) : ¢ E Span( ¢o , . . .  , ¢N ) } . (5) 
¢o , . . .  ,¢N 

If N > J, then max-min in (4) becomes max-inf, and min-max in (5 ) 
becomes inf-max. 

REMARKS . ( 1) In ( 4) and ( 5) it is not necessary to require that <Po , . . .  , ¢N _1 
be orthogonal, but it is essential in (5) that the <Pi be linearly independent . 

(2) Version 2 can give lower bounds , in principle , but its applicability is 
limited. Version 3 is useful for upper bounds . 

(3) The functions <Pi used in version 1 are called variational or trial or 
comparison functions . 

Recall the definition in 1 1 . 5 (5) and Sect . 2 . 2 1 that (f, g) := fJRn fg . 

PROOF . We shall assume that N < J.  The simple generalization to N > J 
is left to the reader . 

The N + 1 orthonormal eigenvectors vi , 1 < j < N + 1 ,  of the matrix N . 
h define N + 1 orthonormal functions Xi (x) = �i=0vf ¢i (x) . Clearly Eo < 
£(Xo) = (vo , hv0) = Ao by the definition of Eo . Assuming now that (2) 
holds for i = 0, 1 , . . .  , k - 1, we shall prove that (2) holds for i = k . The 
span of the functions Xo , . . .  , Xk has dimension k + 1 and hence it contains a 
function X =  �J=oCjXj such that 1 = (X, X) = �j=0 1 ci l 2 and (X, 'lj;i ) = 0 for 
i = 0, . . .  , k - 1 .  By definition, then, £(X) > Ek · However , (vi ,  hvi )  = Ai8ii , 
from which we easily conclude that £ (X) = �j=0 1 ci l 2 Aj < Ak . 

For version 2 ,  denote the right side of ( 4) by 'rN . Clearly 

1 N > min { £ ( cp N) : cp N j_ �0 ,  · · · , � N - 1 } = EN , (6) 

by the definition of EN . For any choice of <Po , . . .  , ¢ N - 1 we note that there 
is always a linear combination f = �f 0 Cj'lj;j such that f is orthogonal to 
each of the ¢i , i = 0, . . .  , N - 1 .  This is an exercise in linear algebra. But 
£(f) < EN and thus min{£(¢N) : ¢N j_ ¢o , . . .  , ¢N-1 } < EN . 

To prove the third version call the right side of (5) 'rN and pick ¢o , . . .  , ¢N 
to be �o , . . .  , �N . From this we infer that 'rN < EN by the definition of EN . 
Next , for ¢0 , . . .  , ¢N arbitrary, there exists a vector f in their span that is 
orthogonal to the span of �o , . . .  , � N _ 1 . This is the same exercise in linear 
algebra mentioned above. Then £(f) > EN for every ¢o , . . .  , ¢N and hence 
m > �. • 
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1 2 . 2  COROLLARY (Generalized min-max) 

Let c/Jo , ¢1 , . . . , ¢ L be L + 1 functions in H1 (JRn) with the property that the 
positive semi-definite matrix Ii,j == ( c/Ji , cPj ) is bounded above by the unit 
matrix, i . e . ' �i,j Ii,jU'tUj < �i lui 1 2 for all u E c£+1 . Suppose also that 

�f 0 Ii,t == N + 1 + 6 with 0 < 6 < 1 .  Then 

L N 
:�::::c� (l/>i) > L Ei + JEN+l o  
i=O i=O 

( 1 )  

PROOF . This is an exercise in linear algebra. We can obviously assume 
that each ¢"' =!=- 0 .  

First , we prove ( 1 )  assuming that the cPi are orthogonal . Set 1i = Ii,i < 
1 .  Let us order the T2 so that 0 < TL < TL-1 < · · · . Define the orthonormal 
family �"' = (Ti ) -112¢i · Then, using 12 . 1 (3) , 

L L 
L £(¢i ) = L Ti£(�� ) 
i=O i=O 

L L-1 
= TL L £(�i ) + (TL-1 - TL) L £(�i ) + 

i=O i=O 
1 

0 0 0 + (T1 - To) 2: £(�i ) + To£ (�o) (2)  
i=O 

L L-1 
> TL L E� + (TL-1 - TL) L Ei + 0 0 0 + ToEo 

i=O i=O 
L N 

= L TiE� > L Ei + JEN+l o  
i=O i=O 

The last inequality is the bathtub principle applied to sums. 
For the general case we define gj and J-la to be the orthonormal eigen

vectors and eigenvalues of I, namely �j ii,j9j == J-Lagf . The matrix gj , 
0 < a < L, 0 < j < L, is a unitary (L + 1 )  x (L + 1 )  matrix. Thus, 
q,a : == �j gjc/Jj satisfies (<Pa , <Pf3 ) = J-La6a,j3 · We compute l:a £(<Pa) = 
�a �i �j hi ,jgfgj = �i hi,i == �i £(¢i ) ,  since �a gfgj = 6i ,j · The proof 
of ( 1 ) is completed by applying the previous argument to the L + 1 orthog
onal functions <P0 , . . . , q,L in place of c/Jo , . . . , ¢ L . II 
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e There are other eigenvalue problems of interest besides the Schrodinger 
eigenvalue problem of Chapter 1 1 .  The min-max principles will apply to 
them, too. One interesting eigenvalue problem is the Dirichlet problem 
in an open set n c ffi.n of finite volume IO I .  Recall the definition of HJ (O) 
as the closure of COO (O) in the H1-norm. For such functions we can define 

£ ( 4>) = In I V¢( x) 1 2 dx . (3) 

The Dirichlet eigenvalues are defined inductively for any k = 0, 1, . . .  
in the usual way. It is an exercise, which we leave to the reader , that a 
minimizer exists for the problem 

Eo = min{£ (¢) : cf> E HJ (n) , In l ¢(x) l 2 dx = 1 } . (4) 

If we denote the first k eigenfunctions by �o , . . .  , �k- I ,  then the k + 1-th 
eigenfunction �k is defined to be a minimizer (which also exists) of the 
problem 

Ek = min{£(¢) : ¢> E HJ (O) , 

In l cf>(x) 1 2 dx = 1 ,  In cf>(x )'lj;t (x) dx = 0, i = 0, . . .  , k - 1 } .  (5) 

By imitating the proof of Theorem 1 1 .6 and Exercise 1 1 .3 , we find that these 
eigenfunctions satisfy the equation 

(6) 

and, conversely, every solution to (6) in HJ (O) for any E is a  linear combina
tion of eigenfunctions (in the sense of (5) ) with eigenvalue E. Eigenfunctions 
with different eigenvalues are orthogonal and those with the same eigenvalue 
can be chosen to be orthogonal . Thus, they form an orthonormal set . (Neu
mann eigenvalues, in which HJ (O) is replaced by H1 (0) , are explored in 
the Exercises . ) The eigenfunctions can be taken to be real, of course . 

In the following we are interested in estimating the sum of the first N 
eigenvalues from below, i .e . , we are looking for a lower bound for �f 01 E1 . 

The following theorem is due to [Li-Yau] and, in somewhat disguised 
form, due earlier to [Berezin] . 
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1 2 . 3  THEOREM (Bound for eigenvalue sums in a domain) 

\ 
_) 

Let 0 be an open set in JRn of finite volume 10 1 and consider any collection 
of functions c/Jo , . . .  , cPN-1 in HJ (O) that are orthonormal in £2 (0) . Then 

N-1 ( ) 2/n " £ (¢ · ) > (21r) 2 n n Nl+2/n jn j -2/n . � J -
n + 2  j §n-1 1 J =O 

( 1 ) 

In particular, by inserting the orthonormal Dirichlet eigenfunctions in ( 1 ) , 
we have that 

N-1 ( ) 2/n 
S(N) := " E · > (27r) 2 n n N1+2/n iO I -2/n . � 

J -
n + 2  j§n-1 1 J =O 

(2) 

PROOF . Since HJ (O) is the closure of COO (O) in the H1-norm, it suffices 
to prove ( 1 )  for orthonormal functions in COO (O) . Extend those functions 
to COO (JRn) by setting them identically zero outside their support . Then 
£ (¢j ) = (\lc/Jj , \lc/Jj ) with (f, g) = fJRn fg, as in 1 1 . 5 (5) .  Using Theorem 7.9 ,  
the sum ( 1 ) can be expressed in terms of the Fourier transformed functions 

-

cPj (k) as 

(3) 

N 1 ..-where P(k) = L:j 0 l c/Jj (k) j 2 . Next we note that by Theorem 5 .3 (Plancherel's 
theorem) 

{ P(k) dk = N, }}Rn (4) 

since the functions cPj are normalized in L2 (JRn) .  Further, since the functions 
cPj are orthonormal in £2 (JRn) ,  we can complete them to an orthonormal 
basis in L2 (JRn) ,  { cPj } j 0 .  Denote by ek : JRn � C the function given by 
ek (X) = e2rrik·xxn (X) ' where Xn (X) is the characteristic function of n. Then, 
-

cPj (k) = (c/Jj , ek ) and 

N-1 oo 

P (k) = L 1 (</>j , ek ) l 2 < L 1 (</>j , ek) l 2 = (ek . ek ) = 1n 1 . (5) 
j =O j=O 

Certainly, if we minimize the expression in (3) among all functions p that 
satisfy ( 4) and ( 5) we get a lower bound for the sum in ( 1 ) . This is pre
cisely the situation where Theorem 1 . 14 (Bathtub principle) applies . The 
minimizing function, Pm (k) , must be 1 0 1 times a characteristic function of 
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a level set of l k l 2 subject to the conditions (4) and (5) . In other words, Pm 
is 10 1 times the characteristic function of a ball of radius "' which is chosen 
such that ( 4) is satisfied . A simple calculation leads to 

and evaluating (3) with Pm in place of p leads to the bound stated in the 
theorem. II 

REMARK. Inequality (2) implies that the N-th eigenvalue, EN-1 , satisfies 

E - > (27r) 2 n n N2fn ln l -2/n . 
( ) 2/n 

N 1 - n + 2 l§n-1 1 

The P6lya conjecture states that 

E - > (27r) 2 n N2fn iO I -2/n 
( ) 2/n 

N 1 - l§n-1 1 ' 

(6) 

(7) 

for general domains . This has been proved [P6lya] for tiling domains, i .e . , 
domains whose translations can cover JRn without any holes or overlap of 
their interiors . Extensions to 'product domains ' are in [Laptev] . For general 
domains the conjecture is still open, although ( 6) is tantalizingly close to 
(7) . 

In Exercise 2 the reader is asked to compute the N-th eigenvalue for the 
cube in JRn and check P6lya's conjecture in this case . 

e We now seek an analogue of Theorem 12 . 3  for the sum of the negative 
eigenvalues of p2 + V(x) , which were discussed in Chapter 1 1 .  It is, indeed, 
possible to give a lower bound to this sum, but the proof is substantially 
more complicated than for Theorem 12 .3 .  We also show how to bound 
other power sums besides the first power . These inequalities were derived 
in [Lieb-Thirring] and have since found many applications , not just to the 
Schrodinger equation, and have been extended to Riemann manifolds other 
than JRn . 
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1 2 .4 THEOREM (Bound for Schrodinger eigenvalue sums) 

Fix 1 > 0 and assume that the potential V == V+ - V_ satisfies the condition 
in 1 1 .3 ( 14) and also V_ E £l'+nf2 (JRn) .  Let Eo < E1 < E2 < · · · be the 
negative eigenvalues ( if any) of -� + V in JRn . Then, for suitable n, there 
is a finite constant L,,n , which is independent of V, such that 

L IEj i'Y < L-y,n r v-y+n/2 (x) dx . 
">0 }'ff_{n J _ 

This holds in the following cases : 

for n == 1 ,  

for n == 2 , 
for n == 3 .  

( 1 )  

(2) 

(3) 

(4) 

Otherwise, for any finite choice of L,,n there is a V_ that violates ( 1 ) . We 
can take 

(n + !')r (!'/2) 2j2 r(!' + 1 + n/2 ) if n > 1 , /' > 0, 

or n == 1 ,  I' > 1 ,  

if n == 1 ,  I' > 1/2 .  

(5) 

PROOF . Step 1 .  We see from the min-mCrinciple that the effect of v+ 
is only to increase the eigenvalues E2 and, since V+ does not appear on the 
right side of ( 1 ) , we may as well set V+ == 0 .  We then set V_ == U for 
notational convenience . 

The eigenvalue equation ( -� - U)� == E� can be rewritten using the 
Yukawa potential (according to Theorem 6 .23) as � == GJ.t * (U�) with 
J.-L2 :==  e == -E > 0 .  With ¢ :== v'f]� this equation becomes 

where Ke (called the Birman-Schwinger kernel [Birman, Schwinger] ) is 
the integral kernel given by 

Ke (x , y) == � Gl-t (x - y) Vfi(ii) . (6) 

Explicitly, (Ke¢) (x) == JJRn Ke (x, y)¢(y) dy . 
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Several things are to be noted about Ke , which follow from the Fourier 
transform representation of GI-L ( x) . 

a) Ke is positive, i .e . , (/, Kef) > 0 for all f E L2 (JRn) . 
b) Ke is bounded, i .e. , there is a constant Ce such that (/, Ke f) < 

Ce (J, J) .  
c) Ke is monotonically decreasing in e ,  i .e . , if e < e' , then (/, Kef) > 

(/, Ke' f) for all f . 
We can define eigenvalues of Ke in the obvious way by setting A! == 

sup{ (¢, Ke¢) : 1 1 ¢ 1 1 2 == 1 } , A� == sup{ (¢, Ke¢) : 1 1 ¢ 1 1 2 == 1 ,  (¢, ¢! ) == 0} , etc .  
All these suprema are achieved (why?) and satisfy, for j == 1 ,  2 ,  . . .  , 

Conversely, an L2 (JRn) solution to this equation corresponds to one of the 
eigenvalues just listed. We can choose the eigenvectors to be orthonormal. 

A nega�ve eigenvalue E of -� - U gives rise to an eigenvalue 1 of Ke , 
with an L�(Rn) eigenfunction when e == -E (why L2 (JRn)?) . The converse is 
also true: If Ke has an eigenvalue 1 (with an L2 (JRn) eigenfunction) , then - e  

is  an eigenvalue of -� - U. (This is  an exercise. One defines � == ce y'f} ¢ 
and proves that � is in L2 (JRn) and satisfies the eigenvalue equation. )  The . . 
A� are precisely the numbers such that -� - U(x) /A� has an eigenvalue - e .  

From item c) above we see that each A� is a monotone nonincreasing 
function of e (min-max principle) .  From this we deduce the following im
portant fact : If Ne (U) denotes the number of eigenvalues of -� - U  that are 
less than - e ,  then Ne (U) equals the number of eigenvalues of Ke that are 
greater than_ 1 .  The reader can best absorb this last statement by drawing 
graphs of A� as functions of e .  

Step 2. The statement implies, in particular, that for any number m > 0, 

Ne (U) < NJm) (U) : =  2 )A�)m . (7) 
J 

Define the integral kernel ICe (x, y) :==  L:j A� cp� (x) ¢� (y) , where the sum 
is over those j for which A� > 1 .  (If there are infinitely many such j 's ,  then 
truncate the sum at some finite N and later on let N tend to oo.)  From a) 
above we see that ICe < Ke in the sense that (/, ICef) < (/, Kef) for all f .  

From (7) we deduce that when m is an integer 

(8) 
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where K:"-1 means the (m - 1)-fold iteration of Ke . Alternatively, if we 
define Ie (x , y) : = 'L-j cfle (x)qle (y) with >.� > 1 ,  then (!, Ie f) < (!, f) and 

N�m) (U) = { { Ie (x, y)K:"(x, y) dx dy . (9) }�n }�n 
Now let m be an integer. If m is even we use (9) ; otherwise (8) . For the 

even case we note that we can write K� (x, y) = fJRn K:"/2 (x, z)K:"/2 (z, y) dz . 
Using Fubini 's theorem, we see that the integral in (9) has the form 
JJR.n (Fz , IeFz) dz , where Fz (x) = K:"12 (x , z) . From the inequality (!, Ie f) < 
(/, f) , followed by the dz integration, we deduce 

N�m) (U) < { K:"(z, z) dz . }�n ( 10) 

Similarly, using (8) and ICe for the odd m case, we see that ( 10) holds for 
all integers m > 0 .  

Let us write out the integral in ( 10) as the integral of a product of two 
factors , each a function of m variables . The first is u(m) (zl , Z2 , . . .  ' Zm) :== 
U(z1 )U(z2 ) · · · U(zm) and the second is G(m) (zl , z2 , . . .  , Zm) : ==  GJ.t (z1 - z2) 
GJ.t (z2 -z3 ) · · · G1-t (zm -z1 ) .  We also define dz (m) : ==  dz1 · · · dzm and think of 
dT : ==  G(m) dz (m) as a measure on JRnm . We then apply Holder's inequality 
to the integral of u(m) with the T measure (with exponents PI == P2 == . . .  
= Pm = m) and obtain 

� 
N�m) (U) < r U(zi )mGJ.L (ZI - Z2 )GI.L (z2 - Z3 ) . . .  QI.L (zm - ZI ) dzl . . .  dzm . }�nrn 

( 1 1 ) 

The integral over z2 , . . .  , Zm can be done using the Fourier transform 
6 .23(7) and ( 1 1 ) becomes (recalling that J.-L2 == e , and assuming m > n/2) 

N�m) (U) < { { U(z1 )m ( [27rp] 2 + 112) -m dz1 dP }�n }�n 
= e-m+nl2 (27r) -n { U(x)m dx { (p2 + 1 ) -m dp ( 12) }�n }�n 
= (47r) -n/2 r (m - n/2) e-m+n/2 { U(x)m dx. 

r (m) }�n 

Step 3. Our bound on Ne (U) can be used to bound the left side of ( 1 ) . 
By the layer cake principle 

( 13) 
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While this is correct , it cannot be usefully employed with the bound ( 1 2) 
because that would lead to a divergent integral . Instead, we note that 
Ne (U) < Ne;2 ( (U - e/2)+ ) · This is so because Ne for the potential V == -U 
equals Ne;2 for the potential V == e/2 - U, but this is less than Ne;2 for the potential V == (e/2 - U) - (by the remark in step 1 that deleting V+ can 
only increase Ne) .  Therefore, 

� IE · I'Y < (47r) -n/2'Y r(m - n/2) 
� J - r(m) " >0 J _ 

{00 r ( ( e ) )m ( e ) -m+n/2 
x Jo }JR.n U(x) - 2 + 2 dx e-y-1 de . 

We do the e-integration in ( 14) first . It is easy to see that 

Hence, 

1oo (A - e)�et de = As+t+1 1 1 
( 1  - y)syt dy 

== As+t+1r ( s  + 1 )r (t + 1 ) /r (s  + t + 2) . 

X r U (x)'Y+n/2 dx, }�n 

( 14) 

( 15 )  

which is exactly what we want - except for the choice of m .  Here, we note 
two problems. 
Problem 1 : In order for the p-integration in ( 12 ) to be finite we require 
m > n/2. 
Problem 2 :  In order for the e-integration in ( 14) to be finite we require 
-m + n/2 + ry > 0 . 
In short , we require ry + n/2 > m > n/2 .  

Since we assumed m to be an integer in our derivation of ( 12) , this puts 
a restriction on ry.  For example, if we are interested in ry == 1 ,  then n must 
be odd and we can take m == (n + 1 ) /2 .  When n is even, we are unable to 
find a suitable integer m. The excluded exceptional cases are ry is an integer 
when m is even and 'Y + 1/2 is an integer when m is odd. 

This restriction is , however , spurious . As might be expected, ( 1 2) is true 
even if m is not an integer, provided m > 1 .  The proof of this extension is not 
trivial (for it involves operator theory and a nontrivial "trace" inequality) 
and we beg the reader 's indulgence for simply referring to [Lieb-Thirring] . 
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By choosing m == (!' + n) /2 when n > 1 or n == 1 , !' > 1 ,  and m == 1 when 
n == 1 ,  the values given in the theorem are obtained for all cases except the 
critical cases n == 1 ,  I' == 1/2 and n > 3, I' == 0. These remaining cases are 
discussed in the following remarks . 

The proof of the assertion that no inequality of type ( 1 )  can hold when 
I' is outside the ranges indicated in (2) is left as an exercise. • 

REMARKS. ( 1 )  The critical case I' == 0, n > 3 was proved by completely 
different methods , none of which are simple extensions of the proof given 
above, by [Cwikel] , [Lieb, 1980] and [Rosenbljum] (see also the note at the 
end of [Lieb-Thirring] ) and are known as the CLR bounds. Other proofs are 
in [Li-Yau] and [Conlon] . Apart from some subsequent small improvements 
the values of Lo,n in [Lieb, 1980] remain the best for low dimensions. 

(2) Oddly, the proof for I' == 1/2 ,  n == 1 came much later. It was given 
by [Weidl] . Equally odd is the fact that this case turned out to be one of the 
few cases for which the sharp constant is presently known [Hundertmark
Lieb-Thomas] : L1;2 , 1 == 1/2 . 

(3) In Sect . 12 .6 the 'classical ' values of L"'f,n will be discussed. They are 
defined for all n > 1 ,  I' > 0 by 

( 16) 

According to Theorem 12 . 12 and the remark following it the sum L:j>O lEi I"'� 
for -� - U asymptotically approaches L��a;s fJRn (J.-LU)"'�+n/2 as J-l ---1- oo. This 
implies that L"'f,n > L��a;s for all f', n . 

( 4) It was shown in [Aizenman-Lieb] that the ratio L"'f,n/ L��a;s is a mono
tone nonincreasing function of I'· Thus, if one can show that L"'f,n == L��a;s 
for some f'o , then L"'f,n == L��a;s for all f' > I'D · 

(5) [Laptev-Weidl] showed, remarkably, that for all n > 1 ,  L3;2 ,n == 

£class and hence L == £class for all rv > 3/2 (This had been shown 3/2 ,n ' "'(,n "'(,n t - • 

earlier for n == 1 in [Lieb-Thirring] . )  Motivated by this, another proof was 
later given by [Benguria-Loss] . 

(6) It was shown in [Helffer-Robert] that L"'f,n > L��a;s when I' < 1 .  
(7) [Daubechies] derived analogues of ( 1 )  for IP I + V. Apart from a 

change in L"'f,n one has to change the exponent in ( 1 )  from !' + n/2 to !' + n. 

e One of the most important uses of Theorem 12 .4 (with I' == 1) is 
the following application to sets of N orthonormal H1 (JRn) functions, <P == 

( ¢1 , ¢2 , . . .  , ¢ N) .  (Note : by "orthonormal" we mean orthonormal in the 
L2 (JRn) sense , not in the H1 (JRn) sense, i .e . , fJRn cjJiq) == 8i ,j · ) This inequality 
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complements Sobolev's inequality and is useful in many contexts. It has 
extensions to Riemann manifolds other than JRn. 

As motivation, recall Sobolev's inequality 8 .3( 1 ) , which holds for n > 3 . 
If we assume that l l f l l 2 == 1 and apply Holder's inequality to the Lq (JRn) 
norm on the right side of 8 .3 ( 1 ) , we discover that 

r l \7f (x) l 2 dx > Sn r ( I J (x) l 2 ) 1+2/n dx. ( 17) }�n }�n 
This inequality, like Nash's inequality, holds for all n > 1 (with a suitable 
constant that is larger than Sn when n > 3) , as we shall soon see . More im
portantly, it generalizes to N orthonormal functions in a way that Sobolev's 
inequality does not . 

12.5 THEOREM {Kinetic energy with antisyrnrnetry) 

Let <P == { q)}.f 1 be a collection of N L2 (JRn) -orthonormal functions . Define 
N 

P<P (x) := L 14l (x) l 2 ( 1 )  
j= l 

so that J�n PiP == N. Then 
N 

T.p := L r l \74l (x) l 2 dx > Kn r p.p (x) 1+2fn dx (2) 

with 
. l }�n }�n J= 

Kn == ( 1 + 2/n)- 1 [ ( 1 + nj2)LI ,n ]-2fn . (3) 
This is the sharp constant in (2 ) when L1,n is taken to be the sharp constant 
in 12 .4( 1 ) . (Bounds are given in (6) . )  

More generally, let � (  XI , x2 , . . .  , XN ) ,  with Xj E JRn, be in H1 (JRnN) with 
I I � I I  £2 == 1 .  Suppose, also, that � is antisymmetric, i. e . , 

� ( .  • • , Xi , • • • , X j , . . . ) == -� ( . . . , X j , . . . , X't , • • • ) 
for every pair i =/=- j .  Define 

P11; (x) := N { 1'1/J (x , X2 , . . .  , X N) 1 2 dx2 · · · dx N ( 4) }�n(N-1 ) 
so that J�n P'lj; == N. Then 

N 
T11; := L i l \7 j'I/J (xl , x2 , . . .  , x N) 1 2 dx1 · · · dxN 

j=l (�n)N (5) 
> Kn { P11; (x) l+2/n dx. 

}�n 
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REMARKS. ( 1 )  Since I1P I 2 is symmetric it does not matter which of the N 
variables is held fixed in (4) . 

(2) If we use L1,n > £]_1�8 in (3) or if we use the first line of 12 .4(5) , we ' 
obtain the two bounds 

47r [ J 2/n 47r [r( 1  + n/2) J 2/n ( 1  + 2/n) r ( 1  + n/2) > Kn > ( 1  + 2/n) 1r(n + 1 )  . (6) 

(3) The words "more generally" in the theorem refer to the following fact . 
Given orthonormal functions ¢1 , ¢2 , . . .  , c/JN we can construct a normalized 
antisymmetric 1/J as 

(7) 

where det is the determinant . It is then an easy exercise to show that if this 
1/J is inserted into ( 4) the result is ( 1 ) , and if it is inserted into ( 5) the result 
is (2) . 

( 4) The antisymmetry of 1/J , or the orthonormality of the q), is essential. 
With the £2 normalization, but without the antisymmetry (or orthogonality) 
one can only conclude (2) or (5) with an extra factor N-2/n on the right 
side . This much weaker inequality follows from (2) with N == 1 plus an 
elementary manipulation with Holder 's inequality. 

( 5) If p2 is replaced by jp j , in the definition of Tcp or T'l/J ,  inequalities 
similar to (2) and ( 4) can be derived. Apart from the obvious change of L1,n (see 12 .4) and the constant c in the proof, one has to change the exponent 
1 + 2/n to 1 + 1/n . Otherwise, the proof is the same. 

PROOF. Let us first prove (2) . We use U(x) : ==  cpcp (x) 2fn as a potential 
in the SchrOdinger operator p2 - U(x) . Here c = ( ( 1 + nj2)L1 ,n) 

-2/n . 

T;p - C r p21n (x) L l ¢i (x) l 2 dx > L Ej > -Ll,nCl+n/2 r p1+2ln (x) dx. 
J.JR.n 

" >0 " >0 }JR.n J _ J _ 
(8) 

The right-hand inequality is 12 .4( 1 )  for this choice of potential V == -U. 
The left-hand inequality is just the min-max principle applied to this V. 
Together they yield (2) . Note that this is optimal in the sense that if (2) 
held, universally, for some larger Kn, then one could go back and improve 
L1 ,n in 12 .4 ( 1 ) (see the Exercises) .  

The proof of ( 4) , ( 5) is similar , but slightly subtle. We use U ( x) == 
cP1f; (x) 2fn , as before, with the same c. The right-hand inequality in (8) is 
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still 12 .4 ( 1 ) . To justify the left-hand side we have to study the following 
minimization problem. 

For � E HI (JRnN) and U E £I+nf2 (JRn) define 
N 

£N (�) == 1 L l \7i1/J I 2 - U(xj ) l1/l l 2 dx1 · · · dxN . (9) (JRn)N j=I 
As before , we can define the lowest eigenvalue to be 

EN == inf{£N (�) : � E HI (JRnN) , � �� � � 2 == 1 } ,  ( 10) 
but now we impose the extra condition that � be antisymmetric. We claim 
that a minimizer for ( 10) is the determinantal function � in ( 7) .  

To prove this, first define the 'density matrix' 

P11; (x, y) := N { 1jJ (x, x2 , . . .  , xN )1fJ (y , x2 , . . .  , xN) dx2 · · ·  dxN . ( 1 1 ) }JRn(N - 1 ) 
This P'lf; is a nice integral kernel that maps £2 (JRn) into £2 (JRn) by f � 
P'lf;f(x) == fJRn P'lf; (x, y)f (y)dy .  In fact , 

0 < (/, P'lf;f) < (/, f) .  ( 12) 
The first inequality in ( 12) is obvious , but the second is surprising in view 
of the N that appears in ( 1 1 ) . This is where the antisymmetry of � comes . In. 

Let us assume ( 12 ) for the moment and derive (5) . We can define the 
eigenvalues Ao > AI > · · · of P'lf; in the usual way (except that now we 
do this in decreasing order) by defining Ao == sup{ (/, P'lf;/) : l l f l l 2 = 1 } , 
AI == sup{ (/, P'lf;!) : l l f l l 2 == 1 ,  (/, fo ) == 0} ,  etc. - just as we did for 
the eigenvalues of the Birman-Schwinger kernel . These various suprema are 
easily seen to be achieved (why?) by functions /j (x) , which we can assume 
to be orthonormal. By ( 12) , Ao < 1 .  For any integer L > 0 the functions 
c/Jj (x) == J>:j/j (x) satisfy the conditions of Corollary 12 .2 .  (It is easy to 
see that c/Jj E HI (JRn) since � E HI (JRnN) . )  The right side of (9) is just 
fJRn L:j>O IV'c/Jj (x) l 2 - U(x) l c/Jj (x) l 2 dx, and, therefore , (9) is bounded below 
by L:j>O Ej . The rest of the proof is the same as for (2 ) . 

It remains to prove ( 12) , i .e . , Ao < 1 .  We can complement fo to an or-
thonormal basis of L2 (JRn) ,  namely, go , 9I , 92 , . . .  with go == fo . We can ex-
pand � in this basis as � (xi , x2 , . . .  ) == L:j1 ,j2 ,  . . .  ,jN>o C(ji , . . .  , JN )9j1 (xi ) · · ·  
9)N (xN ) · (This is so because for almost every x2 , . . .  , xN , the function 
XI � �(xi , x2 , . . .  ) is in L2 (JRn) ,  etc. ) The normalization of � implies 
that 2:j1 ,j2 ,  . . . ,jN>o IC(ji , . . .  , JN) J 2 = 1 .  The antisymmetry of � implies that 
C(ji , . . .  , JN) == 0 unless Ji , . . .  , JN are all different and C itself is antisym
metric under exchange of its arguments. From this it is a simple exercise to 
see that (fo ,  P'lj;/o ) < 1 .  • 
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12 .6 THE SEMICLASSICAL APPROXIMATION 

The reader was asked in Exercise 2 to compute the N-th Dirichlet eigenvalue 
for the cube in JRn and to check Polya's conjecture in this case . For the cube 
we find that 

( 1 )  

where o (N2fn) means a term that grows slower than N21n. This fact im
mediately implies (by summing ( 1 ) from N == 0 to N) that the inequality 
12 . 3(2) is sharp for large N, at least for a cube. (To say that it is 'sharp ' 
means that it will fail for large N if we put a smaller constant on the right 
side of the inequality. ) In fact , we will use coherent states in Theorem 
12 . 1 1  to show that this estimate is sharp for all domains that have a finite 
boundary area (defined in 12 . 10(4) below) . Thus , 

S(N) : =  �1 
E · = (27r) 2 n ( n ) 2/n 

NH2/n jn j -2/n + o(N1+2/n) 
� J n + 2 j §n-1 1 ' 
J =O 

(2) 
which is called Weyl's law [Weyl] . It says that the large eigenvalues resem
ble those of a cube of the same volume as 0. 

There is another illuminating way to state this result . Consider a classi
cal particle moving freely inside the domain n (with reflection at the bound
ary) . The state of motion of this particle at any time can be described by 
its momentum p and its position x . The collection of all allowed pairs 
(p, X) is called the phase space, which is ]Rn X n in this case. This space is 
endowed with a natural volume element dp dx . The word 'natural ' means 
that this volume element is preserved under the Newtonian time evolution, 
i .e . ' if we take a domain D c ]Rn X n in phase space and look at all the 
mechanical trajectories that start in D, they will define a new domain Dt 
at time t. The volume of this new domain will be the same as that of D. 
This is the well-known Liouville's theorem of mechanics. 

. 
IS 

It turns out that a more natural variable than p, from our point of view, 
p k :==  27r ' (3) 

for the same reason that the Fourier transform was defined in Chapter 5 
with a 27r. Note that we denoted -� by p2 , yet its 'Fourier transform' is 
(27rk) 2 • Thus, the preferred volume form we shall use is 

dk dx == (27r) -n dp dx . (4) 
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We apologize for the 21r's , but they have to make an appearance somewhere . 

Next , we define the mechanical energy of a free particle in JRn x n to be 
£ (p, x) = p2 

= 47r2 k2 and consider all the points (p, x) that have energy at 
most E. The volume of this set is 

Let us interpret this volume for the case in which n is a cube. Setting 
E = EN-1 in (5) and using ( 1 ) we learn that 

B(E) = N + o(N) . (6) 

Thus , in the case of a cube, we can say that for large energies E the number 
of eigenvalues below E is given by the phase space volume. Roughly speak
ing, 'each eigenvalue occupies a unit volume in phase space ' (with measure 
dk dx) . 

It can be shown that this is quite generally true for domains with a 
sufficiently "nice" boundary. P6lya's conjecture , rephrased in this language , 
states that the number of eigenvalues below E is bounded above by B(E) . 

A simpler quantity than the energy of the N-th eigenvalue is S(N) given 
above. On the basis of our considerations we should expect that S(N) is , 
asymptotically for large N, 

where E is taken to be the solution to equation (5) with B = N. It is 
satisfying to find that sclass ( N) is the same as the first term on the right 
side of (2) , which will be proved in Theorem 12 . 1 1 .  

In the same spirit , we can try to estimate the sum of the absolute value 
of the negative eigenvalues of p2 + V(x) in a situation in which there are 
a large number of negative eigenvalues . By thinking of classical Newtonian 
trajectories (this time in phase space JRn x JRn - but we could also consider 
the "particle" to be in the domain 0 with Dirichlet boundary conditions , 
i .e . , � E HJ (O) , if we wished) we would guess that this sum (call it � (V) )  
is well approximated by its semiclassical value 

(8) 



316 More About Eigenvalues 

If, instead, we consider y'p2 + m2 + V(x) = J-� + m2 + V(x) , then we 
have to replace p2 by J p2 + m2 in the integrand. Note that the constant 
on the right side of (8) is identical to L]_1�ss in 12 .4( 16) . 

' 

With the aid of coherent states, these conjectures about the asymptotics 
of S(N) and �(V) will be shown to be true. This technique is closely 
connected to the subject of pseudo-differential operators, but we shall not 
touch on that extensive subject here. Coherent states were first defined 
by Schrodinger in 1926, but the appellation is due to Glauber in 1964 and 
sometimes they are referred to as Glauber coherent states to distinguish 
them from different coherent states that arise in connection with Lie group 
representations. 

12 .7  DEFINITION OF COHERENT STATES 

Let G E L2 (JRn) be any fixed function with I I G I I 2 = 1 .  The coherent 

states associated to G form a family of functions parameterized by k E �n 
and y E �n, given by 

Fk,y (x) = e21ri (k,x)G(x - y) .  
It is clear that Fk,y is in L2 (�n) with I I Fk,y l l 2 = 1 .  

( 1 )  

The choice of G is left open because different applications will require 
different judicious choices of G. So far only G E L2 (�n) is required, but 
additional restrictions will later be necessary, e .g. G E H1 (�n) or H112 (�n) .  
We have not required that G be real or symmetric (i .e . , that G(x) be a 
function only of l x l or that G(x) = G(-x) ) .  In the original coherent states 
G is a Gaussian (hence the symbol G) and F is related to the representation 
theory of the Heisenberg group. Indeed, there are coherent states for other 
Lie groups, but here there will be no group theory considerations. 

If 'ljJ is in £2 (�n) ,  its coherent state transform :;j; is given by 

;f; (k, y) = (Fk,y ,  '1/J) = { Fk,y (x)'ljJ (x) dx. }�n (2) 

Evidently, for each y , :;f;(k , y) is the Fourier transform of an L1 (JRn) function; 
hence it is bounded. 

Associated with Fk,y is the projector 1rk,y onto Fk,y ,  which is a linear 
transformation on L2 (JRn) whose action on an arbitrary f is defined by 

(3) 

and which has the integral kernel 

1rk,y (x , z) = Fk,y (x)Fk,y (z) .  (4) 
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12.8 THEOREM (Resolution of the identity) 

Let � E £2 (I�n) and let � and G be the Fourier transforms of� and G (which 
are also in L2 (JRn) ) . Then (with GR(x) :=  G(-x) and with * denoting 
convolution) 

r l;j; (k , y) l 2 dk = ( I'I/J I 2 * IGR I 2 ) (y) for a.e .  y ,  ( 1 )  }�n 
f l ;j; ( k , y) 1 2 dy = ( 1� 1 2 * I G I 2 ) ( k) for a.e .  k, (2) }�n 

r r 1;j; ( k , y) 1 2 dk dy == 1 1 ;j; 1 1 � = ( '1/J, '1/J) = (� , �) .  (3) 
}�n }�n 

Finally, for all k and y, 

REMARK. Formally, (3) says that 

{ { 7rk,y dk dy = I = Identity, }�n }�n (5) 

where 1rk,y is the projection onto Fk,y , i .e . , (nk,y�) (x) = (Fk,y , �) . This can 
also be formally written as 

{ { Fk,y (x)Fk,y (x') dk dy = J (x - x' ) .  
}�n }�n (6) 

Strictly speaking, (6) is meaningless because the left side appears to be a 
function ( if it is anything at all) while the right side is a distribution that is 
not a function. The same problem arises with Fourier transforms where one 
is tempted to write J exp [2ni (k , x - x' ) ] dk = 6(x - x' ) .  Eq (6) has to be 
interpreted as in (3) , i .e . , as a weak integral (just like Parseval's identity) , 
namely 

r r ('l/J , 7rk,y'l/J) dk dy = j ,� (k) l 2 dk = (� , �) . (7) }�n }�n 

PROOF. To prove ( 1 ) , consider the function of two variables H(x, y) = 

l� (x) I 2 IG(x - y) j 2 , which is certainly measurable and nonnegative. By Fu
bini 's theorem, J { J H(x, y) dx } dy = J {J H(x, y) dy } dx < oo if either 
of these two iterated integrals is finite. The second of these integrals is 
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trivially computable to be J l� (x) l 2 dx == 1 1 � 1 1 § , since J IG(x - y) l 2 dy == 
J IG(y) l 2 dy == 1 .  Thus, we can conclude that the function 

y t-t j H(x, y) dx = ( 11/1 1 2 * IG- I 2 ) (y) 

is an L1 (JRn) function; hence it is finite for almost every y . 
Another way to view this result is that for almost every y the function 

x � G(x - y)� (x) is in L2 (JRn) .  It is also in L1 (JRn) (since G E £2 and 
� E £2) .  ;f; (k, y) is then the Fourier transform of this function, and our ( 1 )  
is nothing more than Plancherel's theorem (Sect . 5 .3) . Formula (3) is an 
immediate consequence of ( 1 )  together with Theorem 5 .3 . 

This little exercise shows the power of Fubini 's theorem. 
Similarly, (2) follows from ( 4) , by interchanging k and y (and noting that 

l e21ri (k ,y) I == 1) . We now prove (4) . Parseval's identity is (A, B) == (A, B) for 
A, B E L2 (JRn) .  Let A(x) == Fk,y (x) . Then ;f; (k, y) == (A, �) while the right 
side of (4) is just (A, �) .  • 

� ,...._, 
Not only is 1 1 � 1 1 2 == 1 1 � 1 1 2 , as Theorem 12 .8 states , but � can also be 

bounded pointwise in terms of 1 1 � 1 1 2 · Using 12 .7 ( 1 ) we have 
I IFk,y l l 2 == 1 for all k, y (8) 

,...._, 
and, since � (k, y) == (Fk,y , �) , the Schwarz inequality implies 

I� ( k , y) I < I I � I I  2 for all k , y .  (9) 
A more interesting fact is that if c/Jo , ¢1 , . . .  , ¢ N are any orthonormal 

functions in L2 (JRn ) , then 
N 

L 1¢j (k , y) l 2 < 1 .  
j=O 

The proof uses (3) and imitates 12 . 3 (5) ; we leave it to the reader. 

( 10) 

e In the next theorem we show how to represent the kinetic energy l l \7� 1 1 §  
in terms of coherent states. The formula is similar to, but more complicated 
than, the representation in terms of Fourier transforms, Sect . 7. 9, namely 

I I V1/J I I � = r 1 21rk l 2 l� (k) l 2 dk , }�n 
and the reader might wonder why something requiring one integral deserves 
to be represented in terms of a double integral, plus an extra negative term. 
The advantage is that the potential energy ( in the case of the Schrodinger 
eigenvalues) or the domain 0 can also be conveniently accommodated in 
this formalism, along with the Laplacian. We ask for the reader's patience 
at this point . 
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12.9 THEOREM {Representation of the nonrelativistic 
kinetic energy) 

Suppose that G in 12 .7( 1 )  is in H1 (JRn) and either that G(x) = G(-x) for 
all x or that G ( x) is real for all x .  Then for all � E H1 (JRn) 

PROOF. Multiply both sides of 12 .8(2) by j 21rk j 2 and integrate over k 
(using Fubini 's theorem) . Then 

Now write l k l 2 = l k - q j 2 + j q j 2 + 2(q ,  (k - q) ) and then change integration 
variables in (2) from k and q to k and k - q. Recalling Theorem 7.9 ,  eq. 
(2) is seen to be the same as ( 1 )  except for an extra term of the form 
A ·  B, where Ai = JJRn 27rki l�(k) j 2 dk and B2 = JJRn 27rk2 jG(k) j 2 dk. Both of 
these integrals make sense since � ' G, l k l� and l k iG are in £2 • However , 
G(x) = G( -x) implies that G(k) = G( -k) while G(x) = G(x) implies that 
G(k) = G(-k) . In either case jG(k) l 2 = jG(-k) l 2 and hence B = 0. • 

e For the relativistic kinetic energy there is no simple formula as in 
Theorem 12 .9 ,  but there is an effective pair of upper and lower bounds . The 
ideas can easily be generalized to functions of p other than J p2 + m2 - m. 

12 . 10 THEOREM {Bounds for the relativist ic kinetic 
energy) 

Suppose that G in 12 .7( 1 )  is in H112 (JRn) .  No symmetry of G is imposed. 
Then for all � E H112 (JRn) and all m > 0 

f f [ ( l 27rk l 2 + m2) 1;2 - m) l�(k , y) l 2 dk dy - I I ( -�) 114G I I � 1 1 '1/J I I � ( 1 ) 
}JRn }JRn 
< l l [ (-� + m2) 1/2 _ m) l/2'1/J I I �  (2) 

< f f [ ( l 27rk l 2 + m2) 1;2 - m) l� (k , y) l 2 dk dy + I I (-�) 114G I I � 1 1 '1/J I I � ·  }JR.n }JR.n (3) 
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PROOF. Recall that (2) is fJRn [ ( j 27rk j 2 + m2 ) 112 - m] l�(k) l 2 dk and that 
I I ( -�) 114G I I § = (27r) -n J lk i iG(k) l 2 dk. We then proceed as in 12 .9  by mul
tiplying 12 .8 (2) by ( j 27rk j 2 + m2 ) 112 - m and integrating over k. To prove 
( 1 ) , however, we use the inequality 

which is easily verified by defining A = ( k1 , k2 , k3 , m) and B = ( q1 , q2 , q3 , 0) 
as vectors in JR4 and using the triangle inequality IA I < IB I + l A - B j .  (3) 
is proved similarly. • 

e Now we are ready to apply coherent states to the eigenvalue problem 
in a domain n. Let us quickly define the boundary area, A (n) , of an, 
the boundary of a set n c JRn . There are many ways to define such an area 
and the one that is convenient for us is the following, called the ( n - 1 )
dimensional Minkowski content of an. (It might be infinity, of course, 
but it is well defined. )  

A(O) := lim sup _!_ [.cn {x E nc : dist (x , n) < r} 
r!O 2r 

+ .Cn {x E 0 : dist (x , nc) < r} ] · (4) 

1 2 . 1 1  THEOREM {Large N eigenvalue sums in a domain) 

Let n C JRn be an open set with finite volume 1 n 1  and finite boundary area 
A(n) .  Then the asymptotic formula 12 . 6(2) is correct for the sum of the 
the first N Dirichlet eigenvalues of -� in n. Moreover, the error term in 
12 .6 (2) can be bounded as 

(A (n) ) 2/3 ( ) 4/3n ( N ) 4/3n 
0 < o (N1+2fn) < (const . )N 

I O I j§;_1 1 Tm 
. ( 1 )  

REMARK. Our proof will use coherent states. Although we know from 
Theorem 12 .3  that the error term must be positive, we shall, nevertheless , 
use coherent states to derive a lower bound as well. It will not be as accurate 
as Theorem 12 .3 ,  but it will demonstrate the general utility of coherent states 
and the strategy will prove useful for bounding Schrodinger eigenvalues . 
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PROOF. Let BR be a ball of radius R centered at the origin. R will be 
chosen to depend on N, A(O) and 0, but for the moment it is fixed. We take 
G to be a spherically symmetric function in HJ ( B R) with unit norm. There 
is a universal constant C such that it is possible to have I I \7G I I § < Cn2 R-2 
(see Exercises) . 

Let �o , �1 , . . .  be the orthonormal eigenfunctions of -� with corre
sponding eigenvalues Eo < E1 < · · · . By 12 . 8(3) and 12 .8 ( 10) their coherent 
state transforms satisfy 

N-1 
p(k, y) = = L l � (k , y) l 2 < 1 

j=O 
and 

We also note the important fact that supp �i c 0 implies that 

supp p(k , · )  c 0* : = O U  {x E nc : dist (x , O) < R} 

(2) 

for every k E JRn (why?) . Note, also , that 10 1 < I O* I < 1 0 1 + 2RA(O) when 
R is small . 

Using 12 .9 ( 1 ) , summed over 0 < j < N - 1 ,  we have that 

(3) 

We can use (3) to obtain a lower bound to S(N) = �f 01 Ej by using 
conditions (2) and applying the bathtub principle to (3) - just as in the 
proof of Theorem 12 .3 .  The minimizing p is XnK- (k)Xn * (y) ,  with the radius 
"' = nN1fn ( IO* l l§n-1 1 ) 1/n . Thus, 

S(N) : = � E · > (27r)2 n ( n ) 2/n 
N1+2/n ln* l -2/n - CNn2 /R2 . � J - n + 2 j §n-1 1 J=O 

(4) 
This lower bound is obviously not as good as Theorem 12 .3 ,  but it does give 
the correct answer to leading order for large N. We merely have to choose 

= 
( A(O) ) -1/3 ( n ) -2/3n (}J_) -2/3n 

R n 2 1 n 1 l§n-1 1 1n 1 (5) 

and we will then have an error as stated in the theorem (but with a negative 
sign) . 

The new feature is an upper bound to S(N) , and here we use the gen
eralized min-max principle, Theorem 12 .2 .  Coherent states are admirably 
suited for constructing the "trial functions" mentioned there. 
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Step 1 .  Let M ( k , y) be a function on phase space with the properties 
that 

0 < M(k, y) < 1 and f f M(k, y) dk dy = N + c }�n }�n 

for some c > 0. Construct the integral kernel (see 12 .8 (3 ,4) ) 

K(x, z) = { { M(k, y)1rk,y (x, z) dk dy . }�n }�n 

From Theorem 12 .8 we have (since M(k , y) < 1 )  that 

(!, f) > { { f (x)K(x, z)f (z) dx dz =: (f, Kf) > 0, 
}�n }�n 

(6) 

(7) 

N + c = { K(x, x) dx . (8) 
}�n 

Next , we construct the eigenvalues AI > A2 , . . .  of K, with corresponding 
eigenfunctions /j ( x) . These eigenvalues and eigenfunctions are constructed 
in the usual way by first maximizing (/, K f) under the condition that I I !  1 ! 2 = 
1 .  One shows that a maximizer /I exists and then looks for a maximum of 
(/, K f) under the additional condition that (/, /I ) = 0 , and so on. All this 
is particularly easy in this case because K is a nice kernel (see Exercises) .  
The eigenfunctions form an orthonormal set , as usual, and from (8) we have 
that 0 < Aj < 1 .  

For each integer J > 0 we can define the kernel 
J 

KJ (x , z) := L >.jfj (x) fj (z) 
j=I 

(9) 

and it is easy to see from the definition of the eigenvalues of K that ( i) 
K - KJ > 0 , in the sense that (/, K f) > (/, KJ f) for all j ,  and (ii) as J 
goes to infinity �f 1 >.j converges to fJR.n K(x, x) dx = N + c.  Hence, for 
some finite integer L, we have that �f 1 >.j > N. 

Step 2. We want to make sure that the functions /j have support in the 
domain 0. Let us define 0 � 0** :=  {x E 0 : dist (x , Oc) > R} ,  so that 
IO** I > 10 1 - 4RA(O) for small R. The support condition can be satisfied 
if, for each k in JRn , we choose supp M(k , · ) c 0** . 

Step 3. We now use the functions /I , /2 , . . .  , !L in the generalized min
max principle 12 . 2 ( 1 )  to conclude that �f 0 1 Ei < �f 1 >.j ('\lfj , '\lfj ) = 

J�n \7 x · \7 zKL (x , z) l x=z dx . On the other hand, this last integral is not 
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greater than JJRn JJRn M(k , y) ("V'Fk,y ,  "V'Fk,y) dk dy . This follows by consider
ing the significance of the inequality K - KL > 0 in Fourier space and we 
leave it as an easy exercise. 

It is now easy to compute 

{ { M(k, y) (\1 Fk,y ,  \1 Fk,y) dk dy }}Rn }}Rn 

= { { l 27rk i 2M(k , y) dk dy + (N + c) I I"VG I I 2 . ( 10) }}Rn }JRn 

This formula looks just like (3) except for the change of sign in the last term. 
( 10) gives an upper bound and (3) a lower bound. 

We can, of course, take the limit c ---1- 0. As we did for the lower bound, 
we utilize the bathtub principle and choose M(k, y) = Xn� (k)XO** (y) ,  with 
the radius "' = nN1fn ( IO** I I §n-1 1 ) 11n . The result has the same form, except 
for the sign of the error term, and agrees with ( 1 ) . • 

e A second illustration of coherent states concerns the eigenvalues of 
p2 + V(x) . To obtain a "large N" limit we have to consider a sequence of 
potentials with many eigenvalues. We give the theorem for the nonrelativis
tic case and leave the corresponding relativistic case to the reader . This time 
we will not give an estimate of the error term because to obtain one would 
require us to impose some kind of regularity condition on the potential V; 
the following contains no assumption other than V_ E £1+n/2 (�n) .  We note 
the simple scaling: 

JL- (1+n/2)� (JLV)class is independent of JL. ( 1 1 ) 

12 . 12  THEOREM (Large N asyrnptotics of Schrodinger 
eigenvalue sums) 

Let V satisfy the conditions in 1 1 . 3 ( 14) plus the condition V_ E £1+n/2 (�n) .  
Let �(JLV) := L:j>O IEj (JLV) I , where Ej (JLV) are the negative eigenvalues of 
-� + J-LV(x) ( counted with their multiplicity) . Then, 

lim JL- (1+n/2) � (JL V) = JL- (1+n/2) � (JL V) class 

J.t-H)() 

( 1 ) 

as given in 12 .6 (8) . 
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PROOF. We use the same coherent states as in the proof of Theorem 12 . 1 1  
with G in HJ ( B R) for some radius R. For the moment , let us replace V by 
V : =  V * G2 . In this case we have that for any � in H1 (I�n) 

Consequently, 

£ (V;) = { { l� l 2 ( k , y) { l 27rk l 2 + JLV(y) } dk dy - I I VG I I � · (3) }�n }�n 

We can now proceed as in the proof of Theorem 12 . 1 1 ,  steps 1-3 . To 
derive an upper bound to �Ej we use the min-max principle and choose 
M(k, y) to be the characteristic function of the set { (k, y) : p2 +J-LV(y) < 0} . 
In this way we deduce (recalling that I I V'G I I §  = Cn2 R-2 ) 

- -

where N(J-LV) is the number of negative eigenvalues of V. 
Similarly, as in 12 . 1 1 ,  we obtain the lower bound 

Note the -C in (4) and the +C in (5) . 
Equations (4) and (5) present two problems: 

-

a) How do we estimate the difference between � (J-LV) and �(J-LV)? 
-

b) How can we estimate the number of negative eigenvalues N (J-L V) ? 
These questions lead us to a sequence of fussy approximation arguments 

which, we hope, will not obscure the idea that the essential elements in the 
proof of ( 1 )  are contained in ( 4) and ( 5) . 

Step 1 .  We state a general argument that we shall utilize twice. Suppose 
we can write V = V(l) + V(2) , where V(2) < 0 and satisfies I I V(2) I I I+n/2 < 
c < 1 .  We write the energy as £ = £(1) + £ (2) , where 

and 
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We have that 

(6) 

where � (1) is the sum of the l Ei I for £ (1) , and so on. The first inequal
ity is a simple consequence of the fact that V < V(1) , while the second 
inequality (which holds even if V(2) 1:. 0) is an easy exercise using the min
max principle . One simply uses the eigenfunctions for £ ( �) as variational 
functions for £(1) (�) and for £ (2) (�) . We know from Theorem 12 .4 that 
�(2) < L1,nc-n12 fn�n (JLV(2) ) 1+nl2 , and hence �(2) < L1 ,nJL1+n/2c . We also 
have that �(1) = ( 1 - c)� ( ( 1 - c) - 1JLV(1) ) .  

Now assume that we can prove the theorem for the potentials V(1) and 
( 1 - c) - 1V(1) . We would then have 

( 1  _ c) -n/2� (V(1) ) class + L1,nE 
> lim sup JL- (1+n/2) � (JLV) 

> lim inf JL- (1+n/2) � (JLV) > � (V(1) ) class . 
J.t--HXJ 

(7) 

Finally, assuming that for every c > 0 we can find a decomposition of 
V into V(1) + V(2) as above, inequality (7) would then imply the theorem, 
namely equation ( 1 ) .  

Step 2. The first application of this argument is to cut off V_ (but not 
V+) at some large value u and some large radius p in such a way that the 
deleted part of v_ has small £(1+n/2) (�n)-norm. In other words , it suffices 
to prove our theorem when V_ is bounded and has compact support - an 
assumption that we shall make from now on. 

Step 3. To resolve problem a) above we first write V = V + V(2) . Note 
-that V is also bounded below and has compact support . We can ensure that 

I I V(2) I I Hn/2 < c for any c > 0 by choosing R = R(c) small enough (why?) .  
Unfortunately, V(2) is not negative, but the right side of (7) remains true 
and we can obtain the one-sided bound 

( 1 - c) -nf2�(V) + L1,nE > lim sup JL- ( 1+n/2) � (JLV) . (8) 
f..t---700 

-A bound in the other direction is obtained as follows. Note that V 
is a 'convex combination' of translated copies of V, since fJRn G2 = 1 .  In 

-other words, if we replace the integral that defines V by a discrete Riemann 
sum of cross-section c5 , we would have that £ = c5 �Y G2 (y)£y , where t'y is 
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the original energy function shifted by y E JRn , i .e. , with V(x) replaced by 
V(x - y) .  By iterating the right side of (7) , and noting that all the Ey have 
the same negative eigenvalues , we conclude that 

(9) 

Despite the sketchy presentation here, this convexity argument , which is 
quite general , deserves to be noted. A much more direct proof along the 
lines of the proof of (6) is discussed in the Exercises . 

Problem a) will be solved using these results, but in a slightly different 
manner than (7) . Combining (9) and (4) we have 

lim inf JL- (l+n/2) � (JLV) > �(V)class - Cn2 R(c) -2 lim sup JL- (l+n/2) N(JLfi) .  f..t -H)() f..t---+ 00 

Likewise, combining (8) and (5) we have 
(10) 

X [�(V)class + Cn2R(c) -2 lim sup JL- (l+n/2)N(JLfi)] . ( 1 1 ) 
J.L---+00 

Equations ( 10) and ( 1 1 ) will prove the theorem if we can show that 
JL- (l+n/2)N(JLfi) ---1- 0 as JL ---1- oo .  This is problem b) , and we turn to 
that next . 

Step 4 .  As stated in the Exercises, if we find a potential U such that - -
U < V, then N(JLV) will not exceed N(JLU) . The U we shall choose is 
u (X) = - v  for X E r and u (X) = 0 otherwise . Here , r is a cube of some - -
length I! that supports V_ and - v  is a lower bound for V. The Exercises 
also show that the number of negative eigenvalues for JLU in H1 (JRn) is, in 
turn, not greater than for H1 (r) . The latter are the Neumann eigenvalues. 
All these facts come from the min-max principle. 

What we have to compute now is the number of Neumann eigenvalues of 
-� that lie below JLV . Another exercise shows that the large N asymptotics 
(which is the same as the large JL asymptotics) is the same as for the Dirichlet 
problem. According to 12 . 3(6) , with EN = JLV, we have that there is a 
constant Tn so that the number of eigenvalues satisfies 

( 12) 

Recall that I! and v are independent of JL. We conclude that the error term 
in ( 10 ,  1 1 ) goes to zero as JL-1 . • 
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1. Just before 12 .2 (  4) it was asserted that minimizers exist for the eigen
values of the Dirichlet problem in a domain n. Prove this for all k > 0, 
using the methods of Chapter 1 1 .  

2 .  (i) Compute the eigenvalues and eigenfunctions for the Dirichlet problem 
in a hypercube r in JRn and verify Polya's conjecture as given in 12 .3 (7) 
and the asymptotic estimate 12 .6 (2) . 
(ii) Define the Neumann eigenvalues by using the same energy ex

pression fr IV'1/J I 2 , but with 1/J in the larger space H1 (r) instead of 
HJ (r) .  Show that they satisfy the same large N asymptotics as the 
Dirichlet eigenvalues. 

3. Prove the Polya conjecture 12 . 3 (7) for n == 1 .  

4. Verify the second equality in 12 .6 (5) . 

5. In the beginning of the proof of Theorem 12 . 1 1  it is asserted that there 
is a constant C such that the lowest eigenvalue of -� in a ball of radius 
1 in JRn is bounded above by Cn2 . Prove this assertion and show that 
the exponent 2 is best possible for large n. 

6. Verify 12 .8 ( 10) about the magnitude of the coherent state transform of 
N orthonormal functions. 

7. For the proof of Theorem 12 . 1 1 ,  show that the kernel K has orthonormal 
eigenfunctions and eigenvalues. 

8 . Prove the statement in the proof of Theorem 12 . 1 1  that consideration of 
K > KJ in Fourier space leads to the conclusion that 

9. ( i) Prove the fact , used in the proof of Theorem 12 . 12 ,  that if £ (1/;) < 
£(1) (1/;) + £(2) (1/;) , then � < � (1) + �(2) - in an obvious notation. 
(ii) A similar proof shows that if V == V * G2 and J G2 == 1 ,  then 

-

�(V) > � (V) . 
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( iii) If V_ = 0 outside some open set r , then the negative eigenvalues 
defined by £ (  'ljJ) = fJRn j \7'lj; j 2 + V l'l/J I 2 with 'ljJ in H1 (I�n) are each 
greater than those for £ ('lj;) = fr l \7'l/J I 2 + V l'l/J I 2 with 'ljJ in H1 (r) .  
These latter eigenvalues are the Neumann eigenvalues of -� + V 
in r. 

10 . Prove the fact , used in the proof of Theorem 12 . 12 ,  that if V(l) < V(2) , 
then the number of negative eigenvalues for V(l) is not less than the 
number for V(2) . 

1 1 .  Prove the assertion in the proof of Theorem 12 .4 that an L2 (I�n) eigen
function of the Birman-Schwinger kernel with eigenvalue 1 implies an 
eigenvalue of p2 - U(x) with E =  -e.  

12 .  Theorem 12 .4 asserts that no inequality of the type 12 .4 ( 1) can hold 
when 1 is outside the ranges indicated in 12 .4(2) . For such a 1 and a 
purported L"'f,n construct a potential that violates 12 .4 ( 1) . The hardest 
case is n = 2 ,  1 = 0. 

13. As in Remark 3 after Theorem 12 .5 ,  show that when 

1/J ( x1 , x2 , . . .  , x N) :=  (N! ) - l/2det{ <Pi (xj ) }  I �=l 
is inserted into 12 .5 (4) , (5) , the result is 12 .5 ( 1) , (2) . 

14 .  As in Remark 4 after Theorem 12 .5 ,  show that if the orthogonality con
dition is omitted, then 12 .5 (2)  holds but with an extra factor of N-2/n 
on the right side. 

15 .  Show that Theorem 12 .4 for 1 = 1 and Theorem 12 .5  are equivalent by 
deducing Theorem 12 .4 from 12 .5 ,  with Kn related to L1,n as in 12 .5 (3) . 

16 .  Use Theorem 12 .5  to obtain 12 .3 ( 1 )  for the Dirichlet eigenvalue sums, 
but with a smaller constant on the right side. 

17. The proof of 12 .4 (Bound for Schrodinger eigenvalue sums) contains the 
assertion that the suprema defining the eigenfunctions of the Birman
Schwinger kernel 12 .4(6) exist . Prove this . 
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