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Preface

In 1800 (An VIII of the First French Republic), the civil engineer
Gaspard-Clair-François-Marie RICHE, Baron de PRONY (1755–1839), published
a book entitled “Mécanique philosophique” (“Philosophical Mechanics”). This title
bears the whole spirit of the approach to science and more generally knowledge that
was expanded during the Enlightenment and its acceptance by contemporaries
of the French Revolution and early nineteenth century. I very much like this title
which in fact is explained by the subtitle (in translation) “Analysis of various parts
of the Science of Equilibrium and Motion.” It is in this state of mind that I have
expanded some aspects of the historical developments of continuum mechanics in
the immediate post-Newtonian era till the second half of the twentieth century in
two previous volumes. The first one1 published in 2013 was neatly characterized by
my own experience in the field with several national institutions that I visited and/or
worked with from time to time (e.g., in the USA, UK, Germany, Italy, Poland,
Japan—and obviously France), and by my friendly relationship with research
leaders of various nationalities whom I practically all knew personally, being aware
of both their strength and pettiness, but always emphasizing the former. The choice
of studied groups and schools as also a selection of particular fields was strictly
personal since I had decided to speak only about what I knew best, although
sometimes superficially and not without some unavoidable misinterpretations and
factual errors. This personal and nonobjective vision was naturally criticized by
some readers. Most of the time, these people complained that I had not treated at all,
or not developed enough, their own field of research—this was the case of
finite-strain elasto-plasticity and phase-transformations in deformable solids,
although this was touched upon but cursorily—for which I thought that some other
scientists would be much more competent than me. Obviously, with a more than

1Continuum mechanics through the twentieth century: A concise historical perspective, SMIA
Volume 196, Springer, Dordrecht, 2013.
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natural humane bias, some complained about not being cited. To these last people I
sincerely apologize. A well-balanced exercise in citation is not easy and is a dan-
gerous exercise when one deals with his own contemporaries. I did not take any
chance with the second volume2 devoted to the eighteenth and nineteenth centuries
where all contributors could not complain to me orally or via e-mail, save perhaps
in some of my nightmares. Still my choice of subjects and main actors was strictly
personal, although greatly influenced by some famous predecessors such as J.L.
Lagrange, A. Barré de Saint-Venant, P. Duhem, I. Todhunter and K. Pearsons, R.T.
Whittaker, M. Jouguet, and more recently, R. Dugas,3 I. Szabò,4 G.A. Tokaty,5

S.P. Timoshenko,6 and naturally C.A. Truesdell.7

The reader will have noticed that with growing age I am going back in the past.
But this has a technical limit due to my lack of knowledge of some “dead” lan-
guages. Of course, I could deal with ancient Greek having at home all necessary
help for the reading and interpretation of the primary sources. My improved reading
of Latin would require the help of a priest but I am not a religious person.
Furthermore, the reader must realize that I am not concerned with a total history of
mechanics—for which Dugas (see Footnote 3) and Szabó (see Footnote 4) provided
beautiful but not completely satisfactory attempts—but only with that part called
continuum mechanics. This poses the fundamental question of the never-ending
debate between the molecular-particular discrete vision and the continuum one.
This matter touches upon both history and philosophy and a return to the ancient
Greeks may be needed at this very point. But the subject remained of actuality
during all centuries in particular with the early developments of continuum
mechanics with Poisson, Navier, Cauchy, Piola, etc. In this volume, I consider that
continuum mechanics starts with hydrostatics, the notion of pressure, and appli-
cations to hydraulics while modern continuum mechanics starts with hydrody-
namics, three-dimensional elasticity, and the notion of stress tensor. Hydraulics
brings to the foreground the important role of some experimentalists, starting with
the Renaissance but also especially in the eighteenth century. Although a theo-
retician, I have made all efforts to deal with this aspect with sympathy.

2Continuum mechanics through the eighteenth and nineteenth centuries: Historical perspective
from John Bernoulli (1727) to Ernst Hellinger (1914), SMIA Volume 214, Springer, Dordrecht,
2014.
3Dugas R. (1950). History of Mechanics, Editions du Griffon, Neuchatel, Switzerland [Dover
reprint, New York, 1988] (This exists in both French and English editions).
4Szabo I., (1977). Geschichte der mechanischen Prinzipien, Birkhauser, Basel.
5Tokaty G.A., (1971). A history and philosophy of fluid mechanics. Foulis, Henley-on-Thames
[Dover reprint, New York, 1994].
6Timoshenko S.P., (1953). History of the Strength of Materials, McGraw Hill, New York [Dover
reprint, New York, 1983].
7Truesdell C.A., (1968). Essay in the history of mechanics, Springer, New York.
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The main purpose of the present volume is to fill in the gaps left in the previous
two volumes by completing some details of the genesis and birth period and
introducing some important and original fields that I previously neglected. The
same format of interrelated essays has been kept. These essays may be read sep-
arately although many authors, including me, prefer a global orderly reading
of their books. Subject matters that were previously neglected include: a deeper
attention to hydraulics, the question raised by porosity in solids, the theory of
mixtures and reacting media, and the influence of fast flows and of the birth of
aeronautics in fluid mechanics (with Reynolds, Prandtl, von Kármán). This brings
me closer to my initial interest as alumnus of the school of Aeronautics in France.
Also, in my historical approach, I always try to avoid any “precursoritis” and duly
examine the (at the time) contemporary reaction to the then most recent advances.
This can be achieved by carefully perusing the lecture notes and treatises published
by famous scientists—albeit not necessarily the most creative ones in the field of
continuum mechanics—because such works reflect both the state of the art at the
time of their writing and what the author tries to input from his own viewpoint with,
usually, a deeply thought appraisal. I already applied this strategy with the treatise
of Paul Appell in France and the encyclopedic article by Ernst Hellinger in
Germany in my second volume. Here, this is applied to the lecture notes and some
collected technical works of Pierre Duhem on hydrodynamics and elasticity, and the
lecture notes of a course given by Henri Poincaré on elasticity and an introduction
course on continuum mechanics delivered by David Hilbert. To some readers, this
may seem to grant too much importance to the “Belle époque.” Not only is the
viewpoint of two such giants of mathematics as Poincaré and Hilbert of intrinsic
interest, but the period at which the lectures were given was a critical one for the
whole of physics. It is salient to see whether the burgeoning new physics had any
influence on a mature science then thought to have stabilized with magisterial
treatises by H. Lamb and A.E.H. Love, respectively, in fluid mechanics and elas-
ticity. Furthermore, the synthetic works of Appell, Hellinger, Duhem, Poincaré, and
Hilbert in fact provide the most valuable documentary basis on which a revival of
continuum mechanics and its formalization by Truesdell et al. was built in the
second half of the twentieth century. We are dutifully following the advice of Rabbi
Rashi (Eleventh century) of Troyes in Burgundy: “Ask your master his sources.”
This is already what Duhem did when examining Leonardo and his possible sources
of inspiration in pre-Renaissance times. This is complemented by essays on the
special behaviors of viscoelasticity of solids and plasticity—only superficially
mentioned in the previous volumes—on fracture—so important in continuum
dynamics—the role of geometry as a cornerstone of the field, and a kind of
sociohistorical appraisal of the seminal contributions by our direct masters in the
second half of the twentieth century.
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Chapter 1
Particles/Molecules Versus Continuum:
The Never-Ending Debate

Abstract Corpuscular tiny bodies (“particles”) interacting through empty space via
at-a-distance forces and a continuum transmitting forces by contact are traditionally
presented as two alternate pictures of the physical mechanical world, and this from
the early inception of physics by the ancient Greek “philosophers of Nature”. But
for more than two millenaries endeavours by the most illustrious physicists and
mathematicians have been to reconcile these two visions or, for the least, to deduce
the second one from the first thought to be more “physical”. This contribution
focuses more precisely on such a move from Newton to the early twentieth century
with special attention to mechanicians of fluids and solids such as Poisson, Navier,
Cauchy, Piola, Green, and others, who created the modern theory of continuum
mechanics, essentially through its special branch known as the theory of elasticity.
The latter provides the best illustration of the various strategies applied by great
scientists in their harsh competition. The nineteenth century French
engineers-scientists take the largest share in this endeavour. The subject matter,
however, remains an unsettled one, all the more that recent powerful techniques of
computation favour a return to the corpuscular vision.

1.1 Old Times, New Ideas

The dichotomy between an atomic vision of matter and a continuum vision is as old
as the ancient Greeks. The word atom or asolom = atomon in Greek means “un-
cuttable” or “indivisible”. Apart from “atoms” the world is a void. A logical con-
tradiction already appears at this level since “a void” means that there exists nothing
so that there cannot exist a void. Notwithstanding this contradiction, the idea of
such an atomic world is attributed to fifth-century (BC) Greek philosophers such as
Leucippus, one of his students Democritus, and then Epicurius and Lucretius.
Heraclitus (cf. Fig. 1.1) is often cited as the best supporter of this description of
Nature made of atoms and voids. An altogether differing vision was introduced by
Aristotle about 330 BC: he entertained the idea of continuity and the absence of
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voids. The latter’s vision was supported for a long time, especially with the
Scholastics who fully endorsed Aristotle’s curriculum in the “philosophy of Nature”
(physics). However, it seems that Galileo Galilei (1564–1642; Fig. 1.2), one of the
first “modern” physicists, advocated the atomic vision. But it is really with the
seventeenth century and the development of an embryonic mechanics of matter by
physicists such as Pierre Gassendi (1592–1655; Fig. 1.3), René Descartes (1596–
1650; Fig. 1.4) and Robert Boyle (1627–1691; Fig. 1.5), that we witness a true
rebirth of atomism, but with some alteration. For instance, Descartes claims that

Fig. 1.1 Heraclitus

Fig. 1.2 Galileo Galilei
(1564–1642)
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void does not exist, so that Nature is made of “molecules” or “particles” (the name
we now give to “atoms”) that interact directly with one another by contact. This, in
turn, explains the “mechanics” of Descartes and his theory of the impetus. The great
Newton (1643–1727) duly implemented another means of interaction between
distant particles: attraction. This is Newton’s concept of at-a-distance force, per-
haps a somewhat mysterious notion (according to Leibniz, d’Alembert, etc.;

Fig. 1.3 Pierre Gassendi
(1592–1655)

Fig. 1.4 René Descartes
(1596–1650)
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cf. Maugin 1980, 2012), but a very efficient one that requires no further explana-
tion: Newton “frames no hypotheses”. This notion is justified by the immediate
success of Newton’s mechanics in accounting for phenomena both on earth and in
the heaven. This was not without criticism, even among “Newtonians”, for whom
attraction inevitably yields collapse. Another mechanism must be at play to avoid
this catastrophe. Thus, Roger Joseph Boscovich (1711–1787; Fig. 1.6), a polymath
Jesuit priest of Croatian origin, proposed that if attraction is certainly active at large
distances between two particles, the interaction becomes of the repulsive type at
short distances. Excuse the play of words: this is an “attractive” concept that will
recur from time to time in mechanics and theoretical physics.1

The introduction of action-at-a-distance and attraction by Newton became
extremely popular but his theory of light required a phenomenon seen as the
propagation of “granules” (“atoms” of light). Although mentored by d’Alembert in
Paris, Pierre Simon (de) Laplace (1749–1827; Fig. 1.7), was a Newtonian disciple
in mechanics, so that he favored the notion of attraction as shown by his theory of
capillarity proposed in 1805 (and published in Laplace, 1819). There Laplace states
that capillary action is due to “… les lois dans lesquelles l’attraction n’est sensible
qu’à des distances insensibles; …” (… the laws in which attraction is sensible
[significant] only at insensible [infinitesimal] distances …). But he did much more
than that by showing, together with Poisson and then Gauss, that in Newton’s
theory, the potential of attraction—from which the attraction force can be derived—
satisfies a partial differential equation (the celebrated second-order “Laplace”

Fig. 1.5 Robert Boyle
(1627–1691)

1John Archilbald Wheeler (1911–2008) always cited Boscovich as one of his heroes during his
lectures on general relativity as witnessed by the writer in 1968–69.
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equation). This is related to the mathematical field of analysis. This in turn is the
application domain of the notion of field, itself practically synonymous with a
continuum hypothesis because singular fields, although of great interest, are more
rarely considered and more difficult to deal with than continuous ones. Thus,

Fig. 1.7 Pierre Simon
Laplace (1749–1827)

Fig. 1.6 Roger Boscovich
(1711–1787)
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Laplace (1805) in fact created a link between the typically nonlocal theory of
attraction and a continuum vision. From then on, there will be recurring attempts to
derive a continuum description from a corpuscular one by means of some
smoothing and limiting procedure.

At this point it is necessary to make a pause and look at the situation in the field
of theoretical and applied mechanics as of the closing of the eighteenth century.

On the one hand, Euler and Lagrange have set the bases for the continuum
mechanics of perfect fluids in both Eulerian and Lagrangian formats but we are still
missing a true general three-dimensional theory of continuum mechanics in the
absence of the notion of stress tensor. However, in addition to pressure, the notion of
shear force has been introduced by Euler in the study of the deformation of some
structural elements. The study of the mechanics of such elements has given rise to the
strength of materials (called as such after the formidable book on the theory of
elasticity by Pierre Simon Girard (1765–1836; Fig. 1.8) entitled Traité de la
résistance des solides in Girard 1798). Girard was formed at the Royal School of
Ponts et Chaussées (ERPC) and became a powerful figure in the administration of the
corresponding Corps of engineers in the early nineteenth century. According to
Todhunter and Pearson (1886, p. 74), this “first historical review in the field contained
the total knowledge of that day on the subject”, and also “an admirable introduction”.

On the other hand, a true craze for corpuscular theories of media in all the
physics of the period developed in the expert hands of Coulomb, Laplace, and
others, to be taken over by a group of remarkable French scientists including
Ampère, Poisson, Cauchy, Navier and Fresnel in the years 1810–1830. This was to
bring the looked for progress in the three-dimensional theory of elasticity, what is
examined next, not forgetting that all these engineers-scientists, excellent as they
were, had also strong personalities and sometimes an overdeveloped ego that was
going to cause a lot of priority disputes and reciprocal accusations of plagiarism.

Fig. 1.8 Pierre Simon Girard
(1765–1836)
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1.2 Three-Dimensional Elasticity in the Early Nineteenth
Century

1.2.1 Poisson on Elastic Surfaces (1812)

Simeon Denis Poisson (1781–1840; Fig. 1.9), a graduate from the Ecole
Polytechnique in 1800, became a professor of mathematics at this institution. His
scientific interests were multisided. However, as a disciple of Laplace, he paid
specific attention to Boscovich’s ideas and became one of the most active propa-
gandists for a theory of elasticity based on a molecular structure. His first contri-
bution in this line was an analysis of deformation of elastic bodies in the
investigation of the bending of plates. In this analysis presented in a memoir
(Poisson 1812), the author considers a plate as a system of particles distributed in
the middle plane of the plate (cf. Timoshenko 1953, p. 104). Unfortunately, as
remarked by Timoshenko, this modelling yields a mechanical structural element
that will resist extension but not bending. So that it strictly applies to an ideally
flexible membrane, but not to a plate. We deal in greater detail with this general
type of approach with the next step taken by Navier.

Fig. 1.9 Siméon Denis
Poisson (1781–1840)
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1.2.2 Navier’s Corpuscular Theory (1820)

C.L.M.H. Navier (1785–1836; Fig. 1.10), a member of the Corps of Engineers of
Ponts et Chaussées (Formation: Ecole Polytechnique followed by Ecole des Ponts
et Chaussées), is one of the greatest elasticians (but also fluid dynamicists) of the
nineteenth century. He presented to the Paris Academy of Sciences on May 14,
1821—but published in Navier (1824) with a long abstract published in 1823 after
publication of an abstract by Cauchy in the same bulletin (see below)—, a memoir
on the laws of equilibrium and motion of elastic solid bodies based on the idea of a
corpuscular description. Navier’s strategy in his molecular theory of elasticity is
very well explained by Timoshenko (1953, pp. 105–107) that we shall paraphrase.

Navier assumes that in the body there exist two systems of forces, one, RF is
such that forces balance each other and represent molecular forces acting when
external forces are absent. The other system of forces, RF1, balances the external
forces, such as that due to gravity. They are assumed to be proportional to changes
r1 − r of the distances between the particles and to act along the lines connecting
them. Let u, v, w the components of the displacement of a particle P(x, y, z) and
uþDu; vþDv;wþDw the corresponding displacements of an adjacent particle
P1ðxþDx; yþDy; zþDzÞ: Then the change of distance between these particles is
given by

r1 � r ¼ aDuþ bDvþ cDw; ð1:1Þ

Fig. 1.10 C.L.M.H. Navier
(1785–1836)
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where a; b; cð Þ are the cosines of the angles which the direction r makes with the
coordinate axes x, y, z. The corresponding force F1 is then given by an expression
of the type

F1 ¼ f ðrÞðaDuþ bDvþ cDwÞ; ð1:2Þ

where f(r) is a rapidly decreasing function with increasing r. Then Navier expands
Du;Dv;Dw in series of the form

Du ¼ @u
@x

Dxþ @u
@y

Dyþ @u
@z

Dzþ 1
2
@2u
@x2

Dx2 þ @2u
@x@y

DxDyþ � � � ; ð1:3Þ

and limits the expansion at the second order. Substituting these in the Eq. (1.2)
above and setting Dx ¼ ra;Dy ¼ rb;Dz ¼ rc, yields for the x component of the
force F1:

aF1 ¼ rf ðrÞ a3
@u
@x

þ a2b
@u
@y

þ @v
@x

� �
þ � � �

� �
þ r2f ðrÞ a4

2
@2u
@x2

þ a3b
@2u
@x @y

þ � � � þ ac3

2
@2w
@z2

� �

ð1:4Þ

To compute the total force acting in the x-direction of the displaced particle P(x,y,z),
a summation over expressions such as (1.4) is performed for all the particles within
the sphere of action—or region of molecular activity to be defined by a charac-
teristic distance—of the particle P. Assuming that the molecular forces are inde-
pendent of the direction of r, i.e., that the body is isotropic, terms containing
cosines in odd powers cancel out. It is then remarkable that the evaluation of those
integrals in the last contribution in (1.4) can be reduced to the calculation of a single
integral of the form

C ¼ 2p
15

Z1
0

r4f ðrÞdr: ð1:5Þ

If this is known then we can evaluate RaF1 and the other two projections on the
axes. For example,

RaF1 ¼ C 3
@2u
@x2

þ @2u
@y2

þ @2u
@z2

þ 2
@2v
@x@y

þ 2
@2w
@x@z

� �
: ð1:6Þ

With a more modern notation for the cubic dilatation and the Laplacian operator

h ¼ @u
@x

þ @v
@y

þ @w
@z

; r2 ¼ @2

@x2
þ @2

@y2
þ @2

@z2
; ð1:7Þ
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the equilibrium equations can be expressed in the following manner:

C r2uþ 2
@h
@x

� �
þX ¼ 0; . . .; ð1:8Þ

where X is the x-component of the externally applied force. All this is apparently
fine but only one constant C is involved! Navier also obtained the associated
“natural” boundary conditions by invoking the principle of virtual displacements.
They also involve the constant C only. This, as we know now, is a defect in this first
approach by Navier.

1.2.3 Fresnel’s Corpuscular Approach to Wave Optics
(1822)

Augustin Fresnel (1788–1827; Fig. 1.11) is another member of the Corps of Ponts
et Chaussées. He specialized in physical optics. He is well known for his invention
of a system of lenses that much improved the light beam signal produced in
lighthouses, and for the discovery of the transverse nature of light vibrations—as
opposed to the longitudinal nature of sound waves—in his studies on double
refraction. In order to obtain a model that allows for such a propagation Fresnel
considered early in 1822 (presented to the Academy in January and March 1822) a

Fig. 1.11 Augustin Fresnel
(1788–1827)
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corpuscular medium (not to be mistaken for Newton’s view of granular light
waves). With Fresnel it is the propagation medium that is granular to start with, but
light propagates by means of waves i.e., ondulatory signals, hence the possible
occurrence of interferences. The concept of such a medium of propagation may
have been inspired by Navier’s work of 1820. Fresnel had to evaluate the molecular
forces that act upon a single slightly displaced particle of the medium from the other
particles around it. This he discussed with Cauchy in 1822.2

1.2.4 Cauchy’s First Theory (1822–3; 1828)

The long contribution of Navier presented in 1820 and the presentation of his own
ideas by Fresnel kindled the interest of Augustin Louis Cauchy (1789–1857) for the
construction of a three-dimensional theory of elasticity. But this he achieved in a
very original move, eschewing any corpuscular approach. As a matter of fact, he
generalized Euler’s notion of normal pressure acting on a surface element by a
generally obliquely applied “traction” and was thus led to the notion of “stress”.3

This is obtained completely independently of any material behaviour, whether
elastic or inelastic, whether solid or fluid, a generality clearly emphasized by the
title of his contribution (Cauchy 1823, 1828a), a theory that we call CAUCHY-1.
Cauchy presented succinctly his ideas orally at the Paris Academy on September
30, 1822. He published a well written long abstract in 1823, but the corresponding
lengthy memoir was published only in 1828 (Cauchy 1828a). It is of interest to note
in the list of attendants to the meeting of the Paris Academy on September 30, 1822
(see its reproduction in p. 49 in Maugin 2014a) the names of Fourier, Laplace,
Ampère, Cauchy, Girard, and Poisson—who all belonged to the same scientific
environment, if not to the same formation or Corps. They all were interested in the
contemporary research in theoretical mechanics and may all have been called at one
time or another as experts on the papers of Poisson, Navier, Fresnel and Cauchy.
We cannot speak of a clique but certainly of a kind of “consanguinity”; but
“comrades” in a Corps may have become unforgivable opponents on scientific
matters. The postponement of the publication of Cauchy’s memoir may have been
due to some quarrels of priority—in particular with Navier—but we must also note
that Cauchy kept very active and so busy in his research in mathematics (theory of
integrals, complex analysis, theory of residues) during the period 1822–1828.4

While in the corpuscular approach the equilibrium equation—e.g., Eq. (1.8)—
emerges directly without the need for a constitutive equation, in CAUCHY-1 the
system must be closed, in the case of elasticity, by such a relation that one must

2Cf. Cauchy’s remark in the 1823 abstract of Cauchy translated in Maugin (2014a, pp. 50–52).
3Of course, not called this way by Cauchy, who rather uses the plural “pressures” to denote the six
components of this new physical object.
4On this activity see Belhoste (1991).
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postulate between the six strains—of which the theory was also essentially due to
Cauchy—and the stresses. The first such proposal by Cauchy for a linear isotropic
theory was wrong although astutely designed. Cauchy thought of relating propor-
tionally the so-called principal strains (dilatations) and stresses (pressures) forget-
ting that the cubic dilatation should also be involved, so that he obtained a
representation of isotropic linear elasticity with one elasticity coefficient only. This
he corrected in his belated memoir of 1828. For linear elastic crystals he would later
on introduce a general linear homogeneous relationship (in modern language, a
linear application of R6 onto R6) which, on account of the symmetry for stresses,
would involve at most twenty one independent elasticity coefficients.

1.2.5 Poisson’s Memoir (1827–1828) and Cauchy’s Second
Theory (1828, 1833)

Finally, Poisson announced on October 01, 1827, but published in 1828, his
extremely long memoir on his corpuscular theory (see also Poisson’s (1833) course
on mechanics). Poisson there proved the existence of two types of elastic waves in
isotropic bodies, longitudinal and transverse waves. It seems that Cauchy responded
to this by working out by himself a theory of elasticity (called CAUCHY-2) based
on a corpuscular vision. He may have been encouraged to do so with the hope to
generalize Fresnel’s work on birefringence of transparent media. Fresnel had died
in 1827. But this looks strange enough and awkward to modern (continuum)
mechanicians like us because its looks like a real step backward from a conceptual
viewpoint. Poisson’s publication caused a priority dispute with Navier, but Cauchy
succeeded in remaining somewhat outside this dispute. Of course one dream of
Cauchy was to go to the case of anisotropic media by carefully examining the
equilibrium and motion of a system of material points (Cauchy 1828b, c) envis-
aging (in agreement with Boscovich) that interparticle interactions f(r) be of the
attractive or repulsive type and proportional to the two masses of the interacting
particles. In the case of isotropy, he found that the problem would be solved by the
computation of two coefficients G and R such that (cf. Szabó 1977, pp. 398–399;
with a reproduction of p. 199 from Cauchy 1828b).

G ¼ � 2p
3

Z1
0

r3f rð Þdr; R ¼ � 2p
15

Z1
0

r4f 0 rð Þ � r3f ðrÞ� �
dr; ð1:9Þ

to be compared to (1.5) above. In arriving at this result, Cauchy had to implement
some hypotheses on the fast decrease with distance of the function f(r), so that he
could neglect infinitesimal quantities of the second order in the infinite series
expansion that he introduced to approximate the finite differences involved in the
displacement of the considered molecules. He also had to make some additional
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assumptions regarding the distribution of molecules in the system. Anyway, on
account of definitions (1.7) and redefinition of the scalar coefficients, this whole
manipulation—certainly likely to be subjected to serious criticism from a purist’s
viewpoint—yields instead of (1.8) the equilibrium equation of modern linear iso-
tropic elasticity as the vectorial equation

lr2uþ kþ lð ÞrhþX ¼ 0; ð1:10Þ

where k and l are Lamé’s coefficients. Love (1892, pp. 616–618 of 1944 edition)
describes well Cauchy’s use of the corpuscular description to arrive at the
stress-strain relations in a crystalline elastic material.

As rightly emphasized by Belhoste (1991, p. 99), following Laplace in gravi-
tation, Coulomb in electrostatics, Ampère in electrodynamics, Fresnel in optics, and
now Navier and Poisson in elasticity, the molecular model had become “so much a
part of thinking of that era”, that even Cauchy, who had many other successes to his
glory, could not resist the temptation to work within this framework, all the more
that he expected to improve on Fresnel’s theory of light waves. In fact, Cauchy had
obtained in passing equilibrium equations for cubic symmetry and uniaxial crystals.
He also applied his theory to specific structural elements such as anisotropic plates
and rods, and even to perfect fluids. In the last case he wanted to prove that the
equality of pressure in all directions was indeed a characteristic property of fluids
within this molecular framework. Cauchy’s application to light waves started in
1828. In this line he applied his theory of anisotropic elasticity to the phenomenon
of double refraction, using Huygens’ Principle where appropriate for spherical
waves. It seems that by 1830 Cauchy had chosen the molecular theory over his own
general and definitive continuum theory of 1823–1828, in fact the only one uni-
versally acknowledged nowadays by both applied mathematicians and mechanical
engineers. Practically all students—and professors—ignore Cauchy’s epochal
choice and his strong involvement in the theory of the propagation of light. This
was to become outdated with the rejection of the existence of “ether” as a possible
physical substrate of this propagation late in the nineteenth century.

1.2.6 Piola’s Original Works (1836, 1845)

Gabrio Piola (1794–1850) is an Italian mathematician who was an enthusiastic
disciple of Joseph Louis Lagrange (1736–1813). He is, therefore, an ardent sup-
porter of variational formulations in the Euler-Lagrange tradition. He is the author
of generally lengthy memoirs that have often been unjustly overlooked. But we
must admit that these papers are difficult to read, in reason both of the obsolete
mathematical terms and the somewhat (now) antiquated Italian language. We focus
attention on his memoirs of 1836 and 1845.

One line followed by Piola is the a priori consideration of the motion of an
ensemble of points in interaction, following Poisson (and also the second theory of
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continua of Cauchy), and then passing to a limit providing equations for a con-
tinuum, with an appropriate definition of what will later on be called the first
Piola-Kirchhoff stress tensor. This is developed at length in Piola (1836) frequently
referring to French mathematicians and mechanicians (Cauchy, Laplace, Poisson,
Legendre, Lacroix, and of course Lagrange, hardly a Frenchman to him).5 To make
a long story short, Piola (1836) considered a system of identical point particles of
unit mass that we can label að Þ. Each one is initially at position denoted by
(a, b, c) with label að Þ and after motion at position (x, y, z) with label að Þ. In modern

notation this would yield the change of position as x að Þ
i or x að Þ function of

X að Þ
K or X að Þ, in Cartesian tensor notation and intrinsic notation, respectively. Thus

the kinematic description may be said to be referential. With externally applied
force f að Þ, and a model of interactions between particles (called “molecules”) whose
exploitation is somewhat obscure, Piola is able to write a variational formulation for
motion of the following type (Piola 1836, p. 173, Eq. (15))

X
i

X
a

d2xðaÞi

dt2
� f ðaÞi

 !
dxðaÞi þ

X
i

X
a;b

/ Sa;b
� 	

dSa;b ij ¼ 0 ð1:11Þ

where the S’s—whose details are irrelevant—depend on the relative distances
between particles, hence on the xi. For arbitrary variations of the xi’s this formally
yields equations of motion of individual particles in the form (Piola 1836, p. 189,
Eq. (41))

f ðaÞi � d2xðaÞi

dt2
þ IðaÞi ¼ 0; a ¼ 1; 2; . . . ð1:12Þ

where I að Þ
i is the interaction force with other particles that we do not elaborate

further. The “tour de force” of Piola rests in the approximation of these interaction
terms (pp. 175–200) and passing to some kind of continuum limit that brings the
generic local equation of motion to the vectorial form (Piola 1836, p. 201, Eq. (56);
here the initial density is arbitrarily taken as q0 ¼ 1)

f � @2x
@t2

þ divXT ¼ 0; ð1:13Þ

where T is an object with nine independent components (for it has no symmetries)
and the modern symbol divX means the divergence operator with respect to the
referential coordinates (a, b, c) i.e., XK. Obtaining (1.13) involves the neglect of
supposedly small terms. Equation (1.13) can also be written as

5This we examined in detail in a previous work (cf. Maugin 2014a, Chap. 4) that we closely follow
here.
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fi � @2xi
@t2

þ @

@XK
TKi ¼ 0: ð1:14Þ

The change of position and its inverse (assuming invertibility in agreement with
Lagrange) can be noted (Piola 1836, p. 202, Eqs. (58) and (59))

x; y; zð Þ functions of a; b; cð Þ and time t ð1:15Þ

and

a; b; cð Þ functions of x; y; zð Þ and time t ð1:16Þ

or in modern notation

x ¼ �x X; tð Þ and X ¼ �X x; tð Þ: ð1:17Þ

Let J denote the Jacobian determinant of the first of these transformations (this is
denoted H by Piola, p. 204), i.e.,

J ¼ detF; F ¼ FiK ¼ @�xi
@XK


 �
: ð1:18Þ

For a referential mass density q0 not set equal to one q0 has to be introduced and
(1.13) has to be rewritten as

q0 f � @2x
@t2

� �
þ divXT ¼ 0: ð1:19Þ

In order to compare his equation of motion with the formulation obtained by
Cauchy (1828a) and Poisson (1829) in the actual configuration, Piola needs to do
some work since he must pass to the spatial parametrization of the Eulerian type in
terms of the actual position (x, y, z) or x = {xi; i = 1, 2, 3}. He shows that he can
introduce a geometrical object σ (noted K by Piola) such that (cf. Piola 1836,
p. 204, Eq. (60))

rij ¼ J�1 @�xi
@XK

TKj or r ¼ J�1FT: ð1:20Þ

Reciprocally, (Piola 1836, p. 205, Eq. (63))

T ¼ JF�1 � r or TKi ¼ J
@�XK

@xj
rji: ð1:21Þ
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These are the celebrated Piola transformations. With the mass conservation
equation written as

q0 ¼ Jq; ð1:22Þ

where q is the actual density at (x, y, z), Piola finally shows that Eq. (1.19) above
renders the equation of motion (p. 212, Eq. (74))

q f � d2x
dt2

� �
þ divxr ¼ 0: ð1:23Þ

This Piola identifies with the equation obtained by Cauchy (1828a, p. 166) or
Poisson (1829, VIII, p. 387; X, p. 578). Accordingly, σ is none other than the
Cauchy stress tensor for any continuum, whether solid or fluid, while T deserves to
be called the Piola stress (first Piola-Kirchhoff stress in modern jargon).
Equilibrium is obtained by making the acceleration term vanish in Eq. (1.23)—cf.
Piola (1836, p. 215, Eq. (79)). Piola had thus succeeded to deduce the continuum
Eq. (1.23) from a starting point that involved a corpuscular vision, this quite
independently of other authors, and thus not a trivial achievement.

What is most original in Piola’s strategy is that he has formulated what we now
call the “Piola format” of the basic equations of continuum mechanics. His “format”
involves two configurations with a preference for the referential one for the space
parametrization. It is sometimes called the material formulation (cf. Maugin 2011)
since X refers directly to the material “points” that belong to the “material mani-
fold”. The only inconvenience is the appearance of geometrical objects such as
F and T that have two “feet” in different configurations and will later on be called
two-point tensor fields—i.e., tensors depending on two “points”—by Einstein or,
here precisely double vectors. But it must be understood that all computations are
effected by Piola with all explicit scalar components of the introduced objects since
he has no notion of a tensor (only introduced in the 1880s by Waldemar Voigt).

Another important innovative point brought in by Piola is that, independently of
any microscopic concept, stresses can be viewed as a priori co-factors of virtual
variations of strain components in a formulation of the principle of virtual work
(Piola 1848). This idea may have found its origin in Piola’s treatment of rigid
bodies by accounting for a mathematical constraint that requires the introduction of
a Lagrange multiplier (in fact a second order tensor in modern language). The
introduced tensor Lagrange multipliers can be interpreted as “reaction internal
forces” needed to maintain the rigidity of the body (Piola 1833). These internal
forces are undetermined for a rigid body. In the case of a generally deformable
body, the principle of virtual work can be written as (in modern notation)

Z
V0

q0€x � dx dV0 ¼
Z
V0

q0f � dx dV0 �
Z
V0

SKLdEKLdV0 þ
Z
@V0

t � dx dS0; ð1:24Þ
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for a description in the referential configuration. Here EKL are the Cartesian com-
ponents of the finite strain defined by

EKL ¼ 1
2

X3
i¼1

FiKFiL � dKL

" #
; FiK ¼ @�xi

@XK
; ð1:25Þ

while SKL is the introduced cofactor, now called the second Piola-Kirchhoff stress.
It is related to the Cauchy stress r by the full Piola transformation

SKL ¼ J
@XK

@xi
rij

@XL

@xj
or S ¼ JF�1rF�T ; ð1:26Þ

so that (1.24) can also be replaced by the following formulation in the actual
configuration:Z

V

q€x � dxdV ¼
Z
V

qf � dx dV �
Z
V

rijdeijdV þ
Z
@V

t � dx dS ð1:27Þ

Formulations of the type (1.24) and (1.27) will be adopted bymostmechanicians on the
Continent (France, Germany, and Italy). This is the case of Clebsch (1862), Kirchhoff
(1876), Barré de Saint-Venant (1883), Poincaré (1892), Appell (1900), Hilbert (1906)
andHellinger (1914), andmost Italian authors (e.g.,Beltrami1880–1882;Betti 1874). It
is also intimately related to the renascent formulation of the principle of virtual power by
Germain (1973). Advantages of such formulation are the easy rendering of associated
natural boundary conditions, and generalization to all kinds of complexmedia including
media with a mechanical or physical (e.g., electromagnetic) microstructure and the
allied complex kinematics (cf. Maugin 1980, 2010).

1.2.7 Green’s Energy Argument (1839)

The expression of the work of internal forces in (1.24) or (1.27) is tantamount to
introducing a potential energy density for elasticity W per unit of referential vol-
ume, W = W(E), such that

d
Z
V0

W Eð ÞdV0 ¼
Z
V0

dW Eð ÞdV0 ¼
Z
V0

S:dEdV0 ð1:28Þ

and

S ¼ @W
@E

or SKL ¼ @W
@EKL

: ð1:29Þ

1.2 Three-Dimensional Elasticity in the Early Nineteenth Century 17



This was proposed by George Green (1793–1841) in his study of the wave prop-
agation in transparent elastic bodies and of the laws of reflection and refraction of
light (Green 1839). This was applauded by W. Thomson (the future Lord Kelvin),
an ardent propagandist of all ideas related to energy. With a formulation such as
(1.27)–(1.28) all traces of a microscopic underlying description have disappeared if
one postulates a reasonable expression for the energy density. The Cosserat brothers
(Cosserat and Cosserat 1909) will exactly follow this line with a more complicated
kinematics—such as involving internal degrees of freedom—of the considered
medium.

1.2.8 Other Works: Lamé, Clapeyron, etc.

The corpuscular approach to elasticity was also pursued and exploited by Gabriel
Lamé (1795–1870) and Benoît Clapeyron (1799–1864)—both members of the
Corps of Mining engineers (formation: Polytechnique followed by School of
Mines)—cf. Lamé (1852); Lamé and Clapeyron (1831).

It is more surprising that as late as 1892 Henri Poincaré (1892)—also originally
a member of the Corps of Mining Engineers—in his lectures on elasticity avoids
Cauchy’s first theory, and bases his presentation on the fundamentals of the cor-
puscular theory. Indeed, in his Chapter II he introduces the notion of elastic forces
by distinguishing between theories based on molecular hypotheses and those based
on thermodynamics (in the manner of George Green) where the intimate consti-
tution of matter is disregarded. Nowhere is Cauchy’s fundamental notion of stresses
(what we call CAUCHY-1) introduced. Poincaré here prefers to start with the
molecular approach expanded by Poisson, Navier and CAUCHY-2. That is, bodies
are made of molecules that are very small compared to their separating distances.
They are acted upon by both “internal” and “external” forces. Internal forces are
like Newtonian forces between molecules and are ultimately responsible for the
macroscopically observed elasticity of the body. They are of the central type, and
according to Lamé (1852), vanish at natural equilibrium (in the absence of external
forces) with a vanishing attraction. Conservation of energy then implies that
internal forces derive from a potential (p. 30), to be called the “force function”.
External forces may act on all molecules, while at the surfaces they may act on
superficial molecules (whatever these be) only. In modern standard continuum
mechanics the former are recognized as “body” forces and the latter as applied
“tractions”. Poincaré cites the example of a gas in a container. Like for Poincaré’s
predecessors, passing to the case of true deformations calls for an exercise in the
Taylor expansion of the force functions in terms of the small displacements. The
possibility of the existence of mathematical constraints connecting molecules is
envisaged and taken care of by the introduction of Lagrange multipliers. This is
more original. Approximation of the expansion of the force function requires the
introduction of a small radius of molecular “activity” (interaction), yielding the
neglect of far-distance mutual interactions. This, as usual, is the most disputable
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part of the procedure, in particular when dealing with molecules placed at the
boundary of a body. The case of isotropic bodies indeed involves so-called isotropic
polynomials6 that must be linearly independent. The number of remaining elasticity
coefficients in this approach remains a discussed matter as already discussed by
Lamé (1852) and Clebsch (1862).

The equilibrium equations are then introduced in Chapter III by means of the
principle of virtual velocities. The resulting bulk equations and boundary conditions
are finally obtained (pp. 58–59) with identification of what are called “pressures”
(in modern jargon, the components of a—Cauchy—stress tensor). It is only at this
point (p. 62) that Poincaré considers as an alternate approach the energy viewpoint
of Green (1839). But he improves on Green’s presentation by using a thermody-
namic argument involving entropy and free energy that, obviously, Green could not
know.

We surmise that the choice of approach by Poincaré is based on his will to
pursue the line opened by Fresnel and Cauchy regarding the propagation of light
waves in the so-called “ether”. As a matter of fact, Poincaré shows more interest in
the application of elasticity to this field of physics than to potential
mechanical-engineering applications. This is corroborated by his enthusiastic
development of the mathematical theory of light (Poincaré 1889). But we must also
account for the general state of physics at the end of the nineteenth century and the
ideas that permeate the whole medium at that critical time (see next Section). An
interesting aside is that Poisson continued in the late 1830s his pursuit of an ideal
corpuscular model of elasticity. In this endeavour (Poisson 1842), he proposed to
replace the points of his corpuscular approach by tiny rigid bodies capable of
rotation as well as of translational motion. This prefigures some development in
microstructured bodies such as by Cosserat and Cosserat (1909). Poisson’s idea was
worked out in detail by one of Poincaré’s contemporaries, Voigt (1887, 1910), the
inventor of the word “tensor” in its current meaning.

1.3 Action at a Distance, Electromagnetism and Crystal
Dynamics

As mentioned before in this contribution, the possible complementarity between a
corpuscular vision and a continuum description exploiting nice partial differential
equations has been kept alive for a long time. James Clerk Maxwell (1831–1897)
has described the fluctuating opinion of physicists about this matter in his deeply
thought contribution to “Action at a distance” (Maxwell 1873). He was well placed
to discuss this matter as he had shown in electromagnetism that a ponderomotive
force (seen as an at-a-distance force) could also be expressed in the form of a

6The theory of isotropic polynomials (rotationally invariant quantities) was expanded by Poincaré
in his lectures.
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contact action by means of the divergence of an appropriately defined stress (the
“Maxwell stress”), i.e., symbolically,7

fem ¼ divxr
em: ð1:30Þ

This casts a doubt on the most appropriate physical interpretation. Here the notion
of stress appears as secondary, being introduced via an identity. Note that this was
already the case in the transformation from Eq. (1.12) into (1.13) in Piola’s theory.
But more was going to come with the dynamics of crystalline lattices.

In the third edition of his well known book on the mathematical theory of
elasticity, A.E.H. Love (1863–1940) added a Note B on the notion of stress. There
he clearly set forth the criteria that a corpuscular theory of elasticity must satisfy:
First it ought to “provide a foundation for the notion of stress”. Second, “it ought to
lead to Hooke’s law” as a paradigmatic linear constitutive equation. Third, “it ought
to lead to the existence of a strain-energy function”. Fourth, as a more technical
detail, it ought to avoid the occurrence of the so-called Cauchy’s relations8 between
elastic constants. Theories briefly presented in previous pages have to pass these
four tests. We let the reader decide on which of the theories pass them.

He also clearly defined what the basic constituents of these theories are (pp. 617–
618): e.g., centres of force endowed with the property of mass, with interparticle
forces being directed along the line joining any two pairs of particles, forces being
reciprocal, and decreasing markedly with distance, and perhaps vanishing beyond
“a radius of the sphere of molecular activity”. With these criteria and definitions,
Love found that Cauchy’s second theory (CAUCHY-2) and Poisson’s one are none
other than the ancestors9 of the modern theory of crystal lattices, as developed by
Max Born (1882–1970) and von Kármán (1881–1963) in the early 1900s (e.g.,
Born and von Kármán 1912; Born 1915; Born and Huang 1954). Remember that a
crystal lattice can be defined by an ordered arrangement of “atomic” mass points
with vector positions

xi ¼ x0i þ
X3
a¼1

naaai; ð1:31Þ

where x0i are the coordinates of one of the particle, the na are positive or negative
integers, and the aai are the components of fixed constant vectors. This applies well
to crystallized matter, but the isotropic case is recovered by supposing that in these
materials the “crystallization is confused so that no part at all large compared with

7This we developed at length in our treatise on the electromagnetism of deformable solids (Maugin
1988, Chap. 3). In relation with these developments we note that Lorentz’s (1916) theory of
“electrons”—worked out in the late nineteenth century—is to start with a theory of point-wise
electric charges interacting through their mutual distances in an otherwise vacuum space, and was
therefore much to the taste of Poincaré (Cf. Fig. 1.12).
8These spurious relations reduce artificially the number of independent constants.
9This is not acknowledged in modern texts on lattice dynamics, e.g., Maradudin et al. (1963).
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molecular dimensions, forms a single homogeneous assemblage”. In other words,
in crystallized matter, the elements (particles) do form a homogeneous assemblage.

Love explains in great detail the two steps of the derivation, one concerning first
the equilibrium of a particle, and the second accounting for the changes in the
involved quantities when the body undergoes a small strain accompanied by a small
rotation. Equilibrium equations of a particle can thus be obtained. On evaluating the
coefficients of these strains in the equations, he then shows that they can indeed be
written as the derivatives of a potential, from which one concludes with the existence
of a strain-energy function. According to Love this should have been more or less
obvious because “in a system of attracting and repelling particles, when the force
between two particles is function of the distance between them, there must be a
potential energy function, which depends on these distances only” (Love 1892,
p. 627). This was already explicitly stated by Poincaré in his lectures where he pointed
out that conservation of energy implies that internal forces f rð Þ derive from a
potential to be called the “force function” (Poincaré 1892, p. 30). Anyway, it is also
proved that the spurious Cauchy’s relations are not a necessary consequence of the
considered structure theory which, therefore, satisfies the criteria he had enounced.
We can conclude this point with the following remark. In a simple introduction to the
lattice dynamics of Born and von Kármán, the interaction between neighboring
particles is represented by restoring forces (derivatives of a potential) of the linear
spring type. We can say that this is phenomenology at its best with the aphorism that
“the cause of the effect is the effect”, since macroscopic elasticity is deduced by an
approximation procedure in which the microscopic departure point uses the concept
of springiness. This may look quite naïve and for the least opportunistic, but
remarkably enough, this proved to be a fruitful basis for devising more complex
realistic models of continua in the late twentieth century (see, e.g., Askar 1986).

Fig. 1.12 Henrik A. Lorentz
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1.4 Conclusion

In spite of Cauchy’s genial idea of his introduction of the stress concept in 1823–
1828, the approach that considers first a corpuscular structure and at-a-distance
forces survived through the whole nineteenth century. More than that, it has found
its way in the twentieth and twenty-first centuries essentially through statistical
mechanics and new computational techniques that eschew the notion of continuum.
In the first line, we must mention the original kinetic theory of gases created by J.C.
Maxwell and L. Boltzmann where the notions of distribution function and proba-
bility density appear for the first time. A model of interactions via collisions may be
necessary to close the system in the presence of dissipation. This requires the study
of a special equation known as the Boltzmann equation, and of its various “mo-
ments” so as to arrive at the notion of stress albeit as a secondary one. But closer to
the already exposed notion of corpuscular description—but still with statistical
considerations—we mention the statistical theory of liquid solutions by the
physico-chemist John G. Kirkwood (1907–1959). This scientist really created a
statistical physics yielding a liquid state theory in which the properties of liquids are
obtained in terms of interactions between the constituent molecules (Kirkwood
1936). This approach involves a molecular distribution function. Along the same
line we note the recent works of A. Ian Murdoch synthesized in Murdoch (2012).

In a second line, one should not forget the dream of computing all dynamical
behaviors of materials by completely eschewing a continuum view and solving
simultaneously the Newtonian equations of motion of an extremely large ensemble
of individual particles, all interacting via known potentials of force. This ideal
Laplacian view, but with more or less involved potentials, is practically becoming
true with the huge computational possibilities offered by modern computers. This
has been proved to be spectacular with, for instance, the simulation of the propa-
gation of cracks and of other structural defects. This molecular dynamics approach
(cf. Rapaport 1995) poses the fundamental question whether the very concept of
continuum should not be rejected to the dark ages of phenomenological physics.
But quid of the admirable concept of stress introduced by Cauchy in 1823–1828,
which in the end remains the essential ingredient to decide on whether something
will resist a load or start to flow in a more or less dramatic way? From a purely
epistemological viewpoint there is no need for a continuum theory to be substan-
tiated by an underlying corpuscular theory. This is well accepted by contemporary
applied mathematicians—great amateurs of partial differential equations—and
engineers alike without special pondering of the matter. We can think with Pierre
Duhem that the continuum theory provides a good representation of phenomena
and that its efficiency is what counts above all other argument. It does not provide
any explanation, avoiding any unnecessary microscopic modelling. But what we
estimate to be a true physicist cannot help but compare the two approaches, cor-
puscular and continuous, and try to reconcile these two in some irresistible move.
This is the justification for the existence of the present contribution.
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Chapter 2
Hydraulics: The Importance
of Observations and Experiments

Abstract Before the expansion of analysis, studies of fluid mechanics were nec-
essarily confined to experiments although a complete body of technical applications
of hydraulics had developed starting with the most ancient civilizations around the
Mediterranean Sea and in Asia. Greeks, Egyptians and Romans, in particular,
conceived all kinds of elementary machines but also well designed systems of
distribution of water, whether in the fields or in the supply of cities. The true
experimental aspects concerning this matter had to await the birth of the modern
scientific spirit of the Renaissance period. The notion of pressure, the most ele-
mentary form of stress, appears with experiments performed by Torricelli, Pascal,
and Mariotte. With these scientists and Newton, the first formulas appear, some just
reporting pure empirical results, others founded on some rational reasoning. In the
eighteenth century one witnesses parallel developments in the works of mathe-
maticians (mostly, Clairaut, the Bernoullis, d’Alembert, Euler and Lagrange) and in
the careful experiments of a group of gifted engineers (e.g., Borda, Bossut, du
Buat,..). The role played by viscosity, but still in laminar flows, will be best cap-
tured by Poiseuille, Hagen, and others in experiments, and obviously by Navier,
Saint-Venant and Stokes in analysis, before the consideration of turbulence.
Accordingly, this contribution places the emphasis on experiments that were
decisive in the perused evolution of continuum mechanics, from ancient times to
the nineteenth century.

2.1 Introduction

Our personal vision of continuum mechanics is essentially theoretical and
mathematical. It must be realized that before the works of our grand predecessors
(the Bernoullis, d’Alembert, Euler, Lagrange, Cauchy, etc.) in the eighteenth cen-
tury and early nineteenth century,1 continuum mechanics may be identified in

1The reader may consult our book (Maugin 2014) for the history of that period.
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experimental developments and engineering material realizations, for instance, in so
far as the statics and flow of some fluids are concerned. The first natural fluid of this
kind was obviously water, from which the word hydraulics naturally follows from
the combination of two Greek words, “hydra” (for water) and “aulos” (for pipe).
This sounds very much like the flow of water in conduits, channels, and rivers that
all ancient Egyptians, Mesopotamians, Persians, Greeks, Romans and other people
around the globe had to consider of necessity in practical applications. The choice
of water as the main object of study was particularly salient because it is a good
example of a practically incompressible fluid that can transmit without much loss
what will become known as the pressure, a force per unit area, and obviously the
simplest form of our modern notion of stress. Thus hydraulics in its most ele-
mentary form certainly is the backbone of the fruitful development of notions that
provided the basic ingredients in the theory of hydrodynamics and then continuum
mechanics. Per force, very few relevant mathematical expressions were formulated
before the eighteenth century, i.e. before sufficient expansion of mathematical
analysis.

In accordance with its basic etymology, hydraulics is usually characterized as
dealing with the physical behavior of water at rest or in motion, while the
Encyclopaedia Britannica is more severe in speaking about “the practical appli-
cations of liquids in motion” and thus puts the emphasis on an applied field that for
a long time was considered a part of civil engineering. Engineering and experi-
mental sides cannot be overlooked as they provided a support for all inclusive ideas
that developed in time between the ancient Greeks and the eighteenth century. Here
we need not go back in detail to these ancient times for which there exist nice
histories and reviews (e.g., Mays 2008). All the reader will retain are expressions
like running water, water power, pumps, hydraulic machines, water supply to cities,
etc., and the role of luminaries such as Archimedes (287–212 BC) in hydrostatics.
What is really surprising to our modern scientific mind is that contrary to our
common view of the development of a science, hydraulics first went through
technological applications, then much later through a phase of experiments, and
finally reached a theoretical level in hydrodynamics or, more generally, fluid
dynamics. Thus, after a rapid perusal of technological developments where one
cannot totally forget the material realizations of the Romans and of the Hellenistic
period of which we inherited, one then usually jumps directly to the Renaissance
period with true experiments that mark the birth of the practice of modern science.

2.2 Ancient Times: Hydraulic Technology

In ancient times, with the development of sedentary civilization and the associated
agriculture, and the advent of some kind of urbanism, needs appeared to control the
distribution of water to the fields in the form of organized irrigation, as also to bring
water to cities. In both cases water had to be directed from some natural spring or a
river to a specific place, usually at a lower level, and to bring it in the best conditions
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of delivery without too much loss on the way. Greeks and especially
Romans—whom we consider the inventors of civil engineering—developed a
special taste for the related technology, having determined the best conditions to
have a descending flow, creating machines if necessary to take water to a higher
elevation, and possibly devising true mega hydraulic projects for which the remnant
Roman aqueducts in Italy, Spain and France provide the most spectacular examples.
Cisterns and other means of water collecting and containment, the design of drainage
channels, the construct of public fountains and the invention of animated fountains
all are illustrations of this vivid development. Among the most impressive oldest
inventions we cannot avoid citing the water screw by Archimedes (287–212 BC) in
Syracuse (the founder of hydrostatics with his principle of buoyancy), and the force
pump (or water lifting device) by Ctesibius or Ktesibios (circa 270 BC) in Ptolemaic
Alexandria, Egypt, and later adapted by Roman engineers. Ctesibius is also sup-
posed to have invented instruments using cleverly the properties of flowing water
such as in hydraulic clocks and some musical instruments. All these are well doc-
umented in the text of Mays (2008) to whom we refer the reader. Of course we
cannot say that these technical achievements came out of the blue. Although we
cannot identify here any true scientific method, we must assume that some technical
solutions—which in modern terms would involve the notions of pressure, flux
through orifices, and certainly a bit of friction—were found only after a long series of
trials and errors, a kind of archaic precursor of the scientific method. The Greek,
Hellenistic, and Roman engineers greatly influenced those of the Renaissance
(cf. Gille 1964, First two chapters), in particular via Vitruvius’ teaching
(cf. Vitruvius ca 25 BC).

2.3 The Renaissance Experimentalists-Thinkers:
Leonardo, Stevin, Galileo Galilei

With the Renaissance period that we grossly delineate by the dates 1453 (fall of
Constantinople)—or the invention of printing by Gutenberg circa 1450—and the
introduction of the Baroque style in arts or the successful career of Shakespeare in
drama or still the death of Galileo Galilei in 1642, we witness a renewed interest in
the antic culture and a characterization by the reading and re-evaluation of funda-
mental texts. This applies well to both science and technology. For us, the sym-
metric, perfectly geometrically proportionate, representation (cf. Fig. 2.1) of
Vitruvius’ man by Leonardo da Vinci (1452–1519) is an ideal that directly connects
with the preceding section. Indeed, Leonardo is an unavoidable figure including in
our present subject of interest, hydraulics. At this point, we must mention the
thorough studies of Duhem (1906–1912) on Leonardo. By studying in depth so
many original texts from the Middle Ages (from the masters at the Sorbonne or in
Oxford, etc.) and the immediate Pre-renaissance Italian scientists, Duhem tried, and
sometimes seems to have succeeded, to trace what may have influenced Leonardo,

2.2 Ancient Times: Hydraulic Technology 29



among his predecessors in the Middle Ages, and what he may have read, although
Leonardo himself does not provide any clues. This has remained a discussed matter
among historians of science (including A. Koiré, Th. Kuhn, etc., who are in favour
of a clear discontinuous evolution of science such as in the change of paradigm,
while Duhem leans toward a greater continuity, from what his thesis follows).

Fig. 2.1 Vitruvius’ man by Leonardo da Vinci
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In the present case, Leonardo is not a scientist in the modern sense of the word,
but he is a great observer of Nature and a true engineer’s mind. We can say with
Truesdell (1956, p. 4), that Leonardo is “an observer of the undisturbed nature”. His
graphic talents are here extremely useful because a good accurate picture can
replace many words. Whether his drawings represent a report on a true (well
designed) experiment or just a visual observation is not clear, although the second
avenue is more likely. But Leonardo, like some Japanese artists of woodprints (e.g.,
Hokusai) in the eighteenth and nineteenth centuries, captures very well the intricacy
of some flows with vortices and fantastic waves. But this is too involved, and one
must start with some more quiet situations, as a matter of fact, hydrostatics. In so far
as theoretical thinking is concerned, Leonardo seems to be somewhat limited, but
we must attribute to him some kind of recognition of a principle of continuity in a
simple form (cf. Truesdell 1956, p. 6). His explanation for the fact that fluids such
as water at the top of mountains or blood in the human head can go all this way up
is erroneous (cf. comments by Dugas 1950, p. 80). But his vision of the flux of a
fluid is more appropriate according to Duhem (1906–1912, First volume, p. 198). In
effect, in his “Del moto e misura dell’acqua” Leonardo states that “all motion of
water of uniform width and surface will be faster in one place than in another one
all the more that this water is less deep in one case than in the other”. He also
sketches out a theory of hydraulic pumps that, in some sense, prefigures Pascal’s
findings. So much for Leonardo’s accomplishments that we do not want to belittle
in any way.

We may consider that Leonardo is at the turning point of the birth of a true
modern science. For pedagogical purpose this birth is often attributed to a few
individuals such as Francis Bacon (1581–1626), a developer of an empirical theory
of knowledge with a specification of rules in the experimental method (See his
“Novum Organum”, 1620), and Galileo Galilei (1564–1642), a true mathematician
with a taste for experiments. But Simon Stevin (1548–1620), a Flemish all round
scientist (mathematician, mechanician, engineer and physicist, much concerned
with the basic principles of mechanics and the non existence of perpetuum
mobile—perpetual motion), is also to be considered. Stevin brought to the science
of hydrostatics two fundamental ideas. One is the principle of solidification
according to which a solid body of any shape but with the same density as water
can stay in equilibrium in water in any position without altering in any amount the
pressure field in the rest of the fluid. This helped him to determine the pressure
exerted on each element of the base of the container by solidifying thus the whole
fluid save a fine channel leading from the open surface to this element. As a result
the pressure is independent of the shape of the container; it depends only on the
weight of the column that fills up the channel. Another consequence of this is the
so-called hydrostatic paradox. According to this paradox, the total force—resultant
sum of pressures—that a fluid can exert on the bottom of a vase can be considerably
larger than the weight of the same fluid. Another result of Stevin deals with the
resultant of pressures acting on an inclined plane. He used here a reasoning that
involves an astute limit procedure by cutting the surface of this plane by a suc-
cession of small horizontal slices and then increasing indefinitely the number of

2.3 The Renaissance Experimentalists-Thinkers … 31



slices. He finally related Archimedes’ principle to the impossibility of a perpetual
motion. He is a direct predecessor of Galileo Galilei although his publications in
Flemish—a language of which he was an ardent propagandist—may have been
missed by Galileo.

Galileo Galilei is a true mathematician in that he does provide formulas based on
mathematical reasoning. He is also a true experimentalist because he performed
experiments that were purposefully designed. He is in quest of checking a
hypothesis but may also arrive at an unexpected result. This is the quintessence of
Francis Bacon’s advised method. But regarding hydrostatics, he first borrows ele-
ments to Aristotles’ mechanics. According to his “Discorso intorno alle cose che
stanno in su l’acqua o che in quella si movimento” (Galileo 1612) one such prin-
ciple is that “two weights moving with equal velocities are endowed with the same
power or momento in all their operations” (Dugas 1950, p. 138), a statement in
which we can see an application of the principle of virtual velocities as conceived
by Aristotle. A second principle along the same line is that “the power of gravi-
tation grows with the velocity of the moving object”. Accordingly, absolutely equal
weights moving at different velocities have unequal momenti: the most “powerful”
one is that one that moves faster than the other, and this in proportion of its velocity
compared to the velocity of the other one. From this one deduces, following
Aristotle, that two weights of unequal magnitude can balance reciprocally one
another and will be endowed with equal momenti each time that their “gravity” will
be in the inverse ratio of the velocity of their motion. Galileo applies this reasoning
to the siphon where a small quantity of water contained in a narrow vase can
equilibrate a large mass of fluid in a wide vase as a small decrease in height in the
second vase will correspond to a large level increase in the former. If we are to
believe Duhem (1906–1912, Volume 2, p. 214), this prefigures Pascal’s vision (see
below). Galileo also brings the properties of floating bodies to an application of the
principle of virtual velocities. It is noted by Dugas (p. 139) that Galileo still
believed in the “horror of vacuum” (“resistenza del vacuo”). But he is pragmatic
enough to accept the evidence that a newly developed pump cannot elevate water
higher than a certain limit, thus in contradiction with this “horror of vacuum”.

2.4 Seventeenth Century Experiments: Torricelli, Pascal,
Mariotte

If we keep with our own chronological delineation of the Renaissance, then we
must admit that Evangelisto Toricelli (1608–1647) worked at the final period of this
prestigious epoch. Although interested in all things mechanical, Torricelli left an
indelible trace in the history of hydraulics with his law of fluid flow (“efflux”)
through a small orifice placed at the bottom of a vase (container, tank). Exploiting
an analogy with the fall of heavy objects, he observes that the coming out water
cannot by itself rise again at an elevation larger than the one of the fluid in the vase;
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while this elevation would be the same if there were no resistance at all in the
system. As a conclusion he formulates—but does not prove—his famous law
according to which the velocity of the flowing water at the orifice goes like the
square root of the height of the fluid in the vase. Both Newton and Varignon (1725)
will have to ponder this matter again. But Torricelli’s law acted as a true motive
power in further developments in hydraulics. Note that Torricelli improved on others’
experiments by using mercury (known as quicksilver in his time) instead of water.

The next scientist in our gallery of distinguished “hydraulicians” certainly is
Pascal. Blaise Pascal (1623–1662) is a French philosopher and religious thinker.
His interests cover a wide spectrum both in humanities and sciences. He may be
considered a somewhat unorthodox catholic intellectual,2 but also an excellent
geometer, an inventor (of a computing machine), and an amateur physicist who
gave his name to a unit of pressure, the “pascal” (one newton per square meter). It is
this last point that requires our attention. The story is told in all books for French
teenager apprentice scientists in order to encourage them to engage in a scientific
career. Pascal repeated Torricelli’s experience in 1644 in Rouen, Normandy, with a
friend called Petit. Then convinced that Nature does not have horror of vacuum, he
projected in 1647 an experiment that he indeed conducted on September 19, 1648 at
the Puy-de-Dôme mount in central France. This experiment proved that, in Pascal’s
words, “fluids weigh more given their height” since he observed a change in the
level of mercury in a vertical tube depending on the altitude at which the experi-
ment was conducted. The result was printed in October 1648 while Pascal’s “Traité
de l’équilibre des liqueurs” (Treatise on the equilibrium of liquors”) was published
in 1663. In other words, he demonstrated the variation of atmospheric pressure with
altitude. A corollary of this result was the first well established definition of
pressure. “A vessel full of water is a new machine to multiply a force to any desired
degree” since a fluid in a small vertical tube connected to a much larger reservoir
can balance the large amount of fluid in the corresponding height in the reservoir.
We face here the observation that the cause of equilibrium in all examples treated
by Pascal stems from the fact that the “matter that extends from the bottom of a
vessel up to its open surface is indeed liquid”. This shows the possibility of
incompressible fluids such as water to transmit pressure without loss. This is usually
referred to as Pascal’s principle. It contains the basic idea for the conception of a
hydraulic press, what was indeed industrially realized by Samuel Bramah
(1748–1814), a British inventor, with the deposit of a patent for such a machine in

2Pascal is often presented as an opportunist and pragmatic—within the framework of apologetics—
who considered a surprising probability reasoning (Pascal was interested in gambling games) and
dared to bet on the existence of God (the celebrated “Pascal’s wager”): In short, we can say that it is
“safer” to believe in the existence of God than in his nonexistence; the odds are better this way since
there is nothing to lose in making this bet. In truth this “bet” is best understood as an expression of the
mathematical expectation, i.e. the product of gain and probability (a small, nonzero probability can
produce a large expectation). The main writings of Pascal in both science and philosophy are
collected in his “Pensées” (Thoughts). The author was offered a reprint copy of this thick book by his
elder brother when he was in high school. No need to say that this was very difficult reading that went
much beyond his understanding.
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1795. Indeed, the press has two cylinders and pistons of different cross-sectional
areas. If a force is exerted on the smaller piston, this will be translated into a large
force on the larger piston. The difference in the two forces will be proportional to
the difference in area of the two pistons (remember that pressure equals force per
unit area). In effect, the cylinders act in a similar way that a lever is used to increase
an exerted force. This sounds very much like another statement of the principle of
virtual displacements. In modern technology one often meets the word
“oil-hydraulics”, what simply means that oil has replaced water in the process
(although the Greek root for “water” has remained in the word!).

The Abbé Edmé Mariotte (1620–1684) appears to be a true experimentalist who
dealt with solids, fluids and gases. He published on the laws of shocks of bodies
(See his “Traité sur la percussion des corps”) as well as on the flow of fluids (see
his “Traité du mouvement des eaux” 1684). As a member of a committee in charge
of checking Torricelli’s law, he indeed checked this law, but missed the constriction
of the emerging flow. This will be corrected by Newton in a second edition of his
Principia. Mariotte also showed the importance of the deviation of the momentum
in the experience of the impinging of a flow on a flat surface. He is a pioneer in
considering size effects and introducing thus an embryonic form of a law of
similitude in the study of the resistance of fluids where he formulates proportion-
ality between resistance and the squared velocity. He also looked at the velocity of a
flow in channels or rivers, and envisaged the action of friction in the flow of water
in pipes. These achievements, of course, may appear modest compared to
Mariotte’s empirical determination of the famous Boyle-Mariotte law of the elas-
ticity of ideal gases according to which the volume of such a gas varies like the
inverse of the pressure at mass and temperature kept constant. Mariotte’s result was
obtained in 1676 but Robert Boyle (1627–1691) had proposed the same law earlier
in 1662. This empirical result will later on be justified by the kinetic theory of gases.

Of course Isaac Newton (1643–1727) could not have left unexplored any branch
of mechanics and physics of his time. No wonder, therefore, that he paid some
attention to flows and undertook to validate Torricelli’s law. In his interpretation of
the free fall of water, each particle acquires its velocity in free fall so that
Torricelli’s law is verified. But his solution concerning a vertical vase with an
orifice at its base contradicts the principles of hydrostatics (Dugas 1950, p. 216). It
is Pierre Varignon (1654–1722), a French Jesuit and mathematician, better known
for his proposal of composition of forces and his analytic definition of velocity and
acceleration, who gave a more natural explanation of Torricelli’s law (Varignon
1725). According to this explanation recalled by Dugas (1950, pp. 216–217), each
fluid particle receives instantaneously a finite velocity at the exit of the vase through
the effect of the column of water above it. Accounting for the flux, the so generated
quantity of motion is proportional to the square of the velocity. But the weight of
the fluid column is proportional to its height h, from which there follows the law
h � v2.
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2.5 Eighteenth Century Theoreticians: Clairaut, Daniel
Bernoulli, D’Alembert, Euler3

With the post-Newtonian and Leibnizian mathematical achievements, a new era
starts that will harmoniously mix analysis and experiments, perhaps with an
advantage for the former that we examine first.

Although much less known in continuum mechanics than in mathematics, Alexis
Clairaut (1713–1765)4 contributed to hydrostatics through his marked interest in
geophysics and the equilibrium figure of the earth in particular (see his book:
Clairaut 1743). Of necessity he had to envisage the equilibrium of water volumes
under the action of the earth’s gravity. The equilibrium will decide on whether the
earth is a perfect sphere or is more or less flattened at the poles (in agreement with
Newton) since there existed conflicting theories about the actual shape of the earth.
In looking at this problem, Clairaut applied the strategy proposed by Stevin of the
solidification of fluid volumes, considered fluid masses in motion (rotation) and
practically introduced the notion of potential in mathematics (cf. Dugas 1950,
p. 273). As a matter of fact, the general purpose of Clairaut’s research was to find
the laws of hydrostatics that are in accord with all hypotheses on gravity (work of
1734). Lagrange (1788, p. 128) emphatically said that Clairaut had “changed the
face of hydrostatics to create out of it a new physical theory”. The equilibrium
principle enounced by Clairaut that provides a necessary and sufficient condition is
that “a fluid mass can be in equilibrium only in so far as all parts that are contained
in a channel of any form that traverses the whole mass, do not destruct each other”
(Clairaut 1743, p. 1). From the application of this almost trivial principle, Clairaut
deduces that the total weight of a column of fluid of constant section and density
extending from the center of the earth to the equator or to a pole is none other than
the “effort” on the column. This is obtained by integration over the height of the
column. Applied to a short element of a channel this yields that the gradient of the
“pressure” is balanced by the components of gravity. This result must be inde-
pendent of the precise form of the channel, from which it follows that the spatial
variation of pressure should be an exact differential. In a rotating mass, this
transforms into the fact that the sum of the potential of gravitation—without specific
hypothesis on its expression—and of the potential of the centrifugal force is a
constant on a level surface. The vanishing of the variation of this potential yields
the surface of equilibrium that is more than often perpendicular to the action of
gravity as suggested earlier by Huygens. The spheroid itself will be such a level
surface. On using the Newtonian gravitation law this indeed provides the flattening
of the earth at the poles.

3The pioneering works on the foundations of continuum mechanics in the eighteenth century were
surveyed in our book (Maugin 2014).
4For the life of Clairaut, see Brunet (1952). For Clairaut’s original contribution to hydrostatics, see
Passeron (1994) and the corresponding extract of 2009. The analysis of Dugas (1950, Chap. 7) is
also very informative.
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The expedition to Laponia led by Maupertuis—but supported by Clairaut—in
1736–1737 proved that a degree of an arc of meridian is larger at the north pole than
in France, so that the hypothesis supported by Newton and Clairaut seems to be
correct, but with a flattening of the order of 1/300 th only, i.e., much below
Newton’s estimate. This will be corroborated by more recent precise measurements.
Clairaut, however, concluded from the discrepancy with Newton’ proposal that the
earth is probably inhomogeneous with a density increasing with distance from the
centre. It is of interest to note in conclusion that Lagrange (1788, p. 129) finds in
Clairaut’s analysis the idea that pressure is the same in all directions, i.e., is iso-
tropic although it is Euler who really formulated this essential property.

Practically contemporary of Clairaut we find Bernoulli (1700–1782) whose
name remains for ever attached to a famous theorem which in modern standard
notation and for a stationary flow reads

pþ 1
2
qv2 þ qgh ¼ const: ð2:1Þ

Here we have reinstated the pressure p that Bernoulli did not conceived as such. No
need to emphasize the tremendous role played by this equation in all further
developments in theoretical fluid mechanics, simple applications, and aeronautics.
As noticed before (Maugin 2014, p. 10), this was not the only result of Daniel who
produced a fundamental book on hydrodynamics written in 1734 (Hydrodynamica
1738). To the bewilderment of many, this scientific achievement by his own son
caused a burst of envy and jealousy from the shameless John (Johann) Bernoulli
(1667–1748). He hastily published a competing book with the title Hydraulica in
(1739). He even anti-dated the date of writing this opus to 1732 to pretend to a
(false) priority! But, to the credit of John, we must acknowledge that his book also
had many merits. In particular, it presented the first successful use of the balance of
forces to determine the motion of a deformable body. This was possible for John
because he had recognized that “the fluid on each side of an infinitesimal slice
pressed normally upon that slice, with a varying force which was itself a major
unknown” (Truesdell 1968, p. 121). With this we are very close to the notion of
internal pressure and a concrete view of contiguity of action in continuum
mechanics in a line that both Euler in the period 1749–1752 and Cauchy in 1823–
1828 will expand. Also, John was the first to practically give the above modern
form to his son’s theorem. As to Daniel, we must also note that he combined the
notions of “pressure” and motion, being guided by the conservation of living forces
in the sense of Leibniz. He also considered a motion by slices that are perpendicular
to the direction of motion, all particles in the same slice having the same velocity
that is inversely proportional to the considered section. This is very close to our
modern view of the flow problem in a tube. Daniel again discussed the principle of
living forces at the time of the death of his father (cf. D. Bernoulli 1748), a principle
to which he was strongly committed.

The great Leonhard Euler (1707–1783), perhaps more than the Bernoullis, is to
be credited for many definitive results in hydraulics and continuum mechanics in a

36 2 Hydraulics: The Importance of Observations and Experiments



general manner. This, of course, is the viewpoint of Truesdell (1984, pp. 212–217)
whose real god in mechanics is none other than Euler. As emphasized earlier,
pressure is the main constructive concept in hydraulics. Nobody did more to clarify
this notion than Euler for whom, much influenced by the recent progress in the
theory of hydraulics by the Bernoullis, father and son, pressure can be seen as the
action “from all sides and from neighbouring elements of fluid on an isolated
element of fluid” (a “particle”). In modern terms, it is isotropic and, with Euler, will
be viewed as normal force acting on an element of surface. This means that Euler
has reached the idea of pressure in a quasi-modern sense—while Lagrange attrib-
uted it to Clairaut-, and that the notion of contiguity is thus definitely formulated.
Furthermore, pressure becomes a true field that depends on both space and time in
the general case of dynamics. With the additional inception by (Euler 1757) of the
balance equations in Eulerian format, we have then at hand the basic formulation of
the field theory of perfect fluids. This brief discussion on fluids may make the
reader believe that Euler had no notion of a tangential force. But this is not true
because Euler himself dealt with this notion in a problem of solid mechanics—the
elastica—that had been examined by James (Jacob) Bernoulli a long time before.
The high value of Daniel Bernoulli’s and Euler’s seminal works in hydraulics is
emphasized by Truesdell (1956). Daniel conducted some experiments in parallel
with his mathematical approach, while Euler was for ever a pure theoretician.

In referring to Euler we have bypassed Jean Le Rond d’Alembert (1717–1783)
who left a quantity of innovative works in the science of Mechanics in his young
age. Perhaps not in the same class of mathematicians as Euler with whom he had
many discussions and exchanges of correspondence, and certainly not as clear as
Euler in his writing and proof reports, d’Alembert must be singled out for his
originality and his general view of mechanics in a Leibnizian tradition. Thus in
1744, this gentleman, well educated in the best college in Paris, but mostly
self-taught in mathematics, published his own book on the emerging fluid
mechanics (D’Alembert 1744) after his publication of a celebrated Treatise on
Dynamics in 1743. Furthermore, in 1752 d’Alembert obtained correct partial dif-
ferential equations for axially symmetric and plane flows (of the type now called
irrotational flows; cf. D’Alembert 1752). This is one of the first considerations of a
two-dimensional motion of a continuum. He had already introduced for the first
time the notion of partial differential equations in a previous work of 1743 on the
mechanics of a heavy hanging rope. As noticed by Truesdell (1968, p. 228),
d’Alembert does not speak of “pressure” but of “forces” that are viewed as “re-
versed accelerations”. This fits well in d’Alembert’s vision of reducing hydrody-
namics to hydrostatics in accord with the general approach to mechanics he had
given in his treatise of 1743. D’Alembert was also responsible for the introduction
of the notion of stream function while Euler had introduced that of velocity
potential. And we cannot avoid mentioning the d’Alembert paradox for the absence
of drag on a cylinder placed in a perfect fluid flow. This was proved by d’Alembert
in 1750. Of course, this theoretical result is contrary to common experience.
A resolution of this paradox could be given only with the introduction of discon-
tinuities in the flow field and the notion of wake.
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In a general manner Truesdell has an exaggerate tendency to belittle the
importance of d’Alembert’s works as compared to Euler’s. Thus he claims con-
cerning d’Alembert’s treatise of 1744 that (Truesdell 1968, p. 227) “this entry of a
newcomer [he means d’Alembert] in the field added nothing to the subject”. He
repeated the same kind of argument in his review of the book by Rouse and Ince
(1957) on the History of Hydraulics (Truesdell 1984, pp. 212–217). There he
emphasized the inaccuracies introduced by Lagrange (1788) in his historical
introduction on the history of fluid mechanics; he claims that Lagrange wrongly
attributes successes to d’Alembert and also Clairaut, and doing so does not hesitate
to introduce some innuendos (e.g., tactic fully making a remark that d’Alembert
was the “patron of the career of Lagrange in France”; p. 213) or demonstrating
(p. 215) that his translation of the Latin text of Daniel Bernoulli is much better than
the one produced by others (e.g., Dugas—who certainly knew his Latin like all
people of Dugas’ calibre highly educated before the First World War—or Rouse
and Ince). In spite of these harsh criticisms, we note that d’Alembert provided the
bases on which Lagrange was going to build his grand scheme of mechanics.

Lagrange (1736–1813) is the last great theoretician of mechanics in the eigh-
teenth century. His beautiful contributions to fluid mechanics need not be reported
here again. Suffice it to remind the reader of the Lagrangian formulation of (perfect)
fluid mechanics and his solutions of various wave problems in fluids such as the
flow in a shallow channel of small slope and uniform width for which Lagrange has
shown that the speed of propagation of a wave is proportional to the square root of
the depth of the channel.

Toward the end of the eighteenth century we still note the contribution of Lazare
Carnot (1753–1823), successful politician, military organizer, but also mechanician
of value. He exploits the principle of solidification of Stevin and Clairaut in his
consideration on hydraulics which chronologically precedes the treatise of
Lagrange although published only in Carnot (1803). Carnot contributed to the
proposal of the empirical Borda-Carnot equation (see below).

2.6 The True Experimentalists: Borda, Bossut,
and Du Buat

We qualify Jean-Charles de Borda (1733–1799), Abbé Charles Bossut (1730–1814)
and Pierre du Buat (1734–1809) of true experimentalists as these scientists devised
special purposeful experiments and studied the influence of various parameters.
With these scientists we arrive at the study of the resistance of fluids on their flow in
real situations, what is obviously of great importance in applied hydraulics. With
the new account of essential friction effects this contrasts with the theoretical studies
of d’Alembert, Euler and Lagrange.

The “Chevalier” de Borda—as he is often called—in fact was a military naval
engineer with a taste for mathematics and physics who fulfilled various state
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missions throughout the world as a navigator and hydrograph (cf. Mascart 2000).
He demonstrated remarkable qualities as an experimentalist in fluid mechanics in
works performed in the 1760s and 1770s. Among his successful studies we must
record his study on the resistance offered by air to a moving material surface. This
effect is a global one that cannot be obtained by integration over simple elements.
The global resistance is carefully shown to be proportional to the square of the
velocity and to the sine of the incidence angle (not to the squared sine as proposed
earlier by Newton). In the case of water he checked the law of proportionality to the
squared velocity. He observes that this resistance decreases with depth in water and
that it may grow faster than the square of the velocity at the surface. To explain the
phenomenon he exploits a theory of loss of living forces that is not entirely con-
vincing. In all, his conclusion is that the theory put forward by Newton (who used
the image of the shock of fluid particles on the obstacle) is not valid and should not
be applied to the motion of boats. The considerations about the loss of living forces
are of special interest because they followed from a divergence from the famous
Bernoulli formula (2.1). First of all the idea is original. Second, the result is cor-
roborated by experiments. We remind the reader that this well known problem
concerns the flow of a fluid by an orifice standing for a sudden expansion or
contraction of the flow, say in a horizontal pipe. Carnot revisited the problem, hence
the often given name to the obtained formula, the Borda-Carnot equation. Using
modern notation, this equation can be stated in the following simple form (for
decreasing velocity):

DE ¼ 1
2
nq v1 � v2ð Þ2; ð2:2Þ

where DE is the loss of mechanical energy by the fluid—or dissipated kinetic
energy-, q is the fluid density, v1 and v2 are the mean flow velocities before and
after expansion, and n is an empirical nondimensional coefficient with value
between zero and one (in fact equal to one for an abrupt and wide expansion). The
energy quantity DE is none other that the variation in the “constant” in Daniel
Bernoulli’s equation (2.1) along a streamline. For an open channel flow we have

DE ¼ qgDH; H :¼ hþ v2= 2gð Þ; ð2:3Þ

where h ¼ zþ p= qgð Þ is called the total head in hydraulics, i.e., the free surface
elevation above a reference height. In practice, the flow separates and one observes
a turbulent recirculating zone after expansion. Separating recirculating zones are
also observed at the entrance of a narrower pipe in the case of contraction. The flow
is contracted between the separated flow areas and then re-expands to cover the full
pipe section. The contraction coefficient for a sharp-edge contraction was experi-
mentally determined by Julius L. Weisbach (1806–1871) in the nineteenth century
(cf. Weisbach 1855). The original bold idea of Borda (1766) was to assimilate the
hydraulic phenomenon to a shock with loss of living force, that is, a shock between
hard bodies according to the terminology of the early eighteenth century (in the
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controversy between momentum and vis-viva as the conserved quantity in
mechanics). Borda also contributed to the theory of hydraulic wheels (cf. Borda
1767, 1786).

The Abbé Charles Bossut is a personality who differs completely from that of
Borda. We do not know of any adventures through the world by this quiet
immovable priest. We noted in our book (Maugin 2013, p. 7) that he was “a
disciple of d’Alembert and a specialist of hydrodynamics (cf. Bossut 1771), but also
an underestimated historian of mathematics (cf. Bossut 1810), and a remarkable
pedagogue. His course of mathematics at the Military school of Mézières was first
published in 1781. Its last edition (1800) was in seven volumes, of which two were
devoted to differential and integral calculus in the Leibniz notation. This had a
decisive influence on the rebirth of mathematical physics in the UK. He was a
colleague of Laplace and Lagrange at the Paris Academy of Sciences, but not in the
same class as these two mathematicians-mechanicians from the point of view of
creativity”. He was a long time examiner (1796–1808) in mathematics at the Ecole
Polytechnique after the creation of this school. However, the surprise here is pro-
vided by the outstanding qualities he demonstrated as a great experimentalist in a
series of crucial experiments in fluid dynamics.

In truth, a team composed of d’Alembert, Nicolas Caritat de Condorcet (1743–
1794)—another protégé of d’Alembert—and Abbé Bossut at the Paris Academy of
Sciences was asked by the King’s government to investigate the means of
improving the navigation of ships. But the corresponding experiments were con-
ducted, and the resulting report written, only by Bossut (cf. D’Alembert et al. 1777)
and a few helpers. Bossut performed his experiments in the water basin available at
the Royal Military School in Paris. The experiments involved as many as twelve
different models of ships, and were repeated a total number of 300 times, 200 of
these in a practically indefinite space and about 100 in an artificially realized
channel in the basin, with depth and width adjustable at will. He also accounted for
corrections due to the friction in the pulling apparatus due to a falling weight (of
course no other type of motor was available at the time) and due to the part of the
model in contact with air. We can say that the theoretically minded Bossut followed
a remarkable experimental protocol. Among the conclusions reached we single out:
(1) the resistance to a similar cross-sectional surface but at different speeds follows
approximately the square law in velocity; (2) the resistance of fully submerged
bodies is less than for those of partly submerged ones; For bodies equally sub-
merged in water but with different widths, the resistance varies in the same direction
as the surface; (3) the squared sine law (of Newton) is not well verified for small
angles of incidence. In fact, Bossut assumed a tentative law involving a sine at a
power n, and experimentally found n between 0.66 and 1.79. In the conclusion by
Bossut, the resistance perpendicular to a plane surface in an indefinite fluid equals
the weight of a column of fluid of which the section is that of the said surface and
the length is the height determined by the speed at which the interaction with the
fluid (for him a “shock”) takes place. Clearly, Bossut is interested by the role played
by the friction that the ship suffers along its length. This friction is rather small once
the ship has been set in motion. A final remark is that the observed resistance is
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larger in a channel of restricted width so that he advised channels as deep and wide
as possible for easier navigation, but for the limitation in cost. Bossut also advised
on the construction of canals. It is said that the results of his experimental work
influenced the design of ships by the American inventor Robert Fulton (1765–1815)
when the later experimented with steam ships on the Seine river in Paris (Bossut,
Carnot and Prony witnessed these well publicized events).

Pierre Du Buat was a French engineer specialist of hydraulics. Educated at the
Ecole Royale du Génie de Mézières (Royal School of Engineering in Mézières, the
forerunner of the Ecole Polytechnique), he obtained his diploma in 1750. He is the
author of a celebrated book on the Principles of Hydraulics (Du Buat 1779; second
edition 1786) that will remain a kind of “bible” in the field until the publication of the
course of Bélanger (1790–1874) delivered at the Ecole des Ponts et Chaussées
(1850s). Du Buat may be considered a follower of d’Alembert and Abbé Bossut but
he is more applied than them. Barré de Saint-Venant (1865) expressed his admiration
for him (See Fig. 2.13 herein after). He proved to be as good an experimentalist as
Bossut. His research on the drag exerted on ships is documented in his book. The
major step taken by du Buat, both experimentally and intellectually, is that he wants
to account for friction and viscosity. According to his vision, water resistance is due
to the friction of the fluid on solid walls. This allowed him to propose a corrected
formula for the flux of fluid in terms of: (i) the width of the river, (ii) its depth, and
(iii) the slope of the bed of the river. This also included the acceleration of gravity
and a proportionality coefficient that depends on the roughness of the banks. This
formulation marks a deep progress in sophistication compared to formulas proposed
earlier by hydraulicians such as Antoine Chézy (1718–1798) who gave a simple
equation for the mean velocity of the flow. With Du Buat, viscosity is viewed only as
intervening indirectly in the “delay” caused by the presence of walls. His experi-
ments are conducted in artificially constructed wooden canals or metallic or glass
tubes. He introduced the original and fruitful notion of mean radius for such con-
ducts. Like some of his predecessors, he interpreted the mechanical interaction with
walls through the notion of shocks of fluid particles with the walls especially when
considering the sinuosity of the river. As a matter of fact, he envisaged all accidents
that a river can meet during its flow all the way to the sea. Concerning the flow
around a cylindrical object, he noted the presence of an overshoot of pressure at its
head and a lowering of pressure and a suction effect at the rear. He multiplied the
number of experiments by varying the various parameters, and he wisely concluded
that much more was needed on the experimental side. With such a conclusion we can
say that du Buat was remarkably honest and a true experimentalist, indeed.5

Two remarks are in order at this stage of our presentation. First, in the line of
Newton, many of the discussed scientists view the interaction of water with
obstacles as shocks of particles with these obstacles. But, second, the great progress

5There is some irony that the etymology of the name “Buat” brings us back to water. Indeed, a
possible etymology is that “buat” stands for a water conduit, or a “washing place” (“lavoir” in old
French) and that even in modern French “buandrie” means a covered place or special room
devoted to washing household linen and clothes.
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is that this interpretation results in friction and a new era will expand with account
of viscosity in one way or another.

We can conclude this section that dealt mostly with the eighteenth century by
mentioning that some more practical books had a strong influence on the civil
engineering applications of hydraulics. This is the case of the treatise by the
engineer Bélidor (1697–1761) where all developments since the ancient Greeks and
the Romans are taken into account (Bélidor 1737–1753). This met great success and
was translated into foreign languages.

2.7 The Role of Viscosity: Poiseuille, Hagen

At all times scientists and engineers have noticed the negative influence of friction
on the motion of objects in contact with other objects (and the associated feeling of
expanded heat) or on the flow of fluids in conducts. They had the feeling that
something was lost. Was it momentum, energy or else; anyway, notions that were
not well defined? But with experiments in hydraulics conducted at the end of the
eighteenth century, the actuality of the problem was pregnant and more thought was
needed about it. The French military engineer Charles Augustin de Coulomb
(1736–1806), a pioneer in geotechnical engineering, may be considered the creator
of the science of friction in the late eighteenth century. Of course a correct inclusion
of the phenomenon of friction in irreversible thermodynamics had to await the
second part of the twentieth century to find a satisfactory formulation. But
Coulomb, a gifted and careful experimentalist, provided the corner stone on which
the theory could be built. This endeavour was undertaken by Coulomb after the
publication of a competition prize offered by the Paris Academy of Sciences s in
1781 with subject: “To produce new and large scale experiments applicable to
machines used in the Navy, e.g., pulleys, capstans, and inclined planes”. Coulomb
won the prize. He realized a very thorough series of experiments by varying all
kinds of parameters such as the nature of surfaces in contact (wood, metal), with or
without lubricant, the roughness of these surfaces, the pressure exerted on these
surfaces, their size, the duration of contact, the more or less large speeds of the
contacting objects, and the humidity and dryness of the apparatus. Rarely had such
complete studies been made before. Among the reached conclusions we note: the
proportionality of friction to the pressures; heterogeneous surfaces yield markedly
different results; and friction increases with the velocity (with an arithmetic pro-
gression in friction for a geometric progression in velocities. In order to pull a
weight P on a horizontal plane Coulomb finds that one must expand a force (in our
notation)

T ¼ AþPa; ð2:4Þ

where A is a small constant that depends on the “coherence” of the surfaces in
contact, and a is a friction coefficient that depends on the nature of the contacting
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surfaces. Considering an inclined plane (as is the case during the launching of a new
ship) he finds that the force needed to hold the ship is given by the following
formula that generalizes (2.4):

T ¼ AþP a cos nþ sin nð Þ
cosmþ a sinm

; ð2:5Þ

where n is the angle made by the plane with the horizontal, andm is the angle made by
the pulling force with the inclined plane. T is minimum for a = tanm. Equations (2.4)
and (2.5) contain the main message left by Coulomb.

In his long memoir where he collects his results of research for the period (1838–
1844) Poiseuille (1846) says that “I began my investigations because progress in
physiology demands knowledge of the laws of motion of the blood…in
small-diameter pipes”. Poiseuille (1797–1869) received first the standard
engineering-science education of the day at the Polytechnique School, but he
decided to shift to medical studies to devote his whole life to the transposition of
physical laws to the laws of physiology. As a first success in his doctoral thesis in
medicine (1828) he proposed the first scientific means of measuring the blood
pressure with a manometer using mercury to be called a hemodynamometer.6

However, his most well known research results are those that pertain to his delicate
studies of the flow of liquids in tubes of very-small diameters (i.e., capillaries) and
are now summarized in the well-known Poiseuille law. A detailed history of this
law and a description of the apparatus used by Poiseuille are to be found in Sutera
and Skalak (1993). This law is often called the Hagen-Poiseuille law—especially in
Germany—although Hagen’s (1839) studies are much less extensive and accurate
than those by Poiseuille. There was no contact between these two scientists and
they published in different languages, but their researches were indeed contempo-
rary. Hagen (1797–1884) was a Prussian hydraulician with an administrative career
as a construction official (cf. Uhlemann 2009).

Although viscosity was duly introduced by Navier in his landmark work on fluid
mechanics in 1823, Poiseuille does not use the expression “coefficient of viscosity”,
but his work indeed relates to the flow of viscous fluids, of which blood truly is a
good representative. Using a modern notation that was obviously foreign to
Poiseuille, Poiseuille’s law for the velocity field of the laminar flow of a liquid in a
circular tube of radius R is given in cylindrical coordinates by the following
expression:

v r; h; zð Þ ¼ vðrÞ ¼ vmax 1� r2

R2

� �
; ð2:6Þ

6Poiseuille’s perduring influence of this technique was such that we are still giving the blood
pressure in units of height of mercury.
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where the maximal velocity is given in terms of the pressure gradient in the flow
direction, the radius R and the viscosity coefficient g by

vmax ¼ R2

4g
dp
dz

����
����: ð2:7Þ

The proof of this equation requires assuming that the velocity of the fluid vanishes
at the boundary r = R, i.e., a no-slip condition. Equation (2.6) is a neat progress
compared to what existed before (like in formulas proposed by Chézy—see above
—and de Prony), when only a mean velocity across the cross section of a tube was
introduced. Here the velocity profile is parabolic with a maximum at the centre of
the tube. A similar computation can be effected for the flow between two flat fixed
walls. But the problem of the flow motion caused by the shearing effect of a moving
top plane is another famous problem called the Couette flow.

The original work of Poiseuille did not provide an equation such as (2.6). Like
that of Hagen, it purported to obtain the expression of a pressure drop along a pipe
as a function of the diameter D or radius R of this pipe of length L. If DP is the
pressure drop and Q is the volumetric flow rate, then Poiseuille’s result in his
notation can be written as

Q ¼ K 00D4DP
L

or
pR4

8g
DPj j
L

; ð2:8Þ

what is compatible with (2.6) and (2.7). Poiseuille’s constant K 00 equals p=128 g.
The determination of this constant (in fact depending on temperature) by Poiseuille
produced the dynamic viscosity of water to a remarkable accuracy7 (cf. Sutera and
Skalak 1993). The great Stokes could have easily deduced the result (2.6)–(2.7) if
he had indeed implemented the no-slip condition at the boundary but he still had
some doubt about this condition. This result was deduced from the Navier-Stokes
equations by Eduard Hagenbach (1833–1910) from Basel in 1860. He is the one
who chose to call it the Poiseuille law without reference to Hagen.8

7According to Bingham (1922), Poiseuille’s value is accurate to 0.1 %.
8The priority question between Poiseuille and Hagen does not require much development although
Hagen in 1869 claimed priority because of a paper he had published in 1839 (see Szabó 1977,
pp. 269–273; Hagen 1869). But Poiseuille published continuously his results in notes in the
Comptes Rendus of the Paris Academy of Sciences between 1838 and 1844, the final publication
of his long memoir of 1846 being due to the delay in publication of contributions by non-members
of the Academy (so called “savants étrangers”) in a special series of memoirs.
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2.8 Summary and Conclusion

More than two thousand years elapsed between the original works of Archimedes
and the study of blood flow by Poiseuille. A wealth of practical applications of
hydraulics, whether in irrigation or the supply of water to cities, was developed
using only an empirical approach. The much awaited breakthrough came with the
consideration of true experiments with the Renaissance and the next period of the
seventeenth and eighteenth centuries. This is due to a few scientifically-minded
engineers who acknowledged the protocol of a good experiment (That is: consider
the main facts and design the experiment accordingly, identify the most relevant
parameters and vary them as far as possible, do measurements, and propose simple
mathematical relations, that would be justified later on by a true analysis when this
technique had been constructed). Before analysis was used all reasoning presented
by experimentalists was vague and most often erroneous, although some of these
gifted people had the right intuition.

According to our survey, three basic notions seem to have emerged from these
experimental studies. The first of these notions is pressure. The emergence of this
quantity was facilitated by the a priori consideration of fluids such as water that are
nearly incompressible (in modern terms). This led to the idea of making a fluid flow
by means of an applied pressure. But this is related to the second notion that played
an essential role, the notion of gravity. This is materialized by the fact that pressure
in its most primitive form is measured by the height of a fluid in a vertical column
opened to air, that is, it weight. That is clearly demonstrated by Torricelli’s and
Pascal’s experiments. This relates to a static view of the phenomenon, called hy-
drostatics. In turn, this played a determining role in the study of flows under gravity
and the equilibrium figures of the earth. In any case, all these experiments and
considerations remain very earthy. It will take some time to arrive at a more abstract
vision of pressure as contiguity of action from all directions, as proposed by Euler;
that is, the first step towards the true notion of contact action in the framework of
continuum mechanics.

It will also take some time to introduce the third notion of interest, viscosity. Of
course, experimentalists had noticed the loss in the rate flow of fluids in experiments
involving a pressure gradient (via a decrease in altitude along an inclined plane). But
they experimented with negligibly viscous fluids (e.g., water) and the accuracy of
measurements was insufficient. Kinematics enters the picture with the measurement
of velocities. Early experimental research provided some velocity of exit from a
container as proportional to the square root of the height of water in the container
(Torricelli, Borda, du Buat). But one of the most beautiful formulas of physics was
proposed by Daniel Bernoulli with his Eq. (2.1). This indeed relates two of our three
ingredients, pressure and gravity, together with a velocity field, but for perfect
(nonviscous) fluids also called inviscid fluids. With some advocated enthusiasm, we
can declare that this equation is formidable. In particular, a straightforward appli-
cation of it to the flow around an obstacle such as a wing profile provides a direct
elementary proof of the lift effect on the wing, hence the theoretical basis of
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aeronautical flight. Viscosity was first imagined as friction on the bed of rivers or
along the walls of a conduct of limited width. This will destroy the constancy of the
right-hand side in Eq. (2.1). More precisely, in problems the effect of viscosity will
essentially come from the boundary conditions in solving a true boundary-value
problem of hydrodynamics while in experiments fluids such as oil or blood will offer
a better object for its study. That is why our second favorite formula here is
Poiseuille’s Eqs. (2.6)–(2.7). It really relates to hydrodynamics although in a laminar
regime (cf. Darrigol 2005, Jouguet 1924, Tokaty 1971), that is—to be simple—to
slow enough flows with regular stream lines. The case of turbulent flows and high
velocities will be studied in depth at the end of the nineteenth century, especially
through the experimental (Reynolds’ number) and theoretical (Reynolds’ stress)
efforts of Osborne Reynolds (1868–1912). Also, the flow of fluids through porous
media of interest in geophysics and civil engineering will benefit from the works of
Henry Darcy (1803–1858) and other people. But this is another story of which we
shall examine the most important episodes in another contribution (Portraits of the
main scientists involved in this chapter are given in Figs. 2.2, 2.3, 2.4, 2.5, 2.6, 2.7,
2.8, 2.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17).

Fig. 2.2 Archimedes: By
Domenico Fatti (1620)
[Museum of Alte Meister,
Dresden, Germany]
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Fig. 2.3 Leonardo da vinci,
self-portrait

Fig. 2.4 Simon Stevin
(1548–1626)
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Fig. 2.5 Galileo Galilei
(1564–1642)

Fig. 2.6 Evangelisto
Torricelli ((1608–1647) 62)
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Fig. 2.7 Blaise Pascal
(1623–1662)

Fig. 2.8 Works by Edmé
Mariotte (1717)
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Fig. 2.9 Edmé Mariotte
(1620–1684)

Fig. 2.10 Alexis Clairaut (1713–1765)
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Fig. 2.11 Chevalier de Borda
(1733–1799)

Fig. 2.12 Abbé Charles
Bossut (1730–1814)
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Fig. 2.13 On Du Buat
(1734–1809) by Barré de
Saint-Venant (1865, 1885)
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Fig. 2.15 Julius Weisbach
(1806–1871)

Fig. 2.14 Poiseuille
(1797–1869)
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Fig. 2.16 Gotthilf Hagen
(1797–1884)

Fig. 2.17 Gotthilf Hagen
(1797–1884)
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Chapter 3
On Porous Media and Mixtures

Abstract Porous media have obviously attracted the attention of hydraulicians and
specialists of geo-materials as soon as the early nineteenth century. The essential
breakthrough was presented by Henry Darcy who proposed a simple law for the
flux of water per area in sand on the basis of careful experiments. Here the notion of
porosity is essential. But the importance of the concept of viscosity was not fully
made explicit in spite of Poiseuille’s pioneering work on flows in pipes (in truth,
blood in arteries). Darcy’s law was to prove to be the driving force in further
progress in the field, so that the present contribution is akin to a saga of this law
through a hundred and fifty years. Thus, chronologically, Fillunger, introduced the
concept of uplift, Terzaghi produced a basic theory of consolidation of soils,
Fillunger approached the flow in porous media in the form of an elementary theory
of mixtures, and Biot proposed a first satisfactory theory of poroelaticity with
interesting dynamic properties. Modern authors in the 1960s–1970s followed
Truesdell in his rational theory of mixtures. More mathematically oriented
researchers used the homogenization technique to justify Darcy’s law and its
generalizations. The thermo-mechanical continuum theories in finite strains are also
evoked, as well as very briefly the importance of porosity in plastic behaviour.

3.1 Introduction

Very early it was realized when watering a plant that it took some time for water to get
absorbed by the ground, although it was naturally questioned whether this happened
through some chemical process or water was making its way through interstices in the
ground seen as some kind of granular material. Bulging of the ground would indicate
that water was indeed occupying some volume and the observed fact that water at
some point could not be accepted anymore hinted at a phenomenon of saturation.
Also, the flow through aquifers was more or less slow or altogether hindered. These
were properties that would call for a scientific explanation in due time. It seems that
the idea of porous media developed quite naturally. The great Leonhard Euler (1762)
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himself “attributed the elasticity of a solid to a certain subtle matter in closed pores”
(cf. De Boer 1996, 2000, p. 24). Pores indeed are thought as voids (in fact, air) that in
some cases become filled upwith a liquid. The relationship with geomaterials and soil
mechanics is obvious, although we cannot escape from the vision of a spongy
material or, now, that of the spectacular metallic foams. In summary, in modern
practice, a porous medium is seen as a material body made of a more or less
deformable solid matrix with its voids filled with fluids. These voids are intercon-
nected so that fluids can flow through the medium; that is, the medium is permeable.

No theoretical progress could be achieved before the inception of the notion of
viscosity, the beautiful experiments of Poiseuille and Hagen, and the introduction of
well justified continuum equations governing viscous fluids by Navier, Stokes and
Barré de Saint-Venant (cf; Maugin 2014a). A breakthrough was reached with the
experimental results of Darcy, their justification on the basis of the Navier-Stokes
equations, and their improvements by Brinkman and Forchheimer. This really took
place in the expansion of studies in hydraulics and applications in civil engineering. It
will take some time tomathematicians to correctly deduce these laws bymeans of some
homogenization procedure, and to physicists and specialists of continuummechanics to
incorporate them in the framework of a good thermodynamic description, to include the
theory of porousmedia within themore general frame of a recently developed theory of
mixtures, and to assess the importance of porosity in plasticity. The role played by
mechanicians such as Truesdell, Biot and Bowen, and engineers such as Fillunger and
von Terzaghi (the creator of modern soil mechanics) must be emphasized.

Most recent developments are exposed in a number of books (Bear 1972;
Rajagopal and Tao 1995; Coussy 1995, 2010; De Boer 2000; Ehlers 2010;
Wilmanski 1998). The present essay provides some historical perspective with an
emphasis on the main breakthroughs since the seminal works of Poiseuille and
Darcy. It logically complements our previous contribution devoted to the begin-
nings of hydraulics as an engineering science (Maugin 2014b).

3.2 Reminder: Poiseuille and Blood Flow

In extremely careful experimental works conducted in the period 1838–1844, J.L.
M. Poiseuille (1797–1869), an alumnus from Ecole Polytechnique but also a Doctor
in medicine, fulfilled an important part of his programme to devote his whole life to
the transposition of physical laws to the laws of physiology. This he did particularly
by investigating the laws of motion of the blood in small-diameter pipes (Poiseuille
1846). Although viscosity was duly introduced by Navier in his landmark work on
fluid mechanics in 1823, Poiseuille does not use the expression “coefficient of
viscosity”, but his work indeed relates to the flow of viscous fluids, of which blood
truly is a good representative. The original result he obtained relates the expression
of a pressure drop along a pipe as a function of the diameter D or radius R of this
pipe of length L. If ΔP is the pressure drop and Q is the volumetric flow rate, then
Poiseuille’s result can be written in his notation as (cf. Maugin 2014b)
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Q ¼ K 00D4DP
L

or
pR4

8l
DPj j
L

; ð3:1Þ

where the second expression is a modern rewriting involving the viscosity μ.
Poiseuille’s constant K 00 equals p=128 l. The determination of this constant (in fact
depending on temperature) by Poiseuille produced the dynamic viscosity of water
to a remarkable accuracy.

In modern textbooks Poiseuille’s solution of the laminar flow of a liquid in the
circular tube is given in the following more mathematical form in cylindrical
coordinates

v r; h; zð Þ ¼ v rð Þ ¼ vmax 1� r2

R2

� �
; ð3:2Þ

where the maximal velocity is given in terms of the pressure gradient in the flow
direction, the radius R and the viscosity coefficient μ by

vmax ¼ R2

4l
dp
dz

����
����: ð3:3Þ

The proof of this equation requires assuming that the velocity of the fluid vanishes
at the boundary r ¼ R, i.e., a no-slip condition. Equation (3.2) is a neat progress
compared to what existed before (like in formulas proposed by Chézy and De
Prony), when only a mean velocity across the cross section of a tube was intro-
duced. Result (3.2)–(3.3) was deduced from the Navier-Stokes equations by Eduard
Hagenbach (1833–1910) from Basel.

With Poiseuille’s result, we have a first true manifestation of viscosity, although
not mentioned as such by its author. From then on viscosity will have to be
accounted for in the study of flows in various configurations. The case of turbulent
flows and high velocities will be studied in depth at the end of the nineteenth
century, especially through the experimental (Reynolds’ number) and theoretical
(Reynolds’ stress) efforts of Osborne Reynolds (1868–1912).

3.3 Darcy and the Fountains in Dijon

Like Abbé Edmé Mariotte (1620–1684)—cf. Maugin (2014b)—before him, Henry
Darcy (1803–1856) was born in Dijon. Nothing predestined this city to breed
specialists of hydraulics. This French provincial city in Burgundy is internationally
known for gastronomy and its celebrated “mustard”. That is a strange destiny when
we think that Dijon in fact was the capital of a powerful state—the Duchy of
Burgundy (1032–1477)—, extending from the present day Burgundy region—
indeed famous for its gastronomy and wines—to the actual Netherlands, often in
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competition and/or war with the kingdom of France (with capital Paris) in the
Middle Ages. Dijon has kept until today the nice and rich outlook of a provincial
capital. But it happened that Dijon became worldwide known to all hydraulicians
through one of his sons, Henry Darcy. This remarkable individual received the
standard high education of civil engineers of the period (Ecole Polytechnique in
Paris followed by the Ecole des Ponts et Chaussées). On graduation he became a
member of the celebrated Corps of engineers of Ponts et Chaussées and specialized
rapidly in hydraulics with an interest in the supply systems of drinkable water to
cities. This is what brought him back to his native city when the development of the
railways network caused a growth of this city that required an appropriate layout of
distribution of water. Although an excellent theoretician by formation and with a
good training in applied construction and developmental engineering (railways,
canals), the bright Darcy attacked this hygienic problem with a rather strict
experimental mind. He published the results of his investigation in a now classic
synthesis (Darcy 1856—Fig. 3.1—; complemented by Darcy 1857). That is where
he proposed his celebrated “Darcy” law. Like Fourier’s law in heat conduction,
Fick’s law in diffusion theory, and Ohm’s law in electricity, Darcy’s is a paragon of
simple but efficient constitutive equation (in modern terms). In Note D of his book
of 1856, Darcy describes his (vertical) experimental apparatus, and concisely
explains how he was led to the formula that relates the total discharge to the
pressure drop in the filtration of water through sand. This represents the most basic
law in the flow of porous media. It was to be checked, improved, and physically and
mathematically justified for a hundred and fifty years. Note that Darcy himself does
not speak about viscosity, but his work provides one of the first expressions of this
faculty—to flow more or less easily- in some measurable form related to the flow in
some conduit. It is Hagen (1839) who really explicitly introduced the viscosity in
Darcy’s formula (cf. Nakayama 2007). The subject matter was of course of actuality
as shown by the book of Dupuit (1843) on the flow of waters in canals and
permeable soils published by the same Parisian editor as Darcy’s book. Boussinesq
(1904) pursued the theoretical analysis of such underground flows. Darcy’s law was
also generalized to saturated and unsaturated flows in heterogeneous and aniso-
tropic bodies in a little known technical report by Buckingham (1907).

The Darcy-Hagen law can be given in the following modern direct vector form:

q ¼ � k
l

rp� qgð Þ ð3:4Þ

where q is the flux or discharge per unit area, p is the pressure, rp is the pressure
gradient, g is the gravity vector, k is the permeability, and μ is the dynamic vis-
cosity. The so-called Darcy velocity is defined as

vDarcy ¼ q
A
¼ vporen; ð3:5Þ
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Fig. 3.1 Darcy’s book of 1856
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where q is the filtration flux (discharge per unit area), A is the filtration surface and
n is called porosity (sometimes noted ϕ) given by

n ¼ volume of void ðporesÞ
total volume

: ð3:6Þ

In the original work by Darcy, Eq. (3.4) in a horizontal tube of length L would be
given by

Q ¼ � kA
l

pb � pað Þ
L

; ð3:7Þ

where Q is the total discharge (volume per unit time), A is the cross-sectional area
of the flow, and pb � pað Þ is the pressure drop. Compared to (3.7), Eq. (3.4)
accounts for the “elevation head”. The negative sign obviously means that the fluid
flows from high pressure to low pressure. Equation (3.5) means that only a fraction
of the total formation volume is available for flow. Darcy’s equation, in its mere
simplicity, provides excellent results for groundwater flowing in aquifers, a case
where the validity of Darcy’s law for slow viscous flow is verified, i.e., laminar
flows with a Reynolds number less than about ten. This Reynolds number would
here be defined by

Re ¼ qvd
l

; ð3:8Þ

where ρ is the density of water, v is the specific discharge (not the pore velocity)
and d is a representative grain diameter for the porous medium (e.g., sand).

Darcy is also known for the Darcy-Weisbach equation (Darcy 1857; Weisbach
1855) which provides in hydraulics the head loss in terms of an average velocity,
the acceleration of gravity, the diameter and length of a pipe, and a friction factor.
This was supposed to improve on empirical equations proposed earlier by Antoine
Chézy (1718–1798)—cf. Mouret (1921)—and De Prony (1825). These equations in
which both hydraulic radius and slope of the water line provide a mean flow
velocity, proved to be of universal usage in the design of canals in the nineteenth
century.

3.3.1 Generalizations of Darcy’s Law

With Darcy’s laws deduced from the Navier-Stokes equation within a certain
framework of hypotheses, it can be expected that by relaxing some of these
hypotheses a more general form can be obtained for this law. This is in fact the case
of the equation proposed by Brinkman (1947) for the case of sufficiently high
porosity. In a horizontal pipe, Eq. (3.4) will thus be generalized to
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l
k
v ¼ �rpþ kr2v, ð3:9Þ

where λ is called effective viscosity. Another generalization is due to Forchheimer
(1901) when the fluid velocity is large enough, yielding a nonlinear generalization
of Darcy’s law in the form

l
k
vþ a vj jv ¼ �rp: ð3:10Þ

This equation can be said to be nonlinear and to account for inertial effects.
In a convective flow where the viscosity varies considerably with temperature, it

may be necessary to combine Eqs. (3.9) and (3.10). Higher order nonlinear terms can
also be added in the left-hand side of (3.10). All Eqs. (3.4) through (3.10) are valid
for incompressible fluids for which r � v ¼ 0. There also exist anisotropic gener-
alizations that involve a second-order tensor of permeability k instead of the scalar
k. Finally, in the same line of thought as what was proposed for heat conduction by
C. Cattaneo and P. Vernotte in the 1940s–1950s to give a finite speed to the heat
propagation phenomenon, for very short times Eq. (3.4) can be improved to read

s
@v
@t

þ v ¼ � k
l
rp; ð3:11Þ

where τ is a very small time constant. Such a form will result in a hyperbolic
groundwater flow equation, perhaps not of much practical use (cf. Cattaneo’s
modelling applied to porous media in Straughan 2011, pp. 238–240).

3.4 Porous Media and Homogenization Technique

A porous medium can be seen as a heterogeneous body made of two constituents,
the matrix and the interconnected voids filled of a liquid or really empty. When the
voids are completely filled in the medium is said to be fluid-saturated. One may
think of representing this global medium by assuming that the constituents are
interpenetrating and in fact co-existent in certain relative proportions at each point
but without real mass exchange between them. Then an averaging can be envisaged
that will provide macroscopic laws of, say, a poro-elastic medium. Such an
approach was early used in the mechanics of composites and obviously in mixtures
of fluids. We leave aside this type of approach, although we shall return to it in due
time (Sect. 3.5) as we prefer to examine first a rather mathematical way to deduce
basic laws of porous media, that is, homogenization.

In a general manner homogenization consists in replacing a heterogeneous
material by a somewhat equivalent homogeneous material. To perform such an
operation one must identify a representative volume element (RVE) that is most
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characteristic of the structure of the material at a small scale where some prop-
erties and field vary rapidly. In most cases the structure is not well ordered as a
porous medium obviously presents a random distribution of pores, themselves of
various sizes (for this aspect, see Adler 1992). But, remarkably enough, assuming
a rather (in most cases unrealistic—unless man-made) ideal situation with a
regular, e.g., periodic, pattern of pores, one can conceive of an easily imple-
mented scheme that is both mathematically sound and practically very efficient as
proved by the case of porous media. The RVE then is a basic cell of this
convenient periodic arrangement while in the averaging technique the RVE
should contain enough statistical information about the heterogeneous medium in
order to be truly representative. Anyway, we are facing two spatial length scales,
those of the RVE (l) and of the macroscopic scale (L), typically in the ratio
e ¼ l=L, where ε is an infinitesimally small quantity. In physical Euclidean space
the macroscopic domain X of interest is considered periodic and the rescaled unit
cell is Y ¼ ð0; 1Þ3 and the two coordinates (x macroscopically and y—fast
variable—in the cell) are given by

x 2 X; y ¼ x
e
2 Y : ð3:12Þ

The result of this parametrization is that the problem now is embedded in a
sequence of similar problems parametrized by a scaling ε. Then homogenization
amounts to performing an asymptotic analysis when ε tends to zero. The limit is the
solution of the homogenized problem. This mathematical technique is called
asymptotic periodic homogenization (APH). It was essentially developed in France,
Russia and Italy by authors such as Sanchez-Palencia (1980), Bensoussan et al.
(1978), Bakhvalov and Panasenko (1989), Oleinik et al. (1991), Dal Maso (1992),
Luc Tartar and Allaire (1991). Some technical details are given in the appendix to
this contribution.

Application of the APH to porous media was first given by Lévy and
Sanchez-Palencia (1975) and Ene and Sanchez-Palencia (1975) in Paris by applying
the APH scheme to the steady Stokes equation for an incompressible viscous fluid
with vanishing v on the boundary S of X, i.e., in the notation of the appendix:

rpe � e2lr2ve ¼ f; r � ve ¼ 0; vejS¼ 0; ð3:13Þ

a set of equations which admits a unique solution in the appropriate functional
spaces for ve and pe. Proceeding as briefly indicated in the appendix, the authors
deduce the Darcy law. Lévy (1983) goes further by studying the Stokes flow
through a swarm of fixed (non-connected) particles and justifies thus Brinkman’s
law in the form [compare to (3.9)]

6placv ¼ �rp0 þ lr2vþ f ð3:14Þ
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by a technique of matched asymptotic expansions involving a boundary layer
around the particles. Notice that this model is a strange one for a porous medium
because of the lack of connectivity between particles (the same remark applies to
Brinkman’s work).

The question of the validity of the various approximations obtained in the ho-
mogenization procedure (Lévy, Sanchez-Palencia; Allaire, Auriault et al.), calls for
a thorough examination of the respective domains of validity in terms of
non-dimensional numbers (scales). For this we refer the reader to Auriault (2009)
who underlines the case of so-called “poor separation scales”, i.e., when, if we may
say so, e is not so small (Auriault et al. 2005). In this analysis, Brinkman’s law is
shown to be invalid for connected porous matrices so that this casts some doubt on
the real physical meaning of Brinkman’s modelling for porous media (more on
APH in Ene and Polisevski 1987).

3.5 Porous Media and the Theory of Mixtures

It is easily conceived that a porous medium may be considered a mixture, but a
mixture reduced to two constituents or two phases, a solid one (the matrix) and a
fluid one likely to flow through the interstices left by the solid with interconnected
pores. This is the view adopted by, e.g., Rajagopal and Tao (1995). This is the
continuum theory of mixtures for which Clifford Truesdell (1957) provided the first
thermodynamically based rational theory (also Trusdell 1984). There followed in
the 1960s–1970s a multitude of works in the same line, among these, Kelly (1964),
Green and Naghdi (1965, 1971), Eringen and Ingram (1965, 1967), Bowen (1967,
1976), Müller (1968), and Atkin and Craine (1976).

The theory of mixtures uses the concept of volume fraction, an example of
which is given by Eq. (3.6) in the case of porous media. De Boer (2000, p. 31)
attributes to the German hydraulician Reinhard Woltman (1757–1837)—the
inventor of the water current meter—the introduction of this concept (Woltman
1794). The general thermodynamic theory of mixtures is a complicated affair that
still poses fundamental questions, for example: (i) should a temperature be intro-
duced for each constituent (same question for entropy); (ii) should global ther-
modynamic laws, in particular the second one, be defined for each constituent or for
the global medium; (iii) how the stress condition at a boundary should be formu-
lated since only one global applied traction can be specified while the mixture
involves partial stresses? The only constraint on which all authors agree is that by
summation over the constituents one obtains the thermo-mechanical equations that
govern a standard unique continuum. We shall not deal with this generality as
temperature effects are altogether ignored in the rest of this section. We prefer to
examine the advances made by a few remarkable contributors during the period
1910–1960.
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In the period preceding the full implementation of nonlinear continuum ther-
momechanics, say in the period 1910–1960, we can identify the breakthroughs
made by four specialists, civil engineers or physicists, who brought new con-
structive ideas in the mechanics of porous media, and more generally to soil
mechanics, with many potential applications to the construction of dams, the
exploration and exploitation of oil resources, etc. These remarkable scientists are:
Paul Fillunger (1883–1937); Karl von Terzaghi (1883–1963), Maurice A. Biot
(1905–1985), and Gerhard Heinrich (1902–1983), among whom three (that is, save
Biot) were affiliated with the Technical University of Vienna (Wien, Austria).

Both Fillunger and Terzaghi were outstanding professors at TU Wien, but with
very different personalities. Fillunger, was the first to place in evidence the so-called
uplift effect in porous media (Fillunger 1913, 1914). This effect, especially in
constructions such as dams, in fact is a manifestation of buoyancy (cf. Archimedes’
principle). It is the result of the liquid pressure acting on solid particles. It can be
expressed in Fillunger’s original form as the force

P ¼ kV l� l0ð Þ; ð3:15Þ

where k is the vertical gradient of pressure, V is the total volume of a
liquid-saturated element and μ and l0 are volume and surface porosity coefficients
(not to be mistaken for viscosities). Of course, the sign of the difference between
these two quantities is of importance (cf. De Boer 2000, p. 189). But in certain
cases the vertical uplift force (3.15) prevails over the gravity force and this may
cause serious problems in the strength of structures while justifying its name.

von Terzaghi (1923a, b), often considered the father of soil mechanics as a
science, and much more internationally known than Fillunger, proposed a rather
intuitive law for the vertical consolidation of porous media in the simple (parabolic)
form

k
a
@2w
@z2

¼ @w
@t

; ð3:16Þ

where w ¼ p1 � p, k is the coefficient coming from Darcy’s law, and the pore
number ε, the compression number a, and the flux rate q are related through the
equations

@e
@t

¼ �a
@p
@t

;
@q
@z

¼ � @e
@t

¼ �a
@w
@t

; q ¼ �k
@w
@z

; ð3:17Þ

where the last expression is none other than a writing of Darcy’s law in Terzaghi’s
notation. Here p1 is a constant load. It is Eq. (3.16)—akin to the heat equation or the
equation obtained by Fick (1855) in diffusion—that made Terzgahi famous. The
above sketched proof is somewhat shaky, and this was to be seriously criticized by
Fillunger. But the crucial importance of the intervening of Darcy’s law must be
emphasized. This will be a recurring fact.
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Next, Fillunger (1936) published an approach that would perfectly fit in a
modern presentation in the way of the theory of mixtures. Considering a
one-dimensional setting for the ease in presentation and the case of incompressible
fluid and solid components, Fillunger wrote the local equations of conservation of
linear momentum and mass (no exchange of mass between the two constituents
with a rigid solid constituent) as the following system in his notation:

@v1
@t

þ v1
@v1
@z

¼ 1
q1

�Z � @p1
@z

� �
;

@v2
@t

þ v2
@v2
@z

¼ 1
q2

Z � @p2
@z

� �
;

@q1
@t

þ @

@z
q1v1ð Þ ¼ 0;

@q2
@t

þ @

@z
q2v2ð Þ ¼ 0;

ð3:18Þ

where subscripts 1 and 2 refer to the fluid and solid constituents, respectively, and Z
is an interaction force. If n is the porosity, p ¼ p1 þ p2 the total pressure in terms of
the partial pressures, and c1 and c2 are the specific weights, we have

p1 ¼ np; p2 ¼ 1� nð Þp; ð3:19Þ

and

1
q1

¼ g
nc1

;
1
q2

¼ g
1� nð Þc2

: ð3:20Þ

This allows us to transform the last two of Eqs. (3.18) in the form

@n
@t

þ @

@z
nv1ð Þ ¼ 0; � @n

@t
þ @

@z
1� nð Þv2 ¼ 0: ð3:21Þ

Finally, the system is closed on account of Darcy’s law simply written as

Z ¼ nv1
k

; ð3:22Þ

where k is the permeability. Again, it is Darcy’s law that is instrumental in the final
argument. The above given system can be extended to the case of a deformable
solid matrix and to three dimensions of space. It contains the quintessence of the
theory of mixtures applied to porous media, and thus is extremely modern. This is
much more “mechanical” than Terzaghi’s argument that yielded Eq. (3.16). As a
matter of fact, the harsh criticism of Terzaghi’s work by Fillunger in his pamphlet of
1936 will have for tragic consequence the suicide of Fillunger and his wife, when
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Fillunger was accused of unjustified exaggerate criticism and unethical conduct
toward his colleague at TU Wien. This tragic story is told in detail by De Boer
(1996, 2005) who is an ardent irremediable admirer of Fillunger, in particular, of his
work and its anticipated modernity. Heinrich, also an Austrian engineer and pro-
fessor of mechanics at TH Wien, was a direct disciple of Fillunger and formulated
with Desoyer (1961) the proper three-dimensional formulation.

Maurice A. Biot (1905–1985) was a Belgian-American physicist who always
brought original solutions to problems of mechanics and/or physics. This may be
due to the fact that for most of his life he was not associated with a precise academic
institution, but he rather acted as a maverick sometimes affiliated with private oil
companies or acting as a consultant, and sometimes giving lectures in prestigious
universities (Harvard, Columbia, Brown). To him are due original works in the
theory of finite strains in elastic bodies, an incremental theory of deformable solid
mechanics, variational principles, irreversible thermodynamics, and, most relevant
to the present contribution, a theory of poro-elasticity (then called “Biot’s theory”).
The latter was a real extension of constitutive equations to saturated poro-elastic
solids. He paid special attention to the propagation of waves in such media,
obtaining thus results that provided useful measurement techniques in geophysical
applications (Biot 1956a, b). Biot generally is a follower of Terzaghi (Biot 1941).
But, in 1955, he proposed an original theory with a set of two coupled linear
momentum equations for the fluid (subscript F) and solid (subscript S) constituents
with respective displacement fields uF and uS in the following form:

q11€uS þ q12€uF þ b _uS � _uFð Þ ¼ divrS þ qSb; ð3:22aÞ

q12 €uS þ q22€uF þ b _uF � _uSð Þ ¼ rrþ qFb; ð3:22bÞ

where the mass (or inertial) coupling quantity q12\0; rS is the solid elastic stress,
b is the external force per unit mass of each constituent, and r ¼ �np is the real
fluid pressure if n is the porosity. Finally, the interacting constant b is related to
Darcy’s law by an expression of the kind

b ¼ ln2

k
: ð3:23Þ

The strange coupling inertia terms come from a kinetic energy that is jointly
quadratic in the velocities _uS and _uF . The coupling involving Darcy’s concept is
deduced from a dissipation potential quadratic in the relative velocity _uS � _uFð Þ—
in the manner of Rayleigh and evoking a friction phenomenon between two phases.
Indeed, the set (3.22) really follows from a Lagrangian-Hamiltonian variational
with source terms in the resulting Euler-Lagrange equations derived from the dis-
sipation potential. This, at the time (1956), was a formidable achievement and
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original development in the field of geophysical engineering, all the more that Biot
could give a reasonable meaning to the inertial contributions in the left-hand sides
of Eqs. (3.22). Again, Darcy’s law was a decisive element in the formulation.

Interesting dynamic properties were deduced by Biot (1956a, b) from his model
(3.22) that is still considering small strains. But in one of his last papers Biot (1972)
formulated a theory of finite deformations in porous solids (still in his own for-
malism and notation). Many subsequent works will reformulate Biot’s theories in
the modern nonlinear format of continuum thermo-mechanics, adding in fact little
to their physics and main properties. Tolstoy (Editor 1991) provides a handy col-
lection of Biot’s most innovative papers in the acoustics, elasticity, and thermo-
dynamics of porous media. In the case of poroelastic solids infused with
compressible fluids, new results generalizing those of Biot were obtained by
Quilogotti et al. (2004).

An interesting, but seldom cited, paper was proposed by Frenkel (1944) before
most of the works by Biot. In modern notation Frenkel’s equations of the fluid and
solid phases of the porous medium are given by

qF
@vF
@t

¼ �nrpþ qFb� l
j

vF � vSð Þ; ð3:24aÞ

qS
@vS
@t

¼ divrS � 1� nð Þrpþ qSbþ l
j

vF � vSð Þ; ð3:24bÞ

where we identify the last terms in the right-hand side of these equations as due to
Darcy’s law.

To conclude this section we note Derski’s (1978) model where the mass cou-
pling of Biot between fluid and solid components is apparently neglected but it is
assumed that the density of the fluid component can be divided into two parts, one
part being the density of the free fluid qFf , moving with the velocity vF , and the
other part being the density qFs of the “trapped” fluid that moves with the velocity
of the solid skeleton vS. It was shown that Derski’s equations of momenta are
equivalent to those of Biot with the appropriate interpretation of densities in the
kinetic energy (see De Boer 2000, p. 305).

3.6 Continuum Thermo-Mechanics and Constitutive
Modelling

It is Ray Bowen (1967, 1976, 1982) and Ingo Müller (1968) who provided the basic
equations of the theory of mixtures in the format of rational continuum
thermo-mechanics after the pioneering work of Truesdell (1957). Other presenta-
tions in the same line but emphasizing the case of two-component porous media are
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those of De Boer (2000), Ehlers (2010), and Wilmanski (1998, 2003). The fruitful
role of this Essen group around De Boer must be underlined. This was also the case
of O. Coussy (1953–2010) and his co-workers at the Laboratory of Ponts et
Chaussées in the east suburb of Paris, where thermal effects and finite strains were
taken into account in a definite Truesdellian style (cf. Coussy 1995, 2010). The
thermodynamic expression, the implementation of the Clausius-Duhem inequality
as a constraint imposed on the constitutive equations, and the deduced constitutive
equations can be rather cumbersome (cf. De Boer 2000, Chap. 5). This is also the
case of the approach exposed by Rajagopal and Tao (1995) where an overuse of the
theory of invariants in the representation of some fields obscures the intuitive
physics of the problem (See also Grinfeld 1991, Rajagopal 2007). This drawback is
often observed in the continuum mechanics of complex media (e.g., also in elec-
tromagnetic continua). But in the present case this complication allows a satisfac-
tory treatment of problems such as the unsteady diffusion of a fluid through a
nonlinear elastic solid body or the wave propagation in solids infused with fluids.
Such wave phenomena were duly studied by K. Wilmanski and B. Albert in Berlin
(e.g., Wilmanski 2005b), and Quiligotti et al. (2004) who all started from a theory
with large deformations. Noteworthy also are the original works of Wilmanski
(1996, 2005a) where this author considers an equation governing the porosity [cf.
Equations (3.21) above], and also the notion of tortuosity in the continuum
framework. We finally note that in their recent work, Shriram and Rajagopal (2014)
exploit the rational thermodynamics of mixtures and a criterion of “maximal rate of
entropy production”, and succeed in reproducing the Darcy, Brinkman and
Forchheimer laws—in disguise—and some other generalizations but by agreeing on
a number of ad hoc working hypotheses.

3.7 Conclusion

In this contribution we have favoured the historical developments during the
nineteenth century and until the years 1960s. It is more than obvious that the
experimental results of Darcy—condensed in this famous Note D of his innocuous,
but finally magisterial, book on the fountains of his native city—provided the real
breakthrough on which all forthcoming models will be based. We cannot ignore the
decisive role played by engineers/physicists such as Fillunger, von Terzaghi and
Biot of which the works provided, not only a sound basis for the study of geo-
materials and construction materials, but also elements for the study of dynamical
processes. The Technical University in Vienna paid an important contribution to the
field that has now reached a worldwide development with the constitution of an
international network (PoroNet), the creation of specialized scientific journals, and
the periodic gathering of international symposia. Because of personal interests and
experience, we have limited the mechanical behaviour of the solid constituent—
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when deformable—of the considered porous media to elasticity, favouring thus the
theory of poro-elasticity. However, it is readily acknowledged that porosity plays a
role in the plastic behaviour of some materials, in particular among geomaterials
and even in metals with growing cavities. The resulting effect of porosity will be an
alteration in the yield criterion, whether of the Mises or Coulomb types. In the case
of metals, porosity will intervene in the ductile fracture of these materials. It is no
question here to expand this sophisticated theory. Suffice it to note the breakthrough
due to Gurson (1977), and improvements on his proposal by other authors, e.g.,
Cologanu et al. (1997). Finally, to be more or less complete, we note a growing
interest in so-called microporomechanics (cf. Dormieux et al. 2006) and also the
interest for porous media in applied acoustics (cf. Allard 1993; Bourbié et al. 1987).
Note that evoking the theory of mixtures we avoided speaking about truly reacting
media that are of utmost interest in problems of propulsion technology, but they are
not considered as porous media (for this, see Prud’homme 1988, 2010). Other
portraits of main contributors to the field are given in Figs. 3.2, 3.3, 3.4, 3.5, 3.6,
3.7, 3.8, 3.9 and 3.10.

Fig. 3.2 J.L.M. Poiseuille
(1797–1869)
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Fig. 3.3 Henry Darcy 1803–
1856)

Fig. 3.4 Gotthilf Hagen
(1797–1884)
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Fig. 3.5 Maurice A. Biot
(1905–1985)

Fig. 3.6 Paul Fillunger
(1883–1937)
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Fig. 3.7 Karl von Terzaghi
(1883–1963)

Fig. 3.8 Reint De Boer
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Fig. 3.9 Clifford A.
Truesdell (1919–2000)

Fig. 3.10 Ray M. Bowen
(born 1936). (Copyright:
Texas A&M University,
2005)
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Appendix: Elements of APH

For a typical diffusion, problem with rapidly oscillating coefficients, we consider
the partial differential equation:

r � A
x
e

� �
� rve

� �
¼ f: ðA:3:1Þ

This is to be replaced by the homogenized equation

r � Ahom � rv
� � ¼ f; ðA:3:2Þ

where Ahom is the homogenized (constant in space) material tensor coefficient.
To arrive at this result and the expression of Ahom, one has to consider the

following formal expansion (so-called Ansatz)

ve xð Þ ¼ v x; yð Þ ¼ v0 x; yð Þþ ev1 x; yð Þþ e2v2 x; yð ÞþO e3
� �

: ðA:3:3Þ

Substitute from this in the equation (A.3.1) yielding thus a hierarchy of problems.
The effective coefficients Ahom are determined by solving a set of problems over the
unit cell for the function v1 x; yð Þ. It is noted that only the first two in (A.3.3) are
justified; to go further one would have to account for boundary-layer terms.
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Chapter 4
Viscosity, Fast Flows and the Science
of Flight

Abstract In line with our previous perusing of the early developments of
hydraulics and the foundation works on porous media, the present contribution pays
more due attention to the effects of viscosity, to increasing levels of velocity of the
fluid flows, and to the inception of the mechanics of vortices. The main characters at
work are essentially Helmholtz (his vortex filaments) and Reynolds (his celebrated
number). The application side materializes in the groundbreaking ideas of
Lanchester and the more mathematical approach of Prandtl that were going to bring
a true efficient revolution in the just born science of flight. The role played by
non-dimensional numbers, dimensional analysis, and new methods such as good
asymptotic expansions is rightly emphasized, leading us to the successes of the
mathematics of aeronautics and astronautics in the twentieth century. Again, the
offered approach is more discursive and historical than mathematically detailed and
rigorous.

4.1 Introduction

One does not need to be a hard-line scientist or a gifted experimentalist in hy-
draulics to realize that Nature presents to us all kinds of fluid flows, some of them
with complicated appearance features. This is classically illustrated by Leonardo da
Vinci’s remarkable sketches of whirlpools in the Renaissance period and the
attractive pictures provided by gifted Japanese illustrators (e.g., Hokusai) on
woodprints in the nineteenth century. The rather quiet flow observed by Poiseuille
in his celebrated experiments on the flow in pipes at low flow rate of the fluid is not
exemplary of this more complex situation which seems to be rather frequent. To go
further than Poiseuille (1846) and Hagen (1869) one had to devise more conclusive
experiments that would involve “faster” flows. These experiments were performed
by Osborne Reynolds (1842–1912) at Owens College (now the University of
Manchester). Still there was need to characterize in a rather simple manner the
physical circumstances in which the fluid flow occurred as, contrary to what we
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may have hinted at, velocity is not the only quantity to be involved. Geometry and
viscosity play also a prevalent part. This was the breakthrough made by Reynolds
when he showed that an appropriate combination of velocity, viscosity and a
characteristic size of the considered experiment helped him define a particularly
important parameter: the Reynolds number, the ratio of inertial and viscous forces—
a first example of a number without physical dimension—indeed introduced by
Reynolds in 1883. This number—together with other numbers such as the Mach
number and Prandtl number—was to play a fundamental role in fluid mechanics, in
particular with its special value characteristically attached to a transition between
laminar (conditions of Poiseuille’s experiments) and turbulent flows. In laminar
flows, it can be said that all parts of the fluid move in the same direction, while in
turbulent motion one observes vortices in which the direction of motion changes
constantly. That is, turbulence visually involves so-called vortices. It happens that
this notion was mathematically described principally by von Helmholtz. It was to
play a fundamental role in studies in turbulence but also in the early developments
of aeronautical flight. Immense progress in the theory of flight was due to Ludwig
Prandtl (1875–1953). The two giant scientists in the present contribution therefore
are Reynolds and Prandtl. The two are in fact related as Prandtl and his co-workers
were instrumental in disseminating some of Reynolds’ ideas.

4.2 The World of Vortices

This may be considered a prerequisite to the next two sections although the theory
of vortices provides a discipline that may practically be considered on its own with
a refined beauty and elegance due to the genius of one individual: Herrmann von
Helmholtz (1821–1894; Fig. 4.1), one of the most brilliant, versatile and original
minds of the nineteenth century. Helmholtz contributed with an equal success to the
fields of physiology (in particular physiological optics, the theory of colour vision),
energetics, continuum mechanics (hydrodynamics), acoustics (the Helmholtz’s
equation), applied mathematics (the celebrated Helmholtz decomposition of a
vector field), and electricity (electric oscillations), and electrodynamics (a theory in
competition with Maxwell’s). He was an empirist, but one equipped with an
excellent command of mathematics. Above all, he is one of the three scientists who
formulated the first law of thermodynamics. This was in 1847. But he also proposed
epoch-making contributions in all the above-mentioned fields. For the present
concern, however, we underline his very original contribution to the flow of
inviscid (i.e., non-viscous) fluids where he singlehandedly but definitely introduced
a mechanics of vortices and vortex filaments. This we briefly describe now for the
benefit of the non-specialist reader.

First, a vortex—as illustrated by a whirlpool, for example, observed in draining a
bathtub—is a region in the fluid flow where the flow is mostly spinning in motion
about an imaginary axis; the latter can be straight or curved. Vortices provide the
major component of turbulent flows. But in the absence of applied forces, viscous
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friction (if it exists) tends to organize the flow in a collection of “irrotational” (or
“free”) vortices. In such vortices the fluid velocity is largest near to the imaginary
axis; it decreases from this axis in inverse proportion to the distance. Viewed as
objects, vortices can move, deform, and interact between fellow vortices. From the
point of view of mechanics, they can carry linear and angular momenta, energy and
mass. A vortex line is a line of which the tangent is everywhere parallel to the local
vorticity vector x. The latter describes the local rotary motion at a point in the fluid.
If v is the velocity field, then in the nabla notation: x ¼ r � v. The vortex lines
drawn through each point of a closed curve constitute the surface of a vortex tube.
A vortex filament is the limit of this picture when the cross section of the vortex
tube becomes infinitesimally small. Helmholtz expanded the mechanics of such
filaments.

Obvious general properties directly follow from the definition of vorticity. Thus,

r � x ¼ r � ðr � vÞ � 0 ð4:1ÞZ
S

x � dS ¼
Z
S

ðr � vÞ � dS ¼
Z

L¼@S

v � dl ¼ CðLÞ; ð4:2Þ

where dS ¼ ndS is the oriented surface element and Γ is the circulation along the
closed line L on which the surface S—equipped with unit outward normal n—is
leaning. That is,

CðLÞ :¼
Z
L

v � dl ¼
Z
S

x � n dS; ð4:3Þ

Fig. 4.1 Herrmann von
Helmholtz (1821–1894)
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if L ¼ @S, and Stokes’ theorem was used in writing (4.2) or (4.3). These equations
are tantamount to saying that vorticity is the circulation per unit area taken around
an infinitesimal loop. As to Eq. (4.1), it can be viewed as a simple conservation
equation. Sometimes Γ is called the strength of a vortex tube—see below. Indeed, if
we consider that the surface S encloses a simply connected continuous volume V,
then by the divergence theorem

Z
S

x � dS ¼
Z
V

r � xð ÞdV � 0: ð4:4Þ

Applying this to a vortex filament of end sections S1 and S2 and accounting for the
fact that the vorticity is, by definition of the filament, tangent to the lateral curved
surface of the filament, this leaves as only contributions those at the end surfaces,
i.e.,

Z
S

x � dS ¼ x2S2 � x1S1 ¼ 0: ð4:5Þ

We may view this as a continuity equation for the vortex intensity (the product of
the vorticity and the cross-section area) that is constant along the considered fila-
ment. A direct consequence of this is that a vortex filament cannot end inside the
fluid region. Indeed, if it were the case, the cross-section area would have to vanish
at some point, but the vorticity would have to become infinite in order to respect
this continuity equation. Accordingly, a vortex filament must either form a closed
vortex ring, or it must terminate at the fluid boundary. Furthermore, if we consider a
vortex tube as a bundle of vortex filaments—just as a large electric wire containing
a bunch of closely packed small wires—the net intensity of the tube is the sum of
the intensities of individual filaments. From this it follows that the intensity of a
vortex tube remains constant along the tube. This we can also write as the evolution
equation

DCx ¼ 0; ð4:6Þ

where DC denotes a convected time derivative (in modern terms, a Lie derivative in
following the flow motion), so that in an inviscid fluid, the flow remains irrotational
if it was so initially. The proof of this requires taking the curl of the equation of
motion for an inviscid incompressible fluid in a potential field of external forces,
i.e., the Euler equation

q
@v
@t

þðv � rÞv
� �

¼ �rpþ qf; f ¼ �ru;r � v ¼ 0: ð4:7Þ
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All these results are given by Helmholtz—in his own notation—in his paper of
1858 that is a real pearl and a paragon of excellent scientific literature.1 In his
brilliant introduction Helmholtz states in his own words his main results: if all the
forces that act on the fluid have a potential [then]: (1) no water particle that was
not originally in rotation is made to rotate (2) the water particles that at any time
belong to the same vortex line, however they may be translated, will continue to
belong to the same vortex line; (3) the product of the cross section and the velocity
of rotation of an infinitesimally thin vortex filament is constant along the entire
length of the filament and retains the same value during all displacements of the
filament. Hence the vortex filaments must run back into themselves in the interior of
the fluid or else must end at the bounding surface of the fluid. Our own statements
just paraphrase Helmholtz’s ones. But this author achieved much more in his
epoch-making paper. In particular, he thoroughly studied interactions between
straight parallel filaments and between circular vortex filaments. Exemplifying his
truly aerial view of physics, Helmholtz is not without mentioning at several points
the analogy of his vortex filaments with electric currents. Such analogies remain
useful until today in magneto-hydrodynamics as illustrated in the works reported by
Moffatt (2008) related to knottedness and topology and Kelvin’s extensions of
Helmholtz’s considerations. Moffatt recalls on this occasion that the quantity called
the helicity (discovered by J.-J. Moreau in 1961) and defined by

H :¼
Z
V

x � v dV ð4:8Þ

is an invariant of the Euler equations.
Of course Helmholtz’s work refers to a case where viscous effects are negligible,

but we know while observing real fluids that the strength of vortices will always
decay gradually in presence of viscosity. As a consequence some of the
above-mentioned remarkable results will be altered, e.g., a viscous diffusive term
will appear in the right-hand side of Eq. (4.6).

As indicated by the title of this section the study of vortices opens up horizons of
a real world (cf. Saffman 1995), especially with the concept of vortex sheet and its
applications to aerodynamics (cf. Anderson 1997). Before returning to this point in
Sect. 4.4, we must necessarily deal more inclusively with the influence of viscosity

1The reader can check by himself that Eqs. (7), (6), and (5) are none other than Eqs. (1, p. 44), (3,
p. 49) and the unnumbered equation in p. 52 in the English translation of the original German text;
cf. Helmholtz (1858). In particular Eq. (3, p. 49) is none other than the modern equation.

@x
@t

� x � rð Þv ¼ 0:

For the notion of connectedness Helmholtz refers to recent work by Riemann in the previous
volume of the same journal.
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in guided flows, where in fact the study was to be perfected after Poiseuille and
Hagen, that is, with the experiments of Reynolds.

4.3 Reynolds and the Transition to Turbulence

The general equations that govern (linear isotropic) viscous fluids were proposed by
three authors: C.L.M.H. Navier (1785–1836), Adhémar Barré de Saint-Venant
(1797–1886), and Gabriel Stokes (1819–1903), respectively in Navier (1822),
Saint-Venant (1843) and Stokes (1845). Compared to Eq. (4.7), they read

q
@v
@t

þðv � rÞv
� �

¼ �rpþ lr2vþ qf; ð4:9Þ

and present a formidable challenge for their solution. The new quantity here is the
dynamic viscosity μ. The ratio g ¼ l=q is called the kinematic viscosity.

Poiseuille’s and Hagen’s works were experimental (cf. Maugin 2014b), but their
result was also deduced from the Navier-Stokes equation a short time thereafter by
Eduard Hagenbach (1833–1910) from Basel in 1860. To go further than the
experimental work of these pioneers, one had to carefully study a wider spectrum of
physical conditions in which the flow of water in pipes takes place. The ideal person
for this endeavour proved to be Osborne Reynolds (1842–1912; Fig. 4.2). Born in
Ireland and showing an early interest in mechanical engineering, Reynolds was
nonetheless educated in science at Cambridge with a high level of mathematics.
Graduating in 1867, he benefited in 1868 from the creation of a professorship of

Fig. 4.2 Osborne Reynolds (1842–1912)
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engineering at Owens College in Manchester—where he was to spend an active
professional life as an engineering scientist until retirement in 1905. He concen-
trated on fluid dynamics starting in 1873 after doing some work in general physics.
Although educated as a successful wrangler and elected to a scholarship at Queen’s
College, Reynolds proved to be an excellent experimentalist in Manchester, but an
experimentalist with a deep insight in the bases of his new field of interest. Nobody
being entirely perfect, he was a poor teacher to students—often wandering among
topics with little or no connection—but still he gave excellent oral presentations to
specialists (probably something easier than lecturing students as we all know). His
research style may have been described as “individualistic”; In particular, he did not
do much preliminary reading before attacking a specific problem; this may be one
reason for the novelty contained in many of his papers. More on the personality of
Reynolds is to be found in Lamb (1912–1913). His creative works span some thirty
years. In this long time span we can easily identify three main breakthroughs.

First of all Reynolds’ fame remains attached to the introduction of the
non-dimensional number of which a critical value characterizes the transition
between laminar and turbulent flows. We must remember that the problem of
interest in the 1850–1870s was that of the pressure drop observed in the flow of
water in pipes; this typically is a hydraulician’s concern as was the case with
Poiseuille and Hagen. As a matter of fact, it seems that Hagen (1869) was the first to
report on the two distinct types of flow but without quantitative criterion and further
clarification. The matter was taken over by Reynolds in a series of experiments of
which he published the results in a long memoir (Reynolds 1883). It is worth
recalling the whole title of this memoir because it says it all: “An experimental
investigation of the circumstances which determine whether the motion of water
shall be direct or sinuous, and the law of resistance in parallel channels”. Here
“direct” means “laminar” (e.g., in a straight line) and “sinuous” will mean “tur-
bulent”. The word “circumstances” implies that the physical conditions (velocity of
incoming fluid, diameter of the pipe) will be varied within some range as a good
experimentalist should do with a sufficient control of conditions and experimental
means for quantification. The experimental apparatus used by Reynolds gave a
visual demonstration of the transition. It is illustrated artistically in many books and
we cannot refrain from reproducing it once more (Fig. 4.3).

The most striking result obtained by Reynolds is that it is not the flow velocity
alone that characterizes the flow transition between different regimes. It is a com-
bination in some nondimensional number such as

Re ¼ qUD
l

¼ UD
g

ð4:10Þ

where U stands for the velocity of the entering fluid and D for the diameter of the
pipe. Of course, the symbol Re and name of “Reynolds number” were not given by
Reynolds himself (he used the symbol K). It seems that it is Sommerfeld (1908) in a
lecture at the 4th International Congress of Mathematicians (Rome) who called it the
“Reynolds number” but this coinage is sometimes also attributed to Prandtl (1910)
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Fig. 4.3 Reynolds’ experiment from his original publication (1883) as reprinted in Reynolds
collected papers
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who uses the expression “Reynolds’sche Zahl”, or to or Blasius (1912, pp. 640,
642), anyway in the fluid-mechanical influent place of Göttingen. A pleasant and
instructive history of the Reynolds number is given by Rott (1990)—also Eckhardt
(2009).

Reynolds reported a critical value of the number (4.10) as about 2020, which is
not far from contemporary estimates, although it is wiser to avoid giving a precise
value and rather to announce that the transition takes place in an interval of values
between, say, 1900 and 2000. This attitude is justified by the existence of the
phenomenon of intermittency (alternation of turbulent and laminar flows) of the
flow in the neighbourhood of the critical Re.

But we should not forget that the initial aim pursued both by Poiseuille and
Reynold was the study of the drop in pressure over a length L of a circular pipe.
Reynolds’ result for this quantity can be expressed as (in today’s notation)

pðLÞ � pð0Þ ¼ 1
2
qU2 L

D
f ðReÞ; ð4:11Þ

i.e., essentially a comparison between pressure drop and kinetic energy if we note
that the last two factors are without physical dimension. This is called a similarity
law, so that we can say with Rott (1990, p. 3) that the epoch-making Eqs. (4.10) and
(4.11) were “apparently the beginning of a new era in the use of names for
nondimensional numbers” (Reynolds, Mach, Prandtl, Froude numbers) and also the
inauguration of a whole science of “similarity” (or “similitude” depending on the
authors) with due exploitation of such numbers. Here it remains to specify
the expression of the function f in Eq. (4.11). A simple example is a power law of
the form

f ðReÞ ¼ cðReÞ�n; ð4:12Þ

where c is a pure constant. For slow flows one can take n ¼ 1 while for very fast
flows n ¼ 0.

This seems to be compatible with Hagen’s (1869) empirical results, but of course
Hagen ignored similarity so that the right-hand side of his Eq. (1) would simply be
written with a certain power of U. In fact, this last author credits the German
hydraulician ReinhardWoltman (1746–1822) for proposing an appropriate exponent
of 1.75 for U in Eq. (4.11) above in agreement with n ¼ 1=4. A power less than 2
was already observed by the French hydraulician Pierre du Buat (1734–1809)
according to Rouse and Ince (1957). More recently, important experiments per-
formed by Saph and Schoder (1903) agreed with the value n ¼ 1=4 But A. Flamant
(French civil engineer, friend of Barré de Saint-Venant and Boussinesq; cf. Maugin
2014a) claimed that he had given the same formula in 1892 (see his textbook on
Hydraulics of 1891/1900 in his second edition: Flamant 1900) indeed in agreement
with Saph-Schoder’s formula. Reynolds himself gave a value of 1.723 that is close to
1.75.
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Anyway, von Kármán (1911) advised the use of Reynolds similarity following
his mentor Prandtl, and Moritz Weber (Professor of Naval architecture in Berlin,
1919) put both Reynolds and Froude numbers to use adding a new number of his
own (Weber number related to capillarity).

The second remarkable achievement of Reynolds in the field of turbulence was
his proposal of a specific approach to the equations of fluid mechanics in the
turbulent regime. Probably inspired by recent ideas in the kinetic theory of gases
(e.g., by J.C. Maxwell), Reynolds conceived of the fluid motion and allied quan-
tities as being defined in terms of averaged quantities and superimposed fluctuations
(Reynolds 1894). This is based on the observation of Reynolds—and Hagen before
him- that a turbulent flow is really characterized by a continuous recurrence of
turbulent eddies of different size that cause time wise fluctuations in the flow at a
given point (cf. Anderson 1997, p. 113). Accordingly, a time average of each flow
property would be a steady value. As a consequence, each physical quantity of
interest in the turbulent flow is the sum of a time mean, noted �v, and a timewise
fluctuating component, say ~v, so that v ¼ �vþ~v. Applying this time averaging to the
Navier-Stokes equation, one is led to a local equation of balance of linear
momentum in Reynolds’ form (cf. Reynolds 1900–1901):

@�vi
@t

þ @

@xj
�vi�vj þ �p
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� �

with r � �v ¼ 0: ð4:13Þ

The last contribution in the first of these is the divergence of the so-called
Reynolds’ stress. Then there remains to close the problem by finding a relationship
of this tensor with the averaged velocity field. This is an insuperable theoretical
problem. However, a simple way out of this enormous difficulty is to assume that
the extra term is in fact equivalent to an extra viscosity contribution in the
Navier-Stokes equation, i.e., replacing the usual viscosity μ by an effective viscosity
lþ lT where lT is an apparent increase due to the fluctuating component in
velocity. Such formalism provides the so-called Reynolds averaged Navier-Stokes
equations for turbulent flow. This has been of constant practical use in engineering
with a search for a proper value of lT . In more recent times attention was focused
on the size and energy of the involved vortices during the development of turbu-
lence, with an interesting cascade of scales where the larger vortices split in smaller
ones that in their turn split again, etc. This remarkable advance is due in 1942 to the
eminent Russian mathematician Andrei Nikolaevich Kolmogorov (1903–1987)
otherwise known for his works in probability theory, dynamical systems and
topology. Other attempts to model turbulence by means of constitutive equations in
a purely continuum framework are due to Rotta (1951), Lumley (1979) and Favre
et al. (1979), but are somewhat outside main trends in the field just as is the
nonlocal approach proposed by Speziale and Eringen (Speziale 1981; Speziale and
Eringen 1981).

90 4 Viscosity, Fast Flows and the Science of Flight



A third important contribution of Reynolds which will have a glorious future in
aerodynamics is the so-called Reynolds analogy (Reynolds 1874). Reynolds was
deeply interested in the coupling between flow and heat conduction since viscosity
and thermal effects often concur. This problem concerns the relationship between
skin friction and heat transfer. The famous analogy—that exists between heat and
mass transfer—is now written in the following non-dimensional form:

CH

CF
¼ f ðPrÞ; ð4:14Þ

where CH is the local heat-transfer coefficient, CF is the local skin-friction coeffi-
cient, and the right-hand side is a function of the non-dimensional Prandtl number
defined by Pr ¼ lcP=k, where cP is the specific heat at constant pressure and k is the
thermal conductivity. This can be interpreted as the ratio of kinematic viscosity to
thermal diffusivity. Of course the denomination of “Prandtl number” was given
much later and (4.14) is a modern rewriting of Reynolds’ result of 1874.

We would not be complete without mentioning two other original works of
Reynolds. One is none other than a useful theory of lubrication (Reynolds 1886)
and the other a theory of dilatancy (Reynolds 1885). The first of these provided the
foundation of tribology—“the science and technology of interacting surfaces in
relative motion and the practices related thereto” (British definition of the
Department of Education and Science, H.M.S.O., 1966). The second relates to the
property of “granular material to alter its volume in accordance with a change in the
arrangement of its grains” (cf. Allen in p. 55 of McDowell and Jackson 1970).
Reynolds arrived at this idea while speculating about the existence of a medium that
must possess properties akin to those of the all-pervading ether considered as
substratum for the propagation of light before the inception of the theory of special
relativity. But Reynolds was becoming somewhat mentally perturbed when he
proposed such a grain-like model as the “sub-mechanics of the universe” (his words
of 1902). This obsolete matter is well dealt with by Allen in McDowell and Jackson
(1970). But the creative concepts of Reynolds in true fluid dynamics, and those put
forward by Helmholtz and Kelvin were to find one of the best places for a faithful
and fruitful implementation at the German university of Göttingen, in the envi-
ronment of a scientist of highest level, Ludwig Prandtl.

4.4 Prandtl and Boundary-Layer Theory

Here we are particularly interested in the applications of new concepts (vortices,
circulation, skin friction) of fluid mechanics to the emerging aerodynamics as of the
dawn of the twentieth century. It is not our aim to tell the history of aerodynamics
for which there already exist successful books to which we refer the reader (among
them the outstanding history by Anderson 1997). We rather try to focus on the
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heritage of Helmholtz and Reynolds and the breakthroughs by new comers such as
Prandtl.

The two forces to be considered in the flight of an object through air are called
the drag (horizontal force opposing the possible flight) and the lift (vertical upward
force allowing the object to stay suspended in the air while in motion). These two
forces were first considered for an inviscid fluid obeying Euler’s equations. We
recall that in the absence of viscosity, one is led to D’Alembert’s paradox in a
potential flow: the drag force vanishes in contradiction with observation, so that this
non-realistic result had to be corrected in some manner. In so far as the lift is
concerned, considering flat objects at some small incidence (angle made by the
object with the velocity direction of the flow) or cambered such as an airfoil
(two-dimensional cross section of a wing), application of Bernoulli’s theorem could
explain the higher pressure on the bottom face compared to the pressure on the top
face, and thus globally an upward force or lift. For the global object the lift was
computed by the German mathematician Wilhelm Kutta (1867–1944) in 1902. His
proof was direct and did not rely on the notion of circulation, but in fact is
equivalent to the formula magisterially proposed by the famed Russian professor of
mechanics and mathematician, Nikolai Joukowski (or Zhukovsky 1847–1921)—the
Father of Russian aeronautics—, in the remarkably simple form (cf. Fig. 4.4)

l ¼ q1V1C; ð4:15Þ

where Γ is the circulation computed as the line integral of the flow velocity taken
around any closed curved enclosing the airfoil (cf. Eq. 4.3), and q1 and V1 are the
density and the uniform fluid velocity far upstream of the airfoil. Equation (4.15),
valid for a unit span of an airfoil of supposedly infinite width, and now known as
the Kutta-Joukowski theorem, is indeed simple but it hides the caveat of the difficult

Fig. 4.4 The notion of
circulation Γ and the
Kutta-Joukowski theorem for
lift: l ¼ q1V1C
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computation of Γ for a specific airfoil at a given angle of incidence. Furthermore, it
applies only to low speeds and incompressible two-dimensional flows. It epitomizes
the circulation theory of lift initiated with ideas of the British engineer/
aerodynamician Frederick W. Lanchester (1868–1946) whose line Kutta and
Joukowski followed with all computations made as if the flow over an airfoil was
the superimposition of a uniform flow without circulation and a “circulatory” flow
—a mathematical notion and not an actual rotation of the fluid. This “circulatory”
component could be related to the vortex filaments of Helmholtz. Of course, the
problem is much more complex for a wing of finite span but vortex lines will play a
role at the tip ends of the wing as later proposed by Lanchester and Prandtl. The
Kutta-Joukowski theorem predicts a zero drag for two-dimensional inviscid flows.
As to three-dimensional, viscous and unsteady flows, the generalization of the
Kutta-Joukowski theorem can be formulated only in terms of integral forms.

The situation is altogether different from the lift with the drag since one must
necessarily consider the effect of viscosity, and thus the Navier-Stokes equations.
The solution of these equations in the whole exterior of the airfoil would be a
formidable and practically impossible task. But it is more or less clear that viscosity
will play an essential role only in the vicinity of the airfoil with the notion of skin
friction, while the rest of the flow can still be considered inviscid and thus amenable
by means of Euler’s equations. This was the genial idea of Ludwig Prandtl (1875–
1953; Fig. 4.5) borrowing the path already indicated by the Italian mathematician
Tulio Levi-Civita (cf. Anderson 1997, pp. 252–253). Prandtl was educated at T.H.
München (Munich) where he obtained his doctoral degree in 1900 under the
supervision of August Föppl, the most reputed mechanical engineer of the period,
whose books have educated several generations of German engineers. Prandtl
became first a professor of Mechanics at the T.H. Hannover, but then served as a
professor of applied mechanics at the University of Göttingen from 1904 to his
retirement. He established there a very successful school of aerodynamics and
hydrodynamics with both theoretical and experimental components (including large
wind tunnels). The Kaiser-Wilhelm Institute (later renamed Max Planck Institute)
that he directed for many years achieved world renown. His many students and
co-workers spread the Prandtl spirit in many institutions in Germany and outside.
Among them, Theodor von Kármán, Theodor Meyer, Heinrich Blasius, Ivan
Nikuradzé, Adolph Buseman, Jacob Ackeret, Hermann Schlichting, Oskar Tietjens,
Walter Tollmien and others (a total of 85 Ph.D students) became in turn renowned
contributors to theoretical or experimental aerodynamics. Although he originally
did some work in structural mechanics while in Munich and Hannover and also
made a brief incursion in the study of the plastic flow of metals in 1924 (the famous
Prandt-Reuss equation), Prandtl deserves above all to be called the “Father of
modern aerodynamics”. His celebrated course on fluid mechanics published as
Prandtl (1931) remains a classic of its own, having reached a twelfth edition in 2008
(See also Prandtl and Tietjens 1931). Together with Richard von Mises he was a
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founding member of the German Society of Applied Mathematics and Mechanics
(GAMM) and an internationally honoured scientist.2

The innovative idea of Prandtl is that viscosity plays a prevailing role only in a
rather thin layer along the airfoil, where the fluid is subjected to shear forces and the
velocity field evolves from zero at the boundary (no-slip condition) to whatever it
can be—a maximum—at the matching with the outer flow that may be considered
as one of an inviscid fluid (cf. Fig. 4.6). The equations to be solved are those of the
Navier-Stokes type within the boundary layer and those of Euler outside with
appropriate matching at the outer limit of the layer. With this Prandty created the
science of asymptotics applied to singular systems of partial differential equations
(the singularity comes from the highest-order derivatives). This approach allows
obtaining a closed-form solution in both regions of the flow. If thermal effects are
taken into account then the fluid temperature at the surface has to be equal to the
temperature of the surface. The thickness of the fluid boundary layer can be defined
as the distance from the solid body at which the viscous flow velocity is 99 % of the
free-stream velocity. The thermal boundary layer is defined in a similar way with
temperature replacing velocity. Both layers may be of unequal thickness. It is the
Prandlt number Pr that measures their ratio. Pr [ 1 corresponds to a larger velocity

Fig. 4.5 Ludwig Prandtl
(1975–1953)

2Of course Prandtl was a very serious man who took all matters at heart but also a bit naïve so that
we cannot resist the temptation to report the gossip told by Anderson (1997, p. 259): Having
reached the age of 34 he decided he should get married. To that purpose he went to visit his master
August Föppl and his wife who had two daughters, asking if he could marry one of them, without
further precision. The Föppls made a family decision by selecting the eldest daughter. Prandtl and
Gertrude Föppl married, lived happy and themselves had two daughters. The story does not tell if
one of them or even the two, married some of Prandtl’s students, but this is quite possible if the
tradition had to be respected. This almost happened to the present writer.
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boundary layer while for Pr\1 the thermal boundary layer is thicker (case of air at
standard conditions). In practice, at high Reynolds numbers the velocity boundary
layer inevitably thickens and become less stable as the flow develops along the
body. Eventually the flow will become turbulent and the process described by
Prandtl and known as the boundary-layer transition will take place. Technical
means (such as suction of the boundary layer through a porous surface) can be
implemented to delay this effect. Laminar flow is preferable in any case.

Mathematically, the groundbreaking idea of the notion of boundary layer pro-
posed by Prandtl in 1904 at the fourth international congress of mathematicians (see
Prandtl 1905) used an order of magnitude analysis. In the layer the governing
equations for a two-dimensional steady incompressible flow are given in direct
notation as (with obvious symbols)

u � ru ¼ �q�1rpþ gr2u; r � u ¼ 0: ð4:16Þ

With appropriate nondimensionalization this is rewritten as (keeping the standard
notation for u and p in spite of the scaling)

u � ru ¼ �rpþ er2u; r � u ¼ 0; ð4:17Þ

where the parameter ε is none other than the inverse of the Reynolds number,
e ¼ ðReÞ�1, and thus infinitesimally small for sufficiently high Reynolds number.
For e ¼ 0, system (4.17) reduces to the steady Euler incompressible equations

Fig. 4.6 Prandtl’s boundary-layer along an airfoil (laminar flow, no separation; NASA document)
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u � ru ¼ �rp; r � u ¼ 0: ð4:18Þ

Clearly, system (4.17) is a singular perturbation of the Euler system. The
asymptotic analysis shows that: (i) the vertical velocity (or boundary (wall) normal
velocity) is small compared to the horizontal or streamwise component, and
(ii) variations in the streamwise direction are generally much lower than those in the
boundary normal direction. For an incompressible fluid the pressure is constant
through the boundary layer and one is left with the following equations in the
appropriate scaling the boundary-layer vertical variable is magnified by the quantity
e2:

ðu � rÞux ¼ � @p
@x

þðReÞ�1 @
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@y2

;
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@y

¼ 0; r � u ¼ 0: ð4:19Þ

It is Blasius (1912), a student of Prandtl, who gave a good analytic solution to
this system [see technical detail in Germain (1977) or Zeytounian (2002, Chap. 7)].

In the case of a turbulent boundary layer one has to start from the Reynolds
equation (4.13). But then, as already noticed, one needs a turbulence model to close
the system of equations. The situation is also complicated by the frequent occur-
rence of a boundary layer separation (from the body), causing a strong coupling
between the boundary layer and the outer flow. These technical aspects rest outside
the present considerations.

Prandtl’s tackling of the boundary layer problem was groundbreaking and a true
tour de force in applied mathematics. Many of his disciples brought additional
improvements with application to the airfoil theory (in particular, see Schlichting
et al. 2004). Simultaneously, Prandtl’s method opened up a full horizon for
application of asymptotic approximations to partial differential equations, in a
discipline that we may call the science of nondimensional numbers and the theory
of similarity.

Prandtl contributed also to another aspect of the wing theory by examining, and
offering solutions to, the problem posed by the drag of an airfoil of finite span. This
matter was pondered by Frederick Lanchester (already cited) in the U.K. but
without true quantification. Lanchester proposed to account for the finite span by
generalizing his theory of circulation. He was advocating the replacement of “the
wing model with a model of several filaments aligned along the span and then
trailing down from the wing tips as vortex trunks”, the whole forming a continuous
vortex sheet (Anderson 1997, pp. 283–284). However, it is Prandtl who offered
more specific solutions. The first one, quite analogous to Lanchester’s but devel-
oped independently, consisted in replacing the wing with a single vortex line that
would run from one wing tip to the other complemented by vortex filaments
escaping from the two tips. This deserved the name of a “horseshoe vortex”. In
addition to the difficulty of computing the global circulation around the wing, this
model yielded a singularity in the induced flow velocity at the tips. The second
model by Prandtl in some sense minutely “sliced” this solution along the lifting line
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(the wing span). Paraphrasing Anderson (1997, p. 284), we can say that it proposed
to replace the previous “single horseshoe vortex of finite strength with an infinite
number of juxtaposed infinitesimally weak horseshoe vortices. By a limit reasoning
this in principle yielded a circulation that would vary continuously along the lifting
line, starting form zero at the wing tips to reach a maximum at the midspan of the
wing”. The vortices that are generated at the tips of the wing and trail downstream
from the wing are analogous to mini-tornadoes. There of course remains the dif-
ficulty to compute the circulation. In spite of that, this ingenious model justified the
existence of an induced drag—an idea put forward by Lanchester—added to
skin-friction and form drag as a result of the finiteness of the wing span. This
smartly devised model is called the Prandtl lifting-line model (although British
aeronautical engineers adjoin the name of Lanchester to that of Prandtl with some
justification). Figure 4.7 shows an artistic rendering of the tip generated trailing
vortices. For the amusement of the reader we also provide Fig. 4.8 that shows in a
spectacular way the many such vortices generated during their motion in water by
two kinds of fish.

In all this approach the most basic notion is the Kutta-Joukowski equa-
tion (4.15). Combining this with Prandtl’s boundary-layer theory involving the
Reynolds number, and the lifting-line model involving Helmholtz’s vortices, and
the many results from their experiments performed at Göttingen and other places,
the students, associates and disciples of Prandtl will take the science of flight to the
highest degree of perfection during the twentieth century with a mixture of
empirism and good applied mathematics (sometimes devised for this very purpose).
Only powerful numerical means will help to find true numbers for the effects still
unaccounted for.

Among Prandtl’s students we cannot avoid paying special attention, albeit
briefly, to Theodor von Kármán (1881–1963; Fig. 4.9). Born Hungarian in “der

Fig. 4.7 Longitudinal vortices generated at finite-span tips
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guten alten Zeit” of the Austro-Hungarian Empire and educated in engineering
science in Budapest, he went to Gottingen to obtain his doctoral degree under the
supervision of Prandtl (Thesis: Untersuchungen über Knickfestigkeit, 1908). But he
also collaborated with the famed physicist Max Born on what was to become the
foundation of crystal lattice dynamics (Born and von Kármán 1912), and he also

Fig. 4.8 Vortex filament model showing vortices near steadily swimming bluegill sunfish (A; 3D
vortex structure for bluegill sunfish swimming at about 1.2 L s−1.) and brook trout (B;
Experimentally observed vortices for the dorsal, anal and caudal fins of trout swimming at
0.5 L s−1). Numbers indicate vortex circulation (in mm2 s−1) (Reproduced from Tytell et al. 2008)

Fig. 4.9 Theodor von
Kármán (1881–1963)
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improved on Föppl’s theory of large deflections of elastic plates by considering the
case of not so thin plates (von Kármán 1910). This is now called the Föppl-Kármán
theory of plates.3

Von Kármán is acknowledged both as an outstanding scientific contributor to
aerodynamics in different regimes, from low speeds to subsonic, supersonic and
hypersonic airflows, and astronautics (cf. his scientific autobiography: von Kármán
1961), and a never tired organizer of scientific research in these fields. He spent
most of his scientific career at the RWTH Aachen in Germany and then in
Pasadena, California, after 1930, with several US government appointments con-
nected with the USA Air Forces, and NASA, and then NATO. In particular, he had
joined the Guggenheim Aeronautical Laboratory at the California Institute of
Technology (for short, GALCIT) and was, among other things, the founder of the
Jet Propulsion Laboratory in Pasadena. He made of GALCIT and JPL some of the
most creative institutions in aeronautics in the world. He was strongly involved in
advising the US military during the Cold War. He was thus the first recipient in
1963 of the National Medal of Science of the USA. He is believed to have founded
the International Union of Theoretical and Applied Mechanics (IUTAM) having
organized its first international conference in Innsbruck in 1922.

A most impressive list given herein below cites some of his scientific achieve-
ments. Concerning the subject matter of the present contribution we like to
underline his invention of the so-called “von Karman vortex street”.4 This he
proposed in 1911 in an analysis of the alternating double row of vortices [see
Fig. 4.10; see also Van Dyke’s (1982) with splendid photographs] that develops
behind a blunt body, i.e., a body having a broad more or less flattened front, in a
fluid stream. With a frequency of alternation matching some characteristic fre-
quency of the mechanical system this may have drastic consequences via resonance
(so-called vortex shedding).

In concluding this section and just for memory, we recall some quantities,
theories or theorems that bear Prandtl’s name:

• Prandtl number (compares convection and friction),
• Prandtl’s boundary layer,
• Prandtl lifting-line theory,
• Prandtl-Meyer expansion fan in shock-wave theory,
• Prandtl-Reuss flow rule in plasticity,
• Prandtl-Glauert singularity,
• Prandtl-Glauert correction at high-subsonic speeds,
• Prandtl-Busemann supersonic nozzle.

3This is a theory in which the elastic potential energy is quadratic in the finite strain measure. The
resulting equations surprisingly have a pure geometric meaning.
4I personally think that the corresponding French expression “allée des rouleaux (ou tourbillons)
de von Kármán” sounds less vulgar and more “chic” (but this is a snob’s opinion).
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As to von Kármán, the following non-limitative list evokes the formidable range
and success of his research themes (both Nikuradzé and Treffz were also students of
Prandtl; Max Born was a physicist colleague of Prandtl at Göttingen):

• Föppl-von Kármán plate equations (large deflection of elastic plates),
• Born-Kármán lattice model (pioneering work in the lattice dynamics of

crystals),
• Chaplygin-Kármán-Tsien approximation (in potential flow theory),
• Karman-Nikuradsé correlation (in viscous flows),
• Kármán-Treffz transformation (in airfoil theory),
• Prandtl-Kármán law (velocity flow in open channels),
• von Kármán integral equation (in boundary-layer theory),
• von Kármán vortex street (flow past a cylinder),
• vortex shedding (alternating flow in the wake of objects and resulting vibrations

under resonance conditions).
• von Kármán ogive (in supersonic aerodynamics).

These two lists provide an idea of the extent of the incommensurable influence
of these two individuals in fluid mechanics and aeronautics.

4.5 The Science of Non-dimensional Numbers

Non-dimensional numbers such as the Reynolds (Re) and Prandtl (Pr) numbers
evidently play a fundamental role in the appraisal of solutions in fluid mechanics,
but more generally in physics. They allow one to emphasize the most relevant
effects in prevailing geometric and physical conditions. They usually simplify the
general equations, allowing one to retain only the most significant contributions and
to compare these contributions in a kind of objective manner, not obscured by
obnoxious physical dimensions. The order of magnitude is all what counts and
asymptotic techniques are the privileged mathematical techniques to deal with them

Fig. 4.10 Snapshot of a von Kármán “vortex street” created by the repeated pattern of swirling
vortices in the wake of a blunt body
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as clearly illustrated by the paradigmatic treatment of Prandtl’s boundary-layer
theory. Matched asymptotic expansions are powerful methods in this context (See,
e.g., Lagerstrom 1988). This may be called an Art of modelling because it requires
some deep pondering of the matter by the concerned scientist. This is perfectly
illustrated in the rather exhaustive book of Zeytounian (2002) where a large
quantity of non-dimensional numbers involved in fluid dynamics are introduced in
some rational deductive way yielding well organized hierachies of useful models
(Mach, Rayleigh 1892, 1913, Reynolds, Boussinesq, Froude, Strouhal, Weber, etc.,
numbers). The whole reasoning on models and mock-ups is based on their
exploitation as particularly shown by experiments in wind tunnels, although
mathematical techniques and direct numerical simulations—helped by scaling (a
modern term for dimensional analysis)—are taking over these.

Some mathematicians such as Euler, Boussinesq or Poincaré were conscious of
the “orders of magnitude” and of the presence of infinitesimally small
non-dimensional numbers (more than often a simple ratio of two physical quantities
sharing the same physical dimension, e.g., length, velocity or energy) especially in
proposing series expansions of solutions in some kind of Ansatz. But the con-
struction of more complex combinations found in modern non-dimensional num-
bers (although still the ratio of two physical quantities of the same nature, e.g.,
energies) in fact belongs in the science of similarity or similitude (depending on the
author or the translator) or dimensional analysis. This point deserves a brief his-
torical excursion, the detail of which most practitioners are not aware of. We
remember that Rott (1990, p. 3) speaking of the Reynolds number says that “this
was apparently the beginning of a new era in the use of names for non-dimensional
numbers” But without being given specific names non-dimensional groups of
various physical quantities were considered before Reynolds. It seems that the
French mathematician Bertrand (1878) was the first to ponder this question in a
practically unknown short contribution. The matter became more popular with an
apparently breakthrough paper by the American engineer Buckingham (1914)
whose name was given to a theorem that provided a recipe to build relations
between characteristic non-dimensional groups of physical quantities. This he
referred to as physical similarity between systems. Buckingham cites no references.
But it was realized that the French telegraph engineer Vaschy (1892) had formu-
lated the same theorem some twenty years before, so that this theorem on similarity
is now universally known as the Vaschy-Buckingham theorem or Π-theorem, the
“Π” implying the product of quantities. Riabouchinsky (1911) also published on the
same subject earlier than Buckingham. One of the most striking applications of this
celebrated theorem was the correct deduction of the power of the first American
atomic explosion by several scientists, e.g., Taylor (1950a, b) in the UK by ana-
lyzing the time sequence of photos of the more or less spherical cloud (to evolve
later on in the more spectacular so-called “mushroom”) of the explosion, and along
the same line, the theory of blast waves by Leonid I. Sedov in Russia in 1942.
Concerning the last scientist he had a long interest in non-dimensional analysis,
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publishing a first book on the subject as Sedov (1944) and reporting on his analysis
of the atomic explosion as the innocuous (!) “blast-wave problem” at the Landau
seminar in Moscow in 1946.5 Note that a book on dimensional analysis had already
been published earlier in the USA by the physicist/mechanician Bridgman (1931).
But this field seems to have been a favourite subject to scientists in the former
Soviet Union as G.I. Barenblatt also became a specialist of this field and asymptotic
techniques (cf. Barenblatt 1979, 1987). R.Kh. Zeytounian, already cited, was also
formed to these techniques in Moscow by Il’ia A. Kibel (1904–1970), a noted
specialist of meteorology and weather forecast, who used appropriate sets of
equations in fluid mechanics. This, in a nutshell, is our history of the field.

4.6 Summary

It is now clear that after the experimental works of Poiseuille and Hagen, there was
need for a pursuit of studies of the effects of viscosity on the flow of fluids in
conduits or around objects. The epoch-making work of Reynolds combined with
the theory of vortices expanded by Helmholtz provided the tools with which the
pioneers of flight science and aeronautics could explain the most relevant phe-
nomena, the lift (cf. Kutta-Joukowski) and drag forces necessary for flight. As
exposed above, Prandtl was the most instrumental scientist to contribute to these
advances. He created a real school of which both theoretical and experimental
results contributed to aeronautics and astronautics by producing a good description
of flows at various speeds (compared to the sound speed) and various regimes
including coupling between flow properties and thermal effects. The print left was
such that all developments in flight science during the twentieth century are due to
the extraordinary success of the obtained modelling that made extensive use of
dimensional analysis and asymptotic methods. The efficacy of these developments
was then complemented by excellent progress in applied mathematics (e.g., applied
functional analysis in the direction expanded by Richard Courant, David Hilbert
and Jacques-Louis Lions) and enhanced by the development of fantastic powerful
numerical means that one could not have imagined at the time of Reynolds and
Prandtl.6

5See the snapshots of the atomic explosion in pp. 236–238 in the French edition (1977) of Sedov
(1944) [These are in fact reproduced from Taylor (1950a, b)].
6This chapter exceptionally bears the print of the initial formation of the author as an aeronautical
engineer and simultaneously a university graduate student in fluid mechanics in the 1960s.
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Chapter 5
Duhem on Hydrodynamics and Elasticity

Abstract Pierre Duhem is best known nowadays for his works on epistemology
and the history of science. But in his time he also contributed original and inno-
vative ideas not only to energetics (for which he was a never tired propagandist),
but also to a priori more classical domains of continuum mechanics such as
hydrodynamics and elasticity. Here we critically examine these last contributions in
the light of his lecture notes for a course in Lille in 1890–1891 and his collected
works on hydrodynamics (1903–1904) and elasticity (1906). This allows one to put
in evidence Duhem’s evolution from a young ambitious teacher—with a need to
show his remarkable capture of a whole field at a given time—and his more
personal contributions at a mature age. Most new results are related to wave phe-
nomena, especially in the formalism proposed by Hadamard for the classification of
discontinuity fronts, and generalizing to three dimensions of space the pioneering
works of Riemann and Hugoniot on shock waves. Moreover, in a rigorous
framework, themes of interest such as thermo-mechanical couplings, stability
questions, and appropriate historical remarks clearly recur in this general landscape.

5.1 Introduction

Pierre Duhem (1861–1916)1 is probably one of the most powerful intellects of his
period of activity, say between 1880 and 1920. He is a rare combination of a brilliant
and sharp mind and highly cultivated person, a never tired writer, a creative con-
tributor to phenomenological physics, the most forceful champion and propagandist
of energetics, a philosopher of science, and the true creator of the history of medieval
science. We have examined elsewhere his general view of science and style of

1Biographies of Duhem are of two kinds, some are a bit hagiographic (Ariew 2007; Jaki 1984;
H. Pierre-Duhem 1936), while others are more balanced or more precise from the scientific
viewpoint (Brouzeng 1987; Humbert 1932; Miller 1970; Picard 1921). A lengthy comprehensive
analysis of Duhem’s science is given by Manville (1927), who had been a close collaborator of
Duhem in Bordeaux.
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exposition by perusing the detail of two of his most well known works, his general
treatise on energetics or general thermodynamics (Duhem 1911) and his visionary
text on the “Evolution of mechanics” (Duhem 1903b)—(cf. Maugin 2014a,
Chap. 10). We leave aside the most interesting epistemological text on the “physical
theory” (Duhem 1906a, 1908) and his immense studies on the evolving cosmo-
logical views of the world (in ten volumes) and on pre-renaissance dynamics
(Leonardo and the Scholastic school of mechanics). Here we want to focus on purely
technical texts that relate to more mundane matters such as elasticity and hydro-
dynamics, the main two branches of continuum mechanics. Of course, we must
reckon that these works are not as much cited nowadays as Duhem’s work on
epistemology and history of science. One reason for this vanishing interest may be
that with full integration in the scholar corpus (in thermochemistry, irreversible
thermodynamics, wave theory), there is no more need to refer precisely to his
personal works except in a few well-known, almost of everyday use, expressions
such as the Clausius-Duhem inequality, the Gibbs-Duhem equation, the
Duhem-Margules equation—and also the Duhem-Quine hypothesis in the philoso-
phy of Science. But Duhem considered himself first as a physicist. When invited to
occupy the chair of History of Sciences at the famous College de France (the highest
French institution of education) in Paris, he proudly rejected the offer arguing that he
would enter the College only through the main door, that is, by accepting a chair of
Mathematical Physics, and thereby clearly willingly decided to stay in Bordeaux. It
is possible that each individual is not the best judge of his own achievements
(Fig. 5.1).

Fig. 5.1 Pierre Duhem
(1861–1916)
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The most relevant texts of Duhem for our endeavour consist of his fantastic
lecture notes of a general course delivered at the Faculty of Sciences in Lille in the
year 1890–1891 (Duhem 1891), and collections in the form of two books of already
published papers, one devoted to his researches in hydrodynamics (Duhem 1903a,
1904) and one to his researches in elasticity (Duhem 1906b). These works were not
published in a complete vacuum. On the contrary, it seems that each great scientist
in the field of continuum mechanics wanted to leave a durable print with his own
lecture notes or specially prepared treatises. Among such works we must note: the
pioneering, now classical, treatises of Lamé (1852) and Clebsch (1862) in elasticity
with the largely augmented French translation of the latter by Barré de Saint-Venant
(1883); the epoch-making treatises by Love (1892) in elasticity and Lamb (1879) in
hydrodynamics, the unavoidable courses by Kirchhoff (1876) and Neumann (1885),
the general treatise of Thomson (Kelvin) and Tait (1867, 1879–1883), the detailed
historical developments of Todhunter and Pearson (1886), and the more contem-
porary long papers or books in German by Voigt (1887), Hilbert (1906–1907) and
Hellinger (1914), or in French by Brillouin (1884–5), Koenigs (1897), Poincaré
(1892), and Cosserat (1896, 1909), the treatise on rational mechanics of Appell
(first edition, 1900), and the Ecole Polytechnique course of L. Lecornu (published
in three volumes, 1914–1918, also 1925).2

But Duhem’s writings have a special flavour and specific traits that can be
identified. First of all, Duhem is a brilliant writer and stylist with an easily flowing
sentence. But in addition one easily acknowledges the following recurring original
properties and themes:

• a high accuracy in the expansion of arguments always accompanied by detailed
steps in proofs and not avoiding criticisms of the lack of accuracy even by his
most famous predecessors (e.g., Cauchy). This particularly applies to the proof
of mathematical theorems;

• a need for mathematical precision concerning continuity, analyticity, and good
behaviour of physical entities, not excluding a loss of these properties (such as
in discontinuity waves);

• a marked interest in matters of stability [A.M. Lyapunov (1857–1918) is a
contemporary];

• a specific interest in combining mechanics and thermodynamics;
• a great care in giving accurate citations of previous works in both German and

English (an attitude not shared by many French authors);
• a clear will at being rather exhaustive at the time of writing (although practically

an impossible task),
• and of course an inevitable historical perspective from the part of a practically

professional historian of sciences.

2We examined in detail the cited works of Hilbert, Hellinger, Poincaré and Appell in previous
contributions (Maugin 2014a, b).
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5.2 The Lectures of 1890–1891

It is hard to imagine that this text of more than 600 pages in print corresponds
exactly to the contents of lectures delivered orally by a “chargé d’un cours
complémentaire” (assistant lecturer granted a complementary course) in the general
course of Mathematical Physics and Crystallography at the Faculty of Sciences of
Lille in the academic year 1890–1891, a series of lectures that could not amount to
more than a few hours only and obviously delivered to a very limited audience.
Duhem was then starting his academic career, staying in Lille from 1887 to 1893,
before joining Rennes (1893–1894) and then Bordeaux (1894 to his death). He
must have written these lecture notes with an unbounded enthusiasm, extending
much the scope and detail of the oral lectures and providing in fact one of the most
complete, detailed, and documented courses in the field at the time. Although
produced in autographed form but published as a book in two volumes by the
renowned Paris scientific publisher A. Hermann, this fantastic opus was to have a
great influence on both physicists and mathematicians because of its axiomatic and
deductive rigour. Duhem’s friend Jacques Hadamard will often refer it (cf.
Hadamard 1903, 1927). Before this real “bookish monster” Duhem had only (if we
may say so) produced three books, one on his unsuccessful text for a Doctoral
degree in physics (Duhem 1886), one on his successful doctoral thesis in mathe-
matical physics (Duhem 1888), and a text on diamagnetism in 1889. For simplicity
we shall refer to these lectures of 1890–1891 in the abbreviation form HEA, while
the books on his researches in hydrodynamics and elasticity will be referred too as
RH and RE respectively.

5.3 Duhem’s General Views on Continuum Mechanics

These are mostly expanded in the first part of HEA (First volume or HEA-1, pp. 1–59,
Second volume or HEA-2, pp. 205–275). Like most continental mechanicians of the
nineteenth century, in order to formulate the general theorems of mechanics Duhem
exploits the principle of virtual power and its generalization by d’Alembert to which,
in a characteristic move, he adds the notion of potential and a criterion of stability.
This follows Varignon, Lagrange, Gauss, Cauchy, C. Neumann, Clausius for the
potential, Lejeune-Dirichlet for stability, and Thomson and Tait (1867) for thermo-
dynamics. The description of the general motion of a continuous body (HEA-1, p. 19
on) closely follows the original works of Cauchy (1823, 1828a, b, c) and Poisson
(1829). An essential statement typical of Duhem (HEA-1, p.17) is that Thomson
(Kelvin) in 1855 was the first to show that thermodynamics was a logical foundation
for elasticity. Infinitesimal deformations of a body are introduced next. This borrows
from the innovative work of Cauchy (1823, 1828a). Note that Duhem still uses the
expressions “dilatations” and “pressures” where we now use “strains” and stresses.
The last word was introduced, we believe, by Rankine. The first and second ellipsoids
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of dilatations are attributed to G. Lamé and Cauchy, respectively. For “pressures”,
Duhem considers the interaction between two bodies and again refers to Cauchy but
avoids the classical argument of the latter, still introducing six a priori independent
quantities. Here also the discussion focuses on the first and second ellipsoids of
“pressures” and their principal axes. These considerations are entirely independent of
the precise behaviour of the considered body. An interesting remark (HEA-1, p. 44)
that now sounds trivial, is that in considering a surface cut in the body and the
pressures acting on it, we need not know the exact shape of the surface. This obvi-
ously means, in agreement with Cauchy, that only the unit normal plays a definite
role.3

Duhem will return to the general principles of continuum mechanics in his
researches in elasticity (RE)—see below.

5.4 Advances in Hydrodynamics

It s true that usually Pierre Duhem is not remembered as a contributor to fluid
mechanics. But this vision is erroneous. As a matter of fact, he was instrumental in
developing some critical points that are well illustrated in HEA-1 and Duhem
(1903a, 1961). HEA-1 contains no less than 200 pages devoted to classical (non-
viscous) fluid mechanics to which are appended almost a hundred pages on the
propagation of sound in various spatial forms (cavities, resonators, and tubes
according to Helmholtz). This was written at the beginning of Duhem’s academic
career so that we should not expect much originality. Duhem has to dwell with
standard subjects such as: general equilibrium equations, internal pressure in a fluid,
Euler (1757) and Lagrange (1788) writings of the motion equations and the
equation of continuity (mass conservation), vortex motion after Kirchhoff and
Helmholtz (and a lengthy transformation of Lagrange’s equations due to Cauchy;
HEA-1, pp. 129–140), the hypothesis of flows by slices (plane sections of some
thickness) in tubes after Daniel Bernoulli, stationary fluid vibrations in tubes, open
and closed tubes, spherical waves with reference to very recent (1889) works by
Beltrami and the distinction between progressive and regressive waves, interfer-
ences and beats (this may be out of place at this level of the given course), and
reflection and refraction of plane waves (following Poisson, Green and Lord
Rayleigh’s theory of sound), and a detailed treatment of Helmholtz’s equation (here
also recent works by H. Schwarz, E. Picard and H. Poincaré are referred to). In spite

3In modern terms this translates to: “Only the geometry of the cut surface at the first order (the unit
normal) is involved in the natural stress boundary condition”. This is valid only in the standard
theory where the surface is regular enough (uniquely defined unit normal). The second-order
description of the said surface, say its curvature, is not usually involved. If it is involved then we
enter the domain of generalized continuum mechanics (e.g., theory with strain gradients, weak
nonlocality; cf. Maugin 2013, Chap. 13).
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of this rather standard exposition, we witness the emergence of specific points that
will constantly recur in further works.

Among these specific points, we emphasize: (i) the notion of “additional”
relation (between pressure, density and temperature), (ii) the interaction between
motion and heat propagation (HEA-1, pp. 99–103), the careful distinction between
isothermal and adiabatic situations4 (iii) Lagrange’s theorem and the velocity
potential with an improved proof due to W. Thomson (Kelvin) and the introduction
of the notion of circulation—typically, Duhem remarks that Lagrange’s proof is not
satisfactory and cites the rigorous proof of Cauchy in 1827–, (iv) Green’s (1828)
original theorem, (v) remarks on friction with reference to recent works by M.
Brillouin (HEA-1, p.126), (vi) a detailed study of Kirchhoff theorems related to the
Laplace equation and the wave equation, (vii) remarks on the possible lack of
analyticity of solutions of the equations of small motions (in relation with a very
recent (1889) work of Painlevé on singular lines for analytic functions; cf. HEA-1,
p.169), and the study of stability (HEA-1, pp. 80–90) exploiting the second vari-
ation of a potential, and thus right in the line of recent works by Lyapunov.

Typically, in his forceful view of thermo-mechanics, Duhem pays special
attention to the formula of the speed of sound depending on the thermodynamic
assumptions; he devotes no less that nine pages to the relevant discussion illustrated
by many experimental results. In the same line, Duhem is especially interested in
Hugoniot’s method of treating the compatibility between two adjacent motions
(HEA-1, pp. 183–198), inaugurating thus the theory of the propagation of dis-
continuity surfaces following the pioneering work of Riemann with a specialization
to the motion in a fluid at rest and the application of Huygens’ principle to the
moving surface. According to Kampé de Fériet (Duhem 1961, p. VII), Hadamard
(1927, p. 644) said that it was Duhem’s Lille lectures that revealed Hugoniot’s
breakthrough work to the scientific world (Hugoniot 1887a, b). The twentieth-
century reader may be surprised by the recurring use of expressions such as “small
motion in another one” and “the motion of a fluid body”. These themes will be
further expanded in many papers to be gathered in RH (1903b, 1961). The main
problem with HEA is perhaps an unnecessary desire to be exhaustive and up to
date. This may hide the main ideas although logics and the rigorous succession of
subject matters are well respected. Of course about ten years of hard work by
Duhem have elapsed between the writing of HEA on fluids and the final redaction
of RH where many parts have been pondered and much perfected. That is why a
thorough examination of RH is necessary, with the help of the nice critical intro-
duction of the edition of 1961 by Kampé de Fériet.

“Recherches sur l’hydrodynamique” (RH)
Between 1891 and 1904 Duhem published no less than 24 notes in the Comptes
Rendus of the Paris Academy and 11 full-length memoirs in other journals on fluid

4On this occasion Duhem pays lip service to his high-school teacher Jules Moutier (HEA-1,
Footnote in p. 107), who impressed him very much and may have been responsible for Duhem’s
attraction to physics.
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mechanics. This explains why the contents of RH are much richer and better
pondered than HEA with many advances that will leave a print on the developments
of this domain during the twentieth century. Furthermore, this was achieved while
Duhem’s “codification” (expression of Kampé de Fériet) was achieved so that there
will necessary be an emphasis placed on thermo-mechanical couplings. From the
very start, Duhem involves normal variables5 of thermodynamic state and accounts
for the foundations of energetics including the possible occurrence of dissipative
processes and the existence of a dissipation potential in the manner of Rayleigh.
This is much in advance on other treatments with the presence of viscosity coef-
ficients possibly dependent on density and temperature. It is on this occasion that he
is the first to really prove (Duhem 1896) the set of well known inequalities (not
proved by Stokes 1845):

l q; Tð Þ� 0; 3k q; Tð Þþ 2l q; Tð Þ� 0: ð5:1Þ

He clearly distinguishes between the important classes of fluid media, good con-
ducting (of heat) incompressible viscous fluids, and badly conducting compressible
fluids, and physical situations: isothermal and adiabatic evolutions, all of these
necessary for a further comprehensive study of the propagation of waves (see
below). His approach is fully thermo-mechanical and could be reproduced in
modern treatments to the small price of a few adjustments in vocabulary only. What
he calls the “additional relation” (“relation supplémentaire”) is none other than the
fully coupled (to the motion) heat equation (RH, p. 39). First steps in this direction
had been taken by Kirchhoff and C. Neumann. He is not without noticing that the
resulting general problem would be difficult to solve (in his time). Isothermal and
isentropic stabilities are duly examined (RH, pp. 57–60). He does not hesitate,
where necessary, to return to a Lagrangian description, and to call for Lagrange and
Lejeune-Dirichlet for the stability of floating bodies (thereby much improving on
the former analysis of buoyancy by Bouguer, Euler, and Abbé Bossut).

Wave propagation is the subject that seems to meet most of Duhem enthusiasm
and creativity for he devotes no less than 150 pages to the subject. That is where he
exhibits his deep understanding of the phenomenon of shock wave with an excellent
capture and exploitation of concepts recently put forward by Riemann, Christoffel,
Hugoniot, Hadamard, and also Jouguet.

The presentation of the theory of shock waves by Duhem (RH, pp. 75–128) is
really magisterial. What distinguishes it from modern treatments is the lack of use
of vector and tensor notations and of short-hand notations such as those for a jump
and a mean value of a field at the crossing of a discontinuity surface. But this is
un-consequential although Duhem directly considers the three-dimensional for-
mulation while most previous authors confined their study to one space dimension
(thus a synthetic notation would have helped). What is more original in Duhem’s

5A normal set of thermodynamic parameters is one in which entropy is clearly assigned a specific
role in the functional dependence of the internal energy function. This definition became standard
and is no longer referred to Duhem.
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case is that he considered from the beginning coupled thermo-mechanical pro-
cesses. In particular, the departure point is a formulation of the principle of virtual
power with virtual and isothermal “modifications” even in the presence of field
discontinuities6 (cf. RH, pp. 83–89).

Duhem builds on the anterior works of Riemann (1860) and Jouguet (1901) but
considers a general discontinuity surface with numerous self-explanatory illustra-
tions of this moving surface. He includes the possibility of viscosity to obtain
interesting expressions involving integration through the non-zero thickness of the
wave, and shows the impossibility of the propagation of (true) shock waves in a
viscous fluid. In the absence of viscosity he obtains Hugoniot’s jump relations but
in three-dimensional space [HR, p. 104, Eq. (59); cf. Riemann and Jouguet in one
space dimension]. The role of the thermodynamic potential is emphasized in the
case of good conductors of heat. The case of contact discontinuities—with no mass
transfer across the wave—is also introduced. Hugoniot’s (1887a) lemmas are
expanded. So is the then recent classification of discontinuity surfaces (introduced
in 1900) by J. Hadamard (see Hadamard 1903).

[Here we remind the reader that Hadamard proposed to classify moving discon-
tinuities in terms of the order of the space and time derivatives of a field that suffer a
true discontinuity. Thus a discontinuity surface across which the medium velocity
and the strain are discontinuous is a discontinuity surface of the first order (a shock
wave in usual jargon) while one across which the acceleration (second-order time
derivative of the motion) is discontinuous is called a discontinuity surface of the
second order or “acceleration wave”. Jump conditions at the crossing of such surfaces
replace the field equations across the surface while usual (continuous) field equations
remain valid—but obviously with different field values—on either sides of the sur-
face. Furthermore, Hadamard distinguished between jump relations resulting from
pure kinematics—so-called compatibility conditions—and those resulting from the
jump of field equations (balance laws in the jargon of mechanicians)].

Duhem constructs somewhat painstakingly the last type of jump relations. But
for the rest he is a faithful disciple of Hadamard (RH, pp. 147). Again he wants to
deal with waves of the first order (i.e., shock waves) in viscous fluids; he thus
shows that first-order waves cannot persist while some second-order waves can
exist if all solution parameters (velocity, temperature, pressure) are of second order
according to Hadamard. In some cases the wave is of different order (e.g., second
and third) for the different parameters. This depends on the possible compressibility
and conducting property of the fluid. Perfect fluids are the object of one chapter
(RH, pp.175–198). This obviously relates to Euler’s theory of fluids.

What Duhem himself considers his great invention in the domain of disconti-
nuity waves is the discovery of so-called quasi-waves. This requires some words of
explanation. We indeed observe the propagation of sound in air while this material
is (very) weakly viscous, and thus in principle forbids such propagation. This

6In the late twentieth century the only comparable approach is by Daher and Maugin (1986)
developed independently of Duhem’s or Jouguet’s ideas.
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paradox is solved by this notion of quasi waves. In truth such waves are very thin
layers across which fields do not suffer exactly a finite discontinuity but they vary
continuously albeit rapidly. These quasi-waves play an essential role in the theory
of shock waves, although they are now denominated by another expression, that of
structured shock waves. Without such a structure due to dissipative processes—
viscosity and heat conduction in acoustics -, shock waves would not physically
exist at all. The quasi-waves obey all laws discovered by Riemann and Hugoniot,
but in addition the passing of such waves through the fluid results in an increase of
entropy [as shown by Jouguet (1871–1943), a direct disciple of Duhem, in his
complements to Duhem’s results (in Jouguet 1920a, b),7—see the three Notes of
Duhem reproduced by Kampé de Fériet at the end of the reprint of RH 1961].
Duhem devotes in RH no less than 43 pages to quasi-waves. All this input in the
theory of fluid mechanics is well abstracted by Duhem himself in his notice (1913)
written a few years before his untimely death. Truesdell and co-workers will cap-
italize on this type approach in the 1960s–1970s in order to explain the formation of
shock waves from weaker discontinuities such as acceleration waves, especially in
deformable solids.8

In RH Duhem also discusses the generalization of Lagrange’s theorem in the
presence of viscosity, the problem of boundary conditions (with a nice historical
review with references to Du Buat, Coulomb, Prony, Navier, Poisson, Hagen
Stokes, Poiseuille, Boussinesq, Darcy, F.E. Neumann, Couette, and others; RH,
pp. 301–317), and friction at boundaries (RH, pp. 321–344). The digression on
viscosity coefficients (RH, pp. 347–376) is particularly enlightening telling the
whole story including the kinetic-theory viewpoints of Maxwell and Boltzmann on
the following constraint introduced by Stokes:

3k q; Tð Þþ 2l q; Tð Þ ¼ 0: ð5:2Þ

We can regret with Kampé de Fériet the non-use of vector and tensor analysis in the
whole volume. Fortunately, this does not damage the quality and clarity of

7Jouguet’s (1920b) memoir develops at length elements of the theory of shock waves in a rather
definite manner including the condition of entropy growth through the wave front. Jouguet gives
both Eulerian and Lagrangian forms. He very closely follows Duhem and Hadamard’s formalism
but he favours adiabatic motion. The shock equations (continuity, momentum, energy) are clearly
stated (p. 61 and p. 63). For an infinitesimally weak shock he unambiguously shows that the
entropy increase across the shock is of third order in general. The case of vitreous (isotropic)
nonlinear elastic solids is paid special attention together with its expansion at third order in the line
of the Cosserats and Poincaré. This last point is developed in greater detail in a second part which
relates to the superimposition of a small motion on an initial state endowed with nonvanishing
stresses. This situation was considered by Poincaré in his lectures on elasticity (Poincaré 1892;
edition of 1902) and evoked by Duhem in his RE. He shows how an initial pressure allows to treat
the wave problem with effective elasticity coefficients in isotropic bodies (e.g., λ and μ replaced by
�k ¼ k� p and �l ¼ l� p). We witness here the embryonic expansion of what we now call
acousto-elasticity to be further developed by Brillouin (1925) and others.
8On this subject see particularly Chen’s (1976) book devoted to discontinuity waves in the sense of
Duhem, Hadamard, Jouguet, etc.
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exposition of the author and the inquisitiveness of Duhem’s reasoning. At least,
everybody in his time could read the work without textual difficulties.9

5.5 Advances in Elasticity

With regard to Duhem’s production in elasticity we must again distinguish between
the contributions to the Lille lecture notes of 1891 and his further more original
contributions assembled in a special volume entitled “Recherches sur l’élasticité”
(Researches in elasticity = RE = Duhem 1906b).

Indeed, Duhem returns to the general principles of continuum mechanics with a
well documented discussion on the bases of the theory of elasticity in Chap. 3 of
Part IV (pp. 242–264) of the second volume of HEA. Duhem’s contribution to solid
mechanics and acoustics in the second volume of these Lille lectures (Duhem
1891 = HEA-2) is composed of three essential parts, the last one on (Helmholtz)
audible acoustics—that does not require our perusal here—and the first devoted to
one-dimensional and two-dimensional elastic bodies (about 200 pages) and the
second devoted to true three-dimensional elasticity (about seventy pages) on which
we shall more particularly focus our interest. The first part in fact deals with strings
(threads) and membranes. This should be close to the strength of materials useful to
the engineer. But true to himself, Duhem rather exposes an exhaustive mathe-
matical description of works achieved in the theoretical field during the nineteenth
century, including such problems as those posed by strings stretched over a given
curved surface or membranes supported by a given contour, or still membranes in
contact with a fluid. Reported recent results are due to E. Picard in France and H.
Schwarz in Germany. Many aspects on the vibrations of strings—going all the way
back to Jacob Bernoulli and d’Alembert but improved during the nineteenth century
—and membranes are also reported with mathematical details. Developments by
Euler and Fourier concerning series solutions are given. We doubt that all these
details were of direct interest to many students in Lille. For instance, Duhem does
not hesitate to recall in details the theory of geodesic lines (Gauss, Jacobi, Bertrand,
Darboux) where needed. Occasionally, he expands the theory of capillarity and
surface tension. But we note already some interest in stability problems, a trade-
mark—if we may say so—of Duhem’ scientific interests. All this is not very
original although quite involved and much above the head of the students in Lille.

But Duhem provides here a true and rich investigation which carries the mark of
the historian. First, Duhem rightfully notices that the main problem rests with the
three-dimensional theory of continua since theories in one and two space dimen-
sions have been proposed before with a natural identification of, e.g., longitudinal

9We have noticed elsewhere the meagre enthusiasm exhibited by French mechanicians and
physicists to accept these relatively new mathematical formalisms (see our contributions on the
Cosserats and Appell in Maugin 2014a).
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forces and shear forces (by, among others, Euler). Duhem presents the original
developments in three-dimensional elasticity theory from the initial work of C.L.M.
H. Navier (1785–1836) that is based on molecular interactions, and the real con-
tinuum approach (avoiding superfluous microscopic details) such as by Cauchy
(1823, 1828a). Priority to Navier relies on his memoir presented to the Paris
Academy of Sciences on May 14, 1821. The reasoning is based on the fact that
elastic bodies in their natural state are made of elements that exercise no force on
each other. In presence of applied forces, the bodies are being deviated from their
natural state, with a force acting between each pair of elements a function of their
distance. Equilibrium with the externally applied forces then provides the contin-
uum equilibrium equations with only one elasticity coefficient (as if the Lamé
coefficients were such that λ = μ). Navier also obtains the natural boundary con-
dition (for stresses in our vocabulary) under the same constraint on coefficients.

This contribution above all shows a certain hubris on the part of Duhem who, as
a recently appointed young teacher, wants to prove to the academic world that he
has reviewed everything on the subject matter although he has not yet contributed
original works to it (as on 1891).

The same holds true of the second part devoted to three-dimensional elasticity.
Per force, this has to deal with some conventional matter, but it brings us closer to
our own focus. Here Duhem critically remarks—perhaps in some arrogant tone of
superiority—that most readers of Navier’s original memoir of 1821 read it with
little attention (HEA-2, p. 244). He then recalls the beautiful work (several memoirs
on double refraction between 1821 and 1827) by A. Fresnel (1788–1827), which
involves a different starting working hypothesis: in a natural state it is repulsive
molecular action which maintains the equilibrium, the resulting molecular actions
that act on each material point from all sides summing up to zero. Out of equi-
librium Fresnel determines the magnitude and direction of the resultant force on
each material point. Duhem gives the corresponding proof in detail. We know from
Cauchy himself (1823, p. 9) that he discussed the matter with Fresnel in 1822. This
led him to formulate the general equations of continuum mechanics (Cauchy 1823,
1828a) after a short oral communication to the Paris Academy of Sciences on
September 30, 1822 (Theory of Cauchy-I). Duhem reminds the reader of the way
Cauchy proved his basic equations—equilibrium of a small parallelepiped for the
local body equation and the famous tetrahedron argument for the associated
boundary condition as reported in many books. This avoided the consideration of
molecular forces while introducing elegantly the notion of three-dimensional stress
tensor (not called this way by Cauchy) with six independent components at most.
The reasoning consists in keeping only terms of the same order of magnitude in the
equations of balance of forces and moment of forces applied to the infinitesimal
body. Cauchy’s proofs were completed by Lamé and Clapeyron (1831). Poisson
(1829, 1833) proposed another theory that followed the attempts of Navier and
Fresnel based on the notion of molecular interactions. Cauchy, deviating from his
original proposal, took the same direction in another memoir of 1828 (Cauchy
1828b). Some of these works yield what is now known to be the wrong number of
elasticity coefficients in the case of isotropic bodies.
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Anyway, it was Cauchy and Poisson who tried to relate the six “pressures” and
the six deformations in the linear theory. Cauchy in fact first guesses a plausible form
of relations but this tentative approach provided one elasticity coefficient only for
isotropic bodies (see the above recalled equalityλ = μ). In a subtle reasoning Cauchy
then postulates that contrary to his first assumption where the principal “pressures”
were only proportional to the corresponding principal “dilatations”, each principal
pressure must be given by a linear combination of the corresponding principal
dilatation and another term proportional to the cubic (i.e., volume) dilatation, all this
in the understanding of functions that are linear and homogeneous. This is what
yields the existence of two different elasticity coefficients, called λ and μ by Lamé in
the case of isotropy. In modern times (Truesdell and Toupin 1960, Truesdell and
Noll 1965), this method which consists in making direct hypotheses concerning the
form of the stress-strain relations is called “Cauchy’s theory of linear elasticity” (not
involving the existence of an elasticity potential). Cauchy (1830) then tried to
generalize this reasoning to the case of anisotropic bodies. He writes thus the most
general linear relations between the two sets of (6) pressures and (6) dilatations. This
involves at most 36 coefficients. But using modern algebra we can say that this is a
symmetric linear application of R6 onto R6, so that a trivial argument shows that only
21 coefficients at most are independent in agreement with Lamé (1852). This number
was in fact obtained by Cauchy on the basis of a theory involving molecular at-
traction (CAUCHY-2). Poisson, in his molecular approach obtains a number of 15.
The debate lasted until Clebsch, Saint-Venant, and Poincaré (cf. HEA-2, p. 262).
However, with George Green taking over Lagrange’s method with the existence of
an elasticity potential (Green 1839) and its thermodynamic justification by W.
Thomson (Kelvin), we know that the final answer indeed is 21 for anisotropic elastic
bodies and 2 for the isotropic case.

“Recherches sur l’élasticité” (RE)
When Duhem gathered in 1906 four long papers previously published in the
Annales Scientifiques of the Ecole Normale Supérieure in a single volume of more
than 200 pages (Duhem 1906b), some fifteen years had elapsed since his writing of
his lecture notes in Lille. In this interval of time, the general landscape of contin-
uum mechanics had drastically evolved as a result of works by Voigt, Koenigs,
Poincaré and, above all, the Cosserat brothers with their work of 1896. In this long
interval Duhem himself had published a large number of Notes in the Comptes
Rendus of the Paris Academy of Sciences in parallel with his original contributions
to hydrodynamics, especially in the domain of wave propagation (see below).
Contrary to his lectures of 1891 where he stated that three-dimensional elasticity
was essentially dealing with “small” motions and thus a linear theory while
one-dimensional and two-dimensional elasticity theories had to be nonlinear—as
we obviously witness with the theory of the elastica—he realized the full potential
of a three-dimensional theory that involves finite strains. This change of view must
have been kindled by the Cosserats’ long paper of 1896 and a better learning of the
elasticity theory and its sources. Accordingly, he had to return to a more basic
general description calling for both Euler and Lagrange kinematic approaches
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complemented by the original results of Cauchy, Piola (1836, 1848), Kirchhoff
(1850, 1852, 1859, 1876), Boussinesq and others related to strains and the stress
tensor. It is because of this contribution that Duhem is probably better known in
solid mechanics than in fluid mechanics. A reason for this may be the direct
interaction he had with some well known contemporaries such as Poincaré and the
Cosserat brothers (see also Hellinger 1914), and the fact that he had become much
interested in large deformations, the study of which had a tremendous development
some fifty years later on.

The subtitle of the book deserves to be remembered. It reads: “On equilibrium
and motion of vitreous media; slightly deformed vitreous media; stability of elastic
media; General properties of waves in viscous and nonviscous media”. This says it
all as a kind of abstract giving the title of four original contributions.

In Duhem’s overall view, the need to consider finite deformations originates
from the will to envisage a whole spectrum of material behaviours, a spectrum that
includes intermediate behaviours between true solids and fluids (Duhem 1901).
This in turns involves viscosity and so-called “vitreous” bodies (as opposed to
“crystallized”—anisotropic—ones), in the line of ideas put forward by Kirchhoff
and Boussinesq, and the German analyst Oskar Emil Meyer (e.g., in Meyer 1874) to
whom he will frequently refer. According to Miller (1970), Duhem thus “kept alive
a correct finite elasticity inspired by other workers”. Duhem’s introduction of finite
deformations leans heavily on the Cosserats’ memoir of 1896, but he is also
thoroughly aware of, and praises, the main works by George Greeen, G. Kirchhoff,
W. Thomson (Lord Kelvin), W. Voigt (considering isothermal and adiabatic
deformations), and J.V. Boussinesq on elements of nonlinear elasticity.

The notation is that used with strains invariants Ja; a ¼ 1; 2; 3. The determinant of
the deformation a; b; c ! n; g; 1 is noted D, so that the continuity equations reads
qD ¼ q0. Thermodynamic temperature T is introduced from the start as well as the
internal potentialΦ (following the initial idea of Duhem 1893). A vitreous medium is
supposed to be isotropic and thus such thatU ¼ UðT ; J1; J2; J3Þ. General equilibrium
equations are deduced from the virtual work principle in the presence of external
actions, supposing that both internal and external interactions are Newtonian. The full
dynamical equations are obtained by adding the virtual work of viscous forces and
applying d’Alembert’s principle for the inertia forces. The resulting equations in the
bulk and at the bounding surface generalize those proposed by Boussinesq. But
Duhem, following his previous works in hydrodynamics, pays special attention to the
dissipation function and the so-called complementary relation, reflecting the heat
conduction (à la Fourier) in what we now identify with the local statement of the first
law of thermodynamics (HE, p. 41). This completes the first part of the RE.

The second part (RE, pp. 43–73) first considers the motion of a vitreous medium
that slightly deviates (i.e., in “small” motions) from its initial configuration, the
latter being not necessarily an equilibrium state under the action of vanishing
forces. These yield the Green-Lamé equations as completed by Poincaré in his
lectures on elasticity (Poincaré 1892, p. 54). The problem envisaged by Meyer
(1874)—who used molecular considerations—corresponds to constant uniform
temperature and surface external forces only, but still with viscosity. What

5.5 Advances in Elasticity 119



drastically simplifies the whole matter [RE, p. 53, Eqs. (30)]. Using a technique due
to Clebsch, this can be transformed into equations governing the dilatations and the
rotations separately. Because of the presence of viscous terms, these equations are
akin to those obtained for wave propagation in the electrodynamics of electricity
conductors. Stability imposes that elasticity coefficients and viscosity coefficients
satisfy well known inequalities. The resulting waves are of differing orders (in
Hadamard’s classification) for the components of the velocity and those of the
stress components (one order less for these quantities than for the velocity). This is
indeed studied in detail in the second chapter of this second part of RE. This study
is quite innovative with Duhem concentrating on the case of second order (i.e.,
acceleration) waves—for the velocity field—in heat conducting vitreous bodies,
and first order (i.e., shock) waves for the same bodies, with eventual specialization
to the absence of viscosity and bad conductors of heat. This chapter, exploiting
Hadamard’s lemma (kinematic compatibility) is rather technical because of the
visible ambition at generality. This parallels studies proposed before in the
researches in hydrodynamics. It seems that Duhem is the first mechanician to study
the discontinuities in temperature in thermo-mechanical waves of any order. For
instance, a wave of second order with respect to the components of the velocity is at
least of second order in the temperature in a good heat conductor (RE, p. 75). Also,
in a bad conductor of heat, albeit viscous, waves of order greater or equal to one
with respect to the velocity cannot persist in time.

The third long part (HE, pp. 83–157) in this series is exclusively reserved to the
question of stability of elastic media. The various points examined first concern
sufficient conditions for the initial stability of any—or more specially vitreous—
medium. Then establishing necessary conditions for the stability of an elastic
medium takes more space and yields longer technical developments (pp. 91–132)
requiring great attention to the relative orders of smallness of terms. The discussion
involves the second derivative of the global energy yielding complicated lengthy
expressions (see, e.g., RE, pp. 108–115). The rigor reached in these developments
is that introduced by Lyapunov and Poincaré. But it is not proved that two systems
of partial differential equations that differ infinitesimally little from one another can
provide integrals that differ infinitesimally little in spite of identical initial condi-
tions (RE, p. 121). This third part concludes with a thorough discussion of the
displacement of equilibrium under perturbation of external actions. The case of
isothermal perturbations is favored and consequences for the stability of equilib-
rium are emphasized. Some applied inverse argument is based on Hadamard (1903,
p. 253). Isentropic displacement from equilibrium is also envisaged. Finally,
application of the obtained results to a very slightly deformed body about a loaded
configuration is briefly discussed in comparison with results by W. Voigt (1887).
One should mention here the importance of so-called principal waves which
propagate in the direction of one of the principal axes of the initial deformation
(many works in the 1960s–1980s concern this special case).

The last part of RE (pp. 159–213) probably is the one of which Duhem is most
proud. It constitutes the apotheosis of Duhem’s researches in waves in continuous
media since, apart from the writing of his thick opus on energetics and general
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thermodynamics (Duhem 1911), he will devote the ten-year period from 1906 to his
death in 1916 mostly to works of a historical and epistemological nature. Indeed,
Duhem’s contribution in this last part of his RE shows the real professionalism
reached by Duhem in this original field of research. The detail and accuracy in
reasoning exhibited in this work are stupendous. If it were not for the lack of use of
a more synthetic and condensed notation of the vector kind—Duhem still uses the
now antiquated independent components with a special, Latin or Greek, letter for
each of them—and the introduction of his own neologisms, the reading of this work
by twenty-first century students would be an easy matter. These fifty pages are
splendid. Duhem is faithful to himself by giving all definitions and proofs in great
detail. Contrary to Green and Poisson who understood waves as plane-wave per-
turbations of small amplitude, Duhem applies rigourously the rather new notion of
discontinuity fronts as beautifully formalized by his friend Jacques Hadamard, the
two ancestors in this line of research being Riemann and Hugoniot (for
one-dimensional motions). His approach is in two steps, one giving the general
description of discontinuity fronts in both reference (Lagrangian) and actual con-
figurations with the accompanying transformation formulas (e.g., Piola transfor-
mations although not cited this way), and the resulting general properties of such
waves in the presence or absence of viscosity. In accordance with Hadamard he
clearly distinguishes between kinematic compatibility conditions and dynamics
ones—that involve the jump of the momentum equation and of energy-based
quantities, temperature effects being only exceptionally neglected. The second step
is reserved to an in depth examination of discontinuity waves of various orders in
media exhibiting both elasticity and viscosity. Without exposing the reader to the
detail of the proposed developments, we simply note the originality and novelty of
some most striking results.

First of all, Duhem is the first to study the relationships between waves in
isothermal and adiabatic finitely deformed systems without viscosity. Again, the
specific interest of Duhem in thermodynamic properties led him to establish con-
ditions of stability and those of the existence of waves (in the sense of Hadamard):
no true shock waves can exit in the viscous non-linear thermo-elastic bodies (a
result already shown in viscous fluids; see above concerning RH). In these studies
he is also led to introducing the notion of “ondes-cloisons” [“partition (-wall)
waves”, GAM] through which there is no exchange of matter. These waves are
similar to contact discontinuities (no discontinuity in the velocity). They separate
the volume of the considered body into cells, so that Duhem notes their resem-
blance with H. Bénard’s cells in a fluid where large differences in temperature
generate convection currents and the formation of cells. All this is well documented
with the usual persuasive style of Duhem. One will have to await works by
Truesdell and co-workers10 in the 1960s–1970s, sometimes in a pure modernized

10See, in particular, Truesdell (1961) and Coleman et al. (1965). Then a real pandemic fashion
spread among theoretical mechanicians who studied acceleration and shock waves with the same
type of Hadamard-Duhem approach in all kinds of continuous media. The present writer did not
eschew this kind of irresistible feverish phenomenon.
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adaptation of Duhem’s work, to reach the same level of generality and rigor. But a
direct (contemporary) disciple of Duhem in the application of thermodynamics to
the propagation of discontinuity fronts is Emile Jouguet (1871–1943) who devel-
oped the theory of detonation waves with obvious applications to explosives (cf.
Jouguet 1905–6, 1917).

We would not be complete without mentioning that Duhem, in addition for an
above demonstrated interest in elasticity, was also interested in behaviours of a
more complex thermomechanical type such as plasticity and the phenomena of
permanent deformations and hysteresis. Some of these related studies may have
been premature due to the lack of reliable experimental measurements and also
difficulties in developing the related rather singular (irreversible) thermodynamic
description. This was fully exposed by Duhem in some of his works (Duhem
1903b, 1911), that we examined elsewhere (Maugin 2014a, b, Chap. 10).

We may conclude this section with the following remark that seems to have
escaped the attention of all writers. We have seen that Duhem considered the notion
of “vitreous” elastic solids—as opposed to “crystallized” elastic solids with a more
complicated material symmetry in their natural state—as essentially isotropic (in
their initial configuration) thermo-elastic solids able to exhibit some viscosity. This
he wants because he likes to contemplate a rather continuous spectrum of nonlinear
elastic behaviours between such “solids” and fluids. The fact that a fluid is nec-
essarily isotropic became a credo in the Truesdell-Noll overall vision of continuum
mechanics. But what about liquid crystals that can flow while exhibiting an
ordering typical of crystals, and thus appear as nonsensical from Duhem’s view-
point? It happens that in the very last sentences concluding RE (p. 213), Duhem
mentions Lehmann’s11 experimental work on “fluid crystals” as a possibility of
existence for an easily deformable, although anisotropic, crystalline medium. The
idea will be taken over by J.L. Ericksen in the 1960s. But this short spot-on remark
by Duhem shows the large extent to which he kept aware of any development in
physics; he was decidedly a never-at-rest reader with a gift for easy understanding
of all new physical facts.

5.6 Contemporary Reception of Duhem’s HEA and His
Two “Recherches” Volumes

Paul Painlevé (1863–1933), a brilliant mathematician and successful politician, was
probably the first to write a detailed (ten pages long) review of Duhem’s HEA
(Painlevé 1893). Painlevé became in time professor of Rational Mechanics at Ecole

11This is Otto Lehmann (1855–1922), German physicist considered to be the “grandfather of liquid
crystals” with his pioneering work published as “Über fliessende Krystalle”, Zeit. für
Physikalische Chemie, 4, 462–472, 1889. A classification of various liquid crystals was given by
Georges Friedel in 1922.
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Polytechnique, and was the first professor of Mechanics of Aviation at the Ecole
Supérieure de l’Aéronautique (created as soon as in 1909 and to become ENSAé or
“Sup Aéro”). We cannot ignore that Painlevé and Duhem were students in math-
ematics and physics at the Ecole Normale Supérieure (ENS) in Paris at the same
time, Painlevé being there from 1883 to 1886, and Duhem from 1882 to 1885 with
an additional year in 1885–86 and one year as assistant in 1886–1887 before
joining Lille. Like the other French contemporary mathematicians (H. Poincaré,
J. Hadamard, E. Picard), all these people were friends and more or less shared the
same vision of mathematical physics and phenomenological theories in particular.
Thus we may qualify Painlevé’s review as benevolent, but not avoiding criticism of
the form, his somewhat lengthy proofs, and Duhem’s love for generalities, the
cause of reading difficulties. But he praises the extreme mathematical rigour of
Duhem, the neatness of the solution of some problems (e.g., in the compatibility of
two small motions), the quality of the treatment of Hugoniot’s method for the wave
equation after accounting for previous results of Beltrami, Kirchhoff and Riemann,
of Helmholtz’s equation accounting for Poincaré’s general results, of the
two-dimensional wave equation in space on account of results by Schwarz and
Picard, and the high pedagogy of Duhem’s rendering of audible acoustics (fol-
lowing of course Helmholtz and physiological data). He also highly recommends
Duhem’s historical comments that we commented above. He also notes that other
researchers, such as V. Volterra, pursued some of the studies of Duhem on
Helmholtz’s equation. Poincaré and the Cosserat brothers (1909) as well as Paul
Appell (1921) will often cite the relevant works of Duhem. Jacques Hadamard and
Emile Picard will write complimentary eulogies of Duhem (Hadamard 1927; Picard
1921). In Germany, Hellinger (1914) generously cites Duhem (1891) many times as
one of the “modern” developers of continuum mechanics. Léon Lecornu, himself
author of a known course in mechanics (published in 1914–18; also 1925), wrote a
kind of pamphlet (Lecornu 1929) in which he praised Duhem’s works on elasticity.
This was favourably reviewed by Buhl (1929), a former colleague of one of the
Cosserat brothers in Toulouse.

5.7 Conclusion

Duhem’s texts critically perused in the present contribution unequivocally place in
evidence two characteristic aspects of Duhem‘s style and approaches. In his HEA of
1991 he shows his enthusiasm doubled by the obvious hubris of the young aca-
demic who wants to prove that he has mastered (in a very short time indeed) most
of the matter existing in hydrodynamics and elasticity since the eighteenth century
onward. This is achieved without much original input from himself except for the
already typical Duhemian style and some traces of what will become some of his
personally recurring interests, such as the notion of internal potential and questions
of stability. The published books of “recherches” (RH and RE) clearly show (i) a
much more mature scientist who took more time to ponder previous achievements
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and (ii) a greater originality in the expansion of ideas concerning stability and
waves in both fluids and elastic solids. These were the results that will remain and
be re-captured by mechanicians of the continuum in the 1960s–1970s.
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Chapter 6
Poincaré and Hilbert on Continuum
Mechanics

Abstract Henri Poincaré in France and David Hilbert in Germany are the most
creative mathematicians of the transition period between the nineteenth and
twentieth centuries. Both manifested a real interest in mathematical physics with a
marked philosophical bias on the part of Poincaré and an accentuated inclination
towards axiomatics on that of Hilbert. Although interested in various branches of
continuum mechanics, Poincaré delivered a series of lectures specifically on the
theory of elasticity in the early 1890s, while Hilbert gave a semester course on
general continuum mechanics in 1906–1907. Each of these was redacted in written
form by a pair of auditors. The surviving documents provide us with an opportunity
to appraise and contrast the different styles and approaches of the two great
mathematicians in a field that does not belong in their usual scientific preoccupa-
tions. As usual Poincaré is more intuitive than his competitor. He also demonstrates
an immoderate interest in the propagation of light as a specific path of application of
elasticity, while simultaneously exhibiting a surprising curiosity for the so-called
“Saint-Venant problem”. Hilbert’s exposition is more in a line that will materialize
in further developments such as by Hellinger and then mechanicians in the second
part of the twentieth century.

6.1 Introduction

Henri Poincaré (1854–1912) (cf. Gray 2013) in France and David Hilbert (1862–
1943) (cf. Reid 1990) in Germany are probably the most famous mathematicians of
the “belle époque” (roughly the period 1880–1914). They have in common to
belong to a now extinguished species of scientists with a wide interest in many
domains of mathematics and their applications to mathematical phenomenological
physics (and quantum physics for Hilbert). This remarkable aerial view is unmat-
ched by other mathematicians of the period and thereafter. But this in no way
implies some superficiality for they both contributed to the definite proof of
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fundamental theorems, they proposed famous conjectures, and they opened new
horizons that participated in the transition to the developments of twentieth century
mathematics and physics with the invention of new tools such as topology
(“analysis situs”), asymptotic methods, the dynamics of systems, and, among other
fruitful notions, the celebrated Hilbert spaces of quantum mechanical fame. They
were both deeply interested in the new physics represented by the electron theory,
special and general relativity theories, and radiation and quantum mechanics.
Involvement of Poincaré in the last two fields was abridged by an untimely death.
Although of an equal creativity, they differed in their practice of science, Poincaré
being an essentially lonely researcher—but not detached from the scientific and
philosophical discussions of his time—while Hilbert was a true leader who men-
tored many young associates and directed an organized school that blossomed first
in Germany and Europe, and then in the USA (Figs. 6.1, 6.2, 6.3 and 6.4).

Much below these stratospheric heights, we find continuum mechanics and its
two main branches, solid and fluid mechanics. The reader may find strange the
introduction of such mathematical luminaries (and probably unique geniuses) as
Poincaré and Hilbert in such mundane fields of sciences situated at the boarder line
between applied mathematics and engineering. The interest of Poincaré and Hilbert

Fig. 6.1 Poincaré’s lectures on Elasticity (1892a); from the Archives Henri Poincaré (Laboratoire
de Philosophie et d’Histoire des Sciences, Paris)
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in this field may be due to a teaching obligation (case of Poincaré) or an episte-
mological interest (case of Hilbert), and above all to the intimate de facto rela-
tionship between continuum mechanics and analysis. The notions of “continuum”
and “continuity” themselves may have been the main incentives for this inclination,
all the more that continuum mechanics at its stage of development in the considered

Fig. 6.2 Hilbert’s lectures on continuum mechanics (1906–1907)—from the Bibliothèque de
Mécanique Théorique, IJLRdA- UPMC (Paris 6)
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Fig. 6.3 Henri Poincaré
(1854–1912)

Fig. 6.4 David Hilbert
(1862–1943)
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period presents a favourable framework for pondering the basic principles of
mechanics, then the paragon of rational science and phenomenology in some
achieved form before the revolution brought in by the “new” physics. So these are
favourable objects of thinking for inquisitive minds such a Poincaré and Hilbert
after the recent works of the Cosserat brothers and Pierre Duhem in France and
Heinrich Hertz and Georg Hamel in Germany and before the expansion and
forthcoming differing visions by Henryk Lorentz, Max Planck and Albert Einstein.
Note that the axiomatization of mathematical physics—of which continuum
mechanics constitutes a most basic building block—was heralded by Hilbert as his
problem no.6 among the list he generously offered to the community of mathe-
maticians (see the Appendix below).

6.2 Poincaré on Elasticity

6.2.1 Preliminary Remark

Although a superb pure mathematician and a remarkable contributor to the epis-
temology and philosophy and science, Henri Poincaré also contributed published
lectures on field of mechanics and physics for courses (at what we may call
undergraduate-graduate level) delivered at the Sorbonne year after year: pure
kinematics and fluid mechanics (Poincaré 1886), the mathematical theory of light
(Poincaré 1889), electricity and optics (Poincaré 1890, 1901), the theory of vortices
(Poincaré 1893) thermodynamics (Poincaré 1892b), electric oscillations (Poincaré
1894), capillarity (Poincaré 1895a), the analytic theory of heat propagation
(Poincaré 1895b), the theory of potential (Poincaré 1899a), Maxwell’s theory and
Hertzian oscillations (Poincaré 1899b), and more to our point, elasticity (Poincaré
1892a, b). These lecture notes were published by the Friendly Association of
Students and Alumni from the Faculty of Sciences in Paris Sorbonne. But apart
from the first one they were printed by a real publisher, Georges Carré, then
transformed into the associated Carré and Naud in Paris. As a whole, they cover a
remarkable spectrum embracing all of phenomenological physics as of the end of
the nineteenth century. One could think that this conspectus is rather superficial.
But none is the case. On the contrary, in each case the author critically reviews what
is actually known. He discusses alternate formulations if any, and documents all
these with a wealth of material. This bears witness of the tremendous energy of
Poincaré—who simultaneously pursued his original research in pure mathematics
and celestial mechanics—and his rapid intellectual capture of any scientific domain.

Of course, the final printed lecture notes were edited by a selected group of
gifted students, who may not have been numerous to attend the lectures in any case.
For the case in point, the lectures on elasticity delivered during a semester of the
Academic year 1890–1891 were nicely edited by two gifted students of the cele-
brated Ecole Normale Supérieure (ENS). One was Emile Borel (1871–1956), a
mathematician who became famous for his works on the theory of functions and
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probabilities, also creator of the Institute of Statistics of the University of Paris and
of the centre of mathematics known as Institut Henri Poincaré—and an active
politician at the time of the First World War. The other was Jules Drach (1871–
1951) with renowned works in the theory of systems of differential equations (in
particular, their reducibility) in the line of E. Picard and H. Poincaré. They were
classmate at the ENS in Paris and became very close life-long friends. Both were
elected to the Paris Academy of Sciences in due time.

6.2.2 The Course on Elasticity

This is not a course on the whole and formal structure of continuum mechanics. On
the contrary, the object of study is restricted to linear elasticity and, as we shall
uncover, it is only exceptionally intended as an introduction to applications in
engineering. Moreover, while the given proofs are fully explicit and sometimes
close to a student redaction (this is probably due to the two redactors), still the
writing and remarks smell good the spirit of higher geometry as taught in
preparatory classes to the competition to admission to Grandes Ecoles (Ecole
Polytechnique and ENS), in French: “l’esprit taupin” (the “mole” spirit)—according
to the nickname “taupe” (mole) given to these preparatory classes. Finally, the
contents of chapters are not formally introduced and there are few comments only.

Chapter 1 is naturally devoted to the kinematics of deformations. This is done at
a rather slow path without introducing differential geometry (and the famous ds2).
But orders of terms are well indicated. Displacement components are noted n; g; 1ð Þ
as in other French works of the period (e.g., Cosserats’ works). Emphasis is given
to elementary types of deformation (dilatation, shear), the ellipsoid of deformation,
principal dilatations (stretches in modern jargon), and the mean rotation (following
here Cauchy). The above mentioned higher geometry spirit is illustrated by
expressions like (my translation, GAM): “the sphere follows from the ellipsoid by a
homographic transformation that conserves the plane at infinity” (p. 12).
Rigid-body motion, mean rotation and longitudinal and transverse deformations are
introduced. No doubt that this prepares the way for the notion of pure transverse
deformation useful in light-wave propagation. What is more surprising is a lengthy
discussion about so-called “isotropic polynomials” (rotationally invariant quanti-
ties). But this also prepares the way for the introduction of basic second-order scalar
invariants in the energy of linear elasticity.

The important Chap. 2 introduces the notion of elastic forces. To do so, Poincaré
distinguishes between theories based on molecular hypotheses and those based on
thermodynamics (in the manner of George Green) where the intimate constitution
of matter is disregarded. Nowhere is Cauchy’s fundamental notion of stresses (what
we call CAUCHY-1 theory, expanded in Cauchy 1828a) mentioned. Poincaré here
prefers to start with the molecular approach expanded by Poisson (1829, 1831) also
advocated by Navier and Cauchy (in the CAUCHY-2 theory, cf. Cauchy 1828b).
Here, bodies are made of molecules that are very small compared to their separating
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distances. They are acted upon by both “internal” and “external” forces. Internal
forces are like Newtonian forces between molecules and are ultimately responsible
for the macroscopically observed elasticity of the body. They are of the central type,
and according to Lamé (1852) vanish at natural equilibrium (in the absence of
external forces) with a vanishing attraction. Conservation of energy then implies
that internal forces derive from a potential (p. 30), to be called the “force function”.
External forces may act on all molecules, while at the surfaces they may act on
superficial molecules (whatever these be) only. In modern standard continuum
mechanics the former are recognized as “body” forces and the latter as applied
“tractions”. Poincaré cites the example of a gas in a container. Passing to the case of
true deformations calls for an exercise in the Taylor expansion of the force func-
tions in terms of the small displacements. The possibility of the existence of
mathematical constraints connecting molecules is envisaged and taken care of by
the introduction of Lagrange multipliers. Approximation of the expansion of the
force function requires the introduction of a small radius of molecular “activity”
(interaction), yielding the neglect of far-distance mutual interactions. This is the
most disputable part of the procedure, in particular when dealing with molecules
placed at the boundary of a body. The case of isotropic bodies indeed involves the
previously introduced isotropic polynomials that must be linearly independent. The
number of remaining elasticity coefficients in this approach remains a discussed
matter as already known to Lamé (1852) and Clebsch (1862).

The equilibrium equations are then introduced in Chap. 3 by means of the
principle of virtual velocities. The resulting bulk equations and boundary conditions
are finally obtained (pp. 58–59) with identification of what are called “pressures”
(in modern jargon, the components of a—Cauchy—stress tensor). It is only at this
point (p. 62) that Poincaré considers as an alternate approach the energy viewpoint
of Green (1839). But he improves on Green’s presentation by using a thermody-
namic argument that, obviously, Green could not know. Poincaré’s argument
reminds us of Duhem (without mention of this author) and is worth recalling. With
equilibrium already reached the principle of conservation of energy yields the
equality between the virtual increase of internal energy and the sum of the virtual
work of external forces and the variation of heat gained from the outside. That is,
(ignoring the introduction of the mechanical equivalent of heat noted E by
Poincaré),

dU ¼ dV þ dQ: ð6:1Þ

With reversible deformation (elasticity limit is not reached), entropy S and absolute
temperature T are such that

dQ ¼ TdS: ð6:2Þ

Assuming temperature is fixed (to avoid any effect of thermo-mechanical cou-
plings), we have dQ ¼ d TSð Þ, and thus
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dV þ d ST � Uð Þ ¼ 0: ð6:3Þ

Follwing Helmholtz, the quantity ST � U is called the thermodynamic potential by
P. Duhem and available energy by Helmholtz and Gibbs (cf. Maugin 2014,
Chap. 7). This will be the potential that govern isothermal elasticity (i.e., minus the
Helmholtz free energy). Pressures (stresses) will derive from it through partial
derivatives with respect to deformations (strains). Then Poincaré discusses the
ellipsoid of pressures as also alternate definitions of pressures from Navier and
Lamé, and whether there may exist an initial pressure (as required in the propa-
gation theory of light—theory of double refraction by Fresnel and Cauchy—in the
supposedly elastic “ether”.1 It is at this point that we first witness Poincaré’s marked
interest of elasticity for optical theories. He indeed refers to his own mathematical
theory of light (cf. Poincaré 1889, 1890).

Special equilibrium solutions in the absence of external forces are discussed in
the short Chap. 4. A particular imposed condition on the two elasticity coefficients
of isotropic elasticity, kþ 2l ¼ 0, is paid special attention in relation with Fresnel’s
theory of light that forbids dilatation, hence longitudinal propagation. This is
accentuated in Chap. 5 devoted to small motions of an elastic body. Here dynamic
acceleration terms are added by virtue of d’Alembert’s principle and allowing for
the considerations of periodic oscillations. For a finite body this yields a discrete
spectrum of vibrations. This is complemented with a rather thorough study of plane
waves in the long Chap. 6 of about fifty pages. There is a deep reason for this
emphasized attention. It is that Poincaré, like many, if not all, other physicists of the
nineteenth century, remains most interested in the possibility of the propagation of
light as a purely transverse elastic wave in an appropriate elastic invisible sub-
stratum, the now obsolete “ether” (see Footnote 1). This chapter is very classical in
contents introducing first d’Alembert’s solution and both longitudinal and trans-
verse wave in the case of full isotropy. Still there are recurring remarks on the case
of pure transverse waves. Also, the consideration of reflection (Sect. 59) at a plane
with a vacuum on the non material side is certainly inspired by the mathematical
theory of light since the vacuum does not allow for the existence of refracted waves.
In a more general case, the Snell-Descartes law is obtained (p. 130) when refraction
is possible. For a body of finite dimensions, the vibratory state of the body forms a
system of stationary waves by constructive interferences. Vibrations of a

1Most engineers and theoretical mechanicians ignore that initial developments in the three
dimensional theory of elasticity in the early nineteenth were kindled by the need to introduce the
notion of an elastic medium that, according to Fresnel’s famous discovery, must allow for the
propagation of light as purely transverse waves (in contradistinction with longitudinal pressure
waves for the propagation of sound in acoustics). Augustin-Louis Cauchy, George Green, and
William Thomson (to become Lord Kelvin) are among the proponents of such an approach to light
propagation. This interpretation held good practically until the work of Einstein on the electro-
dynamics of moving bodies and the experimentally proved lack of evidence for the existence of
this famous pervasive medium, the “ether”. Poincaré and H.A. Lorentz, immense scientific figures,
still belong to the previous period in so far as light propagation is concerned.
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rectangular parallelepiped, of a rectangle prism (note the vocabulary of optics), and
a sphere (a problem partially treated by A. Clebsch) are discussed. A more com-
plicated solution involving both longitudinal and transverse waves is attributed to
Marcel Brillouin (p. 152). The chapter is concluded by a discussion of the radiation
of elastic living force [i.e., kinetic energy, GAM] in air.

The penultimate Chap. 7 is somewhat surprising as it is devoted to the so-called
Saint-Venant problem of essential interest in deformable solid mechanics and the
strength of materials, subject matters for which Poincaré usually shows not much
enthusiasm. We surmise that Poincaré, like many other scientists of the second half
of the nineteenth century must have been bedazzled by Saint-Venant ingenuity and
dexterity in his solution. In the period 1853–1856 Saint-Venant2 (see Barré de
Saint-Venant 1855) proposed to examine the following problem: consider a long
homogeneous isotropic elastic cylindrical body with forces applied only on its
bases, the lateral faces being free of load, and determine the resulting field of
deformations in the body. This is one of the most famous problems in solid
mechanics, what makes Saint-Venant one of the most illustrious contributors to the
field in the nineteenth century. Citing our own text (Maugin 2014, p. 82),

Saint-Venant “approached the problem of combined torsion and flexure of long rods with a
very fruitful intuitive idea that we try to describe without the help of formulas: in linear
elastostatics it is thought that the difference in effect of two equipollent (i.e., with same
resultant) load systems confined to a small part of a boundary becomes negligible away
from that boundary. For instance, in the case of the deformation of a prism or a cylinder, we
assume that a system of forces is applied only at the two bases. Now, if the transverse
dimensions are small compared to the length of the body, the differences in the distribution
of forces on the bases produce only local perturbations. As a consequence a practically
identical state characterized by longitudinal fibres exerting only tangential actions on their
neighbours, or directed along the length, takes place after a small distance from the bases.
Exploiting this idea translated into analysis and using the hypothesis of no surface pressure
exerted on the lateral faces, Saint-Venant succeeded in justifying from elasticity the
accepted laws of flexure and torsion in the strength of materials”. This dazzling result met
an exceptionally good immediate reception, especially outside France. Thus Clebsch in
Germany coined the expression “Saint-Venant problem” for this approach, and later on,
with the enthusiasm of a close disciple, Boussinesq called it “Saint-Venant’s principle”. But
with the passing of time we think that the use of “principle” was an exaggeration. We must
agree that it was more a well thought working hypothesis than anything else, but a very
fruitful one indeed. Nowadays, all mathematical considerations of the Saint-Venant’s
problem are necessarily based on reasoning involving asymptotic analysis and good applied
functional analysis that provides a rational measure of the considered approximations”.

2Adhemar Jean Claude Barré de Saint-Venant (1797- 1886) was an « engineer-scientist » formed
as a civil engineer at Ecole Polytechnique and Ecole Nationale des Ponts et Chaussées in Paris. He
did fruitful research for almost sixty full years. His last publication in the Comptes Rendus of the
French Academy of Sciences was dated January 02, 1886—probably presented on December 24,
1885—while he died on January 06, 1886. He had become a member of the Paris Academy of
Sciences in 1869, on Poncelet’s seat, at a relatively late age of seventy one for a scientist of this
magnitude.
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But Poincaré’s exposition of Saint-Venant’s problem is rather original. Let z the
axis coordinate of the cylinder. Assume a priori that some stress components vanish
inside the cylinder:

rxx ¼ ryy ¼ rxy ¼ 0: ð6:4Þ

The three components n; g; 1ð Þ of the displacement have to be determined from
the equilibrium equations on account of the working hypothesis (6.4) and of the
side condition of no traction on the lateral face of the cylinder at any point of the
cross section at length coordinate z. This leaves only one condition applied to rxz
and ryz. Poincaré shows that displacements n and g satisfy Cauchy’s conditions so
that nþ ig is a function of the complex variable xþ i y and the longitudinal coor-
dinate z:

nþ ig ¼ f u; zð Þ: ð6:5Þ

Problem: find the form of function f, and then determine the third displacement
1. In the end, he will determine the field of forces that must be applied to the bases
of the cylinder in order to yield the already obtained elastic solution. We skip the
detail of the first part of the argument which boils down to evaluating a function
X x; yð Þ at length coordinate z, which is part of the solution 1, and satisfies the
two-dimensional Laplace equation DX ¼ 0 in the cross section, with boundary
condition of the form

dX
dn

¼ V x; yð Þ; ð6:6Þ

where the right-hand side is known for a given cross section of the cylinder. It is
proved by exploiting Green’s theorem that the solution of the problem in all
involves twelve constants, but six of them will correspond to a displacement of the
cylinder without deformation. The other six corresponds to a set of simple defor-
mations that comprises a traction or compression, one torsion and four kinds of
flexure. An argument exploiting a conformal transformation provides a geometric
interpretation to the function f: the angle made by two curves situated in the cross
section is not altered by the deformation. Furthermore, solving for Ω in the case of a
circular cross section, the author shows that Saint-Venant’s problem can be solved
for all sections that can be mapped to a circle by conformal transformation. This is
the case of elliptic and rectangular cross sections. Poincaré then establishes the
expressions of the six simple solutions of interest. Particularly important solutions
are those that correspond to traction, torsion, simple flexure and complex flexure as
they yield different deformations of fibres. From these solutions one finds the
corresponding forces. This is not the way Saint-Venant conceived “his” problem
since he started with the data of forces on the bases of the cylinder. Such external
forces are three standard forces along the three axes and three torques of which the
axes are parallel to these three forces. What Saint-Venant does is that he replaces in
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each case the real distribution of applied forces by another much simpler one that
yields the same resulting forces and couples. If one has at hand a sufficiently
general solution so that forces and couples may take any value, then we can get an
idea of the internal deformation of cylinder submitted to any system of forces on the
bases. But Poincaré has found the six arbitrary coefficients for such a general
solution. He therefore considers that he has solved the practical problem. He
deduces from this a classical theorem of the strength of materials, that of the
“bending moment” (in French, “moment fléchissant”) and also the expression of the
so-called “moment of torsion”. Saint-Venant’s problem solution thus justifies the
simplified expressions adopted by engineers in the strength of materials of struc-
tures (for instance, when the hypothesis of cross sections remaining plane and
perpendicular to the z axis is applied, although Saint-Venant had himself introduced
the fruitful idea of warping).

The short last chapter of Poincaré’s lectures (Chap. 8) is devoted to what he calls
the problem of the “élastique” in which he applies, mutatis mutandis,
Saint-Venant’s principle for an elastic body of thin lateral dimensions compared to
its length. By “élastique”, it must be understood the mean fibre (that goes through
the centre of gravity) of a long thin structure with diameter much smaller than its
length, e.g., a thin rod called “verge” in the French vocabulary of the ending
nineteenth century.3 The reasoning here is purely geometric with some references to
previous works by Lagrange, Jacobi and Sophia Kovalevskaya.

6.2.3 Concluding Comments

From this rather fast perusal of Poincaré’s lectures on elasticity, we take the liberty
to draw the following conclusions on both style and contents.

First of all we note the rather dry style of redaction with very few comments,
practically no introduction to the different chapters, no expressed motivation, and
rather detailed calculations which may help the student but may sometimes be
supererogatory. All this may be due to the two redactors—who were still very
young at the time of editing the lecture notes—as this is not much in the usual
literary style of Poincaré. As already remarked, it is not well understood why
Poincaré delivered this semester course as he was not especially concerned with
solid mechanics. But his interest in the propagation of light waves in a supposedly
elastic medium may be the whole reason supporting this endeavour. It follows from
this a clear emphasis on the propagation of harmonic waves and their reflection at a
surface, a subject matter very little reported in pedagogical treatises by some of
Poincaré’s contemporaries, e.g., Appell in his well known treatise on rational
mechanics (Appell 1921, First edition 1900; see comments in Maugin 2014,

3The expression “verge” is no longer used by French engineers, as it has become customary to
designate the male penis; “tige” or “poutre” is preferred to designate the structural element.
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pp. 197–198). To appreciate this special inclination of Poincaré we must remember
that until the negative experiments of Michelson and Morley (in the period 1881–
1887) and subsequent works of Lorentz and Einstein, most physicists still envis-
aged the possible true existence of this invisible elastic medium, the “ether”,
incompressible and providing the appropriate substratum for the desired purely
transverse waves of which light is made of according to Fresnel. Very soon, many
pedagogues and researchers in continuum mechanics (P. Duhem, P. Appell, the
Cosserat brothers, E. Jouguet,…) will turn their attention to discontinuity waves
(shock waves, acceleration waves), following the pioneering works of
G. B. Riemann, P. Hugoniot, and P. Duhem and after the beautiful work of
J. Hadamard on the classification of such waves. We surmise that this would have
interested Poincaré since these studies involve singular fields and he enjoyed
dealing with pathological cases; but Poincaré’s lectures were delivered and pub-
lished some ten years before this sudden passion of the mechanical community.

What is most striking to observers of the author’s generation is the absence of
mention of Cauchy’s beautiful approach to general continuum mechanics (Theory
of CAUCHY-1; introduction of Cauchy’s lemma, the stress tensor, finite strains).
Poincaré prefers to start with the somewhat antiquated molecular approach of
Navier and Poisson, although he does mention the energy approach à la Green; but
in a general manner, he gives only very few references, which often are not accurate
enough. But it is understood that the few students who took his course and got
interested could have ready access to most of these previous works by Cauchy,
Poisson, Lamé, Clebsch, Saint-Venant et al., on the shelves of the library at the
Sorbonne. We finally note that Poincaré, contrary to his contemporaries in France
or elsewhere, does not discuss any general principle of continuum mechanics but
we would be mistaking by considering this short adventure into elasticity as his
only work in continuum mechanics, for he was very much interested in perfect
fluids as shown by his first lectures (Poincaré 1886), his many thorough—now
considered as classical—studies in equilibrium shapes of fluid masses (cf. Poincaré
1902), and his lecture notes on capillarity (Poincaré 1895a).

6.3 Hilbert on Continuum Mechanics

6.3.1 Preliminary Remark

Like Poincaré, David Hilbert, although basically a pure mathematician, was also
interested in mathematical physics, electrodynamics and general relativity in par-
ticular. The celebrated course by Courant and Hilbert (Methods of Mathematical
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Physics4) is very representative of this interest. The school expanded at New York
University by Courant, Friedrichs and others who escaped Nazi Germany before
World War Two, was instrumental in infusing this spirit of rigorous applied
mathematics in the USA, with definite consequences in applied functional analysis,
numerical methods, theoretical aerodynamics, shock-wave theory, magneto-
hydrodynamics, etc. The series of books in mathematics published by
Interscience Publishers in New York was also a spin-off of this immigration.

In the winter semester of the Academic year 1906–1907, Hilbert delivered in
Göttingen a series of lectures entitled (in translation) “Lectures on the mechanics of
continua” (Hilbert 1906–1907). The corresponding notes were redacted by
W. Marshall and A.R. Crathorne (1873–1946).5 These notes by Marshall and
Crathorne were further edited and produced in mimeographed form by J. Stickforth
at the Mechanikzentrum der Technischen Universität Braunschweig in Germany in
1970. This is the document on which our perusal is based. Note in passing that
Hilbert delivered another session of lectures on the mechanics of systems of points
(“discrete masses”) during the Winter semester of Academic year 1905–1906 and
this kindled an interest in the principles of physics and mechanics according to Otto
Blumenthal (1876–1944)6—cf. Blumenthal 1922, as cited by Stickforth, p. III.

6.3.2 Critical Analysis of Hilbert’s Lecture Notes

By way of an introduction to this rare document Stickforth emphasizes the evident
strong interest of Hilbert for axiomatics and the fact that physics, in which he
includes mechanics, badly requires an axiomatic framework (no.6 in his list of
problems proposed in 1900; cf. Hilbert 1901; and the Appendix to the present
contribution). This is corroborated by Max Born (1922). But we must also
remember that George Hamel (1677–1954)—cf. Hamel (1908)—, about the same
time, worked out an axiomatization of mechanics that will have a marked influence,
especially in Germany (cf. Hamel 1927, 1949). This followed an earlier attempt by
Hertz (1899). The encyclopaedia article of Hellinger (1914) that we analysed in

4In the late 1960s, it was customary for Prof. Roman Smoluchowski (educated in Poland and
Germany in the 1930s) to give as written exam—for the foreign-language requirement for the Ph.D
in exact sciences at Princeton—a translation into English of one paragraph of the introduction of
the original German version of this book (“Methoden der mathematischen Physik”, Courant and
Hilbert 1924). This is what happened to the writer. Note that the book was essentially the work of
Courant.
5Crathorne obtained his doctoral degree under the supervision of Hilbert in 1907. Then he became
assistant professor of mathematics at the University of Illinois. His successful American book
“College Algebra” (1919; Henry Holton and Co., NY.), co-authored by H.L. Rietz, went through
several revised editions (1924, 1929,…). We do not know what became of W. Marshall, although
he may have been affiliated with Purdue University, since his manuscript on Hilbert’s course
comes from the library of that university.
6Blumenthal was Hilbert’s first doctoral student and one of his biographers.
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some detail in another place (Maugin 2014, Chap. 12) will lean in the same
direction. This would later on be taken over by modern authors such as Truesdell
and Toupin (1960) and Truesdell and Noll (1965) and other less influential
mechanicians.

When we peruse Hilbert’s notes we do not expect much deviation from a rather
well defined inescapable agenda starting with the definition of a continuum,
introducing some required elements of mathematics (here vector analysis), defining
the basic kinematics, complemented by the bases of dynamics, and then expanding
special illustrating cases (e.g., elasticity, perfect fluids), some problems, and finally
exposing some more exotic subjects (here, capillarity, electrodynamics, and ther-
modynamics). But we also surmise that these will be delivered with a special
flavour of a great mathematician, a deep thinker, and an acknowledged master. This
is indeed the case. Page numbers refer to the edition by Stickforth in multigraphed
form (original chapters are numbered by Roman numerals).

6.3.2.1 On the Introduction (pp. 1–7)

Here Hilbert clearly leans in favour of analytical mechanics, emphasizing the
prevailing role of Lagrange and Hamilton’s principle for systems of points. This is
viewed as the basic principle of the whole of physics with the fundamental
underlying idea of minimalization. Of course, this announces the general viewpoint
that will be expanded in the forthcoming chapters for the case of deformable media,
leaving little room, if any, for dissipative processes.

6.3.2.2 On the Notion of Continuum (Chap. 1, pp. 8–26)

The space-time parametrization of a continuum motion is contrasted between
Lagrangian and Eulerian frameworks. It is remarkable that the introduced notation
practically is the same as since the late eighteenth century with a typical application

a; b; cð Þ ! x; y; zð Þ; ð6:7Þ

between the initial position at time 0 and the actual position at time t. Assuming
sufficient regularity, one can also write the inverse transformation

x; y; zð Þ ! a; b; cð Þ; ð6:8Þ

still parametrized by time. This notation was practically left unchanged since
Lagrange, Piola and others. In modern direct notation these relations read

x ¼ �x X; tð Þ; X ¼ �X x; tð Þ ¼ �x�1 x; tð Þ; ð6:9Þ
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from which there follow the definitions of velocity as

v ¼ @�x
@t

����
X

; v ¼ �v x; tð Þ: ð6:10Þ

The print of a mathematician is more cogent in the definitions of a small displace-
ment and its gradient for which the intervening of an infinitesimally small parameter
(noted s by Hilbert) is necessary. This allows for the introduction of the notions of
translation, pure deformations and rotations, and what are the related invariants and
various quadratic forms and ellipsoids, and what we now call principal stretches
(“dilatations” in the vocabulary of Cauchy). Hilbert finally introduces the standard
deformation gradient (noted F in modern direct notation), i.e.,

F ¼ @�x
@X

����
t

: ð6:11Þ

It is from this quantity and its inverse F�1 that all known finite-strain tensors by
Cauchy, Lagrange, Green, Finger and Piola can be defined (cf. Truesdell and
Toupin 1960). But Hilbert, contrary to these authors, is not going to exploit them
thoroughly in further studies of finite deformations. Evoking the deformation of an
ellipsoid, he simply notes the Cayley-Hamilton theorem in a brief discussion of the
search for eigenvalues, while introducing a set of standard invariants of a second
order tensor (not called this way by Hilbert). No tensor notation is used.

6.3.2.3 Elements of Vector Analysis (Chap. 2, pp. 27–41) Vector
Analysis

This is standard in many books of the period as also in further books in the
twentieth century. Appell (1921) does the same in Sect. 3.2 of his course on rational
mechanics. However, Hilbert is much more “modern” than his competitor in using
systematically the notion of vector fields, inner and vector products (with a remark
on syzygies in invariant theory, p. 31), an intrinsic notation for the differential
operators of gradient (grad), divergence (div), curl (noted rot), and Laplacian Dð Þ,
but the latter is minus our usual Laplacian as a result of the gradient being also
minus the usual one (probably inspired by electrostatics). As a result all identities
(p. 34) are written in short-hand notation. Also, Hilbert does not make use of he
convenient nabla symbol rð Þ of Gibbs and Heaviside that emphasizes the vectorial
nature of this differential operator. Integral theorems of Gauss and Stokes are
recalled in their usual format but passing to the limit of infinitesimally small volume
and surface produces definitions of the divergence and curl operator that reminds us
of their introduction in electromagnetism (pp. 36–38) [This was also the original
definition of the curl given by O. Heaviside in his “Electrician” papers]. The
chapter ends with an allusion to a classical variational problem of minimization for
obtaining the Laplace equation.
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6.3.2.4 The Kinematics of Continua (Chap. 3, pp. 41–66)

The material contained in this chapter would be rather classical with its approach to
streamlines if it were not for the importance granted to the notion of potential and
level surfaces, the transformation of volumes (with the introduction of the Jacobian
determinant D of the deformation function—noted J ¼ detF in modern notation—,
the condition of constant volume (isochoric deformation), the condition of conti-
nuity in both Lagrangian and Eulerian forms and, above all, the consideration of
possible discontinuity surfaces. This last point borrows from the then recent work of
Jacques Hadamard (1865–1963) where the latter introduced the equation satisfied
by discontinuities in the field of velocity in the form (in modern notation where
square brackets stand for the difference between the limit values on both sides of the
surface in approaching uniformly the surface)

v½ � � r/ ¼ 0; ð6:12Þ

where / x; tð Þ ¼ 0 is the intrinsic equation of the discontinuity surface. This has led
to the notion of “kinematic condition of compatibility” and “Hadamard’s lemma”.
In the Lagrangian description this leads to the conditions (p. 63)

@F
@X

� �
¼ k

@f
@X

;
@F
@t

� �
¼ �k

@f
@t

; ð6:13Þ

for a field F continuous across the surface of equation f X; tð Þ ¼ 0. The attention
paid by Hilbert to this very recent work of Hadamard is remarkable,7 but it is not an
exception since a similar attention is paid to this development at the same time by
French mathematicians such as Duhem in his research on hydrodynamics
(cf. Duhem 1903; Second part, Chap. 2) and also Appell (1909, Chap. 33) in his
general course. This will also be considered by Hellinger (1914) and it kindled a
feverish activity about shock and acceleration waves in the 1960s–1970s after an
initial work by Truesdell (1961) largely influenced by Duhem’s works on the
subject—see also Coleman et al. (1965). Hilbert concludes this chapter with an
evaluation of the ratio of densities between both sides of the discontinuity surface.

6.3.2.5 Bases of the Dynamics of Continua (Chap. 4, pp. 67–121)

In agreement with the above recalled introduction dynamics is constructed by
means of Hamilton’s principle with the essential introduction of the notions of
kinetic energy and Lagrangian function density in analogy with what is already
known for systems of points. The included energy will comprise energy of internal

7Hadamard’s book on waves was published in 1903 although specific proofs were given in
previous paper publications.
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origin, the internal energy, and the potential of externally applied forces. It is the
internal energy that characterizes the behaviour of the considered material body
with the possible introduction of the deformation gradient and the density, and
perhaps (p. 72) the higher-order deformation gradients and the gradient of density
(such as in capillarity). Both Lagrangian and Eulerian formulations are given in
parallel.

An extended example of behaviour is elasticity (Paragraph A, pp. 73–103)
where Hilbert first envisages the finite-strain framework. The variation in
Hamilton’s principle is carefully effected with the introduction of a small parameter
(noted σ). In statics, the result of this variation in the Lagrangian framework is what
we may now recognize as Piola’s equations in the bulk (in modern notation; cf.
Hilbert’s equations (9) and (10) in p. 78):

@

@XK

@e
@FiK

� �
þ fi ¼ 0; ð6:14Þ

and at the bounding surface of unit normal N of components NK ,

NK
@e
@FiK

� �
¼ �ti ð6:15Þ

Here

TKi ¼ @e
@FiK

ð6:16Þ

is none other than the first Piola-Kirchhoff stress (in modern jargon) if e is the
internal energy per unit referential volume, and fi and �ti are applied volume and
surface forces (parametrized in the Lagrangian system) but still vectors in the actual
configuration. Hilbert refers neither to Piola nor to Kirchhoff as if all this was a
matter of fact (Caution: his definitions include a minus sign). All equations are
given in components (no direct vector or tensor notation). The presentation of
elasticity in the Eulerian framework requires some more work. This was already the
case in the original works of Piola (1836), what seems to justifies that the
Lagrangian viewpoint a priori is the most natural and directly apprehended one (for
solids). Of course passing to the Euler-Cauchy equations requires manipulating the
Jacobian determinant of the deformation. One will recognize in Eqs. (20) and
(21) of Hilbert (p. 89), the Cauchy equations of equilibrium and the associated
natural boundary conditions, if one defines the Cauchy stress in terms of the first
Piola-Kirchhoff stress by (in modern notation)

r ¼ J �1FT or rij ¼ J �1FiKTKj ¼ J �1FiK
@e
@FjK

; J ¼ detF: ð6:17Þ
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The elastic homogeneous isotropic body is viewed as one for which the internal
energy depends on the strain via its three basic invariants only. Approximations are
given by homogeneous quadratic expressions of these invariants producing “nor-
mal” forms of the energy density as proposed by Helmholtz (cf. p. 94) with two
remaining coefficients of elasticity. Another form is referred to Kirchhoff. The
approximation of small strains involving only the displacement gradient is further
obtained by a new scaling (p. 96). We are finally left with a Cauchy stress that is
linear homogeneous in the displacement-gradient components with two scalar
coefficients to be identified with Lamé’s coefficients (Eq. (24)). A direct variational
deduction of these equations is also evoked as well as limit cases such as incom-
pressibility, and the case proposed much earlier by Lord Kelvin for accounting for
the propagation of light as pure transverse waves cases. It is clear that Hilbert is
thinking in more mathematical and theoretical physical terms than in engineering
ones that he never mentions. His very few citations corroborate this feeling.

The remainder of this chapter (pp. 103–120) is devoted to (perfect) fluids. In a
typical mathematician’s view, Hilbert defines such fluids as elastic bodies for which
the internal energy depends on the strains only through the Jacobian determinant
J or equivalently the density q in accordance with the continuity equation q0 ¼ qJ
in Lagrange-Piola formulation. As usual for this author this is first done in the
Lagrangian format, and thus precisely following Lagrange himself, and then
transformation to the Eulerian description is obtained by exploiting Eq. (6.17)
above. This obviously yields the notion of pressure p (to be called later on “ther-
modynamic pressure”). Here, of course, as already noticed by Lagrange himself (cf.
Lagrange 1788), Hilbert has to admit that the Eulerian format is more amenable
than the Lagrangian one from a solution viewpoint (cf. pp. 105–108). He cannot
resist mentioning a variational Hamiltonian formulation. The full Euler equations
are then given as Eqs. (31) and (32) in the notes, possibly complemented by an
external force derivable from a potential (32)—which combines with the pressure.
The associated natural boundary condition involves a purely normal force of
pressure in agreement with Euler’s original idea. He also deals with the notion of
incompressibility by introducing a scalar Lagrange multiplier (to be called later on
“mechanical pressure”). Finally, he realizes that the energy function may also
depend on an additional parameter noted k, that can parametrize both energy and
pressure all the way to the limit condition (pp. 117–119) of incompressibility. He
mentions in passing the notion of Legendre transformation of the energy.

6.3.2.6 Special Problems of Hydrodynamics (Chap. 5, pp. 122–171)

This rather long chapter clearly illustrates the accepted saying that the simpler the
model of continuum, the more rigorous, complicated and enjoyable are the resulting
problems. In the period under scrutiny this is reflected by the intensive use of the
technique of complex variables and the solution of problems related to the equi-
librium of fluid masses, flows around bodies, and the vorticity field on the path
paved by Helmholtz. Hilbert is not the only one to suffer from this temptation as
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also shown by the lectures of Appell (1921), the works of his disciple Henri Villat
(1879–1972) (also in Appell but Edition of 1909), and also works by Poincaré,
Riemann, and C.A. Bjerknes and V. Bjerknes (see Maugin 2014, Chap. 11).

As most material given in this chapter has become integrated in usual text-book
presentations in the twentieth century, we need not recall the detail of this presen-
tation. Of course, irrotational flows receive the largest share of it, and specialization
to two-dimensional flows provides the opportunity to introduce current lines, level
curves, and streamlines, the associated representation plane, and the powerful
technique of complex variables. Treated exemplary solutions relate to classical flows
[flow in a corner, through an orifice (Borda’s flow), flow from an outlet (Helmholtz),
around a cylinder, or another obstacle (ellipse or perpendicular plate)]. Waves of
small amplitude offer an opportunity of some elementary asymptotics.

Vortices also capture Hilbert’s attention with due reference to the works of
Helmholtz, H. Weber, G. Stokes and a mention of analogy with electric currents
and magnetic fields. The latter was in fact duly studied by the Bjerknes’, father and
son (Norwegian hydrodynamicists and meteorologists), who had interfered with
H. Hertz (cf. Maugin 2014, Sect. 11.3): magnetic induction replaces the fluid
velocity. On this occasion Hilbert even mentions Kelvin’s attempt to represent
atoms by vortices (p. 158). Lagrange’s theorem for the conservation of circulation
is proved. In all, however, most references are to German authors, mostly
Helmholtz and Kirchhoff. Nonetheless, in a kind of partial conclusion, Hilbert,
albeit quite avaricious of citations in this chapter, alludes to the works of Riemann
on partial differential equations in physics (book by Riemann and Weber 1901), the
book on waves by Hadamard (1903), the work of Poincaré on equilibrium figures of
fluid masses (Poincaré 1902), and works by Gerstner and Rankine on waves, also
reported by Kirchhoff (1876).

6.3.2.7 Capillarity (Chap. 6, pp. 172–180)

The original theory of capillarity was developed by Thomas Young (1773–1829)
and Pierre Simon de Laplace (1749–1827). It is Laplace who proposed the cele-
brated equation of capillarity. In both cases this theory was conceived as a
Newtonian like theory involving an inverse-square law of interaction between
“particles”. What Hilbert exposes in a few pages is a continuum theory that relies
on the existence of a surface energy. This in fact is not so brutal as the author first
considers that the energy across a thin layer of thickness 2d varies like the normal
derivative of the density across this layer, i.e., e ¼ a@q=@n where a is a scalar
coefficient. By integration this yields

E ¼ a
ZZ
F

df
Zþ d

�d

@q
@n

dl ¼ a
ZZ
F

q1 � q2ð Þdf ; ð6:18Þ
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where F is a surface of element df between the two media in contact. A more math-
ematical viewpoint consists in parametrizing the surface F in a Gaussian way with
squared line element ds2 ¼ edu2 þ 2f du dvþ gdv2. Then df ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eg� f 2

p
du dv ¼

h du dv. Therefore,

E ¼ c
ZZ
FO

hdudv; ð6:19Þ

assuming that q1 � q2 is a constant along the surface F.
The final Laplace equation will be obtained by application of a Hamiltonian

principle after appropriate definition of the variations of geometric and energy
quantities:

p2 � p1 ¼ c
1
R1

þ 1
R2

� �
; ð6:20Þ

where p denotes the pressure, c is the coefficient of surface tension, and R1 and R2

are the principal curvature radii of the interface at the considered point.
To modern eyes this interest for the phenomenon of capillarity within continuum

mechanics may seem a bit strange. But it is a subject matter of actuality at the time of
Hilbert’s lectures as proved by the interest manifested by other great scientists (e.g.,
Duhem, Poincaré) after a very interesting paper by Korteweg (1901) in the
Netherlands. A short time later, the internationally quasi-unknown French scientist
Henri Bouasse (1866–1955) will in fact publish a beautiful treatise on capillarity
(Bouasse 1924). Studies along the same line as Korteweg and the exposure of Hilbert
will know a revival in the 1960s–1980s, especially in France (e.g., Casal 1963)
within the framework of what may be called generalized continuum mechanics.

6.3.2.8 Electrodynamics (Chap. 7, pp. 181–225)

For a scientist like Hilbert, as also for Duhem and Poincaré, the various branches of
phenomenological physics form a whole that needs not necessarily be split in these
various branches. That explains while Hilbert devotes a rather long chapter to
electrodynamics in a course theoretically concerned with the mechanics of con-
tinua, and not the physics of continua, unless Hilbert, like Duhem, equals
mechanics and physics (but then he should have added a chapter on heat con-
duction). Nevertheless, it is rather difficult for physicists of the early twentieth
century to appreciate at their right value the notes of Hilbert on the subject. We
must realize that they are written at a time when Maxwell’s theory is rather fresh in
Germany in spite of Hertz’s work. The first book on the theory for non-specialists
was written by the mechanical engineer August Föppl (1854–1924) in 1894, while
L. Boltzmann’s interesting critical lectures for specialists were printed in 1891.
Poincaré’s lecture notes and Duhem’s survey in France belong in the same period
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(Poincaré 1890, 1899a, b, 1902; Duhem 1902). Early in the twentieth century the
basic book in Germany is the book by Max Abraham (1875–1922) and Föppl
(1904) as a rewritten and much enriched version of the Föppl’s (1894) original
book. This remained a standard for education in Maxwell’s theory of electricity and
magnetism during a large part of the twentieth century with revised versions by R.
Becker and then F. Sauter. Moreover, we are dealing with a period that is
pre-Einstein and pre-Minkoswski works, where it is still thought that light waves
(solutions of the dynamical set of Maxwell’s equations according to the experi-
mental of Hertz) propagate as pure transverse elastic waves in a hypothetical per-
vasive elastic incompressible solid, the ill-fated “ether”. Hilbert’s lecture does not
eschew this now obsolete notion, so that in a sense the chapter on electrodynamics
here rightfully belongs to the mechanics of continua, albeit of a very special one.

On account of the just made remarks the chapter by Hilbert develops in a very
original way. This is our feeling that may not have been shared by contemporaries
of Hilbert. Some twelve pages are first devoted to what appears to be a continuous
theory of Newtonian gravitation, with an interaction potential between bodies of
non-uniform mass densities in the manner of Poisson and Gauss (compare to the
classical theory of potential). The corresponding medium deformation will in fact
be of the curl type (as developed by other authors such as Kelvin and Larmor in the
UK—see Chaps. 5, 9 and 10 in Whittaker 1951) with an elastic energy quadratic in
this curl (p. 193). This indeed provides a wave equation of the appropriate form
(p. 194) in the absence of dilatation. Then the analogy with the equations deduced
from Maxwell’s theory is expanded in which wave equations for both electric and
magnetic fields are obtained by ad hoc identification (pp. 197–199). Hilbert also
refers to the Lorentz force (p. 200) acting on rigid electrons (a totally different
theory), to the energy (Poynting) vector S (p. 202), and he establishes the elec-
tromagnetic energy identity (p. 203; in his units but our notations)

@U
@t

þ div S ¼ �J:E; ð6:21Þ

where

U ¼ 1
8p

E2 þH2
� 	

; S ¼ 1
4p

E�H; ð6:22Þ

and J is the current vector. He alludes to the Maxwell stress—or rather a vector
associated with it—(p. 206), and even to the global form of Maxwell’s equations (in
particular, Faraday’s and Ampère’s laws; p. 212). The final vectorial form of
Maxwell’s equations (in the absence of displacement current) is given p. 213. Note
that Eq. (6.21) above is a pure energy identity deduced from Maxwell’s equations
alone. It cannot be said to represent a statement of the first law of thermodynamics
unless the electromagnetic system is fully isolated from any other physical properties.

It is only at this point that scalar electric potential and vectorial magnetic
potentials are introduced (pp. 214–216) while Maxwell originally set forth his
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system of equations with these—cumbersome—potentials. Even at this later point
does Hilbert re-introduce the notions of Eulerian and Lagrangian descriptions,
concluding with the retarded potentials introduced by Alfred Liénard (1869–1958)
and Emil Wiechert (1861–1928), respectively in 1898 and 1900. Various classes of
electromagnetic bodies (dielectrics, conductors, magnets) are mentioned in the last
two pages. Abraham (about his electron theory) is the only true contemporary cited
in the chapter. We can conclude that Hilbert is more or less aware of the most recent
developments in the field at the time of delivery of his lectures.

6.3.2.9 Thermodynamics (Chap. 8, pp. 226–239)

This last chapter of some ten pages is truly written as a mathematician’s work. It
lacks any physics and any contact with previous thermodynamic theory. It intro-
duces such basic notions as entropy in a purely formal way. As for the rest of the
lectures the basic argument is one relevant to a variational Hamiltonian principle
with a space parametrization of the Lagrangian type in the form

ZZZ
e s; gð Þda db dc ¼ min; ð6:23Þ

where e denotes the “internal” energy, s stands for the specific volume (noted v by
Hilbert) and g will be identified as the entropy . This applies only in what we now
call thermo-statics, and also for homogeneous bodies from which there follows
under the constraint that total entropy be constant, i.e.,

ZZZ
g da db dc ¼ const:; ð6:24Þ

and the introduction of a scalar Lagrange multiplier k that

@e
@s

¼ �p;
@e
@g

¼ �k ¼ const: ¼ h: ð6:25Þ

Here p is to be understood as the “thermodynamic” pressure and h is a thermo-
dynamic parameter called the temperature, here a spatially uniform quantity.
Hilbert acknowledges the fact that this must be in agreement with Boltzmann’s
recent kinetic theory. One can define the work (noted A for “Arbeit”)

A12 ¼
Zs2
s1

@e
@s

s; g sð Þð Þds ð6:26Þ
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and the expanded heat

Q12 ¼
Zg2
g1

@e
@g

s gð Þ; gð Þdg: ð6:27Þ

Then

AþQ ¼ 0 ð6:28Þ

is none other than an elementary statement of the first law of thermodynamics
(exchange between work and expanded heat) in thermostatics. Equation (6.27)
above allows one to write down the standard (thermostatic) formula

dg ¼ dQ
h

: ð6:29Þ

This shows that h will be an integrating factor (Caratheodory) if g is to be a true
state function.

One can further define the heat capacities at constant volume and pressure by

CV ¼ dQ
dh

� �
V¼Const:

; Cp ¼ dQ
dh

� �
p¼const:

ð6:30Þ

The law of perfect gases and Gay-Lussac law also follow from this analysis by
manipulating partial derivatives of functions e; g; h. Hilbert concludes by empha-
sizing the importance of Legendre transformations in considerations of
thermodynamics.

All above manipulations are purely formal in a field theory and they lack any
real physics. Furthermore, Hilbert, himself a devoted champion of axiomatics, here
is much below the remarkable contribution of Constantine Caratheodory (1873–
1950) to the axiomatics of thermodynamics (Caratheodory 1909), a study which
may have been suggested to him by Max Born and perhaps Hilbert (see also,
Maugin 2014, Chap. 9).

6.4 Conclusion

Now we can compare the texts of two great mathematicians, although, in all fair-
ness, the two texts pursue different objectives. On the one hand, Poincaré’s text was
written some fifteen years before Hilbert’s. This time span must be taken into
account. It was a condensed form of lectures for students who could have heard the
master in person; it was probably intended as a technical support of Poincaré’s—
now antiquated—theory of the propagation of light. As such it was not very original
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and did not bear fruits. The strange attention paid to Saint-Venant’s problem (or
principle) appears more as a tribute to Saint-Venant’s ingenuity and right engi-
neering intuition. But overall it still bears the print of a mathematician with spot on
geometric remarks and dexterity in analytic manipulations. Hilbert’s lectures are
more thoughtful and in the German tradition of Helmholtz and Kirchhoff. In that, it
prepares the way for the splendid rigorous encyclopaedia article of Ernst Hellinger
(1914) that we dissected in a surgical manner in a previous work (Maugin 2014,
Chap. 12) and that provided the best and definitive synthesis of the field before the
expansion of the field in the second half of the twentieth century. It happens that
Hellinger’s text, although not translated in any foreign language at the time of its
publication (unfortunately during World War One), drew a line to be successfully
taken over by other mechanicians (Truesdell et al. in particular).

Appendix

English translation (cf. Bull Amer Math Soc 8/10:437–479, 1902) of the statement
of his Problem no.6 by Hilbert as proposed at the Second International Congress of
Mathematicians (chaired by H. Poincaré) in Paris, 1900; German original to be
found in Hilbert’s (Gesammelte Abhandlungen) collected works (available on the
website of the University of Göttingen).

Mathematical Treatment of the Axioms of Physics

The investigations on the foundations of geometry suggest the problem: To treat in
the same manner, by means of axioms, those physical sciences in which mathe-
matics plays an important part; in the first rank are the theory of probabilities and
mechanics.

As to the axioms of the theory of probabilities,8 it seems to me desirable that
their logical investigation should be accompanied by a rigorous and satisfactory
development of the method of mean values in mathematical physics, and in par-
ticular in the kinetic theory of gases.

Important investigations by physicists on the foundations of mechanics are at
hand; I refer to the writings of Mach,9 Hertz,10 Boltzmann11 and Volkmann.12 It is

8cf. G. Bohlmann, “Ueber Versicherungsmathematik,” from the collection: F. Klein and E. Riecke,
Ueber angewandte Mathematik und Physik, Teubner, Leipzig, 1900.
9E. Mach: Die Mechanik in ihrer Entwickelnng, Brockhaus, Leipzig, 4th edition, 1901.
10H. Hertz: Die Prinzipien der Mechanik, Leipzig, 1894.
11L. Boltzmann: Vorlesungen über die Principe der Mechanik, Leipzig, 1897.
12P. Volkmann: Einführung in das Studium der theoretischen Physik, Teubner, Leipzig, 1900.
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therefore very desirable that the discussion of the foundations of mechanics be
taken up by mathematicians also. Thus Boltzmann’s work on the principles of
mechanics suggests the problem of developing mathematically the limiting pro-
cesses, there merely indicated, which lead from the atomistic view to the laws of
motion of continua. Conversely one might try to derive the laws of the motion of
rigid bodies by a limiting process from a system of axioms depending upon the idea
of continuously varying conditions of a material filling all space continuously, these
conditions being defined by parameters. For the question as to the equivalence of
different systems of axioms is always of great theoretical interest.

If geometry is to serve as a model for the treatment of physical axioms, we shall
try first by a small number of axioms to include as large a class as possible of
physical phenomena, and then by adjoining new axioms to arrive gradually at the
more special theories. At the same time Lie’s principle of subdivision can perhaps
be derived from profound theory of infinite transformation groups. The mathe-
matician will have also to take account not only of those theories coming near to
reality, but also, as in geometry, of all logically possible theories. He must be
always alert to obtain a complete survey of all conclusions derivable from the
system of axioms assumed.

Further, the mathematician has the duty to test exactly in each instance whether
the new axioms are compatible with the previous ones. The physicist, as his theories
develop, often finds himself forced by the results of his experiments to make new
hypotheses, while he depends, with respect to the compatibility of the new
hypotheses with the old axioms, solely upon these experiments or upon a certain
physical intuition, a practice which in the rigorously logical building up of a theory
is not admissible. The desired proof of the compatibility of all assumptions seems to
me also of importance, because the effort to obtain such proof always forces us
most effectually to an exact formulation of the axioms.
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Chapter 7
Viscoelasticity of Solids (Old and New)

Abstract Viscoelasticity often is considered less exciting than elasto-plasticity,
visco-plasticity and the viscosity and rheology of fluids. Though, it is a branch of
continuum mechanics which fostered the expansion of a good general
thermo-mechanics of continua (first with Duhem and Eckart) and favoured the
creation of “rational continuum mechanics” in the sense of Truesdell, Noll and
Coleman. Born with the simple models proposed by Kelvin, Voigt, Maxwell and
Boltzmann in the second half of the nineteenth century, it further developed in the
hands of Wiechert, Jeffreys (Maxwell’s generalized model, standard model, dif-
ferential model), and then Gross, Biot, Lee, Mandel, Oldroyd, Bland, Ilyushin,
Rabotnov, Zener and others, to reach the more abstract view of time functionals of
Green and Rivlin, Coleman and Noll, Gurtin and Sternberg, etc., with the appli-
cation of the notion of fading memory and the introduction of satisfactory func-
tional spaces. Simultaneously, solution techniques such as the application of the
Laplace transform, Heaviside operational calculus and the so-called correspondence
principle were implemented while viscoelasticity yielded the introduction of a
fruitful thermodynamic theory of internal variables of state. It finally provided a
nice application frame for the notion of fractional calculus. The approach adopted
here is essentially historical, with technicalities kept to a minimum.

7.1 Introduction

As its combined name indicates, visco-elasticity is a mechanical behaviour that
combines elasticity and viscosity, most often in a linear manner. The following
observable facts characterize this behaviour. Two typical related phenomena are
creep and relaxation. The first of these corresponds to an increase of strain in time
when stress is held constant, while relaxation is evidenced by a decrease of stress
with time when the strain is held constant. Various models render these phenomena
more or less correctly (cf. Finley et al. 1976). Moreover, when a cyclic loading is
applied a hysteresis manifested by a phase lag is produced. This is related to a
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dissipation of mechanical energy. A direct consequence of the presence of vis-
cosity, although often small in solids, is the attenuation of acoustic waves that
propagate through a visco-elastic material. Visco-elastic materials abound and, in
principle, all elastic materials can be made to exhibit the effects of a viscosity in
particular if we wait long enough, centuries or millenaries—for glassware produced
in antique times—so that Heraclitus’ old but spot on motto “ta panta rhei” (trans-
lated as “everything flows”) holds true. But actual examples of visco-elastic
materials include some polymers, metals at high temperature, natural bio-materials
(soft tissues), and bitumen materials. The range of strains is not necessarily limited
to infinitesimal ones, as can be imagined with polymers and bio-materials. The
scientific and technical interest in these materials has evolved in time.

Of course a mathematical description of visco-elasticity could not be envisaged
before a sufficiency clear understanding of both elasticity and viscosity, hence
before the middle of the nineteenth century. A development period in the corre-
sponding modelling extends from the mid nineteenth century to the Second World
War (see Sect. 7.2). It needed a firm connection with thermodynamics, but this had
to await an accepted thermo-mechanical format (see Sect. 7.3). With the tremen-
dous advances in theoretical rheology and rational continuum mechanics by sci-
entists such as Oldroyd, Green and Rivlin, Truesdell, Coleman and Noll, Gurtin,
Sternberg and others, visco-elasticity took a more strictly mathematical form—but
substantiated by corresponding experiments in rheology —along with enlightening
mathematical results (Sect. 7.5) and the introduction of an efficient description by
means of internal variables of state (that typically characterize dissipative effects).
This largely improved on old “hereditary” formulations (Boltzmann, Volterra, etc.)
after a period of interest in establishing fundamental properties and problem solving
by pioneers such as Lee, Mandel, Bland, Ilyushin, etc. (Sect. 7.4). The present
contribution is not an abridged course on visco-elasticity (for which there exist
many books, while regular graduate courses are delivered in so many places over
the World). It rather purports at exposing the way various theories evolved in the
self-evolving general background of continuum mechanics over a period of some
hundred and fifty years. The approach is historical, with technicalities kept to a
minimum.

7.2 Early Developments (1860–1950)

The first simple model of viscoelasticity by William Thomson (Kelvin 1875, but
probably devised before) was a direct linear combination of a Hookean elastic
behaviour and a Newtonian viscous behaviour, so that in 1D, one can write

r ¼ re þ rv ¼ Eeþ g _e ¼ E 1þ s
@

@t

� �
e; ð7:1Þ
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where E is Young’s modulus, η is a viscosity, and s ¼ g=E is a characteristic time.
Following Zener’s (1948) exploitation of illustrative rheological models, behaviour
(7.1) is reproduced by an elastic Hookean element (spring) and a viscous element
(so-called dashpot or damper) placed in parallel (the stresses in each of these add up
while they suffer the same deformation e). This model was also considered by W.
Voigt in his crystal studies (Voigt 1889, 1895, 1898, 1910) and is therefore referred
to as the Kelvin-Voigt model of viscoelasticity. It is agreed upon that this model,
simple as it is, does not predict relaxation accurately, but it is easily integrated in a
thermodynamic (irreversible) format. In contradistinction, the model proposed by
Maxwell (1866, 1868) would correspond to an elastic element and a viscous ele-
ment placed in series (the same stress is transmitted in the two elements while
deformations of the two elements add up). Thus one can write

e ¼ ee þ ev; ee ¼ E�1r; _ev ¼ g�1r; ð7:2Þ

whence the rheological relation

_e ¼ r
g
þ _r

E
: ð7:3Þ

This Maxwell model is reputed not to predict creep accurately but it applies to
soft solids including thermoplastic polymers and numerous metals at a temperature
not too close to their melting point. For a long time it was thought that this model
could not be integrated in sound irreversible thermodynamics (but see Sect. 7.5
below).

Because of limitations afflicting each of the above described models, a more
general model combining both was proposed (cf. Oldroyd 1950) and is usually
referred to as the standard linear model:

rþ se _r ¼ Ereþ srEY _e; ð7:4Þ

where se and sr are two characteristic times, with sr [ sE. This corresponds to a
Maxwell element in parallel with a Hookean element in the pictorial view of
rheological elements. This model, ad hoc as it appears, proves to be accurate in
predicting both creep and relaxation responses for many materials.

In his doctoral thesis (1889) at Königsberg Emil Wiechert1 proposed an astute
generalization of Maxwell’s model that proved efficient in engineering applications.

1Emil Johan Wiechert (1861–1928) is much less known among mechanical circles than Kelvin,
Voigt and Maxwell in so far as visco-elasticity is concerned. Wiechert was first a student of
W. Voigt (1850–1919) and studied first in Königsberg. He was a disciple of Franz E. Neumann
(1798–1895). In 1889 he defended a doctoral thesis “On the elastic after-effect”, which was his
lasting contribution to viscoelasticity. He turned to geophysics, creating the first Institute of
geophysics at Göttingen, where he became one of the foremost geophysicists of his time, in
particular with the design of an efficient seismometer in 1903 [Theorie der automatischen
Seismographen, Weidmannsche Buchhandlung, Berlin, 1903]. However, he is mostly well known
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He proposed to put several Maxwell elements in parallel with a Hookean one in
order to incorporate a satisfactory distribution of multiple relaxation times
(Wiechert 1889, 1893). Indeed, a real polymer does not relax with a single relax-
ation time as molecular segments of varying length contribute to the relaxation,
shorter segments relaxing faster than long ones. Wiechert’s modelling affords an
easy representation of the response of any linear viscoelastic body. Both standard
model (7.4) and Wiechert’s work hint at a formal generalization in the form of a
differential equation such as

Ar ¼ Be ð7:5Þ

with differential (time) operators—orders j and i may be different—defined by

A ¼
X
i

ai
di

dti
; B ¼

X
j

bj
d j

dt j
: ð7:6Þ

We note the obvious difficulty posed by the question of initial conditions in
dynamics. But applying formally Heaviside operational calculus (i.e., brutally
replacing d/dt by the scalar p) will conveniently bring the viscoelastic problem to an
elastic one (cf. Alfrey 1945, 1948). The general form (7.5) and its various special
cases were particularly appreciated by geophysicists, among them, not the least,
Harold Jeffreys (1891–1989) in Cambridge, UK.

With the proposal put forward by Boltzmann (1874) we apparently have a totally
different view which can be synthesized as follows. It makes physical sense to
envisage that the actual value at time t of strain is the result of the whole past history
of the load in force (here stress). Taking an initial time very remote in the past, we
can then consider that variables σ and e are functionally related in the following
symbolic manner:

rðtÞ ¼ F eðsÞ½ �s¼t
s¼�1; eðtÞ ¼ F�1 rðsÞ½ �s¼t

s¼�1: ð7:7Þ

Such a general form was proposed by Green and Rivlin (1957) in more recent
times.

Viscoelasticity will be said to be linear if the functional F is linear. This is the
essence in abstract form of the superposition principle of Boltzmann (1874)—cf.

(Footnote 1 continued)

in physics for his creative contributions in Maxwell’s electrodynamics with the simultaneous
introduction (with Liénard from France) of the retarded Liénard-Wiechert potential. He had
already published a book on electrodynamics [Grundlagen der Electrodynamik, Göttingen, 1899].
His interest in mathematical physics was kept constant during his whole life, and he cultivated a
fruitful friendship with many of the German high-class physicists in Berlin and Göttingen. A short
time before his death, he published his general views on mechanics and physics [Die Mechanik im
Rahmen der allgemeinen Physik, Leipzig, 1925]. Clearly, with his multiple interests and successes,
Wiechert belongs in a class of bygone scientists.
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Mandel (1958). In less pedantic terms, we can express this principle as follows (cf.
Roylance 2001). Let r1ðtÞ the stress resulting at time t from the application of a
small strain increment De1 applied at previous time s1. Thus one can write

r1ðtÞ ¼ Erel t � s1ð ÞDe1; ð7:8Þ

where Erel is called a relaxation modulus. A similar relation can be written for a
stress r2ðtÞ due to a strain increment De2 applied at previous time s2, and so on. If
the material is linear, then the resulting stresses at time t add up, and as the number
of applied strain increments increases so as to approach a continuous distribution,
we will have in the limit

rðtÞ ¼
X
j

Erel t � sj
� �

Dej ) rðtÞ ¼
Z t

�1
Erel t � sð Þ deðsÞ

ds
ds; ð7:9Þ

so that we have a materialization of the abstract form given by the first of (7.7).
If stress rather than strain is the input quantity, then the limit form (7.9) is

replaced by a response in strain such as

eðtÞ ¼
Z t

�1
Ccreepðt � sÞ _rðsÞds; ð7:10Þ

where Ccreep may be called the creep compliance. Equations (7.9) and (7.10) stand
for Boltzmann’s proposal as a so-called hereditary formulation of viscoelasticity. In
practice the coefficients of relaxation and creep do not attribute the same weight to
all instants of past time, very past instants influencing much less than recent ones.
This is vividly illustrated by the expression of fading memory then anthropomor-
phically attributed to the considered materials. In expressions (7.9) and (7.10) it
may be convenient to separate the instantaneous (time-independent) response from
the integral (truly time-dependent) function. As a simple example, we note that the
Kelvin-Voigt model (7.1) yields by integration a particular expression of (7.10) as

eðtÞ ¼ g�1
Z t

�1
exp½�ðE=gÞðt � sÞ�rðsÞds: ð7:11Þ

While Boltzmann’s model yields integro-differential equations when carried in
the balance of momentum—and then obviously is computationally challenging
both in simulation and control design—it practically immediately attracted attention
at the end of the nineteenth century and the dawn of the twentieth century because,
on the one hand, “it made physical sense”, but on the other hand it also introduced a
new class of sophisticated mathematical objects, functionals, in their best appli-
cation setting. Ludwig Boltzmann (1844–1906) was a most admired powerful
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physicist and his proposal could not be overlooked in spite of the accompanying
mathematical difficulties. The Italian mathematician Vito Volterra (1860–1940) was
the mathematician most deeply involved in the theory of such functionals with a
marked interest in all phenomena exhibiting some hereditary effect, including in a
kind of innovative population dynamics—cf. Volterra (1909), and also the math-
ematical developments together with Joseph Pérès, the godfather of French con-
tinuum mechanics in the 1930–1960 period (cf. Volterra and Pérès 1936). Other
mechanicians also were seduced by Volterra’s approach, including Natanson
(1901–1903) and Zaramba (1903) in Poland. Ernst Hellinger (1883–1950), in his
brilliant Encyclopaedia article (Hellinger 1914), captured at once the interest for
Boltzmann’s modelling. Such modelling (cf. Graffi 1928, 1977) was taken over by
Dario Graffi (1905–1990)2 in Bologna where his influence lasted with more works
by Mauro Fabrizio—sometimes in collaboration with Angelo Morro from Genova
(cf. Fabrizio and Morro 1992). A strong revival of mathematical studies along
Boltzmann’s line will take place in the 1960s under the influence of Truesdell (see
Sect. 7.5 below). To go further than the original developments one has to establish
some connection with dissipation and thermodynamics (Sect. 7.3), and to expand
appropriate solution techniques (Sect. 7.4).

7.3 Early Thermodynamics (1940–1965)

Although elements of a true thermo-mechanics of continua may be found in various
writings of Pierre Duhem in the period 1895–1916, a real apprehending of the
matter was reached only with a rather remarkable—but seldom cited—work by
Eckart (1948). This American physicist (1902–1973) was originally an acknowl-
edged contributor to quantum mechanics, and later became an as well successful
contributor to oceanography and underwater acoustics. In the mean time (1939–
1948), he contributed to a then modern approach to continuum mechanics in a
series of fours papers with one of the first clear statement of the second law of
thermodynamics for anelastic solids (Eckart 1948). In particular, Eckart provided
the expression of the elementary (per unit volume) dissipation associated with an
anelastic deformation in a solid as

Ua ¼ r : _ea; ð7:12Þ

where ea is the anelastic strain, and (7.12) is one contribution part to the more
general Clausius-Duhem inequality (here written per unit volume in small strains,
but correctly stated by Eckart)

2The author benefited from a series of invited lectures on hereditary visco-elasticity delivered by
D. Graffi in Paris in 1967.
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� _W þ S _h
� �

þ r : _e� q=hð Þrh� 0; ð7:13Þ

where W, S, θ and q denote the free energy per unit volume, the entropy per unit
volume, the thermodynamic temperature h[ 0; inf h ¼ 0ð Þ, and the heat flux
vector, respectively. Here e is the total observed strain. Equation (7.13) implies that
entropy flux is none other than the ratio of heat flux to temperature. Exploitation of
the inequality (7.13) requires the proposal of an expression for the dependence of
function W. This is a crucial step in this exploitation, drastically depending on the
working hypotheses selected in the considered thermodynamic theory. On
accepting the hypotheses of the theory that might include the presence of
non-observable and non-controllable internal variables of state—that is, following
pioneering ideas of Duhem (1911) and Bridgman (1943)—, one can contemplate an
a priori functional dependence of the type:

W ¼ W ee; a; hð Þ; e ¼ ee þ ep; ð7:14Þ

where ee and ep are elastic and “plastic” parts of the strain, and α stands for the
ordered set of internal variables of state (or hidden parameters according to the
coinage of L. Brun and J. Mandel). The laws of state (Gibbs) are given by

S ¼ � @W
@h

; re ¼ @W
@ee

; A ¼ � @W
@a

; ð7:15Þ

so that (7.13) reduces to the following residual dissipation inequality:

U ¼ Uintr þUth � 0; ð7:16Þ

where we have set

Uintr ¼ rv : _ee þ r : _ep þA _a; Uth ¼ � q=hð Þrh; rv :¼ r� re; ð7:17Þ

where we agree to call elastic stress and visco-elastic stress the fields re and rv.
Note that the latter is in thermodynamic duality with the elastic strain, while the
plastic strain is in duality with the total stress.

The simple—but general enough—scheme just exposed concurs with ideas
expressed by Meixner (1953), Biot (1954, 1956, 1958),3 Eringen (1960); in the

3The Symposium contribution of Biot (1958)—originally delivered in 1955 as a series of lectures
at a Laboratory of Shell Development Co. in Emeryville, USA—deserves a particular attention.
Maurice A. Biot (1905–1985) was a Belgian-American physicist-geophysicist with doctoral
degrees from Louvain and Caltech. Although not exactly a maverick, he was for the least a very
original powerful thinker who did not follow a traditional academic career. He worked sometimes
at various American universities and for a number of agencies and companies. He is famous for his
theory of poro-elasticity (now called Biot’s theory), but also on variational principles, the incre-
mental theory of deformable solids, and, not the least, irreversible thermodynamics of continua, the
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absence of internal variables, Brun (1967a, b; 1969), Mandel (1966, 1967) and
Kluitenberg (1962, 1963). All these authors were influenced by the original work of
Staverman and Schwarzl (1952) that considered Onsager’s symmetry relations
(published in 1931). In particular, the Kelvin-Voigt model clearly obeys this scheme.
If suffices to put ep ¼ 0 and a ¼ 0, and consider an energy W quadratic in ee and
then rv linear in _ee ¼ _e to arrive at a linear combination such as in Eq. (7.1). The
representation of theMaxwell model is more subtle and requires the consideration of
an internal variable of state. As a matter of fact, we can take ep ¼ 0 and rv ¼ 0, and
select α as a second order symmetric tensor ev that we call viscoelastic strain, and then
assume that W depends upon e only through the difference strain ê ¼ e� ev. With a
quadratic expression ofW in terms of this ê and the fact that we can consider _ev linear
in the stress to satisfy the residual dissipation inequality, this yields Maxwell’s model
indeed. The selection of internal variable of state here is based on the convincing
argument proposed byMandel (1973), an author who shows that the internal variable
should be the deformation in the dash-pot or damper in 1D—as illustrated in Maugin
(1999), pp. 85–86; Fig. 4.1—, hence the present choice in 3D.

(Footnote 3 continued)

subject matter of Biot (1958) with an emphasis on the modelling of thermoelasticity and
viscoelasticity. With this work we are offered a thoroughly documented and rather complete
overall conspectus of the field as of the middle 1950s, but with a flavour of things to come in the
next thirty years. Biot pays special attention to the initial well-founded definitions of thermostatics
generalized to linear irreversible processes in the spirit of Onsager and the Dutch-Belgian school
around Prigogine and de Groot. Particularly salient is the introduction of “hidden coordinates”
(what we called “internal variables of thermodynamic state) and a dissipation function D, and a
systematic exploitation of Heaviside operational calculus. The two basis equations (deduced from
a variational formulation improved in the manner of Rayleigh) are (in our notation in Maugin
1999, Chap. 4)

dL
du

¼ fd; L ¼ T �W

and

dW
da

þ @D
@ _a

¼ 0

where we introduced Euler-Lagrange functional derivatives, T is the kinetic energy, and W is the
free energy, while fd is a prescribed bulk force. Note that neither kinetic energy nor prescribed
force appear in the equation that govern the internal variable α, in full agreement with the
definition of such “internal” variables. Then, by combining the above two equations, the the-
orem of energy reads:

d
dt ðT þWÞ ¼ fd � _u� 2D

where D is non-negative, and indeed represents the irreversible conversion of mechanical power
into heat.
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Appropriate choice of observable and internal variables of state would allow the
thermodynamic formulation—and satisfaction of the second law—for a large
variety of linear viscoelastic models.

The thermodynamics of the Boltzmann type of viscoelasticity will be more
closely examined in Sect. 7.5.

7.4 Engineering Viscoelasticity (1940–1960), Dynamic
Studies

Viscoelasticity necessarily involves the time variable. This dictates a special
attention to dynamical problems and to experiments that favour the evidence of this
variable. This in turn explains the points of special focus that attracted the attention
of both mathematicians and mechanical engineers in the rough period 1940–1960,
once a certain agreement was reached on the basic formulation of the governing
equations. Here we must emphasize the contributions of Oldroyd in the UK, Lee in
the USA and Mandel in Paris, while other lines were expanded in the former Soviet
Union (e.g., by Ilyushin, Rabotnov and others). The synthesizing works of Gross
(1953), Bland (1960), Flügge (1967), Mandel (1966, Appendix XXI to Volume II),
and Freudenthal and Geiringer (1958) provide a good overview of the results
reached in this period for analytical solutions. As to experiments, elementary
techniques of vibrations (e.g., applying a small oscillatory stress and recording the
resulting strain) allow one to measure the storage modulus, the loss modulus and
the phase lag. But more precise techniques such as broadband viscoelastic spec-
troscopy and resonant ultrasound spectroscopy will be exploited in a fruitful
manner later on only (cf. Lakes 1998).

Concerning theoretical dynamic problems, one must acknowledge the impor-
tance of initial data, often in the form of step (Heaviside) functions. No wonder,
therefore, that given the expressions of accepted linear viscoelastic constitutive
equations, the Laplace transform was to play a considerable role. Erastus H. Lee
(1916–2006) and Jean Mandel (1907–1992) here are fundamental contributors.4

Recall that the Laplace transform f̂ of a function f is defined by

4It is interesting to compare the scientific life and achievements of Lee and Mandel. Erastus H.
LEE (1916–2006) was an English-American mechanical engineer, educated at Cambridge
University, UK, and with a Ph.D. obtained at Stanford (1940) with S. Timoshenko. He spent
WWII in the UK but moved definitively to the USA in 1948. He taught at Brown University
(1948–1962) and then Stanford (1962–1982), and finally moved to Rensselaer Polytechnic for ten
years. He has contributed with success to the plasticity of metals, viscoelasticity, and plastic wave
propagation. He is often attributed the multiplicative decomposition of the finite total deformation
gradient in elasto-plasticity. As to Jean MANDEL (1907–1982), he perfectly illustrates the
French elite system of engineering education. He belonged to the “Corps des Mines” having
studied at the Ecole Polytechnique and the Ecole Nationale Supérieure des mines de Paris. He
became a long-time professor of mechanics in both of these institutions He is the founder of a true
school of research in solid and soil mechanics and was most influential in introducing a revived
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f̂ ðpÞ ¼ Lf ¼
Z1
0

exp �ptð Þf ðtÞdt: ð7:18Þ

Some French authors (Mandel, Germain) preferred to consider the Carson
transform, that is none other than the Laplace transform multiplied by p, i.e.,

~f ðpÞ ¼ pf̂ ðpÞ; ð7:19Þ

one advantage being that the Carson transform of a constant still is the same
constant. Laplace and Carson transforms replace operations of time derivative and
integration by algebraic operations, hence the convenience of the approach. In
particular, one notes that

L
df
dt

¼ p f̂ ðpÞ � f 0þð Þ� 	
; ð7:20Þ

and

L f � gð Þ ¼ f̂ ĝ; ð7:21Þ

where the symbol ⊗ indicates the convolution product such as in Eqs. (7.9), (7.10)
and (7.11). Equations (7.20) and (7.21) contain the strong potential of application to
all types of linear viscoelastic constitutive equations. This particularly applies to a
differential model such as (7.5 and 7.6) for which one obtains

r̂ðpÞ ¼ r̂ðpÞêðpÞ; ð7:22Þ

(Footnote 4 continued)

view of thermomechanics in France in the 1960s–1970s. His creative works deal with soil
mechanics, solid mechanics (plasticity, viscoelasticity), nonlinear wave propagation, and
thermodynamics. He had interests in both theoretical and experimental approaches. He founded
the Laboratoire de Mécanique des Solides (LMS) at Ecole Polytechnique in 1961 and the French
Group of Rheology in 1964. He had no connection with the French University system which he
often considered with some scorn.

I personally think that Mandel’s book of 1966 that more or less expands his course at Ecole
Polytechnique, was the best book on continuum mechanics published in France after WWII in the
second half of the twentieth century. It is more adapted to graduate studies than to undergraduate
ones. It is rather complete, especially with detailed appendices of which those on plasticity and
viscoelasticity are remarkably informative. This book is marked by the real involvement of Mandel
in research in soil and solid mechanics, and is full of deep thoughts on the matter. It is deeper than
Germain’s book (at undergraduate level) published in 1962—a time at which Germain had not yet
contributed to thermomechanics and solid mechanics although he had started to give related
specialized courses in Paris in 1963—but the latter was much better publicized due to Germain’s
definite influence among French universities.
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with

r̂ðpÞ :¼
P

j bjp
jP

i aip
i : ð7:23Þ

The mathematical difficulty may be in the return from a given f̂ or ~f to a function
of real time; in which case one may have recourse to the famous Mellin-Bromwich
formula that involves an integration in the complex plane for the complex variable
p. In recent times this is circumvented by the exploitation of a numerical package
such as MapleTM. In the case of (7.22)–(7.23) the real physical response is obtained
by first decomposing the rational fraction (7.23) into simple elements. It did not
escape some observers (e.g., Alfrey 1948), that a direct application of Heaviside
operational calculus (replacing d/dt by p) without alluding to the Laplace transform
was operationally equivalent although more shaky from a mathematical viewpoint.

The problem is much more complicated when one has to solve a real
boundary-value problem, but it may be possible to reduce the viscoelastic problem
to an associated elastic one by taking transforms. One then looks for the solution of
this associated elastic problem, and next performs a Laplace inversion to return to
the time plane. This technique of viscoelastic stress analysis is called the corre-
spondence principle, and was particularly developed by Lee (1955, 1962) and
Mandel (1955, 1966, Vol. II, Appendix XXI). Uniqueness of the viscoelastic
solution follows from that of the associated elastic one.

Corresponding progress was obtained in the former Soviet Union by mechani-
cians such as Rabotnov (1980) and Ilyushin (1971; Collected works: 2003–2009,
Vol. 3). A brief modern review is given in Banks et al. (2011).

7.5 Mathematical Visco-Elasticity (1960–1975)

True mathematical considerations go back to the small opus of Gross (1947, 1953).
But much more was to come with the rebirth of continuum mechanics in a stricter
mathematical format kindled by Clifford A. Truesdell’s (1915–2000) untiring efforts
to frame continuum mechanics in a so-called rational framework. After the remark-
able paper of Noll (1955) that described a kind of continuous spectrum of material
behaviours from pure fluidity (Euler) to pure elasticity (Cauchy, Green, etc.), this was
devised by applying a rather strict credo in the formulation of sufficiently general
constitutive equations, capturing from the start the spirit of Boltzmann’s hereditary
functional approach abstracted in Eq. (7.7) and enforcing the thermodynamic con-
straint imposed by the Clausius-Duhem inequality (7.13) while following a definite
roster of recommendations. This is sometimes referred to as the Truesdell-
Coleman-Noll approach to the thermo-mechanics of continua (exemplified by
Truesdell and Noll 1965). Among the “principles” applied in this credo an important
one is that of fadingmemory: states of the body at a distant past influencemuch less the
actual state than recent ones do. This is mathematically accounted for by introducing
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an influence or alleviator function and appropriate functional spaces. This was
exposed with talent by Coleman and Noll (1961) in the framework of linear vis-
coelasticity, but published in a rather odd place for a paper on continuummechanics.5

What these authors specified was a precise mathematical functional framework with
Hilbert spaces as well adapted. We do not need to enter the detail provided by
Coleman and Noll as the latter authors offer an informative introduction that says it all
mostly in words. They propose to consider a general class of linear viscoelastic
materials with a governing constitutive response in the form (in our notation)

rðtÞ ¼ X eðtÞf gþUð0Þ eðtÞf gþ
Z t

0

_UðsÞ e t � sð Þf gds; ð7:24Þ

with

_UðsÞ ¼ d=dsð ÞUðsÞ; lim
s!1UðsÞ ¼ 0: ð7:25Þ

Here UðsÞ for each s and Ω are linear transformations of the space of symmetric
tensors into itself. Function Φ is called the stress relaxation function. For isotropic
materials it is completely determined by two scalars, the stress relaxation functions
for shear and dilatation, while Ω is determined by the two Lamé coefficients. If one
considers a deformation history such that the material is kept in its natural reference
unstrained e ¼ 0ð Þ configuration for all times t\0, and has strain e� for all times
t� 0, then Eq. (7.24) yields the following stress response:

r tð Þ ¼ 0 for t\0;

r tð Þ ¼ X e�f gþU tð Þ e�f g for t� 0:
ð7:26Þ

Thus,

lim
s!1 r tð Þ ¼ X e�f g: ð7:27Þ

This renders the phenomenon of stress relaxation. A proper adaptation of the
formulation must be made when the reference configuration is not a natural one (see
Sect. 4 in Coleman and Noll 1961). Coleman and Noll discussed the evidence that
dependence of the stress should naturally be a smooth one, and this justifies the
linearity of (7.24) since “in small neighbourhoods smooth dependence is approx-
imately linear”. But in a general rational approach one should start with a generally
nonlinear theory based on general physical (self-evident) principles such as the then
recently expanded theory of “simple materials” of Noll, i.e., those materials for
which the stress depends only on the history of the first spatial gradient of the

5I believe this is the only paper on continuum mechanics ever published in the Review of Modern
Physics.
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displacement. To develop a precise mathematical background one must specify a
topology of functions that characterizes the history of the deformation, hence
introducing a norm and making precise the notion of closeness of two of these
histories. The introduced norm equips the space of such histories as a Hilbert space,
but it should also emphasize the fading memory nature of the materials.
Constitutive functionals in simple materials are required to be Fréchet differentiable
in the Hilbert space of histories. With this mathematical apparatus at hand one first
deduces a theory of finite linear viscoelasticity with the classical infinitesimal theory
as special case. This is carefully dealt with by Coleman and Noll working first with
finite strains. Dealing with fading memory, they introduce a norm GðsÞk k of a
history GðsÞ by

GðsÞk k2¼
Z1
0

GðsÞj j2hðsÞ2ds; GðsÞj j2:¼ trace GGT
� � ð7:28Þ

for a second order tensor G and an influence function h that characterizes the rate at
which the “memory” fades. This function with positive real values satisfies a set of
limit and decay conditions, an extreme case being the one for which
hðsÞ ¼ exp �bsð Þ; b[ 0. The collection of all histories with finite norm (7.28)
forms a Hilbert space H whose members do not grow too fast as s ! 1. The
assumed Fréchet differentiability of the general functionals allows one to deduce the
looked for Boltzmann’s hereditary equations (linear functionals) as the first varia-
tion or Fréchet differential at the zero history. Hilbert-Riesz’s theorem then provides
a representation of every continuous linear functional as an inner product, hence the
looked for result. Requirement that the functional admits higher-order Fréchet
differentials at the zero history would then yield an approximation of the functional
by a polynomial functional of a certain degree with a negligible error, exemplified
by the putative case of second-order viscoelasticity. A representation by multiple
integrals exists under a hypothesis of complete continuity. Rivlin and co-workers
had developed such theories (cf. Green and Rivlin 1957; Spencer and Rivlin 1960;
see also Pipkin and Rogers 1968; Rabotnov 1980).

The mathematical justification of Boltzmann’s modelling of viscoelasticity given
by Coleman and Noll was extremely attractive with its enforced rigour allied to
common sense. It obviously kindled a large number of highly technical works along
the same line. Among these, we note the works of Gurtin and Sternberg (1962),
Gurtin (1963), Coleman (1964), Dill (1975), Day (1972), and Christensen (1971).
This also permeated the presentation of continuum mechanics by other groups of
researchers in pure mechanics (e.g., Eringen 1967) but also in the study of elec-
tromagnetic continua (e.g., Eringen and Maugin 1990, Vol. II; Fabrizio and Morro
2003). Of particular importance are the lengthy work of Gurtin and Sternberg
(1962) with the proof of many theorems, the work of Coleman (1964) on the
compatibility of the functional approach with thermodynamics (i.e., the
Clausius-Duhem inequality (7.13)), and that of Gurtin (1963) where this author
could generalize variational principles to viscoelasticity, exploiting in some way
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the already mentioned correspondence principle. The encyclopaedia article by
Leitman and Fisher (1973) closely follows Gurtin since these two scientists were
mentored by this author.

One obvious drawback of the above recalled functional formulation is that in
theory one should know the whole past history of deformation in order to evaluate
the actual stress response. This is not only inconvenient; it is practically impossible.
That is why the proposal to replace the functional in time by the evolution of a few
parameters called internal variables of state by Coleman and Gurtin (1967) was a
real breakthrough. As we know, the idea of such variables that are idenfiable and
possibly measurable but cannot be directly controlled by means of external asso-
ciated forces goes back to Duhem (1911) and Bridgman (1943). They are called
“hidden parameters” by Brun (1965, 1967a, b) and Mandel (1966, 1967). This was
duly exploited by Sidoroff (1975) in the viscoelasticity of solids—in finite defor-
mations, together with the notion of multiplicative decomposition—with one or
several “intermediate configurations”—of the deformation gradient already popular
in elastoplasticity.6 This type of approach was exploited to construct the finite-strain
generalization of Maxwell’s model of viscoelasticity by Gorodzov and Leonov
(1968) and Buevich (1968)—see also Drozdov (1996). The influence of the model
expanded by Biot (1954) was instrumental in the development of this approach.
A recent review on the subject is by Wineman (2009).

Remember for all practical purpose that internal variables of state relate exclu-
sively to internal dissipative processes and are basically governed by the second law
of thermodynamics—cf. Eq. (7.17)—of which the exploitation suggests admissible
time evolutions. The initial integro-differential system of equations of the
Boltzmann-Coleman-Noll hereditary media is thus replaced by a set of time evo-
lution equations, a situation much more pleasant in computation if the number of
internal variables is kept small, what is generally the case with an astute choice of
these variables.

In conclusion of this section, we cannot avoid emphasizing the very mathe-
matical nature of the functional approach which, while allowing the proof of
powerful theorems, may be of little practical importance, save for its reasonable
approximation in the theory of internal variables of state. The powerful thermo-
dynamics with internal variables of state was a happy spinoff of the theory.

7.6 Recent Developments

To prescribed (integer) orders of time derivatives in equations such as (7.4) and
(7.6), there corresponds a well defined spectrum of frequencies in a vibrational
response. But to a recorded spectrum of characteristic frequencies for an unknown
material, there is hardly a chance that this will correspond to a modelling involving

6I perused the historical development of elasto-plasticity in another essay (cf. Maugin 2015).
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integer order of time derivatives. This is probably from where the idea of consid-
ering fractional time derivatives emerged in viscoelasticity. The theory of fractional
derivatives finds its origin in works by Abel,7 but the most commonly associated
names are those of F.C. Liouville (in 1832)8 and G.B. Riemann, with other

7The expression “fractional derivative” seems to have been used for the first time by Leibniz in a
letter to L’Hôpital in 1695.
8For the sake of information we remind the reader that Liouville’s definition of the fractional
derivative Da of order 0\a\1 is given by

Daf ðxÞ ¼ 1
C 1� að Þ

d
dx

Zx

0

f ðtÞ
x� tð Þa dt ðaÞ

Simple examples of application of this definition are given by

Da xnð Þ ¼ C nþ 1ð Þ
C nþ 1� að Þ x

n�a;

Da sinðxÞð Þ ¼ sin xþ ap
2

� �
;

Da expðaxð Þ ¼ aa expðaxÞ:

ðbÞ

The composition property of this operation where Γ is Euler’s function ½C nþ 1ð Þ ¼ n!� allows
one to use formulas such as

D3=2f ðxÞ ¼ D1=2 df ðxÞ
dx

: ðcÞ

The fractional integral—noted J—enjoys similar group properties. With (Liouville)

Jafð ÞðxÞ ¼ 1
C að Þ

Zx

0

x� tð Þa�1f ðtÞdt; ðdÞ

so that we have the following property

Jað Þ Jbf
� �ðxÞ ¼ Jb

� �
Jafð ÞðxÞ ¼ Jaþ bf

� �ðxÞ ¼ 1
C aþ bð Þ

Zx

0

x� tð Þaþ b�1f ðtÞdt: ðeÞ

Interesting properties in the present context are those related to the Laplace transform of the
fractional integral. It is noted that

LfJf gðxÞ ¼ 1
s
fLf gðsÞ; L Jaff gðxÞ ¼ 1

sa
Lff gð ÞðsÞ; ðfÞ

and

Jaf ¼ L�1 s�aLff gðsÞf g: ðgÞ

A corresponding concise presentation is given by Mainardi (1996).
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numerous other definitions given by many more or less reputed mathematicians
over a period of almost 150 years. Now fractional calculus is well developed in both
introductory and treatise forms and very well documented [e.g., books by Mainardi
(2010) and Tarasov (2011) with physical applications]. Both Francesco Mainardi
(born 1942) in Bologna and Alberto Carpinteri (born 1952) at Torino have been
especially productive in the field of applications of fractional calculus to anelas-
ticity, and more particularly viscoelasticity. Along this line we note the early paper
of Caputo and Mainardi (1971), the lecture notes edited by Carpinteri and Mainardi
(1997), a conference contribution by Mainardi (1994)—where the author general-
izes the standard linear model to fractional derivatives—, applications to waves by
the same author (Mainardi 1995), the original work where Caputo (1964) intro-
duced a new definition of the fractional derivative—which avoids the definition of
fractional-order initial conditions—, and the spot-on work of Koeller (1984).
A historical perspective is given in Mainardi (2012). This line of works is in full
development at the time of writing and shows interesting connections with the
mechanics of fractal structures.

7.7 Conclusion

The branch of continuum mechanics referred to as the viscoelasticity of solids
developed from simple one-dimensional models combining the primitive notions of
elasticity and viscosity in the second part of the nineteenth century to much more
sophisticated proposals. With further developments in nonlinear elasticity, the idea
of heredity by Boltzmann, and a true understanding of the notion of time func-
tionals, it reached a mathematical level that allowed the proof of fundamental
theorems in the expert hands of Coleman, Noll, Gurtin and others. The fruitful idea
of fading memory permitted the inclusion of viscoelasticity in the grand scheme
devised by Truesdell and his direct disciples. The intrinsic beauty of the functional
approach à la Coleman-Noll and the aesthetic satisfaction that it brings were dif-
ficult to resist to as witnessed by the very writer in the 1960s–1970s. No doubt that
the appearance of polymeric substances and the consideration of new objects of
study (e.g., deformable biological tissues) and allied technological questions

(Footnote 8 continued)

An example dealing with the acoustic wave equation for complex media (e.g., biological
tissue) typically involves an attenuation that obeys a frequency power law. This is illustrated by a
causal wave equation that incorporates fractional time derivatives such as given by

r2u� 1
c20

@2u
@t2

þ sar
@a

@ta
r2u
� �� sbe

c20

@bþ 2u
@tbþ 2 ¼ 0: ðhÞ

Here sr and se are two characteristic time, so that (h) follows from a generalization of the
standard linear viscoelastic model with fractional orders α and β.
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(e.g., influence of temperature) fostered the expansion of the theory in the second
half of the twentieth century, while some smart researchers helped the solution of
problems by exploiting the Laplace transform and a welcomed principle of
equivalence. But we are inevitably led to envisage a comparison between the assets
and successes of viscoelasticity and plasticity. Retrospectively, we personally think
that while Boltzmann’s initial idea brought continuum mechanics in a full
Newtonian predeterministic view of all continuum mechanics (the past influences
the present, not only a specific past such as in elasticity, but also through the whole
past experience of the material), this has permeated both viscoelasticity and plas-
ticity, the two main manifestations of irreversible evolution in the mechanics of
deformable solids. Although many contributors shared an equal interest in the two
sciences—this is illustrated by the cases of Lee and Mandel—, it seems that in the
end plasticity (see Footnote 5), with the challenge posed by its singularity and its
more dramatic expressiveness, attracted much more attention than the rather
“smooth” viscoelasticity. It favoured richer developments than viscoelasticity in
provoking more the thought of both experimentalists and theoreticians. But this
may be a too personal apprehending.
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Chapter 8
Plasticity Over 150 Years (1864–2014)

Abstract Plasticity theory in continuum mechanics has evolved from Coulomb’s
and Tresca’s experiments to the exploitation of powerful thermo-mechanical con-
cepts (e.g., second law of thermodynamics) and sophisticated mathematical tools
(e.g., convex analysis). The present contribution peruses this development over
more than a hundred and fifty years with special attention paid to original but
forgotten works of Duhem, the introduction of various yield criteria, the formula-
tion of incremental and normality laws, the influence of thermodynamic concepts
(in particular the dissipation inequality) and the resulting variational formulations
and inequalities, the fortunate complementarity between, and confluence of,
“mathematical” and “physical” plasticity theories, some doomed attempts such as
hypoelasticity, the birth of a rational approach to plasticity in finite deformations,
and further progress in anisotropic studies, numerical plasticity, homogenization,
visco-plasticity, coupling with other physical properties, and the recent gradient
plasticity. This is achieved in a historical comprehensive vision with a minimum of
technicalities, but always paying tribute to the most influential and well articulated
contributors. Both primary and secondary sources are exploited.

8.1 By Way of Introduction

To the question what is “a plastic”, most people answer that it is this ubiquitous
kind of material that invaded our environment in the 1950s–1960s. These people
more or less know that this product is artificial, easily moulded, and is most
commonly derived from petrochemicals. On the other hand, consulting Google and
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entering “plasticity” we are nowadays mostly addressed to “brain plasticity” and the
like.1 But this is not what we are interested in because the common word plastic
should not be confused with the technical adjective plastic, which is applied to any
material which undergoes a permanent change of shape (e.g., a plastic deformation)
when strained beyond a certain point. Some plastics (e.g., Bakelite) will break
before deforming and therefore are not plastic in the technical sense. As to the
plasticity of the brain it is a mere convenient image to illustrate changes in neural
pathways and synapses due to changes in behaviour, environment, neural processes,
thinking, emotions, etc. Originally, the word “plastic” derives from the Greek
πλαστικός (plastikos) meaning “capable of being shaped or molded”, from πλαστός
(plastos) meaning “molded”. This explains that. But in physics and materials sci-
ence, plasticity describes the deformation of a material undergoing non-reversible
changes of shape in response to applied forces. For example, a solid piece of metal
being bent or pounded into a new shape displays plasticity as permanent changes
occur within the material itself. This occurs at a transition called yield. This is a
frequent phenomenon observed in many materials, particularly metals, soils, rocks,
foams, etc. Plastic deformation is a property of ductile and malleable solids.
“Brittle” materials, such as cast iron, cannot be plastically deformed. Malleability is
easily understood in the case of precious metals such as gold—which in fact has no
elastic behaviour—which in fact needs the addition of other harder materials to
preserve their shape in the form of jewellery. There is also the question of what is
“ductility”. More precisely, ductility is the ability of a solid material to deform
under tensile stress, for instance, this is often characterized by the material’s ability
to be stretched into a wire. As tomalleability, a rather similar property, it refers to a
material’s ability to deform but under compressive stress such as in the forming of a
thin sheet by hammering or rolling. Both mechanical properties of ductility and
malleability are aspects of plasticity, meaning the extent to which a solid material
can be plastically deformed without fracture. But note that ductility and malleability
are not always coextensive; for instance, gold has both high ductility and mal-
leability, while lead has low ductility but high malleability. Yet, more than often,
the word ductility is used to embrace both types of plasticity, and is often simply
used as opposite to brittleness. In the present contribution plasticity is the name of
a science that refers either to a mathematical description of what occurs during
plastic deformation in terms of stresses, strains, and loads or to physical explana-
tions of plastic flow in terms of atoms, crystals, grains, and motions of structural
defects (dislocations) within crystals, so that we make a distinction between
mathematical plasticity and physical plasticity. This field of science has gained a
tremendous attraction with the occurrence of plastic deformation in many
metal-forming processes (rolling, pressing, and forging) and in geologic processes

1While participating in an international symposium on plasticity in Baltimore in 1995, another
person in the elevator noticed the words printed on my symposium bag and asked me if I was
working on brain’s plasticity. Certainly an educated person to ask such a question, he was most
surprised by my answer mentioning my concern—and the concern of many present at this huge
symposium—with the plasticity of metals.
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(rock folding and rock flow within the earth under extremely high pressures and at
elevated temperatures).

Of all times craftsmen (blacksmiths, goldsmiths) working with metals have
noticed and exploited the remarkable properties of ductility and malleability. But a
scientific approach to the phenomenon of plasticity has been hindered by its
inherent complexity in its physical interpretation and its mathematical modelling.
Some of the first recorded measurements go back only to Coulomb in the late
eighteenth century and Gerstner in the first part of the nineteenth century (cf.
Osakada 2008), but we consider that the real science of plasticity started with
Tresca, Saint-Venant and Lévy in the 1860s–1870s, and found a more favourable
ground in the twentieth century with a true explosion in research in the second part
of that century as we shall see hereafter. Remarkably enough, Timoshenko (1953),
a well informed and accurate specialist of continuum mechanics and its applica-
tions, and the founder of “applied mechanics” in the USA, says very little on
plasticity in his landmark book on the history of the strength of materials. Plasticity
is mentioned only in three pages (pp. 242, 395, 396) in this famous opus; But its is
true that the first book in English on plasticity appeared only in 1930 as the
translation of a German book by Nadai, and most of the new results in mathematical
plasticity were published in the 1940s–1950s while physical plasticity was
expanded only in the 1930s on, when Timoshenko (1878–1972)—mostly interested
in elasticity, structures, vibrations and stability in his most active part of his sci-
entific career—was already in his seventies. Herein after, we try to correct this lack
of information by perusing the history of plasticity over two and a half centuries,
say between Coulomb and the end of the twentieth century.

8.2 Timid Experimental Steps and First Mathematical
Modelling

Plasticity is a subtle phenomenon so that its first quantified observation had to await
the conception of true experiences with appropriate recording of data. Along this
line it seems that the first true recording goes back to the work of Charles A.
Coulomb (1736–1806) on the torsion of iron wires (Coulomb 1784) when this
gifted experimentalist measured the recovery angle after twisting. This angle
increases less and less with the increased number of rotations, with a kind of
saturation when, we imagine, plastic deformation that started from the surface of the
specimen has reached the centre of the wire with progress of work hardening. The
corresponding shearing yield stress estimated from Coulomb’s measurements is
close to the actual known value for iron (cf. Osakada 2008, p. 23). As noticed by
Bell (1973, p. 31), the stress-strain curves recorded in 1824—and published in
Gerstner (1831)—by the Bohemian professor of mechanics and hydraulics F.J.
Gerstner (1756–1832) at the Polytechnicum in Prague—famous for his studies of
water waves—for piano wires, clearly indicates the presence of a residual strain
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after unloading, a patent sign of a plasticity effect. To find much more on these
measurements of shearing stresses, one must uncover the tremendous work of
Henri E. Tresca (1814–1885).

The French Revolution that started in 1789 created many new teaching and
research institutions, among them the Ecole Polytechnique and the Ecole Normale
Supérieure to form scientifically educated engineers and competent teachers,
respectively. Much less known outside France is the Conservatoire National des
Arts et Métiers (for short CNAM) also founded in Paris in 1794. Somewhat similar
to the Royal Institution in London, this new educational establishment was to offer
public lectures to all, but in time it also became in part a museum of science and
technology (Musée des Arts et Métiers) and also entertained some research in
engineering science and industrial economy as exemplified by Tresca who started to
tackle engineering projects there from 1852. Indeed, in the 1860s–1870s Tresca
conducted there accurate experiments on various forms of metal forming and was
thus led to studying the phenomenon of extrusion relating the extrusion force to the
shear stress (he was using lead as a sample material). As a result of his observation
that shear stress dropped in a certain range of loading he concluded that metal flow
occurs under a constant maximum shear stress sM ¼ k. Tresca submitted many
notes on the subject starting in 1864 but culminating in his long memoir of 1872.
Many of Tresca’s figures are reproduced and commented upon in Bell (1973,
pp. 427–449). But in that period the leading French mechanician was Adhémar
J.C. Barré de Saint-Venant (1797–1886)—often shortened to Saint-Venant. Of
course even Cauchy (1828) was conscious of the general validity of the basic
concepts (stresses, strain tensor) that he introduced as indicated by the general title
of his groundbreaking memoir—including the “anelastic” behaviour as a possi-
bility. But Cauchy was mostly concerned by elastic solids (and fluids) and prac-
tically had no experimental data at his disposal—and perhaps no motivation—to
deal more closely with anelastic materials. About fifty years later, it did not take
long to Saint-Venant to cast Tresca’s results in a sound mathematical frame. To
justify the proposed modelling Saint-Venant abstracted from these results three
important working hypotheses: first, it is noticed that no change in volume
(so called isochoric deformation in the modern jargon) is observed during plastic
deformation; second, the directions of the principal stresses coincide with those of
the principal strains (this assumes an isotropic response); third, the maximum
shearing (or tangential) stress at a point is equal to a specific constant as noted in
Tresca’s formula sM ¼ k. This can be rewritten in more precise mathematical terms
as

Supa;b ra � rb
�� �� ¼ 2k; a; b ¼ 1; 2; 3; ð8:1Þ

where the Greek indices label the principal stresses. Introducing then the tangential
stresses, this can also be expressed by the following set of three inequalities:
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2 s1j j � r2 � r3j j � k; etc; ð8:2Þ

by circular permutation. In an astute plane representation this is represented by a
hexagon (see Maugin 1992a, p. 18). The interior domain (a convex domain with
angular corners) is the domain of elasticity. The definition of this elastic limit by
pieces of intersecting straight lines offers some difficulties in analytic treatment of
problems. Nonetheless, Barré de Saint-Venant (1871a, b, c), a gifted analyst, was
able to give the solution of exemplary problems such as: the torsion of a circular
shaft, the plane deformation of a hollow circular cylinder under the action of an
internal pressure, etc., problems that we still give students to solve without the help
of a computer. About the same time, Maurice Lévy (1838–1910), a disciple of
Saint-Venant, proposed to replace the second working hypothesis of his master by
assuming that the directions of increments of principal strains coincide with those
of the principal stresses (Lévy 1871). This looks like the first attempt at formulating
an incremental flow rule. But Lévy did not differentiate plastic strain from the total
strain—and thus including elastic strain even in the plastic region—so that the
validity of Lévy’s proposal is indeed limited to the case where elastic strain can be
fully discarded and thus corresponds to the approximation of rigid-plastic beha-
viour. This is a rather highly singular behaviour since nothing happens to the strain,
not even an elastic one, in so far as the plasticity threshold is not reached and then
we have an uncontrolled plastic flow occurring along a plateau in stress.

Other fundamental observations concerning plastic behaviour were made by
Johann Bauschinger (1833–1893) and Otto Mohr (1835–1913), both in
Germany. The first author (Bauschinger 1886) has shown that yield stress in
compression after plastic tensile deformation is significantly lower than the initial
yield in tension. This is called the Bauschinger effect. As to Mohr, he introduced an
astute graphical representation of the stress state at a point: this state is represented
by a circle in a rectangular coordinate system with coordinates as normal and shear
stress components. This helped him to devise a yield criterion where the envelope
of circles obtained for tension, compression and torsion represents the fracture limit.
This is Mohr’s stress circle and Mohr’s (intrinsic curve) criterion (Mohr 1900). The
same year (reported by Bell 1973, p. 485), Guest (1900) from University College in
London, published results on the strength of ductile materials under combined
(tension and torsion) stress states. Like Tresca, he obtained that yielding occurs
when a certain maximum shear strain is reached, but while Guess clearly distin-
guished between yielding of a ductile material and brittle fracture (two effects often
summarized under the unique name of failure in past works), his work did not really
improved on Tresca’s.

All the mentioned works exploit what may be called a maximum shear stress
criterion with its inherent mathematically awkward form. But Richard von Mises
(1883–1953) proposed a new criterion (von Mises 1913) that was much easier to
apply and in fact used the notion of maximum-distortion-energy theory of yielding.
It replaces the hexagon of Tresca-Saint-Venant by a circumscribed circle (obviously
a convex domain; see Maugin 1992a, Fig. 1.18) of radius k and equation
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r1 � r2ð Þ2 þ r2 � r3ð Þ2 þ r3 � r1ð Þ2¼ 2k; ð8:3Þ

where the maximum, medium, and minimum principal stresses are such that
r1 � r2 � r3. It happens that Maksymilian T. Huber (1872–1950) had proposed a
rather similar criterion in 1903–1904 in a paper published in Polish in Lvov or
Lwow (now Lviv in Ukraine) and published in English translation only in 2004 (cf.
Huber 1904, 2004). This was identified (Hencky 1923, 1924) as a criterion of
strain-energy function, hence the same as von Mises’, by Henrich Hencky (1885–
1951). Mises’ criterion had been introduced as a mathematical convenience but it
was also physically founded. In practice, the two Tresca-Saint-Venant and
Huber-Mises criteria give equal resistance to simple traction and to simple com-
pression, but different resistances in pure shear. In the case of metals, the experi-
mental results are contained between these two criteria, although they are generally
closer to the Huber-Mises criterion as shown in well-publicized experiments con-
ducted by Taylor and Quinney (1931). To conclude this point we note that other
criteria were proposed before to measure the energy of deformation, including by
the famed William J.M. Rankine (1820–1872) in Scotland as “maximum stress
energy” and by Eugenio Beltrami (1835–1900) in Italy as “maximum-strain-energy
theory”. In the future other criteria will be proposed for anisotropic media, the
plasticity of soils, the case of porous media, etc. But all this refers to a rather static
view of plasticity where the time parameter does not intervene while
elasto-plasticity experiments and problems are rather conceived as scenarios of
loading and unloading at a more or less rapid pace. This dynamic or incremental
view makes use of the thermo-dynamic framework. Still we lastly emphasize that
the introduction of yield criteria in the deformation theory of solids, essentially by
Tresca, Saint-Venant, Huber and Mises was as great an achievement as the intro-
duction of Reynolds’ number in fluid mechanics as it marked a transition to an
altogether different mechanical response in continuum mechanics. They were both
designed at the same critical period of transition in science. But this was not so
readily integrated in a standard cursus of rational mechanics as proved by the lack
of reference to plasticity and turbulence in Appell’s classical treatise (Appell 1921;
first edition in 1900). Probably that these two fields were not “rational enough”,
before “mathematical plasticity” was formulated (see below).

8.3 Enter Evolution and Thermodynamics

8.3.1 Duhem’s Pioneering Works

Of course all engineers and scientists at the dawn of the twentieth century were
conscious of the possible existence of some relationship of the plastic phenomenon
with dissipation. The most militant energetist of the period, Pierre Duhem
(1861–1916), had a special interest in all dissipative irreversible physical
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behaviours in phenomenological physics, including in a possible theory of
irreversible processes manifested in the form of permanent deformations in solids. He
wrote eloquently about so-called nonsensical branches of mechanics—that is, those
branches like friction, false equilibria, permanent alterations, and hysteresis—which
at the time were not yet satisfactorily covered by his general thermodynamics—in his
solidly argued essays on the “evolution of mechanics” (Duhem 1903).2 There he built
essentially on pioneering works of Gibbs and Helmholtz. But he was missing our
present knowledge (that is still by force limited) in differential geometry, functional
analysis, dynamical systems, and convex analysis. Many of the questions he raised
and the horizons he opened will find an answer and a broadening in these fields of
mathematics, as amply proved by successful developments in the rational mechanics
of continua in the second part of the twentieth century. He also tried to have exper-
iments conducted by a team of doctoral students [MM. Marchis, Saurel (from the
USA), Pélabon, Lenoble] to work on the possible identification and measurements of
the various typical irreversible properties but the success was limited due to the lack
of precise experimental techniques at the time. This ambitious programme was in
advance on its time. This is illustrated by the thesis of Lenoble (1900) on deformable
(i.e., plastic) metals. However, from a theoretical point of view, Duhem had ideas
which later on proved to be correct. For instance, with F denoting the free energy and
A the external action, he formulates the equilibrium condition for a normal state
variable α as (with Duhem’s sign convention for dissipation)

A ¼ @F
@a

: ð8:4Þ

But Sect. 2 of Duhem’s relevant chapter in Duhem (1903) rings a more familiar bell
to our ears, for it deals with permanent “alterations” and hysteresis effects that may
be closer to our own plasticity, visco-plasticity and creep concepts. Here Duhem
first gives a general idea of what permanent alterations are. He emphasizes the role
of infinitesimally slow evolutions, adapting in accordance temperature and external
actions. Again, one must go beyond Gibbs’ statics and Helmholtz’s dynamics. That
is, one must elaborate on the generalization of Eq. (8.4) or its incremental form that
seems to be more appropriate. More precisely, Duhem discusses the possible
generalizations of the following incremental form that follows from equilibrium
(8.4):

dA ¼ d
@F
@a

: ð8:5Þ

Here we remind the reader that @F=@a is computed at constant temperature while
noting that systems exhibiting permanent alterations (e.g., residual strains) are quite
different from those exhibiting viscosity [but in modern thermo-mechanics we also

2I gave elsewhere (Maugin 2014) a partial English translation of the most relevant parts of these
essays.
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envisage a mix of the two effects as in visco-plasticity]. The permanent alterations
envisaged by Duhem are exhibited when an unloading (decrease in the “cause”)
following a loading, does not bring the system back to its initial virgin state. We
must thus distinguish between the two possibilities of the incremental law that will
be adopted depending on whether we are increasing or decreasing the “cause”. For
sufficiently slow evolutions, Duhem proposes to generalize (8.5) by [cf. Duhem’s
Eqs. (7) and (7b)]

dA ¼ d
@F
@a

þ hsign dað Þ daj j; ð8:6Þ

where the quantity h may still depend on the state of the system and also on the
external action A. Equation (8.6) may seem to be both enigmatic and ad hoc to most
readers. It is however in direct line with mathematical works on hysteresis of the
1970s–1990s (see Bouc 1971; Maugin 1992b). To find more elaboration by Duhem
on (8.6) and applications one should consult the original works of Duhem published
in 1901 in a rather odd place (a physical-chemical publication in Belgium). Here
Duhem is satisfied with the cases of deformations, residual magnetization, magnetic
hysteresis, and analogous properties for electric polarisation in dielectrics. Duhem
emphasizes the interest of his considerations in metallurgical treatments (tempering,
annealing, etc.). But much more is also to be found in the exhaustive and clear
analysis of Manville (1927). The latter author remarks that it is difficult to sum-
marize the works of Duhem and his co-workers on permanent alterations and the
somewhat 400 pages of various memoirs (in particular the seven published in
Belgium in 1896, 1897 and 1901) in a short text. But some of the facts and
properties recalled by Manville shed light on some aspects that will be of great
interest for further comparison with modern developments. One important remark is
that from the law of displacement of the equilibrium (a stability condition about an
equilibrium: cause and effect vary in the same sense), the perturbing work in
passing from A; að Þ to Aþ dA; aþ dað Þ must be non negative [Eq. (9), p. 310, in
Manville 1927]

dA � da� 0: ð8:7Þ

This has for immediate consequence that the slopes of the curves in the A; að Þ plane
must always be in the same sign whether on increasing or decreasing
A. Consequently, the end points of a hysteresis cycle in the plane A; að Þ are always
sharp and cannot be rounded in the absence of viscosity. Another pertinent remark
concerns the extension of Clausius’ theorem for a non-reversible closed cycle. The
quantity

R
dS ¼ R

dQ=h over a cycle ought to be non-negative (S = entropy,
Q = heat, θ = thermodynamic temperature). With constant temperature, this reduces
to the condition

R
dQ� 0. Equivalence between heat and work yields that dQ ¼

Ada for an isothermal cycle, and thus
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Z
closed cycle

A � da� 0: ð8:8Þ

This clearly dictates the sense in which hysteresis cycles are necessarily followed in
the plane A; að Þ. But in practice it was soon discovered that many hysteresis cycles
(especially in the mechanics of deformations) are slightly rounded at their ends. The
explanation of this phenomenon in contradiction with (8.7) is to be found in the
likely presence of small viscous effects. Duhem had several graduate students
working out the experimental facets of this research on permanent alterations
[Theses of Marchis and Pélabon in 1898, and of Saurel and Lenoble in 1900; see in
particular Lenoble (1900)]. Results were not very conclusive from the quantitative
point of view. Only a general qualitative agreement was found (cf. Manville 1927,
p. 350). Sophisticated experimental techniques and accurate measurement possi-
bilities were not yet available at the time, so that these studies were probably too
ambitious and in some sense doomed. Here are Duhem’s own words: “It seems that
no theory of permanent alterations can obtain from experiments more than quali-
tative and somewhat vague confirmations” (as cited by Manville 1927, p. 599).
What must be retained here is the expression (8.7) that can be rewritten with time
rates as

_A � _a� 0; ð8:9Þ

while the corresponding dissipation naturally reads

Ua ¼ A � _a: ð8:10Þ

In plasticity, A will be the stress and α the anelastic deformation ep. As a matter of
fact, it is Carl H. Eckart (1902–1973) who in Eckart (1948) wrote down the
anelastic dissipation in small strains as

Uanel ¼ rij _e
p
ji; ð8:11Þ

opening thus the way to a whole new development in irreversible thermo-dynamics
of continua (cf. de Groot and Mazur 1962, but these authors show no interest in
solid like behaviour). Duhem’s and Eckart’s original works are seldom directly
cited in the beginning of this twenty-first century.

8.3.2 Incremental Laws

Now we can return to the notion of scenario and incremental formulation for the
basic laws of plasticity as either the increment d :ð Þ or the time derivative—noted in
Newton’s way with a superimposed dot—will appear of necessity. For this we need
first a qualitative description as follows, considering only the case of isotropic
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bodies in small stains. Here we closely follow A. M. Freudenthal and H. Geiringer
in their lengthy Handbuch article of 1958—which gives a state of the Art in the
field as in the mid 1950s. The state of an isotropic body is said to be perfectly
plastic if all admissible states of stress fulfil an isotropic condition, called the yield
condition f rij

� � ¼ 0—in stress space. This function f, because of isotropy, is
assumed to be expressible in terms of the basic invariants of the stress tensor of
Cartesian tensor components rij. “This definition implies that at the yield limit the
rate of plastic flow associated with any stress increment drij would increase so

rapidly that states of stresses for which f rij þ drij
� �

[ 0 cannot be sustained, while
any stress increment for which the point remains on the yield surface produces no
plastic strain work”. Accordingly, “the condition of perfect plasticity is df rij

� � ¼ 0
at f rij

� � ¼ 0”. In the stress space represented by a Cartesian coordinate system with
the directions of the principal stresses as axes, the yield condition f rij

� � ¼ 0
describes either a single continuously differentiable surface enclosing the origin
(e.g., the Huber-Mises case) or a number of such surfaces, intersecting along sharp
edges and forming a polyhedron (e.g., the Tresca-SaintVenant case). Points inside
the yield surface (for which f\0) are in a pre-plastic state or may be rigid, elastic or
visco-elastic. Points outside the yield surface cannot be reached by definition of
perfect plasticity. Experimental evidence (remember the first working hypothesis of
Saint-Venant) justifies the assumption of incompressibility of plastic flow, so that
only two stress invariants are involved in function f. It is this incompressibility
property that allows the representation of the yield stress as a curve in a plane state
space described by the three principal stresses at 120° from each other (hexagonal
and circle representations of the Tresca and Huber-Mises yield curves, respec-
tively). Because a stress increment drij at f ¼ 0 produces no strain work, the
increment of the rate of plastic strain work along any stress path within the yield
surface is such that

drij _e
p
ij ¼ 0: ð8:12Þ

This is similar to Duhem’s orthogonality relation

dA � _a ¼ 0; ð8:13Þ

at the yield. Because of incompressibility, only the deviatoric part of _epij is involved
in (8.12). Finally, as a consequence of (8.12), the direction of the plastic
strain-increment or strain rate must be normal to the yield surface at the point of
intersection with the stress-increment vector, provided that this direction (i.e.,
@f =@rij) be uniquely defined (case of Huber-Mises yield). In the presence of cor-
ners where this normal is not uniquely defined, some caution must be taken (case of
Tresca yield). This was circumvented in modern analysis with the notion of cone of
outward unit normals to the yield surface at discontinuities of this surface (cf.
Maugin 1992a).
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In perfect plasticity the yield surface f rij
� � ¼ 0 is a fixed material property. But

it was observed that this yield surface can move, deform and expand with an
increase in loading. This is the phenomenon of “hardening”. Indeed, a work-
hardening or strain-hardening body is defined by the assumption of a strictly
positive value of the rate of plastic strain work, i.e.,

drij _e
p
ij [ 0: ð8:14Þ

In more vivid words, once entered in the plastic regime, an extra loading increases
the yield limit as if it were defined by the point at which final loading was achieved.
The concept of yield function can therefore be replaced by that of “loading func-
tion” that is “associated with the consecutive stages of increasing plastic defor-
mation” (Freudenthal’s words). Usually a single scalar parameter β is introduced to
characterize this effect. It can be the plastic-strain work defined by

b ¼ Wp :¼
Z

rijde
p
ij ¼

Z t

0

Uaneldt; ð8:15Þ

or an invariant cumulated plastic strain defined by (Odqvist 1963, 1966)

b ¼ �ep :¼
Z t

0

2
3
_epij _e

p
ij

� �1=2

dt: ð8:16Þ

In both cases, the variable β accounts for the time-integrated past behaviour of the
material up to the actual point of loading, and f rij

� � ¼ 0 is replaced by an
expression of the type f rij

� �� g bð Þ ¼ 0. This results in a growth of the elasticity
domain as loading increases, hence the pleasant property enjoyed by the material
from an industrial viewpoint: its elastic limit can be improved with further loading.
Another possibility is that the yield surface is displaced by a shift in its origin as in
an expression of the type

f rij � aij
� � ¼ 0; ð8:17Þ

where the tensor of component aij may be a simple expression of the actual plastic
strain itself. This is called “kinematic hardening” (cf. Prager 1949—further
expanded by H. Ziegler, also Mroz 1967) and aij ¼ Cepij is a typical backstress with
a positive constant C that is characteristic of the considered material. Such a scheme
may allow, at least qualitatively, a representation of the Bauschinger effect. Both
isotropic and kinematic hardenings may be combined. Combined with loading path
and pre-stress, temperature may also have a non-negligible effect on the yield
surface, as clearly exhibited in the curves provided by Phillips (1968) and Phillips
and Tang (1972)—and reproduced in Maugin (1992a, pp. 16–17).
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8.3.3 Rate Equations

A typical rate equation for the plastic strain in perfect plasticity may be written as
the normality relation

_epij ¼ _k
@f
@sij

; ð8:18Þ

where sij is the deviatoric part of the stress rij (because of incompressibility of the
plastic deformation; cf. First working hypothesis of Saint-Venant). Furthermore we
have noted _k—as if it were a time rate—the (plastic) multiplier introduced in the
right-hand side of (8.18). This is to mean that the plastic process, while obviously
happening in time, is not explicitly dependent on the rate at which the loading is
applied so that no time scale is involved in (8.18). This equation is sometimes
referred to as a model of “time-independent plasticity”. This is an awkward coinage
since a time evolution is involved in (8.18) but any parameter (e.g., an angle of
torsion that grows monotonously during loading) can be used as selected time scale.
Though, this essential property that is verified for sufficiently low rates of stress
loading [as well established by Manjoine (1944) for mild steel] has a dramatic
influence when we consider dissipation. An expression such as (8.10) will then
necessarily be homogeneous of order one in the strain rate, while in classical
irreversible processes this expression would be homogeneous of order two (like the
famous Rayleigh dissipation function). When the response of the material is sen-
sitive to the rate of loading—as happens for very malleable materials—it means that
some viscosity starts to be felt in the system and we have to envisage a mixed visco-
plastic form of deformation.

It is Melan (1938) who introduced the notion of plastic potential v sij
� �

such that
(8.18) may be rewritten as

_epij ¼
@v
@sij

: ð8:19Þ

This is sometimes referred to as Mises’ theory of plastic potential after a work of
von Mises (1928)—cited by Freudenthal and Geiringer (1955, p. 326). We shall
return to (8.19) in Sect. 8.4.

8.3.4 Prandtl-Reuss Relations

This is the small-strain case in which the elastic part satisfies standard linear elas-
ticity and plastic deformation evolution is such that—cf. Eq. (8.18)—it is simply
proportional to sij. Then we can write for the total strain rate in elasto-plasticity in
shear:
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_eij ¼ _eeij þ _epij ¼ Sijkl _rkl þ _ksij; ð8:20Þ

where Sijkl is the tensor of elastic compliances (inverse of the elasticity tensor). This
was proposed by Prandtl (1924) for plane problems3 and Reuss (1930) in the
general case. Such a form where Sijkl reduces to 2lð Þ�1—where μ is the shear
modulus—in the case of isotropy allows relatively easily solutions of
elasto-plasticity problems.

Equation (8.20) can formally be re-written as

_e ¼ SþHð Þ_s; ð8:21Þ

where H is a function of the stress. In the absence of elastic contribution, this
reduces to the Lévy-Mises relations. But if all strains are small, one is tempted to
use directly the strain, rather than the strain rate, and stress, instead of the stress rate.
Thus, the equations proposed by Hencky (1924) and Nadai (1937) mimic (8.21)
simply by

e ¼ ðSþ 2uÞs; ð8:22Þ

where φ is essentially positive during continued loading and zero during unloading.
This simplified relationship was used by Nadai, and many Russian engineers—
including Ilyushin (1943, 1948, 1954)—in the 1940s and 1950s. This is called the
deformation theory of elastoplasticity (or Hencky-Nadai theory). In the 1D case this
is like replacing μ by the secant modulus �l of a nonlinear stress-strain relation. As a
trivial remark, there is no need to emphasize that replacing the derivative of a
function, e.g., dy=dx, by the ratio of the function itself to the argument, y=x, is
strictly valid when y=x is a constant! More subtly, the replacement of (8.21) by
(8.22) is theoretically possible only if the latter can be obtained from the former by
a path-independent integration. This is the case in so-called proportional (i.e., when
the stress components increase during each test proportionally to a single param-
eter) or “radial” loading with fixed stress axes and principal stress ratios, or for
segment-wise plane yield surface, as emphasized by Freudenthal and Geiringer
(1958, pp. 281, 287). Still this simplified but disputable theory, considered as an
expedient, greatly facilitates the solution of boundary-value problems. This explains
its acceptance and success in a time when there were no computers. It is now
considered obsolete and mentioned only for the sake of curiosity.

3Prandtl had one of his students to work out 2D problems (H. Herbert, Thesis, Göttingen, 1909;
published in the first issue of ZAMM, vol.1. p. 15, 1921, a journal founded by Prandtl and von
Mises in 1921).
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8.3.5 Hypo-elasticity as a Path to Elasto-Plasticity

Inspired by the work of the Polish mechanician Stanislaw. Zaremba (1903),
Clifford A. Truesdell (1919–2000) proposed in Truesdell (1955) to postulate a
relation between the rate of strain Dij and the rate of stress in the general form

d
dt
rij ¼ f Dij

� �
or

d
dt
rij ¼ f Dij; rij

� � ð8:23Þ

depending on whether the response is independent of or dependent on the stress
field itself. This equation, for finite deformation, defines a “hypo-elastic” medium
as a body which has no preferred state of strain or stress and thus permits the
existence of an arbitrary stressed initial state.

The integration over time of (8.23) to obtain a stress-strain relation should be
performed along the loading path and over deformation. But in finite strain this can
produce a large variety of non-linear responses. Among these, we may have
strain-hardening and strain-softening as possibilities. This hints at the possible
existence of a yield limit in certain asymptotic conditions. This is the argument that
led to a possible approach to elastoplasticity via hypo-elasticity as a “rational”
deduction in the Truesdell-Coleman-Noll sense. There were lengthy discussions
about the objective time (Jaumann co-rotational or Oldroyd convected) derivative to
write a properly invariant form of (8.23), a discussion that will recur with the
writing down of evolution equations in finite-strain elasto-plasticity.
Hypo-elasticity, as advertised by Truesdell, was fashionable in the late 1950s and
early 1960s, so much so that Eringen (1962) in one of the first books published on
modern continuum mechanics devoted a large number of pages to the subject,
something that disappeared altogether from the actualized book of Eringen of 1967.
The same is true of Prager’s (1961; Chap. 8) book that deals at length with
hypoelasticity. Retrospectively, in spite of some support from hard-line
Truesdellians—including in Japan with Tatsuo Tokuoka (1929–1985)—, we
think that this path to plasticity was doomed. One reason for this was that the theory
involved some elastic instability and does not acknowledge that yield may indeed
starts with rather small strain, and thus leading to “stress-strain relations that
resemble in shape though not in scale the deformation conditions of yielding”
(Freudenthal and Geiringer 1958, pp. 262–263). To these much knowledgeable
authors, hypo-elasticity is unrelated to real plasticity. We have to agree with them.

8.4 Mathematical Plasticity and Convexity

8.4.1 Variational Principles

Mathematics was obviously involved in some form in previously exposed devel-
opments. But we call “mathematical plasticity” those developments that started
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essentially with Ernst Melan (1890–1963) in Austria, Rodney M. Hill
(1921–2011) in the UK, William Prager (1903–1980) initially in Germany and his
colleagues at Brown University (USA), and also Alexey A. Ilyushin (1911–1995)
in Moscow and Lazar M. Kachanov (1914–1993) in Leningrad/St Petersburg (cf.
Kachanov 1960, Golovin 2008), and made extensive use of energy arguments,
variational formulations (inequalities), and mathematical properties such as con-
vexity. This format is reflected in our own textbook (Maugin 1992a).

Melan (1938) was instrumental in introducing the notion of plastic potential—cf.
Equation (8.19)—and elements of shakedown theory (formation of a limit
stress-strain path under cyclically imposed strain). Hill (1948, 1950) brought a fresh
view by introducing seminal ideas while providing a remarkable synthetic approach
for the period. The most powerful idea probably is that of maximum plastic work
(Hill 1948) now classically referred to as the principle of maximal dissipation (the
French call it the Hill-Mandel maximal-dissipation principle). In modern form this
principle can be expressed by the following variational inequality:

r� r�ð Þ : _ep � 0; 8r� 2 C; ð8:24Þ

where σ represents the stress tensor whose representative point in the appropriate
space should remain in a convex set C, and _ep is the rate of plastic strain.
Equation (8.24) is a so-called variational inequality—since r� is at our disposal—
what, in essence, means that plastic dissipation possibly—but not necessarily—
occurs only when the stress has reached the yield surface. The important feature of
Eq. (8.24) is that together with the convexity of the strain energy, it guarantees the
validity of Drucker’s inequality and Drucker’s postulate (see below). In other
words, it provides a solid foundation for the plasticity of materials that accept the
normality law contained in (8.24). Such works eventually led to general studies of
uniqueness and stability in nonlinear continuum mechanics. This makes Rodney
Hill the father of modern plasticity theory in a thermodynamic context. This was
expanded by Hill in his book of 1950, published while he was just reaching age
twenty nine. This book remains the classic opus and indispensable reference in
plasticity theory. It was written with an economy of thought and words typical of
Hill. The book also generously presented the treatment of typical plasticity prob-
lems by means of the theory of slip lines, a then recent introduction for solutions of
plasticity problems before the advent of computers. This applies in quasi-static
loadings to plane strain problems in rigid-plastic bodies. Hill gave such a solution
for the exemplary problem of a rigid punch indenting a rigid-plastic half-space.
With the publication of his book at the early age of 29, Hill was recognized as a
leading authority in the field.

At about the same time Prager (1949) was introducing a format of plasticity with
kinematic hardening (plasticity surface moving with the evolving state of plastic
strains), the notion of locking materials (i.e., materials exhibiting a saturation in
strain; cf. Prager 1957)), and publishing deeply thought books (Prager 1955, 1961;
Prager and Hodge 1954) in the field of plasticity and general continuum mechanics.
Morever, after his move to Brown University, Prager became the driving force
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behind the expansion of a true school of elasto-plasticity, that place becoming a
kind of “Mecca” for related studies; Brown indeed almost became the centre of the
World for studies on elasticity and plasticity starting in the period 1940s–1960s.
The following list of professors and PhD students at some time at Brown speaks for
itself, looking like a real “dream team”: W. Prager, D.C. Drucker, R.S. Rivlin, P.S.
Symonds, E. Sternberg, J. Kestin, J.R. Rice, J.H. Weiner, L.B. Freund, R.J. Clifton,
A. Needleman, B. Budiansky (Ph.D 1950), and in applied mathematics dealing with
problems of continuum mechanics M.E. Gurtin (Ph.D 1961) and C. M. Dafermos.
Many foreign visitors came to Brown to get acquainted with the then most recent
developments in plasticity (among them, Paul Germain from France in 1952–1953,
and Hans Ziegler from Switzerland).

Among successful advances made in Brown we must cite the work of Daniel C.
Drucker (1918–2001) who established the so-called Drucker inequality (non
negative product of stress rate and plastic strain rate; Drucker 1951), i.e.,

_rji _e
p
ij � 0; ð8:25Þ

and “Drucker’s stability postulate” in the self explanatory form (Drucker et al.
1952)

W ¼
Z t

0

rji � r0ji

� �
_e pij dt� 0; ð8:26Þ

where r0 is the original state of stresses and ½0; t� is a closed time-cycle of loading
and unloading. Equation (8.25) reminds us of the Duhem inequality (8.9): it is the
expression of a local stability, while (8.26) is more in the spirit of Hill’s inequality
(8.24). H. G. Greenberg, also at Brown, was one of those who proposed in
Greenberg (1949) a variational formulation of plasticity (minimum principle
exploiting a convexity argument). This was improved by Budiansky and Pearson
(1956/57)—minimization of the total potential energy written in terms of velocities
among virtual velocities compatible with kinematic conditions at the boundary.
This was complemented by the Hodge and Prager (1949) principle that corresponds
to a minimization of the total complementary energy among plastically and stati-
cally admissible stresses (P. G. Hodge, 1920–2014). Symonds (1951) introduced
the ingenious notion of plastic hinges that allows one to treat the collapse of truss
structures, and set forth the elements of shake down (or limit) analysis (cf. König
1987, Melan further up). James R. Rice (born 1940) produced his famous works on
path-independent integrals (Rice 1968) and the thermodynamics of plasticity (Rice
1970, 1971), while Joseph Kestin (1993–1993) became the most acute observer
and critic of the thermo-mechanics of continua (see his celebrated treatise on
thermodynamics: Kestin 1966) including anelasticity described by means of in-
ternal variables of state. J.H. Weiner expanded the statistical theory of elasticity
(see his wonderful book of 1983). L.B. Freund produced his theoretical works on
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dynamic fracture, while R.J. Clifton complemented theoretical approaches by
performing landmark experiments in the same.

In all this was a disproportionately important contribution of Brown University
to engineering and continuum mechanics while other relevant studies were con-
ducted in other US places like Brooklyn Polytechnic, the Illinois Institute of
Technology, Columbia, and Stanford University. However, some similar progress
was sometimes attained in the Soviet Union in spite of the difficulties of the period.
Here we must cite Kachanov (1942) who proposed a variational principle for
elasto-plastic materials. His book (Kachanov 1956) became a classic of plasticity
theory as also his successful book of 1974. In Moscow, Ilyushin contributed tho
elasto-plasticity as soon as the mid 1930s. During World War II, he proposed
(Ilyushin 1943) his celebrated method of iterative solutions. This method provided
the basis of many numerical works. Somewhat in competition with Hill’s book,
Ilyushin published in 1948 an innovative book on plasticity with a new version as
Ilyushin (1963). But in Ilyushin (1961, 1963) he proposed the so-called “Ilyushin’s
postulate”. This belongs in the flourishing period when minimum (or maximum)
principles started to play a fundamental role, directly reflecting the thermodynamic
irreversibility of the evolution of the plasticity phenomenon. This postulate states
that for any strain cycle e tð Þ; t 2 0; 1½ � with eð0Þ ¼ eð1Þ in small strains and stress
σ, the strain power is positive or zero:

Z1

0

rij _ejiðtÞdt� 0: ð8:27Þ

This applies to materials with hardening. This Eq. (8.27) can be viewed as a global
stability criterion which says that any closed response loop in a strain (abscissa)-
stress (ordinate) diagram is always followed clockwise. It can be compared to
Drucker’s inequality (8.25) where e is reduced to the plastic strain ep. It is clear that
Drucker’s postulate (8.25), Ilysushin’s postulate (8.27), the maximal dissipation
rule of Hill (8.24), and Duhem’s condition (8.8) belong in the same class of
mathematical reasoning based on the second law of thermodynamics.

8.4.2 Application of Convex Analysis

The period of the 1950s–1970s saw the introduction of much functional analysis
(energy norm, Sobolev spaces) in continuum mechanics as illustrated by the book
of Duvaut and Lions (1972) among others. Furthermore, convex analysis [e.g.,
Rockafellar (1970), also the works of Moreau (1966, 1971) in France], the study of
maximal monotonous operators (e.g., Brézis 1973) and nonlinear programming
(e.g., Luenberger 1973, 1984) provided the required tools to make theoretical
advances in the mathematics of somewhat critical mechanical behaviours (friction,
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plasticity, hysteresis), in fact the “nonsensical branches of mechanics”of Duhem
(1903). This was beautifully implemented in the Thesis work of Nguyen Quoc Son
(1973) where he combined these mathematical tools with the thermomechanics with
internal variables of state [of which the anelastic strain is one example and the
scalar quantities defined in Eqs. (8.15) and (8.16) above are other examples]. We
exposed Nguyen Quoc Son’s theory in our textbook (Maugin 1992a). We
remember that the strain-rate independent plasticity can be expressed in a somewhat
abstract form (A: driving force; a: variable) as

_a ¼ _k
@f
@A

; ð8:28Þ

where _k is a so-called plastic multiplier and f ðAÞ ¼ 0 is the equation of the elasticity
surface delimiting the convex domain C in A space. Here we have

_k� 0 if f ¼ 0 and _f ¼ 0; ð8:29aÞ
_k ¼ 0 if f\0; or f ¼ 0 and _f\0: ð8:29bÞ

This can also be expressed in the formalism of convex analysis as

_a 2 NCðAÞ ) _a � ðA� A�Þ� 0; 8A� 2 C: ð8:30Þ

The first of these reads: “the time rate of α belongs to the cone of outward normals
to the convex set C”. This is a law of normality which dictates the direction of the
time evolution once the elasticity limit is reached. With a ¼ ep and A = σ we
recognize the usual case of plasticity. This general formulation allows for the
existence of angular or apex points along the surface (or limiting curve in a plane
representation) of C. This is the case of Tresca’s criterion of plasticity. The second
of (8.30) is none other than (8.24) in elastoplasticity. If there exists a potential of
dissipation Φ in the manner of Rayleigh (but expressed in terms of the force A,
hence sometimes called a pseudo-potential), we will have the required evolution
equation for α in the form [compare to Melan’s form (8.19)]

_a ¼ @U
@A

: ð8:31Þ

Contrary to Rayleigh’s dissipation potential, we may select the degree of homo-
geneity of the function Φ at our convenience in so far as the dissipation inequality is
satisfied. This is what allows one to construct a good theory of plasticity (even with
hardening) when the dissipation potential is homogeneous of degree one only—
something which surprises to the utmost tenants of the standard theory of linear
irreversible processes. This possibility allows for a strain-rate independent plas-
ticity, a valid approximation for many materials. In fact, it is the theory of so-called
generalized standard materials due to Halphen and Nguyen Quoc Son (1975) that
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is applied where the existence of a convex dissipation (pseudo) potential is assumed
together with the convexity of the energy density. In the framework delineated by
these authors, some of the essential above-recalled mathematical theorems of
plasticity theory such as Drucker’s inequality, Drucker’s stability postulate, and
Ilyushin’s postulate follow almost automatically (cf. Maugin 1992a, Chaps. 5 and
6). The theory of fracture itself can be put in a similar general abstract framework.
In contrast to the functional theory embedded in the rational thermodynamics of B.
D. Coleman and W. Noll, the theory with internal variables of state as applied
above yields a mathematical problem (in time) in terms of evolution (rate) equa-
tions. This is much more adapted to numerical computations as it directly fits
techniques and a good mathematical frame known in other fields such as nonlinear
programming. This explains the remarkable efficacy and success met by this theory
within the last thirty years.

8.4.3 Uniqueness and Existence of Solutions

In 1D the uniqueness in response in stress is obvious for perfectly plastic bodies,
while plastic flows indicates the non-uniqueness in the strain response. In 3D one
needs to apply a standard energy argument to establish the uniqueness in stress—cf.
Maugin 1992a, pp. 76–80. For a work-(positive) hardening material, uniqueness
can be proved for both stress and time rates (cf. Maugin 1992a, p. 114). The matter
of existence for perfect plastic solutions in displacement calls for a higher of dif-
ficulty. This comes from the fact that solutions often exhibit surfaces of disconti-
nuity. Several authors have contributed to a solution of this problem, among them
C. Johnson (1976), Roger Temam and Gilbert Strang (1980)—also Temam (1988)
—, and above all Pierre Suquet (1979, 1982). The clue lies in the use of the space
of functions of bounded variation (BD functional spaces) as this allows the rep-
resentation of the observed discontinuities (slip surfaces, plastic hinges).

8.5 Physical Plasticity and Dislocations

Plasticity is one example of an exploitable continuum phenomenological theory that
could be successfully expanded before the real physical mechanisms for its exis-
tence were uncovered.

After plastic deformation slip bands are usually observed at the previously
polished surfaces of single crystals. It is Geoffrey I. Taylor (1886–1975) who in
Taylor (1934) first proposed an explanation of this observed effect by the sliding
mechanism by crystal defects, which he identified with the mathematically con-
ceived dislocations of Vito Volterra (1907). This idea was practically advanced
simultaneously by Michael Polanyi (1891–1976)—originally from Hungary, but
with a chair of physical chemistry at the University of Manchester after he left
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Germany in 1933—and Egon Orowan (1902–1989)—also originally from
Hungary and with a Ph.D obtained in Berlin who moved to the UK after working
for sometime in Germany and Hungary, first at the University of Birmingham and
then Cambridge before finally moving to the MIT in the USA in 1950. But Taylor is
a scientist of another calibre. A Cambridgian like many others, he is known above
all for his outstanding contributions to dynamical meteorology and fluid mechanics,
especially in turbulent flows (Rayleigh-Taylor instability and Taylor vortices). He
was a man of many scientific interests so that his excursion in a field that belongs to
the mechanics of materials—unknown to most fluid dynamicists—should not come
as a surprise.

The insight of these three scientists is all the more remarkable that the experi-
mental proof of the existence of dislocations as individual objects had to await the
1950s after the invention of electron microscopy. But the time evolution of dislo-
cations indeed is the basic mechanism by which plastic flow takes place.
Dislocations and disclinations are structural defects, i.e., they are the manifestation
of distortions in the perfect (periodic) ordering prevailing in a crystalline structure.
But this matter must be examined in both discrete-crystal and continuous pictures.
The mathematical notion was introduced by Vito Volterra (1907)—without this
naming—as manifestation of a discontinuity in elastic displacement and was
illustrated by an astute thought experiment (“cut, displace, and glue back”). This
creates a disturbance of the mechanical fields in the neighbourhood of this dis-
continuity. However, it is in the discrete approach that a more vivid picture can be
obtained. For instance, for a so-called edge dislocation, it is the edge of the extra
half-plane of atoms introduced in a regular crystal lattice which is called the edge
dislocation. More generally, if we go along a circuit around the dislocation line of
unit tangent τ, one observes a lack of closure that is a finite number of the basis
vectors of the lattice. This is called the Burgers vector usually noted b. This vector
is parallel to τ for a screw dislocation and perpendicular to τ for an edge dislocation.
In practice many dislocations are mixed (see, e.g., Friedel 1964) when the line
direction and the Burgers vector are at any angle. As indicated above, the rela-
tionship of the notion of dislocation (name given by Taylor) and the phenomenon
of plasticity was established almost simultaneously by Taylor, Polanyi and Orowan.
They proposed that shear could be caused by the propagation of elementary linear
defects they called dislocations.

Dislocations are observed to move under the influence of a change of the local
state of stresses caused by the application of external loads. Dislocations can move
by slip (in the plane formed by the Burgers vector and the line tangent) or by climb
(motion outside the slip plane). Their motion propagates the plastic deformation,
i.e., they ease the ductility of materials. They can interact between them, but also
with the lattice and point defects. In the case of the lattice that is periodic the
displacement of a dislocation needs to overcome energy barriers, a phenomenon
akin to friction. The corresponding friction force is called the Peierls-Nabarro
force. In the case of mobile point defects (foreign atoms, impurities), dislocations
attract them to form so-called Cottrell clouds. This hinders the motion of dislo-
cations. In turn this explains why pure metals are more ductile than alloys. When a
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dislocation is strongly pinned on immobile atoms, one observes a curving of the
dislocation line ultimately forming a free circular dislocation and thereby a multi-
plication of dislocations. This is the mechanism of Frank-Read. The Portevin-
Lechatelier phenomenon, observed as oscillations on a traction curve, is related to
the successive pinning and unpinning of slowly moving dislocations on mobile
atoms at different sites. Dislocations can also interact with precipitates. In mathe-
matical terms dislocations can be viewed as topological defects akin to solitons.

Disclinations in principle are related to a discontinuity in a rotation angle instead
of a displacement. They are particularly frequent in liquid crystals.

The main relationship between the description of dislocations and plastic
deformation is provided by the notion of resolved shear stress. This is the appro-
priate projection of the stress onto the two characteristic directions associated with a
dislocation, namely the unit normal m to the family of planes where slip takes
place, and the slip direction of unit vector s within such a plane, so that mðkÞ � sðkÞ ¼
0 for each slip system k in the crystal. With cðkÞ the amount of slip for this system,
one obtain for the plastic strain when there exists a finite number N of slip systems
in the crystal, the so-called Taylor’s fundamental equation (Taylor 1938)

_ep ¼
XN
k¼1

_cðkÞ sðkÞ 	mðkÞ
� �

S
: ð8:32Þ

Schmid’s law (Schmid 1924; Schmid and Boas 1935) is an empirical yield cri-
terion applied to the resolved shear stress

s kð Þ
S :¼ r : sðkÞ 	mðkÞ

� �
S
: ð8:33Þ

It reads

s kð Þ
S

��� ���� s kð Þ
c ; ð8:34Þ

where s kð Þ
c is a critical value of activation for the slip system k. This criterion is of

the Coulomb or Tresca type (in 1D). The overall situation with crystal plasticity in
the mid 1950s was examined by Seeger (1958) in his Handbuch article; for a more
recent scientifically accurate conspectus, see Havner (1992).

Before closing this section, we note that the notion of geometrically necessary
dislocations (for short GNDs) is of importance. Indeed, if one envisages the
bending of a regular lattice, this can be realized only if dislocations are introduced
to justify the angle difference between the original atomic planes. These are GNDs.
This lattice curvature involves a gradient of strain, and will ultimately yield a
necessary relationship between GNDs, plasticity and a strain-gradient theory. The
basic relation here is that originally introduced by Nye (1953) between lattice
curvature and the density tensor of dislocations. It plays a crucial role in the
gradient-theory of plasticity (see below).
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8.6 Finite-Strain Plasticity

Despite the writing of Eq. (8.32) in small strains, crystal plasticity is the true realm
of finite-strain plasticity. This is also the case of applications and computations
related to technologies that involve large deformations such as metal forming, etc.
There was thus need to examine this matter more closely, so that this occupied the
mind of many bright mechanicians of the continuum in the period 1970–2000. But
then one has to come to grips with various matters. One is the formulation of
deformation theory in such a framework. The second is the difficulty in selecting the
most appropriate relevant internal variables, in particular the so-called “plastic
deformation” (as emphasized by Casey and Naghdi 1992). The third is the problem
of constructing invariant (i.e., objective) rate laws. Concerning the first point, in the
logic of analysis, the additive decomposition of small-strain theory has to be
replaced by a multiplicative decomposition. One such decomposition may be traced
back to Bilby et al. (1955, 1957), but it was made popular later on by Lee (1969)
and his co-workers. With a general deformation x ¼ �x X; tð Þ characterized by the
tangent map F, a material gradient, F ¼ @�x=@Xjt¼ rR�x, between the reference
configuration KR (of material point X) and the current configuration Kt of placement
x, if there exist elastic (thermodynamically recoverable) finite deformations and
anelastic (dissipative) deformations, they should compose the total, and only true,
gradient F in a multiplicative manner. That is, with an obvious notation,

F ¼ FeFa; ð8:35Þ

where none of the contributors Fe and Fa of the decomposition is a true gradient. It
can be said that Fa defines from KR a so-called intermediate or elastically released
configuration Krelax, as it is also obtained from Kt by applying the inverse elastic
deformation ðFeÞ�1. Then it is clear that the decomposition (8.35) is invariant by
rotations Q 2 SO ð3Þ of Krelax as we can write

FeFa ¼ F̂
e
F̂
a
; F̂

e ¼ FeQ; F̂
a ¼ QTFa; ð8:36Þ

with

QQT ¼ QTQ ¼ 1; QT ¼ Q�1; detQ ¼ 
1: ð8:37Þ

In practice a definite orientation can be granted to Krelax through a particular crystal
lattice (for this, see Mandel 1971, 1982). Although the order of the decomposition
(8.35) seems quite natural, it was seriously questioned by several authors (e.g.,
Clifton 1972; Casey and Naghdi 1980) and an additive decomposition was also
proposed involving directly finite symmetric elastic and anelastic strain tensors
(Green and Naghdi 1965) or an additive decomposition of the gradient H ¼ F� 1
(Nemat-Nasser 1979). We retain the more commonly accepted decomposition
(8.35). For the constitutive behaviour, we note that only Fe is observable by elastic
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unloading, we may consider an energy per unit volume of the reference configu-
ration in the form

W ¼ �W Fe; a; hð Þ; ð8:38Þ

and define entropy and associated internal forces by

S ¼ � @ �W
@h

; Te :¼ @ �W
@Fe ; A ¼ � @ �W

@a
: ð8:39Þ

Then we look for a convenient and suggestive expression for the residual dissi-
pation inequality. To reach such an expression first note that

_F
e ¼ _F � Fað Þ�1�Fe � _Fa � Fað Þ�1; ð8:40Þ

obtained by computing _F on the basis of (8.35) and applying ðFaÞ�1 to the right to
the result. Furthermore, setting

�Tv
:¼ Fa � T� Te; �T :¼ T � F; ð8:41Þ

it is readily checked from the second law of thermodynamics that we obtain the
following residual dissipation inequality

U ¼ Uintr þUth � 0; ð842Þ

with

Uintr ¼ tr �Tv � _Fe þ �T � _Fa
n o

þA _a;Uth ¼ � Q=hð Þ:rRh: ð8:43Þ

Then we note that the original first Piola-Kirchhoff stress is recovered by computing

T ¼ Fað Þ�1� �Te þ �Tv� � ¼ Te þTa; ð8:44Þ

wherein

Te ¼ Fað Þ�1� @ �W=@Feð Þ;Tv ¼ Fað Þ�1��Tv
: ð8:45Þ

The first of (8.43) is of interest because it clearly separates the dissipative effects
related to _F

e
and _F

a
(cf. Maugin 1994). Accordingly, the first is often related to pure

viscous processes, hence the notation for Tv and the second to pure plasticity
effects, so that the superscript a will now be replaced by p. To proceed further we
discard the “viscous” type of dissipation so that the first of (8.44) yields
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T ¼ � Fpð Þ�1��Te ¼ Fpð Þ�1� @ �W=@Feð Þ: ð8:46Þ

It is salient to introduce strain measures in the configuration Krelax by

Ce :¼ Feð ÞTFe; Ee ¼ 1
2

Ce � 1relax
� �

; ð8:47Þ

that are true covariant symmetric tensors in the configuration Krelax equipped with
unit 1relax.

We introduce the Jacobian determinants

Je ¼ det Fe; Jp ¼ det Fp; JF ¼ JeJp [ 0: ð8:48Þ

The following plastic strain rates are also useful:

Dp ¼ Fe � Lp � Feð Þ�T	 

S¼ Dpð ÞT inKt;Lp ¼ _F

p
Fpð Þ�1; ð8:49Þ

and

Dp
relax ¼ Ce � Lpf gS¼ Dp

relax

� �T
inKrelax; ð8:50Þ

while the second Piola-Kirchhoff stress relative to Krelax reads as

Srelax ¼ Je Feð Þ�1�r � Feð Þ�T : ð8:51Þ

Then the intrinsic dissipation per unit volume reads

Uintr ¼ tr r � Dpð Þþ J�1
F A _a inKt; ð8:52Þ

and

Uintrð Þrelax¼ tr Srelax:D
p
relax

� �þ ~A _a inKrelax; ð8:53Þ

together with the energy (per unit volume of Krelax)

Wrelax ¼ ~W Ee; a; hð Þ; ð8:54Þ

and the laws of state

Srelax ¼ @ ~W
@Ee ;

~A ¼ � @ ~W
@a

; Srelax ¼ � @ ~W
@h

: ð8:55Þ

Here Ee is the observable mechanical variable of state.
A finite-strain rate-independent theory of elastoplasticity is now completed by

assuming the existence of a yield (hyper-) surface f Srelax; ~A
� � ¼ 0 bounding a
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convex set C in Srelax; ~A
� �

space, and considering the following plastic evolution
equations

Dp
relax ¼ _k

@f
@Srelax

; _a ¼ _k
@f

@~A
; ð8:56Þ

where _k� 0, λ being the plastic multiplier. This is the theory exposed in Maugin
(1994, 2011, Chap. 2). First we note that the intrinsic dissipation due to stresses in
the elastically released configuration is given by

tr Srelax � Dp
relax

� � ¼ tr Mrelax � Lpð Þ; Mrelax :¼ Srelax � Ce; ð8:57Þ

where Mrelax is the Mandel stress relative to the configuration Krelax. This makes
some say that the Mandel stress is the driving force of plasticity (cf. Mandel 1971).
Second, the Taylor Eq. (8.32) of crystal plasticity is now written as (cf. Bertram
2005, p. 300)

Lp ¼ _F
p
Fpð Þ�1¼ �

XN
k¼1

_cðkÞsgn s kð Þ
s

� �
s kð Þ
0 	m kð Þ

0

� �
; ð8:58Þ

where s and m, with zero subscript, are now expressed in the reference frame. The
corresponding plastic dissipation power (8.57) is then estimated as

Urelax ¼ Mrelax � Lp ¼
X
k

s kð Þ
s

�� �� _cðkÞ ð8:59Þ

that is positive in states of yielding and zero in elastic states.
The exposition just given eschews the problem of objectivity of the relevant

strain rate in the rate equation. But there was a much heated discussion about this
matter and the related matter of the so-called plastic spin in the 1980s (cf. in
particular, Dafalias 1983, 1984, 1985), from which it followed that the co-rotational
or Jaumann derivative may be the preferred objective time derivative to avoid
spurious oscillations in dynamic simulations. Some years before, Mandel (1971)
had pondered the case of a yield surface f Srelax; a; hð Þ ¼ 0 where α stands for the
hardening variables. He suggested considering an evolution equation in the form

DxFpð Þ Fpð Þ�1
h i

S
¼ _kB Srelax; h;A � bð Þ; ð8:60Þ

where

DxFp :¼ _F
p � xD � Fp; xD ¼ _bbT ; B ¼ @f

@Srelax
: ð8:61Þ
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Here xD is the angular velocity of a director frame. The latter is attached to the
crystal structure in its released configuration. It provides a privileged frame. The
elastic deformation then is none other than the lattice deformation. In a polycristal
one would take as director frame anyone of the frames attached to the constituent
crystals. The model is completed by the following normality law for the internal
variables

_a ¼ _k
@f
@A

: ð8:62Þ

More is to be found on various formulations of finite-strain plasticity in the review
of Cleja-Ţigoiu and Soós (1990), and the book of Bertram (2005). Of course, such a
theory must be considered in the case of propagation of strong discontinuities such
as shock waves. Piau (1975) was a pioneer along this line. Note in conclusion that,
along a different line, Naghdi (1990) leans in favour of a yield function in strain
space E.

8.7 Varia

8.7.1 Anisotropy

Yield criteria for anisotropic materials were proposed quite early by von Mises
(1928) and Hill. Crystal plasticity obviously is a direct domain of application of this
notion (cf. Havner 1992). But of greater interest here is the theory of artificially
conceived materials such as fibre-reinforced composite materials approximated by
homogeneous continua endowed with privileged directions. While the elasticity
aspects were discussed in detail by Anthony J.M. Spencer (1972) in Nottingham,
the case of plasticity was dully studied by his disciple and co-worker, Tryfan C.
Rogers (1988, 1990) with appropriate generalizations of Mises’ and Tresca’s cri-
teria (see also Maugin 1992a, pp. 304–309)—see Boehler (1988) for the state of
research as on 1987. Anisotropic plasticity has been particularly well cultivated in
Germany (cf. works by H. Lippmann, J. Betten, O.T. Bruhns, etc.).

8.7.2 Numerical Plasticity

Started modestly with the slip-line solution for plane plasticity (e.g., in Hill 1950;
Freudenthal and Geiringer 1958, p. 353 on) and other graphical methods, and
Ilyushin’s iteration method, numerical plasticity has evolved to reach a very
sophisticated technical level with the implementation of the finite-element method
(practically created in the mid 1960s) in space—exemplified in the book of Owen
(1980)—together with various algorithms for time integration for the evolution
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problem. This progress benefited from mathematical advances in convex analysis
and nonlinear programming. This was particularly worked out by scientists such as
J.-J. Moreau, Nguyen Quoc Son, and O. Desbordes in France in the 1970s and
1980s, and by Taylor, Simo and Hughes (e.g., Simo and Hughes 1998) with their
so-called “radial return algorithm” (exploitation of constant tangent operators in
rate-independent elastoplasticity) in the USA. A more recent book on the subject is
by Han and Reddy (2013). Some previous books came from Japan where numerical
computations were very active (cf. Washizu 1982; Miyoshi 1985).

8.7.3 Homogenization in Elastoplasticity

In some circumstances there is need for a procedure of homogenization (finding an
equivalent—in some mathematical sense—homogeneous material to a highly
heterogeneous material). This is needed in polycrystals and in elasto-plastic com-
posites. Advances along this line were first achieved by Hill (1965)—and also
Mandel (1971). These authors exploited the so-called Hill-Mandel principle of
macro-homogeneity which established an energy equivalence between the average
(over a representative volume element) of the energy of statically admissible (mi-
cro) stress field in a kinematically admissible (micro) stress field, and the energy of
the obtained macro stress and (macro) strain that result from volume homoge-
nization. The case of elastoplastic constituents (without hardening) was expertedly
established by Suquet (1985). As to flowing polycrystals, homogenization was
constructed by means of a generalization of E. Kröner’s self-consistent scheme by
Berveiller and Zaoui (1978).

8.7.4 Viscoplasticity

Viscoplasticty is an admixture of viscous and plastic behaviours. While the first
involves a characteristic time through viscosity, the second involves the notion of
threshold (yield). In vivid terms, we can describe viscoplasticity as the possibility to
take an excursion outside the elasticity domain C but then there is a kind of recall to
it with the involved characteristic time. A first model of this behaviour was
introduced by Eugene C. Bingham (1922) when the elastic part is totally absent
and replaced by a rigid behaviour. Mathematically, we can write the corresponding
evolution equation for (small) plastic strain the following form (this in fact is the
Duvaut-Lions formulation, 1972)

_ep ¼ 1
2g

r�PCrð Þ; ð8:63Þ
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where g[ 0 is a viscosity coefficient and the symbolPC indicates the projection on
C. Obviously, when r is in C, the projection PCr is r itself so that the last factor in
(8.63) then vanishes and there remains only the elastic strain (or a rigid behaviour).
Perzyna (1966) deduced (8.63) from a dissipation potential in the manner of
Eq. (8.31) by writing (on adopting the Duvaut-Lions formulation)

_ep ¼ @X
@r

; X ¼ 1
4g

r�PCrk k2: ð8:64Þ

Bingham gave its original model for simple shear only. This we often illustrate with
the emerging flow of tooth paste from a squeezed tube. It is Hohenemser and Prager
(1932) who formulated the general case—also Ilyushin in 1940 and Oldroy in 1947
as cited by Freundenthal and Geiringer (1958, p. 255). In more recent times, many
numerous empirical and semi-empirical flow stress models have been used in
computational viscoplasticity. One of the first books fully devoted to viscoplasticity
was by Critescu and Suliciu (1982) with a special interest in mathematical prop-
erties. As to Micunovic (2009), he gives first hand both theoretical and experi-
mental aspects in a modern formalism. An original viewpoint on viscoplasticity was
exposed by Valanis (1971).

8.7.5 Coupling with Other Properties (Porosity, Damage,
Magnetism)

The influence of pressure was discarded in above-given examples of criteria.
Nonetheless, pressure may have a non-negligible effect, so that the mean stress,
defined by

rm ¼ 1
3

r1 þ r�e þ r3ð Þ ¼ 1
3
I1 rð Þ; ð8:65Þ

may intervene in the yield criterion. For instance, generalizing the Huber-Mises and
Tresca criteria, we may write

I2 sð Þ ¼ K rmð Þ; ð8:66Þ

or

Supa;b ra � rb
�� �� ¼ 2K rmð Þ; ð8:67Þ

with

K rmð Þ ¼ A rmj jc; ð8:68Þ

and exponent γ slightly smaller than 1 for rocks. Criterion (8.66) was proposed by
von Schleicher in 1926 (cf. Nadai 1950). Criteria (8.66) and (8.67) show that the
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mean stress practically acts like a hardening parameter for the Huber-Mises and
Tresca criteria.

Moreover, the first of Saint-Venant’s working hypotheses (isochoric plastic
deformations) has to be released when the material presents some porosity as in the
presence of many small cavities. The corresponding generalization of the
Huber-Mises yield for isotropic bodies was established in a celebrated paper by
Gurson (1977). It reads

f rij; p
� � ¼ r2eq

r2Y
� 1þ p2
� �þ 2p q cosh

3
2
rm
rY

� �
¼ 0; ð8:69Þ

where rY is a material characteristic constant (yield stress in the Huber-Mises case),
rm is the already defined mean stress, p is the porosity (volume fraction of cavities),
and q is a numerical factor to be determined. J.B. Leblond in Paris and his
co-workers (e.g., Cologanu et al. 1997) have improved on Gurson’s result. A recent
development concerns so-called microporomechanics (cf. Dormieux et al. 2006)
and the related yield criteria.

Another mechanical phenomenon that can couple with plasticity is damage. The
latter is commonly described as the loss of elasticity due to the growth of micro-
cavities and microcracks present in the material. This was expanded by J. Lemaitre
(1985) in Paris-Cachan—see also Maugin (1992a, Chap. 10), Voyiadjis and Kattan
(2005, Chap. 7). An interesting point is that damage can introduce some anisotropy.

In ferromagnetic bodies domain walls that separate magnetic domains are pinned
on structural defects. They move by successive pining and unpinning. This induces
couplings between the irreversible process of magnetization and viscoplasticity of
the material. This was examined in finite strains by Maugin and Fomèthe (1982)—
see also Micunovic (2009, Chap. 6). In small strains Maugin et al. (1987) have
proposed a theory of coupled irreversible magneto-mechanical processes including
the influence of plasticity on the formation of magnetic hysteresis curves.4

8.7.6 Gradient Plasticity

The most recent avatar of elasto-plasticity is called gradient plasticity. The interest
for such a theory stems from the following facts. In some situations of deformation
like in torsion, a marked spatially non-uniform strain is exhibited. Furthermore, Nye
(1953) has shown that macroscopic distortion of the non-uniform shear type is
related to the presence of geometrically necessary dislocations (GNDs)—also
Ashby (1970). From these remarks there follows the conception of plasticity flow
rules that involve not only the stress (like in classical plasticity) but also the

4A strong analogy between dissipation in magnetism and solid mechanics and between irreversible
magnetization and viscoplasticity of crystals is given in Tables 9.1 and 9.2 in Maugin (1999).
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gradient of the stress with a characteristic length (Aifantis 1984, 1987)—of which
the thermodynamic formulation can be disputed; cf. Maugin (1990)—or a real
expansion of a phenomenological theory of strain-gradient plasticity (Fleck and
Hutchinson 1993, 1997, 2001) comforted by experiments on the torsion of very thin
copper wires (cf. Fleck et al., 1994), and made more “rational” and mathematical by
Fleck and Willis (2009). Another much relevant work is Gurtin and Anand (2009).

From Nye’s theory and using Kröner’s synthetic notation, a tensor of dislocation
density, usually noted aij in Cartesian components is introduced, with the symbolic
relationship a � r� c with the distortion c. Fleck and Hutchinson (1993, also
1997). They go one step further by incorporating their approach in a Mindlin type
of gradient elasticity-plasticity by introducing the second gradient of the dis-
placement gijk ¼ uk;ij ¼ gjik and the energy in terms of the usual strain and of this
gradient by the energy variation

dW ¼ rijdeij þ sijkdgijk; ð8:70Þ

from which there follow the constitutive equations

rij ¼ @W
@eij

; sijk ¼ @W
@gijk

; ð8:71Þ

where rij is the second-order symmetric stress and sijk is a third-order stress (or
hyperstress). Note that the notion of applied couples and double forces will neces-
sary appear at boundaries in addition to usual traction forces. For an incompressible
displacement field (a current hypothesis in elasto-plasticity), only the “deviatoric”
parts r0ij and s

0
ijk are retained. The associated space of relevant generalized stresses of

vector R ¼ r0; s0ð Þ is therefore a five +eighteen = 23-dimensional space, so is the

space of dual stresses E ¼ e0; g0
� �

. This allows for the formulation of a generalized

flow rule in the R-space and a variational inequality formulation in the Drucker-Hill
form (cf. Fleck and Hutchinson 1997), a normality law, as

rij � r�ij
� �

_epij þ sijk � s�ijk
� �

_gpijk � 0; ð8:72Þ

where the stress state (σ, τ) is associated with the plastic strain rate _e; _g
� �

and

(σ*, τ*) is any other stress state on or within the yield surface. Equation (8.72) is a
direct generalization of the Hill- Mandel maximal-dissipation principle. Because of
the presence of the third-order stress in the yield criterion, a length scale is involved
and is characteristic of the strain-gradient theory.

A finite-strain theory has been expanded with a generalization of Nye’s relation
in the self-explaining form a � rR � Fp, where rR denotes a referential gradient.
The corresponding theory rapidly acquires a high degree of complexity with which
we shall not deal.
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8.8 Conclusion

From the above conspectus of plasticity we can distinguish three periods or
essential steps. Considering that really serious things started with the work of
Tresca (hence the chosen date of 1864 as the beginning of the perused period), we
first observe a period of initiation with the works of a few remarkable individuals,
namely, Tresca, Saint-Venant, Lévy, Huber, von Mises, Prandtl, Reuss, and
Bingham. Whatever will be studied in the future will base on their work with
unavoidable reference to their names, proposed criteria of yield, basic equations and
singular behaviours for the sake of comparison, generalization or simple argued
explanation. That is why all mechanical engineers and mechanician scientists know
or should know their name and the related relatively simple equations (criteria,
evolution).

With the second period started just before the Second World War and extending
until circa 1970, we have a period of consolidation with the promotion of exten-
sions and formulation of principles intimately connected with irreversible ther-
modynamics. The names of Nadai, Hencky, Prager, Ilyushin, Kachanov, Hill,
Drucker, Westergaard, Freudenthal, Koiter, Odqvist, Budiansky, and Naghdi are
principally associated with these developments that started to exploit serious
arguments of thermodynamics brought in by Bridgman, Eckart, Kestin and others
(e.g., Rice, Mandel, Ziegler). Practically in parallel we witness a conjunction
between mechanical engineering and some aspects of materials science illustrated
by the initial work of Taylor on dislocations and plasticity, and the original work of
Frenkel and Kontorova (1938). This really kindled a serious study of crystal
plasticity with works by, e.g., Schmid, Nye, Bilby, Kröner, Mandel, Havner, etc.
This recently expanded along some unexpected lines such as gradient plasticity.

The third period, roughly started in 1970, uses more abstract mathematical tools
—e.g., convex analysis—and more inclusive geometrical concepts while simulta-
neously allowing for a true 3D computational plasticity. On the one hand, this
allowed the proof of powerful theorems of uniqueness and existence, and the
proposal of efficient schemes of computation, including in large strains. On the
other hand, a clarification of the theory of finite deformations with adapted geo-
metrical notions also contributed to this immense progress in these computations
required by industrial applications. We have gone a long way since the pioneers of
the 1960s such as Lippmann and Mahrenholtz (1967).

Born with rather crude experiments missing highly precise measuring devices
but also with the remarkable insight of Saint-Venant, Huber and Mises, plasticity
evolved to reach an insuperable degree of sophistication in both physical and
mathematical aspects, and a highly efficient predictive power in computation. It
succeeded to resolve the initial conflict between science and engineering, and
between microscopic and macroscopic levels of understanding. This is now
materialized in a corresponding gathering of a multitude of dislocation motions and
continuum theory in a unified multi-scale approach. Most of the basic aspects of
this evolution have been evoked perhaps in an unsophisticated, too much
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simplified, manner, or not cultivated to the degree expected by specialists. Thus the
emphasis was placed on rate-independent plasticity, while rate effects are also of
great interest in some materials. Only some of viscoplasticity was mentioned along
this line. Also a rather strict framework of convexity and normality laws—so-called
associated plasticity—was privileged although non-associated flow rules—for
which yield function and plastic potential do not coincide and normality is no
longer the rule—are feasible in some cases such as in Zirconium or rock-like
materials (cf. Mroz 1963; Maier and Hueckels 1979—see Figs. 4 and 5 by these
authors; Ziegler and Wehrli 1987, pp. 216–218; Houlsby and Puzin 2002, 2006).
This shortcoming is only due to our blinkered vision and our lack of deeper
knowledge in that direction, with an inevitable bias related to the period of our
formative years (1960s–1970s) and professionally active career (1970s–2000).

8.9 Note on the Bibliography

The “classic” books on plasticity are definitely those of the period 1930–1960, by
Nadai (1930, 1950), Sokolowsky (1946), Hill (1950), Ilyushin (1948), Zener
(1948), Westergaard (1952), Prager (1955, 1961), Prager and Hodge (1954), and
Kachanov (1956, 1960, 1974). They may seem outdated to most readers in the
2010s, but their convincing power and ready style are unforgettable. This is also the
case of the synthetic encyclopaedia article of Freudenthal and Geiringer (1958) that
really gave a complete overview of the field as in the mid 1950s, and of Bell (1973)
for an incredible collection of experimental records since the beginning of con-
tinuum mechanics. Koiter (1960) gives the viewpoint of a true mechanician while
Bridgman (1952) presents interesting experimental observations by a grand
physicist. Thomas (1961) is much preoccupied by the propagation of discontinuity
waves in the tradition of Hadamard. Much more recently, among the many books
published for pedagogical purposes we single out the opus of Ziegler (1977) and the
brilliant exposition by Lubliner (1990). As a textbook oriented to students with an
inclination towards mathematics, Maugin (1992a) may be of interest. We do not list
books with an engineering bias with the exception of the efficacious books of
Mendelson (1968) and Chakrabarty (1987). Past reviews of some interest are those
of Osakada (2008) and Chaboche (2008). The International Journal of Plasticity
founded in 1985 by Akhtar Khan (Baltimore) and the associated series of inter-
national conferences organized by the same scientist provide a privileged forum for
research papers on plasticity in the last thirty years.
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Chapter 9
Fracture: To Crack or Not to Crack. That
Is the Question

If only I could break a leg, what a lot of scientific work I could
do Attributed to Thomas H. Huxley (1825–1895)

Abstract The expansion of the theory of fracture is one of the most exciting and
thought provoking intellectual construct in continuum mechanics. In a period of
almost a century, it required the combination of ingredients of differing nature:
acute experimental observations, clever reasoning both in elasticity and thermo-
dynamics, introduction of plasticity theory and of new notions related to the
material toughness, application of powerful theorems (e.g., Noether’s), develop-
ment of the theory of configurational forces, and expansion of appropriate
numerical strategies to deal with field singularities. In these adventures the most
acknowledged heroes certainly are Inglis, Griffith, Westergaard, Snedddon, Irwin,
Dugdale, Barenblatt, Wells, Eshelby, Cherepanov, Rice, and more recently, Freund,
Nishioka, Atluri, Bazant, and many less known characters. The story which became
“history” here is told with an emphasis on the most subtly inventive and landmark
contributions.

9.1 Introduction

Nowadays the term fracture is most often heard in medical media (e.g., the femoral
neck fracture among elderly patients, the hip fracture) or in politics (e.g., the social
fracture between different classes of a population, etc.). But here we indeed
understand this term as it was introduced in the strength (or resistance) of materials,

Caution. This is not a course on fracture (for which there exists a multitude of good books with
varied amount of engineering, physical or mathematical emphasis); neither does it intend to
peruse a complete history of the field. Only the most striking advances are reported in the period
covering the twentieth century. These may be considered as critical landmarks.
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signifying the ruin by separation into parts of an initially unique body—or one that
looked like this at the engineering scale of observation -, so that no more strength
can be transmitted between the parts. It looks quite natural now to view this
phenomenon as due to the irreversible propagation of defects such as cracks. But
this view is relatively new on the time scale of the history of mechanics even
though Leonardo da Vinci may have had some qualitative idea about the matter. In
truth, the first precise connection between crack extension and fracture seems to be
mathematically expressed in an original work by Inglis1 (1913)—cf. Fig. 9.1. With
this exemplary start we can say that fracture mechanics really exclusively belongs
in the twentieth-century development of continuum mechanics.

Fig. 9.1 Charles E. Inglis
(1875–1952)

1Charles Edward Inglis (1875–1952) was one of the most famous British civil engineers of the
early twentieth century. He noticeably expanded civil engineering at Cambridge where he was
professor and head of the Engineering Department. He was considered the greatest teacher of
engineering of his time (according to the obituary of Fellows of the Royal Society published in
1953). His main works deal with the construction and vibrations of bridges, although here we
emphasize his breakthrough contribution to the study of the effects of defects on the strength of
structural elements.
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9.2 The Birth of Fracture Theory: Inglis, Griffith

Inglis’ contribution to the Spring Meeting of the Fifty-fourth Session of the
Institution of Naval Architects in March 1913 was immediately acknowledged as a
much awaited breakthrough in the field as witnessed in the vivid discussion (in
pp. 231–241 of the Proceedings of the Meeting), that followed his presentation.
Indeed we have here one of the comparatively few attempts made to adapt the
mathematical theory of elasticity to the practical problems met in Naval
Architecture—as emphasized by one contributor to the discussion, L. Woollard
(p. 240). In his report, Inglis first recalls that “the destructive influence of a crack is
a matter of common knowledge, and is particularly pronounced in the case of brittle
non-ductile materials. This influence is turned to useful account in the process of
glass cutting”. He mentions ductile materials and the possible effect of plastic
yielding but his analysis is confined to elastic materials along the standards set forth
by A.E.H. Love in his celebrated treatise on elasticity. The main object of his paper
is the determination of the stresses around a hole in a plate, the hole being elliptic in
form; by making one axis of the ellipse very small the stresses due to the existence
of a fine crack can then be investigated. The best résumé of the scientific results of
Inglis’ investigation is given by P. Hopkinson (himself a famous mechanical
engineer) during the discussion: “Mr Inglis has shown us exactly how the stress at
the end of the crack varies with its curvature and size; he has shown that it is
proportional to the square root of the length of the crack and inversely proportional
to its radius of curvature” (within the limits of elasticity of the material). It was a
fortunate happening that a paper by E.G. Coker on the photo-elastic experiments on
the stress field at a crack tip was presented at the same session and favourably
concurred with Inglis’ theoretical considerations. Inglis’ analysis particularly
applied to the stress concentration produced by holes in decks of ships (rein-
forcement had to be implemented) as noticed by Timoshenko (1953, p. 435),
himself a contributor to this problem in the 1920s.

The next step on the path to a true “theory” of fracture was taken by Alan A.
Griffith2—cf. Fig. 9.2—who introduced the notion of energy in the possible for-
mulation of a criterion for fracture. This justifies that he be considered the “father of
the modern theory of fracture”. In his epoch-making paper published as (Griffith
1921) Griffith singlehandedly opened the way for a true mechanical and thermo-
dynamic theory of fracture in the elastic regime (so-called brittle fracture). Of
course he knew of Inglis’ work and exploited his solution, but he realized that “the
weakening of a material by a crack could be treated as an equilibrium problem in

2Alan A Griffith (1893–1963) was an English mechanical engineer. Educated (B. Eng., M. Eng.,
D. Eng.) at the school of Mechanical engineering of the University of Liverpool, he had a fruitful
career in aeronautics, culminating in the aerodynamic theory of turbine design that was to lead to
the successful technical development of the jet engine. He had some interaction with
(Sir) Geoffrey I. Taylor (membrane-soap film—analogy as a method of solving complex—e.g.,
torsion–elasticity problem) before producing his breakthrough contribution to fracture in 1920.
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which the reduction of strain elastic energy, when the crack extends, could be
equated to the increase in surface energy due to the increase in surface area at the
crack” (words of G.I. Taylor reported by Gilman 1998). Indeed, the beauty of
Griffith’s theory stems from the fact that “it uses the elegance of a thermodynamic
argument to deal with the singularity that appears at the tip of a crack in linear
elasticity” (Taylor’s words). Technically, the contents of Griffith’s paper can be
summarized thus (cf. Timoshenko 1953, pp. 358–360; and Roylance 2001). The
value of the critical crack length can be found by setting the derivative of the total
involved energy to zero. The usual strain energy per unit volume—in fact unit
thickness of the specimen—(in a linear elastic material and one-dimensional set-
ting) is given by U ¼ Ee2=2 ¼ r2=2E where σ is the stress and E is Young’s
modulus. But during extension of the crack of length a, it is observed that a region
of material adjacent to the free surfaces of the crack is unloaded and its strain is
released. This region is essentially made of two triangular regions near the crack
flanks of width a and height βa. Parameter β is chosen so as to agree with Inglis’
solution (in plane stress loading this gives b ¼ p). Accordingly, the total strain
energy released is given by the strain energy per unit volume times the volume in
both triangular regions, that is (in our notation, not Griffith’s):

U ¼ � r2

2E

� �
� 2� pa � a

2

� �
¼ � pa2r2

2E
: ð9:1Þ

Fig. 9.2 Alan A. Griffith
(1893–1963)
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In forming the crack, bonds must be broken and the corresponding energy will be
absorbed by the material. With γ the surface energy (in Joule/meter2) and
accounting for the two faces of the crack, this provides (still per unit depth in the
specimen) the involved surface energy as S ¼ 2ca. The vanishing of the derivative
of Uþ S thus yields the critical stress as

rf ¼ 2Ec=pað Þ1=2 ð9:2Þ

Experiments show that the product of the square root of the flaw length a and the
stress at fracture rf was nearly constant, i.e.,

rf
ffiffiffi
a

p � C: ð9:3Þ

Comparison of (9.2) and (9.3) leads to the remarkable result of Griffith:

C ¼ 2Ec=pð Þ1=2: ð9:4Þ

With E ¼ 62GPa and c ¼ 1 J/m2 this gives excellent agreement of Griffith’s pre-
dicted fracture stress with experimental results for glass, a notably brittle material.
Griffith’s theory was largely unrecognized before the Second World War, as it
could not deal with the most interesting industrial case of ductile materials (e.g.,
metals)—in both ship building and aeronautic industries—where plasticity must
play a decisive role. Nonetheless, both Inglis’ and Griffith’s works decidedly
exhibit the importance of a detailed study of cracks in elasticity or more complex
mechanical behaviour.

9.3 The Analysis of the Stress Field at Cracks

As a somewhat distraction from our main argument we must also report on essential
developments in the mathematical analysis of the stress field in the neighbourhood
of a crack tip. Two works are of utmost importance in this context, both relying on
the mathematical exploitation of complex variables. One is the formidable work of
Westergaard3 (1939). In this masterpiece this author exploits the complex-variable
representation for the mechanical fields of strains and stresses in plane problems of
the elasticity of isotropic bodies introduced by G.V. Kolossov in 1909 and

3Harald M. Westergaard (1888–1950) was a Danish structural engineer who obtained his PhD
(1916) at the University of Illinois in Urbana after some training in Germany, then taught at this
university and moved to Harvard as a professor of civil engineering in 1936. His main scientific
interests were in the resistance of ductile materials to combined stresses, stability of elastic
structures, strength of concrete structures and highways, and bridges during earthquakes, etc. In
1939 he published his celebrated paper on cracks.
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developed to a large extent by N.I. Muskhelisvili (as illustrated in detail by this
author in Muskhelishvili 1953). The problem solved is the evaluation of the
behaviour of mechanical fields in the vicinity of the tip of a straight crack in an
infinite plane subjected to the action of a normal symmetric load. This is achieved
for the three standard modes of cracking (so-called mode I: opening mode, mode II:
shear plane mode (sliding), and mode III: shear antiplane mode; cf. Fig. 9.3) and
provides for each mode a typical behaviour in the characteristic form

r � Kffiffiffiffiffiffiffiffi
2pr

p f hð Þ; ð9:5Þ

where r is the radial distance from the crack tip, f hð Þ is a nondimensional function
of the angle made by this radius vector with the direction of extension of the crack,
and K is a numerical factor commonly called the stress intensity factor that differs

from one mode of cracking to another4 (see Fig. 9.4). Factor 2prð Þ�1=2 in
expression (9.5) shows the theoretical singular nature of the stress distribution as we
approach the crack tip. In practice one as to evaluate K for each case of crack,
structure and load geometry. Quantity K may be used in design and analysis by
arguing that the material can withstand crack tip stresses up to a critical value of K,
noted KC, beyond which the crack propagates rapidly without control. This pro-
vides a measure of the material toughness. In turn, this allows one to relate the
fracture stress rf and K by the simple formula

rf ¼ KC

a
ffiffiffiffiffiffi
pa

p ; ð9:6Þ

for a crack of length a with a factor α equal to one for an edge crack and generally
of the order of unity in other situations. This viewpoint was to be related to the
energy approach by Irwin (Sect. 9.4 below).

Fig. 9.3 From left to right Mode I, II, III (From Maugin 1992, Fig. 7.4, p. 138)

4We have given the detail of this analysis in Maugin (1992, Appendix 4).
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The second work of importance in crack studies was produced by Sneddon
(1946)5 and showed the influence of war related research on the expansion of some
theoretical studies. As a matter of fact, while being a Junior Scientific Officer at the
British Ministry of Supply in the period 1942–1945 during which he spent some
time at the Cavendish Laboratory, he was asked by (Sir) Nevill F. Mott
(1905–1996; Nobel Prize in Physics in 1977), to examine the determination of the
stress field in a infinite body containing a disc-shaped crack. In Mott’s mind this
was related to the mechanical resistance of steel tank armour plates where bubbles
of gas flattened in the roll process transformed into disc-shaped cracks. This may be
viewed as an expansion of Larmor’s (1892) ideas. Sneddon solved the full
three-dimensional problem in elasticity involving a crack by introducing a system
of dual integral equations, a mathematical technique in which he became a supreme
master. From here on the role of crack-tip solution and plasticity will take over the
field of fracture in metals.

9.4 Irwin and Energy-Release Rate

Since Griffith’s solution applied only to brittle materials while metals were taking
much importance in various constructions (ship-building, aeronautics), it became
necessary to involve plasticity and dissipation of some kind ahead of the crack tip in
the examination of the fracture phenomenon. This forward step was taken in a

Fig. 9.4 Crack tip ðr; hÞ parametrization (From Maugin 1993, Fig. 7.1, p. 148)

5Ian N. Sneddon (1919–2000) was a Scottish applied mathematician, educated in Glasgow and
Cambridge. He was a professor in Keele and then Glasgow (1956–1984). He is famous as an
insuperable master of integral transforms in the solution of mixed boundary-value problems in
potential theory. Among others, he mentored Anthony M. Spencer and Peter Chadwick.
A charming personality, he had broad scientific interests, even producing a pioneering book on
wave mechanics in 1948 with N.F. Mott.
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group dealing with ductile materials and working under Irwin6 at the US Naval
Research Laboratory (NRL) during World War II. While the phenomenon of
extension of a plastic zone was a recognized one for a long time, Irving’s group
realized that if elastic strain energy is released as a crack grows, dissipated energy
includes both surface energy (as already accounted for by Griffith) and plastic
dissipation. While elastic energy provides the driving force for fracture, dissipated
energy provides the thermodynamic resistance to fracture. That is, an amount Gp of
plastic dissipation (and perhaps dissipation from other sources) should be added to
the surface energy 2γ. Plastic dissipation will largely dominates surface energy
(perhaps a few hundreds times more)—cf. Irwin (1948, 1957), Irwin and Kies
(1952). With this consideration, Griffith’s criterion (9.4) is replaced by the new
criterion

C :¼ rf
ffiffiffi
a

p ¼ Eð2cþGp

p

� �1=2

; ð9:7Þ

which becomes significant for ductile materials with Gp of the order of 1000 J/m2.
Another fruitful notion introduced by Irwin’s group (Irwin and Kies 1952, 1954)

is that of energy release rate (ERR). This is not a rate per unit time, but the rate per
unit lengthening of a crack. This can be evaluated as the change of total elastic
energy of the system per unit area of crack growth. That is,

G :¼ @U
@a

� �
P
¼ � @U

@a

� �
u
; ð9:8Þ

where subscripts P and u mean with load P or displacement u kept fixed in the
evaluation of the derivatives. For instance, for mode I of cracking (opening mode)
Irwin found that (this is Irwin famous relation)

G ¼ GI ¼ K2
I =E or 1� m2

	 

K2
I =E; ð9:9Þ

whether the crack problem is treated in plane stress or in plane strain. Here ν is
Poisson’s ratio and KI is the stress intensity factor in mode I. Equations (9.9) show
that Irwin’s criterion and Griffith’s one are essentially identical. Irwin also found the
general expression for a planar crack in linear elasticity for the most general loading
conditions. Then the energy-release rate is expressed in terms of the three stress
intensity factors. On assuming that the size and shape of the energy-dissipation
zone remains approximately constant during brittle fracture, he suggested that the
energy needed to create a unit fracture surface is a constant that depends only on the

6George R. Irwin (1907–1998) was an American mechanical engineer initially educated in
humanities and physics who had a long career at the US Naval Research Laboratory (NRL), from
1937 to 1967, and then taught at Lehigh University and next at the University of Maryland. His
innovative work on fracture was kindled by his interest in penetration problems in armoured plates
and damage to aircraft structures.
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material, and is thus a material property that may be called the fracture toughness.
Rather than this critical GIc, one nowadays uses the notion of critical stress intensity
factor, KIc already mentioned in Eq. (9.6). This is accepted as a defining property
within the frame of the linear elastic theory of fracture. With this notion we can
formulate the following criterion:

(i) If K\KC, there is no propagation, and we can symbolically write: _a ¼ 0;
(ii) If K ¼ KC, propagation is possible ð _a� 0Þ but we do not know whether it will

actually happen or not (so that _a ¼ 0 is not excluded).

Note that KC is difficult to determine experimentally in modes II and III, while it is
easily determined in mode I (as done in Irwin’s group).

The state of the art in fracture studies as of the late 1940s was reported by
Orowan (1948). As a complement, it is worth mentioning a fracture criterion
proposed by Leguillon (2002). This fracture onset criterion uses two parameters.
Indeed, it seems that both energy (based on G) and strength (based on σ) criteria are
necessary conditions for fracture, but neither one nor the other are sufficient. But the
consistency between the two conditions provides a general form of criterion for
crack nucleation involving a length, the energy criterion providing a lower bound of
admissible length crack while the stress criterion provides an upper bound. The
analytical justification of this criterion exploits the knowledge of the singular stress
field around the notch tip—with an open angle between zero (case of a crack) to π
(case of a straight edge)—obtained by asymptotic reasoning. The relevance and
possible criticism of this mixed criterion are commented by Gross and Seelig (2001,
but p. 126 on in the English translation of 2011).

One of the most recent advances dealing essentially with Griffith’s approach is
represented by an original mathematically founded variational approach to fracture
as developed at length by Bourdin et al. (2008). This comprehensive paper is
extremely mathematical (e.g., exploiting the full formalism of functional spaces,
convex analysis, and the notion of Hausdorff measure of a set). It finds its root in
the pioneering work of Francfort and Marigo (1998) but it matter-of-factly incor-
porates eighty years of mathematical experience since Griffith’s work. Local or
even global minimality is the mathematical argument that replaces the standard
stationarity. The approach is first applied to “Griffith-like” energies, but it is also
shown how to account for Barenblatt’s idea of a cohesive zone (see next Section for
this notion). The pure Griffith case is clear-cut form the point of view of irre-
versibility. The case including a “cohesive energy is more challenging because
there is no obvious threshold for irreversibility” (the authors’ words, 2008, p. 9).
Another interesting result is the possible prevision of the path of the crack but
without uniqueness result. A few numerical examples with multi-cracking and the
appearance of multiple cracks illuminate this original powerful approach.

Globally, therefore, Irwin’s group improved on both linear elastic fracture and
the plastic analysis. Further progress would be achieved by paying more attention to
the plasticized region about the crack tip in extension. For this we have to turn to
works by Wells, Dugdale and Barenblatt.
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9.5 Accounting for the Plastic Zone

It is Dugdale7 (1960) who stimulated the development of so-called cohesion models
of cracking by his introduction of a narrow yielding zone on the continuation of a
through crack in a metal sheet. This matter is discussed in many books on fracture
(e.g., Anderson 1995). The plastic zone introduced at a crack tip may have a size
that is of the order of the crack size, and both size and shape of this zone can evolve
with the increase of the applied load and the lengthening of the crack. This implies
that a rather general theory of crack growth should account for local conditions for
the initial crack growth, including nucleation, growth, coalescence of voids or
decohesion at a crack tip, and a global energy balance criterion should be formu-
lated for further crack growth and instable fracture.

Another well known contributor to this problem was Barenblatt8 (1962; cf.
Fig. 9.5) who accepts that ahead of the crack front—expanding in mode I—there
exits a zone in which the “atoms” can be pushed aside at a variable distance δ and
that this separation leads to cohesive stresses which are opposed to a clear sepa-
ration. These cohesive forces vary from zero—where d ¼ 0-as a function of δ, rðdÞ,
according to a law that is characteristic of the material (cf. Fig. 9.6). It is assumed
that the zone of loss of cohesion is independent of the change and remains equal to
itself, during the crack’s extension. Willis (1967) and Rice (1968) have shown the
equivalence of the Dugdale-Barenblatt approach with Griffith’s results; in partic-
ular, one can write (compare Eq. (9.8))

G ¼ � @U
@a

¼
Zdt
0

r dð Þdd: ð9:10Þ

This section would not be complete without mention of an interesting crack
parameter known as the Crack Tip Opening Displacement (CTOD). This notion
was introduced by Wells (1961, 1963) in his studies of structural steels and can be
described thus. High toughness of steel sheets cannot be characterized by the
standard linear theory of fracture mechanics. Wells observed in his experiments that

7Donald Stephen Dugdale is a British mechanical engineer (PhD Bristol 1952 for his studies in the
field of plasticity and indentation hardness of metals under the supervision of J. Morrison and
Rodney Hill). He set up a research school at the University College of Swansea, South Wales
(UK). He then had a career in various institutions, including UK Government laboratories, the
Illinois Institute of Technology in Chicago, the University of Sheffield and at Trinidad at the
University of the West Indies and at the Sultanate of Oman. He is an acknowledged specialist of
fatigue, plasticity and cracks.
8Grigori I. Barenblatt (born 1927) is a Russian mechanician-applied mathematician who is most
famous for his works in the theory of fluid and gas flows in porous media, the mechanics of
non-classical deformable solids, turbulence, self-similarity and so-called intermediate asymptotics.
He obtained his doctoral degree in Moscow under the guidance of A.N. Kolmogorov. His long
fruitful career was spent in Moscow, Cambridge and Berkeley. He mentored, among others,
Genady P. Cherepanov, who became a master in crack studies.
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before fracture the walls of a crack get separated and the crack tip evolves from a
sharp shape to a rounded off form due to plastic deformation. This rounding is all
the more pronounced that the material is tougher. The CTOD is usually defined as
the displacement of the two parallel crack faces at the original crack tip with a
typical semicircle blunt of the crack at the originally sharp tip. Interest in this crack
parameter principally stems from its relatively easy measurement.

9.6 Invariant Integrals as Measures of Toughness

Although J. D Eshelby had paved the way in the exploitation of so-called
integral invariants by applying E. Noether’s invariance theorem in elasticity, it
is in the mid 1960s with Cherepanov9 (1967; cf. Fig. 9.7) in Russia and

Fig. 9.5 Grigori I. Barenblatt
(born 1927)

Fig. 9.6 Barenblatt’s
cohesive forces and
crack-face displacement at the
crack tip (From Maugin 1992,
Fig. 7.10, p. 155)

9Genady P. Cherepanov (born 1937) was probably the most brilliant student of G.I. Barenblatt. He
was the youngest ever DSc in Mechanics (1964) in the former Soviet Union. He is internationally
known for his seminal work in the theory of deformation and fracture of materials and structures
He can be considered one of the founders of configurational mechanics with the introduction of
invariant and path-independent integrals in fracture science. He immigrated to the USA in 1990.
He published a marvellous book (Cherepanov 1979).
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Rice10 (1968; cf. Fig. 9.8) in the USA that a new measure of toughness was
introduced in the form of a path integral around a crack tip. This was achieved in
the framework of a nonlinear elastic theory—precisely a monotonic deformation
theory of plasticity (no unloading!) under the now accepted name of the “J-integral”
with critical value at fracture denoted JIc. This new approach reduces to Griffith’s
theory in the pure linear elastic case, and it is readily shown that JIc can be
converted to the critical KIc introduced above in Sect. 9.4. The J-integral is
mathematically defined by the expression

J ¼
Z
C

Wdy� Ti
@ui
@x

ds

� �
; W ¼

Zeij

0

rijdeij; ð9:11Þ

whereW is the volume density of strain energy, Ti are the components of the traction
vector, at Γ, ds is an element of length along the path Γ, which path is arbitrary

Fig. 9.7 Genady
P. Cherepanov (born 1937)

10James R. Rice (born 1940) is one of the most brilliant engineering scientists of the second half of
the twentieth century. Not only did he contribute the celebrated J-integral but he also achieved
seminal works in other branches of theoretical mechanics, civil-environmental engineering,
materials physics, and geophysics. In particular we note his breakthrough works that dealt with the
structure of inelastic constitutive equations, microscopic mechanisms of cleavage and ductile or
creep rupture, localization into shear zones, with geophysical applications to landslides, fault
systems and earthquakes. Having obtained his PhD at Lehigh in 1964, he became a professor first
at Brown University and then at Harvard (since 1981).
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clockwise around the tip of the crack of which the two faces are free of load (x ¼ x1
and y ¼ x2 are Cartesian coordinates in the plane, x being along the crack length).
The scalar defined in (9.11) can be seen as the component along axis x, denoted with
index 1, of a vectorial quantity

Ji ¼
Z
C

Wni � n:r:
@u
@xi

� �
dC; ð9:12Þ

where n is the unit normal pointing to the outside of the domain encircled by Γ in
the counter clockwise direction (see Fig. 9.9).

In a thermodynamic approach J is the conjugate of the rate of increase of the
crack length so that the irreversible progress of the crack is characterized by the
dissipation (cf. Maugin 1992, pp. 144–147)

Fig. 9.8 James R. Rice (born
1940)

Fig. 9.9 Computation of the
J-integral
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U ¼ J _a� 0: ð9:13Þ

It can also be noted that (9.12) is none other than the integral

Ji ¼
Z
C

njbjidC; ð9:14Þ

where tensor of Cartesian components bji is defined by

bji :¼ Wdji � rjkuk;i: ð9:15Þ

This is called the (quasi-static) Eshelby stress tensor after Eshelby (1951). This
tensor—which is not symmetric—is involved in all considerations of material
inhomogeneity (cf. Maugin 1993, 2011) as initially introduced by Eshelby11 (1951;
cf. Fig. 9.10), a field singularity being a manifestation of some inhomogeneity.

Fig. 9.10 John D. Eshelby
(1916–1981)

11John (≪Jock≫) D. Eshelby (1916–1981) was a British physicist best known for his original work
on dislocation motion, the driving force on a material inhomogeneity and on a field singularity, the
continuum theory of lattice defects, and the celebrated “Eshelby” inclusion problem.He is considered
the father of, and the main contributor to, the theory of configurational forces. Educated in Bristol
(PhD 1949), he worked in Cambridge and taught in Sheffield as a reader and then as a professor
(1971–1981). Among his direct co-workers we note B.A. Bilby, C. Atkinson and A.N. Stroh.
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For completeness we note that the dual I-integral of the linear theory of fracture
was introduced by Bui (1973) who based his reasoning on the complementary
elastic energy. Other generalizations concern the fracture mechanics of materials
described by means of a microstructure such as in Cosserat or polar media
(cf. Atkinson and Leppington 1974; Maugin 1998b) or materials with gradients of
strains (cf. Maugin and Trimarco 1992).

9.7 The Realm of Configurational-Material Forces

Expressions (9.11) through (9.15) belong in what is now called the theory of
configurational or material forces. Originally (with Eshelby’s works of the 1950s)
this developed from an application, to non-dissipative systems, of the most famous
theorem of mathematical physics of the twentieth century, the invariance theorem
proved by the German mathematician Noether (1918). Without entering details (cf.
Maugin 1993, 1999, 2011), this theorem essentially says that with a
Lagrangian-Hamiltonian principle that delivers field equations of a physical theory
there is associated a system of conservation laws, each of the latter being generated
by a element of the invariance group of the theory. The energy conservation is such
a law that is generated by invariance under time translation in classical mechanics.
In the case of small-strain inhomogeneous elasticity, we have the following scheme
at all regular material points with equations in Cartesian tensor notation:

@

@t
q0 _uið Þ � @

@xj
rji ¼ 0; rji ¼ @

@eij
W epq; xk
	 
 ¼ rij; ð9:16Þ

@
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� �
¼ 0: ð9:21Þ

Here Eqs. (9.16) are the field equations with strain energy W and kinetic energy K,
per unit volume—with L the corresponding Lagrangian density -, Eqs. (9.17) and
(9.18) are the associated conservation laws of energy and material momentum
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(respectively, invariance under time translation and spatial translation in material
space), vector of components Pi is called thematerial or fieldmomentum (in contrast
with pi :¼ q0 _ui, the classical physical momentum), bji is the dynamical Eshelby
stress, and f inhi is the “material force of inhomogeneity” computed by taking the
explicit derivative of L with respect to space. Equation (9.21) is a so-called Noether
identity which shows how (9.17) can be deduced from the first of (9.16) for
non-vanishing displacement gradient. Integration of (9.18) in the plane over the
volume encircled by the Γ path of Sect. 9.6 will yield the expression of the J-integral
(9.14) for quasi-statics and in absence of distributed material inhomogeneities. The
interest of the identity (9.21) is that its shows by mimicking it how to deal with more
general cases that are not a priori deductible from a variational formulation (e.g.,
thermo-elasticity of conductors, visco-elasticity, plasticity, damage, etc.).

In this general framework, we note the elegant exact “analytical theory of brittle
fracture” formulated by Dascalu and Maugin (1993) which, in full dynamics and
finite deformations, yields compatible formulas for the driving force on the crack
and the associated energy-release rate in terms of the Lagrangian L and Hamiltonian
H densities—one being the Legendre transform of the other -, of the material
momentum and of the velocity of progress of the crack tip in the material.

9.8 Dynamic Fracture

Dynamic fracture is well documented in Freund (1990) who has been one of the
most active contributors to this field; see also the review of Nishioka (1998). By
dynamic fracture it must be understood the inclusion of inertial terms. This
important domain of fracture mechanics relates to fast fracture processes and impact
fracture problems where effects of the crack velocities play a significant role.
Episodes of growth initiation, acceleration, deceleration, arrest, etc., are all con-
cerned with it. Of necessity the question of generalizing the J-integral approach to
such a case is posed. Nishioka and Atluri12 (1983) have pioneered in this direction
of obtaining a path-independent “dynamic” J-integral. In the present framework,
this is arrived at by exploiting the dynamic equation of conservation of material
momentum (9.19). By integration of this Eq. (9.18) in the plane over the volume
VC � Ve encircled by the CþCe path of Sect. 9.6—where Γ is sufficiently far from

12Starting in the early 1980s Satya N. Atluri—originally from India, now at Irvine, California—
and Toshihisa Nishioka (Kobe, Japan) and their co-workers have been among the most productive
contributors to dynamic fracture and its computational aspects (cf. Nishihoka’s contribution in
Cherepanov 1998) and Atluri’s (1986) book. In the USA one must also emphasize the generous
contributions of Lambert B. Freund (Brown University) and Ares J. Rosakis (CALTECH)—in
particular, Freund’s landmark book of 1990. In the former Soviet Union we note the works of V.Z.
Parton and L.I. Slepyan, while in France H.D. Bui was the leading figure in the field.
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the crack tip and Ce is very close to the crack tip (see Fig. 9.11), this yields instead
of (9.14):

Ji ¼ lim
e!0

Z
CþCe

njbjidC�
Z

VC�Ve

_PidV

8<
:

9=
;: ð9:22Þ

with bji defined in (9.19). Equivalent forms involve the Hamiltonian H rather than
L, such as (cf. Nishioka 1998; pp. 589–590)

Ji ¼ lim
e!0
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þ
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dV
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;: ð9:23Þ

Both forms (9.21) and (9.22) are obtained for fixed far-field paths.
Bui13 (1977b)—see Fig. 9.11—had given before a path-independent that moves

with the crack tip, i.e., what we would get by integrating (9.18) over Γ encircling

Fig. 9.11 Huy Duong Bui
(1937–2013)

13Huy Duong Bui (1937–2013) was a French engineer of Vietnamese origin. Having graduaded
from the prestigious Ecole Polytechique and the School of Mines in Paris and mentored by Jean
Mandel, he rapidly became a highly regarded specialist of fracture mechanics, with a special taste
for invariance properties. He worked at the French Electricity National Company (EdF) and the
Laboratory of Solid Mechanics (LMS) of the Ecole Polytechnique developing many aspects of
fracture theory in relation to metal structures and the construction of atomic power plants. His
book of 1977 was a landmark in the field.
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the volume VC about the crack tip and moving with it, that is (cf. Maugin 1993,
pp. 167–169):

J1 ¼
Z

CðmovingÞ

�Ln1 � nkrkpup;1 þ vCP1n1
	 


dC� d
dt

Z
VCðmovingÞ

P1dV ; ð9:24Þ

where vC is the magnitude of the crack-tip velocity. Clearly this expression (9.24) is
the most natural and direct dynamic generalization of the 1-component of (9.14),
but the computation to evaluate an integral over a path that moves with the crack tip
may be difficult unless one employs a moving-mesh procedure. Much more on
dynamic fracture mechanics can be found in Freund (1990) and the many works
devoted to this specialized field in the last twenty years and usually reported at
sessions of the periodic International Congress of Fracture, a very successful series
of symposia founded in 1965 by the Japanese scientist Takeo Yokobori (born 1917)
—cf. the general view of this author on the physical mechanisms involved in the
mechanics of fracture in Cherepanov (1998, pp. 698–708). Anyway, various criteria
of fracture have been proposed for elastodynamic fracture in which toughness may
be a function of the time evolutions _a; €a; ::ð Þ of the crack length. In particular, the
dynamic J-integral may be used as a possible critical parameter (cf. Nishioka 1998,
p. 588). Another prominent contributor to the dynamics of fracture was the Swedish
scientist Bertram Broberg (cf. Broberg 1999). In Russia, Parton (cf. Parton and
Boriskovsky 2002) published an interesting book on the subject.

9.9 Extensions and More Recent Developments

9.9.1 Electro-Magneto-Elastic Generalizations

It was not long before some of the above results were generalized to the case of
piezo-electricity, yielding, for instance, the following “piezo-electric” J-integral in
quasi-electro-elastostatics (Suo et al. 1992; but this was not the first obtaining of
this form)

J ¼
Z
C

Wn1 � n � r � u;1 � n � Du;1

	 

dC; ð9:25Þ

where D is the electric displacement vector and φ is the electrostatic potential. Here
W is jointly quadratic in the deformation and the electric field is such that
E ¼ �ru. However, more exact results in the nonlinear linear framework had
been given before by Pak and Herrmann (1986a, b), with an expression in the
reference configuration such as
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where TE and TF are “elastic” and “electric-field “contributions to the first
Piola-Kirchhoff stress of finite-strain continuum mechanics and D̂ is the material
electric displacement. Another approach was proposed by Maugin and Epstein
(1991) on the basis of their theory of material forces. This electro-elastic case
applies particularly to brittle electro-ceramics. A pioneering work on cracks in
piezoelectricity was published by Parton (1976). The case of soft magnetic and
paramagnetic bodies was similarly formulated by Sabir and Maugin (1996) and the
much more complicated case of elastic ferromagnets (exhibiting a magnetic-spin
internal degree of freedom) was settled by Fomethe and Maugin (1998).

9.9.2 The Consideration of Generalized Functions

The natural mathematical language for correctly dealing with singular fields in a
continuum is the theory of generalized functions or distributions (in the sense of the
French mathematician L. Schwartz) such as Dirac’s delta function. However, while
the theory is more than seventy years old, very few applications have been given in
continuum mechanics. First applications to the theory of running cracks were in fact
given by H.D. Bui and his direct co-workers (e.g., Bui et al. 1987). But a true
exposition with applications to dislocations, cracks, and other defects was belatedly
expanded only by Dascalu and Maugin (1994) and Maugin (1998a). In this last
work the original field equations (e.g., balance of linear momentum and energy) are
expressed in terms of distributions so that they automatically include terms related
to singular points and surfaces. In this type of approach the energy is the sum of the
potential energy of the (regular) defective body and of the energy associated with
the extension domain of the defects—see also Maugin (2011), Chap. 8, pp. 220–
226 and 234–238. As an example of such “distributional” conservation law we can
cite the following conservation law of energy for a steady progressing straight
crack:

Dt W þFcrH l� x1ð Þ � d x2ð Þð Þ ¼ Div T � vð ÞþT
d � vd @Bð Þ; ð9:27Þ

where operators Dt and Div are to be understood in the sense of distribution theory.
H l� x1ð Þ is the Heaviside function of the interval [0, l], d x2ð Þ is a Dirac function,
and the dot in Eqs. (9.27) denotes the tensor product of distributions. Fcr is the
critical value of the driving force (J-integral in the Griffith’s vision where F ¼ Fcr

at fracture) corresponding to a dissipation U ¼ G� ¼ cF where c is the steady
evolution velocity of the crack tip along axis x1. The quantity
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WD :¼ FcrH l� x1ð Þ � d x2ð Þ ð9:28Þ

may be called the ≪energy of the crack≫. With F having reached the fixed value
Fcr and evaluating the time derivative of the Heaviside function, the left-hand side
of (9.27) is none other than

DtW þG �d x1 ¼ l; x2 ¼ 0ð Þ; ð9:29Þ

where G* is the localized energy-release rate. Equation (9.27) shows, as announced,
that the material-plus-defect system is a conservative one. Moreover, it automati-
cally accounts for the boundary data in stress at the boundary @B. This whole
interpretation may have been too mathematical for most engineering scientists
interested in fracture.

9.9.3 Computational Mechanics of Material Forces

Section 9.7 already emphasized the close relationship between fracture mechanics
and the theory of material forces when dealing with path-independent integrals. But
there is more to this. In a short paper of far-insight Braun (1997) pointed out a fact
of deep computational interest that can be simply illustrated thus. For instance, the
theory of material forces leads to the simultaneous existence of two forms of the
equation of linear momentum or equilibrium, e.g., Eqs. (9.16) and (9.18). That is, in
quasi-statics and for materially homogenous elastic bodies,

@

@xj
rji ¼ 0 and

@

@xj
bji ¼ 0: ð9:30Þ

But fields rji and bji are not of the same degree in the elastic displacement gradient
(cf. the definition of bji), the field bji presenting potentially the same singularity as
the energy. Imagine that the first of (9.30) is solved quite exactly by using a
sufficiently well designed discretization grid in the FEM (finite-element method).
On evaluating from this solution the quantity in the left hand side of the second of
(9.30)—which should vanish in the absence of material inhomogeneities—we
might well obtain a non vanishing value, i.e., symbolically

@

@xj
bji

� �
computed

¼ f compi 6¼ 0: ð9:31Þ

The minimization of the field of spurious material forces fcomp will cause a coor-
dinated displacement of the initial computational points. This can be achieved in
several iterative steps. This constitutes the essence of the creative remark made by
Braun (1997) in his insightful paper. This was followed by an implementation in the
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evolution of cracks in inhomogeneous materials by Müller and Maugin (2002) and
many other papers by Dietmar Gross and his co-workers in Darmstadt and Paul
Steinmann and his co-workers in Kaiserslautern (e.g., Steinmann et al. 2001) and
other people in different countries. Per force, this has become a very technical
matter. Müller and Maugin (2002) exhibit the change of direction of the progressing
crack in a materially inhomogeneous elastic bodies (with localized soft and hard
inclusions ahead of the crack), showing how the crack can be attracted or repelled
by these inclusions depending on the relative elasticity of the inclusions compared
to that of the ambient material.

Here we must mention some of the numerous works devoted to the study of the
branching of cracks, obviously a problem of high importance but unfortunately
accompanied by a high technicality in analysis. Such works are exemplified by
Amestoy et al. (1979) and Amestoy and Leblond (1992) [see also Leblond 2003,
Sects. 4.2 and 6.3; Leblond and Frelat 2000]. Along the same analytical difficulties,
we note the treatment of the stability and perturbation in the crack front by Leblond
and his co-workers in the years 2000–2015.

Simultaneously, with the deduction of the conservation (or rather,
non-conservation) of material momentum in the presence of dissipative effects such
as heat conduction and plasticity, the world of material forces—exposed by
Kienzler and Herrmann (2000) with applications to the strength of materials—
expanded considerably and it became possible to envisage numerical schemes
capable of treating these more complex cases, with application to the propagation of
cracks and the development of irreversible fracture. The notion of material forces
due to heat conduction was introduced by Epstein and Maugin (1995)—also Bui
(1977a, b) in small strains—while that of material force due to the presence of an
internal variable of state in the free energy density was introduced by the writer in
the early 2000s and formalized, e.g., in Maugin (2011, Chaps. 5 and 6). Typically,
in quasi-statics, Eq. (9.18) is replaced by

@

@xj
bji þ f inhi þ f thi þ f intri ¼ 0; ð9:32Þ

wherein

bji ¼ Wdji � rjkuk;i; W ¼ W eji; h; a; x
	 


; ð9:33Þ

rji ¼ @W
@eji

; f inhi ¼ � @W
@xi

����
expl

; f thi ¼ S
@h
@xi

; f intri ¼ A
@a
@xi

; ð9:34Þ

and

S ¼ � @W
@h

; A ¼ � @W
@a

: ð9:35Þ
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The last two quantities are the entropy density and the thermodynamic force
associated with the internal variable α. In elasto-plasticity α may be the plastic
strain epij and a hardening parameter j. Thus (9.32) yields the local equilibrium
equation at regular points in material space as

@

@xj
bji ¼ @W

@xi

����
expl

�S
@h
@xi

þ rpq
@eppq
@xi

þ q
@j
@xi

; q ¼ � @W
@j

: ð9:36Þ

Here W ¼ W eeij ¼ eij � epij; h; e
p
ij; j; xi

� �
where the strain tensor has an additive

decomposition in elastic and plastic parts. This is easily generalized to the case of
large strains (cf. Näser et al. 2007) where the total deformation gradient admits a
multiplicative decomposition. The numerical exploitation of Eq. (9.36) for cracks
extending with a plastic process zone ahead is shown by Näser et al. (2007), and
case studies of crack propagation—including the evolution in the path of cracking
—are given in the ANSYS (2015) software, thus demonstrating the applicative
power of the method of configurational/material forces, a most interesting method
in fracture mechanical investigations.

9.9.4 Peridynamics

The word “peridynamics” is a neologism created from the Greek word “peri”
meaning “the surrounding” and “dynamics” that needs no explanation. It in fact is a
special version of the nonlocal theory of continua. As such, it will replace the usual
partial differential equations by integro-differential equations. In truth, it essentially
provides a bridge between standard local continuum models and nonlocal atomistic
models. It is an extension of classical continuum mechanics suitable for modelling
discontinuous phenomena such as discontinuous displacement. Fracture indeed is
the most frequent field of application of this new technique which attempts at
modelling continuous media, discrete particles, and defects within the same set of
equations (cf. Ha and Boberu 2011). The main idea is to avoid the difficulty
presented by the existence of field singularities such as happens in the study of
fracture for which the partial differential equations of classical mechanics are not
well equipped. It directly provides an efficient numerical method to deal with these
cases. The corresponding material model includes an explicit length scale. The early
developments of this approach are principally due to a small group of authors
around Silling (2000)—for greater detail see the review by Silling and Lehoucq
(2010).
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9.9.5 Size Effects

Size effects are of fundamental importance in fracture. This has been a recurring
subject of study in works by Zdenek P. Bazant14 (e.g., Bazant 2002; Bazant and
Planas 1998; see Fig. 9.12) at Northwestern University, Alberto Carpinteri in
Torino, and others, both in mechanical/civil engineering and applied physics. Size
effects may cause the nominal strength to depend on structure size, e.g., through
boundary layer effects, diffusion phenomena, statistical size effects,
fracture-mechanics size effects and fractal nature of crack surfaces. Size effects can
be defined by comparison of geometrically similar structures of different sizes
(Bazant). Linear elastic fracture mechanics exhibits a rather strong size effect.
Another size effect is due to ductility (cf. Bazant and Planas 1998). A rigorous
approach to this matter should involve an asymptotic analysis of some kind with a
typical scaling (cf. Bazant 1997, 2002). Carpinteri’s numerous works (e.g.,
Carpinteri 1997) are characterized by a strong interest in the relationship between
crack propagation and catastrophe theory, applications of fractional calculus, sta-
bility of cracks and size effects. Of direct relation to this is the question of scaling

Fig. 9.12 Zdenek P. Bazant
(born 1937)

14Zdenek P. Bazant (born 1937) is an American engineer of Czech origin—with a long career at
Northwestern University, Evanston—who has been one of the most productive and prolific authors
in various fields of mechanical/civil engineering: creep of concrete, the stability of structures, scale
effects in mechanics, and a nonlocal theory of damage.
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properties of cracks [cf. the review of Bouchaud (1997) from the viewpoint of a
physicist interested in the morphology of fracture surfaces].

9.10 Summary and Conclusion

In the second half of the twentieth century fracture mechanics has expanded to
become one of the most exciting research domains in continuum mechanics. The
essential reason for this remarkable development is that fracture mechanics inti-
mately relates to a basic query of dramatic content: will a catastrophic issue such as
ruin happen to man-made or natural (in geophysics) structures in certain physical
situations? Fracture mechanics is a failure theory. In contrast with a deterioration
happening simultaneously through an entire zone or surface (like in distributed
damage or chemical decohesion—like zinc pest—in some alloys) the failure by
fracture is one that takes place by propagation throughout a structure, hence the
emphasis placed on the possible extension of cracks, the main object of interest in
the theory. Along this line of thought one naturally distinguishes between fracture
by sharp cracks that characterizes what happens in brittle or quasi-brittle elastic
bodies and the fracture in ductile elastic-plastic bodies. This is at first the privileged
application domain of so-called linear elastic fracture mechanics as exemplified by
the early works of Inglis and Griffith, and the introduction of the notion of energy-
release rate (Irwin) and of the J-integral by Cherepanov and Rice. This is appli-
cable insofar as the material is elastic except perhaps in a vanishingly small region
at the crack tip under the assumption of small scale yielding, with a stable or
unstable crack growth. The innovative works of Dugdale and Barenblatt were
useful in bringing in the picture the notion of cohesive zone. But elastic-plastic
fracture mechanics is the realistic theory that applies in the conditions of ductile
fracture that is accompanied by formation of a relatively large plastic zone at the
crack tip and fracture happens through stable crack growth. Crack tips are no longer
sharp, but are naturally rounded, and the notion of crack-tip-opening-displacement
(Wells) acquires its whole practical importance. In all we have emphasized the role
played by the rich notion of configurational or material forces, first illustrated by the
celebrated J-integral.

Dynamical fracture became important with the necessary consideration of fast
fracture processes and impact fracture problems (cf. contributions of Freund,
Nishioka, Atluri, Broberg, Bui, Morozov, Parton). Most recent developments inclu-
ded extension to the fracture of materials with coupled electro-magneto-mechanical
behaviours (in particular, piezo-electricity) and materials admitting a microstructure.
These generalizations were facilitated by the inclusive view brought in by material
forces and the canonical background that this notion naturally offers with an auto-
matically compatible formulation in time (energy considerations) and material space
(configurational forces). The latter also benefited to efficient numerical computation
methods while generalized functions present the best theoretical mathematical
background for such approaches. Scale effects are obviously of prevailing importance
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in all problems involving cracks (cf. Bazant), while new numerical schemes such as
meshless ones (cf. Belytschko and Chen 2013; Rao and Rahman 2000; Chen et al.
2006) and peridynamics are well adapted to fracture problems, indeed accounting for
these scale effects and the occurrence of field singularities.

Not being a specialist of numerics, I probably did not pay sufficient due attention
to numerical procedures useful in fracture studies. In addition to the already
mentioned recently developed techniques involving configurational forces, mesh-
less methods, and peridynamics, we should note the strong-discontinuity method
and Extended Finite Element Method (ex-FEM—cf. Belytschko and co-workers),
and the more classical FEM and Boundary Element Method (BEM) as particularly
illustrated in older books by Parton and Morozov (1978) and Owen (1983) and
Aliabadi and Rooke (1991), respectively, without mentioning what is handily
available in commercial software packs.

In conclusion, we note that the technical literature on fracture, both theoretical
and experimental, is overwhelming and this extremely high production rightly
reflects the tremendous activity in the field. The book by Anderson (1995) has
become an inevitable reference in English for engineers while that of Gross and
Seelig (2001) prevails on the German market with an excellent updated English
translation (2011). Other books of interest are those of Atluri (1986), Broberg
(1999), Freund (1990), Bui (1977a, b), Lawn (1993) and Leblond (2003), which put
accent on different aspects of the phenomenon. Innumerable technical papers are
nowadays published in specialized journals (such as the International Journal of
Fracture or Engineering Fracture Mechanics) but they also abound in general
journals of mechanical sciences and numerical computations. A generous—but
already obsolete—bibliography is given in Maugin (2011, Chap. 8).
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Chapter 10
Geometry and Continuum Mechanics:
An Essay

Abstract Geometry, analysis, and numerics all apply to a good modelling of
continua. Mathematics is the natural language of physics (Galileo Galilei), geom-
etry is the natural language of continuum mechanics. This essay emphasizes the
more or less elementary notions of differential geometry that are hidden in the bases
of classical continuum mechanics (Killing’s theorem, covariance, Riemannian
curvature). Then it examines the intervening of more modern and sophisticated
notions that have been introduced for pedagogical purpose in harmony with present
day mathematics and others of which the need appeared in the twentieth century
development of this science: connections, torsion, Cartan’s forms and spaces. The
influence of Einstein’s theory of gravitation on this increased geometrization and
the role played by the formulation of a geometric theory of evolving structural
rearrangements and defects such as dislocations and material inhomogeneities is of
prime importance. The main actors in this historical perspective appear to be Pfaff,
Lie, Riemann, Killing, Cartan, Kondo, Kröner, Bilby, and Noll.

10.1 Introduction

According to the mid nineteenth-century clichés listed in his Dictionary of “idées
reçues”, Gustave Flaubert recalls that “mechanics is the lowest part of mathemat-
ics”. Jean Dieudonné (one of the creators of the Bourbaki group in twentieth-
century mathematics), in a contribution in the Bulletin of the French Mathematical
Society, places “applied mathematics at the lowest level in the classification of
mathematics” (not a compliment in his snob’s mouth)—something which must
have pleased Jacques-Louis Lions! With his usual hubris Dieudonné claims that
“(pure) mathematics is the honour of the human species” (this was the title of his

Dedicated to Marcelo Epstein on the occasion of his 70th anniversary (December 03, 2014;
lecture delivered at the university of Calgary, Canada, at the Society of Natural Philosophy
Meeting, August 2015).
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“modest” autobiography). Then it seems salient to ask the following two questions:
(1) what about analysis and continuum mechanics? and (2) what about geometry
and continuum mechanics? It would be difficult to put continuum mechanics at the
bottom of analysis since both fertilized each other during the eighteenth and
nineteenth centuries and their parallel progress often is the result of research by the
same scientists, of necessity. This is markedly illustrated by the case of Joseph
Louis Lagrange and Augustin Louis Cauchy. Furthermore, the very concept of
“continuum” partakes of the same vision (and philology) as “continuity”, a basic
notion of analysis if we avoid pathological cases (i.e., singularities). For geometry
and continuum mechanics the matter must be pondered. This is the object of the
present essay in a somewhat historical perspective where the most creative char-
acters appear to be J.F. Pfaff, G.B. Riemann, W Killing, E. Cartan, K. Kondo,
E. Kröner, and W. Noll.

10.2 A Fundamental Theorem by Killing

The answer to the posed question (relationship between geometry and continuum
mechanics?) depends on the required degree of sophistication. With the early
developments of continuum mechanics in the eighteenth century (cf. Maugin 2013),
it is clear that R3 and E3 are completely identified as only three-dimensional
Euclidean space is considered for physical space, the arena of physical events, and
only Cartesian systems of coordinates are envisaged. But it was soon realized that
the practical solution of specific problems in two or three dimensions requires the
introduction of more adapted systems of coordinates, especially in problems of
elasticity. The “engineer-scientist” Gabriel Lamé in France and Italian analysts
(e.g., Enrico Betti and Eugenio Beltrami) were among those who elaborated such
adapted systems of coordinates (e.g., curvilinear coordinates for spherical shells;
cf. Lamé 1859), and wrote equations of elasticity in them. Underlying this useful
advance is the idea of some embryonic concept of “invariance”: the fact that
fundamentally physically identical problems can be solved in formally different
frameworks, with the choice of the most efficient system for a solution that takes
account of the shape of objects, the problem symmetries, and the type of boundary
conditions. This is not far from our modern notion of covariance, and the intro-
duction of tensor analysis. In fact, these works certainly kindled the development of
tensor analysis by the Italian mathematicians Gregorio Ricci (1853–1925) and
Tullio Levi-Civita (1873–1941) who introduced the spot-on expression of “absolute
differential calculus” (Ricci and Levi-Civita 1900). As a matter of fact, Ricci had
both Betti and Beltrami as professors. But we cannot ignore the strong influence
exerted by Georg F. Bernhard Riemann (1826–1866) and Elwin B. Christoffel
(1829–1900), where the former is responsible for a good introduction of curvature
in Rn (after the innovative works of Gauss on surfaces) and the latter for that of
covariant derivative (Christoffel 1869; also Ricci-Curbastro 1887). This matter of
“covariance” plays a critical role in the pedagogy of continuum mechanics: should
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we teach the basic equations of continuum mechanics in covariant form without
mention of a specific system of coordinates (or even the nature of the considered
space, not to speak of an arbitrary number of dimensions)? We do not dwell with
this here.1

At a less aerial view it is of interest to consider a basic question of continuum
mechanics, what will help us to connect the present discursive approach with group
theory. The inevitable scientist here is seldom cited by mechanicians: it is Wilhelm
Killing (1847–1923), a German mathematician who had a rather quiet life where
religion and mathematics intermixed harmoniously.2 His main mathematical con-
tributions are to the theories of Lie algebras, Lie groups and non-Euclidean geom-
etry. He in fact invented Lie algebras independently of Sophus Lie (1842–1899). It is
in these studies (see, e.g., Killing 1888) that he was led to the introduction of what
are now called Killing vector fields. Such fields on a Riemannian manifold preserve
the metric: we can say that they are infinitesimal generators of isometries. In modern
mathematical terms, a vector field X is a Killing field if the Lie derivative with
respect to X of the metric g vanishes. This is written as

LXg ¼ 0: ð10:1Þ

The connection with standard continuum mechanics is now clear, especially in
elasticity. In this context one needs to compare a generally deformed state of a
continuum with a standard provided by a rigid body. This will provide a rela-
tionship between continuum mechanics and Euler’s rigid-body mechanics. If
v denotes the usual velocity field of Euclidean components vi; i ¼ 1; 2; 3 in E3,
then the differential condition

@vi
@xj

þ @vj
@xi

¼ 0; ð10:2Þ

is the local condition for the continuum motion to be that of a rigid-body, as the
integral of (10.2) is none than the velocity field of a rigid-body motion written as

1However, our own experience is that teaching in a simple, perhaps naïve, format using a direct
intrinsic notation or a Cartesian tensor notation with indices of one kind only is most often
sufficient and rewarding in an introductory course to engineering students. It is not so bad for
students in mathematics either! For advanced courses, one must appeal to the precise language of
mathematics as a vehicle for formulating concepts and carrying out logical arguments. Modern
differential geometry then is the required tool. However, one then faces the insuperable problem to
ask from students a simultaneous excellent knowledge of modern geometry, continuum thermo-
dynamics, and, often, materials science and solid-state physics. Only a few versatile students will
possess this curriculum and a few researchers will dare to acquire this knowledge just by
themselves.
2Wilhelm Killing wrote a dissertation under the supervision of Karl Weierstrass and Ernst Kummer
at Berlin in 1872. He was for some time a professor and administrator at a Seminary College, but
finally became a professor of mathematics at the University of Münster (his Alma Mater) while he
and his wife entered the Third Order (i.e., as lay members) of Franciscans.
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vi x; tð Þ ¼ Xij tð Þxj þVi tð Þ; ð10:3Þ

with spatially uniform skew symmetric Xij and spatially uniform translational
velocity Vi, i.e.

Xij ¼ �Xji; Xij;k ¼ 0; Vi;k ¼ 0: ð10:4Þ

Equation (10.3) is the velocity field associated with a motion

x ¼ QðtÞ � x� þ d; ð10:5Þ

such that (T = transposed)

X ¼ _QQ
T ¼ �XT ; Q�1 ¼ QT ; detQ ¼ þ 1; ð10:6Þ

where Q is a spatially uniform orthogonal matrix and d is a spatially uniform
vector.3 That is, the motion is composed of a spatially uniform (but possibly
time-dependent) rotation and a spatially uniform translation. The contact with the
general Killing formula (10.1) is as follows. A true deformation of a deformable
continuum is described by a nonvanishing symmetric strain tensor that is none other
than a metric on the appropriate material manifold. The invariance in the distance
between two infinitesimally close material points (i.e., no deformation) is an
isometry with the condition (10.2), i.e.,

LvC ¼ D ¼ 0; ð10:7Þ

where C is a strain tensor and D, the symmetric part of the velocity gradient, is the
rate-of-strain tensor. Together with the notion of squared infinitesimal distance (the
famous ds2) and that of strain (metric), Eqs. (10.2) are in fact the most basic
relationships of continuum mechanics with geometry. In other words, Killing’s
theorem is the basis of elasticity. There is no need to emphasize the obvious group
structure of orthogonal transformations in E3, i.e., SO(3).

Three remarks are in order.
First of all we can now say that the importance of group theory for continuum

mechanics was in the air in the late 1890s as proved by the first incursion in this
domain in the groundbreaking book of Eugène and François (Cosserat and Cosserat
1909). In this original opus, perhaps inspired by works of Sophus Lie, the Cosserats
applied to a variational formulation an invariance which they call Euclidean action.
This is the first manifestation of an application of the invariance under rigid-body
displacements (10.5) written in infinitesimal form, and putting on equal footing
rotations and translations, and thus emphasizing the group form as well as the

3The various invariances considered in continuum mechanics that exploit orthogonal transfor-
mations are reviewed in Maugin (2014).
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justified consideration of a general deformation involving both the usual degree of
translation (the usual displacement) and an internal rotation (the future “Cosserat
continuum”). This paved the way for the construction of generalized continuum
mechanics. This move and its underlying notion of group of transformations were
applauded by Elie Cartan, a specialist of Lie groups.

The second remark pertains to this famous geometer, Elie Cartan (1869–1951).
It is said that Cartan’s (1894) dissertation was essentially a rigorous rewriting of
Killing’s paper. But Cartan, with a long active scientific life, was to go much farther
than Killing and Lie (see below).

Finally, because of personal interest in the matter, we cannot avoid mentioning
the problem of the definition of rigid-body motions in relativity. In the period
1908–1911, one had to envisage a mechanical behaviour more complex than pure
fluidity, for instance, elasticity, in the relativistic framework. As already pointed
out, elasticity is meaningful only if defined with respect to a standard (a comparison
medium) that is normally rigid-body behaviour. But here there is a caveat. The
inherent limitation to physical speeds imposed by relativity makes it inadmissible to
have a physical object of arbitrary large dimension in rigid-body rotation. Still this
was the subject of vivid discussions in the early 1910s. It was proposed by several
authors, in particular Born (1911) and Herglotz (1911), that the condition of
rigid-body motion be defined locally in Minkowski’s four dimensional space-time
by a; b ¼ 1; 2; 3; 4; x4timelikeð Þ

@aub þ @bua ¼ 0; ð10:8Þ

in a local spatial section of space-time. This is Killing’s theorem written in
covariant formalism, but applied to the essentially spatial part of the
four-dimensional Minkowskian metric. More precisely (compare to (10.1)):

LuP ¼ 0; Pab :¼ gab þ c�2uaub: ð10:9Þ

Here P is the so-called spatial projector, g is the space-time metric—of signature
þ ; þ ; þ ;�ð Þ-, and u is the fourth-velocity. The Born-Herglotz condition (10.8) is

a direct space-time generalization of the classical condition (10.2).
At this point, before proceeding to further complications, we must also mention

the Navier-Saint-Venant conditions of compatibility in small-strain elasticity. The
question is the following one: can we deduce in a unique manner the displacement
vector (three components) from the knowledge of a strain tensor (six components)?
There must exist a set of equations that express this condition; these are known as
the Navier-Saint Venant necessary and sufficient conditions usually written in
Cartesian tensor components as

eikr ejls eij;kl ¼ 0; ð10:10Þ

where eij denotes the strain and eikr stands for the alternation symbol. Another
intrinsic and suggestive writing of (10.10) is
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r� r� eð Þ ¼ 0; ð10:11Þ

This short hand notation is written in analogy with the condition r� A ¼ 0 for
the existence of a potential φ for the vector field A so that A ¼ ru. The writing
(10.11) is probably due to Kröner (1955)—see more herein after. Equation (10.10)
is deduced through some manipulations in textbooks on elasticity. But the geo-
metrical meaning of this equation is much deeper: it means that the material
manifold (the set of material points constituting the elastic body) is flat and remains
flat in the course of deformations that do not allow for the appearance of defects.
Indeed, the usual material manifold is usually considered to be a flat Euclidean
space with vanishing curvature (in the sense of Riemann). The Riemann curvature
tensor involves space derivatives of the Christoffel symbols—themselves defined
from derivatives of the metric-, hence second-order space derivatives of the metric.
In three dimensions this curvature tensor reduces to a second-order tensor called the
Einstein tensor, whose six independent Cartesian components are none other than
the left-hand side of Eq. (10.10) when e is viewed as the metric of interest (cf.
Maugin 1993, pp. 54–58). This is probably as far as an engineering student is
exposed to a relationship between geometry and continuum mechanics in his
curriculum.

10.3 The Role of Elie Cartan

Elie Cartan is one of the most famous geometers of the first half of the twentieth
century (see Chern and Chevalley 1952).4 A continuator of Johann Friedrich Pfaff
(1765–1825) and of Sophus Lie (1842–1899; see Cartan 1948), he has left a definite
print in the theory of Lie groups and algebras, associative algebras,
non-Riemannian geometry, Finsler spaces, the theory of forms, integral invariants,
etc. But more remarkably, he introduced and developed new fields that were to find
later on splendid applications in theoretical and mathematical physics. Here we
must first mention the theory of spinors (synthesis in Cartan 1938) introduced about
1910, hence much before the discovery of spin for elementary particles in quantum
physics (the discovery of the spin of the electron dates from 1926). We recall that a
spinor is a complex vector that allows an expression of space rotations by a

4Elie Cartan was a never tired scientist. Between 1893 and 1947 he published no less than 187
works, including many long memoirs, pamphlets and full-length books. He usually was a single
author with only a few exceptional papers co-authored by J.A. Schouten. The best thorough
description of his works is given by himself in the Notice he wrote for his election to the Paris
Academy of Sciences in 1931 (see Cartan 1974). The main heroes of Cartan are Jacobi, Lie,
Riemann, Killing, Poincaré, Levi-Civita, Fubini, Einstein, and H. Weyl. Some of his direct dis-
ciples were Charles Ehresmann (1905–1979) and Georges de Rham (1903–1990). Of course one
cannot neglect the influence of Hermann Grassmann’s (1809–1877) “theory of extensions”—
exterior or Grassmann algebra—on Cartan’s inception of the calculus of differential forms.
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two-dimensional representation. The other new advance made by Cartan is his
innovative work in non-Riemannian spaces, including those now named Riemann-
Cartan spaces, was spaces with both curvature and torsion (Cartan 1925, 1935).

Cartan knew well his mechanics as he had followed lectures by Gabriel Koenigs
and Paul Appell. He replaced Paul Painlevé on his chair of rational mechanics, also
teaching both analytic and celestial mechanics. But his most appropriate and well
deserved affiliation was the chair of Higher Geometry that he obtained in 1924. He
formed and influenced many French mathematicians in the inter-war period 1920–
1940 (cf. Gispert and Leloup 2009). In particular, together with Jacques Hadamard
he was instrumental in the creation of the Bourbaki group, of which his own son,
Henri, together with Dieudonné, was a most active member.

Apart from a re-evaluation of Killing’s works on Lie groups in 1894, Cartan
published (Cartan 1899) an extensive work in which, pursuing the works of Pfaff,5

Jacobi and Lie, he pioneered a modern theory of differential forms and introduced
the notion of exterior derivative. This provided an approach to multivariable cal-
culus that is independent of coordinates. This found applications in an astute
condensed rewriting of the equations of electromagnetism and also continuum
mechanics, and of course in an aesthetically wonderful rewriting of the generalized
Stokes’ theorem. This is well illustrated in the book of Harley Flanders (1925–
2013; book in 1963) and that of Flanders’ former student, Theodore Frankel (1997).
This last book is often presented as the most successful book on the applications of
modern differential geometry to physics.6 Cartan was very much interested in
Einstein’s theory of gravitation where he almost immediately contributed to a
refinement in the mathematical tools of that theory (Cartan 1922a, b). He was very
much enthusiastic about possible physical applications of his “Einstein-Cartan”
spaces. He went all the way to declare that “if physics can be geometrized at all,
then all physical laws must be expressible in terms of partial differential equations
governing the torsion of the relevant space” (Cartan 1931; Translation from the
French by the author). Cartan certainly had the idea that implementing the
Cosserats’ notion of generalized continuum would require using some of the
geometrical notions he had so forcefully introduced. But he could not guess that his
“connection” was to become an ideal mathematical tool in the theory of disloca-
tions, physical objects of which the existence was proved only in the 1930s. As to
generalized theories of gravitation with spin, applications of Einstein-Cartan spaces
and the formulation of general relativity exploiting exterior derivatives, they will
have to await the 1970s.

5Remember that Pfaff’s problem deals with the conditions under which a differential expression in
Rn is an exact differential. This plays a basic role in Caratheodory’s axiomatic approach to
thermodynamics (cf. Maugin 2014, Chap. 9).
6See, in particular, pp. 118–122 on Maxwell’s equations and pp. 617–629 on continuum
mechanics in Frankel (1997). As witnessed by the writer in the mid 1960s, Paul Germain, in Paris,
used to formulate the balance laws of continuum mechanics in the language of exterior derivatives.
The author particularly appreciated the book of Flanders (1963). Cartan’s son, Henri, even wrote a
textbook on differential forms (Cartan 2006).
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10.4 The Influence of the Theory of General Relativity

As a preliminary we note that contrary to the initial gravitation theory of Newton
that dealt with mass points, Einstein’s theory of gravitation is from the start a
continuum theory, since the source of geometry is to be found in energy,
momentum and stresses. It is so much the case that it will prove difficult to deal
with mass points (i.e. singularities in their own right) in this framework. As to the
Killing conditions (10.2) it takes the required form using covariant differentiation.

The theory of gravitation devised by Eisntein (1914, 1916), also known as the
theory of general relativity, was rapidly accepted by his fellow mathematicians and
physicists DavidHilbert (1862–1943), GustavMie (1869–1957) andHerrmannWeyl
(1865–1957). The first two of these scientists had been in competition with Einstein,
while Weyl tried to extend Einstein’s theory so as to incorporate electromagnetism in
its geometrical framework. Astronomer (Sir) Arthur Eddington (1882–1944) and
physicist Wolfgang Pauli (1900–1958) easily grasped the Riemannian tensor for-
malism exploited by Einstein (with the help of his friend, the mathematician Marcel
Grossmann (1878–1936)). They published comprehensive books on relativity as
early as the beginning 1920s (Eddington 1923; Pauli 1921). Then general relativity
became a subject of vivid interest in cosmology and the beginnings of astrophysics
while Einstein engaged himself in a rather vain quest for a generalized theory that
should ultimately include quantum effects. Elie Cartan was more inclined to a gen-
eralization by considering a non-Riemannian space-time. He was on the right track
with the notions of “Cartan’s connection” and torsion (Cartan 1922a, b, 1923).

Any way, the tensor analysis and Riemannian spaces exposed in—at the time—a
reasonable formalism (i.e., with explicit contra-variant and co-variant indices) do
not seem to have been obstacles to an apprehending by many people. Many of these
readers met first with these notions by reading the nicely written and readable small
book by Einstein (1956). This was the case of many curious engineers and amateur
physicists.7 This must have been the case of Kazuo Kondo (1911–2001), a Japanese
aeronautical engineer. Although occupied with problems of the mechanics of
structural members, he seems to have been the first to propose an interpretation of
the theory of structural defects (e.g. plasticity and dislocations) in geometrical terms
borrowed from Einstein’s theory of gravitation (Kondo 1952). It is with this rev-
olutionary work that the sophistication of Riemannian geometry entered the field of
classical continuum mechanics. Kondo was to expand further aspects of his

7This was the case of the author who learned his basic tensor analysis in Einstein (1956) and later
on in the treatise of Landau and Lifshitz on theoretical physics (Volume 2 on the theory of fields).
This is of some importance because no amateur could have learned this from more recent treatises
using abstract differential geometry without first having been exposed to hard mathematics. Of
course, the teaching of André Lichnerowicz in Paris and the small (in format) book (Lichnerowicz
1946) he had published on the subject were also essential for French students such as the author.
Walter Noll followed Lichnerowicz’s lectures when he stayed in Paris in 1949–1950. Before
Lichnerowicz’s book, there were the very little read treatise by Thiry (1925) and the original book
by Brillouin (1938); but these two books did not reach mechanical engineers.
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geometrical approach in a series of publications known as the R.A.A.G. Memoirs
(Kondo 1955). The problem with these publications is that their author introduced
too much unnecessary philosophy and too many neologisms (probably approxi-
mately translated—or even perhaps not translatable—from the Japanese).
A somewhat parallel advance was made by Ekkehart Kröner (1919–2000) in
Germany and a group around Bruce A. Bilby in the UK. For this see Sect. 10.5.

The influence of general relativity in the present context is also to be appreciated
in the light of the remarkable book of Marsden and Hughes (1983). This book set
new standards in the mathematical formulation of classical continuum mechanics by
using systematically differential geometry in its new modern outlook. Of course this
reflected the initial formation of Jerold Marsden (1942–2010) at Princeton (PhD
1968) in the environment of John Archibald Wheeler (1911–2008) who used some
of this formulation in his course (as reasonably illustrated in the monumental book of
Misner et al. 1973).8 Among other creative works in particle physics, quantum
mechanics, astrophysics and cosmology, Wheeler was a partisan of geometrody-
namics, a program of physical and ontological reduction of every physical phe-
nomenon, such as gravitation and electromagnetism, to the geometrical properties of
a curved space-time (among his many PhD students, we note R.P. Feynman).

10.5 The Influence of the Theory of Dislocations

Here one must emphasize the role played by Kröner (1958), Bilby et al. (1955, 1957),
and Walter Noll (1967). Kröner first recognized that the Navier-Saint Venant con-
dition (10.10) or (10.11) is no longer satisfied when the elastic displacement is no
more continuous as a result of the presence of dislocations. There are somany of these
that a density of dislocations has to be introduced, while Johannes M. Burgers
(1895–1981) in the Netherlands had introduced the notion of “Burgers” vector
(measure of the discontinuity in displacement) to characterize a single dislocation in
Burgers (1939). As (10.10) has now acquired a non-vanishing right-hand side the
material manifold is now equipped with a non-zero curvature. The material manifold
has thus becomeRiemannian and, accordingly, is no longer Euclidean. Kröner (1955)
astutely related this misfit with the original Navier-Saint Venant compatibility con-
dition by introducing the notion of elastic incompatibility. Equation (10.2) is replaced
by a balance between the Einstein tensor and Kröner’s incompatibility tensor that can
be expressed in terms of the gradient of a dislocation density tensor whose integral
over an elementary surface equals the Burgers vector. The dislocation density tensor
satisfies a conservation law (seeMaugin 1993, pp. 57–58) which can be interpreted as
Bianchi’s identity in differential geometry. This tensor can be identified with the
linearized version of the Cartan torsion tensor—more on this in classical elasticity and
its generalized-continuum versions in Lazar and Maugin (2007).

8As directly witnessed by the author as a graduate student at Princeton.
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Kröner was aware of the possible relationship between Cosserat continua and
Cartan’s geometry.9 His student, Friedrich Hehl established this relation in his
Habilitation diploma obtained in Clausthal in 1969. Hehl was to become one of the
best specialists in the Einstein-Cartan theory of gravitation with spin (cf. Hehl et al.
1976). We examined Kröner’s scientific legacy in Maugin (2003).

About the same time as Kröner, Bilby and his co-workers in Sheffield engaged in
an ambitious programme of which the purpose was to develop a geometric theory
of the continuous distribution of dislocations. They emphasized that (Bilby et al.
1955) “the geometry of the continuously dislocated crystal is most conveniently
analyzed by treating the manifold of lattice points in the final state as a
non-Riemannian one with a single asymmetric connexion. The coefficients of that
connexion are then expressed in terms of the generating deformations that relate the
dislocated crystal to the reference lattice”. It is at this point that the local density of
dislocations can be identified with the torsion tensor associated with the connection.
The latter possesses the property of so-called “distant (or absolute) parallelism” in
the sense of Elie Cartan (1931). Bilby et al. developed their theory in a series of six
long papers between 1955 and 1966. The result is aesthetically rewarding but still
now of limited use.

Both Noll (1967) and Wang (1967) published mathematical contributions to the
subject matter invoking a general approach to the theory of uniformity and
homogeneity of simple bodies. These contributions, although often cited, were very
little exploited as being probably too abstract and not legible by engineers or
materials scientists. They indeed involved a Cartan connection. These two papers
were much admired by Marcelo Epstein and the present author. It was due to these
two authors (Epstein and Maugin 1990) to show that the Cartan connection based
on the anelastic part Fa—as a matter of fact, its inverse K—of the multiplicative
decomposition of the deformation gradient was intimately related with the material
Eshelby stress (sometimes called Eshelby energy-momentum stress) of J.D.
Eshelby’s theory of material inhomogeneties, and the associated fully material
balance of material (or configurational) forces. This is dealt with at length in a book
(Maugin 2011).

10.6 The Theory of Local Structural Rearrangements

Following along the line of the preceding section, we simply note the following
expressions:

F ¼ FeFa; K ¼ Fað Þ�1; C ¼ rRK�1
� � �K; ð10:12Þ

9Kröner associated the memories of both the Cosserats and Cartan in the dedication of the IUTAM
Symposium he organized in the Black Forest in 1967 (Kröner Editor 1968).

252 10 Geometry and Continuum Mechanics: An Essay



where F is the total deformation gradient between the reference configuration and
the actual one, Fe is the elastic part and Fa the anelastic part - both non-integrable
separately in a displacement10 -, of F, and C is a Cartan connection on the material
manifold; notice that this is not defined from the metric.

This opened the way for a synthesis where all configurational forces are seen as
contributing jointly to a balance of material momentum. This we called the theory
of local structural rearrangements, since it includes the local—in general ther-
modynamically irreversible—transformations of the material manifold due to
effects of macro- and micro-structural defects, foreign material inclusions (inho-
mogeneities), temperature conduction, phase transformations, and material growth.
An especially interesting case is the last one mentioned: growth.

This must concern open thermodynamic systems as the import of nutrients is
necessary. Therefore, the complexity of the geometrical description already reached
for closed systems is normally increased by the coupling with the diffusion of mass
and the transport of species. It was shown by Epstein and Maugin (2000) that a
first-order gradient theory based on Eq. (6.1) was not sufficiently well equipped to
deal with this case. In particular, thermodynamic consistency with mass diffusion
required considering a second-gradient theory. This was achieved in a work started
in Ciarletta and Maugin (2011). The reached geometric complexity is such that
first-order and second-order connections must be introduced together with material
Eshelby stress tensors of first and second orders. This complexity allows one to
examine the problem posed by the existence of singular lines that may appear
during the process of growth of soft biological tissues.

10.7 Modern Differential Geometry and Its Use
in Continuum Mechanics

Within about sixty years the relationship between differential geometry and con-
tinuum mechanics has continuously strengthened reaching an incredible level of
sophistication and complexity with the necessary consideration of a
non-Riemannian structure for the material manifold. This we owe essentially to the
combined efforts of Kondo, Kröner, Bilby, Noll, Wang and, more recently, Epstein
and co-workers. Rather recent works using generalized Riemannian spaces or
non-Riemannian spaces in dislocated elastic bodies are by Rakotomanana (2003),
Zubov (1997) and Yavari and Goriely (2012). A short retrospective is appropriate at
the end of this contribution.

No doubt that geometry is the basis on which the kinematics and deformation
theory of continuum mechanics rely. We agree with Epstein (2010) that the lan-
guage of continuum mechanics is geometry. Until recently only geometry as made
analytical by René Descartes and considering the three-dimensional Euclidean

10Accordingly they are related to Pfaffian differentials.
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space as the normal arena of continuum mechanics was acknowledged as the
standard background. Differential geometry as formulated by nineteenth century
mathematicians (above all Gauss and Riemann) was the tool that introduced the
notions of metric and eventually curvature.11 Two facts have complicated the
picture. One was the influence of the consideration of non-Euclidean spaces in
gravitational theory following Einstein and others. The second, in fact related to the
first, was the recognition that taking account of the presence of many structural
defects requires abandoning the peculiarity of the Euclidean nature of material
space in favour of more general concepts introduced by modern differential
geometers such as Elie Cartan: non-Riemannian spaces and the allied incursion of
group theoretical concepts, following pioneering works by Pfaff, Lie and Killing in
the nineteenth century.

The author remembers that in the 1950s–1970s the three main books that offered
an in-depth presentation of all necessary tools to foster progress in differential
geometry applied to physics were celebrated books by Jan A. Schouten
(1883–1971)—Book of 1954—and Luther P. Eisenhart (1876–1965)—books of
1966 (in fact 1924) and 1927. Both these geometers were certainly stimulated by
Einstein’s theory of general relativity. They were true contributors to advances in
tensor calculus for which they are considered “masters of tensors”. These books are
still cited as the recommended ones in the field by Ericksen (1960) and Eringen
(1971) in their summaries of tensor analysis for mechanicians. The title of
Schouten’s book smells good of the initial development of the field by Ricci. The
long period of scientific activity by these two mathematicians explains the durable
influence that they had. They provided a continuous thread between the origins of
tensor calculus and the 1960s. But their books, although extremely rich and worth a
perusal in depth, will certainly look much antiquated to all students of the early
twenty-first century. In the mean time, since the 1960s the Bourbaki tradition in
general mathematics and Elie Cartan and his disciples have left a definite print that
transpires in all modern expositions. Each teacher has thought good to publish his
own book on the matter, so that we have a large choice at our disposal. One nice
example is provided by Chapters III through V in the book of Choquet-Bruhat et al.
(1977) aimed at mathematical physicists. For memory we recall the book of
Marsden and Hughes (1983) and that of Frankel (1997). All these authors had
contributed in one way or another to general-relativistic studies or quantum-field
theory. Finally, the most recent addition in this line at the time of writing seems to
be the book by our almost twin-brother12 Marcelo Epstein (2014)13 to whom we are
happy to dedicate the present essay on the occasion of his seventieth anniversary.

11And therefore, by negation, a good definition of flatness; think of the Navier-Saint Venant
equations of compatibility.
12M. Epstein was born on the third of December 1944, while the author was born on the second of
December of the same year, however in quite distant places in the world.
13Even Epstein tried his hand at some relativistic formulation of anelastic continua (see Epstein
et al. 2006).
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Chapter 11
The Masters of Modern Continuum
Mechanics

Abstract Although normal progress in a physical theory usually is a totally
collective adventure within a given paradigm, it sometimes happens that a selected
group of gifted and industrious individuals, working in concert or in competition,
revisits an existing field and brings to it innovative and unifying ideas that
tremendously accelerate the rhythm of this progress. This is what occurred with
continuum mechanics in the period 1935–1980. In this specific case the main
figures that clearly emerge are those of R.S. Rivlin, C.A. Truesdell, J.L. Ericksen,
W. Noll, R.A. Toupin; B.D. Coleman, A.C. Eringen, A.E. Green, P.M. Naghdi, and
R.D. Mindlin, and to a lesser degree but within a different political or regional
background, L.I. Sedov, A.A. Ilyushin and P. Germain. Their works and definite
influence through their publication of papers and books, the works of their students
and direct co-workers, and their contributions to scientific life (in particular through
newly created journals and scientific societies) are thoroughly perused in an
objective manner.

11.1 Introduction

It is not a trivial matter that a true revival of continuum mechanics as an all
embracing science1 occurred in the second half of the twentieth century. Of course
it would have been neither appropriate, nor good mannered, to have asked
high-calibre scientists such as Lagrange, Cauchy or Helmholtz, or even Barré de
Saint-Venant or Boussinesq, if they preferred fluid mechanics over solid mechanics,
or vice versa. They were too much conscious of the common bases of these two
fields of mechanics. But inevitable specialization took place, especially in the
engineering community, but also in the adopted curricula, starting with the late
1800s. Nonetheless, a small group of scientists coming from various scientific or

1As a preliminary remark we specify that we consider only scientists who contributed to this
science in this broad sense and not those, excellent and creative as they may have been, who
specialized only either in solid or in fluid mechanics.
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engineering horizons re-kindled a global apprehending of a unified science:
continuum mechanics (to be further generalized as continuum thermo-mechanics).
This took place in the period extending roughly from 1935 to 1980. What sparked
this movement is not extremely clear, although, like the Renaissance intellectuals
re-evaluating to their own benefit antique Greco-Roman knowledge and vision, we
can think that some of the most scientifically curious individuals also imbued with a
historical vision, in some sense re-evaluated the contributions of their predecessors
from the eighteenth and nineteenth centuries. This is crystal-clear in the case of
Clifford Truesdell, a great admirer of nineteenth century French, Italian and German
mathematicians, mechanicians and all round physicists such as, among others,
Cauchy, Helmholtz, Kirchhoff, Piola, Duhem, Poincaré and the Cosserat brothers.

We have emphasized the crucial role of some well known scientists in the rebirth
of continuum mechanics in the twentieth century in a recent book (Maugin 2013a),
together with a sketchy biography for some of them. We will examine the career,
achievements, influence and legacy of the most representative ones in greater detail
herein after. What is most striking is that these scientists had extremely varied
backgrounds and past experiences when they got involved in this outburst of works
of a more abstract and more synthetic scope with a general purpose in continuum
mechanics. They were all practically born between 1915 and 1930, so that they
would have reached at least 84 years of age at the time of writing this contribution,
but only a very few are still alive (e.g., Ericksen, Noll, Coleman, Toupin, Kunin),
although understandably not very active in the field. Some received an initial for-
mation in classical mechanical engineering often busy with the solution of problems
involving structural members or plastic behaviour very much in the spirit expanded
by the American Society of Mechanical Engineers (e.g., A.C. Eringen, R.D.
Mindlin, P.M. Naghdi). Others were basically educated in the British School of
applied mathematics and theoretical mechanics (e.g., A.E. Green and R.S. Rivlin).
Still others were originally destined to become more or less pure mathematicians
(e.g., J.L. Ericksen, P. Germain). Those educated in Russia benefited from a uni-
versity system in which a close co-operation between mathematics and mechanics
was cultivated (e.g., L.I. Sedov at the Lomonosov State University in Moscow, A.I.
Lurie and I.A. Kunin in Leningrad/Saint Petersburg). E. Kröner was more of a
mathematical physicist while R.A. Toupin came from applied physics, J. Kestin
from thermal sciences and energetics, and B.D. Coleman from chemical engineering.
Finally, last here but not least, C.A. Truesdell had a standard education in applied
mathematics having written a doctoral thesis on classical special functions. As to W.
Noll, he benefited from a mixed German education in engineering and mathematics,
and a strong influence of modern abstract mathematics experienced during a stay in
Paris. He obviously was the closest on the way to a global formalization of con-
tinuum mechanics, while Truesdell cultivated a love for old books and a true interest
in the history of mechanics in the eighteenth and nineteenth centuries, which he
combined with a practice of several European languages needed for a good appraisal
of scientific publications of the past not written in English.

The selection of prominent contributors to the considered renewal and blooming
may seem arbitrary to some readers and giving too much credit to American authors
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or to British scientists who had entertained interactions with American colleagues.
But this is just an acknowledged fact. Of course, Russian authors deserve also
attention for attempts at a synthetic vision that were belittled internationally for
linguistic or ideological reasons. This is only slightly corrected in what follows.

Among the general trends that took place in the 1920s–1940, we must first notice
that a good appraisal and modelling of behaviours such as finite-strain elasticity and
non-Newtonian fluids led to a re-examination of previously devised notions (in fact
introduced by the great precursors of the nineteenth century—Cauchy, G. Green,
Piola, Finger, Kirchhoff, etc.) and then realizing that many elements of the kine-
matics of deformations were shared by both solid and fluid mechanics. Rivlin and
A.E. Green are the best examples of scientists who contributed so much to this
unification. The re-reading (if there ever was a real reading of these in their own
time) of works by the Cosserat brothers and P. Duhem was also instrumental in this
new adventure. This is where the role of Truesdell was so much important as he
greatly contributed to unearthing these innovative and well thought works and
directing other researchers to them. The general thermodynamic background was
also very much influenced by a new appraisal of Helmholtz’s, Gibbs’ and Duhem’s
attempts at a general energetics. This is not to say that all was already done and one
had only to read these masters with care and proper interpretation. Some real work
was needed but nothing came completely out of the blue. That is where the analogy
with the renaissance period is most obvious with a strategy involving first a good
reading, next capitalizing on this acquired knowledge, and then adding new original
material inspired by the work of predecessors while benefiting from recent advances
in mathematics, especially in so far as formalism and the exploitation of new
analytical (e.g., functionals) and geometrical (e.g., modern differential geometry)
tools are concerned.

11.2 Rivlin and Truesdell

Those who have known these two scientists—always in not so friendly competition
—may be surprised to find their names under the same title. They epitomized two
different types of intellectuals. One, Ronald Rivlin, perfectly stands for the some-
what arrogant pontificating British scientist, a pure product of Cambridge, and the
other, although formidably educated—a true pundit—and deeply influenced by old
western Continental Europe, remains an American individual with all exaggeration
that goes with this quality. Both were harsh critics of each other and of other
scientists. They definitely believed that they owned the real truth. On the creative
side we lean in favour of Rivlin with many technicalities and high analytical
dexterity typical of British applied mathematics. But Truesdell was a better com-
municant and a forceful propagandist who succeeded through his many beautifully
written pamphlets and encyclopaedic books and an astute choice of direct disciples
to rally most mechanicians of the period. Indeed, he was seconded in this endeavour
by bright and efficient co-workers such as Richard Toupin and Walter Noll. As to
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Rivlin, his cooperation with Albert E. Green, Jerald Ericksen, and Anthony Spencer
also bore fruits that influenced our whole community.

Clifford Ambrose Truesdell III (1919–2000)2 came from a patrician family as
his very name indicates. He obtained a BSc in mathematics and physics and an MSc
in mathematics at the California Institute of Technology (CALTECH), respectively
in 1941 and 1942. In 1943 he was granted a PhD in mathematics at Princeton
University. He admits to have been much impressed by the applied mathematician
Harry Bateman. His PhD thesis dealt with very classical differential equations3 (in
the line of Bateman), while his first short papers were devoted to equations issued
from the applied mechanics of structural members. This does not prefigure the style
and contents of his future works. But more typical of him we note that between high
school and college, Truesdell took the time to travel for two years around Europe,
learning then some of the languages he will need in his historical studies. On
graduating he joined the U.S. Navy in its research office in 1943 before obtaining
his first University position at Indiana University in Bloomington in 1950. This
trajectory explains but only in part the achievements of Truesdell.

In the Navy laboratories Truesdell was kept busy with problems of fluid
mechanics but he also had some time to ponder the recent developments of con-
tinuum mechanics. But as we already told in a previous volume (Maugin 2013a,
pp. 62–63): “In the introduction to a long critical synthesis that was published in
1952, he tells his own story of how he got involved in the field of nonlinear
continuum mechanics. He began to study the foundations of continuum mechanics
in 1946 and claims—rather immodestly—that within a few months “he had set the
whole field in order, to his own satisfaction” (Truesdell 1984a, b). However, an
editor told him that he had underestimated the work of earlier authors. In particular,
he had overlooked the then recent works by M. Reiner, R.S. Rivlin and others (e.g.
Rivlin 1948). This prompted him to return to the sources cited by authors of books,
and then to the sources of these sources and so on. The result of this historical
search and a special effort at a synthesis was the long contribution he published in
the first issue (1952) of the Journal of the Rational Mechanics and Analysis,
published by the Graduate Institute for Applied Mathematics at Indiana University
in Bloomington. This publication bears the characteristic style and aim of further
encyclopaedic articles by Truesdell, a rigour allied to an obsessive mania for
citations and correcting other scientists, all this in a rich but sometimes pedantic
language. This opus of 175 pages, written at the latest in 1949, was adorned by an
incredible list of references—with the oldest references to the seventeenth
century—a large number of footnotes, and an index of cited authors spreading over
six pages on two columns. Truesdell [see the reprint of the preface in Truesdell
(1984a)] admitted later that he had made many mistakes and overlooked important
authors. In writing this long historical review Truesdell was trying—and succeeded

2There exists at least one full length biography in German of Truesdell by Ignatieff and Willig
(1999).
3This work was reviewed by Friedman (1948).
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to a large degree—to supersede his great predecessors, e.g., Joseph Lagrange in his
book on analytical mechanics with his historical notes, and of course Pierre Duhem
in his always carefully documented various writings.

This was to provide a solid basis for the redaction of the future formidable
Handbuch article co-authored with Richard Toupin in 1960. Alongside the publi-
cation of the Archives for Rational Mechanics and Analysis, this monumental
contribution—that deals with the basic formulation and general principles—really
is the vehicle that opened the horizon of many mechanicians to an extremely rich
and fully documented framework. The historical reconstruction of the field from the
seventeenth century to the late 1950s was a complete discovery to many readers,
including the present writer, at a time when most lecturers rarely cited their sources
and delivered courses like god-given material. Truesdell had engaged himself in a
program of reconstruction and historical presentation of continuum mechanics.
Pierre Duhem (1861–1916), with his complete devotion to the continuum view and
his recourse to original sources, whatever the language used, probably is the model
that Truesdell wanted to imitate and perhaps surpass definitely. Anyhow both
Duhem and Truesdell are considered scientists of the continuum and historians of
sciences, although Duhem specialized in the oldest texts with a keen interest in
medieval science while Truesdell will devote himself to a critical edition of Euler’s
works in six volumes devoted to mechanics in all its aspects. Furthermore, Duhem
was an advocated champion of the thermo-dynamic approach, a line that Truesdell
strongly encouraged with the works of B.D. Coleman and W. Noll, when he did not
himself contribute directly to this trend.

It is at this point that it seems proper to introduce Ronald S. Rivlin
(1915–2005)4 in greater detail since Truesdell’s long contribution of 1952 reflected
so much the early works of Rivlin and other “rheologists”. These are the specialists
of “rheology”, the term coined by Eugene Bingham (1878–1945) and Markus
Reiner (1886–1976) to denote the science dealing with every thing that can more or
less flow, pure fluidity in the sense of Euler and strict elasticity being the two
extreme behaviours (in agreement with the “continuity of states” of Noll 1955).
Rivlin was very well educated in applied mathematics and physics at Cambridge
(BA in Mathematics in 1937, MA in 1939). After a short stay at General Electric
Co and two years as a Scientific Officer with the Ministry of Aircraft Production
during WWII, he spent nine years (1944–1953) at the BRPRA (British Rubber
Producers Research Association) and then the BRRA (British Rayon Research
Association) doing both seminal theoretical and experimental works. He was nat-
urally concerned with the behaviour of rubber and also very viscous fluids inter-
vening in chemical engineering processes. He joined Brown University in 1954 and
then switched to the Centre for the Applications of Mathematics at Lehigh
University (1967–1980).

Although demonstrating then that he could also be a good experimentalist, with
his initial training as a mathematician in Cambridge Rivlin was naturally led to

4Autobiographic notes are given in Rivlin (1996). See also Carroll and Hayes (2006).
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considering a pure mathematical standpoint to formulate the expression of relevant
energies for rubber like materials. This was a great achievement that provided
another view to the recent results obtained by Flory, Guth and James, Treloar, and
Mooney (e.g., Treloar 1946; Mooney 1940). All these scientists worked closely
with the related industry of rubber and early artificial fabrics with the above
mentioned BRPRA and BRRA. They all considered first an approach based on the
physical description of polymers with long chains of molecules and thus necessarily
exploiting arguments of statistical physics. As to Rivlin, although knowledgeable in
this kind of approach, he considered a pure mathematical view of nonlinear elas-
ticity with a postulate of an energy function depending on the correct invariants of
the strain. This interest for invariants will recur in his works. This is how the
celebrated Mooney-Rivlin energy expression for incompressible rubber-like mate-
rials was born. Such considerations required an excellent knowledge of the theory
of finite deformations which Rilvin did not hesitate to revisit and develop (e.g.,
Rivlin 1948). This he achieved by building on previous works of F.D. Murnaghan
(1873–1976; Irish mathematician established in the USA; see Murnaghan 1937,
1951) and nineteenth-century scientists such as Cauchy, G. Green, Finger, Piola,
Kirchhoff, and Boussinesq. He does not seem to have been aware of the works of
the Cosserats and Duhem, or to be much interested in more recent Italian contri-
butions. This overlooking will be corrected by Truesdell.

Inevitably Rivlin had also to envisage the behaviour of some materials in time
such as strongly viscous fluids, (highly viscous chemical products, paints, artificial
fabrics), that is, their flow properties. In comparison with elasticity, this brings to
the foreground time rates of both strains and stresses. This is rheology at its best
with the notion of non-Newtonian fluids.5 First true developments in this field are
due to Bingham (1922) and Reiner (1945) with an attempt at a theory of
visco-plastic fluids and so-called dilatancy. Characteristic effects exhibited by such
media are the Poynting effect discovered in 1909 and the Weissenberg effect dis-
covered in 1949. Several theoreticians attacked the description of these media in the
period of the 1940s and 1950s.

A historical sketch of these works was given by Coleman et al. (1966) and also
Rivlin (1984). The first authors, Reiner (1945) and Rivlin, followed the initial
general idea of Stokes of 1845 that the stress tensor should be a tensor-valued
function of the rate of deformation tensor D. A tensor expansion up top second order
in D should be sufficient—and in fact correct according to the Cayley-Hamilton
theorem—with coefficients still depending on the first two invariants of D for
incompressible isotropic bodies. This provided the so-called Reiner-Rivlin model.
But this does not allow for a sufficient characterization of typical flow properties of
non-Newtonian fluids as shown by J.G. Oldroyd (1921–1982) in the UK with a
breakthrough publication (Oldroyd 1950). This was corrected by Ericksen and
Rivlin (1954) who showed that the stress should depend on higher-order time

5We have already reviewed the progress of this field in the twentieth century in Chap. 3 of Maugin
(2013a).
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derivatives of the deformation gradient, introducing thus the notion of
Rivlin-Ericksen tensors (akin to convected or Lie derivatives in the proper geo-
metrical invariant framework). This provided the so-called Rivlin-Ericksen model of
which Green and Rivlin (1957) gave a nice definition in terms of successive time
derivatives of the Cauchy-Green finite strain. In contrast, Oldroyd (1950) thought of
introducing a stress constitutive equation in the form of a time integral over the
history of the convected metric (or strain). This was in the line of an old proposal of
hereditary integrals by L. Boltzmann. Approximation of this last modelling can be
shown to provide solutions that are equivalent to those that would follow in the
framework of a second-order approximation of a Rivlin-Ericksen model. From all
these considerations (good kinematics of deformation, exploitation of the theory of
invariants), there followed a wealth of models so that a true “industry” was sparked
in the field of theoretical rheology (see Chap. 3 in Maugin 2013a, and references
therein). As a result Reiner, Rivlin, Ericksen and Oldroyd can be considered the
fathers of this discipline in the second half of the twentieth century. With additional
works by Coleman and Noll, this will provide the backbone of the two ency-
clopaedia articles by Truesdell, Toupin and Noll—respectively in 1960 and 1965—
that were to spread the “gospel” of modern continuum mechanics.

It is the amalgamation of nonlinear elasticity and rheology of complex materials,
the necessary consideration of the common bases in kinematics, and the desire to
bring some rational classification in the multi-sided behaviour of many deformable
bodies that really led to the global view of modern continuum mechanics. This
overall vision will be accentuated with the shared general thermodynamic back-
ground in the expert hands of Truesdell, Coleman, Noll, I. Müller, etc.

11.3 The Co-workers and Direct Disciples of Truesdell

There is hardly need to emphasize that some co-workers and direct disciples of
Truesdell not only were efficient in spreading the Trusdellian spirit of continuum
mechanics, but they also themselves became masters in the field demonstrating a
remarkable creativity. We count among these scientists Jerald L. Ericksen,
Richard A. Toupin, Walter Noll, and Bernard D. Coleman.

Jerald L. Ericksen (born 1924)6 obtained his PhD in Mathematics at
Bloomington in 1951 after serving in the US Navy. He then joined the U.S. Naval
Research Laboratory (NRL) in Baltimore. He spent twenty-five years teaching in
the Department of Mechanics at the Johns Hopkins University (1957–1982) still in
Baltimore, before concluding his teaching career at the University of Minnesota
(1982–1999). He met Truesdell in Bloomington when the latter joined the faculty in

6Autobiographic notes of Ericksen are to be found in Beatty and Hayes (2005). See also Ericksen
(1979).
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this university in 1955. They shared an interest in the theory of rods and shells on
which they wrote a paper (Ericksen and Truesdell 1958). In this paper they were
among the first authors to cite the ideas of the Cosserat brothers enunciated in their
famous book of 1909, and subsequent works by J. Sudria (in the 1920s and 1930s).7

This used the idea of oriented continua (a kind of generalized continuum) where
internal rotations play as important a role as classical translations (the displace-
ment). Ericksen also contributed a comprehensive introduction to tensors as an
appendix to the encyclopaedic article of Truesdell and Toupin (1960). Perhaps
exploiting the ideas of “directors”—that can be used to materialize the
above-mentioned rotations—due to Pierre Duhem; he singlehandedly expanded a
theory of anisotropic fluids that was to develop in a universally accepted theory of
nematic liquid crystals (Ericksen 1960). Later on this will be generalized by
Frank M. Leslie (from Scotland) and him to include dissipative effects. As already
mentioned he collaborated with Rivlin on the theory of finite deformations
(Ericksen and Rivlin 1954). The two had met during a stay of Rivlin at the NRL.
The Rivlin-Ericksen tensors probably are the best known objects of continuum
mechanics bearing their joined names. Ericksen made other very fruitful contri-
butions to the theory of solid crystals and their phase transitions viewed in
thermo-mechanics. Although close for sometime to Truesdell, Ericksen should be
considered an original thinker with his name definitely attached to many objects and
theorems, e.g., in addition to the Rivlin-Ericksen tensors, Rivlin-Ericksen fluids,
Baker-Ericksen inequalities, Doyle-Ericksen tensor, Ericksen identity,
Leslie-Ericksen theory of liquid crystals. Along his successful doctoral students we
count Millard Beatty, Romesh C. Batra, Constantine Dafermos, Dominic G.B.
Edelen, James Jenkins, Richard D. James and G. Zanzotto.

Richard A. Toupin (born 1926) had a different background. In his autobio-
graphic notes (reprinted in his collected works edited by Barenblatt and Joseph
1997), Rivlin tells that he met Toupin at the National Research Laboratory in
Maryland where both were visiting in 1953. Toupin was then working on a PhD
with Melvin Lax at the University of Syracuse. Rivlin advised Toupin to change his
research subject to the theory of deformable dielectrics where he foresaw some
promising developments in the finite-strain framework of continuum mechanics,
what Toupin did with the success we know (he obtained his PhD at Syracuse in
1961). The publication of his “Elastic dielectric” paper in the Journal of Rational
Mechanics and Analysis in 1956 proved to be a true milestone (Toupin 1956).8 This
was followed by another paper about dynamics in Toupin (1963). That is when
contact with Truesdell was established. This was fruitful first in the collaboration on
the celebrated Encyclopaedia article of 1960. It also brought Toupin to write
innovative works in the theory of oriented media, on the Saint-Venant principle,
and relativity. Toupin joined the IBM Research Laboratory in 1962 after spending

7See Chap. 8 in Maugin (2014).
8We discuss this theory and its generalizations in Maugin (2013a) and our books on the elec-
trodynamics of continua.
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six years at the US NRL (1956–1962) where he produced most of his creative
papers (with Rivlin, Ericksen, and Bernstein). He stayed at IBM until retirement.
There he occupied different positions in research, management, consulting, and
direction of a Department. He never joined a teaching position in a university save
as a short-time visitor. But his Research and Development activities—in which he
produced outstanding contributions such as in magnetic ink-jet printing—did not
hinder his production of high-level scientific contributions (in particular with M.E.
Gurtin, B.D. Coleman and E.H. Dill).

Walter Noll (born 1925)9 still had a different background. First formed in
Mathematics at the Technical University (TU) in Berlin, Noll also acquired a good
knowledge of modern analysis and geometry by himself and during a short stay in
Paris in 1949–1950 where he caught the virus of Bourbaki’s style of mathematics.
While finishing his scientific work and assisting Ivan Szabó at TU Berlin in the
chair of Applied Mechanics, he was recommended to Truesdell by the well known
theoretical mechanician Georg W.K. Hamel (1877–1954) who had a strong interest
in the axiomatics of mechanics (cf. Hamel 1927). No doubt that Hamel’s writing
must have influenced the young Noll as it did with many German mechanicians.
Hamel had answered a 1952 request from Truesdell, as the latter wanted a col-
laborator who was instilled with this rigorous and axiomatic approach. This choice
could not have been better. Noll’s familiarity with the formalism of modern
mathematics and his knowledge of German happily complemented the historical
and deep knowledge of continuum mechanics of Truesdell. Noll joined Truesdell in
Bloomington, Indiana, in the fall of 1953. He defended a PhD thesis in the summer
of 1954, the essential contents of which are reproduced in the history making paper
of Noll (1955) on the continuity of states in continuum mechanics—see also Noll
(1958). This really is the first all embracing view of this science, not yet written in
the excessively formal style that will become a trademark of Noll. In addition to the
formidable contribution to the Handbuch der Physik co-authored with Truesdell
(Truesdell and Noll 1965)10—that deals at length more closely with the formulation
of nonlinear constitutive equations defining classes of ideal materials—further
works were to be published either independently or with new co-workers, primarily
Bernard D. Coleman (see below). Other epoch making papers by Noll touched—
and often set forth the bases of—a new approach in: linear visco-elasticity
(Coleman and Noll 1962), the basic thermodynamics of continua (Coleman and
Noll 1961), non-Newtonian fluids (Coleman et al. 1966), the mechanics of uniform
bodies with inhomogeneities (Noll 1967),11 the formal theory of so-called “simple”

9Ignatieff (1996) has written a biography of Noll. However, this text is unnecessarily hagiographic,
sometimes bordering on the ridiculous. Of course, Noll is not responsible for this unfortunate
outcome. More reasonably see Noll (2002). Noll claims in some autobiographic notes written in
1988 that he first got acquainted with mechanics while an assistant of I. Szabó in Berlin.
10Noll tells about the genesis of this volume in Noll (2002).
11This is where Noll introduces in some abstract way a geometric connection in the manner of Elie
Cartan following previous works by E. Kröner and Bruce Bilby et al.
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materials (Noll 1972), and edge interactions and surface tension (Noll and Virga
1990). He also entered a programme (cf. Noll 1987) of presenting higher algebra in
an original format. This was not too well received as including too many neolo-
gisms for things called differently—but unanimously so—by “normal” people. By
becoming too abstract and formal, Noll had lost many of his potential and well
intended readers. Of course, this remark needs some elaboration. But we must
sincerely say that Truesdell, in presenting a collection of papers of Noll (1974)
exaggerates very much in saying that Noll’s works are nowadays understood and
applied by all engineers. This kind of unnecessary flattering is not to be put to the
credit of Truesdell: the abuse of superlatives may have a counter effect.

Bernard D. Coleman (born 1930) is not exactly a co-worker of Truesdell (they
co-signed only two short papers). He is more a co-worker of Noll. But it is clear that
Truesdell was the most ardent propagandist of the works of Coleman and Noll as
proved by the book of Truesdell (1969, 1984b), so that the names of Truesdell,
Coleman and Noll are often associated as representative of a unique school of
thought. Coleman was originally a chemical engineer with a PhD from Yale
obtained at the early age of 24. He must have necessarily been influenced by the
thermodynamic works of Josiah W. Gibbs (1839–1903),12 the most famous sci-
entist from Yale and one of the greatest and most original American scientists of all
times. Remember that not only was Gibbs responsible for the mathematical
development of physical chemistry, but he also invented dyadic algebra, one of the
paths to modern vector and tensor notations. Coleman stayed from 1954 to 1957 in
a Research Laboratory of the Du Pont Company. He joined Carnegie-Mellon in
Pittsburgh in 1957 and remained there until 1988, becoming a professor of math-
ematics in 1967, and then transferring to Rutgers University, New Jersey, in 1988.

Coleman’s inclination towards more abstract formulations is probably due to
Truesdell’s and Noll’s influence after he joined their research work in the late 1950s
(Note that he had obtained his BSc in Indiana in 1951). Before the 1960s, he
published exclusively in the field of physical chemistry and chemical engineering.
He started to publish common works with W. Noll in 1959. Then his most frequent
co-workers in the domain of continuum thermo-mechanics were V.J. Mizel,
H. Markovitz, M.E. Gurtin, E.H. Dill, D.R. Owen, M. Fabrizio and D.C. Newman.
He also published a paper with Toupin in 1970.

Coleman’s most cited published papers have certainly been those on vis-
coelasticity co-authored with Noll (Coleman and Noll 1961), with the principle of
fading memory, and on the foundations of the thermodynamics of elastic materials
(Coleman and Noll 1963; also Coleman 1964). It is in these papers that a real
doctrine was exposed—or sometimes imposed—to our community. Its convincing

12Quite appropriately, Coleman obtained the title of J. Willard Gibbs Professor of
Thermomechanics at Rutgers University, NJ, in July 1988, after a long career at Carnegie-Mellon
University in Pittsburgh.
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strength resides in its elegance and apparent simplicity. It is salient at this point to
remind the reader that this consisted essentially in (a) abandoning the main idea that
some notions such as thermodynamic temperature and entropy are well defined only
in thermostatics, and assuming then that they also exist in full thermo-dynamics—
i.e., outside thermal equilibrium—(b) all dependent variables of the theory should a
priori depend on the same set of independent variables (this is often referred to as
the principle of equipresence, but it is more a precautionary measure than a true
principle), (c) all constitutive equations a priori are of the functional type over past
time, (d) these are constrained by the second law of thermodynamics which, in local
form, takes the expression of the so-called Clausius-Duhem inequality, and (e) the
entropy source and entropy flux always are the ratio of the body heat source and of
the heat flux to the thermodynamic temperature. First, this cannot satisfy experi-
mentalists of thermal science and, second, some of these working hypotheses
presented as rigid principles are contrary to physical reality. These hypotheses had
to be relaxed in order to accommodate more complex behaviours. Furthermore, the
notions of state functionals and fading memory are certainly attractive, but no so
easy to implement. That is why Coleman and Gurtin (1967) introduced the notion
of internal variables of thermodynamic state, replacing thus time functionals—
whose formulation in principle requires the knowledge of the whole past behaviour
—by ordinary functions of these new variables. They followed in this line original
ideas expressed by Pierre Duhem and Percy Bridgman.13 Other substantial
improvements were brought in by Ingo Müller.

What we must retain from our short investigation is the world wide reception
and influence of the works of the Truesdell-Toupin-Coleman-Noll School. They
imported a style of presentation and writing that became the rule through their
printed contributions in journals such as the Archives of Rational Mechanics and
Analysis that they controlled and in which they generously offered so many of their
influential publications. The universal diffusion—in English—of the articles in the
Handbuch der Physik was also a determining factor in the reception and acceptance
of the school ideas. But two points deserve special mention. One is about the
writing style of Truesdell and is best articulated by Rivlin, albeit with this author’s
usual wit and exaggeration.14 Another concerns the relationship between a priori set

13See Maugin and Muschik (1994) for a general discussion on the thermodynamics of continua
with internal variables of state and its multiple applications.
14Rivlin (1984, pp. 2799–2800) wrote apropos Truesdell’s style: “In his writing Truesdell evi-
dences a strong taste for the dramatic and so there has been created a fantasy world in which
various savants produce stream of principles, fundamental theories, capital results, and work of
unusual depth. No matter that, on examination and stripped of the, often irrelevant, mathematical
verbiage with which they are surrounded, they frequently turn out to be known results in a
disguise, or trivial, or physically unacceptable, or mathematically unsound, or some combination
of these. Nonetheless, they have been widely and uncritically reproduced in the secondary liter-
ature and have provided the starting point for many, correspondingly flawed, theses and papers.”
Of course, Rilvin’s own style is much sober than Truesdell’s somewhat grandiloquent style.
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theories and experiments as expressed by Edmund Burke, a famous British
politician and writer of the transition between the eighteenth and nineteenth
centuries.15

It is impossible to list a complete list of disciples of the Truesdell-Coleman Noll
School as most of the mechanicians educated in the 1960s–1970s, like the writer, all
became more or less “Truesdellian”, willingly or not. But we think that a few are
worth mentioning. One is Morton E. Gurtin (born 1934), a former PhD student at
Brown, who co-authored many creative papers with Coleman and wrote a most
influential contribution on linear elasticity in the Handbuch der Physik (Gurtin
1973). Another one is Ingo Müller (born 1936) who much improved rational
thermodynamics (and also was among the creators of extended thermodynamics). He
spent a few years at Johns Hopkins in the 1960s. Finally, Kombakonan R. Rajagopal
(born 1950), although a former PhD student of Roger L. Fosdick (born 1936, himself
a PhD from Brown) in Minnesota, but the author of a book with Truesdell (Truesdell
and Rajagopal 1999) perfectly fits in this “classification” because of his own style,
his incredible production, and the formidable extent of his interests in continuum
mechanics. All three scientists became influential in the field through their original
works and their own students and collaborators.

Truesdell and his co-workers founded a kind of aristocratic scientific society
under the name of Society of Natural Philosophy (SNP). This is a rather exclusive
professional society with a somewhat pretentious name (copying Newton’s word
for “physics” and corresponding well to Truesdell’s concept of his favourite
selective scientific environment).

11.4 The Co-workers and Direct Disciples of Rivlin

Truesdell and Rivlin share a certain number of co-workers in common (Ericksen,
Toupin). But the style and general understanding of these two scientists being so
different, Rivlin remained closer to the circle of British applied mathematics and
mechanics. Of course Albert E. Green (1912–1999), older than Rivlin, a former
student (PhD 1937) of Sir Geoffrey I. Taylor at Cambridge, and with his own large
experience in the elasticity of structures (shells, rods; see Green and Zerna 1954),
became a natural co-worker of Rivlin in the field of nonlinear elasticity and con-
tinuum modelling (See, e.g., Green and Rivlin 1957, 1964). But Green was much
less extrovert than Truesdell and Rivlin, so that his fruitful contributions to con-
tinuum mechanics are much less advertised although permeating many of its
developments in the 1960s–1970s. He was also much less formal than Truesdell.

15“I did not vilify theory and speculation… No, whenever I speak against theory, I mean a weak,
erroneous, fallacious, unfounded or imperfect theory; and one of the ways of discovering that it is a
false theory is comparing it with practice”.
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He certainly was one of the best representatives of the British school of mathe-
matics applied to mechanics. While teaching first in Durham and then Newcastle
upon Tyne and finally for a long time at Oxford, he formed many applied math-
ematicians. He was twice a visiting professor at Brown University (1955/1956,
1963/1964) working there with Rivlin. Among other things he published then one
of the first works on the mechanics of materials with memory (Green and Rivlin
1957), a work that influenced Coleman and Noll. After the mid-1960s he devoted
himself to the thermodynamics of continua and elasto-plastic continua (in particular
with Paul Naghdi; see Sect. 11.5). A close collaborator of Green has been
John E. Adkins (see Green and Adkins 1960) who became a professor in
Nottingham. Rather parsimonious about himself, Green provides some rare bio-
graphic information in Green (1974).16

Among the other co-workers of Rivlin, we must cite Antony Spencer and
Michael Hayes. Anthony J.M. Spencer (1929–2008), an alumnus from
Cambridge, started his PhD with Frank Nabarro in Birmingham and then concluded
it with Ian Sneddon in Keele. He spent two years at Brown, where he started a
creative co-operation with both Rivlin and Green. In co-operation with Rivlin, he
became one of the most productive contributors to the theory of invariants that is of
utmost importance in the formulation of constitutive equations (see, e.g. Spencer
1971). He joined the University of Nottingham to succeed John Adkins in 1965 as
professor of theoretical mechanics and head of the Department until his retirement
in 1994. He has done extensive research on the mechanics of fibre-reinforced
materials (see, e.g., Spencer 1972). Michael A. Hayes (born 1936)17 is Irish but
obtained his PhD at Brown with Rivlin in 1962. They worked together on the
problem of wave propagation developing a method of superposition of small
motion on a static state of finite deformation (“small superimposed on large”; see
Hayes and Rivlin 1961a, b). This became their favourite subject of co-operation
with other works published from time to time in 1969, 1972 and 1974. A specialist
of the kinematics of deformation, Hayes developed many aspects of bulk and
surface wave propagation in elasticity and visco-elasticity working out more
recently a theory of bi-vectors with Philippe Boulanger from Brussels. He became a
professor of Mechanics at the University College in Dublin until his retirement. He
mentored, among others, P. Currie, Nigel Scott, and Michel Destrade (a Frenchman
now in Galway).

We note that both Green and Spencer became Fellows of the Royal Society,
what was not the case of Rivlin who had become an American citizen and enter-
tained some bad relations with some British scientists. Hayes naturally became a
member of the Royal Irish Academy.

16Much more is to be found in the obituary published by Peter Chadwick in 2001 in the bio-
graphical Memoirs of the Fellows of the Royal Society, and the Festschrift volume edited by
Naghdi, Spencer and England (1994).
17Biographical elements of M.A. Hayes are given by Boulanger et al. (2005).
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11.5 A.E. Green and Paul Naghdi

We isolated this case because of it exemplarity of co-operation between scientists so
much apart geographically but who succeeded to build a long-time extremely
fruitful collaboration in various aspects of modern continuum mechanics. This was
not obvious from the start because of the very different initial formations of these
two scientists. Indeed, while Green was a rather typical British applied mathe-
matician, Paul Mansour Naghdi (1924–1994)18 was born in Iran but immigrated
to the USA as a young man in 1943, studied in Cornell (BSc in 1946), and earned a
PhD at the University of Michigan in Ann Arbor in 1951 as a standard mechanical
engineer of the period. He was extremely good at solving problems of
elasto-plasticity in a period where dexterity in analysis was required and only
rudiments of computations were available. This is illustrated by the solution of the
wedge problem that he gave in Naghdi (1957). After teaching for some years in
Ann Arbor, he joined the University of California in Berkeley in 1958 where he
stayed until his death in July 1994. He played there a predominant role in the
establishment of a Division of Applied mechanics, while becoming quite involved
in the activities of the American Society of Mechanical Engineers (ASME) of which
he celebrated the fiftieth anniversary with a history of its Division of Applied
Mechanics in Naghdi (1979).

As already mentioned Naghdi was an authority in small-strain plasticity on
which he wrote a synthesis in 1960. Along with works of analytical nature, he and
his co-workers conducted experiments in the field in the mid-1950s. But with time
he also became an expert in finite-strain plasticity where he cultivated an alternate
to the usually accepted multiplicative decomposition of the deformation gradient
(cf. his critical synthesis review: Naghdi 1990). In this line he mentored J. Casey
and A.R. Srinivasa. He published one of the first papers in this theory together with
A.E. Green in 1965 (see also Naghdi and Trapp 1975). He was already a recognized
expert in the theory of elastic shells and rods to which he contributed a beautiful
critical synthesis in the Handbuch der Physik (Naghdi 1973). This is universally
recognized as a definitive treatment of the subject. In this theory he did not hesitate
to exploit a kinematic description that uses the idea of directors put forward by
Duhem and then Ericksen and Truesdell (1958) in the form of “Cosserat surfaces”,
and on which he started to publish as early as 1963. He was in fact very much
attracted by the idea of polar materials as initially introduced by the Cosserat
brothers (1909). Some of his ideas were transmitted to his PhD student Miles
Rubin. He used some of these ideas (so-called Cosserat surfaces) in a theory of
sheets and jets of ideal fluids in the late 1970s and the 1980s.

Paul Naghdi, although formed as a traditional mechanical engineer, clearly was
very much attracted to the fundamental questions posed by continuum mechanics.
He of course read the early achievements of the Truesdellian School, but this

18A biographical sketch of Naghdi is given by two of his former PhD students in Casey and
Crochet (1995).
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tendency was strengthened with the close collaboration that he established with
A.E. Green in the early 1960s and that lasted for almost thirty years. The two of
them seemed to have interacted through mail but also with visits to one another as
Green became a frequent visitor at the University of California, Berkeley. Their
common view on finite-strain elasto-plasticity was already mentioned, but this
rapidly extended to all the new directions taken by continuum mechanics in the
1960s. Practically none of the new developments escaped the attention and sagacity
of the two co-workers, whether these developments dealt with generalized con-
tinuum mechanics or the theory of reacting mixtures, or new proposals regarding
the foundations of the thermo-mechanics of continua (in particular with a balance of
entropy with separate notions of the second law of thermodynamics; cf. Green and
Naghdi 1977). Along the first line we note the theory of Cosserat surfaces and
multipolar continua as initially proposed by Green and Rivlin. The theory of
mixtures was expanded by Green and Naghdi in a series of papers in the mid-1960s.
On this occasion they proposed an original energy based formulation of the fun-
damental laws of continuum mechanics using an argument of invariance applied to
a global statement of the first law of thermodynamics (Green and Naghdi 1965).
This was much elaborated upon in a series of papers published after the death of
Naghdi (Green and Naghdi 1995). Their common output is a formidable one both in
quantity and creativity. But the most original one certainly is the thermodynamic
theory of thermodynamically irreversible continua “without dissipation” that they
proposed in 1993 (Green and Naghdi 1993). The purpose of this work was to offer a
possibility (but this is not the only one) to avoid the paradox of heat propagation at
an infinite speed. Naghdi mentored successful contributors to continuum mechan-
ics, among them Marcel Crochet (on non-Newtonian fluids, PhD 1966), James
Casey (PhD 1978), Miles B. Rubin (PhD 1979) and A.R. Srinivasa (PhD 1991)
along different lines that often opened new horizons in modern continuum
mechanics.

In all, the co-operation between Green and Naghdi was exemplary and rather
unique in the world of science because of its longevity and continuous good
relationship, what says a lot concerning these two scientists. In most minds the two
names remain associated.

11.6 A.C. Eringen and Engineering Science

Born in Turkey, A. Cemal Eringen (1921–2009)19 immigrated to the USA after his
basic formation in engineering in Istanbul. He obtained his PhD in mechanical
engineering at the Brooklyn Polytechnic Institute in 1948 under the guidance of
Nicholas Hoff. He was then to occupy faculty positions in three teaching

19We gave a long biographical sketch of Eringen and a complete list of his publications of all types
in a special issue of the Int. J. Eng. Sci. (cf. Maugin 2011) dedicated to his memory.
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institutions, first at the Illinois Institute of Technology (1948–1953), next at Purdue
University (1953–1966), and finally at Princeton University (1966 till retirement).
Although trained as an engineer Eringen always entertained a specific interest in
modern mathematical physics and applied mathematics, demonstrating an insatiable
curiosity for these two fields and keeping aware of all new developments. He was
also very much interested in the possibility to apply irreversible thermodynamics in
dissipative continuum mechanics as shown by one of the rare early publications on
the subject (Eringen 1960), although most of his works during the stay in Illinois
and Purdue dealt first with problems of structural mechanics (buckling, vibrations,
sandwich structures, problems of impact, elastic waves of different types) and one
of the first attempts to treat stochastic problems in this field (together with his first
PhD student, J.C. Samuels). However, early in the 1960s he took four lines of
action that were to drive all his future teaching, scientific works and editorial
activities until his death in 2009. First he created a true programme of “engineering
sciences” at Purdue, including a course on the foundations of nonlinear continuum
mechanics. After an attempt by Prager (1961), this led to the publication of one of
the first books of its kind on the subject (Eringen 1962). Furthermore, he created the
International Journal of Engineering Sciences in 1963. This was to become a
successful forum for the presentation of innovative works in continuum physics,
including many of his own works and those of his students and co-workers. This
created a line that was going to spread a true spirit of engineering sciences in the
USA, in parallel, and sometimes in competition, with Truesdell journal (the A.R.M.
A.). But it was generally less formal and mathematical than Truesdell School’s
ARMA and more open to many foreign authors. The fact that Eringen himself was
of foreign origin may have been decisive in this orientation. Finally, he founded a
new professional society called the Society of Engineering Sciences (SES) that held
a yearly symposium every year (from 1963 until now) distributing several prizes
and medals to the most creative engineer-scientists in the field. This move was
extremely successful as it attracted many engineers who cultivated a specific taste
for a recovery of the style of early nineteenth century mechanicians who combined
good mathematics with physical acuity and a general interest in continuum physics.

Retrospectively, we think that Eringen’s innovative book (as a teaching tool) of
1962 was a bit premature, emphasizing some trends that were not to expand so
much in the future, and sometimes not selective enough, and giving useless detail. It
was certainly inspired by the Truesdell-Toupin Handbuch article, but it helped
many good-willed engineers to capture the re-emerging global vision of continuum
mechanics. Pedagogical errors in its redaction were corrected in a more accessible,
but very efficient, book (Eringen 1967) that met an immense success in the USA
and abroad. As to the new journal and the new professional society, they offered the
possibility to the specialized scientist or engineer—handicapped by a peculiar lack
of training in fundamentals—to explore the most interesting interdisciplinary areas
of cross fertilization, in which one finds the root system of science. Indeed, the new
journal (IJES) immediately provided the required forum dedicated to the
“re-establishment of a common tongue between engineer and scientist” (Eringen’s
words). It encouraged the publication of serious research works of depth and
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breadth at the frontier areas of science and engineering. Eringen himself will deeply
participate in this advance through his many published research works (see below).
The SES first met on November 4, 1963, with an attendance of about 400 engineers,
physicists and mathematicians. This ecumenical spirit was maintained at the highest
level with the yearly meetings of the society, sometimes in competition with
established engineering societies, but now more than often in fruitful co-operation
with them, notably the American Society of Mechanical Engineers (ASME) and the
American Society of Civil Engineers (ASCE).

Eringen’s international influence is above all to be assessed from his most creative
scientific production—which we examined elsewhere in detail (cf. Maugin 2011).
Indeed, in full accord with the aim and spirit of the IJES and SES, Eringen became in
the 1960s one of themost active contributorswith numerousworks in various forms of
generalized continuum mechanics (micro-morphic and micro-polar materials, non-
local theory of continua), the mechanics of deformable electromagnetic materials, the
theory of liquid crystals, that of mixtures, the theory of relativistic continua, the theory
of defects, etc. The corresponding formidable output has had a tremendous reception
all over the world. In this he was greatly helped by a selective group of PhD students
and co-workers, including, to name a few, S.L. Koh, N.F. Jordan, R.C. Dixon,
J.D. Ingram, J.W. Dunkin, Richard A. Grot, Charles B. Kafadar, Robert J. Twiss,
W.D. Clauss Jr, T.S. Chang, James D. Lee, Hilmi Demiray, Charles B. Speziale,
Patrick O’Leary, E.S. Suhubi, D.G.B. Edelen, and the present writer. Some of these
co-collaborators had a brilliant career (e.g., Twiss in geology, Grot at the National
Bureau of Standards, Speziale in turbulence, Lee, Demiray, Suhubi and Edelen in the
academic world, and others in large engineering companies).

Among the most cited and influential works of Eringen, we note that on the
introduction of the concept of micro-morphic bodies (Eringen and Suhubi 1964),
that on micropolar fluids (Eringen 1966a), the one on the general thermo-mechanical
description of continua (Eringen 1966b), and that on nonlocal elasticity (Eringen and
Edelen 1972). Many other papers dealt with applications of these models to various
media (e.g., liquid crystals, electromagnetic continua, blood flow, fibered media, and
wave propagation). We refer the curious reader to the total list of publications of
Eringen given in a special issue of the IJES dedicated to his memory (cf. Maugin
2011). Never at rest, Eringen continued to publish scientific papers and books until
his last years. In addition to his 230 journal publications and some 60 more technical
reports, he published—alone or with close collaborators—no less than 13 books on
general continuum mechanics, generalized-continuum mechanics, elastodynamics,
electrodynamics of continua, and he publicized continuum physics in a series of four
landmark volumes that he edited and contributed (Eringen 1971/1976). In conclu-
sion, we like to mention his lack of enthusiasm for large scientific meetings, his little
interest in controversies (contrary to Truesdell and Rivlin), and his somewhat dry but
crystal-clear way of exposition that is best illustrated (my personal opinion) by his
presentation of the mechanics of micropolar materials in Eringen (1968). No doubt,
therefore, that Eringen appears as one of the masters of the renewal of continuum
mechanics and an inspiring scientist to many students and professionals all over the
world.
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Remark. Before examining some isolated cases in Europe, we want to mention
the very special case of Raymond D. Mindlin (1906–1987). Contrary to Truesdell
and Eringen, he contented himself with doing pure science (with more than a
hundred papers in refereed journals of mechanics or applied physics) and forming
students. He did not control a journal, neither did he write a real book for students
nor founded a scientific society, although he was very active in the ASME. This
attitude, per force, does not automatically yield an immediate world wide influence
in the medium of continuum mechanics. Though, he formed excellent scientists
who, together with him, greatly influenced that part of mechanics that deals with a
microstructure and/or piezoelectric properties. Mindlin was formed as a standard
mechanical engineer at Columbia University, New York City, (PhD 1934) where he
spent most of his career, demonstrating a rather minimal mobility. He is interna-
tionally recognized for his early works in solving with dexterity beautiful problems
of the strength of materials (the well-named “Mindlin”s problem”) and performing
initial experiments in photomechanics. These works are permeated by the excellent
ASME spirit in the line of Timoshenko that we described elsewhere (cf. Maugin
2013a, Chap. 4). Then he developed an unsurpassed expertise in problems dealing
with the vibrations of elastic and piezoelectric plates right at a time when this was
needed in the development of electromechanical transducers in signal processing as
required by the US Army and the conception of RADAR equipments. Furthermore,
he efficiently contributed to the expansion of theories of granular materials, lattices
and deformable media equipped with a mechanical microstructure. He was thus a
pioneer in the introduction of gradient-theories of elastic materials, as also in refined
theories of electro-elastic media.20 Some of his former PhD students also reached
international recognition [e.g., Harry F. Tiersten (1930–2006) and Y.-H. Pao (born
1930, PhD 1959)] especially in wave propagation and the modelling of
electro-magneto-mechanical interactions. He received many honours including the
Presidential Medal of Merit in 1946 and a National Medal of Science (a Presidential
award) in 1979. Much less publicized than Truesdell and less versatile than
Eringen, Mindlin nonetheless deserves our admiration. He stands as one of the
masters of continuum mechanics in the second half of the twentieth century.

11.7 Outside the USA and the UK

Publishing in a language with no international status and in a country with closed
borders like the former Soviet Union did not favour a worldwide spread of a general
vision of one’s own science. This was the fate of Leonid I. Sedov and

20Mindlin’s life, complete list of publications, and detailed description of his scientific achieve-
ments (by his former students and collaborators) are given in Herrmann (1974). His collected
papers are reproduced in Mindlin (1989).
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Alexey A. Ilyushin, both identified as excellent technical contributors to their
respective specialty (theoretical aerodynamics for Sedov, and plasticity for
Ilyushin), but also scientists having a general vision and willing to ponder and
shape the bases of continuum mechanics in the large. Still, we must distinguish
between the former who had the chance to travel abroad on many occasions (as an
official representative of Soviet mechanics) and to have the privilege to have his
books translated either abroad or at home—in English and many other languages—
and the later who rarely—if ever—travelled abroad and had no books translated in
English.21 The profound reasons for this last matter may be discussed.22

Leonid Ivanovich Sedov (1907–1999) may be considered an emblematic figure
in the landscape of mechanics in Russia. He was educated in mathematics and
mechanics at the (Lomonosov) Moscow State University (MSU). His first works
(1934) were devoted to two-dimensional problems of hydrodynamics. He subse-
quently provided numerous contributions to hydro- and aero-dynamics, noticeably,
those concerning the impact of bodies on water, hydroplaning, and aerodynamic
forces on deformable wings. One of his favourite tools was the exploitation of
dimensional analysis and so-called similarity, a subject on which he wrote a very
popular monograph. He also presented a famous solution to the “blast-wave”
problem, obviously of actuality then with the first nuclear explosions. But in more
recent times, Sedov focused on the teaching and general formulation of continuum
mechanics. His books (1962, 1971, 1973) on the subject have met an incredible
success in Russian and in their many foreign-language translations by both foreign
publishers and MIR Publishers in Moscow. One of his favourite general formula-
tions is now known as “Sedov’s variational principle”. It is quite possible that part
of the international recognition of Sedov in the 1960s–1970s was due to the fact
that he was presented by Soviet authorities as the principal engineer behind the
Soviet Sputnik project,23 what helped him to become influential in the International
Astronautic Union. But apart from this touch of vanity to which he did not resist,
one must recognize the high value of his works, teaching and spreading of the
continuum-mechanics spirit throughout the world. This was in a style very different
from that of Truesdell, without any abuse of abstract notation and no recourse to
Bourbakian mathematics, aiming first at efficacy.

As a matter of fact, Sedov’s first book (in Russian) of 1962 may be compared to
the 1962 book of Eringen. Not only dates of publication coincide, and thus some

21Ilyushin’s book on plasticity was first translated only in French by a publishing house specialized
in civil engineering (Ilyushin 1948). His general views on continuum mechanics were published
only in Russian by the publishing house of the Lomonosov University (cf. Ilyushin 1971).
22This may be a result of the close relationship of Ilyushin with the military establishment and his
friendship with the highest political authorities in the Soviet Union in Stalin’s time.
23In a private conversation Sedov explained to the author, with a slight dose of cynicism, that all
great national programmes need a well identified leader for publicity purposes. He was chosen to
do the job and he accepted it. He had no visible regrets although he knew well that Sergueï
Pavlovich Korolev (1907–1966) was the true driving figure in the programme.
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simultaneous priority can be granted to both, but as remarked by a reviewer24 of its
English translation (Sedov 1966), this rather dense book (252 pages only in
translation) conveys a similar general vision of both fluid and solid mechanics, but
is less ambitious and less formal than Eringen’s book. Like the latter, Sedov’s book
of 1962 considered finite deformations from the start. But, also less oriented toward
applications of very specific behaviours, it emphasizes physical principles and
develops general concepts and models applying general tensor formalism in arbi-
trary coordinates in a remarkably clear and to the point exposition. Thereafter, a
series of books expanding this at larger length will be published (Sedov 1971,
1973) reflecting the evolution of teaching of the subject matter as a unified and
synthetic presentation at the University of Moscow and some research trends. These
books and the lectures of Sedov abroad have certainly opened the horizon of many
engineers who then join the study of more fundamental continuum mechanics. He
really gave a specific print to Russian continuum mechanics. This in turn influenced
many researchers the world over. He was the recipient of many honours both in
Russia and outside. He kept active until his last years in spite of a declining sight,
paying special attention to the problem of inertia in space-time.

The case of Alexey Antonovich Ilyushin (1911–1998) is quite different. One
must consult the biography given in Russian and English in a book (Kiyko et al.
2001) for a complete overview. This engineer-scientist had a long career in solid
mechanics mixed with politically marked organizational roles (e.g., Rector of the
University of Leningrad at a dramatic time). The strength of materials and the
engineering aspects of elastoplasticity seem to have been a constant preoccupation
of Ilyushin, starting with his early works in the mid 1930s. What is quite
remarkable is that these most innovative and rewarding developments were made in
an obviously difficult period, the 1940s, corresponding also to the strength of
maturity reached by this scientist. But in perusing a large sample of his works
(Ilyushin 2003–2009), we discover many contributions that were not well known
outside the Soviet Union, including deeply thought works in thermo-visco-elasticity
and in dynamic problems. Moreover, in his lectures at MSU published in book form
(Ilyushin 1971), this author made a special effort at a general rational presentation
of continuum mechanics. However, this is not at the level of C.A. Truesdell in the
west, and with less international success than Sedov’s courses. This matter is
emphasized in Brovko (2013) who has benevolently examined the formal structure
of Ilyushin’s general approach. In these publications Ilyushin constantly reminds
the reader that the actual state of stresses in a material body depends on the whole
past history of the body. This was clearly expressed by Ilyushin in his book on
plasticity of 1948. This is also continuously emphasized by him in his textbook for
the Lomonosov University (Ilyushin 1971). Reception of Ilyushin’s works in the
West was appraised in Maugin (2013b) while the heritage of Ilyushin’s works is
surveyed by Brovko et al. (2011).

24See Romains’ review (1966).
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We can say that Ilyushin served as an inspiration for many students in Russia, so
that he was one of the local successful masters of continuum mechanics. This was
also the case of other scientists in Russia, among them Anatolii Isakovich Lurie or
Lurie (pronounced Lurié; 1901–1980). Educated at the Saint-Petersburg Polytechnic
Institute, Lurie became there the Head of the Department of Theoretical Mechanics
before WWII and the Head of the Department of Dynamics and Strength of
Machines or Department of Mechanics and Control Processes in the period
1944–1977. His numerous works span the hydrodynamics of viscous liquids as well
as solid mechanics and control theory, and are the trademark of a true
scientist-encyclopaedist. He proved to be quite receptive to the ideas of the
Truesdellian School, as he even endeavoured to translate into Russian Truesdell’s
“First course in rational mechanics” of 1975. His own style is best illustrated by his
most achieved book—translated into English by his son, Konstantine—published in
1980, the year of his death. This book is rather exceptional in the Russian landscape
of continuum mechanics of the period, but it is unfortunately little known, even in
translation, in the west. This book included the consideration of rubber as a good
example of incompressible material, variational formulations with restrictions of the
elasticity potential, and the problem of superimposition of small motions on a finite
strain state (cf. original works of Toupin and Bernstein, and Hayes and Rivlin in
previous sections). He is more “occidental” than other Russian authors in advocating
the use of an intrinsic notation, does not hesitate to exploit modern techniques such
as representing the angular-velocity vector by the Rodrigues-Hamilton and
Cayley-Klein parameters,25 and pre-empted the exploitation of dissipation poten-
tials. As a consequence of his never tired activity and his ingenuity Lurie created a
true Leningrad/Saint-Petersburg School of continuum mechanics the spirit of which
was kept alive in the works of Pavel Andreevich Zhilin (1942–2005).This last author
wrote an informative appraisal of Lurie’s works in mechanics (Zhilin 2001).

Like Leonid Sedov, Paul Germain (1920–2009)26 was primarily a successful
and world renowned contributor to theoretical aerodynamics (transonic flow, theory
of delta wings, shock structure, etc.). Among all scientists examined so far in this
contribution, Germain was the one with the most solid formation in mathematics.
Although admitted to the Ecole Polytechnique, he preferred to join the celebrated
Ecole Normale Supérieure to specialize in mathematics. He should have become a
geometer, but circumstances—the immediate post World War II period, the
acknowledged need in the field with the expansion of jet airplanes, the flair of his
mentor, Joseph Pérès, for promising new developing fields in mechanics—Germain
started to exert his mathematical dexterity in problems of aerodynamics after a short
stay in England. But he also became a professor and had to teach continuum

25This representation is useful in describing rotational internal degrees of freedom in generalized
continuum mechanics.
26Germain tells his own scientific trajectory in Germain (2000) in Maugin et al. (2000). We also
gave a biographical sketch of Germain in Maugin (2010). See also Chap. 7 in Maugin (2013a).
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mechanics. This he did conscientiously, all the way to writing the first well
structured textbook on continuum mechanics as a global science in France in 1962.
This book (Germain 1962), although aimed at undergraduate students following a
cursus in applied mathematics, set forth unique standards that were soon applied
also in engineering schools.27 In this book that well compares with Eringen (1962)
and Sedov (1962) in timing and contents, Germain views continuum mechanics first
as a whole and then gives examples in fluid and solid mechanics. The book follows
a tradition exemplified by the volume devoted to continuum mechanics28 in the
formidable treatise on rational mechanics of Paul Appell (1921). It bears the print of
a mathematician but remains very efficient pedagogically. A more ambitious book
aimed more at graduate students, was published later (Germain 1973) incorporating
sound continuum thermo-mechanics, but did not meet the same success.29

To fulfil needs dictated by his teaching and because of mere scientific curiosity,
Germain studied in depth all new works that blossomed in general continuum
mechanics in the early 1960s (especially those coming from the Truesdellian
School) but remained opened to ideas of other scientists always keeping a wise
critical appraisal of, and a balanced view between, different “schools” (Truesdell,
Rivlin, Eringen, Sedov, etc.). He paid special attention to the thermo-mechanical
formulation, often not clearly decided between the Truesdell-Coleman-Noll
approach and that of more classical thermodynamicists (e.g., Joseph Kestin),
each one having its own advantages and disadvantages. In truth, he was a realist
who also maintained a reasonable amount of abstraction, while encouraging the use
of good applied mathematics wherever needed (e.g., efficient asymptotic and
numerical methods, applied functional analysis). Through his teaching at the
University of Paris—and then at the Ecole Polytechnique—and the ensuing swarm
in the rest of the country, he influenced a whole generation. His own “formation” in
the new continuum mechanics was facilitated by the long stays he made at Brown
University and CALTECH at appropriate moments when he befriended many of the
American masters of this new mechanics. In France, the centralized structure of
higher education and research, combined with the facts that he was in charge of the
Journal de Mécanique (to become later on the European Journal of Mechanics) at
its beginnings, and that he practically took the control of the Paris Academy of
Sciences, helped him to build a nationwide authority in the field. The whole school
of French mechanics owes its remarkable development to him in the 1970s–1980s.
Internationally, he did not hesitate to travel, deliver lectures in French or English
(which he had not learnt in school), and entertain the best friendly contacts with

27Remember that engineering schools were not integrated in French universities and admission to
them was by competition. Some have been integrated in local universities only recently.
28We have examined in detail this treatise in Maugin (2013a, Chap. 11).
29We personally think that the level of teaching was ambiguous and there was an abuse of some
mathematics such as convex analysis which the French have very much developed as an efficient
means in the modelling of constitutive behaviour (e.g., J.-J. Moreau and his disciples).
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many of his peers around the world. That, together with a gift for public
communication, certainly explains why he was elected president (1984–1988) of
the International Union of Theoretical and Applied Mechanics (IUTAM), and
became member of many national academies, in both east and west. Still, in spite of
this international recognition, like for the Russian authors, there remained the
handicap of not writing initially in English.

11.8 Conclusion: Some Sociological Remarks

It may be thought that the above selected short list of “masters” of modern con-
tinuum mechanics is somewhat arbitrary, or too much to the own taste of the writer.
It is not so. We sincerely believe in all fairness to our colleagues that the listed
scientists are those who most influenced the rapid evolution in the field in the period
1940–1980. This they achieved by different means, first through their own brilliant
contributions, but also through their co-workers and direct disciples yielding a true
circle of devoted collaborators, the aura they gained in the world, and the benev-
olent but forceful control they exerted on means of diffusion and scientific publi-
cations. That is, doing an excellent scientific work clearly is not enough. This leads
us to deviate from pure mathematical science to indulge in elementary sociology.
Here we, and the reader, can make distinction between the different individuals.
Although all expanded their global approach at about the same time, with a clear
priority granted to Rivlin and Truesdell, their most active and creative period has
been in the 1960s. This is not exactly a coincidence for it corresponds to a period of
relative optimistic faith in the future after the drama of the Second World War and
to a blooming economy in the richest parts of the world, essentially then in North
America and Europe. Some of these scientists were in fact frustrated mechanicians,
or engineers, who had always dreamed of becoming creative mathematicians (a real
exception is P. Germain) while most of them became with age more theoretical. But
to be really successful in their national or international influence, some of them
understood that publishing papers—albeit excellent from a technical viewpoint—in
specialized journals was not enough. They created new journals (e.g., the ARMA,30

30Truesdell (1987–8) tells how he came to create the ARMA, successor of the JRMA, by estab-
lishing a fruitful contact with the Editorial staff (Dr. Springer and Dr Mayer-Kaupp) at Springer in
Berlin, so that the first issue of ARMA appeared on September 24, 1957. The journal was to work
like the publications of Academies, with no review for papers published by members of the
Editorial board and transmission by such a member for other papers. It favoured long articles
written in the purest English. This did much to spread the Trusdellian spirit among mechanicians
with a mathematical inclination. Truesdell established friendly relations with Springer, in partic-
ular with Siegfried Flügge, the Editor of the formidable Handbuch der Physik (56 volumes). Later
on, he joined Flügge as editor of the volumes on mechanics. This efficient co-operation resulted
also in a series of books under the title of “Springer Tracts in Natural Philosophy” which con-
tributed further to the dissemination of the school’s spirit (39 volumes published between 1964 and
1998).
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the IJES,31 the Journal de Mécanique),32 founded new scientific societies (e.g., the
SNP or the SES), practically controlled the publication of chapters in encyclopae-
dias (cf. the Handbuch der Phyisk), were active in some of the funding agencies
(this applies to the USA in particular), or were excessively powerful in academies
(e.g., Sedov in Russia or Germain in France). Of course, they also had to publish
successful books at different levels (textbooks or research monographs) that would
be accessible to many readers in the original language or in translation. There were
some caveats in these various moves. Indeed, controlling a selective journal that
becomes a mandatory inevitable channel to diffuse one’s ideas may sometimes
yield a true unhealthy intellectual terrorism with an expansion of some chapel-like
spirit in the community of mechanics. Hubris and a definite feeling of superiority
are not always good advisers. They also build blinkers that made some of these
great scientists to eschew promising lines of development. The control of the
editorship of a journal seems to be particularly important since we have witnessed
several attempts through some intense lobbying33 at taking the control of some well
diffused journal on the death or retirement of its editor in chief.

Of course, a centralized administrative, university system and research structure
favoured the emergence of (truly) scientific masters who were simultaneously
endowed with a disproportionate strong power in the supervision and regulation of
a field at a national level. The above scrutinized cases of Sedov and Germain are
exemplary, but they are not the only ones. We have commented elsewhere
(cf. Maugin 2013a, Chap. 9) on the dominant role played by Witold Nowacki
(1911–1986) in the field of mechanics in Poland, reorganizing its teaching and
research at a national level after the Second World War, and then in charge of the
main publications (e.g., the Bulletin of the Polish Academy of Science and other
specialized journals) as well as the publications of books by the Polish Scientific
Publisher (P.W.N), and finally in charge of the Polish Academy of Sciences at its
president. The same can be said of Heinz Parkus (1909–1982) in Austria in post
WWII, with the main chair at the Technical University of Vienna, and the editor-
ship of the influential Acta Mechanica. Although Germany was never truly

31The creation of the IJES, like that of the International Journal of solids and Structures and the
International Journal of Non-linear Mechanics (among other journals of the same class) in the
1960s was due to the interest for science of Ian Robert Maxwell (1923–1991)—born J.L.H.B.
Hoch—who had founded the Pergamon Press Publishing House in Oxford. Maxwell, with a
flamboyant lifestyle (as witnessed by G. Herrmann and A.C. Eringen when he gathered his
editors-in-chief in the UK), died at sea of unknown causes, after mismanagement of his company.
32The Journal de Mécanique (Paris; 1962–1981) was in fact founded by Joseph Pérès (1890–
1962), but the latter died before publication of the first issue. Paul Germain took over the
Editorship of the Journal. This was published by Gauthier-Villars Publishing Company, a much
less aggressive and internationally oriented firm than Springer-Verlag.
33Here we do not give names in order to avoid legal pursuits for defamation.
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centralized, some gifted individuals such as Ludwig Prandtl (1875–1953) and
Richard von Mises (1883–1953), undoubtedly great scientists, demonstrated also
some powerful insight by founding the Gesellschaft für Mathematik and Mechanics
(for short GAMM) and creating an accompaying spot-on forum with the Zeitschrift
für Mathematik und Mechanik (for short, ZAMM) in 1921. Their affiliation with
Göttingen and Dresden, respectively, was also instrumental in their highest status
among German mechanicians of the period. In the post WWII period, Horst
Lippmann (1931–2008) represents also a powerful member of the German
mechanical engineering community with his affiliation with T.U. Munich and the
editorship of the Archives in Applied Mechanics (successor of Ingenieur Archiv)
and his involvement in the Mathematischen Forschungsinstitut in Oberwolfach
(Black Forest) and the International Centre of Mechanical Sciences (CISM) in
Udine (Italy). To some degree, Pericles S. Teocaris (1921–1999) played a similar
role in Greece with his professorship at the Technical University in Athens (NTUA)
and his prevailing role in the National Academy of Sciences of Athens. In the UK,
the publishing business was monopolized by Cambridge University and Oxford
University. Concerning the former, some members of the community of
mechanicians affiliated with the local university more or less controlled publication
in the corresponding output in the Proceedings of the Royal Society and created the
most successful Journal of the Mechanics and Physics of Solids (JMPS). This was
the case of Rodney Hill, albeit a most discrete and modest scientist in spite of his
breakthrough works, who was nonetheless influential in the Royal Society and
having founded the JMPS in 1952. Oxford was less successful along this line and
kept with Applied Mathematics while we note that one of the above examined
masters, Albert Green, was not so much involved in the control of publications
although himself a member of the Royal Society. Like Germany, Italy did not
present a unified front, presenting rather three geographical zones of influence (the
North, the South and central Rome). Influence of various masters there was
essentially felt through the use of privileged text books and membership in selection
committees for university positions.

Clearly, overall we have tried to honestly describe an exciting period while
avoiding excessively apologetic comments in spite of our obvious enthusiasm, but
we did not avoid biases and some prejudices that are naturally human.
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Ronald S. Rivlin (1915–2005)

Clifford A. Truesdell (1919–2000)
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Richard A. Toupin (b. 1926; Photo in 2013)

Walter Noll (born 1925)
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Bernard D. Coleman (Born 1930)

Paul M. Naghdi (1924–1994)
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A. Cemal Eringen (1920–2009)

Raymond D. Mindlin (1906–1987)
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Leonid I. Sedov (1907–1999)

Alexey A. Ilyushin (1911–1998)
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Paul Germain (1920–2009)
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Chapter 12
Epilogue

After the completion of this third volume, we have a better, if not fully complete,
perspective view of the development of continuum mechanics from the Renaissance
(sixteenth century) to the most recent progress early in this twenty-first century.
Apart from the never ending competition between molecular approach and direct
continuum vision—the latter on which we naturally focused attention—we can
roughly distinguish three main periods.

The first period is one during which experiments and common sense were at
work. This was mostly driven by the needs to expand hydraulic systems for
everyday control of flows. This in turn led to envisaging what we now call porous
media and the more or less rapid flow of liquids. Viscosity and the complex
structure of observed flows planted the seeds for modern developments lastly
including a comprehending of the science of flight and naturally leading to a
consideration of turbulence. This was exposed in Chaps. 2, 3 and 4 in the present
volume. They essentially concern what was finally put under the common umbrella
of fluid mechanics. This was achieved mainly by civil engineers. But with time and
the influence of a more theoretical and mathematical vision of Nature—that we
associate with the expansion of modern science (purposefully devised experiments,
introducing relationships between numbers, appearance of first deterministic
notions)—these engineers mixed their approach with a new form of human activity,
the newly born scientific profession. The transition to the second period was upheld
by the essential contributions of the greatest “mechanicians” of all, namely, Galileo
Galilei, Descartes, Huygens, Newton, and then the Bernoullis and Euler—only
Einstein was to go much further by inventing a new paradigm in what was iden-
tified before as “classical” mechanics. With the masterpieces of such luminaries,
one had at hand the basic principles on which to build a true science first of point
mechanics, then the mechanics of rigid bodies, and finally continuum mechanics in
what was called the framework of “rational mechanics”. The spirit of the
Enlightenment provided the general background for such a progress that inevitably
yielded the second period. Noticeable contributors to that first period are not always
publicized at the level of their achievements although the names of Torricelli,
Pascal, Mariotte, Borda, and Bossut come immediately to mind while those of
Darcy, Poiseuille, and Hagen will be representative of a closer incorporation in the
second period, not to speak of Reynolds and Prandtl much later on.
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This second period corresponds to what we underlined as a period in which “the
importance of being analytical” became a definite asset. Continuum mechanics was
now clearly identified as a promising field of research sustained by obvious engi-
neering applications. Analysis and continuum mechanics then developed hand in
hand, required mathematical tools and accuracy being fostered by the need to
correctly represent the newly introduced notions and to help solving practical
problems on the basis of this new theoretical background. This period starts with
Newton, Leibniz and the Bernoullis to gain a full momentum with Maupertuis,
d’Alembert, Euler and Lagrange. Then a tremendous progress was realized by the
most brilliant minds of the nineteenth century, often rightly qualified as
“engineers-scientists”, such as Fresnel, Cauchy, Navier, Poisson, Duhamel, Piola,
Kirchhoff, Helmholtz, Lord Kelvin, Stokes, Maxwell, Barré de Saint-Venant,
Boussinesq, and Voigt, the most remarkable breakthroughs being the introduction
of the notion of stress tensor—that became synonymous with continuum mechanics
per se -, the expansion of elasticity and viscous-flow mechanics, and the birth of a
true theory of plasticity (Tresca, Saint-Venant, Lévy). This we perused with great
care in the second volume (Maugin 2014) devoted to the eighteenth and nineteenth
centuries.

The “Belle époque” (1880–1914) does not really constitute the third period, but
it has been singled out for the following reasons. First it stands for a transition
period before the dramatic events of the first half of the twentieth century, the
“Belle” qualification corresponding to a period of relative peace on the European
continent, an expansion through out the world, politically, economically and sci-
entifically, but to the price of an increase in colonization of others. From the purely
scientific viewpoint, this period corresponds to an often felt accomplishment and
the attainment of a somewhat completeness of the field of continuum mechanics, all
this in spite of the burgeoning of new fields such as relativistic studies, embryonic
quantum mechanics, and biology—but Pasteur had shown the way in this last field.
Also, this period still is the field of action of essentially European institutions, so
that our work of appraisal of original contributions is facilitated by the sole
knowledge of four languages (English, German French, and Italian). More char-
acteristically and with deep consequences, this period was nonetheless pregnant of
further progress; it provided the essential basis for a re-consideration of the field in
post WWII by scientists-historians such as Truesdell. To examine this situation at
the Belle époque, we decided to peruse in detail the encyclopaedic texts and lecture
notes of various enlightened mechanicians or physicists, namely, Duhem, the
Cosserat brothers, Caratheodory, Poincaré, Hilbert and Hellinger (see Maugin
2013a, b and the present volume), not necessarily the most creative contributors to
our field, but perspicacious examiners. We find in these remarkable timely syn-
theses—that give a state-of-the-art view at that crucial moment—all the material
that was to provide the main ideas in the new construct and rational re-organization
of the field in post WWII. Among this material we emphasize the formulation of
basic balance laws (often still on the basis of the principle of virtual power), the
seeds of good elements of thermo-mechanics as a unified science, some rich views
on field discontinuities, elements of singular behaviours to be dealt with in greater
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detail in the future, and suggestions for a finer mechanical description of complex
materials (those with a potent microstructure), all these to be dutifully exploited
during the third period.

We envisage as third period that one which succeeded the Second World War,
although some definite signs had shown in the 1920s and 1930s, in particular
concerning behaviours such as visco-plasticity (Bingham, Reiner), plasticity
(Nadai, von Mises, Hencky, Prandtl, Reuss), dislocations (Taylor, Polanyi,
Orowan), and finite-strain elasticity (Murnagham, Signorini et al.). This period
starts to show the emergence and powerful rise of research in North America that
suggest a further globalization of research in the field and supremacy of English as a
lingua franca permeating all of science. Although we still perceived some national
schools and styles—in particular in Maugin (2013a, b) (cf. US, British, French,
Polish, German, and Russian schools) -, the internationalization of the field became
an obvious fact. We clearly emphasized the prevailing role played by a selected
group of brilliant individuals whom we called the “masters of modern continuum
mechanics” (e.g., Truesdell, Rivlin, etc.), while we also naturally had to account for
more dilute contributions from a wealth of scientists, in particular those who were
in direct contact with these masters. For obvious reasons of generational relations,
we are much better informed about all these people, especially if one adopted a
more cosmopolitan approach to science than before (as was the case of the present
author). After that of analysis, the role of modern differential geometry in the solid
basis of continuum mechanics with its delivery of new useful technical tools in
describing complex mechanical behaviours of materials has been appraised at its
just value. Simultaneously, the synthetic thermo-mechanical framework was prac-
tically adopted everywhere, while applications of modern functional analysis
(functional spaces, variational techniques) allowed rigorous unambiguous state-
ments of many theorems of existence, uniqueness, and regularity of solutions. This
was a required prerequisite for efficient well designed applications of numerical
schemes allowed by developments in computer science (finite-element method,
finite-volume technique, mixed analytical-numerical approaches, multi-scale
approaches, mathematically justified homogenization techniques).

These underlined new developments offered the unique occasion to cast the
successes of the master scientists in their proper socio-economical background as
science itself of necessity became part of this general landscape, essentially with
established networks of contact, influence, communication, and diffusion. This is
indeed what fostered the present era That is why on a more scientific level we gave
a conspectus of different specialized fields which, in our opinion, shaped most of
the true accomplishments in the period of interest, and our own contributions in
particular. Although this often reflects a personally biased interest and expertise, in
all, the domains of the viscoelasticity of solids, plasticity, Fracture, generalized
continuum mechanics in its different avatars, configurational mechanics, electro-
magneto-mechanical interactions, and relativistic continuum mechanics were ana-
lyzed more or less thoroughly in Maugin (2013a, b) and the present volume. To be
complete, one should add to these the contents of several historical reviews pub-
lished in other places (Maugin 2011, 2012, 2013a, b, 2015a, b). The best conclusion
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and prospective view of the near future were given at the end of Maugin (2013a, b),
emphasizing the fostering role played by new experimental equipments and com-
putational means, the interactions between scales, and the increasing importance of
a good geometrical framework, but simultaneously regretting the ever increasing
demand of multi-sided knowledge from the most concerned scientists. Perhaps that
we are now experiencing a period quite similar to that of the “Belle époque” with an
overestimated confidence in our own prowess, i.e., some exaggerated hubris.
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