

THIRD EDITION

JavaScript
Pocket Reference

David Flanagan

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

JavaScript Pocket Reference, Third Edition
by David Flanagan

Copyright © 2012 David Flanagan. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promo-
tional use. Online editions are also available for most titles (http://my.safari
booksonline.com). For more information, contact our corporate/institutional
sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Simon St. Laurent
Production Editor: Teresa Elsey
Proofreader: Kiel Van Horn
Indexer: Jay Marchand
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

October 1998: First Edition.
November 2002: Second Edition.
April 2012: Third Edition.

Revision History for the Third Edition:
2012-04-06 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449316853 for release de-
tails.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are
registered trademarks of O’Reilly Media, Inc. JavaScript Pocket Reference,
the image of a Javan rhinoceros, and related trade dress are trademarks of
O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear
in this book, and O’Reilly Media, Inc., was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the
publisher and authors assume no responsibility for errors or omissions, or
for damages resulting from the use of the information contained herein.
ISBN: 978-1-449-31685-3

[M]

1333663134

http://my.safaribooksonline.com/?portal=oreilly
http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449316853

Contents

Preface vii

Chapter 1: Lexical Structure 1
Comments 1
Identifiers and Reserved Words 2
Optional Semicolons 3

Chapter 2: Types, Values, and Variables 5
Numbers 6
Text 9
Boolean Values 12
null and undefined 13
The Global Object 14
Type Conversions 15
Variable Declaration 19

Chapter 3: Expressions and Operators 23
Expressions 24
Operators 28
Arithmetic Operators 32
Relational Operators 36
Logical Expressions 39

iii

Assignment Expressions 42
Evaluation Expressions 43
Miscellaneous Operators 44

Chapter 4: Statements 49
Expression Statements 51
Compound and Empty Statements 52
Declaration Statements 53
Conditionals 55
Loops 59
Jumps 64
Miscellaneous Statements 70

Chapter 5: Objects 75
Creating Objects 76
Properties 79
Object Attributes 90

Chapter 6: Arrays 93
Creating Arrays 94
Array Elements and Length 95
Iterating Arrays 96
Multidimensional Arrays 97
Array Methods 98
ECMAScript 5 Array Methods 103
Array Type 107
Array-Like Objects 107
Strings as Arrays 108

Chapter 7: Functions 111
Defining Functions 112
Invoking Functions 115

iv | Table of Contents

Function Arguments and Parameters 121
Functions as Namespaces 124
Closures 125
Function Properties, Methods, and Constructor 129

Chapter 8: Classes 133
Classes and Prototypes 134
Classes and Constructors 136
Java-Style Classes in JavaScript 141
Immutable Classes 143
Subclasses 144
Augmenting Classes 146

Chapter 9: Regular Expressions 149
Describing Patterns with Regular Expressions 149
Matching Patterns with Regular Expressions 158

Chapter 10: Client-Side JavaScript 163
Embedding JavaScript in HTML 163
Event-Driven Programming 165
The Window Object 165

Chapter 11: Scripting Documents 179
Overview of the DOM 179
Selecting Document Elements 182
Document Structure and Traversal 188
Attributes 190
Element Content 192
Creating, Inserting, and Deleting Nodes 195
Element Style 197
Geometry and Scrolling 201

Table of Contents | v

Chapter 12: Handling Events 205
Types of Events 207
Registering Event Handlers 215
Event Handler Invocation 218

Chapter 13: Networking 225
Using XMLHttpRequest 225
HTTP by <script>: JSONP 233
Server-Sent Events 236
WebSockets 237

Chapter 14: Client-Side Storage 239
localStorage and sessionStorage 240
Cookies 245

Index 251

vi | Table of Contents

Preface

JavaScript is the programming language of the Web. The over-
whelming majority of modern websites use JavaScript, and all
modern web browsers—on desktops, game consoles, tablets,
and smartphones—include JavaScript interpreters, making
JavaScript the most ubiquitous programming language in his-
tory. JavaScript is part of the triad of technologies that all Web
developers must learn: HTML to specify the content of web
pages, CSS to specify the presentation of those pages, and
JavaScript to specify their behavior. Recently, with the advent
of Node (http://nodejs.org), JavaScript has also become an im-
portant programming language for web servers.

This book is an excerpt from the more comprehensive Java-
Script: The Definitive Guide. No material from the out-of-date
second edition remains. I’m hopeful that some readers will find
this shorter and denser book more useful than the larger and
more intimidating volume from which it came. This pocket
reference follows the same basic outline as the larger book:
Chapters 1 through 9 cover the core JavaScript language, start-
ing with fundamental matters of language syntax—types, val-
ues, variables, operators, statements—and moving on to cov-
erage of JavaScript objects, arrays, functions and classes. These
chapters cover the language itself, and are equally relevant to
programmers who will use JavaScript in web browsers and
programmers who will be using Node on the server-side.

vii

http://shop.oreilly.com/product/9780596805531.do
http://shop.oreilly.com/product/9780596805531.do

To be useful, every language must have a platform or standard
library of functions for performing things like basic input and
output. The core JavaScript language defines a minimal API for
working with text, arrays, dates, and regular expressions but
does not include any input or output functionality. Input and
output (as well as more sophisticated features, such as net-
working, storage, and graphics) are the responsibility of the
“host environment” within which JavaScript is embedded. The
most common host environment is a web browser. Chapters
1 through 9 cover the language’s minimal built-in API. Chap-
ters 10 through 14 cover the web browser host environment
and explain how to use “client-side JavaScript” to create dy-
namic web pages and web applications.

The number of JavaScript APIs implemented by web browsers
has grown explosively in recent years, and it is not possible to
cover them all in a book of this size. Chapters 10 through 14
cover the most important and fundamental parts of client-side
JavaScript: windows, documents, elements, styles, events, net-
working and storage. Once you master these, it is easy to pick
up additional client-side APIs, which you can read about in
JavaScript: The Definitive Guide. (Or in Canvas Pocket Refer-
ence and jQuery Pocket Reference, which are also excerpts from
The Definitive Guide.)

Although the Node programming environment is becoming
more and more important, there is simply not room in this
pocket reference to include any information about server-side
JavaScript. You can learn more at http://nodejs.org. Similarly,
there is no room in the book for an API reference section.
Again, I refer you to JavaScript: The Definitive Guide, or to on-
line JavaScript references such as the excellent Mozilla Devel-
oper Network at http://developer.mozilla.org/.

The examples in this book can be downloaded from the book’s
web page, which will also include errata if any errors are dis-
covered after publication:

http://shop.oreilly.com/product/0636920011460.do

viii | Preface

http://shop.oreilly.com/product/9780596805531.do
http://shop.oreilly.com/product/0636920016045.do
http://shop.oreilly.com/product/0636920016045.do
http://shop.oreilly.com/product/0636920016182.do
http://nodejs.org
http://shop.oreilly.com/product/9780596805531.do
http://developer.mozilla.org/
http://shop.oreilly.com/product/0636920011460.do

In general, you may use the examples in this book in your pro-
grams and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of
the code. We appreciate, but do not require, an attribution
like this: “From JavaScript Pocket Reference, third edition, by
David Flanagan (O’Reilly). Copyright 2012 David Flanagan,
978-1-449-31685-3.” If you feel your use of code examples falls
outside fair use or the permission given here, feel free to contact
us at permissions@oreilly.com.

To comment or ask technical questions about this book, send
email to:

bookquestions@oreilly.com

This book is also available from the Safari Books Online
service. For full digital access to this book and others on similar
topics from O’Reilly and other publishers, visit http://www.sa
faribooksonline.com/.

I’d like to thank my editor, Simon St. Laurent, for challenging
me to excerpt The Definitive Guide down to this more man-
ageable size and also the O’Reilly production staff, who always
manage to make my books look great.

Preface | ix

mailto:permissions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.safaribooksonline.com/
http://www.safaribooksonline.com/

CHAPTER 1

Lexical Structure

JavaScript programs are written using the Unicode character
set. Unicode is a superset of ASCII and Latin-1 and supports
virtually every written language currently used on the planet.

JavaScript is a case-sensitive language. This means that lan-
guage keywords, variables, function names, and other identi-
fiers must always be typed with a consistent capitalization of
letters. The while keyword, for example, must be typed
“while,” not “While” or “WHILE.” Similarly, online, Online,
OnLine, and ONLINE are four distinct variable names.

Comments
JavaScript supports two styles of comments. Any text between
a // and the end of a line is treated as a comment and is ignored
by JavaScript. Any text between the characters /* and */ is also
treated as a comment; these comments may span multiple lines
but may not be nested. The following lines of code are all legal
JavaScript comments:

// This is a single-line comment.
/* This is also a comment */ // And here is another.
/*
 * This is yet another comment.
 * It has multiple lines.
 */

1

Identifiers and Reserved Words
An identifier is simply a name. In JavaScript, identifiers are used
to name variables and functions and to provide labels for cer-
tain loops in JavaScript code. A JavaScript identifier must begin
with a letter, an underscore (_), or a dollar sign ($). Subsequent
characters can be letters, digits, underscores, or dollar signs.

JavaScript reserves a number of identifiers as the keywords of
the language itself. You cannot use these words as identifiers
in your programs:

break delete function return typeof
case do if switch var
catch else in this void
continue false instanceof throw while
debugger finally new true with
default for null try

JavaScript also reserves certain keywords that are not currently
used by the language but which might be used in future ver-
sions. ECMAScript 5 reserves the following words:

class const enum export extends import super

In addition, the following words, which are legal in ordinary
JavaScript code, are reserved in strict mode:

implements let private public yield
interface package protected static

Strict mode also imposes restrictions on the use of the follow-
ing identifiers. They are not fully reserved, but they are not
allowed as variable, function, or parameter names:

arguments eval

ECMAScript 3 reserved all the keywords of the Java language,
and although this has been relaxed in ECMAScript 5, you
should still avoid all of these identifiers if you plan to run your
code under an ECMAScript 3 implementation of JavaScript:

abstract double goto native static
boolean enum implements package super
byte export import private synchronized
char extends int protected throws

2 | Chapter 1: Lexical Structure

class final interface public transient
const float long short volatile

Optional Semicolons
Like many programming languages, JavaScript uses the semi-
colon (;) to separate statements (see Chapter 4) from each
other. This is important to make the meaning of your code
clear: without a separator, the end of one statement might ap-
pear to be the beginning of the next, or vice versa. In JavaScript,
you can usually omit the semicolon between two statements if
those statements are written on separate lines. (You can also
omit a semicolon at the end of a program or if the next token
in the program is a closing curly brace }.) Many JavaScript
programmers (and the code in this book) use semicolons to
explicitly mark the ends of statements, even where they are not
required. Another style is to omit semicolons whenever possi-
ble, using them only in the few situations that require them.
Whichever style you choose, there are a few details you should
understand about optional semicolons in JavaScript.

Consider the following code. Since the two statements appear
on separate lines, the first semicolon could be omitted:

a = 3;
b = 4;

Written as follows, however, the first semicolon is required:

a = 3; b = 4;

Note that JavaScript does not treat every line break as a semi-
colon: it usually treats line breaks as semicolons only if it can’t
parse the code without the semicolons. More formally, Java-
Script interprets a line break as a semicolon if it appears after
the return, break, or continue keywords, or before the ++ or
-- operators, or if the next nonspace character cannot be in-
terpreted as a continuation of the current statement.

Optional Semicolons | 3

These statement termination rules lead to some surprising ca-
ses. This code looks like two separate statements separated
with a newline:

var y = x + f
(a+b).toString()

But the parentheses on the second line of code can be inter-
preted as a function invocation of f from the first line, and
JavaScript interprets the code like this:

var y = x + f(a+b).toString();

4 | Chapter 1: Lexical Structure

CHAPTER 2

Types, Values, and Variables

Computer programs work by manipulating values, such as the
number 3.14 or the text “Hello World.” The kinds of values
that can be represented and manipulated in a programming
language are known as types. When a program needs to retain
a value for future use, it assigns the value to (or “stores” the
value in) a variable. A variable defines a symbolic name for a
value and allows the value to be referred to by name.

JavaScript types can be divided into two categories: primitive
types and object types. JavaScript’s primitive types include
numbers, strings of text (known as strings), and Boolean truth
values (known as booleans). The first few sections of this chap-
ter explain JavaScript’s primitive types. (Chapters 5, 6, and 7
describe three kinds of JavaScript object types.)

JavaScript converts values liberally from one type to another.
If a program expects a string, for example, and you give it a
number, it will automatically convert the number to a string
for you. If you use a nonboolean value where a boolean is ex-
pected, JavaScript will convert accordingly. “Type Conver-
sions” on page 15 describes JavaScript’s type conversions.

JavaScript variables are untyped: you can assign a value of any
type to a variable, and you can later assign a value of a different
type to the same variable. Variables are declared with the var
keyword. JavaScript uses lexical scoping. Variables declared

5

outside of a function are global variables and are visible every-
where in a JavaScript program. Variables declared inside a
function have function scope and are visible only to code
that appears inside that function. “Variable Declara-
tion” on page 19 covers variables in more detail.

Numbers
Unlike many languages, JavaScript does not make a distinction
between integer values and floating-point values. All numbers
in JavaScript are represented as floating-point values. Java-
Script represents numbers using the 64-bit floating-point for-
mat defined by the IEEE 754 standard, which means it can
represent numbers as large as ±1.7976931348623157 × 10308

and as small as ±5 × 10−324.

The JavaScript number format allows you to exactly represent
all the integers between −9007199254740992 (−253) and
9007199254740992 (253), inclusive. If you use integer values
larger than this, you may lose precision in the trailing digits.
Note, however, that certain operations in JavaScript (such as
array indexing and the bitwise operators described in Chap-
ter 3) are performed with 32-bit integers.

When a number appears directly in a JavaScript program, it’s
called a numeric literal. JavaScript supports numeric literals in
several formats. Note that any numeric literal can be preceded
by a minus sign (-) to make the number negative.

In a JavaScript program, a base-10 integer is written as a se-
quence of digits. For example:

0
1024

In addition to base-10 integer literals, JavaScript recognizes
hexadecimal (base-16) values. A hexadecimal literal begins
with “0x” or “0X”, followed by a string of hexadecimal digits.
A hexadecimal digit is one of the digits 0 through 9 or the letters

6 | Chapter 2: Types, Values, and Variables

a (or A) through f (or F), which represent values 10 through
15. Here are examples of hexadecimal integer literals:

0xff // 15*16 + 15 = 255 (base 10)
0xCAFE911

Floating-point literals can have a decimal point; they use the
traditional syntax for real numbers. A real value is represented
as the integral part of the number, followed by a decimal point
and the fractional part of the number.

Floating-point literals may also be represented using exponen-
tial notation: a real number followed by the letter e (or E), fol-
lowed by an optional plus or minus sign, followed by an integer
exponent. This notation represents the real number multiplied
by 10 to the power of the exponent.

More succinctly, the syntax is:

[digits][.digits][(E|e)[(+|-)]digits]

For example:

3.14
6.02e23 // 6.02 × 1023

1.4738223E-32 // 1.4738223 × 10−32

JavaScript programs work with numbers using the arithmetic
operators that the language provides. These include + for ad-
dition, - for subtraction, * for multiplication, / for division,
and % for modulo (remainder after division). Full details on
these and other operators can be found in Chapter 3.

In addition to these basic arithmetic operators, JavaScript sup-
ports more complex mathematical operations through a set of
functions and constants defined as properties of the Math
object:

Math.pow(2,53) // => 9007199254740992: 2 to the power 53
Math.round(.6) // => 1.0: round to the nearest integer
Math.ceil(.6) // => 1.0: round up to an integer
Math.floor(.6) // => 0.0: round down to an integer
Math.abs(-5) // => 5: absolute value
Math.max(x,y,z) // Return the largest argument
Math.min(x,y,z) // Return the smallest argument
Math.random() // Pseudo-random number 0 <= x < 1.0

Numbers | 7

Math.PI // π
Math.E // e: The base of the natural logarithm
Math.sqrt(3) // The square root of 3
Math.pow(3,1/3) // The cube root of 3
Math.sin(0) // Trig: also Math.cos, Math.atan, etc.
Math.log(10) // Natural logarithm of 10
Math.log(100)/Math.LN10 // Base 10 logarithm of 100
Math.log(512)/Math.LN2 // Base 2 logarithm of 512
Math.exp(3) // Math.E cubed

Arithmetic in JavaScript does not raise errors in cases of over-
flow, underflow, or division by zero. When the result of a nu-
meric operation is larger than the largest representable number
(overflow), the result is a special infinity value, which Java-
Script prints as Infinity. Similarly, when a negative value be-
comes larger than the largest representable negative number,
the result is negative infinity, printed as -Infinity. The infinite
values behave as you would expect: adding, subtracting, mul-
tiplying, or dividing them by anything results in an infinite
value (possibly with the sign reversed).

Division by zero is not an error in JavaScript: it simply returns
infinity or negative infinity. There is one exception, however:
zero divided by zero does not have a well-defined value, and
the result of this operation is the special not-a-number value,
printed as NaN. NaN also arises if you attempt to divide infinity
by infinity, or take the square root of a negative number or use
arithmetic operators with nonnumeric operands that cannot
be converted to numbers.

JavaScript predefines global variables Infinity and NaN to hold
the positive infinity and not-a-number value.

The not-a-number value has one unusual feature in JavaScript:
it does not compare equal to any other value, including itself.
This means that you can’t write x == NaN to determine whether
the value of a variable x is NaN. Instead, you should write x !=
x. That expression will be true if, and only if, x is NaN. The
function isNaN() is similar. It returns true if its argument is
NaN, or if that argument is a nonnumeric value such as a string
or an object. The related function isFinite() returns true if its
argument is a number other than NaN, Infinity, or -Infinity.

8 | Chapter 2: Types, Values, and Variables

There are infinitely many real numbers, but only a finite num-
ber of them (18437736874454810627, to be exact) can be rep-
resented exactly by the JavaScript floating-point format. This
means that when you’re working with real numbers in Java-
Script, the representation of the number will often be an ap-
proximation of the actual number and small rounding errors
will occur.

Text
A string is an immutable ordered sequence of 16-bit values,
each of which typically represents a Unicode character—
strings are JavaScript’s type for representing text. The length of
a string is the number of 16-bit values it contains. JavaScript’s
strings (and its arrays) use zero-based indexing: the first 16-bit
value is at position 0, the second at position 1 and so on. The
empty string is the string of length 0. JavaScript does not have
a special type that represents a single element of a string. To
represent a single 16-bit value, simply use a string that has a
length of 1.

String Literals
To include a string literally in a JavaScript program, simply
enclose the characters of the string within a matched pair of
single or double quotes (' or "). Double-quote characters may
be contained within strings delimited by single-quote charac-
ters, and single-quote characters may be contained within
strings delimited by double quotes. Here are examples of string
literals:

"" // The empty string: it has zero characters
'name="myform"'
"Wouldn't you prefer O'Reilly's book?"
"This string\nhas two lines"
"π = 3.14"

The backslash character (\) has a special purpose in JavaScript
strings. Combined with the character that follows it, it

Text | 9

represents a character that is not otherwise representable
within the string. For example, \n is an escape sequence that
represents a newline character.

Another example is the \' escape, which represents the single
quote (or apostrophe) character. This escape sequence is useful
when you need to include an apostrophe in a string literal that
is contained within single quotes. You can see why these are
called escape sequences: the backslash allows you to escape
from the usual interpretation of the single-quote character. In-
stead of using it to mark the end of the string, you use it as an
apostrophe:

'You\'re right, it can\'t be a quote'

Table 2-1 lists the JavaScript escape sequences and the char-
acters they represent. Two escape sequences are generic and
can be used to represent any character by specifying its Latin-1
or Unicode character code as a hexadecimal number. For ex-
ample, the sequence \xA9 represents the copyright symbol,
which has the Latin-1 encoding given by the hexadecimal num-
ber A9. Similarly, the \u escape represents an arbitrary Unicode
character specified by four hexadecimal digits; \u03c0 repre-
sents the character π, for example.

Table 2-1. JavaScript escape sequences

Sequence Character represented

\0 The NUL character (\u0000)

\b Backspace (\u0008)

\t Horizontal tab (\u0009)

\n Newline (\u000A)

\v Vertical tab (\u000B)

\f Form feed (\u000C)

\r Carriage return (\u000D)

\" Double quote (\u0022)

\' Apostrophe or single quote (\u0027)

\\ Backslash (\u005C)

10 | Chapter 2: Types, Values, and Variables

Sequence Character represented

\x XX The Latin-1 character specified by the two hexadecimal digits XX

\u XXXX The Unicode character specified by the four hexadecimal digits XXXX

If the \ character precedes any character other than those
shown in Table 2-1, the backslash is simply ignored (although
future versions of the language may, of course, define new es-
cape sequences). For example, \# is the same as #. ECMAScript
5 allows a backslash before a line break to break a string literal
across multiple lines.

One of the built-in features of JavaScript is the ability to con-
catenate strings. If you use the + operator with numbers, it adds
them. But if you use this operator on strings, it joins them by
appending the second to the first. For example:

msg = "Hello, " + "world"; // => "Hello, world"

To determine the length of a string—the number of 16-bit
values it contains—use the length property of the string. De-
termine the length of a string s like this:

s.length

In addition to this length property, there are a number of
methods you can invoke on strings (as always, see the reference
section for complete details):

var s = "hello, world" // Start with some text.
s.charAt(0) // => "h": the first character.
s.charAt(s.length-1) // => "d": the last character.
s.substring(1,4) // => "ell": chars 2, 3, and 4
s.slice(1,4) // => "ell": same thing
s.slice(-3) // => "rld": last 3 characters
s.indexOf("l") // => 2: position of first l.
s.lastIndexOf("l") // => 10: position of last l.
s.indexOf("l", 3) // => 3: position at or after 3
s.split(", ") // => ["hello", "world"]
s.replace("h", "H") // => "Hello, world":
 // replaces all instances
s.toUpperCase() // => "HELLO, WORLD"

Text | 11

Remember that strings are immutable in JavaScript. Methods
like replace() and toUpperCase() return new strings: they do
not modify the string on which they are invoked.

In ECMAScript 5, strings can be treated like read-only arrays,
and you can access individual characters (16-bit values) from
a string using square brackets instead of the charAt() method:

s = "hello, world";
s[0] // => "h"
s[s.length-1] // => "d"

Boolean Values
A boolean value represents truth or falsehood, on or off, yes or
no. There are only two possible values of this type. The re-
served words true and false evaluate to these two values.

Boolean values are generally the result of comparisons you
make in your JavaScript programs. For example:

a == 4

This code tests to see whether the value of the variable a is equal
to the number 4. If it is, the result of this comparison is the
boolean value true. If a is not equal to 4, the result of the com-
parison is false.

Boolean values are commonly used in JavaScript control struc-
tures. For example, the if/else statement in JavaScript per-
forms one action if a boolean value is true and another action
if the value is false. You usually combine a comparison that
creates a boolean value directly with a statement that uses it.
The result looks like this:

if (a == 4)
 b = b + 1;
else
 a = a + 1;

This code checks whether a equals 4. If so, it adds 1 to b; other-
wise, it adds 1 to a.

12 | Chapter 2: Types, Values, and Variables

As we’ll discuss in “Type Conversions” on page 15, any Java-
Script value can be converted to a boolean value. The following
values convert to, and therefore work like, false:

undefined
null
0
-0
NaN
"" // the empty string

All other values, including all objects (and arrays) convert to,
and work like, true. false, and the six values that convert to
it, are sometimes called falsy values, and all other values are
called truthy. Any time JavaScript expects a boolean value, a
falsy value works like false and a truthy value works like true.

As an example, suppose that the variable o either holds an ob-
ject or the value null. You can test explicitly to see if o is non-
null with an if statement like this:

if (o !== null) ...

The not-equal operator !== compares o to null and evaluates
to either true or false. But you can omit the comparison and
instead rely on the fact that null is falsy and objects are truthy:

if (o) ...

In the first case, the body of the if will be executed only if o is
not null. The second case is less strict: it will execute the body
of the if only if o is not false or any falsy value (such as null
or undefined). Which if statement is appropriate for your pro-
gram really depends on what values you expect to be assigned
to o. If you need to distinguish null from 0 and "", then you
should use an explicit comparison.

null and undefined
null is a language keyword that evaluates to a special value that
is usually used to indicate the absence of a value. Using the
typeof operator on null returns the string “object,” indicating
that null can be thought of as a special object value that

null and undefined | 13

indicates “no object.” In practice, however, null is typically
regarded as the sole member of its own type, and it can be used
to indicate “no value” for numbers and strings as well as ob-
jects. Most programming languages have an equivalent to Java-
Script’s null: you may be familiar with it as null or nil.

JavaScript also has a second value that indicates absence of
value. The undefined value represents a deeper kind of ab-
sence. It is the value of variables that have not been initialized
and the value you get when you query the value of an object
property or array element that does not exist. The undefined
value is also returned by functions that have no return value,
and the value of function parameters for which no argument is
supplied. undefined is a predefined global variable (not a lan-
guage keyword like null) that is initialized to the undefined
value. If you apply the typeof operator to the undefined value,
it returns “undefined,” indicating that this value is the sole
member of a special type.

Despite these differences, null and undefined both indicate an
absence of value and can often be used interchangeably. The
equality operator == considers them to be equal. (Use the strict
equality operator === to distinguish them.) Both are falsy
values—they behave like false when a boolean value is re-
quired. Neither null nor undefined have any properties or
methods. In fact, using . or [] to access a property or method
of these values causes a TypeError.

The Global Object
The sections above have explained JavaScript’s primitive types
and values. Object types—objects, arrays, and functions—are
covered in chapters of their own later in this book. But there is
one very important object value that we must cover now. The
global object is a regular JavaScript object that serves a very
important purpose: the properties of this object are the globally
defined symbols that are available to a JavaScript program.
When the JavaScript interpreter starts (or whenever a web

14 | Chapter 2: Types, Values, and Variables

browser loads a new page), it creates a new global object and
gives it an initial set of properties that define:

• Global properties like undefined, Infinity, and NaN

• Global functions like isNaN(), parseInt() (“Type Con-
versions” on page 15), and eval() (“Evaluation Expres-
sions” on page 43).

• Constructor functions like Date(), RegExp(), String(),
Object(), and Array()

• Global objects like Math and JSON (“Serializing Proper-
ties and Objects” on page 84)

The initial properties of the global object are not reserved
words, but they deserve to be treated as if they are. This chapter
has already described some of these global properties. Most of
the others will be covered elsewhere in this book.

In top-level code—JavaScript code that is not part of a
function—you can use the JavaScript keyword this to refer to
the global object:

var global = this; // /refer to the global object

In client-side JavaScript, the Window object serves as the
global object. This global Window object has a self-referential
window property that can be used to refer to the global object.
The Window object defines the core global properties, but it
also defines quite a few other globals that are specific to web
browsers and client-side JavaScript (see Chapter 10).

When first created, the global object defines all of JavaScript’s
predefined global values. But this special object also holds pro-
gram-defined globals as well. If your code declares a global
variable, that variable is a property of the global object.

Type Conversions
JavaScript is very flexible about the types of values it requires.
We’ve seen this for booleans: when JavaScript expects a
boolean value, you may supply a value of any type, and

Type Conversions | 15

JavaScript will convert it as needed. Some values (“truthy” val-
ues) convert to true and others (“falsy” values) convert to
false. The same is true for other types: if JavaScript wants a
string, it will convert whatever value you give it to a string. If
JavaScript wants a number, it will try to convert the value you
give it to a number (or to NaN if it cannot perform a meaningful
conversion). Some examples:

10 + " objects" // => "10 objects". 10 -> string
"7" * "4" // => 28: both strings -> numbers
var n = 1 - "x"; // => NaN: "x" can't convert to a number
n + " objects" // => "NaN objects": NaN -> "NaN"

Table 2-2 summarizes how values convert from one type to
another in JavaScript. Bold entries in the table highlight con-
versions that you may find surprising. Empty cells indicate that
no conversion is necessary and none is performed.

Table 2-2. JavaScript type conversions

Value Converted to:

String Number Boolean Object

undefined "undefined" NaN false throws TypeError

null "null" 0 false throws TypeError

true "true" 1 Boolean(true)

false "false" 0 Boolean(false)

"" (empty
string)

0 false String("")

"1.2" (non-
empty,
numeric)

1.2 true String("1.2")

"one" (non-
empty, non-
numeric)

NaN true String("one")

0 "0" false Number(0)

-0 "0" false Number(-0)

NaN "NaN" false Number(NaN)

Infinity "Infinity" true Number(Infinity)

16 | Chapter 2: Types, Values, and Variables

Value Converted to:

String Number Boolean Object

-Infinity "-Infinity" true Number(-Infinity)

1 (finite, non-
zero)

"1" true Number(1)

{} (any
object)

toString() toString() or
valueOf()

true

[] (empty
array)

"" 0 true

[9]
(1 numeric elt)

"9" 9 true

['a'] (any
other array)

use join()
method

NaN true

function()
{} (any
function)

function source NaN true

Because JavaScript can convert values flexibly, its == equality
operator is also flexible with its notion of equality. All of the
following comparisons are true, for example:

null == undefined // These two are treated as equal.
"0" == 0 // String -> a number before comparing.
0 == false // Boolean -> number before comparing.
"0" == false // Both operands -> 0 before comparing.

Although JavaScript performs many type conversions auto-
matically, you may sometimes need to perform an explicit con-
version, or you may prefer to make the conversions explicit to
keep your code clearer.

The simplest way to perform an explicit type conversion is to
use the Boolean(), Number(), String(), or Object() functions:

Number("3") // => 3
String(false) // => "false" Or false.toString()
Boolean([]) // => true
Object(3) // => new Number(3)

Type Conversions | 17

Note that any value other than null or undefined has a
toString() method and the result of this method is usually the
same as that returned by the String() function.

Certain JavaScript operators perform implicit type conver-
sions, and are sometimes used for the purposes of type con-
version. If one operand of the + operator is a string, it converts
the other one to a string. The unary + operator converts its
operand to a number. And the unary ! operator converts its
operand to a boolean and negates it. These facts lead to the
following type conversion idioms that you may see in some
code:

x + "" // Same as String(x)
+x // Same as Number(x). Also x-0
!!x // Same as Boolean(x). Note double !

Formatting and parsing numbers are common tasks in com-
puter programs and JavaScript has specialized functions and
methods that provide more precise control over number-to-
string and string-to-number conversions.

The toString() method defined by the Number class accepts
an optional argument that specifies a radix, or base, for the
conversion. If you do not specify the argument, the conversion
is done in base 10. However, you can also convert numbers in
other bases (between 2 and 36). For example:

var n = 17;
binary_string = n.toString(2); // Evaluates to "10001"
octal_string = "0" + n.toString(8); // Evaluates to "021"
hex_string = "0x" + n.toString(16); // Evaluates to "0x11"

When working with financial or scientific data, you may want
to convert numbers to strings in ways that give you control over
the number of decimal places or the number of significant
digits in the output, or you may want to control whether ex-
ponential notation is used. The Number class defines three
methods for these kinds of number-to-string conversions:

var n = 123456.789;
n.toFixed(2); // "123456.79"
n.toExponential(3); // "1.235e+5"
n.toPrecision(7); // "123456.8"

18 | Chapter 2: Types, Values, and Variables

If you pass a string to the Number() conversion function, it at-
tempts to parse that string as an integer or floating-point literal.
That function only works for base-10 integers, and does not
allow trailing characters that are not part of the literal. The
parseInt() and parseFloat() functions (these are global func-
tions, not methods of any class) are more flexible. parseInt()
parses only integers, while parseFloat() parses both integers
and floating-point numbers. If a string begins with “0x” or
“0X,” parseInt() interprets it as a hexadecimal number. Both
parseInt() and parseFloat() skip leading whitespace, parse as
many numeric characters as they can, and ignore anything that
follows. If the first nonspace character is not part of a valid
numeric literal, they return NaN:

parseInt("3 blind mice") // => 3
parseFloat(" 3.14 meters") // => 3.14
parseInt("-12.34") // => -12
parseInt("0xFF") // => 255
parseFloat("$72.47"); // => NaN

parseInt() accepts an optional second argument specifying the
radix (base) of the number to be parsed. Legal values are be-
tween 2 and 36. For example:

parseInt("11", 2); // => 3 (1*2 + 1)
parseInt("077", 8); // => 63 (7*8 + 7)
parseInt("ff", 16); // => 255 (15*16 + 15)

Variable Declaration
Before you use a variable in a JavaScript program, you should
declare it. Variables are declared with the var keyword, like
this:

var i;
var sum;

You can also declare multiple variables with the same var
keyword:

var i, sum;

Variable Declaration | 19

And you can combine variable declaration with variable
initialization:

var message = "hello";
var i = 0, j = 0, k = 0;

If you don’t specify an initial value for a variable with the var
statement, the variable is declared, but its value is undefined
until your code stores a value into it.

Note that the var statement can also appear as part of the for
and for/in loops (introduced in Chapter 4), allowing you to
succinctly declare the loop variable as part of the loop syntax
itself. For example:

for(var i = 0; i < 10; i++) console.log(i);
for(var i = 0, j=10; i < 10; i++,j--) console.log(i*j);
for(var p in o) console.log(p);

If you’re used to statically typed languages such as C or Java,
you will have noticed that there is no type associated with
JavaScript’s variable declarations. A JavaScript variable can
hold a value of any type. For example, it is perfectly legal in
JavaScript to assign a number to a variable and then later assign
a string to that variable:

var i = 10;
i = "ten";

It is legal and harmless to declare a variable more than once
with the var statement. If the repeated declaration has an ini-
tializer, it acts as if it were simply an assignment statement.

If you attempt to read the value of an undeclared variable,
JavaScript generates an error. In ECMAScript 5 strict mode (see
“use strict” in Chapter 4), it is also an error to assign a value to
an undeclared variable. Historically, however, and in nonstrict
mode, if you assign a value to an undeclared variable, Java-
Script actually creates that variable as a property of the global
object, and it works much like a properly declared global
variable. This means that you can get away with leaving your
global variables undeclared. This is a bad habit and a source of
bugs, however, and you should always declare your variables
with var.

20 | Chapter 2: Types, Values, and Variables

The scope of a variable is the region of your program source
code in which it is defined. A global variable has global scope;
it is defined everywhere in your JavaScript code. On the other
hand, variables declared within a function are defined only
within the body of the function. They are local variables and
have local scope. Function parameters also count as local vari-
ables and are defined only within the body of the function.

Within the body of a function, a local variable takes precedence
over a global variable with the same name. Although you can
get away with not using the var statement when you write code
in the global scope, you must always use var to declare local
variables. Function definitions can be nested. Each function
has its own local scope, so it is possible to have several nested
layers of local scope.

In some C-like programming languages, each block of code
within curly braces has its own scope, and variables are not
visible outside of the block in which they are declared. This is
called block scope, and JavaScript does not have it. Instead,
JavaScript uses function scope: variables are visible within the
function in which they are defined and within any functions
that are nested within that function.

JavaScript’s function scope means that all variables declared
within a function are visible throughout the body of the func-
tion. Curiously, this means that variables are even visible be-
fore they are declared. This feature of JavaScript is informally
known as hoisting: JavaScript code behaves as if all variable
declarations in a function (but not any associated assignments)
are “hoisted” to the top of the function.

Variable Declaration | 21

CHAPTER 3

Expressions and Operators

An expression is a phrase of JavaScript that a JavaScript inter-
preter can evaluate to produce a value. A constant embedded
literally in your program is a very simple kind of expression. A
variable name is also a simple expression that evaluates to
whatever value has been assigned to that variable. Complex
expressions are built from simpler expressions. An array access
expression, for example, consists of one expression that eval-
uates to an array followed by an open square bracket, an ex-
pression that evaluates to an integer, and a close square
bracket. This new, more complex expression evaluates to the
value stored at the specified index of the specified array. Sim-
ilarly, a function invocation expression consists of one expres-
sion that evaluates to a function object and zero or more
additional expressions that are used as the arguments to the
function.

The most common way to build a complex expression out of
simpler expressions is with an operator. An operator combines
the values of its operands (usually two of them) in some way
and evaluates to a new value. The multiplication operator * is
a simple example. The expression x * y evaluates to the prod-
uct of the values of the expressions x and y. For simplicity, we
sometimes say that an operator returns a value rather than
“evaluates to” a value.

23

Expressions
The simplest expressions, known as primary expressions, are
those that stand alone—they do not include any simpler ex-
pressions. Primary expressions in JavaScript are constant or
literal values, certain language keywords, and variable
references.

Literals are constant values that are embedded directly in your
program. They look like these:

1.23 // A number literal
"hello" // A string literal
/pattern/ // A regular expression literal

Reserved words like true, false, null, and this are primary
expressions.

Finally, the third type of primary expression is the bare variable
reference:

i // Evaluates to the value of the variable i.
sum // Evaluates to the value of the variable sum.

When any identifier appears by itself in a program, JavaScript
assumes it is a variable and looks up its value. If no variable
with that name exists, the expression evaluates to the unde
fined value. In the strict mode of ECMAScript 5, however, an
attempt to evaluate a nonexistent variable throws a
ReferenceError instead.

Initializers
Object and array initializers are expressions whose value is a
newly created object or array. These initializer expressions are
sometimes called “object literals” and “array literals.” Unlike
true literals, however, they are not primary expressions, be-
cause they include a number of subexpressions that specify
property and element values.

An array initializer is a comma-separated list of expressions
contained within square brackets. The value of an array

24 | Chapter 3: Expressions and Operators

initializer is a newly created array. The elements of this new
array are initialized to the values of the comma-separated
expressions:

[] // An empty array
[1+2,3+4] // A 2-element array with elts 3 and 7.

The element expressions in an array initializer can themselves
be array initializers, which means that these expressions can
create nested arrays:

var matrix = [[1,2,3], [4,5,6], [7,8,9]];

A single trailing comma is allowed after the last expression in
an array initializer.

Object initializer expressions are like array initializer expres-
sions, but the square brackets are replaced by curly braces, and
each subexpression is prefixed with a property name and a
colon:

var p = { x:2, y:1 }; // An object with 2 properties
var q = {}; // Empty object; no properties
q.x = 2; q.y = 1; // Now q has the same props as p

Object literals can be nested. For example:

var rectangle = { upperLeft: { x: 2, y: 2 },
 lowerRight: { x: 4, y: 5 } };

The expressions in object and array initializers are evaluated
each time the object initializer is evaluated, and they need not
have constant values: they can be arbitrary JavaScript expres-
sions. Also, the property names in object literals may be quoted
strings rather than identifiers (this is useful to specify property
names that are reserved words or are otherwise not legal
identifiers):

var side = 1;
var square = { "ul": { x: p.x, y: p.y },
 'lr': { x: p.x + side, y: p.y + side}};

Expressions | 25

Property Access
A property access expression evaluates to the value of an object
property or an array element. JavaScript defines two syntaxes
for property access:

expression . identifier
expression [expression]

The first style of property access is an expression followed by
a period and an identifier. The expression specifies the object,
and the identifier specifies the name of the desired property.
The second style of property access follows the first expression
(the object or array) with another expression in square brack-
ets. This second expression specifies the name of the desired
property or the index of the desired array element. Here are
some concrete examples:

var o = {x:1,y:{z:3}}; // Example object
var a = [o,4,[5,6]]; // An array that contains o
o.x // => 1: property x of expression o
o.y.z // => 3: property z of expression o.y
o["x"] // => 1: property x of object o
a[1] // => 4: element at index 1 of expression a
a[2]["1"] // => 6: element at index 1 of expression a[2]
a[0].x // => 1: property x of expression a[0]

The .identifier syntax is the simpler of the two property ac-
cess options, but notice that it can only be used when the
property you want to access has a name that is a legal identifier,
and when you know the name when you write the program. If
the property name is a reserved word or includes spaces or
punctuation characters, or when it is a number (for arrays), you
must use the square bracket notation. Square brackets are also
used when the property name is not static but is itself the result
of a computation.

Function Definition
A function definition expression defines a JavaScript function,
and the value of such an expression is the newly defined func-
tion. In a sense, a function definition expression is a “function

26 | Chapter 3: Expressions and Operators

literal” in the same way that an object initializer is an “object
literal.” A function definition expression typically consists of
the keyword function followed by a comma-separated list of
zero or more identifiers (the parameter names) in parentheses
and a block of JavaScript code (the function body) in curly
braces. For example:

// This function returns the square of its argument
var square = function(x) { return x * x; }

Functions can also be defined using a function statement rather
than a function expression. Complete details on function def-
inition are in Chapter 7.

Invocation
An invocation expression is JavaScript’s syntax for calling (or
executing) a function or method. It starts with a function ex-
pression that identifies the function to be called. The function
expression is followed by an open parenthesis, a comma-
separated list of zero or more argument expressions, and a close
parenthesis. Some examples:

f(0) // f is the function; 0 is the argument.
Math.max(x,y,z) // Function Math.max; arguments x, y & z.
a.sort() // Function a.sort; no arguments.

When an invocation expression is evaluated, the function ex-
pression is evaluated first, and then the argument expressions
are evaluated to produce a list of argument values. If the value
of the function expression is not a function, a TypeError is
thrown. Next, the argument values are assigned, in order, to
the parameter names specified when the function was defined,
and then the body of the function is executed. If the function
uses a return statement to return a value, then that value be-
comes the value of the invocation expression. Otherwise, the
value of the invocation expression is undefined.

Every invocation expression includes a pair of parentheses and
an expression before the open parenthesis. If that expression
is a property access expression, then the invocation is known
as a method invocation. In method invocations, the object or

Expressions | 27

array that is the subject of the property access becomes the
value of the this parameter while the body of the function is
being executed. This enables an object-oriented programming
paradigm in which functions (known by their OO name,
“methods”) operate on the object of which they are part. See
Chapter 8 for details.

Object Creation
An object creation expression creates a new object and invokes
a function (called a constructor) to initialize the properties of
that object. Object creation expressions are like invocation ex-
pressions except that they are prefixed with the keyword new:

new Object()
new Point(2,3)

If no arguments are passed to the constructor function in an
object creation expression, the empty pair of parentheses can
be omitted:

new Object
new Date

When an object creation expression is evaluated, JavaScript
first creates a new empty object, just like the one created by the
object initializer {}. Next, it invokes the specified function with
the specified arguments, passing the new object as the value of
the this keyword. The function can then use this to initialize
the properties of the newly created object. Functions written
for use as constructors do not return a value, and the value of
the object creation expression is the newly created and initial-
ized object. If a constructor does return an object value, that
value becomes the value of the object creation expression and
the newly created object is discarded.

Operators
Operators are used for JavaScript’s arithmetic expressions,
comparison expressions, logical expressions, assignment

28 | Chapter 3: Expressions and Operators

expressions, and more. Table 3-1 summarizes JavaScript’s
operators.

Table 3-1. JavaScript operators

Operator Operation Types

++ Pre- or post-increment lval→num

-- Pre- or post-decrement lval→num

- Negate number num→num

+ Convert to number num→num

~ Invert bits int→int

! Invert boolean value bool→bool

delete Remove a property lval→bool

typeof Determine type of operand any→str

void Return undefined value any→undef

*, /, % Multiply, divide, remainder num,num→num

+, - Add, subtract num,num→num

+ Concatenate strings str,str→str

<< Shift left int,int→int

>> Shift right with sign extension int,int→int

>>> Shift right with zero extension int,int→int

<, <=,>, >= Compare in numeric order num,num→bool

<, <=,>, >= Compare in alphabetic order str,str→bool

instanceof Test object class obj,func→bool

in Test whether property exists str,obj→bool

== Test for equality any,any→bool

!= Test for inequality any,any→bool

=== Test for strict equality any,any→bool

!== Test for strict inequality any,any→bool

& Compute bitwise AND int,int→int

^ Compute bitwise XOR int,int→int

Operators | 29

Operator Operation Types

| Compute bitwise OR int,int→int

&& Compute logical AND any,any→any

|| Compute logical OR any,any→any

?: Choose 2nd or 3rd operand bool,any,any→any

= Assign to a variable or property lval,any→any

*=, /=, %=, +=, Operate and assign lval,any→any

-=, &=, ^=, |=,

<<=, >>=, >>>=

, Discard 1st operand, return 2nd any,any→any

The operators listed in Table 3-1 are arranged in order from
high precedence to low precedence, with horizontal lines sep-
arating groups of operators at the same precedence level. Op-
erator precedence controls the order in which operations are
performed. Operators with higher precedence (nearer the top
of the table) are performed before those with lower precedence
(nearer to the bottom).

Consider the following expression:

w = x + y*z;

The multiplication operator * has a higher precedence than the
addition operator +, so the multiplication is performed before
the addition. Furthermore, the assignment operator = has the
lowest precedence, so the assignment is performed after all the
operations on the right side are completed.

Operator precedence can be overridden with the explicit use
of parentheses. To force the addition in the previous example
to be performed first, write:

w = (x + y)*z;

Note that property access and invocation expressions have
higher precedence than any of the operators listed in Ta-
ble 3-1. Consider this expression:

30 | Chapter 3: Expressions and Operators

typeof my.functions[x](y)

Although typeof is one of the highest-priority operators, the
typeof operation is performed on the result of the two property
accesses and the function invocation.

In practice, if you are at all unsure about the precedence of your
operators, the simplest thing to do is to use parentheses to
make the evaluation order explicit. The rules that are impor-
tant to know are these: multiplication and division are per-
formed before addition and subtraction, and assignment has
very low precedence and is almost always performed last.

Some operators work on values of any type, but most expect
their operands to be of a specific type, and most operators re-
turn (or evaluate to) a value of a specific type. The Types col-
umn in Table 3-1 specifies operand types (before the arrow)
and result type (after the arrow) for the operators. The number
of types before the arrow indicates the arity of the operator:
unary operators have one operand, binary operators have two,
and the ternary ?: operator has three.

Some operators behave differently depending on the type of
the operands used with them. Most notably, the + operator
adds numeric operands but concatenates string operands. Sim-
ilarly, the comparison operators such as < perform comparison
in numerical or alphabetical order depending on the type of
the operands.

Notice that the assignment operators and a few of the other
operators listed in Table 3-1 expect an operand of type lval.
This is an abbreviation for lvalue: a historical term that means
“an expression that can legally appear on the left side of an
assignment expression.” In JavaScript, variables, properties of
objects, and elements of arrays are lvalues.

Evaluating a simple expression like 2 * 3 never affects the state
of your program, and any future computation your program
performs will be unaffected by that evaluation. Some expres-
sions, however, have side effects, and their evaluation may af-
fect the result of future evaluations. The assignment operators

Operators | 31

are the most obvious example: if you assign a value to a variable
or property, that changes the value of any expression that uses
that variable or property. The ++ and -- increment and decre-
ment operators are similar, since they perform an implicit as-
signment. The delete operator also has side effects: deleting a
property is like (but not the same as) assigning undefined to the
property.

Arithmetic Operators
This section covers the operators that perform arithmetic or
other numerical manipulations on their operands.

Multiplication (*)
Computes the product of its two operands.

Division (/)
The / operator divides its first operand by its second. If
you are used to programming languages that distinguish
between integer and floating-point numbers, you might
expect to get an integer result when you divide one integer
by another. In JavaScript, however, all numbers are
floating-point, so all division operations have floating-
point results: 5/2 evaluates to 2.5, not 2. Division by zero
yields positive or negative infinity, and 0/0 evaluates to
NaN: neither of these cases raises an error.

Modulo (%)
The % operator computes the first operand modulo the
second operand. In other words, it returns the remainder
after whole-number division of the first operand by the
second operand. The sign of the result is the same as the
sign of the first operand. For example, 5 % 2 evaluates to
1 and -5 % 2 evaluates to -1. This operator is typically used
with integer operands, but it also works for floating-point
values. For example, 6.5 % 2.1 evaluates to 0.2.

Addition (+)
The binary + operator adds numeric operands or concat-
enates string operands:

32 | Chapter 3: Expressions and Operators

1 + 2 // => 3
"hello" + " " + "there" // => "hello there"
"1" + "2" // => "12"
1 + 2 + " blind mice"; // => "3 blind mice"
1 + (2 + " blind mice"); // => "12 blind mice"

When the values of both operands are numbers, or are
both strings, then it is obvious what the + operator does.
In any other case, however, type conversion is necessary,
and the operation to be performed depends on the con-
version performed. The conversion rules for + give priority
to string concatenation: if either of the operands is a string
or an object that converts to a string, the other operand is
converted to a string and concatenation is performed. Ad-
dition is performed only if neither operand is string-like.

Subtraction (-)
Subtracts the value of the right-hand operand from the
value of the left-hand operand.

In addition to the binary operators listed above, JavaScript also
defines some unary operators for arithmetic. Unary operators
modify the value of a single operand to produce a new value:

Unary plus (+)
The unary plus operator converts its operand to a number
(or to NaN) and returns that converted value. When used
with an operand that is already a number, it doesn’t do
anything.

Unary minus (-)
When - is used as a unary operator, it converts its operand
to a number, if necessary, and then changes the sign of the
result.

Increment (++)
The ++ operator increments (i.e., adds 1 to) its single
operand, which must be an lvalue (a variable, an element
of an array, or a property of an object). The operator con-
verts its operand to a number, adds 1 to that number, and
assigns the incremented value back into the variable, ele-
ment, or property.

Arithmetic Operators | 33

The return value of the ++ operator depends on its position
relative to the operand. When used before the operand,
where it is known as the pre-increment operator, it incre-
ments the operand and evaluates to the incremented value
of that operand. When used after the operand, where it is
known as the post-increment operator, it increments its
operand but evaluates to the unincremented value of that
operand. Consider the difference between these two lines
of code:

var i = 1, j = ++i; // i and j are both 2
var i = 1, j = i++; // i is 2, j is 1

This operator, in both its pre- and post-increment forms,
is most commonly used to increment a counter that con-
trols a for loop (“for” on page 61).

Decrement (--)
The -- operator expects an lvalue operand. It converts the
value of the operand to a number, subtracts 1, and assigns
the decremented value back to the operand. Like the ++
operator, the return value of -- depends on its position
relative to the operand. When used before the operand, it
decrements and returns the decremented value. When
used after the operand, it decrements the operand but re-
turns the undecremented value.

The bitwise operators perform low-level manipulation of the
bits in the binary representation of numbers. These operators
are not commonly used in JavaScript programming, and if you
are not familiar with the binary representation of decimal in-
tegers, you can probably skip this section. The bitwise opera-
tors expect integer operands and behave as if those values were
represented as 32-bit integers rather than 64-bit floating-point
values. These operators convert their operands to numbers, if
necessary, and then coerce the numeric values to 32-bit inte-
gers by dropping any fractional part and any bits beyond the
32nd. The shift operators require a right-side operand between
0 and 31.

34 | Chapter 3: Expressions and Operators

Bitwise AND (&)
The & operator performs a Boolean AND operation on
each bit of its integer arguments. A bit is set in the result
only if the corresponding bit is set in both operands. For
example, 0x1234 & 0x00FF evaluates to 0x0034.

Bitwise OR (|)
The | operator performs a Boolean OR operation on each
bit of its integer arguments. A bit is set in the result if the
corresponding bit is set in one or both of the operands.
For example, 0x1234 | 0x00FF evaluates to 0x12FF.

Bitwise XOR (^)
The ^ operator performs a Boolean exclusive OR opera-
tion on each bit of its integer arguments. Exclusive OR
means that either operand one is true or operand two is
true, but not both. A bit is set in this operation’s result if
a corresponding bit is set in one (but not both) of the two
operands. For example, 0xFF00 ^ 0xF0F0 evaluates to
0x0FF0.

Bitwise NOT (~)
The ~ operator is a unary operator that appears before its
single integer operand. It operates by reversing all bits in
the operand. Because of the way signed integers are rep-
resented in JavaScript, applying the ~ operator to a value
is equivalent to changing its sign and subtracting 1. For
example, ~0x0F evaluates to 0xFFFFFFF0, or −16.

Shift left (<<)
The << operator moves all bits in its first operand to the
left by the number of places specified in the second
operand. For example, in the operation a << 1, the first
bit (the ones bit) of a becomes the second bit (the twos
bit), the second bit of a becomes the third, etc. A zero is
used for the new first bit, and the value of the 32nd bit is
lost. Shifting a value left by one position is equivalent to
multiplying by 2, shifting two positions is equivalent to
multiplying by 4, and so on. For example, 7 << 2 evaluates
to 28.

Arithmetic Operators | 35

Shift right with sign (>>)
The >> operator moves all bits in its first operand to the
right by the number of places specified in the second
operand (an integer between 0 and 31). Bits that are shif-
ted off the right are lost. The bits filled in on the left depend
on the sign bit of the original operand, in order to preserve
the sign of the result. If the first operand is positive, the
result has zeros placed in the high bits; if the first operand
is negative, the result has ones placed in the high bits.
Shifting a value right one place is equivalent to dividing
by 2 (discarding the remainder), shifting right two places
is equivalent to integer division by 4, and so on. For ex-
ample, 7 >> 1 evaluates to 3, and −7 >> 1 evaluates to −4.

Shift right with zero fill (>>>)
The >>> operator is just like the >> operator, except that
the bits shifted in on the left are always zero, regardless of
the sign of the first operand. For example, −1 >> 4 evalu-
ates to −1, but −1 >>> 4 evaluates to 0x0FFFFFFF.

Relational Operators
JavaScript’s relational operators test for a relationship (such as
“equals,” “less than,” or “property of”) between two values
and return true or false depending on whether that relation-
ship exists. Relational expressions always evaluate to a boolean
value, and that value is often used to control the flow of pro-
gram execution in if, while, and for statements (see
Chapter 4).

JavaScript supports =, ==, and === operators. Be sure you un-
derstand the differences between these assignment, equality,
and strict equality operators, and be careful to use the correct
one when coding! Although it is tempting to read all three
operators “equals,” it may help to reduce confusion if you read
“gets or is assigned” for =, “is equal to” for ==, and “is strictly
equal to” for ===.

36 | Chapter 3: Expressions and Operators

Strict equality (===)
The === operator is known as the strict equality operator
(or sometimes the identity operator), and it checks
whether its two operands are “identical” using a strict
definition of sameness that does not include any type con-
version of the operands. If the operands have different
types, they are not equal. If both operands are primitive
types and their values are the same, they are equal. If both
operands refer to the same object, array, or function, they
are equal. If they refer to different objects they are not
equal, even if both objects have identical properties. Sim-
ilarly, two arrays that have the same elements in the same
order are not equal to each other. The only quirk in the
behavior of this operator is that it considers the not-a-
number value NaN to be not equal to any other value, in-
cluding itself!

Strict inequality (!==)
The !== operator is the exact opposite of the === operator:
it returns false if two values are strictly equal to each other
and returns true otherwise.

Loose equality (==)
The == operator (with two equals signs instead of three) is
like the strict equality operator, but it is less strict. If the
values of the two operands are not the same type, it at-
tempts some type conversions and tries the comparison
again. This operator considers null and undefined to be
equal, and this is often a helpful type conversion. But other
conversions performed by == are more surprising. The fol-
lowing comparisons all evaluate to true:

1 == "1"
true == 1
"1" == true
false == 0
[] == 0

Relational Operators | 37

Loose inequality (!=)
The != operator is the exact opposite of the == operator:
it returns false if two values are loosely equal to each other
and returns true otherwise.

The comparison operators test the relative order (numerical or
alphabetical) of their two operands. Operands that are not
numbers or strings are converted to numbers or strings. These
operators treat strings as sequences of 16-bit integer values,
and that string comparison is just a numerical comparison of
the values in the two strings. Note in particular that string
comparison is case-sensitive, and all capital ASCII letters are
“less than” all lowercase ASCII letters. This rule can cause
confusing results if you do not expect it. For example, accord-
ing to the < operator, the string “Zoo” comes before the string
“aardvark”:

Less than (<)
The < operator evaluates to true if its first operand is less
than its second operand; otherwise it evaluates to false.

Greater than (>)
The > operator evaluates to true if its first operand is
greater than its second operand; otherwise it evaluates to
false.

Less than or equal (<=)
The <= operator evaluates to true if its first operand is less
than or equal to its second operand; otherwise it evaluates
to false.

Greater than or equal (>=)
The >= operator evaluates to true if its first operand is
greater than or equal to its second operand; otherwise it
evaluates to false.

The final two relational operators are in and instanceof:

Property existence (in)
The in operator expects a left-side operand that is or can
be converted to a string. It expects a right-side operand
that is an object. It evaluates to true if the left-side value

38 | Chapter 3: Expressions and Operators

is the name of a property of the right-side object. For
example:

var p = { x:1, y:1 };
"x" in p // => true: p has a property named "x".
"z" in p // => false: p has no "z" property.
"toString" in p // => true: p inherits toString.

var a = [7,8,9];
"0" in a // => true: a has an element "0"
1 in a // => true: numbers are converted

Object type (instanceof)
The instanceof operator expects a left-side operand that
is an object and a right-side operand that identifies a class
of objects. The operator evaluates to true if the left-side
object is an instance of the right-side class and evaluates
to false otherwise. Chapter 8 explains that, in JavaScript,
classes of objects are defined by the constructor function
that initializes them. Thus, the right-side operand of
instanceof should be a function. Here are examples:

var d = new Date();
d instanceof Date; // => true
d instanceof Object; // => true
d instanceof Number; // => false
var a = [1, 2, 3];
a instanceof Array; // => true
a instanceof Object; // => true

Logical Expressions
The logical operators &&, ||, and ! perform Boolean algebra
and are often used in conjunction with the relational operators
to combine two relational expressions into one more complex
expression. In order to fully understand them, remember that
null, undefined, 0, "", and NaN are all “falsy” values that work
like the boolean value false. All other values, including all ob-
jects and arrays, are “truthy” and work like true.

The && operator can be understood at three different levels. At
the simplest level, when used with boolean operands, &&

Logical Expressions | 39

performs the Boolean AND operation on the two values: it re-
turns true if and only if both its first operand and its second
operand are true. If one or both of these operands is false, it
returns false.

&& is often used as a conjunction to join two relational
expressions:

// true if (and only if) x and y are both 0
x == 0 && y == 0

Relational expressions always evaluate to true or false, so
when used like this, the && operator itself returns true or
false. Relational operators have higher precedence than &&
(and ||), so expressions like these can safely be written without
parentheses.

But && does not require that its operands be boolean values.
The second level at which && can be understood is as a Boolean
AND operator for truthy and falsy values. If both operands are
truthy, the operator returns a truthy value. Otherwise, one or
both operands must be falsy, and the operator returns a falsy
value. In JavaScript, any expression or statement that expects
a boolean value will work with a truthy or falsy value, so the
fact that && does not always evaluate to true or false does not
cause practical problems.

Notice that the description above says that the operator returns
“a truthy value” or “a falsy value,” but does not specify what
that value is. For that, we need to describe && at the third and
final level. This operator starts by evaluating its first operand,
the expression on its left. If the value on the left is falsy, the
value of the entire expression must also be falsy, so && simply
returns the value on the left and does not even evaluate the
expression on the right.

On the other hand, if the value on the left is truthy, then the
overall value of the expression depends on the value on the
right-hand side. If the value on the right is truthy, then the
overall value must be truthy, and if the value on the right is
falsy, then the overall value must be falsy. So when the value

40 | Chapter 3: Expressions and Operators

on the left is truthy, the && operator evaluates and returns the
value on the right:

var o = { x : 1 };
var p = null;
o && o.x // => 1: o is truthy, so return o.x
p && p.x // => null: p is falsy, so don't eval p.x

It is important to understand that && may or may not evaluate
its right-side operand. In the code above, the variable p is set
to null, and the expression p.x would, if evaluated, cause a
TypeError. But the code uses && in an idiomatic way so that
p.x is evaluated only if p is truthy—not null or undefined.

The || operator performs the Boolean OR operation on its two
operands. If one or both operands is truthy, it returns a truthy
value. If both operands are falsy, it returns a falsy value.

Although the || operator is most often used simply as a
Boolean OR operator, it, like the && operator, has more com-
plex behavior. It starts by evaluating its first operand, the ex-
pression on its left. If the value of this first operand is truthy,
it returns that truthy value. Otherwise, it evaluates its second
operand, the expression on its right, and returns the value of
that expression.

An idiomatic usage of this operator is to select the first truthy
value in a set of alternatives:

// If max_width is defined, use that. Otherwise look
// for a value in the preferences object. If that is
// not defined use a hard-coded constant.
var max = max_width || preferences.max_width || 500;

This idiom is often used in function bodies to supply default
values for parameters:

// Copy the properties of o to p, and return p
function copy(o, p) {
 // If no object passed for p, use a new one
 p = p || {};
 // function body goes here
}

The ! operator is a unary operator; it is placed before a single
operand. Its purpose is to invert the boolean value of its

Logical Expressions | 41

operand. For example, if x is truthy, !x evaluates to false. If
x is falsy, then !x is true. Since ! always evaluates to true or
false, you can convert any value x to its equivalent boolean
value by applying this operator twice: !!x.

As a unary operator, ! has high precedence and binds tightly.
If you want to invert the value of an expression like p && q, you
need to use parentheses: !(p && q).

Assignment Expressions
JavaScript uses the = operator to assign a value to a variable,
object property, or array element. For example:

i = 0 // Set the variable i to 0.
o.x = 1 // Set the property x of object o to 1.

The = operator expects its left-side operand to be an lvalue: a
variable or object property or array element. It expects its right-
side operand to be an arbitrary value of any type. The value of
an assignment expression is the value of the right-side operand.
As a side effect, the = operator assigns the value on the right to
the variable or property on the left so that future references to
the variable or property evaluate to the value.

The assignment operator has right-to-left associativity, which
means that when multiple assignment operators appear in an
expression, they are evaluated from right to left. Thus, you can
write code like this to assign a single value to multiple variables:

i = j = k = 0; // Initialize 3 variables to 0

Besides the normal = assignment operator, JavaScript supports
a number of other assignment operators that provide shortcuts
by combining assignment with some other operation. For ex-
ample, the += operator performs addition and assignment. The
following expression:

total += sales_tax

is equivalent to this one:

total = total + sales_tax

42 | Chapter 3: Expressions and Operators

As you might expect, the += operator works for numbers or
strings. For numeric operands, it performs addition and as-
signment; for string operands, it performs concatenation and
assignment.

Similar operators include -=, *=, &=, and so on.

Evaluation Expressions
Like many interpreted languages, JavaScript has the ability to
interpret strings of JavaScript source code, evaluating them to
produce a value. JavaScript does this with the global function
eval():

eval("3+2") // => 5

Dynamic evaluation of strings of source code is a powerful
language feature that is almost never necessary in practice. If
you find yourself using eval(), you should think carefully
about whether you really need to use it. Technically, eval() is
a function, but it is covered here because in many ways it be-
haves more like an operator.

eval() expects one argument. If you pass any value other than
a string, it simply returns that value. If you pass a string, it
attempts to parse the string as JavaScript code, throwing a
SyntaxError if it fails. If it successfully parses the string, then it
evaluates the code and returns the value of the last expression
or statement in the string, or undefined if the last expression or
statement had no value. If the evaluated string throws an ex-
ception, that exception propagates from the call to eval().

The key thing about eval() (when invoked like this) is that it
uses the variable environment of the code that calls it. That is,
it looks up the values of variables and defines new variables
and functions in the same way that local code does. If a function
defines a local variable x and then calls eval("x"), it will obtain
the value of the local variable. If it calls eval("x=1"), it changes
the value of the local variable. And if the function calls

Evaluation Expressions | 43

eval("var y = 3;"), it has declared a new local variable y. Sim-
ilarly, a function can declare a local function with code like this:

eval("function f() { return x+1; }");

eval() has a very unusual restriction (which is required to en-
able JavaScript interpreters to run efficiently): it only behaves
the way described above when called with its original name
“eval.” Since it is technically a function, we can assign it to
another variable. And if we invoke it using that other variable,
it behaves differently: when invoked by any other name,
eval() evaluates the string as if it were top-level global code.
The evaluated code can define new global variables or global
functions, and it can set global variables, but it cannot use or
modify any variables local to the calling function.

Before IE9, IE differs from other browsers: it does not do a
global eval when eval() is invoked by a different name. IE does
define a global function named execScript() that executes its
string argument as if it were a top-level script. Unlike eval(),
however, execScript() always returns null.

ECMAScript 5 strict mode imposes further restrictions on the
behavior of eval(). When eval() is called from strict mode
code, or when the string of code to be evaluated itself begins
with a “use strict” directive, then eval() does a local eval with
a private variable environment. This means that in strict mode,
evaluated code can query and set local variables, but it cannot
define new variables or functions in the local scope. Further-
more, strict mode makes eval() even more operator-like by
effectively making “eval” into a reserved word.

Miscellaneous Operators
JavaScript supports a number of other miscellaneous opera-
tors, described in the following sections.

44 | Chapter 3: Expressions and Operators

The Conditional Operator (?:)
The conditional operator is the only ternary operator (three
operands) in JavaScript. This operator is sometimes writ-
ten ?:, although it does not appear quite that way in code.
Because this operator has three operands, the first goes before
the ?, the second goes between the ? and the :, and the third
goes after the :. It is used like this:

x > 0 ? x : -x // The absolute value of x

The operands of the conditional operator may be of any type.
The first operand is evaluated and interpreted as a boolean. If
the value of the first operand is truthy, then the second operand
is evaluated, and its value is returned. Otherwise, if the first
operand is falsy, then the third operand is evaluated and its
value is returned. Only one of the second and third operands
is evaluated, never both.

While you can achieve similar results using the if statement
(“if” on page 56), the ?: operator often provides a handy
shortcut. Here is a typical usage, which checks to be sure that
a property is defined (and has a meaningful, truthy value) and
uses it if so, or provides a default value if not:

greeting = "hello " + (user.name ? user.name : "there");

The typeof Operator
typeof is a unary operator that is placed before its single
operand, which can be of any type. Its value is a string that
specifies the type of the operand. The following table specifies
the value of the typeof operator for any JavaScript value:

x typeof x

undefined "undefined"

null "object"

true or false "boolean"

any number or NaN "number"

Miscellaneous Operators | 45

x typeof x

any string "string"

any function "function"

any nonfunction object "object"

You might use the typeof operator in an expression like this:

(typeof value == "string") ? "'" + value + "'" : value

The delete Operator
delete is a unary operator that attempts to delete the object
property or array element specified as its operand. (If you are
a C++ programmer, note that the delete keyword in JavaScript
is nothing like the delete keyword in C++.) Like the assign-
ment, increment, and decrement operators, delete is typically
used for its property deletion side effect, and not for the value
it returns. Some examples:

var o = {x:1, y:2}, a = [1,2,3];
delete o.x; // Delete a property of o
"x" in o // => false: the property does not exist
delete a[2]; // Delete the last element of the array
2 in a // => false: array element 2 doesn't exist

The void Operator
void is a unary operator that appears before its single operand,
which may be of any type. This operator is unusual and very
infrequently used: it evaluates its operand, then discards the
value and returns undefined. Since the operand value is dis-
carded, using the void operator makes sense only if the operand
has side effects.

The Comma Operator (,)
The comma operator is a binary operator whose operands may
be of any type. It evaluates its left operand, evaluates its right
operand, and then returns the value of the right operand. The

46 | Chapter 3: Expressions and Operators

left-hand expression is always evaluated, but its value is dis-
carded, which means that it only makes sense to use the comma
operator when the left-hand expression has side effects. The
only situation in which the comma operator is commonly used
is with a for loop (“for” on page 61) that has multiple loop
variables:

// The first comma below is part of the syntax of the
// var statement. The second comma is the comma operator:
// it lets us squeeze 2 expressions (i++ and j--) into a
// statement (the for loop) that expects 1.
for(var i=0,j=10; i < j; i++,j--)
 console.log(i+j);

Miscellaneous Operators | 47

CHAPTER 4

Statements

Chapter 3 described expressions as JavaScript phrases. By that
analogy, statements are JavaScript sentences or commands.
Just as English sentences are terminated and separated from
each other with periods, JavaScript statements are terminated
with semicolons (“Optional Semicolons” on page 3). Expres-
sions are evaluated to produce a value, but statements are ex-
ecuted to make something happen.

One way to “make something happen” is to evaluate an ex-
pression that has side effects. Expressions with side effects,
such as assignments and function invocations, can stand alone
as statements, and when used this way they are known as ex-
pression statements. A similar category of statements are the
declaration statements that declare new variables and define
new functions.

JavaScript programs are nothing more than a sequence of state-
ments to execute. By default, the JavaScript interpreter exe-
cutes these statements one after another in the order they are
written. Another way to “make something happen” is to alter
this default order of execution, and JavaScript has a number of
statements or control structures that do just this:

• Conditionals are statements like if and switch that make
the JavaScript interpreter execute or skip other statements
depending on the value of an expression.

49

• Loops are statements like while and for that execute other
statements repetitively.

• Jumps are statements like break, return, and throw that
cause the interpreter to jump to another part of the
program.

Table 4-1 summarizes JavaScript statement syntax, and the
sections that follow it describe each statement in more detail.

Table 4-1. JavaScript statement syntax

Statement Syntax Purpose

break break [label]; Exit from the innermost loop or
switch or from named
enclosing statement

case case expression: Label a statement within a switch

continue continue [label]; Begin next iteration of the inner-
most loop or the named loop

debugger debugger; Debugger breakpoint

default default: Label the default statement within
a switch

do/while do statement while
(expression);

An alternative to the while loop

empty ; Do nothing

for for(init; test; incr)
statement

An easy-to-use loop

for/in for (var in object)
statement

Enumerate the properties of
object

function function
name([param[,...]])
{ body }

Declare a function named name

if/else if (expr) statement1
[else statement2]

Execute statement1 or
statement2

label label: statement Give statement the name label

return return [expression]; Return a value from a function

50 | Chapter 4: Statements

Statement Syntax Purpose

switch switch (expression)
{ statements }

Multiway branch to case or
default: labels

throw throw expression; Throw an exception

try try {statements}

[catch { statements }]

[finally
{ statements }]

Handle exceptions

use strict "use strict"; Apply strict mode restrictions to
script or function

var var name [= expr]
[,...];

Declare and initialize one or more
variables

while while (expression)
statement

A basic loop construct

with with (object) statement Extend the scope chain (forbidden
in strict mode)

Expression Statements
The simplest kinds of statements in JavaScript are expressions
that have side effects. This sort of statement was shown in
Chapter 3. Assignment statements are one major category of
expression statements. For example:

greeting = "Hello " + name;
i *= 3;

The increment and decrement operators, ++ and --, are related
to assignment statements. These have the side effect of chang-
ing a variable value, just as if an assignment had been
performed:

counter++;

The delete operator has the important side effect of deleting
an object property. Thus, it is almost always used as a state-
ment, rather than as part of a larger expression:

Expression Statements | 51

delete o.x;

Function calls are another major category of expression state-
ments. For example:

alert(greeting);
window.close();

These client-side function calls are expressions, but they have
side effects that affect the web browser and are used here as
statements.

Compound and Empty Statements
A statement block combines multiple statements into a single
compound statement. A statement block is simply a sequence
of statements enclosed within curly braces. Thus, the following
lines act as a single statement and can be used anywhere that
JavaScript expects a single statement:

{
 x = Math.PI;
 cx = Math.cos(x);
 console.log("cos(π) = " + cx);
}

Combining statements into larger statement blocks is ex-
tremely common in JavaScript programming. Just as expres-
sions often contain subexpressions, many JavaScript
statements contain substatements. Formally, JavaScript syntax
usually allows a single substatement. For example, the while
loop syntax includes a single statement that serves as the body
of the loop. Using a statement block, you can place any number
of statements within this single allowed substatement.

A compound statement allows you to use multiple statements
where JavaScript syntax expects a single statement. The empty
statement is the opposite: it allows you to include no statements
where one is expected.

52 | Chapter 4: Statements

The empty statement looks like this:

;

The JavaScript interpreter takes no action when it executes an
empty statement. The empty statement is occasionally useful
when you want to create a loop that has an empty body:

// Initialize the elements of a to 0
for(i = 0; i < a.length; a[i++] = 0) /* empty */;

Declaration Statements
The var and function are declaration statements—they declare
or define variables and functions. These statements define
identifiers (variable and function names) that can be used else-
where in your program and assign values to those identifiers.
Declaration statements don’t do much themselves, but by cre-
ating variables and functions they, in an important sense,
define the meaning of the other statements in your program.

var
The var statement declares a variable or variables. Here’s the
syntax:

var name_1 [= value_1] [,..., name_n [= value_n]]

The var keyword is followed by a comma-separated list of vari-
ables to declare; each variable in the list may optionally have
an initializer expression that specifies its initial value. For
example:

var i; // One simple variable
var j = 0; // One var, one value
var p, q; // Two variables
var greeting = "hello" + name; // A complex initializer
var x = 2, y = x*x; // Second var uses first
var x = 2, // Multiple variables...
 f = function(x) { return x*x }, // each on its
 y = f(x); // own line

Declaration Statements | 53

If a var statement appears within the body of a function, it
defines local variables, scoped to that function. When var is
used in top-level code, it declares global variables, visible
throughout the JavaScript program.

If no initializer is specified for a variable with the var statement,
the variable’s initial value is undefined.

Note that the var statement can also appear as part of the for
and for/in loops:

for(var i = 0; i < 10; i++) console.log(i);
for(var i = 0, j=10; i < 10; i++,j--) console.log(i*j);
for(var i in o) console.log(i);

function
The function keyword is used to define functions. We saw it
in function definition expressions in “Function Defini-
tion” on page 26. It can also be used in statement form. Con-
sider the following two functions:

// Expression assigned to a variable
var f = function(x) { return x+1; }
// The statement form includes the variable name
function f(x) { return x+1; }

A function declaration statement has the following syntax:

function funcname([arg1 [, arg2 [..., argn]]]) {
 statements
}

funcname is an identifier that names the function being de-
clared. The function name is followed by a comma-separated
list of parameter names in parentheses. These identifiers can
be used within the body of the function to refer to the argument
values passed when the function is invoked.

The body of the function is composed of any number of Java-
Script statements, contained within curly braces. These state-
ments are not executed when the function is defined. Instead,
they are associated with the new function object for execution
when the function is invoked.

54 | Chapter 4: Statements

Here are some more examples of function declarations:

function hypotenuse(x, y) {
 return Math.sqrt(x*x + y*y);
}

function factorial(n) { // A recursive function
 if (n <= 1) return 1;
 return n * factorial(n - 1);
}

Function declaration statements may appear in top-level Java-
Script code, or they may be nested within other functions.
When nested, however, function declarations may only appear
at the top level of the function they are nested within. That is,
function definitions may not appear within if statements,
while loops, or any other statements.

Function declaration statements differ from function defini-
tion expressions in that they include a function name. Both
forms create a new function object, but the function declara-
tion statement also declares the function name as a variable
and assigns the function object to it. Like variables declared
with var, functions defined with function definition statements
are implicitly “hoisted” to the top of the containing script or
function, so that all functions in a script or all nested functions
in a function are declared before any other code is run. This
means that you can invoke a JavaScript function before you
declare it.

Conditionals
Conditional statements execute or skip other statements de-
pending on the value of a specified expression. These state-
ments are the decision points of your code, and they are also
sometimes known as “branches.” If you imagine a JavaScript
interpreter following a path through your code, the conditional
statements are the places where the code branches into two or
more paths and the interpreter must choose which path to
follow.

Conditionals | 55

if
The if statement is the fundamental control statement that
allows JavaScript to execute statements conditionally. This
statement has two forms. The first is:

if (expression)
 statement

In this form, expression is evaluated. If the resulting value is
truthy, statement is executed. If expression is falsy, state
ment is not executed:

if (username == null) // If username is null or undefined,
 username = "John Doe"; // define it

Note that the parentheses around the expression are a required
part of the syntax for the if statement.

The second form of the if statement introduces an else clause
that is executed when expression is false. Its syntax is:

if (expression)
 statement1
else
 statement2

This form of the statement executes statement1 if expression
is truthy and executes statement2 if expression is falsy. For
example:

if (n == 1) {
 console.log("You have 1 new message.");
}
else {
 console.log("You have " + n + " new messages.");
}

else if
The if/else statement evaluates an expression and executes
one of two pieces of code, depending on the outcome. But what
about when you need to execute one of many pieces of code?
One way to do this is with an else if statement. else if is not
really a JavaScript statement, but simply a frequently used

56 | Chapter 4: Statements

programming idiom that results when repeated if/else state-
ments are used:

if (n == 1) {
 // Execute code block #1
}
else if (n == 2) {
 // Execute code block #2
}
else if (n == 3) {
 // Execute code block #3
}
else {
 // If all else fails, execute block #4
}

There is nothing special about this code. It is just a series of
if statements, where each following if is part of the else clause
of the previous statement. Using the else if idiom is preferable
to, and more legible than, writing these statements out in their
syntactically equivalent, fully nested form:

if (n == 1) {
 // Execute code block #1
}
else {
 if (n == 2) {
 // Execute code block #2
 }
 else {
 if (n == 3) {
 // Execute code block #3
 }
 else {
 // If all else fails, execute block #4
 }
 }
}

switch
An if statement causes a branch in the flow of a program’s
execution, and you can use the else if idiom to perform a
multiway branch. This is not the best solution, however, when
all of the branches depend on the value of the same expression.

Conditionals | 57

In this case, it is wasteful to repeatedly evaluate that expression
in multiple if statements.

The switch statement handles exactly this situation. The
switch keyword is followed by an expression in parentheses
and a block of code in curly braces:

switch(expression) {
 statements
}

However, the full syntax of a switch statement is more complex
than this. Various locations in the block of code are labeled
with the case keyword followed by an expression and a colon.
case is like a labeled statement, except that instead of giving
the labeled statement a name, it associates an expression with
the statement. When a switch executes, it computes the value
of expression and then looks for a case label whose expression
evaluates to the same value (where sameness is determined by
the === operator). If it finds one, it starts executing the block
of code at the statement labeled by the case. If it does not find
a case with a matching value, it looks for a statement labeled
default:. If there is no default: label, the switch statement
skips the block of code altogether.

The following switch statement is equivalent to the repeated
if/else statements shown in the previous section:

switch(n) {
 case 1: // Start here if n === 1
 // Execute code block #1.
 break; // Stop here
 case 2: // Start here if n === 2
 // Execute code block #2.
 break; // Stop here
 case 3: // Start here if n === 3
 // Execute code block #3.
 break; // Stop here
 default: // If all else fails...
 // Execute code block #4.
 break; // stop here
}

58 | Chapter 4: Statements

Note the break keyword used at the end of each case in the
code above. The break statement, described later in this chap-
ter, causes the interpreter to break out of the switch statement
and continue with the statement that follows it. The case clau-
ses in a switch statement specify only the starting point of the
desired code; they do not specify any ending point. In the ab-
sence of break statements, a switch statement begins executing
its block of code at the case label that matches the value of its
expression and continues executing statements until it reaches
the end of the block. Usually you will want to end every case
with a break or return statement.

Here is a more realistic example of the switch statement; it
converts a value to a string in a way that depends on the type
of the value:

function convert(x) {
 switch(typeof x) {
 case 'number': // Convert to a hexadecimal integer
 return x.toString(16);
 case 'string': // Enclose it in quotes
 return '"' + x + '"';
 default: // Any other type
 return String(x);
 }
}

Note that in the two previous examples, the case keywords are
followed by number and string literals, respectively. This is
how the switch statement is most often used in practice, but
note that the ECMAScript standard allows each case to be fol-
lowed by an arbitrary expression.

Loops
To understand conditional statements, we imagined the Java-
Script interpreter following a branching path through your
source code. The looping statements are those that bend that
path back upon itself to repeat portions of your code. Java-
Script has four looping statements: while, do/while, for, and
for/in.

Loops | 59

while
The while statement is JavaScript’s basic loop. It has the fol-
lowing syntax:

while (expression)
 statement

To execute a while statement, the interpreter first evaluates
expression. If the value of the expression is falsy, then the in-
terpreter skips over the statement that serves as the loop body
and moves on to the next statement in the program. If, on the
other hand, the expression is truthy, the interpreter executes
the statement and repeats, jumping back to the top of the loop
and evaluating expression again. Another way to say this is that
the interpreter executes statement repeatedly while the expres
sion is truthy. Note that you can create an infinite loop with
the syntax while(true).

Here is an example of a while loop that prints the numbers
from 0 to 9:

var count = 0;
while (count < 10) {
 console.log(count);
 count++;
}

As you can see, the variable count starts off at 0 and is incre-
mented each time the body of the loop runs. Once the loop has
executed 10 times, the expression becomes false (i.e., the vari-
able count is no longer less than 10), the while statement fin-
ishes, and the interpreter can move on to the next statement in
the program.

do/while
The do/while loop is like a while loop, except that the loop
expression is tested at the bottom of the loop rather than at the
top. This means that the body of the loop is always executed
at least once. The syntax of this relatively uncommon loop is:

60 | Chapter 4: Statements

do
 statement
 while (expression);

Here’s an example of a do/while loop:

function printArray(a) {
 var len = a.length, i = 0;
 if (len == 0)
 console.log("Empty Array");
 else {
 do {
 console.log(a[i]);
 } while (++i < len);
 }
}

for
The for statement simplifies loops that follow a common pat-
tern. Most loops have a counter variable of some kind. This
variable is initialized before the loop starts and is tested before
each iteration of the loop. Finally, the counter variable is in-
cremented or otherwise updated at the end of the loop body,
just before the variable is tested again. In this kind of loop, the
initialization, the test, and the update are the three crucial ma-
nipulations of a loop variable. The for statement encodes each
of these three manipulations as an expression and makes those
expressions an explicit part of the loop syntax:

for(initialize ; test ; increment)
 statement

initialize, test, and increment are three expressions (separa-
ted by semicolons) that are responsible for initializing, testing,
and incrementing the loop variable. Putting them all in the first
line of the loop makes it easy to understand what a for loop is
doing and prevents mistakes such as forgetting to initialize or
increment the loop variable.

The simplest way to explain how a for loop works is to show
the equivalent while loop:

Loops | 61

initialize;
 while(test) {
 statement
 increment;
 }

In other words, the initialize expression is evaluated once,
before the loop begins. To be useful, this expression must have
side effects (usually an assignment). JavaScript also allows ini
tialize to be a var variable declaration statement so that you
can declare and initialize a loop counter at the same time. The
test expression is evaluated before each iteration and controls
whether the body of the loop is executed. If test evaluates to
a truthy value, the statement that is the body of the loop is
executed. Finally, the increment expression is evaluated. Again,
this must be an expression with side effects in order to be use-
ful. Generally, either it is an assignment expression, or it uses
the ++ or -- operators.

We can print the numbers from 0 to 9 with a for loop like the
following. Contrast it with the equivalent while loop shown
above:

for(var count = 0; count < 10; count++)
 console.log(count);

for/in
The for/in statement uses the for keyword, but it is a com-
pletely different kind of loop than the regular for loop. A for/
in loop looks like this:

for (variable in object)
 statement

variable typically names a variable, but it may also be a var
statement that declares a single variable. object is an expres-
sion that evaluates to an object. As usual, statement is the
statement or statement block that serves as the body of the
loop.

It is easy to use a regular for loop to iterate through the ele-
ments of an array:

62 | Chapter 4: Statements

// Assign array indexes to variable i
for(var i = 0; i < a.length; i++)
 console.log(a[i]); // Print each array element

The for/in loop makes it easy to do the same for the properties
of an object:

// Assign property names of o to variable p
for(var p in o)
 console.log(o[p]); // Print each property

To execute a for/in statement, the JavaScript interpreter first
evaluates the object expression and then executes the body of
the loop once for each enumerable property of the resulting
object. Before each iteration, however, the interpreter assigns
the name of the property to the variable.

The for/in loop does not actually enumerate all properties of
an object, only the enumerable properties (see “Property At-
tributes” on page 87). The various built-in methods defined
by core JavaScript are not enumerable. All objects have a
toString() method, for example, but the for/in loop does not
enumerate this toString property. In addition to built-in meth-
ods, many other properties of the built-in objects are nonenu-
merable. All properties and methods defined by your code are
enumerable, however. (But in ECMAScript 5, you can make
them nonenumerable using techniques explained in “Property
Attributes” on page 87.)

The ECMAScript specification does not describe the order in
which the for/in loop enumerates the properties of an object.
In practice, however, JavaScript implementations from all ma-
jor browser vendors enumerate the properties of simple objects
in the order in which they were defined, with older properties
enumerated first. If an object was created as an object literal,
its enumeration order is the same order that the properties ap-
pear in the literal. Note that this enumeration order does not
apply to all objects. In particular, if an object includes array
index properties, those properties may be enumerated in nu-
meric order rather than in creation order.

Loops | 63

Jumps
Another category of JavaScript statements are jump state-
ments. As the name implies, these cause the JavaScript inter-
preter to jump to a new location in the source code. The
break statement makes the interpreter jump to the end of a loop
or other statement. continue makes the interpreter skip the rest
of the body of a loop and jump back to the top of a loop to
begin a new iteration. JavaScript allows statements to be
named, or labeled, and the break and continue can identify the
target loop or other statement label. The return statement
makes the interpreter jump from a function invocation back to
the code that invoked it and also supplies the value for the
invocation. The throw statement raises, or “throws,” an excep-
tion and is designed to work with the try/catch/finally state-
ment, which establishes a block of exception handling code.

Labeled Statements
Any statement may be labeled by preceding it with an identifier
and a colon:

identifier: statement

By labeling a statement, you give it a name that you can use to
refer to it elsewhere in your program. You can label any state-
ment, although it is only useful to label statements that have
bodies, such as loops and conditionals. By giving a loop a
name, you can use break and continue statements inside the
body of the loop to exit the loop or to jump directly to the top
of the loop to begin the next iteration. break and continue are
the only JavaScript statements that use statement labels; they
are covered later in this chapter. Here is an example of a labeled
while loop and a continue statement that uses the label.

mainloop: while(token != null) {
 // Code omitted...
 continue mainloop; // Jump to top of the named loop
 // More code omitted...
}

64 | Chapter 4: Statements

break
The break statement, used alone, causes the innermost enclos-
ing loop or switch statement to exit immediately. Its syntax is
simple:

break;

Because it causes a loop or switch to exit, this form of the
break statement is legal only if it appears inside one of these
statements.

You’ve already seen examples of the break statement within a
switch statement. In loops, it is typically used to exit prema-
turely when, for whatever reason, there is no longer any need
to complete the loop. When a loop has complex termination
conditions, it is often easier to implement some of these con-
ditions with break statements rather than trying to express
them all in a single loop expression. The following code
searches the elements of an array for a particular value. The
loop terminates in the normal way when it reaches the end of
the array; it terminates with a break statement if it finds what
it is looking for in the array:

for(var i = 0; i < a.length; i++) {
 if (a[i] == target) break;
}

Although it is rarely used in practice, JavaScript allows the
break keyword to be followed by a statement label (just the
identifier, with no colon):

break labelname;

When break is used with a label, it jumps to the end of, or
terminates, the enclosing statement that has the specified label.
It is a syntax error to use break in this form if there is no en-
closing statement with the specified label. With this form of
the break statement, the named statement need not be a loop
or switch: break can “break out of” any enclosing statement.

Jumps | 65

continue
The continue statement is similar to the break statement. In-
stead of exiting a loop, however, continue restarts a loop at the
next iteration. The continue statement’s syntax is just as simple
as the break statement’s:

continue;

The continue statement can also be used with a label:

continue labelname;

The continue statement, in both its labeled and unlabeled
forms, can be used only within the body of a loop. Using it
anywhere else causes a syntax error.

The following example shows an unlabeled continue statement
being used to skip the rest of the current iteration of a loop
when an error occurs:

for(i = 0; i < data.length; i++) {
 if (isNaN(data[i])) continue; // Skip non-numbers.
 total += data[i];
}

Like the break statement, the continue statement can be used
in its labeled form within nested loops, when the loop to be
restarted is not the immediately enclosing loop.

return
Recall that function invocations are expressions and that all
expressions have values. A return statement within a function
specifies the value of invocations of that function. Here’s the
syntax of the return statement:

return expression;

A return statement may appear only within the body of a func-
tion. It is a syntax error for it to appear anywhere else. When
the return statement is executed, the function that contains it
returns the value of expression to its caller. For example:

66 | Chapter 4: Statements

function square(x) { return x*x; } // Returns x squared
square(2) // This invocation evaluates to 4

With no return statement, a function invocation simply exe-
cutes each of the statements in the function body in turn until
it reaches the end of the function, and then returns to its caller.
In this case, the invocation expression evaluates to undefined.
The return statement can also be used without an expression
to make the function return undefined before it reaches the end
of its body. For example:

function display_object(o) {
 // Return immediately if o is null or undefined.
 if (!o) return;
 // Rest of function goes here...
}

throw
An exception is a signal that indicates that some sort of excep-
tional condition or error has occurred. To throw an exception
is to signal such an error or exceptional condition. To catch an
exception is to handle it—to take whatever actions are neces-
sary or appropriate to recover from the exception. In Java-
Script, exceptions are thrown whenever a runtime error occurs
and whenever the program explicitly throws one using the
throw statement. Exceptions are caught with the try/catch/
finally statement, which is described next.

The throw statement has the following syntax:

throw expression;

expression may evaluate to a value of any type. You might
throw a number that represents an error code or a string that
contains a human-readable error message. The Error class and
its subclasses are used when the JavaScript interpreter itself
throws an error, and you can use them as well. An Error object
has a name property that specifies the type of error and a mes
sage property that holds the string passed to the constructor
function (see the Error class in the reference section). Here is

Jumps | 67

an example function that throws an Error object when invoked
with an invalid argument:

function factorial(x) {
 // If x is invalid, throw an exception!
 if (x < 0) throw new Error("x must not be negative");
 // Otherwise, compute a value and return normally
 for(var f = 1; x > 1; f *= x, x--) /* empty */ ;
 return f;
}

When an exception is thrown, the JavaScript interpreter im-
mediately stops normal program execution and jumps to the
nearest exception handler. Exception handlers are written us-
ing the catch clause of the try/catch/finally statement, which
is described in the next section. If the block of code in which
the exception was thrown does not have an associated catch
clause, the interpreter checks the next highest enclosing block
of code to see if it has an exception handler associated with it.
This continues until a handler is found. If an exception is
thrown in a function that does not contain a try/catch/
finally statement to handle it, the exception propagates up to
the code that invoked the function. In this way, exceptions
propagate up through the lexical structure of JavaScript meth-
ods and up the call stack. If no exception handler is ever found,
the exception is treated as an error and is reported to the user.

try/catch/finally
The try/catch/finally statement is JavaScript’s exception
handling mechanism. The try clause of this statement simply
defines the block of code whose exceptions are to be handled.
The try block is followed by a catch clause, which is a block
of statements that are invoked when an exception occurs any-
where within the try block. The catch clause is followed by a
finally block containing cleanup code that is guaranteed to be
executed, regardless of what happens in the try block. Both
the catch and finally blocks are optional, but a try block must
be accompanied by at least one of these blocks. The try,
catch, and finally blocks all begin and end with curly braces.

68 | Chapter 4: Statements

These braces are a required part of the syntax and cannot be
omitted, even if a clause contains only a single statement.

The following code illustrates the syntax and purpose of the
try/catch/finally statement:

try {
 // Normally, this code runs from the top of the block
 // to the bottom without problems. But it can
 // sometimes throw an exception, either directly, with
 // a throw statement, or indirectly, by calling a
 // method that throws an exception.
}
catch (e) {
 // The statements in this block are executed if, and
 // only if, the try block throws an exception. These
 // statements can use the local variable e to refer
 // to the Error object or other value that was thrown.
 // This block may handle the exception somehow, may
 // ignore the exception by doing nothing, or may
 // rethrow the exception with throw.
}
finally {
 // This block contains statements that are always
 // executed, regardless of what happens in the try
 // block. They are executed when the try block
 // terminates:
 // 1) normally, after reaching the bottom
 // 2) because of a break, continue, or return
 // 3) with an exception handled by a catch above
 // 4) with an uncaught exception that is propagating
}

Note that the catch keyword is followed by an identifier in
parentheses. This identifier is like a function parameter. When
an exception is caught, the value associated with the exception
(an Error object, for example) is assigned to this parameter.
Unlike regular variables, the identifier associated with a
catch clause has block scope—it is only defined within the
catch block.

Here is a realistic example of the try/catch statement. It uses
the factorial() method defined in the previous section and
the client-side JavaScript methods prompt() and alert() for
input and output:

Jumps | 69

try {
 // Ask the user to enter a number
 var n = Number(prompt("Enter an number", ""));
 // Compute the factorial of the number,
 // assuming the input is valid.
 var f = factorial(n);
 // Display the result
 alert(n + "! = " + f);
}
catch (ex) { // We end up here on invalid input.
 alert(ex); // Tell the user what the error is.
}

Miscellaneous Statements
This section describes the remaining three JavaScript state-
ments—with, debugger, and use strict.

with
When JavaScript looks up the value of a variable, it first looks
at the variables defined within the current function, then (if the
function is nested) at variables defined in enclosing functions
and finally at global variables. The with statement temporarily
alters the way variables are looked up by specifying an object
whose properties should be treated as if they were variables. It
has the following syntax:

with (object)
 statement

This statement executes statement somewhat as if it was the
body of a nested function and the properties of object were
parameters passed to that function.

The with statement is forbidden in strict mode (see “use
strict”) and should be considered deprecated in nonstrict
mode: avoid using it whenever possible. JavaScript code that
uses with is difficult to optimize and is likely to run much more
slowly than the equivalent code written without the with
statement.

70 | Chapter 4: Statements

debugger
The debugger statement normally does nothing. If, however, a
debugger program is available and is running, then an imple-
mentation may (but is not required to) perform some kind of
debugging action. In practice, this statement acts like a break-
point: execution of JavaScript code stops and you can use the
debugger to print variables’ values, examine the call stack, and
so on. Suppose, for example, that you are getting an exception
in your function f() because it is being called with an undefined
argument, and you can’t figure out where this call is coming
from. To help you in debugging this problem, you might alter
f() so that it begins like this:

function f(o) {
 if (o === undefined) debugger; // Debug hook
 // The rest of the function goes here.
}

Now, when f() is called with no argument, execution will stop,
and you can use the debugger to inspect the call stack and find
out where this incorrect call is coming from.

The debugger statement was formally added to the language by
ECMAScript 5, but it has been implemented by major browser
vendors for quite some time.

“use strict”
"use strict" is a directive introduced in ECMAScript 5. Di-
rectives are not statements (but are close enough that "use
strict" is documented here). "use strict" does not involve
any JavaScript keywords: it is simply a JavaScript string literal
expression, and is ignored by ECMAScript 3 interpreters.
When placed at the beginning of a script or of a function body,
however, it has special meaning to an ECMAScript 5
interpreter.

The purpose of a "use strict" directive is to indicate that
the code that follows (in the script or function) is strict code.
Strict code is executed in strict mode. The strict mode of

Miscellaneous Statements | 71

ECMAScript 5 is a restricted subset of the language that fixes
a few important language deficiencies and provides stronger
error checking and increased security. The most important dif-
ferences between strict mode and non-strict mode are the
following:

• The with statement is not allowed in strict mode.

• In strict mode, all variables must be declared: a Referen-
ceError is thrown if you assign a value to an identifier that
is not a declared variable, parameter, or property of the
global object. (In nonstrict mode, this implicitly declares
a global variable by adding a new property to the global
object.)

• In strict mode, functions invoked as functions (rather than
as methods) have a this value of undefined. (In nonstrict
mode, functions invoked as functions are always passed
the global object as their this value.) This difference can
be used to determine whether an implementation sup-
ports strict mode:

var hasStrictMode = (function() {
 "use strict";
 return this === undefined;
}());

• In strict mode, assignments to nonwritable properties and
attempts to create new properties on nonextensible ob-
jects throw a TypeError. (In nonstrict mode, these at-
tempts fail silently.) Similarly, in strict mode, an attempt
to delete a nonconfigurable property or a nonproperty
value throws a TypeError or SyntaxError. (In nonstrict
mode, the attempt fails and the delete expression evalu-
ates to false.)

• In strict mode, code passed to eval() cannot declare vari-
ables or define functions in the caller’s scope as it can in
nonstrict mode. Instead, variable and function definitions
live in a new scope created for the eval(). This scope is
discarded when the eval() returns.

72 | Chapter 4: Statements

• In strict mode, octal integer literals (beginning with a 0
that is not followed by an x) are not allowed. (In nonstrict
mode, some implementations allow octal literals.)

• In strict mode, the identifiers eval and arguments are
treated like keywords, and you are not allowed to change
their value.

Miscellaneous Statements | 73

CHAPTER 5

Objects

JavaScript’s fundamental datatype is the object. An object is a
composite value: it aggregates multiple values (primitive values
or other objects) and allows you to store and retrieve those
values by name. An object is an unordered collection of prop-
erties, each of which has a name and a value. Property names
are strings, so we can say that objects map strings to values.
This string-to-value mapping goes by various names: you are
probably already familiar with the fundamental data structure
under the name “hash,” “hashtable,” “dictionary,” or “asso-
ciative array.” An object is more than a simple string-to-value
map, however. In addition to maintaining its own set of prop-
erties, a JavaScript object also inherits the properties of another
object, known as its “prototype.” The methods of an object are
typically inherited properties, and this “prototypal inheri-
tance” is a key feature of JavaScript.

JavaScript objects are dynamic—properties can usually be
added and deleted—but they can be used to simulate the static
objects and “structs” of statically typed languages. They can
also be used (by ignoring the value part of the string-to-value
mapping) to represent sets of strings.

Any value in JavaScript that is not a string, a number, true,
false, null, or undefined is an object.

75

Objects are mutable and are manipulated by reference rather
than by value: if the variable x refers to an object, and the code
var y = x; is executed, the variable y holds a reference to the
same object, not a copy of that object. Any modifications made
to the object through the variable y are also visible through the
variable x.

Creating Objects
Objects can be created with object literals, with the new key-
word, and (in ECMAScript 5) with the Object.create()
function.

Object Literals
The easiest way to create an object is to include an object literal
in your JavaScript code. An object literal is a comma-separated
list of colon-separated name:value pairs, enclosed within curly
braces. A property name is a JavaScript identifier or a string
literal (the empty string is allowed). A property value is any
JavaScript expression; the value of the expression (it may be a
primitive value or an object value) becomes the value of the
property. Here are some examples:

var empty = {}; // An object with no properties
var point = { x:0, y:0 }; // Two properties
var point2 = { // Another object literal
 x:point.x, // With more complex properties
 y:point.y+1
};
var book = { // Nonidentifier property names are quoted
 "main title": "JavaScript", // space in property name
 'sub-title': "Pocket Ref", // punctuation in name
 "for": "all audiences", // reserved word name
};

Creating Objects with new
The new operator creates and initializes a new object. The new
keyword must be followed by a function invocation. A function

76 | Chapter 5: Objects

used in this way is called a constructor and serves to initialize
a newly created object. Core JavaScript includes built-in con-
structors for native types. For example:

var o = new Object(); // An empty object: same as {}.
var a = new Array(); // An empty array: same as [].
var d = new Date(); // A Date for the current time.
var r = new RegExp("js"); // A pattern matching object.

In addition to these built-in constructors, it is common to de-
fine your own constructor functions to initialize newly created
objects. Doing so is covered in Chapter 8.

Prototypes
Before we can cover the third object creation technique, we
must pause for a moment to explain prototypes. Every Java-
Script object has a second JavaScript object (or null, but this
is rare) associated with it. This second object is known as a
prototype, and the first object inherits properties from the
prototype.

All objects created by object literals have the same prototype
object, and we can refer to this prototype object in JavaScript
code as Object.prototype. Objects created using the new key-
word and a constructor invocation use the value of the proto
type property of the constructor function as their prototype.
So the object created by new Object() inherits from Object.pro
totype just as the object created by {} does. Similarly, the object
created by new Array() uses Array.prototype as its prototype,
and the object created by new Date() uses Date.prototype as its
prototype.

Object.prototype is one of the rare objects that has no proto-
type: it does not inherit any properties. Other prototype objects
are normal objects that do have a prototype. All of the built-in
constructors (and most user-defined constructors) have a pro-
totype that inherits from Object.prototype. For example,
Date.prototype inherits properties from Object.prototype, so
a Date object created by new Date() inherits properties from

Creating Objects | 77

both Date.prototype and Object.prototype. This linked series
of prototype objects is known as a prototype chain.

An explanation of how property inheritance works is in “Prop-
erty Inheritance” on page 80. We’ll learn how to query
the prototype of an object in “The prototype At-
tribute” on page 90. And Chapter 8 explains the connection
between prototypes and constructors in more detail: it shows
how to define new “classes” of objects by writing a constructor
function and setting its prototype property to the prototype
object to be used by the “instances” created with that
constructor.

Object.create()
ECMAScript 5 defines a method, Object.create(), that creates
a new object, using its first argument as the prototype of that
object. Object.create() also takes an optional second argu-
ment that describes the properties of the new object.
This second argument is covered in “Property At-
tributes” on page 87.

Object.create() is a static function, not a method invoked on
individual objects. To use it, simply pass the desired prototype
object:

// o1 inherits properties x and y.
var o1 = Object.create({x:1, y:2});

You can pass null to create a new object that does not have a
prototype, but if you do this, the newly created object will not
inherit anything, not even basic methods like toString()
(which means it won’t work with the + operator either):

// o2 inherits no properties or methods.
var o2 = Object.create(null);

If you want to create an ordinary empty object (like the object
returned by {} or new Object()), pass Object.prototype:

// o3 is like {} or new Object().
var o3 = Object.create(Object.prototype);

78 | Chapter 5: Objects

The ability to create a new object with an arbitrary prototype
(put another way: the ability to create an “heir” for any object)
is a powerful one, and we can simulate it in ECMAScript 3 with
a function like the one in Example 5-1.

Example 5-1. Creating a new object that inherits from a prototype

// inherit() returns a newly created object that inherits
// properties from the prototype object p. It uses the
// ECMAScript 5 function Object.create() if it is defined,
// and otherwise falls back to an older technique.
function inherit(p) {
 if (p == null) // p must be a non-null
 throw TypeError();
 if (Object.create) // Use Object.create()
 return Object.create(p); // if it is defined.
 var t = typeof p; // Make sure p is an object
 if (t !== "object" && t !== "function")
 throw TypeError();
 function f() {}; // Define a dummy constructor.
 f.prototype = p; // Set its prototype property
 return new f(); // Use it to create an "heir" of p.
}

The code in the inherit() function will make more sense after
we’ve covered constructors in Chapter 8.

Properties
The most important part of an object are its properties. The
sections that follow explain them in detail.

Querying and Setting Properties
To obtain the value of a property, you can use the dot (.) or
square bracket ([]) operators described in “Property Ac-
cess” on page 26. The left-hand side should be an expression
whose value is an object. If using the dot operator, the right-
hand must be a simple identifier that names the property. If
using square brackets, the value within the brackets must be

Properties | 79

an expression that evaluates to a string (or number) that con-
tains the desired property name:

// Get the "author" property of the book.
var author = book.author;
// Get the "surname" property of the author.
var name = author.surname
// Get the "main title" property of the book.
var title = book["main title"]

To create or set a property, use a dot or square brackets as you
would to query the property, but put them on the left-hand
side of an assignment expression:

// Create an "edition" property of book.
book.edition = 6;
// Set the "main title" property.
book["main title"] = "ECMAScript";

Property Inheritance
JavaScript objects have a set of “own properties,” and they also
inherit a set of properties from their prototype object. To un-
derstand this, we must consider property access in more detail.
The examples in this section use the inherit() function from
Example 5-1 in order to create objects with specified
prototypes.

Suppose you query the property x in the object o. If o does not
have an own property with that name, the prototype object of
o is queried for the property x. If the prototype object does not
have an own property by that name, but has a prototype itself,
the query is performed on the prototype of the prototype. This
continues until the property x is found or until an object with
a null prototype is searched. As you can see, the prototype at-
tribute of an object creates a chain or linked list from which
properties are inherited:

// o inherits object methods from Object.prototype
var o = {}
o.x = 1; // and has an own property x.
// p inherits properties from o and Object.prototype
var p = inherit(o);
p.y = 2; // and has an own property y.

80 | Chapter 5: Objects

// q inherits properties from p, o, and Object.prototype
var q = inherit(p);
q.z = 3; // and has an own property z.
// toString is inherited from Object.prototype
var s = q.toString();
// x and y are inherited from o and p
q.x + q.y // => 3

Now suppose you assign to the property x of the object o. If o
already has an own (noninherited) property named x, then the
assignment simply changes the value of this existing property.
Otherwise, the assignment creates a new property named x on
the object o. If o previously inherited the property x, that in-
herited property is now hidden by the newly created own prop-
erty with the same name.

Deleting Properties
The delete operator (“The delete Operator” on page 46) re-
moves a property from an object. Its single operand should be
a property access expression. Surprisingly, delete does not op-
erate on the value of the property but on the property itself:

delete book.author; // book now has no author.
delete book["main title"]; // or a "main title", either.

The delete operator only deletes own properties, not inherited
ones. (To delete an inherited property, you must delete it from
the prototype object in which it is defined. Doing this affects
every object that inherits from that prototype.)

Testing Properties
JavaScript objects can be thought of as sets of properties, and
it is often useful to be able to test for membership in the set—
to check whether an object has a property with a given name.
You can do this with the in operator, with the hasOwnProp
erty() and propertyIsEnumerable() methods, or simply by
querying the property.

Properties | 81

The in operator expects a property name (as a string) on its left
side and an object on its right. It returns true if the object has
an own property or an inherited property by that name:

var o = { x: 1 }
"x" in o; // true: o has an own property "x"
"y" in o; // false: o doesn't have a property "y"
"toString" in o; // true: o inherits a toString property

The hasOwnProperty() method of an object tests whether that
object has an own property with the given name. It returns
false for inherited properties:

var o = { x: 1 }
o.hasOwnProperty("x"); // true: o has an own property x
o.hasOwnProperty("y"); // false: o has no property y
// toString is an inherited property
o.hasOwnProperty("toString"); // false

The propertyIsEnumerable() method refines the hasOwnProp
erty() test. It returns true only if the named property is an own
property and its enumerable attribute is true. Certain built-in
properties are not enumerable. Properties created by normal
JavaScript code are enumerable unless you’ve used one of the
ECMAScript 5 methods shown later to make them
nonenumerable:

var o = inherit({ y: 2 });
o.x = 1;
// o has an own enumerable property x
o.propertyIsEnumerable("x"); // true
// y is inherited, not own
o.propertyIsEnumerable("y"); // false
// false: the toString method is not enumerable
Object.prototype.propertyIsEnumerable("toString");

Instead of using the in operator, it is often sufficient to simply
query the property and use !== to make sure it is not undefined:

var o = { x: 1 }
o.x !== undefined; // true: o has a property x
o.y !== undefined; // false: o has no property y
o.toString !== undefined; // true: o inherits it

There is one thing the in operator can do that the simple prop-
erty access technique shown above cannot do. in can

82 | Chapter 5: Objects

distinguish between properties that do not exist and properties
that exist but have been set to undefined. Consider this code:

var o = { x: undefined }
o.x !== undefined // false: property is undefined
o.y !== undefined // false: property doesn't exist
"x" in o // true: property exists
"y" in o // false: property doesn't exist
delete o.x; // Delete the property x
"x" in o // false: it doesn't exist anymore

Enumerating Properties
Instead of testing for the existence of individual properties, we
sometimes want to iterate through or obtain a list of all the
properties of an object. This is usually done with the for/in
loop, although ECMAScript 5 provides two handy alternatives.

The for/in loop was covered in “for/in” on page 62. It runs the
body of the loop once for each enumerable property (own or
inherited) of the specified object, assigning the name of the
property to the loop variable. Built-in methods that objects in-
herit are not enumerable, but the properties that your code
adds to objects are enumerable (unless you use one of the
functions described later to make them nonenumerable). For
example:

// This object has three enumerable own properties
var o = {x:1, y:2, z:3};
// Its inherited methods are not enumerable:
o.propertyIsEnumerable("toString") // => false
// This loop prints x, y and z but not toString
for(p in o) console.log(p);

Some utility libraries add new methods (or other properties) to
Object.prototype so that they are inherited by, and available
to, all objects. Prior to ECMAScript 5, however, there is no way
to make these added methods nonenumerable, so they are
enumerated by for/in loops. To guard against this, you might
want to filter the properties returned by for/in. Here are two
ways you might do so:

for(p in o) {
 if (!o.hasOwnProperty(p)) // Skip inherited props

Properties | 83

 continue;
}

for(p in o) {
 if (typeof o[p] === "function") // Skip methods
 continue;
}

Here is a utility function that uses a for/in loop to copy the
properties of one object to another:

/*
 * Copy the enumerable properties of p to o,
 * and return o. If o and p have a property with the
 * same name, o's property is overwritten.
 */
function extend(o, p) {
 for(prop in p) { // For all props in p.
 o[prop] = p[prop]; // Add the property to o.
 }
 return o;
}

In addition to the for/in loop, ECMAScript 5 defines two
functions that enumerate property names. The first is
Object.keys(), which returns an array of the names of the enu-
merable own properties of an object. The second ECMAScript
5 property enumeration function is Object.getOwnProperty
Names(). It works like Object.keys() but returns the names of
all the own properties of the specified object, not just the enu-
merable properties.

Serializing Properties and Objects
Object serialization is the process of converting an object’s
state to a string from which it can later be restored. ECMA-
Script 5 provides the native functions JSON.stringify() and
JSON.parse() to serialize and restore JavaScript objects. These
functions use the JSON data interchange format (see http://json
.org). JSON stands for “JavaScript Object Notation,” and its
syntax is very similar to that of JavaScript object and array
literals:

84 | Chapter 5: Objects

http://json.org
http://json.org

o = {x:1, y:[false,null,""]}; // A test object
s = JSON.stringify(o); // '{"x":1,"y":[false,null,""]}'
p = JSON.parse(s); // p is a deep copy of o

The native implementation of these functions in ECMAScript
5 was modeled very closely after the public-domain ECMA-
Script 3 implementation available at http://json.org/json2.js.
For practical purposes, the implementations are the same, and
you can use these ECMAScript 5 functions in ECMAScript 3
with this json2.js module.

Note that JSON syntax is a subset of JavaScript syntax, and it
cannot represent all JavaScript values. Objects, arrays, strings,
finite numbers, true, false, and null are supported and can be
serialized and restored.

Property Getters and Setters
We’ve said that a property has a name and a value. In ECMA-
Script 5 (and in recent ECMAScript 3 versions of major brows-
ers other than IE) the value may be replaced by one or two
methods, known as a getter and a setter. Properties defined by
getters and setters are sometimes known as accessor proper-
ties to distinguish them from data properties that have a simple
value.

When a program queries the value of an accessor property,
JavaScript invokes the getter method (passing no arguments).
The return value of this method becomes the value of the prop-
erty access expression. When a program sets the value of an
accessor property, JavaScript invokes the setter method, pass-
ing the value of the right-hand side of the assignment. This
method is responsible for “setting,” in some sense, the property
value. The return value of the setter method is ignored.

The easiest way to define accessor properties is with an exten-
sion to the object literal syntax:

var o = {
 // An ordinary data property
 data_prop: value,

Properties | 85

http://json.org/json2.js

 // An accessor property as a pair of functions
 get accessor_prop() { /* return value */ },
 set accessor_prop(value) { /* set value */ }
};

Accessor properties are defined as one or two functions whose
name is the same as the property name, and with the func
tion keyword replaced with get and/or set. Note that no colon
is used to separate the name of the property from the functions
that access that property, but that a comma is still required
after the function body to separate the method from the next
method or data property. As an example, consider the follow-
ing object that represents a 2-D Cartesian point. It has ordinary
data properties to represent the x and y coordinates of the
point, and it has accessor properties for the equivalent polar
coordinates of the point:

var p = {
 // x and y are regular read-write data properties.
 x: 1.0,
 y: 1.0,

 // r is a read-write property with getter and setter.
 // Don't forget to put a comma after accessor methods.
 get r() {
 return Math.sqrt(this.x*this.x + this.y*this.y);
 },
 set r(newvalue) {
 var oldvalue = Math.sqrt(this.x*this.x + this.y*this.y);
 var ratio = newvalue/oldvalue;
 this.x *= ratio;
 this.y *= ratio;
 },

 // theta is a read-only accessor property.
 get theta() { return Math.atan2(this.y, this.x); }
};

Here is another example of a useful object with an accessor
property:

// Generate strictly increasing serial numbers
var serialnum = {
 // This data property holds the next serial number.
 // The $ hints that this is a private property.
 $n: 0,

86 | Chapter 5: Objects

 // Return the current value and increment it
 get next() { return this.$n++; },

 // Set a new n, but only if it is >= current n.
 set next(n) {
 if (n >= this.$n) this.$n = n;
 else throw "serial number can only be increased";
 }
};

Property Attributes
In addition to a name and value, properties have attributes that
specify whether they can be written, enumerated, and config-
ured. In ECMAScript 3, there is no way to set these attributes:
all properties created by ECMAScript 3 programs are writable,
enumerable, and configurable, and there is no way to change
this. This section explains the ECMAScript 5 API for querying
and setting property attributes.

For the purposes of this section, we are going to consider getter
and setter methods of an accessor property to be property at-
tributes. Following this logic, we’ll even say that the value of a
data property is an attribute as well. Thus, we can say that a
property has a name and four attributes. The four attributes of
a data property are value, writable, enumerable, and configu-
rable. Accessor properties don’t have a value attribute or a
writable attribute: their writability is determined by the pres-
ence or absence of a setter. So the four attributes of an accessor
property are get, set, enumerable, and configurable.

The ECMAScript 5 methods for querying and setting the at-
tributes of a property use an object called a property descrip-
tor to represent the set of four attributes. A property descriptor
object has properties with the same names as the attributes of
the property it describes. Thus, the property descriptor object
of a data property has properties named value, writable, enu
merable, and configurable. And the descriptor for an accessor
property has get and set properties instead of value and writ
able. The writable, enumerable, and configurable properties

Properties | 87

are boolean values, and the get and set properties are function
values, of course.

To obtain the property descriptor for a named property of a
specified object, call Object.getOwnPropertyDescriptor():

// Returns {value: 1, writable:true,
// enumerable:true, configurable:true}
Object.getOwnPropertyDescriptor({x:1}, "x");

// Query the theta property of the p object from above.
// Returns { get: /*func*/, set:undefined,
 enumerable:true, configurable:true}
Object.getOwnPropertyDescriptor(p, "theta");

As implied by its name, Object.getOwnPropertyDescriptor()
works only for own properties. To query the attributes of in-
herited properties, you must explicitly traverse the prototype
chain (see Object.getPrototypeOf() in “The prototype At-
tribute” on page 90).

To set the attributes of a property, or to create a new property
with the specified attributes, call Object.defineProperty(),
passing the object to be modified, the name of the property to
be created or altered, and the property descriptor object:

var o = {}; // Start with no properties at all
// Add a nonenumerable data property x with value 1.
Object.defineProperty(o, "x", { value : 1,
 writable: true,
 enumerable: false,
 configurable: true});

// Check that the property is there but is nonenumerable
o.x; // => 1
Object.keys(o) // => []

// Now modify the property x so that it is read-only
Object.defineProperty(o, "x", { writable: false });

// Try to change the value of the property
o.x = 2; // Fails silently or TypeError in strict mode
o.x // => 1

// The property is still configurable,
// so we can change its value like this:

88 | Chapter 5: Objects

Object.defineProperty(o, "x", { value: 2 });
o.x // => 2

// Now change x to an accessor property
Object.defineProperty(o, "x", {
 get: function() { return 0; }
});
o.x // => 0

The property descriptor you pass to Object.defineProperty()
does not have to include all four attributes. If you’re creating
a new property, then omitted attributes are taken to be false
or undefined. If you’re modifying an existing property, then the
attributes you omit are simply left unchanged. Note that this
method alters an existing own property or creates a new own
property, but it will not alter an inherited property.

If you want to create or modify more than one property at a
time, use Object.defineProperties(). The first argument is the
object that is to be modified. The second argument is an object
that maps the names of the properties to be created or modified
to the property descriptors for those properties. For example:

var p = Object.defineProperties({}, {
 x: { value: 1, writable: true,
 enumerable:true, configurable:true },
 y: { value: 1, writable: true,
 enumerable:true, configurable:true },
 r: {
 get: function() {
 return Math.sqrt(this.x*this.x+this.y*this.y)
 },
 enumerable:true,
 configurable:true
 }
});

We saw the ECMAScript 5 method Object.create() in “Cre-
ating Objects” on page 76. We learned there that the first ar-
gument to that method is the prototype object for the newly
created object. This method also accepts a second optional
argument, which is the same as the second argument to
Object.defineProperties(). If you pass a set of property

Properties | 89

descriptors to Object.create(), then they are used to add prop-
erties to the newly created object.

Object Attributes
Every object has associated prototype, class, and extensible
attributes.

The prototype Attribute
An object’s prototype attribute specifies the object from which
it inherits properties. The prototype attribute is set when an
object is created. Recall from “Prototypes” on page 77 that ob-
jects created from object literals use Object.prototype as their
prototype. Objects created with new use the value of the proto
type property of their constructor function as their prototype.
And objects created with Object.create() use the first argu-
ment to that function (which may be null) as their prototype.

In ECMAScript 5, you can query the prototype of any object
by passing that object to Object.getPrototypeOf(). There is no
equivalent function in ECMAScript 3, but it is sometimes pos-
sible to determine the prototype of an object o using the ex-
pression o.constructor.prototype.

To determine whether one object is the prototype of (or is part
of the prototype chain of) another object, use the isPrototy
peOf() method. To find out if p is the prototype of o write
p.isPrototypeOf(o). For example:

var p = {x:1}; // Define a prototype object.
var o = Object.create(p); // Inherit from that prototype.
p.isPrototypeOf(o) // => true: o inherits from p.
Object.prototype.isPrototypeOf(p) // True for any object.

Note that isPrototypeOf() performs a function similar to the
instanceof operator.

90 | Chapter 5: Objects

The class Attribute
An object’s class attribute is a string that provides information
about the type of the object. Neither ECMAScript 3 nor
ECMAScript 5 provide any way to set this attribute, and there
is only an indirect technique for querying it. The default
toString() method (inherited from Object.prototype) returns
a string of the form:

[object class]

So to obtain the class of an object, you can invoke this
toString() method on it, and extract the eighth through the
second-to-last characters of the returned string. The tricky part
is that many objects inherit other, more useful toString()
methods, and to invoke the correct version of toString(), we
must do so indirectly, using the Function.call() method (see
“Indirect Invocation” on page 120). Example 5-2 defines a
function that returns the class of any object you pass it.

Example 5-2. A classof() function

function classof(o) {
 if (o === null) return "Null";
 if (o === undefined) return "Undefined";
 return Object.prototype.toString.call(o).slice(8,-1);
}

The extensible Attribute
The extensible attribute of an object specifies whether new
properties can be added to the object or not. ECMAScript 5
defines functions for querying and setting the extensibility of
an object. To determine whether an object is extensible, pass
it to Object.isExtensible(). To make an object nonextensible,
pass it to Object.preventExtensions().

Object.seal() works like Object.preventExtensions(), but in
addition to making the object nonextensible, it also makes all
of the own properties of that object nonconfigurable. This
means that new properties cannot be added to the object, and
existing properties cannot be deleted or configured. You can

Object Attributes | 91

use Object.isSealed() to determine whether an object is
sealed.

Object.freeze() locks objects down even more tightly. In ad-
dition to making the object nonextensible and its properties
nonconfigurable, it also makes all of the object’s own data
properties read-only. Use Object.isFrozen() to determine if an
object is frozen.

It is important to understand that there is no way to undo
the effects of Object.preventExtensions(), Object.seal(), and
Object.freeze(). Also, these functions affect only the object
they are passed: they have no effect on the prototype of that
object. Finally, note that these three functions all return the
object that they are passed, which means that you can use them
in nested function invocations:

// Create a sealed object with a frozen prototype
// and a nonenumerable property
o = Object.seal(Object.create(Object.freeze({x:1}),
 {y: { value: 2,
 writable: true}}));

92 | Chapter 5: Objects

CHAPTER 6

Arrays

An array is an ordered collection of values. Each value is called
an element, and each element has a numeric position in the
array, known as its index. JavaScript arrays are untyped: an ar-
ray element may be of any type, and different elements of the
same array may be of different types. Array elements may even
be objects or other arrays, which allows you to create complex
data structures, such as arrays of objects and arrays of arrays.
JavaScript arrays are zero-based and use 32-bit indexes: the in-
dex of the first element is 0, and the highest possible index
is 4294967294 (232−2), for a maximum array size of
4,294,967,295 elements. JavaScript arrays are dynamic: they
grow or shrink as needed and there is no need to declare a fixed
size for the array when you create it or to reallocate it when the
size changes. Every JavaScript array has a length property that
specifies the number of elements in the array.

JavaScript arrays are a specialized form of JavaScript object,
and array indexes are really little more than property names
that happen to be integers. Implementations typically optimize
arrays so that access to numerically indexed array elements is
faster than access to regular object properties.

Arrays inherit properties from Array.prototype, which defines
a rich set of array manipulation methods. Most of these meth-
ods are generic, which means that they work correctly not only

93

for true arrays, but for any “array-like object.” In
ECMAScript 5, strings behave like arrays of characters.

Creating Arrays
The easiest way to create an array is with an array literal, which
is simply a comma-separated list of array elements within
square brackets:

var empty = []; // An array with no elements
var primes = [2, 3, 5, 7]; // An array of 5 numbers
var misc = [{}, true, "a"]; // Elements of various types

The values in an array literal need not be constants; they may
be arbitrary expressions:

var base = 1024;
var table = [base, base+1, base+2, base+3];

Array literals can contain object literals or other array literals:

var b = [[1,{x:1, y:2}], [2, {x:3, y:4}]];

If an array literal contains two commas in a row, with no value
between, then an element is missing and the array is sparse.
Missing elements are undefined:

var count = [1,,3]; // Elements at indexes 0 and 2.
count[1] // => undefined
var undefs = [,,]; // No elements but length of 2

Array literal syntax allows an optional trailing comma, so
[1,2,] has a length of 2, not 3.

Another way to create an array is with the Array() constructor.
You can invoke this constructor in three distinct ways:

• Call it with no arguments:

var a = new Array();

This method creates an empty array with no elements and
is equivalent to the array literal [].

• Call it with a single numeric argument, which specifies a
length:

94 | Chapter 6: Arrays

var a = new Array(10);

This technique creates an array with the specified length.
This form of the Array() constructor can be used to pre-
allocate an array when you know in advance how many
elements will be required. Note that no values are stored
in the array, and the array index properties “0,” “1,” and
so on are not even defined for the array.

• Explicitly specify two or more array elements or a single
nonnumeric element for the array:

var a = new Array(5, 4, 3, 2, 1, "testing");

In this form, the constructor arguments become the
elements of the new array. Using an array literal is almost
always simpler than this usage of the Array()
constructor.

Array Elements and Length
You access an element of an array using the [] operator. A
reference to the array should appear to the left of the brackets.
An arbitrary expression that has (or can be converted to) a
nonnegative integer value should be inside the brackets. You
can use this syntax to both read and write the value of an ele-
ment of an array. Thus, the following are all legal:

var a = ["world"]; // Start with a one-element array
var value = a[0]; // Read element 0
a[1] = 3.14; // Write element 1
i = 2;
a[i] = 3; // Write element 2
a[i + 1] = "hello"; // Write element 3
a[a[i]] = a[0]; // Read 0 and 2, write 3

Remember that arrays are a specialized kind of object. The
square brackets used to access array elements work just like
the square brackets used to access object properties. JavaScript
converts the numeric array index you specify to a string—the
index 1 becomes the string "1"—then uses that string as a
property name.

Array Elements and Length | 95

Every array has a length property, and it is this property that
makes arrays different from regular JavaScript objects. The
length property specifies the number of elements in the array
(assuming no missing elements). Its value is one more than the
highest index in the array:

[].length // => 0: the array has no elements
['a','b','c'].length // => 3: highest index is 2

All arrays are objects, and you can create properties of any
name on them. What is special about arrays is that when you
use property names that are (or convert to) nonnegative inte-
gers less than 232–1, the array automatically maintains the
value of the length property for you.

The length property is writable and if you set the length prop-
erty to a nonnegative integer n smaller than its current value,
any array elements whose index is greater than or equal to n
are deleted from the array:

a=[1,2,3,4,5]; // Start with a 5-element array.
a.length = 3; // a is now [1,2,3].
a.length = 0; // Delete all elements. a is [].
a.length = 5; // Length 5, but no elts, like new Array(5)

You can also set the length property of an array to a value larger
than its current value. Doing this does not actually add any new
elements to the array, it simply creates a sparse area at the end
of the array.

Iterating Arrays
The most common way to loop through the elements of an
array is with a for loop (“for” on page 61):

var keys = Object.keys(o); // An array of property names
var values = [] // Store property values here
for(var i = 0; i < keys.length; i++) { // For each index
 var key = keys[i]; // Get the key
 values[i] = o[key]; // Store the value
}

96 | Chapter 6: Arrays

In nested loops, or other contexts where performance is criti-
cal, you may sometimes see this basic array iteration loop op-
timized so that the array length is only looked up once rather
than on each iteration:

for(var i = 0, len = keys.length; i < len; i++) {
 // loop body remains the same
}

ECMAScript 5 defines a number of new methods for iterating
array elements by passing each one, in index order, to a func-
tion that you define. The forEach() method is the most general
of these methods:

var data = [1,2,3,4,5]; // An array to iterate
var sumOfSquares = 0; // Update this on each iteration
data.forEach(function(x) { // Pass each elt to this func
 sumOfSquares += x*x; // add up squares
 });
sumOfSquares // =>55: 1+4+9+16+25

Multidimensional Arrays
JavaScript does not support true multidimensional arrays, but
you can approximate them with arrays of arrays. To access a
value in an array of arrays, simply use the [] operator twice.
For example, suppose the variable matrix is an array of arrays
of numbers. Every element in matrix[x] is an array of numbers.
To access a particular number within this array, you would
write matrix[x][y]. Here is a concrete example that uses a two-
dimensional array as a multiplication table:

// Create a multidimensional array
var table = new Array(10); // 10 rows of the table
for(var i = 0; i < table.length; i++)
 table[i] = new Array(10); // Each row has 10 columns

// Initialize the array
for(var row = 0; row < table.length; row++) {
 for(col = 0; col < table[row].length; col++) {
 table[row][col] = row*col;
 }
}

Multidimensional Arrays | 97

// Use the multidimensional array to compute 5*7
var product = table[5][7]; // 35

Array Methods
Arrays have a number of useful methods, demonstrated in the
sections below.

join()
The Array.join() method converts all the elements of an array
to strings and concatenates them, returning the resulting
string. You can specify an optional string that separates the
elements in the resulting string. If no separator string is speci-
fied, a comma is used:

var a = [1, 2, 3];
a.join(); // => "1,2,3"
a.join(" "); // => "1 2 3"
a.join(""); // => "123"
var b = new Array(5); // Length 5 but no elements
b.join('-') // => '----': a string of 4 hyphens

The Array.join() method is the inverse of the method
String.split(), which creates an array by breaking a string
into pieces.

reverse()
The Array.reverse() method reverses the order of the elements
of an array and returns the reversed array. It does this in place;
in other words, it doesn’t create a new array with the elements
rearranged but instead rearranges them in the already existing
array:

var a = [1,2,3];
a.reverse().join() // => "3,2,1"
a[0] // => 3: a is now [3,2,1]

98 | Chapter 6: Arrays

sort()
Array.sort() sorts the elements of an array in place and returns
the sorted array. When sort() is called with no arguments, it
sorts the array elements in alphabetical order:

var a = new Array("banana", "cherry", "apple");
a.sort();
var s = a.join(", "); // s == "apple, banana, cherry"

If an array contains undefined elements, they are sorted to the
end of the array.

To sort an array into some order other than alphabetical, you
must pass a comparison function as an argument to sort().
This function decides which of its two arguments should ap-
pear first in the sorted array. If the first argument should appear
before the second, the comparison function should return a
number less than zero. If the first argument should appear after
the second in the sorted array, the function should return a
number greater than zero. And if the two values are equivalent
(i.e., if their order is irrelevant), the comparison function
should return 0. So, for example, to sort array elements into
numerical rather than alphabetical order, you might do this:

var a = [33, 4, 1111, 222];
a.sort(); // Alphabetical: 1111, 222, 33, 4
a.sort(function(a,b) { // Numerical: 4, 33, 222, 1111
 return a-b; // Returns < 0, 0, or > 0
 });
a.sort(function(a,b) {return b-a}); // Reverse numerical

You can perform a case-insensitive alphabetical sort as follows:

a = ['ant', 'Bug', 'cat']
a.sort(); // case-sensitive sort: ['Bug','ant',cat']
a.sort(function(s,t) { // Case-insensitive sort
 var a = s.toLowerCase();
 var b = t.toLowerCase();
 if (a < b) return -1;
 if (a > b) return 1;
 return 0;
 }); // => ['ant','Bug','cat']

Array Methods | 99

concat()
The Array.concat() method creates and returns a new array
that contains the elements of the original array on which con
cat() was invoked, followed by each of the arguments to
concat(). If any of these arguments is itself an array, then it is
the array elements that are concatenated, not the array itself.
concat() does not modify the array on which it is invoked. Here
are some examples:

var a = [1,2,3];
a.concat(4, 5) // Returns [1,2,3,4,5]
a.concat([4,5]); // Returns [1,2,3,4,5]
a.concat([4,5],[6,7]) // Returns [1,2,3,4,5,6,7]
a.concat(4, [5,[6,7]]) // Returns [1,2,3,4,5,[6,7]]

slice()
The Array.slice() method returns a slice, or subarray, of the
specified array. Its two arguments specify the start and end of
the slice to be returned. The returned array contains the ele-
ment specified by the first argument and all subsequent ele-
ments up to, but not including, the element specified by the
second argument. If only one argument is specified, the re-
turned array contains all elements from the start position to the
end of the array. If either argument is negative, it specifies an
array element relative to the last element in the array. Note that
slice() does not modify the array on which it is invoked:

var a = [1,2,3,4,5];
a.slice(0,3); // Returns [1,2,3]
a.slice(3); // Returns [4,5]
a.slice(1,-1); // Returns [2,3,4]
a.slice(-3,-2); // Returns [3]

splice()
The Array.splice() method is a general-purpose method for
inserting or removing elements from an array. Unlike slice()
and concat(), splice() modifies the array on which it is
invoked.

100 | Chapter 6: Arrays

The first argument to splice() specifies the array position at
which the insertion and/or deletion is to begin. The second
argument specifies the number of elements that should be de-
leted from (spliced out of) the array. If this second argument is
omitted, all array elements from the start element to the end of
the array are removed. splice() returns an array of the deleted
elements, or an empty array if no elements were deleted. For
example:

var a = [1,2,3,4,5,6,7,8];
a.splice(4); // Returns [5,6,7,8]; a is [1,2,3,4]
a.splice(1,2); // Returns [2,3]; a is [1,4]
a.splice(1,1); // Returns [4]; a is [1]

The first two arguments to splice() specify which array ele-
ments are to be deleted. These arguments may be followed by
any number of additional arguments that specify elements to
be inserted into the array, starting at the position specified by
the first argument. For example:

var a = [1,2,3,4,5];
a.splice(2,0,'a','b'); // =>[]; a is [1,2,'a','b',3,4,5]
a.splice(2,2,3); // =>['a','b']; a is [1,2,3,3,4,5]

Note that, unlike concat(), splice() inserts arrays themselves,
not the elements of those arrays.

push() and pop()
The push() and pop() methods allow you to work with arrays
as if they were stacks. The push() method appends one or more
new elements to the end of an array and returns the new length
of the array. The pop() method does the reverse: it deletes the
last element of an array, decrements the array length, and re-
turns the value that it removed. Note that both methods mod-
ify the array in place rather than produce a modified copy of
the array:

var stack = []; // stack: []
stack.push(1,2); // stack: [1,2] Returns 2
stack.pop(); // stack: [1] Returns 2
stack.push(3); // stack: [1,3] Returns 2
stack.pop(); // stack: [1] Returns 3

Array Methods | 101

stack.push([4,5]); // stack: [1,[4,5]] Returns 2
stack.pop() // stack: [1] Returns [4,5]
stack.pop(); // stack: [] Returns 1

unshift() and shift()
The unshift() and shift() methods behave much like push()
and pop(), except that they insert and remove elements from
the beginning of an array rather than from the end. unshift()
adds an element or elements to the beginning of the array, shifts
the existing array elements up to higher indexes to make room,
and returns the new length of the array. shift() removes and
returns the first element of the array, shifting all subsequent
elements down one place to occupy the newly vacant space at
the start of the array:

var a = []; // a:[]
a.unshift(1); // a:[1] Returns: 1
a.unshift(22); // a:[22,1] Returns: 2
a.shift(); // a:[1] Returns: 22
a.unshift(3,[4,5]); // a:[3,[4,5],1] Returns: 3
a.shift(); // a:[[4,5],1] Returns: 3
a.shift(); // a:[1] Returns: [4,5]
a.shift(); // a:[] Returns: 1

toString()
An array, like any JavaScript object, has a toString() method.
For an array, this method converts each of its elements to a
string (calling the toString() methods of its elements, if nec-
essary) and outputs a comma-separated list of those strings.
Note that the output does not include square brackets or any
other sort of delimiter around the array value. For example:

[1,2,3].toString() // => '1,2,3'
["a", "b", "c"].toString() // => 'a,b,c'
[1, [2,'c']].toString() // => '1,2,c'

102 | Chapter 6: Arrays

ECMAScript 5 Array Methods
ECMAScript 5 defines nine new array methods for iterating,
mapping, filtering, testing, reducing, and searching arrays.
Most of the methods accept a function as their first argument
and invoke that function once for each element (or at least
some elements) of the array. In most cases, the function you
supply is invoked with three arguments: the value of the array
element, the index of the array element, and the array itself.
Often, you only need the first of these argument values and can
ignore the second and third values. Most of the ECMAScript 5
array methods that accept a function as their first argument
accept an optional second argument. If specified, the function
is invoked as if it is a method of this second argument. That is,
the second argument you pass becomes the value of the this
keyword inside of the function you pass. The return value of
the function you pass is important, but different methods han-
dle the return value in different ways. None of the
ECMAScript 5 array methods modify the array on which they
are invoked, but the function you pass to the array methods
may modify the array, of course.

forEach()
The forEach() method iterates through an array, invoking a
function you specify for each element:

var data = [1,2,3,4,5]; // Compute the sum of elements
var sum = 0; // Start at 0
data.forEach(function(value) { sum += value; });
sum // => 15

// Now increment each array element
data.forEach(function(v, i, a) { a[i] = v + 1; });
data // => [2,3,4,5,6]

ECMAScript 5 Array Methods | 103

map()
The map() method passes each element of the array on which
it is invoked to the function you specify, and returns a new
array containing the values returned by that function:

a = [1, 2, 3];
b = a.map(function(x) { return x*x; }); // b is [1, 4, 9]

filter()
The filter() method returns an array containing a subset of
the elements of the array on which it is invoked. The function
you pass to it should be predicate: a function that returns
true or false. The predicate is invoked just as for forEach()
and map(). If the return value is true, or a value that converts
to true, then the element passed to the predicate is a member
of the subset and is added to the array that will become the
return value:

a = [5, 4, 3, 2, 1];
a.filter(function(x) { return x < 3 }); // => [2,1]
a.filter(function(x,i) { return i%2==0 }); // => [5,3,1]

every() and some()
The every() and some() methods are array predicates: they ap-
ply a predicate function you specify to the elements of the array,
and then return true or false.

The every() method is like the mathematical “for all” quanti-
fier ∀: it returns true if and only if your predicate function re-
turns true for all elements in the array:

a = [1,2,3,4,5];
// Are all values less than 10?
a.every(function(x) { return x < 10; }) // => true
// Are all valeus even?
a.every(function(x) { return x%2 === 0; }) // => false

The some() method is like the mathematical “there exists”
quantifier ∃: it returns true if there exists at least one element
in the array for which the predicate returns true, and returns

104 | Chapter 6: Arrays

false if and only if the predicate returns false for all elements
of the array:

a = [1,2,3,4,5];
// Does a have any even numbers?
a.some(function(x) { return x%2===0; }) // => true
// Does a have any elements that are not numbers?
a.some(isNaN) // => false

Note that both every() and some() stop iterating array elements
as soon as they know what value to return. Note also that
every() returns true and some returns false when invoked on
an empty array.

reduce(), reduceRight()
The reduce() and reduceRight() methods combine the ele-
ments of an array, using the function you specify, to produce
a single value. This is a common operation in functional pro-
gramming and also goes by the names “inject” and “fold.” Ex-
amples help illustrate how it works:

var a = [1,2,3,4,5]
// Compute the sume of the elements
a.reduce(function(x,y) { return x+y }, 0); // => 15
// Compute the product of the elements
a.reduce(function(x,y) { return x*y }, 1); // => 120
// Compute the largest element
a.reduce(function(x,y) { return (x>y)?x:y; }); // => 5

reduce() takes two arguments. The first is the function that
performs the reduction operation. The task of this reduction
function is to somehow combine or reduce two values into a
single value, and to return that reduced value. In the examples
above, the functions combine two values by adding them, mul-
tiplying them, and choosing the largest. The second (optional)
argument is an initial value to pass to the function.

Functions used with reduce() are different than the functions
used with forEach() and map(). The familiar value, index, and
array values are passed as the second, third, and fourth argu-
ments. The first argument is the accumulated result of the re-
duction so far. On the first call to the function, this first

ECMAScript 5 Array Methods | 105

argument is the initial value you passed as the second argument
to reduce(). On subsequent calls, it is the value returned by the
previous invocation of the function. In the first example above,
the reduction function is first called with arguments 0 and 1.
It adds these and returns 1. It is then called again with argu-
ments 1 and 2 and it returns 3. Next it computes 3+3=6, then
6+4=10, and finally 10+5=15. This final value, 15, becomes
the return value of reduce().

You may have noticed that the third call to reduce() above has
only a single argument: there is no initial value specified. When
you invoke reduce() like this with no initial value, it uses the
first element of the array as the initial value. This means that
the first call to the reduction function will have the first and
second array elements as its first and second arguments. In the
sum and product examples above, we could have omitted the
initial value argument.

reduceRight() works just like reduce(), except that it processes
the array from highest index to lowest (right-to-left), rather
than from lowest to highest.

indexOf() and lastIndexOf()
indexOf() and lastIndexOf() search an array for an element
with a specified value, and return the index of the first such
element found, or –1 if none is found. indexOf() searches the
array from beginning to end, and lastIndexOf() searches from
end to beginning:

a = [0,1,2,1,0];
a.indexOf(1) // => 1: a[1] is 1
a.lastIndexOf(1) // => 3: a[3] is 1
a.indexOf(3) // => -1: no element has value 3

Unlike the other methods described in this section, indexOf()
and lastIndexOf() do not take a function argument. The first
argument is the value to search for. The second argument is
optional: it specifies the array index at which to begin the
search. If this argument is omitted, indexOf() starts at the be-
ginning and lastIndexOf() starts at the end. Negative values

106 | Chapter 6: Arrays

are allowed for the second argument and are treated as an offset
from the end of the array.

Array Type
We’ve seen throughout this chapter that arrays are objects with
some special behavior. Given an unknown object, it is often
useful to be able to determine whether it is an array or not. In
ECMAScript 5, you can do this with the Array.isArray()
function:

Array.isArray([]) // => true
Array.isArray({}) // => false

We can write an isArray() function that works in any version
of JavaScript like this:

var isArray = Array.isArray || function(o) {
 var ts = Object.prototype.toString;
 return typeof o === "object" &&
 ts.call(o) === "[object Array]";
};

Array-Like Objects
As we’ve seen, arrays are objects that have a length property
with special behavior. An “array-like” object is an ordinary
JavaScript object that has numeric properties names and a
length property. These “array-like” objects actually do occa-
sionally appear in practice, and although you cannot directly
invoke array methods on them or expect special behavior from
the length property, you can still iterate through them with the
same code you’d use for a true array:

// An array-like object
var a = {"0":"a", "1":"b", "2":"c", length:3};
// Iterate through it as if it were a real array
var total = 0;
for(var i = 0; i < a.length; i++)
 total += a[i];

Array-Like Objects | 107

Many array algorithms work just as well with array-like objects
as they do with real arrays and the JavaScript array methods
are purposely defined to be generic, so that they work correctly
when applied to array-like objects. Since array-like objects do
not inherit from Array.prototype, you cannot invoke array
methods on them directly. You can invoke them indirectly
using the Function.call method (see “Indirect Invoca-
tion” on page 120), however:

// An array-like object
var a = {"0":"a", "1":"b", "2":"c", length:3};
Array.prototype.join.call(a, "+") // => "a+b+c"
Array.prototype.map.call(a, function(x) {
 return x.toUpperCase();
}) // => ["A","B","C"]
// Make a true array copy of a n array-like object
Array.prototype.slice.call(a, 0) // => ["a","b","c"]

Some browsers define generic array functions directly on the
Array constructor. In browsers that support them, the exam-
ples above can be rewritten like this:

var a = {"0":"a", "1":"b", "2":"c", length:3};
Array.join(a, "+")
Array.slice(a, 0)
Array.map(a, function(x) { return x.toUpperCase(); })

Strings as Arrays
In ECMAScript 5 (and in many recent browser implementa-
tions—including IE8—prior to ECMAScript 5), strings behave
like read-only arrays. Instead of accessing individual characters
with the charAt() method, you can use square brackets:

var s = test;
s.charAt(0) // => "t"
s[1] // => "e"

The typeof operator still returns “string” for strings, of course,
and the Array.isArray() method returns false if you pass it a
string.

108 | Chapter 6: Arrays

The primary benefit of indexable strings is simply that we can
replace calls to charAt() with square brackets, which are more
concise and readable. The fact that strings behave like arrays
also means, however, that we can apply generic array methods
to them. For example:

s = "Java"
Array.prototype.join.call(s, " ") // => "J a v a"
Array.prototype.filter.call(s, function(x) {
 return x.match(/[^aeiou]/); // Match nonvowels
 }).join("") // => "Jv"

Strings as Arrays | 109

CHAPTER 7

Functions

A function is a block of JavaScript code that is defined once but
may be executed, or invoked, any number of times. You may
already be familiar with the concept of a function under a name
such as subroutine or procedure. JavaScript functions are par-
ameterized: a function definition may include a list of identifi-
ers, known as parameters, that work as local variables for the
body of the function. Function invocations provide values, or
arguments, for the function’s parameters. Functions often use
their argument values to compute a return value that becomes
the value of the function-invocation expression. In addition to
the arguments, each invocation has another value—the invo-
cation context—that is the value of the this keyword.

If a function is assigned to the property of an object, it is known
as a method of that object. When a function is invoked on or
through an object, that object is the invocation context or
this value for the function. Functions designed to initialize a
newly created object are called constructors. Constructors were
described in “Creating Objects” on page 76 and will be covered
again in Chapter 8.

In JavaScript, functions are objects, and they can be manipu-
lated by programs. JavaScript can assign functions to variables
and pass them to other functions, for example. Since functions
are objects, you can set properties on them, and even invoke
methods on them.

111

JavaScript function definitions can be nested within other
functions, and they have access to any variables that are in
scope where they are defined. This means that JavaScript func-
tions are closures, and it enables important and powerful pro-
gramming techniques.

Defining Functions
Functions are defined with the function keyword, which can
be used in a function definition expression (“Function Defini-
tion” on page 26) or in a function declaration statement
(“function” on page 54). In either form, function definitions
begin with the keyword function followed by these
components:

• An identifier that names the function. The name is a re-
quired part of function declaration statements: it is used
as the name of a variable, and the newly defined function
object is assigned to the variable. For function definition
expressions, the name is optional: if present, the name
refers to the function object only within the body of the
function itself.

• A pair of parentheses around a comma-separated list of
zero or more identifiers. These identifiers are the param-
eter names for the function, and they behave like local
variables within the body of the function.

• A pair of curly braces with zero or more JavaScript state-
ments inside. These statements are the body of the func-
tion: they are executed whenever the function is invoked.

Example 7-1 shows some function definitions using both state-
ment and expression forms. Notice that a function defined as
an expression is only useful if it is part of a larger expression,
such as an assignment or invocation, that does something with
the newly defined function.

112 | Chapter 7: Functions

Example 7-1. Defining JavaScript functions

// Print the name and value of each property of o.
// Return undefined.
function printprops(o) {
 for(var p in o)
 console.log(p + ": " + o[p] + "\n");
}

// Compute distance between points (x1,y1) and (x2,y2).
function distance(x1, y1, x2, y2) {
 var dx = x2 - x1;
 var dy = y2 - y1;
 return Math.sqrt(dx*dx + dy*dy);
}

// A recursive function (one that calls itself) that
// computes factorials. Recall that x! is the product of
// x and all positive integers less than it.
function factorial(x) {
 if (x <= 1) return 1;
 return x * factorial(x-1);
}

// This expression defines a function that sqares its
// argument. Note that we assign it to a variable
var square = function(x) { return x*x; }

// Function expressions can include names,
// which is useful for recursion.
var f = function fact(x) {
 if (x <= 1) return 1;
 else return x*fact(x-1);
};

// Function expressions can also be used
// as arguments to other functions:
data.sort(function(a,b) { return a-b; });

// Function expressions are sometimes
// defined and then immediately invoked:
var tensquared = (function(x) {return x*x;}(10));

Note that the function name is optional for functions defined
as expressions. A function declaration statement actually de-
clares a variable and assigns a function object to it. A function

Defining Functions | 113

definition expression, on the other hand, does not declare a
variable. A name is allowed for functions, like the factorial
function above, that need to refer to themselves. If a function
definition expression includes a name, the local function scope
for that function will include a binding of that name to the
function object. In effect, the function name becomes a local
variable within the function. Most functions defined as ex-
pressions do not need names, which makes their definition
more compact. Function definition expressions are particu-
larly well suited for functions that are used only once, as in the
last two examples above.

As described in “function” on page 54, function declaration
statements are “hoisted” to the top of the enclosing script or
the enclosing function, so that functions declared in this way
may be invoked from code that appears before they are defined.
This is not true for functions defined as expressions, however:
in order to invoke a function, you must be able to refer to it,
and you can’t refer to a function defined as an expression until
it is assigned to a variable. So functions defined with expres-
sions cannot be invoked before they are defined.

Notice that most, but not all, of the functions in Example 7-1
contain a return statement (“return” on page 66). The return
statement causes the function to stop executing and to
return the value of its expression (if any) to the caller. If the
return statement does not have an associated expression, it
returns the undefined value. If a function does not contain a
return statement, it simply executes each statement in the
function body and returns the undefined value to the caller.

Nested Functions
In JavaScript, functions may be nested within other functions.
For example:

function hypotenuse(a, b) {
 function square(x) { return x*x; }
 return Math.sqrt(square(a) + square(b));
}

114 | Chapter 7: Functions

The interesting thing about nested functions is their variable
scoping rules: they can access the parameters and variables of
the function (or functions) they are nested within. In the code
above, for example, the inner function square() can read and
write the parameters a and b defined by the outer function
hypotenuse(). These scope rules for nested functions are
very important, and we’ll consider them again in “Clo-
sures” on page 125.

As noted in “function” on page 54, function declaration state-
ments are not true statements, and the ECMAScript specifica-
tion only allows them as top-level statements. They can appear
in global code, or within other functions, but they cannot ap-
pear inside of loops, conditionals, or try/catch/finally or
with statements. Note that this restriction applies only to func-
tions declared as statements. Function definition expressions
may appear anywhere in your JavaScript code.

Invoking Functions
The JavaScript code that makes up the body of a function is
not executed when the function is defined but when it is in-
voked. JavaScript functions can be invoked in four ways:

• as functions,

• as methods,

• as constructors, and

• indirectly through their call() and apply() methods.

Function Invocation
Functions are invoked as functions or as methods with an in-
vocation expression (“Invocation” on page 27). An invocation
expression consists of a function expression that evaluates to
a function object followed by an open parenthesis, a comma-
separated list of zero or more argument expressions, and a close
parenthesis. If the function expression is a property-access
expression—if the function is the property of an object or an

Invoking Functions | 115

element of an array—then it is a method invocation expression.
That case will be explained below. The following code includes
a number of regular function invocation expressions:

printprops({x:1});
var total = distance(0,0,2,1) + distance(2,1,3,5);
var probability = factorial(5)/factorial(13);

In an invocation, each argument expression (the ones between
the parentheses) is evaluated, and the resulting values become
the arguments to the function. These values are assigned to the
parameters named in the function definition. In the body of the
function, a reference to a parameter evaluates to the corre-
sponding argument value.

For regular function invocation, the return value of the func-
tion becomes the value of the invocation expression. If the
function returns because the interpreter reaches the end, the
return value is undefined. If the function returns because the
interpreter executes a return, the return value is the value of
the expression that follows the return or undefined if the
return statement has no value.

For function invocation in ECMAScript 3 and nonstrict
ECMAScript 5, the invocation context (the this value) is the
global object. In strict mode, however, the invocation context
is undefined.

Functions written to be invoked as functions do not typically
use the this keyword at all. It can be used, however, to deter-
mine whether strict mode is in effect:

// Define and invoke a function to determine
// if we're in strict mode.
var strict = (function() { return !this; }());

Method Invocation
A method is nothing more than a JavaScript function that is
stored in a property of an object. If you have a function f and
an object o, you can define a method named m of o with the
following line:

116 | Chapter 7: Functions

o.m = f;

Having defined the method m() of the object o, invoke it like
this:

o.m();

Or, if m() expects two arguments, you might invoke it like this:

o.m(x, y);

The code above is an invocation expression: it includes a func-
tion expression o.m and two argument expressions, x and y.
The function expression is itself a property access expression
(“Property Access” on page 26), and this means that the func-
tion is invoked as a method rather than as a regular function.

The arguments and return value of a method invocation are
handled exactly as described above for regular function invo-
cation. Method invocations differ from function invocations in
one important way, however: the invocation context. Property
access expressions consist of two parts: an object (in this case
o) and a property name (m). In a method invocation expression
like this, the object o becomes the invocation context, and the
function body can refer to that object by using the keyword
this. Here is a concrete example:

var calculator = { // An object literal
 operand1: 1,
 operand2: 1,
 add: function() {
 // The this keyword refers to this object.
 this.result = this.operand1 + this.operand2;
 }
};
calculator.add(); // A method invocation to compute 1+1.
calculator.result // => 2

Most method invocations use the dot notation for property
access, but property access expressions that use square brack-
ets also cause method invocation. The following are both
method invocations, for example:

o["m"](x,y); // Another way to write o.m(x,y).
a = [function(x) { return x+1 }];
a[0](z) // Also a method invocation

Invoking Functions | 117

Method invocations may also involve more complex property
access expressions:

// Invoke toUpperCase() method on customer.surname
customer.surname.toUpperCase();
// Invoke method m() on return value of f()
f().m();

Note that this is a keyword, not a variable or property name.
JavaScript syntax does not allow you to assign a value to this.

Unlike variables, the this keyword does not have a scope, and
nested functions do not inherit the this value of the containing
function. If a nested function is invoked as a method, its this
value is the object it was invoked on. If a nested function is
invoked as a function, its this value will be either the global
object (nonstrict mode) or undefined (strict mode). It is a com-
mon mistake to assume that a nested function invoked as a
function can use this to obtain the invocation context of the
outer function. If you want to access the this value of the outer
function, you need to store that value into a variable that is in
scope for the inner function. It is common to use the variable
self for this purpose. For example:

var o = { // An object o.
 m: function() { // Method m of the object.
 var self = this; // Save the this value
 console.log(this === o); // Prints "true"
 f(); // Now call nested function

 function f() {
 console.log(this === o); // prints "false"
 console.log(self === o); // prints "true"
 }
 }
};
o.m(); // Invoke the method m on the object o.

Constructor Invocation
If a function or method invocation is preceded by the keyword
new, then it is a constructor invocation. (Constructor invoca-
tions were introduced in “Initializers” on page 24 and

118 | Chapter 7: Functions

“Creating Objects with new” on page 76, and constructors will
be covered in more detail in Chapter 8.) Constructor invoca-
tions differ from regular function and method invocations in
their handling of arguments, invocation context, and return
value.

If a constructor invocation includes an argument list in paren-
theses, those argument expressions are evaluated and passed
to the function in the same way they would be for function and
method invocations. But if a constructor has no parameters,
then JavaScript constructor invocation syntax allows the ar-
gument list and parentheses to be omitted entirely. You can
always omit a pair of empty parentheses in a constructor in-
vocation and the following two lines, for example, are
equivalent:

var o = new Object();
var o = new Object;

A constructor invocation creates a new, empty object that in-
herits from the prototype property of the constructor. Con-
structor functions are intended to initialize objects and this
newly created object is used as the invocation context, so the
constructor function can refer to it with the this keyword.
Note that the new object is used as the invocation context even
if the constructor invocation looks like a method invocation.
That is, in the expression new o.m(), o is not used as the invo-
cation context.

Constructor functions do not normally use the return key-
word. They typically initialize the new object and then return
implicitly when they reach the end of their body. In this case,
the new object is the value of the constructor invocation ex-
pression. If, however, a constructor explicitly used the return
statement to return an object, then that object becomes the
value of the invocation expression. If the constructor uses
return with no value, or if it returns a primitive value, that
return value is ignored and the new object is used as the value
of the invocation.

Invoking Functions | 119

Indirect Invocation
JavaScript functions are objects and like all JavaScript objects,
they have methods. Two of these methods, call() and
apply(), invoke the function indirectly. The first argument to
both call() and apply() is the object on which the function is
to be invoked; this argument is the invocation context and be-
comes the value of the this keyword within the body of the
function. To invoke the function f() as a method of the object
o (passing no arguments), you could use either call() or
apply():

f.call(o);
f.apply(o);

Either of the lines of code above are similar to the following
(which assume that o does not already have a property named
m):

o.m = f; // Make f a temporary method of o.
o.m(); // Invoke it, passing no arguments.
delete o.m; // Remove the temporary method.

In ECMAScript 5 strict mode, the first argument to call() or
apply() becomes the value of this, even if it is a primitive value
or null or undefined. In ECMAScript 3 and nonstrict mode, a
value of null or undefined is replaced with the global object
and a primitive value is replaced with the corresponding wrap-
per object.

Any arguments to call() after the first invocation context ar-
gument are the values that are passed to the function that is
invoked. For example, to pass two numbers to the function
f() and invoke it as if it were a method of the object o, you
could use code like this:

f.call(o, 1, 2);

The apply() method is like the call() method, except that the
arguments to be passed to the function are specified as an array:

f.apply(o, [1,2]);

120 | Chapter 7: Functions

If a function is defined to accept an arbitrary number of argu-
ments, the apply() method allows you to invoke that function
on the contents of an array of arbitrary length. For example, to
find the largest number in an array of numbers, you could use
the apply() method to pass the elements of the array to the
Math.max() function:

var biggest = Math.max.apply(Math, array_of_numbers);

Note that apply() works with array-like objects as well as true
arrays. In particular, you can invoke a function with the same
arguments as the current function by passing the arguments
array (see “Variable-Length Argument Lists: The Arguments
Object” on page 122) directly to apply(). The following code
demonstrates:

// Replace the method named m of the object o with a
// version that logs messages before and after invoking
// the original method.
function trace(o, m) {
 var original = o[m]; // Remember original method.
 o[m] = function() { // Now define the new method.
 console.log(new Date(), "Entering:", m); // Log
 // Invoke the original method
 var result = original.apply(this, arguments);
 console.log(new Date(), "Exiting:", m); // Log
 // Return the result of the original method
 return result;
 };
}

This trace() function is passed an object and a method name.
It replaces the specified method with a new method that
“wraps” additional functionality around the original method.
This kind of dynamic alteration of existing methods is some-
times called “monkey-patching.”

Function Arguments and Parameters
JavaScript function definitions do not specify an expected type
for the function parameters, and function invocations do not
do any type checking on the argument values you pass. In fact,

Function Arguments and Parameters | 121

JavaScript function invocations do not even check the number
of arguments being passed. The subsections that follow de-
scribe what happens when a function is invoked with fewer
arguments than declared parameters or with more arguments
than declared parameters.

Optional Parameters
When a function is invoked with fewer arguments than de-
clared parameters, the additional parameters are set to the
undefined value. It is often useful to write functions so that
some arguments are optional and may be omitted when the
function is invoked. To do this, you must be able to assign a
reasonable default value to parameters that are omitted. Here
is an example:

// Append the names of the enumerable properties of
// object o to the array a, and return a. If a is
// omitted, create and return a new array.
function names(o, /* optional */ a) {
 if (a === undefined) // If a was not specified
 a = []; // use a new array.
 for(var property in o) a.push(property);
 return a;
}

// This function can be invoked with 1 or 2 arguments:
var a = names(o); // Get o's properties in a new array
names(p,a); // Append p's properties to that array.

Instead of using an if statement in the first line of this function,
you could use the || operator (“Logical Expres-
sions” on page 39) in this idiomatic way:

a = a || [];

Variable-Length Argument Lists: The Arguments
Object
When a function is invoked with more argument values than
there are parameter names, there is no way to directly refer to
the unnamed values. The Arguments object provides a solution

122 | Chapter 7: Functions

to this problem. Within the body of a function, the identifier
arguments refers to the Arguments object for that invocation.
The Arguments object is an array-like object (see “Array-Like
Objects” on page 107) that allows the argument values passed
to the function to be retrieved by number, rather than by name.

Suppose you define a function f that expects to be passed one
argument, x. If you invoke this function with two arguments,
the first argument is accessible within the function by the pa-
rameter name x or as arguments[0]. The second argument is
accessible only as arguments[1]. Furthermore, arguments has a
length property that specifies the number of elements it con-
tains. Thus, within the body of the function f, invoked with
two arguments, arguments.length has the value 2.

One important use of the Arguments object is to write func-
tions that operate on any number of arguments. The following
function accepts any number of numeric arguments and re-
turns the value of the largest argument it is passed (see also the
built-in function Math.max(), which behaves the same way):

function max(/* ... */) {
 var max = Number.NEGATIVE_INFINITY;
 // Look for and remember the largest argument
 for(var i = 0; i < arguments.length; i++)
 if (arguments[i] > max) max = arguments[i];
 // Return the biggest
 return max;
}
var largest = max(10, 100, 2, 4, 10000, 6); // => 10000

Functions like this one that can accept any number of argu-
ments are called variadic functions, variable arity functions, or
varargs functions. This book uses the most colloquial term,
varargs, which dates to the early days of the C programming
language.

Note that varargs functions need not allow invocations with
zero arguments. It is perfectly reasonable to use the argu
ments[] object to write functions that expect some fixed num-
ber of named and required arguments followed by an arbitrary
number of unnamed optional arguments.

Function Arguments and Parameters | 123

Functions as Namespaces
Recall from “Variable Declaration” on page 19 that JavaScript
has function scope: variables declared within a function are
visible throughout the function (including within nested func-
tions) but do not exist outside of the function. Variables de-
clared outside of a function are global variables and are visible
throughout your JavaScript program. JavaScript does not de-
fine any way to declare variables that are hidden within a single
block of code, and for this reason, it is sometimes useful to
define a function simply to act as a temporary namespace in
which you can define variables without polluting the global
namespace.

Suppose, for example, you have a module of JavaScript code
that you want to use in a number of different JavaScript pro-
grams (or, for client-side JavaScript, on a number of different
web pages). Assume that this code, like most code, defines
variables to store the intermediate results of its computation.
The problem is that since this module will be used in many
different programs, you don’t know whether the variables it
creates will conflict with variables used by the programs that
import it. The solution, of course, is to put the code into a
function and then invoke the function. This way, variables that
would have been global become local to the function:

function mymodule() {
 // Module code goes here.
 // Any variables used by the module are local to this
 // function and do not clutter the global namespace.
}
mymodule(); // But don't forget to invoke the function!

This code defines only a single global variable: the function
name “mymodule.” If defining even a single property is too
much, you can define and invoke an anonymous function in a
single expression:

(function() { // mymodule as an unnamed expression
 // Module code goes here.
}()); // end the function and invoke it.

124 | Chapter 7: Functions

This technique of defining and invoking a function in a single
expression is used frequently enough that it has become id-
iomatic. Note the use of parentheses in the code above. The
open parenthesis before function is required because without
it, the JavaScript interpreter tries to parse the function keyword
as a function declaration statement. With the parenthesis, the
interpreter correctly recognizes this as a function definition
expression. It is idiomatic to use the parentheses, even when
they are not required, around a function that is to be invoked
immediately after being defined.

Closures
Like most modern programming languages, JavaScript uses
lexical scoping. This means that functions are executed using
the variable scope that was in effect when they were defined,
not the variable scope that is in effect when they are invoked.
This combination of a function object and the scope (a set of
variable bindings) in which it was defined is known as a clo-
sure, and closures become interesting in JavaScript when nes-
ted functions are involved. There are a number of powerful
programming techniques that involve this kind of nested func-
tion closures, and their use has become common in modern
JavaScript programming. Closures can be confusing when you
first encounter them, but it is important that you understand
them well enough to use them comfortably.

The first step to understanding closures is to review the lexical
scoping rules for nested functions. Consider the following
code:

var scope = "global scope"; // A global variable
function checkscope() {
 var scope = "local scope"; // A local variable
 function f() { return scope; }
 return f();
}
checkscope() // => "local scope"

Closures | 125

The checkscope() function declares a local variable and then
defines and invokes a function that returns the value of that
variable. It should be clear to you why the call to check
scope() returns “local scope.” Now let’s change the code just
slightly. Can you tell what this code will return?

var scope = "global scope"; // A global variable
function checkscope() {
 var scope = "local scope"; // A local variable
 function f() { return scope; }
 return f;
}
checkscope()() // What does this return?

In this code, a pair of parentheses has moved from inside check
scope() to outside of it. Instead of invoking the nested function
and returning its result, checkscope() now just returns the nes-
ted function object itself. What happens when we invoke that
nested function (with the second pair of parentheses in the last
line of code) outside of the function in which it was defined?

Remember the fundamental rule of lexical scoping: JavaScript
functions are executed using the scope chain that was in effect
when they were defined. The nested function f() was defined
under a scope chain in which the variable scope was bound to
the value “local scope.” That binding is still in effect when f is
executed, wherever it is executed from. So the last line of code
above returns “local scope,” not “global scope.” This, in a nut-
shell, is the surprising and powerful nature of closures: they
capture the local variable (and parameter) bindings of the outer
function within which they are defined.

Closures capture the local variables of a single function invo-
cation and can use those variables as private state. The follow-
ing code uses a closure in this way:

var uniqueInteger = (function() { // Define and invoke
 var counter = 0; // Private state of function below
 return function() { return counter++; };
}());

In order to understand this code, you have to read it carefully.
At first glance, the first line of code looks like it is assigning a

126 | Chapter 7: Functions

function to the variable uniqueInteger. In fact, the code is
defining and invoking (as hinted by the open parenthesis on
the first line) a function, so it is the return value of the function
that is being assigned to uniqueInteger. Now, if we study the
body of the function, we see that its return value is another
function. It is this nested function object that gets assigned to
uniqueInteger. The nested function has access to the variables
in scope, and can use the counter variable defined in the outer
function. Once that outer function returns, no other code can
see the counter variable: the inner function has exclusive access
to it. Each invocation of uniqueInteger() will return a new in-
teger, and there is no way for JavaScript code to alter the in-
ternal counter.

Private variables like counter need not be exclusive to a single
function: it is perfectly possible for two or more nested func-
tions to be defined within the same outer function and share
access to the same private variables. Consider the following
code:

function counter() {
 var n = 0;
 return {
 count: function() { return n++; },
 reset: function() { n = 0; }
 };
}

var c = counter(), // Create two counters
 d = counter();
c.count() // => 0
d.count() // => 0: they count independently
c.reset() // reset() and count() methods share state
c.count() // => 0: because we reset c
d.count() // => 1: d was not reset

The counter() function returns a “counter” object. This object
has two methods: count() returns the next integer, and
reset() resets the internal state. The first thing to understand
is that the two methods share access to the private variable n.
The second thing to understand is that each invocation of
counter() creates a new scope chain and a new private variable.

Closures | 127

So if you call counter() twice, you get two counter objects with
different private variables. Calling count() or reset() on one
counter object has no effect on the other.

In the example above, two functions are defined in the same
scope chain and share access to the same private variable or
variables. This is an important technique, but it is just as im-
portant to recognize when closures inadvertently share access
to a variable that they should not share. Consider the following
code:

// This function returns a function that always returns v
function constant(v) { return function() { return v; }; }

// Create an array of constant functions:
var funcs = [];
for(var i = 0; i < 10; i++) funcs[i] = constant(i);

// The function at array element 5 returns the value 5.
funcs[5]() // => 5

When working with code like this that creates multiple clo-
sures using a loop, it is a common error to try to move the loop
within the function that defines the closures. Think about the
following code, for example:

// Return an array of functions that return 0-9
function constfuncs() {
 var funcs = [];
 for(var i = 0; i < 10; i++)
 funcs[i] = function() { return i; };
 return funcs;
}

var funcs = constfuncs();
funcs[5]() // What does this return?

The code above creates 10 closures, and stores them in an ar-
ray. The closures are all defined within the same invocation of
the function, so they share access to the variable i. When con
stfuncs() returns, the value of the variable i is 10, and all 10
closures share this value. Therefore, all the functions in the
returned array of functions return the same value, which is not
what we wanted at all. It is important to remember that the

128 | Chapter 7: Functions

scope chain associated with a closure is “live.” Nested func-
tions do not make private copies of the scope or make static
snapshots of the variable bindings.

Another thing to remember when writing closures is that
this is a JavaScript keyword, not a variable. As discussed ear-
lier, every function invocation has a this value, and a closure
cannot access the this value of its outer function unless the
outer function has saved that value into a variable:

var self = this; // for use by nested funcs.

The arguments binding is similar. This is not a language key-
word, but it is automatically declared for every function invo-
cation. Since a closure has its own binding for arguments, it
cannot access the outer function’s arguments array unless the
outer function has saved that array into a variable by a different
name:

var outerArguments = arguments; // For nested funcs

Function Properties, Methods, and
Constructor
We’ve seen that functions are values in JavaScript programs.
The typeof operator returns the string “function” when ap-
plied to a function, but functions are really a specialized kind
of JavaScript object. Since functions are objects, they can have
properties and methods, just like any other object. There is
even a Function() constructor to create new function objects.
The call() and apply() methods of function objects were cov-
ered in “Indirect Invocation” on page 120, and the subsections
that follow document the remaining function properties and
methods and the Function() constructor.

The length Property
Within the body of a function, arguments.length specifies the
number of arguments that were passed to the function. The
length property of a function itself, however, has a different

Function Properties, Methods, and Constructor | 129

meaning. This read-only property returns the arity of the func-
tion—the number of parameters it declares in its parameter
list, which is usually the number of arguments that the function
expects.

The prototype Property
Every function has a prototype property that refers to an object
known as the prototype object. Every function has a different
prototype object. When a function is used as a constructor, the
newly created object inherits properties from the prototype
object. Prototypes and the prototype property were discussed
in “Prototypes” on page 77 and will be covered again in
Chapter 8.

The bind() Method
The bind() method was added in ECMAScript 5, but it is easy
to simulate in ECMAScript 3. As its name implies, the primary
purpose of bind() is to bind a function to an object. When you
invoke the bind() method on a function f and pass an object
o, the method returns a new function. Invoking the new func-
tion (as a function) invokes the original function f as a method
of o. Any arguments you pass to the new function are passed
to the original function. For example:

// This function needs to be bound
function f(y) { return this.x + y; }
var o = { x : 1 }; // An object we'll bind to
var g = f.bind(o); // Calling g(x) invokes o.f(x)
g(2) // => 3

It is easy to accomplish this kind of binding with code like the
following:

// Return a function that invokes f as a method of o,
// passing all its arguments.
function bind(f, o) {
 // Use the bind method, if there is one
 if (f.bind) return f.bind(o);
 else return function() {
 // Otherwise, bind it like this

130 | Chapter 7: Functions

 return f.apply(o, arguments);
 };
}

The ECMAScript 5 bind() method does more than just bind a
function to an object. It also performs partial application: any
arguments you pass to bind() after the first are bound along
with the this value. Partial application is a common technique
in functional programming and is sometimes called currying.
Here is an example of the bind() method used for partial
application:

var sum = function(x,y) { return x + y };
// Create a new function like sum, but with the this
// value bound to null and the 1st argument bound to 1.
// This new function expects just one arg.
var succ = sum.bind(null, 1);
succ(2) // => 3: x is bound to 1, and we pass 2 for y.

The toString() Method
Like all JavaScript objects, functions have a toString()
method. The ECMAScript spec requires this method to return
a string that follows the syntax of the function declaration
statement. In practice, most (but not all) implementations of
this toString() method return the complete source code for
the function. Built-in functions typically return a string that
includes something like “[native code]” as the function body.

The Function() Constructor
Functions are usually defined using the function keyword, ei-
ther in the form of a function definition statement or a function
literal expression. But functions can also be defined with the
Function() constructor. For example:

var f = new Function("x", "y", "return x*y;");

This line of code creates a new function that is more or less
equivalent to a function defined with the familiar syntax:

var f = function(x, y) { return x*y; }

Function Properties, Methods, and Constructor | 131

The Function() constructor expects any number of string ar-
guments. The last argument is the text of the function body; it
can contain arbitrary JavaScript statements, separated from
each other by semicolons. All other arguments to the construc-
tor are strings that specify the parameter names for the func-
tion. If you are defining a function that takes no arguments,
you simply pass a single string—the function body—to the
constructor.

A very important point about the Function() constructor is that
the functions it creates do not use lexical scoping; instead, they
are always compiled as if they were top-level functions: they
can access global variables, but not any local variables.

132 | Chapter 7: Functions

CHAPTER 8

Classes

JavaScript objects were covered in Chapter 5. That chapter
treated each object as a unique set of properties, different from
every other object. It is often useful, however, to define a
class of objects that share certain properties. Members, or in-
stances, of the class have their own properties to hold or define
their state, but they also have properties (typically methods)
that define their behavior. This behavior is defined by the class
and is shared by all instances. Imagine a class named Complex
to represent and perform arithmetic on complex numbers, for
example. A Complex instance would have properties to hold
the real and imaginary parts (state) of the complex number.
And the Complex class would define methods to perform ad-
dition and multiplication (behavior) of those numbers.

In JavaScript, classes are based on JavaScript’s prototype-
based inheritance mechanism. If two objects inherit properties
from the same prototype object, then we say that they are in-
stances of the same class. JavaScript prototypes and inheri-
tance were covered in “Prototypes” on page 77 and “Property
Inheritance” on page 80, and you must be familiar with the
material in those sections to understand this chapter.
This chapter covers prototypes in “Classes and Proto-
types” on page 134.

If two objects inherit from the same prototype, this typically
(but not necessarily) means that they were created and

133

initialized by the same constructor function. Constructors have
been covered in “Initializers” on page 24, “Creating Objects
with new” on page 76, and “Constructor Invoca-
tion” on page 118, and this chapter has more in “Classes and
Constructors” on page 136.

If you’re familiar with strongly-typed object-oriented program-
ming languages like Java or C++, you’ll notice that JavaScript
classes are quite different from classes in those languages.
There are some syntactic similarities, and you can emulate
many features of “classical” classes in JavaScript, but it is best
to understand up front that JavaScript’s classes and prototype-
based inheritance mechanism are substantially different from
the classes and class-based inheritance mechanism of Java
and similar languages. “Java-Style Classes in Java-
Script” on page 141 demonstrates classical classes in Java-
Script. One of the important features of JavaScript classes
is that they are dynamically extendable. “Augmenting
Classes” on page 146 explains how to do this.

Classes and Prototypes
In JavaScript, a class is a set of objects that inherit properties
from the same prototype object. The prototype object, there-
fore, is the central feature of a class. In Example 5-1 we defined
an inherit() function that returns a newly created object that
inherits from a specified prototype object. In this chapter we’ll
use the built-in ES5 function Object.create() instead of the
more portable inherit() utility function. If we define a proto-
type object, and then use Object.create() to create objects that
inherit from it, we have defined a JavaScript class. Usually, the
instances of a class require further initialization, and it is com-
mon to define a function that creates and initializes the new
object. Example 8-1 demonstrates this: it defines a prototype
object for a class that represents a range of values and also de-
fines a “factory” function that creates and initializes a new in-
stance of the class.

134 | Chapter 8: Classes

Example 8-1. A simple JavaScript class

// range.js: A class representing a range of values.

// This is a factory function that returns a new range object.
function range(from, to) {
 // Use Object.create() to create an object that inherits
 // from the prototype object defined below. The prototype
 // is stored as a property of this function, and defines
 // the shared methods (behavior) for all range objects.
 var r = Object.create(range.methods);

 // Save the start and end points (state) of the object.
 // They are noninherited properties unique to this object.
 r.from = from;
 r.to = to;

 // Finally return the new object
 return r;
}

// This prototype object defines methods inherited by all
// range objects.
range.methods = {
 // Return true if x is in the range, false otherwise
 includes: function(x) {
 return this.from <= x && x <= this.to;
 },
 // Invoke f once for each integer in the range.
 // This method works only for numeric ranges.
 foreach: function(f) {
 for(var x=Math.ceil(this.from); x <= this.to; x++)
 f(x);
 },
 // Return a string representation of the range
 toString: function() {
 return "(" + this.from + "..." + this.to + ")";
 }
};

// Here are example uses of a range object.
var r = range(1,3); // Create a range object
r.includes(2); // => true: 2 is in the range
r.foreach(console.log); // Prints 1 2 3
console.log(r); // Prints (1...3)

Classes and Prototypes | 135

There are a few things worth noting in the code of Exam-
ple 8-1. This code defines a factory function range() for creat-
ing new range objects. Notice that we use a property of this
range() function, range.methods, as a convenient place to store
the prototype object that defines the class. There is nothing
special or idiomatic about putting the prototype object here.
Second, notice that the range() function defines from and to
properties on each range object. These are the unshared, non-
inherited properties that define the unique state of each indi-
vidual range object. Finally, notice that the shared, inherited
methods defined in range.methods all use these from and to
properties, and in order to refer to them, they use the this key-
word to refer to the object through which they were invoked.
This use of this is a fundamental characteristic of the methods
of any class.

Classes and Constructors
Example 8-1 demonstrates one way to define a JavaScript class.
It is not the idiomatic way to do so, however, because it did
not define a constructor. A constructor is a function designed
for the initialization of newly created objects. Constructors are
invoked using the new keyword as described in “Constructor
Invocation” on page 118. Constructor invocations using new
automatically create the new object, so the constructor itself
only needs to initialize the state of that new object. The critical
feature of constructor invocations is that the prototype prop-
erty of the constructor function is used as the prototype of the
new object. This means that all objects created with the same
constructor inherit from the same object and are therefore
members of the same class. Example 8-2 shows how we could
alter the Range class of Example 8-1 to use a constructor func-
tion instead of a factory function:

Example 8-2. A Range class using a constructor

// range2.js: Another class representing a range of values.

// This is a constructor function that initializes new

136 | Chapter 8: Classes

// Range objects. Note that it does not create or return
// the object. It just initializes this.
function Range(from, to) {
 // Store the start and end points (state) of this new
 // range object. These are noninherited properties that
 // are unique to this object.
 this.from = from;
 this.to = to;
}

// All Range objects inherit from this object.
// Note that the property name must be "prototype".
Range.prototype = {
 // Return true if x is in the range, false otherwise
 includes: function(x) {
 return this.from <= x && x <= this.to;
 },
 // Invoke f once for each integer in the range.
 foreach: function(f) {
 for(var x=Math.ceil(this.from); x <= this.to; x++)
 f(x);
 },
 // Return a string representation of the range
 toString: function() {
 return "(" + this.from + "..." + this.to + ")";
 }
};

// Here are example uses of a range object
var r = new Range(1,3); // Create a range object
r.includes(2); // => true: 2 is in the range
r.foreach(console.log); // Prints 1 2 3
console.log(r); // Prints (1...3)

It is worth comparing Example 8-1 and Example 8-2 carefully
and noting the differences between these two techniques for
defining classes. First, notice that we renamed the range() fac-
tory function to Range() when we converted it to a constructor.
This is a very common coding convention: constructor func-
tions define, in a sense, classes, and classes have names that
begin with capital letters. Regular functions and methods have
names that begin with lowercase letters.

Next, notice that the Range() constructor is invoked (at the end
of the example) with the new keyword while the range() factory

Classes and Constructors | 137

function was invoked without it. Example 8-1 uses regular
function invocation (“Function Invocation” on page 115) to
create the new object and Example 8-2 uses constructor invo-
cation (“Constructor Invocation” on page 118). Because the
Range() constructor is invoked with new, it does not have to call
Object.create() or take any action to create a new object. The
new object is automatically created before the constructor is
called, and it is accessible as the this value. The Range() con-
structor merely has to initialize this. Constructors do not even
have to return the newly created object. Constructor invoca-
tion automatically creates a new object, invokes the construc-
tor as a method of that object, and returns the new object.

Another critical difference between Example 8-1 and Exam-
ple 8-2 is the way the prototype object is named. In the first
example, the prototype was range.methods. This was a conve-
nient and descriptive name, but arbitrary. In the second ex-
ample, the prototype is Range.prototype, and this name is
mandatory. An invocation of the Range() constructor auto-
matically uses Range.prototype as the prototype of the new
Range object.

Finally, also note the things that do not change between Ex-
ample 8-1 and Example 8-2: the range methods are defined and
invoked in the same way for both classes.

Constructors and Class Identity
As we’ve seen, the prototype object is fundamental to the iden-
tity of a class: two objects are instances of the same class if and
only if they inherit from the same prototype object. The con-
structor function that initializes the state of a new object is not
fundamental: two constructor functions may have prototype
properties that point to the same prototype object. Then both
constructors can be used to create instances of the same class.

Even through constructors are not as fundamental as proto-
types, the constructor serves as the public face of a class. Most
obviously, the name of the constructor function is usually
adopted as the name of the class. We say, for example, that the

138 | Chapter 8: Classes

Range() constructor creates Range objects. More fundamen-
tally, however, constructors are used with the instanceof op-
erator when testing objects for membership in a class. If we
have an object r and want to know if it is a Range object, we
can write:

// true if r inherits from Range.prototype
r instanceof Range

The instanceof operator does not actually check whether r was
initialized by the Range constructor. It checks whether it inher-
its from Range.prototype. Nevertheless, the instanceof syntax
reinforces the use of constructors as the public identity of a
class. We’ll see the instanceof operator again later in this
chapter.

The constructor Property
In Example 8-2 we set Range.prototype to a new object that
contained the methods for our class. Although it was conve-
nient to express those methods as properties of a single object
literal, it was not actually necessary to create a new object. Any
JavaScript function can be used as a constructor, and con-
structor invocations need a prototype property. Therefore,
every JavaScript function automatically has a prototype prop-
erty. The value of this property is an object that has a single
nonenumerable constructor property. The value of the con
structor property is the function object:

// F.prototype.constructor === F for any function F.
var F = function() {}; // A function object.
var p = F.prototype; // Its prototype object.
var c = p.constructor; // The prototype's function
c === F // => true:

The existence of this predefined prototype object with its
constructor property means that objects typically inherit a con
structor property that refers to their constructor. Since con-
structors serve as the public identity of a class, this constructor
property gives the class of an object:

Classes and Constructors | 139

var o = new F(); // Create an object o of class F
o.constructor === F // => true

Figure 8-1 illustrates this relationship between the constructor
function, its prototype object, the back reference from the pro-
totype to the constructor, and the instances created with the
constructor.

Figure 8-1. A constructor function, its prototype, and instances

Notice that Figure 8-1 uses our Range() constructor as an ex-
ample. In fact, however, the Range class defined in Exam-
ple 8-2 overwrites the predefined Range.prototype object with
an object of its own. And the new prototype object it defines
does not have a constructor property. So instances of the
Range class, as defined, do not have a constructor property.
We can remedy this problem by explicitly adding a constructor
to the prototype:

Range.prototype = {
 constructor: Range, // Explicitly set the constructor
 includes: function(x) {
 return this.from <= x && x <= this.to;
 },
 // etc...
};

Another common technique is to use the predefined prototype
object with its constructor property, and add methods to it one
at a time:

// Extend the predefined Range.prototype object so we
// don't overwrite Range.prototype.constructor.
Range.prototype.includes = function(x) {
 return this.from<=x && x<=this.to;

140 | Chapter 8: Classes

};
Range.prototype.foreach = function(f) {
 for(var x=Math.ceil(this.from); x <= this.to; x++)
 f(x);
};
Range.prototype.toString = function() {
 return "(" + this.from + "..." + this.to + ")";
};

Java-Style Classes in JavaScript
If you have programmed in Java or a similar strongly-typed
object-oriented language, you may be accustomed to thinking
about four kinds of class members:

Instance fields
These are the per-instance properties or variables that
hold the state of individual objects.

Instance methods
These are methods that are shared by all instances of the
class that are invoked through individual instances.

Class fields
These are properties or variables associated with the class
rather than the instances of the class.

Class methods
These are methods that are associated with the class rather
than with instances.

One way JavaScript differs from Java is that its functions are
values, and there is no hard distinction between methods and
fields. If the value of a property is a function, that property
defines a method; otherwise, it is just an ordinary property or
“field.” Despite this difference, we can simulate each of Java’s
four categories of class members in JavaScript. In JavaScript,
there are three different objects involved in any class definition
(see Figure 8-1), and the properties of these three objects act
like different kinds of class members:

Java-Style Classes in JavaScript | 141

Constructor object
As we’ve noted, the constructor function (an object) de-
fines a name for a JavaScript class. Properties you add to
this constructor object serve as class fields and class
methods.

Prototype object
The properties of this object are inherited by all instances
of the class, and properties whose values are functions
behave like instance methods of the class.

Instance object
Each instance of a class is an object in its own right, and
properties defined directly on an instance are not shared
by any other instances. Nonfunction properties defined
on instances behave as the instance fields of the class.

We can reduce the process of class definition in JavaScript to
a three-step algorithm. First, write a constructor function that
sets instance properties on new objects. Second, define in-
stance methods on the prototype object of the constructor.
Third, define class fields and class methods on the constructor
itself. We can even implement this algorithm as a simple
defineClass() function:

// A simple function for defining simple classes
function defineClass(constructor, // Initialization
 methods, // Instance methods
 statics) // Class properties
{
 if (methods) {
 // Copy methods to the prototype
 for(var m in methods)
 constructor.prototype[m] = methods[m];
 }
 if (statics) {
 // Copy static properties to the constructor
 for(var s in statics)
 constructor[s] = statics[s];
 }

 return constructor;
}

142 | Chapter 8: Classes

// This is a simple variant of our Range class
var SimpleRange =
 defineClass(
 function(f,t) { this.f = f; this.t = t; },
 {
 includes: function(x) {
 return this.f <= x && x <= this.t;
 },
 toString: function() {
 return this.f + "..." + this.t;
 }
 },
 {
 upto: function(t) {
 return new SimpleRange(0, t);
 }
 }
);

Immutable Classes
“Property Attributes” on page 87 demonstrated the ECMA-
Script 5 Object.defineProperties() method for defining read-
only and nonenumerable properties, and also explained that
property descriptors can also be passed to Object.create. We
can use these ES5 features to define classes whose instances are
immutable. Example 8-3 is an immutable version of our Range
class with instance methods that are nonenumerable, like the
methods of built-in classes. Finally, as an interesting trick, Ex-
ample 8-3 has a constructor function that works as a factory
function when invoked without the new keyword.

Example 8-3. An immutable class with nonenumerable methods

// This function works with or without 'new':
// it is a constructor and factory function.
function Range(from,to) {
 // These are descriptors for the read-only properties.
 var props = {
 from: { value:from, enumerable:true },
 to: { value:to, enumerable:true }
 };

Immutable Classes | 143

 if (this instanceof Range) // Invoked as a constructor
 Object.defineProperties(this, props);
 else // Invoked as a factory
 return Object.create(Range.prototype, props);
}

// Now set up the prototype with nonenumerable properties
Object.defineProperties(Range.prototype, {
 includes: {
 value: function(x) {
 return this.from <= x && x <= this.to;
 },
 writable: true, configurable: true
 },
 foreach: {
 value: function(f) {
 for(var x=Math.ceil(this.from); x<=this.to; x++)
 f(x);
 },
 writable: true, configurable: true
 },
 toString: {
 value: function() {
 return "(" + this.from + "..." + this.to + ")";
 },
 writable: true, configurable: true
 }
});

Subclasses
In object-oriented programming, a class B can extend or sub-
class another class A. We say that A is the superclass and B is
the subclass. Instances of B inherit all the instance methods of
A. The class B can define its own instance methods, some of
which may override methods of the same name defined by
class A.

The key to creating subclasses in JavaScript is proper initiali-
zation of the prototype object. If an object O is an instance of
a class B and B is a subclass of A, then O must also inherit
properties from A. We arrange this by ensuring that the pro-
totype object of B inherits from the prototype object of A. Using

144 | Chapter 8: Classes

Object.create() (we could also use the inherit() function
from Example 5-1), we write:

// Subclass B inherits from superclass A
B.prototype = Object.create(A.prototype);
// But override the inherited constructor prop.
B.prototype.constructor = B;

The two lines of code above are critical to creating subclasses
in JavaScript. Without them, the prototype object will be an
ordinary object—an object that inherits from Object.proto
type—and this means that your class will be a subclass of Ob-
ject like all classes are. It is straightforward to add these two
lines to the defineClass() function above to transform it into
defineSubclass().

Example 8-4 defines a DateRange class as a subclass of Range.
Date objects in JavaScript can be compared with < and >, so
DateRange inherits the includes() and toString() methods.
But it overrides the foreach() method to enumerate by days
within the range. Note how the DateRange.prototype is set up,
and also notice that the DateRange() constructor invokes its
superclass constructor (using the call() method) to initialize
the new object.

Example 8-4. A Range subclass

// A subclass of our Range class. It inherits the includes()
// and toString() methods, and overrides the foreach method
// to make it work with dates.
function DateRange(from, to) {
 // Use the superclass constructor to initialize
 Range.call(this, from, to);
}

// These two lines are key to subclassing. The subclass
// prototype must inherit from the superclass prototype.
DateRange.prototype = Object.create(Range.prototype);
DateRange.prototype.constructor = DateRange;

// This "static" field of the subclass holds the
// number of milliseconds in one day.
DateRange.DAY = 1000*60*60*24;

Subclasses | 145

// Invoke f once for each day in the range
DateRange.prototype.foreach = function(f) {
 var d = this.from;
 while(d < this.to) {
 f(d);
 d = new Date(d.getTime() + DateRange.DAY);
 }
}

var now = new Date();
var tomorrow = new Date(now.getTime() + DateRange.DAY);
var nextweek = new Date(now.getTime() + 7*DateRange.DAY);
var week = new DateRange(now, nextweek);

week.includes(tomorrow) // => true
week.foreach(function(d) { // Print each day in the week
 console.log(d.toLocaleDateString());
});

Augmenting Classes
JavaScript’s prototype-based inheritance mechanism is dy-
namic: an object inherits properties from its prototype, even if
the properties of the prototype change after the object is cre-
ated. This means that we can augment JavaScript classes sim-
ply by adding new methods to their prototype objects. Here is
code that adds a method to our Range class:

// Return a new range with negated endpoints
Range.prototype.negate = function() {
 return new Range(-this.to, -this.from);
};

The prototype object of built-in JavaScript classes is also
“open” like this, which means that we can add methods to
numbers, strings, arrays, functions, and so on. Here are some
examples:

// Invoke the function f this many times, passing the
// iteration number. E.g., to print "hello" 3 times:
// var n = 3;
// n.times(function(n) { console.log(n + " hello"); });
Number.prototype.times = function(f, context) {
 var n = Number(this);

146 | Chapter 8: Classes

 for(var i = 0; i < n; i++) f.call(context, i);
};

// Define the ES5 String.trim() method if it does not
// exist. This method trims space from the start and end.
String.prototype.trim =
 String.prototype.trim || function() {
 if (!this) return this;
 return this.replace(/^\s+|\s+$/g, "");
 };

// Return a function's name or "". If it has a name
// property, use it. Otherwise, convert the function to
// a string and extract the name from that.
Function.prototype.getName = function() {
 return this.name ||
 this.toString().match(/function\s*([^(]*)\(/)[1];
};

It is possible to add methods to Object.prototype, making
them available on all objects. This is not recommended, how-
ever, because prior to ECMAScript 5, there is no way to make
these add-on methods nonenumerable, and if you add prop-
erties to Object.prototype, those properties will be reported by
all for/in loops.

Augmenting Classes | 147

CHAPTER 9

Regular Expressions

A regular expression is an object that describes a pattern of
characters. The JavaScript RegExp class represents regular ex-
pressions, and both String and RegExp define methods that use
regular expressions to perform powerful pattern-matching and
search-and-replace functions on text. This chapter begins by
defining the syntax that regular expressions use to describe
textual patterns. It then moves on to describe the String and
RegExp methods that use regular expressions.

Describing Patterns with Regular
Expressions
In JavaScript, regular expressions are represented by RegExp
objects. RegExp objects may be created with the RegExp() con-
structor, of course, but they are more often created using a
special literal syntax. Just as string literals are specified as char-
acters within quotation marks, regular expression literals are
specified as characters within a pair of slash (/) characters.
Thus, your JavaScript code may contain lines like this:

var pattern = /s$/;

This line creates a new RegExp object and assigns it to the
variable pattern. This particular RegExp object matches any
string that ends with the letter “s.” This regular expression

149

could have equivalently been defined with the RegExp() con-
structor like this:

var pattern = new RegExp("s$");

Regular-expression pattern specifications consist of a series of
characters. Most characters, including all alphanumeric char-
acters, simply describe characters to be matched literally.
Thus, the regular expression /java/ matches any string that
contains the substring “java.” Other characters in regular ex-
pressions are not matched literally but have special signifi-
cance. For example, the regular expression /s$/ contains two
characters. The first, “s,” matches itself literally. The second,
“$,” is a special metacharacter that matches the end of a string.
Thus, this regular expression matches any string that contains
the letter “s” as its last character.

The following sections describe the various characters and
metacharacters used in JavaScript regular expressions.

Literal Characters
All alphabetic characters and digits match themselves literally
in regular expressions. Certain nonalphabetic characters can
be matched literally with escape sequences. Table 9-1 lists
these characters.

Table 9-1. Regular-expression literal characters

Character Matches

Alphanumeric
character

Itself

\0 The NUL character (\u0000)

\t Tab (\u0009)

\n Newline (\u000A)

\v Vertical tab (\u000B)

\f Form feed (\u000C)

\r Carriage return (\u000D)

150 | Chapter 9: Regular Expressions

Character Matches

\x nn The Latin character specified by the hexadecimal number nn; for ex-
ample, \x0A is the same as \n

\u xxxx The Unicode character specified by the hexadecimal number xxxx; for
example, \u0009 is the same as \t

\c X The control character ̂ X; for example, \cJ is equivalent to the newline
character \n

A number of punctuation characters have special meanings in
regular expressions. They are:

^ $. * + ? = ! : | \ / () [] { }

The meanings of these characters are discussed in the sections
that follow. Some of these characters have special meaning only
within certain contexts of a regular expression and are treated
literally in other contexts. As a general rule, however, if you
want to include any of these punctuation characters literally in
a regular expression, you must precede them with a \. Other
punctuation characters, such as quotation marks and @, do not
have special meaning and simply match themselves literally in
a regular expression.

Character Classes
Individual literal characters can be combined into character
classes by placing them within square brackets. A character
class matches any one character that is contained within it.
Thus, the regular expression /[abc]/ matches any one of the
letters a, b, or c. Negated character classes can also be defined;
these match any character except those contained within the
brackets. A negated character class is specified by placing a
caret (^) as the first character inside the left bracket. The
regexp /[^abc]/ matches any one character other than a, b, or
c. Character classes can use a hyphen to indicate a range of
characters. To match any one lowercase character from the
Latin alphabet, use /[a-z]/, and to match any letter or digit
from the Latin alphabet, use /[a-zA-Z0-9]/. Character classes

Describing Patterns with Regular Expressions | 151

work with Unicode characters as well. To match a Cyrillic
character, for example, use /[\u0400-\u04FF]/.

The regular-expression syntax includes shortcuts for a few
commonly used character classes. Table 9-2 lists these charac-
ters and summarizes character-class syntax.

Table 9-2. Regular expression character classes

Character Matches

[...] Any one character between the brackets.

[^...] Any one character not between the brackets.

. Any character except newline or another Unicode line terminator.

\w Any ASCII word character. Equivalent to [a-zA-Z0-9_].

\W Any character that is not an ASCII word character. Equivalent to [^a-zA-
Z0-9_].

\s Any Unicode whitespace character.

\S Any character that is not Unicode whitespace. Note that \w and \S are not
the same thing.

\d Any ASCII digit. Equivalent to [0-9].

\D Any character other than an ASCII digit. Equivalent to [^0-9].

[\b] A literal backspace (special case).

Note that the special character-class escapes can be used within
square brackets. \s matches any whitespace character, and \d
matches any digit, so /[\s\d]/ matches any one whitespace
character or digit.

Repetition
A character or character class may be followed by additional
characters that specify how many times those characters
should be matched. Table 9-3 summarizes the repetition
syntax.

152 | Chapter 9: Regular Expressions

Table 9-3. Regular expression repetition characters

Character Meaning

{n , m} Match the previous item at least n times but no more than m times.

{n ,} Match the previous item n or more times.

{n} Match exactly n occurrences of the previous item.

? Match zero or one occurrences of the previous item. That is, the previous
item is optional. Equivalent to {0,1}.

+ Match one or more occurrences of the previous item. Equivalent to {1,}.

* Match zero or more occurrences of the previous item. Equivalent to {0,}.

The following lines show some examples:

/\d{2,4}/ // Between two and four digits
/\w{3}\d?/ // Three word characters + optional digit
/\s+java\s+/ // "java" with spaces before and after
/[^(]*/ // zero or more chars that are not '('

Be careful when using the * and ? repetition characters. Since
these characters may match zero instances of whatever pre-
cedes them, they are allowed to match nothing. For example,
the regular expression /a*/ actually matches the string “bbbb”
because the string contains zero occurrences of the letter a!

Nongreedy repetition
The repetition characters listed in Table 9-3 match as many
times as possible while still allowing any following parts of the
regular expression to match. We say that this repetition is
“greedy.” It is also possible to specify that repetition should be
done in a nongreedy way. Simply follow the repetition char-
acter or characters with a question mark: ??, +?, *?, or even
{1,5}?. For example, the regular expression /a+/ matches one
or more occurrences of the letter a. When applied to the string
“aaa,” it matches all three letters. But /a+?/ matches one or
more occurrences of the letter a, matching as few characters as
necessary. When applied to the same string, this pattern
matches only the first letter a.

Describing Patterns with Regular Expressions | 153

Alternation, Grouping, and References
The regular-expression grammar includes special characters
for specifying alternatives, grouping subexpressions, and re-
ferring to previous subexpressions. The | character separates
alternatives. For example, /ab|cd|ef/ matches the string “ab”
or the string “cd” or the string “ef.” And /\d{3}|[a-z]{4}/
matches either three digits or four lowercase letters.

Note that alternatives are considered left to right until a match
is found. If the left alternative matches, the right alternative is
ignored, even if it would have produced a “better” match.
Thus, when the pattern /a|ab/ is applied to the string “ab,” it
matches only the first letter.

Parentheses have several purposes in regular expressions. One
is to group separate items into a subexpression so the items can
be treated as a single unit by |, *, +, ?, and so on. For exam-
ple, /java(script)?/ matches “java” followed by the optional
“script.” And /(ab|cd)+|ef/ matches either the string “ef” or
one or more repetitions of either of the strings “ab” or “cd.”

Another purpose of parentheses is to define subpatterns within
the complete pattern. When a regular expression is successfully
matched against a target string, you can extract the portions of
the target string that matched any particular parenthesized
subpattern. (You’ll see how these matching substrings are ob-
tained later.) For example, suppose you’re looking for one or
more lowercase letters followed by one or more digits. You
might use the pattern /[a-z]+\d+/. But suppose you only care
about the digits at the end of each match. If you put that part
of the pattern in parentheses (/[a-z]+(\d+)/), you can extract
the digits from any matches you find, as explained later.

A related use of parenthesized subexpressions is to allow you
to refer back to a subexpression later in the same regular ex-
pression. This is done by following a \ character by a digit or
digits. The digits refer to the position of the parenthesized
subexpression within the regular expression. For example, \3
refers back to the third subexpression.

154 | Chapter 9: Regular Expressions

A reference to a previous subexpression of a regular expression
does not refer to the pattern for that subexpression but rather
to the text that matched the pattern. Thus, references can be
used to enforce a constraint that separate portions of a string
contain exactly the same characters. For example, the follow-
ing regular expression matches zero or more characters within
single or double quotes. However, it does not require the open-
ing and closing quotes to match (i.e., both single quotes or both
double quotes):

/['"][^'"]*['"]/

To require the quotes to match, use a reference:

/(['"])[^'"]*\1/

The \1 matches whatever the first parenthesized subexpression
matched. In this example, it enforces the constraint that the
closing quote match the opening quote.

It is also possible to group items in a regular expression without
creating a numbered reference to those items. Instead of simply
grouping the items within (and), begin the group with (?:
and end it with).

Table 9-4. Regular expression alternation, grouping, and reference
characters

Character Meaning

| Alternation. Match either the subexpression to the left or the subexpression
to the right.

(...) Grouping. Group items into a single unit that can be used with *, +, ?, |,
and so on. Also remember the characters that match this group for use with
later references.

(?:...) Grouping only. Group items into a single unit, but do not remember the
characters that match this group.

\ n Match the same characters that were matched when group number n was
first matched. Groups are subexpressions within (possibly nested) paren-
theses. Group numbers are assigned by counting left parentheses from left
to right. Groups formed with (?: are not numbered.

Describing Patterns with Regular Expressions | 155

Specifying Match Position
As described earlier, many elements of a regular expression
match a single character in a string. For example, \s matches
a single character of whitespace. Other regular expression el-
ements match the positions between characters, instead of ac-
tual characters. \b, for example, matches a word boundary—
the boundary between a \w (ASCII word character) and a \W
(nonword character), or the boundary between an ASCII word
character and the beginning or end of a string. Elements such
as \b do not specify any characters to be used in a matched
string; what they do specify, however, are legal positions at
which a match can occur. Sometimes these elements are called
anchors because they anchor the pattern to a specific position
in the search string. The most commonly used anchor elements
are ^, which ties the pattern to the beginning of the string, and
$, which anchors the pattern to the end of the string.

For example, to match the word “JavaScript” on a line by itself,
you can use the regular expression /^JavaScript$/. If you want
to search for “Java” as a word by itself (not as a prefix, as it is
in “JavaScript”), you can try the pattern /\sJava\s/, which re-
quires a space before and after the word. But there are two
problems with this solution. First, it does not match “Java” at
the beginning or the end of a string, but only if it appears with
space on either side. Second, when this pattern does find a
match, the matched string it returns has leading and trailing
spaces, which is not quite what’s needed. So instead of match-
ing actual space characters with \s, match (or anchor to) word
boundaries with \b. The resulting expression is /\bJava\b/.
The element \B anchors the match to a location that is not a
word boundary. Thus, the pattern /\B[Ss]cript/ matches
“JavaScript” and “postscript,” but not “script” or “Scripting.”

Table 9-5 summarizes regular-expression anchors.

156 | Chapter 9: Regular Expressions

Table 9-5. Regular-expression anchor characters

Character Meaning

^ Match the beginning of the string and, in multiline searches, the beginning
of a line.

$ Match the end of the string and, in multiline searches, the end of a line.

\b Match a word boundary. That is, match the position between a \w character
and a \W character or between a \w character and the beginning or end of
a string. (Note, however, that [\b] matches backspace.)

\B Match a position that is not a word boundary.

(?=p) A positive lookahead assertion. Require that the following characters match
the pattern p, but do not include those characters in the match.

(?!p) A negative lookahead assertion. Require that the following characters do
not match the pattern p.

Flags
There is one final element of regular-expression grammar. Reg-
ular-expression flags specify high-level pattern-matching rules.
Unlike the rest of regular-expression syntax, flags are specified
to the right of the second slash. JavaScript supports three flags.
The i flag specifies that pattern matching should be case-
insensitive. The g flag specifies that pattern matching should
be global—that is, all matches within the searched string
should be found. The m flag performs pattern matching in mul-
tiline mode. In this mode, if the string to be searched contains
newlines, the ^ and $ anchors match the beginning and end of
a line in addition to matching the beginning and end of a string.
These flags may be specified in any combination. For example,
the pattern /java$/im matches “java” as well as “Java\nis fun.”

Table 9-6 summarizes these regular-expression flags. Note that
you’ll see more about the g flag in the next section.

Describing Patterns with Regular Expressions | 157

Table 9-6. Regular-expression flags

Character Meaning

i Perform case-insensitive matching.

g Perform a global match—that is, find all matches rather than stopping
after the first match.

m Multiline mode. ^ matches beginning of line or beginning of string, and
$ matches end of line or end of string.

Matching Patterns with Regular
Expressions
This section discusses methods of the String and RegExp ob-
jects that use regular expressions to perform pattern matching
and search-and-replace operations.

String Methods for Pattern-Matching
Strings support four methods that use regular expressions. The
simplest is search(). This method takes a regular-expression
argument and returns either the character position of the start
of the first matching substring or −1 if there is no match. For
example, the following call returns 4:

"JavaScript".search(/script/i);

search() does not support global searches; it ignores the g flag
of its regular-expression argument.

The replace() method performs a search-and-replace opera-
tion. It takes a regular expression as its first argument and a
replacement string as its second argument. It searches the
string on which it is called for matches with the specified pat-
tern. If the regular expression has the g flag set, the replace()
method replaces all matches in the string with the replacement
string; otherwise, it replaces only the first match it finds. If the
first argument to replace() is a string rather than a regular ex-
pression, the method searches for that string literally rather

158 | Chapter 9: Regular Expressions

than converting it to a regular expression with the RegExp()
constructor, as search() does. As an example, you can use
replace() as follows to provide uniform capitalization of the
word “JavaScript” throughout a string of text:

text.replace(/javascript/gi, "JavaScript");

replace() is more powerful than this, however. Recall that
parenthesized subexpressions of a regular expression are num-
bered from left to right and that the regular expression remem-
bers the text that each subexpression matches. If a $ followed
by a digit appears in the replacement string, replace() replaces
those two characters with the text that matches the specified
subexpression. You can use this feature, for example, to replace
straight quotes in a string with curly quotes, simulated with
ASCII characters:

// A quote is a quotation mark, followed by any number
// of nonquotation-mark characters (which we remember),
// followed by another quotation mark.
var quote = /"([^"]*)"/g;
// Replace the straight quotation marks with curly quotes,
// leaving the quoted text (stored in $1) unchanged.
text.replace(quote, '“$1”');

The second argument to replace() can also be a function that
dynamically computes the replacement string. If you pass a
function, it will be invoked once for each match. Its first argu-
ment will be the text of the matched string, and its remaining
arguments will be the text that matched each parenthesized
subexpression within the pattern. The return value of the func-
tion is used as the replacement string.

The match() method is the most general of the String regular-
expression methods. It takes a regular expression as its only
argument and returns an array that contains the results of the
match. If the regular expression has the g flag set, the method
returns an array of all matches that appear in the string. For
example:

"1 plus 2 equals 3".match(/\d+/g) // => ["1","2","3"]

Matching Patterns with Regular Expressions | 159

If the regular expression does not have the g flag set, match()
does not do a global search; it simply searches for the first
match. However, match() returns an array even when it does
not perform a global search. In this case, the first element of
the array is the matching string, and any remaining elements
are the substrings that matched the parenthesized subexpres-
sions of the regular expression. To draw a parallel with the
replace() method, a[n] holds the contents of $n.

For example, consider parsing a URL with the following code:

var url = /(\w+):\/\/([\w.]+)\/(\S*)/;
var text = "Visit http://www.example.com/~david";
var result = text.match(url);
if (result != null) {
 var fullurl = result[0]; // the complete match
 var protocol = result[1]; // => "http"
 var host = result[2]; // => "www.example.com"
 var path = result[3]; // => "~david"
}

The last of the regular-expression methods of the String object
is split(). This method breaks the string on which it is called
into an array of substrings, using the argument as a separator.
For example:

"123,456,789".split(","); // => ["123","456","789"]

The split() method can also take a regular expression as its
argument. This ability makes the method more powerful. For
example, you can specify a separator character that allows an
arbitrary amount of whitespace on either side:

"1 , 2,3".split(/\s*,\s*/); // => ["1","2","3"]

RegExp Properties and Methods
Each RegExp object has five properties. The source property
contains the text of the regular expression. The global property
specifies whether the regular expression has the g flag. The
ignoreCase property specifies whether the regular expression
has the i flag. The multiline property specifies whether the
regular expression has the m flag. The final property is

160 | Chapter 9: Regular Expressions

lastIndex, a read/write integer. For patterns with the g flag,
this property stores the position in the string at which the next
search is to begin. It is used by the exec() and test() methods,
described below.

RegExp objects define two methods that perform pattern-
matching operations; they behave similarly to the String meth-
ods described earlier. The main RegExp pattern-matching
method is exec(). It is similar to the String match() method
described in “Matching Patterns with Regular Expres-
sions” on page 158, except that it is a RegExp method that takes
a string, rather than a String method that takes a RegExp. The
exec() method executes a regular expression on the specified
string. That is, it searches the string for a match. If it finds none,
it returns null. If it does find one, however, it returns an array
just like the array returned by the match() method for nonglo-
bal searches. Element 0 of the array contains the string that
matched the regular expression, and any subsequent array el-
ements contain the substrings that matched any parenthesized
subexpressions. Furthermore, the index property contains the
character position at which the match occurred, and the
input property refers to the string that was searched.

Unlike the match() method, exec() returns the same kind of
array whether or not the regular expression has the global g
flag. Recall that match() returns an array of matches when
passed a global regular expression. exec(), by contrast, always
returns a single match and provides complete information
about that match. When exec() is called on a regular expres-
sion that has the g flag, it sets the lastIndex property of the
regular-expression object to the character position immedi-
ately following the matched substring. When exec() is invoked
a second time for the same regular expression, it begins its
search at the character position indicated by the lastIndex
property. If exec() does not find a match, it resets lastIndex to
0. (You can also set lastIndex at any time.) This special be-
havior allows you to call exec() repeatedly in order to loop
through all the regular expression matches in a string.

Matching Patterns with Regular Expressions | 161

For example:

var pattern = /Java/g;
var text = "JavaScript is more fun than Java!";
var result;
while((result = pattern.exec(text)) != null) {
 alert("Matched '" + result[0] + "'" +
 " at position " + result.index +
 "; next search at " + pattern.lastIndex);
}

The other RegExp method is test(). test() is a much simpler
method than exec(). It takes a string and returns true if the
string contains a match for the regular expression:

var pattern = /java/i;
pattern.test("JavaScript"); // Returns true

Calling test() is equivalent to calling exec() and returning
true if the return value of exec() is not null. Because of this
equivalence, the test() method behaves the same way as the
exec() method when invoked for a global regular expression:
it begins searching the specified string at the position specified
by lastIndex, and if it finds a match, it sets lastIndex to the
position of the character immediately following the match.
Thus, you can loop through a string using the test() method
just as you can with the exec() method.

162 | Chapter 9: Regular Expressions

CHAPTER 10

Client-Side JavaScript

The first part of this book described the core JavaScript lan-
guage. We now move on to JavaScript as used within web
browsers, commonly called client-side JavaScript. Most of the
examples we’ve seen so far, while legal JavaScript code, have
no particular context; they are JavaScript fragments that run
in no specified environment. This chapter introduces that con-
text, and the chapters that follow fill in the details.

Embedding JavaScript in HTML
JavaScript code can appear inline within an HTML file between
<script> and </script> tags:

<script>
// Your JavaScript code goes here
</script>

Example 10-1 is an HTML file that includes a simple JavaScript
program. The comments explain what the program does, but
the main point of this example is to demonstrate how Java-
Script code is embedded within an HTML file along with, in
this case, a CSS stylesheet.

Example 10-1. A simple JavaScript digital clock

<!DOCTYPE html> <!-- This is an HTML5 file -->
<html> <!-- The root element -->

163

<head> <!-- Title, scripts & styles go here -->
<title>Digital Clock</title>
<script> // A script of js code
// Define a function to display the current time
function displayTime() {
 var now = new Date(); // Get current time
 // Find element with id="clock"
 var elt = document.getElementById("clock");
 // Display the time in the element
 elt.innerHTML = now.toLocaleTimeString();
 // And repeat in one second
 setTimeout(displayTime, 1000);
}
// Start the clock when the document loads.
window.onload = displayTime;
</script>
<style> /* A CSS stylesheet for the clock */
#clock { /* Styles apply to element with id="clock" */
 font: bold 24pt sans; /* Use a big bold font */
 background: #ddf; /* on a light gray background. */
 padding: 10px; /* Surround it with some space */
 border: solid black 2px; /* and a solid black border */
 border-radius: 10px; /* with rounded corners. */
}
</style>
</head>
<body> <!-- Content goes here. -->
<h1>Digital Clock</h1> <!-- A title -->
 <!-- Time inserted here -->
</body>
</html>

The <script> tag can also be used with a src attribute that
specifies the URL of a file containing JavaScript code. It is used
like this:

<script src="../../scripts/util.js"></script>

A JavaScript file contains pure JavaScript, without <script>
tags or any other HTML. By convention, files of JavaScript
code have names that end with .js.

A <script> tag with the src attribute specified behaves exactly
as if the contents of the specified JavaScript file appeared di-
rectly between the <script> and </script> tags. Note that the
closing </script> tag is required in HTML documents even

164 | Chapter 10: Client-Side JavaScript

when the src attribute is specified, and there is no content be-
tween the <script> and </script> tags.

JavaScript was the original scripting language for the Web and
<script> elements are, by default, assumed to contain or to
reference JavaScript code. <script> elements have a type at-
tribute whose default value is “text/javascript.” You can spec-
ify this type explicitly if you want, but it is never necessary.

Event-Driven Programming
Client-side JavaScript programs are generally asynchronous
and event-driven. When a web page loads, the scripts in that
web page generally initialize some variables and register some
event handler functions. These functions are then invoked by
the browser when the events for which they were registered
occur. A web application that wants to enable keyboard short-
cuts for common actions would register an event handler for
key events, for example. Even noninteractive programs use
events. Suppose you wanted to write a program that would
analyze the structure of its document and automatically gen-
erate a table of contents for the document. No event handlers
for user input events are necessary, but the program would still
register an onload event handler so that it would know when
the document had finished loading and was ready to have a
table of contents generated.

Events and event handling are the subject of Chapter 12.

The Window Object
The Window object is the main entry point to all client-side
JavaScript features and APIs. It represents a web browser win-
dow or frame, and you can refer to it with the identifier win
dow. The Window object defines properties like location,
which refers to a Location object that specifies the URL cur-
rently displayed in the window and allows a script to load a
new URL into the window:

The Window Object | 165

// Set location to navigate to a new web page
window.location = "http://www.oreilly.com/";

The Window object also defines methods like alert(), which
displays a message in a dialog box, and setTimeout(), which
registers a function to be invoked after a specified amount of
time:

// Wait 2 seconds and then say hello
setTimeout(function() { alert("hello"); }, 2000);

Notice that the code above does not explicitly use the window
property. In client-side JavaScript, the Window object is also
the global object. This means that the Window object is at the
top of the scope chain and that its properties and methods are
effectively global variables and global functions. The Window
object has a property named window that always refers to itself.
You can use this property if you need to refer to the window
object itself, but it is not usually necessary to use window if you
just want to refer to access properties of the global window
object.

As the global object, Window defines an assortment of prop-
erties and methods for client-side JavaScript programming.
The most important of these is the document property, which is
the subject of Chapter 11. The other properties and methods
are covered in the subsections below.

Timers
setTimeout() and setInterval() allow you to register a func-
tion to be invoked once or repeatedly after a specified amount
of time has elapsed. These are important global functions of
client-side JavaScript, and are therefore defined as methods of
Window, but they are general-purpose functions and don’t
really have anything to do with the window.

The setTimeout() method of the Window object schedules a
function to run after a specified number of milliseconds elap-
ses. setTimeout() returns a value that can be passed to clear
Timeout() to cancel the execution of the scheduled function.

166 | Chapter 10: Client-Side JavaScript

If you call setTimeout() with a time of 0 ms, the function you
specify is not invoked right away. Instead, it is placed on a
queue to be invoked “as soon as possible” after any currently
pending event handlers finish running.

setInterval() is like setTimeout() except that the specified
function is invoked repeatedly at intervals of the specified
number of milliseconds:

// Call updateClock() every 60 seconds
setInterval(updateClock, 60000);

Like setTimeout(), setInterval() returns a value that can be
passed to clearInterval() to cancel any future invocations of
the scheduled function.

Browser Location and Navigation
The location property of the Window object refers to a Loca-
tion object, which represents the current URL of the document
displayed in the window, and which also defines methods for
making the window load a new document.

The location property of a window is a reference to a Location
object; it represents the current URL of the document being
displayed in that window. The href property of the Location
object is a string that contains the complete text of the URL.
The toString() method of the Location object returns the
value of the href property, so you can usually just write loca
tion rather than location.href.

Other properties of this object—protocol, host, hostname,
port, pathname, search, and hash—specify the individual parts
of the URL. They are known as “URL decomposition” prop-
erties, and they are also supported by Link objects (created by
<a> and <area> elements in HTML documents).

The Location object also defines a reload(), which makes the
browser reload the document.

The Window Object | 167

The Location object can also be used to make the browser
navigate to a new page: simply assign the new URL directly to
the location property:

location = "http://www.oreilly.com";

You can also assign relative URLs to location. They are re-
solved against the current URL:

location = "page2.html"; // Next page

A bare fragment identifier is a special kind of relative URL that
does not cause the browser to load a new document but simply
scroll to display a new section of the document. The identifier
#top is a special case: if no document element has the ID “top,”
it makes the browser jump to the start of the document:

location = "#top";

The URL decomposition properties of the Location object are
writable, and setting them changes the location URL and also
causes the browser to load a new document (or, in the case of
the hash property, to navigate within the current document):

location.search = "?page=" + (pagenum+1);

Browsing History
The history property of the Window object refers to the His-
tory object for the window. The History object models the
browsing history of a window as a list of documents and docu-
ment states.

The History object has back() and forward() methods that be-
have like the browser’s Back and Forward buttons do: they
make the browser go backward or forward one step in its
browsing history. A third method, go(), takes an integer argu-
ment and can skip any number of pages forward (for positive
arguments) or backward (for negative arguments) in the his-
tory list:

history.go(-2); // Like clicking Back twice

168 | Chapter 10: Client-Side JavaScript

If a window contains child windows (such as <iframe> ele-
ments—see “Relationships Between Frames” on page 173),
the browsing histories of the child windows are chronologically
interleaved with the history of the main window. This means
that calling history.back() (for example) on the main window
may cause one of the child windows to navigate back to a pre-
viously displayed document but leave the main window in its
current state.

Modern web applications can dynamically alter their own con-
tent without loading a new document. Applications that do
this may want to allow the user to use the Back and Forward
buttons to navigate between these dynamically created appli-
cation states. One way to do this is to store application state
by setting location.hash to a string that captures the applica-
tion’s current state. Even though this does not load a new
document, it creates a new history entry, and if the user later
uses the Back button to go back to that history entry, the
browser will fire a “hashchange” event. An application that
wants to track the Forward and Back buttons can register a
handler by setting window.onhashchange.

Another more complicated way of managing the browsing his-
tory for a web application involves the history.pushState()
method and its corresponding window.onpopstate event han-
dler. Coverage of that API is beyond the scope of this book,
however.

Browser and Screen Information
Scripts sometimes need to obtain information about the web
browser in which they are running or the desktop on which the
browser appears. This section describes the navigator and
screen properties of the Window object. Those properties refer
to Navigator and Screen objects, respectively, and these objects
provide information that allows a script to customize its be-
havior based on its environment.

The navigator property of a Window object refers to a Navi-
gator object that contains browser vendor and version number

The Window Object | 169

information. The Navigator object is named after the early
Navigator browser from Netscape, but it is also supported by
all other browsers.

The Navigator object has four properties that provide infor-
mation about the browser that is running:

appName
The full name of the web browser. In IE, this is “Microsoft
Internet Explorer.” In Firefox, this property is “Net-
scape.” For compatibility, other browsers often report the
name “Netscape” as well.

appVersion
This property typically begins with a number and follows
that with a detailed string that contains browser vendor
and version information. The number at the start of this
string is often 4.0 or 5.0 to indicate generic compatibility
with fourth- and fifth-generation browsers. There is no
standard format for the appVersion string, so parsing it in
a browser-independent way isn’t possible.

userAgent
The string that the browser sends in its USER-AGENT HTTP
header. This property typically contains all the informa-
tion in appVersion and may contain additional details as
well. Like appVersion, there is no standard format.

platform
A string that identifies the operating system (and possibly
the hardware) on which the browser is running.

In addition to its browser vendor and version information
properties, the Navigator object has some miscellaneous prop-
erties and methods. The standardized and widely implemented
nonstandard properties include:

onLine
The navigator.onLine property (if it exists) specifies
whether the browser is currently connected to the
network.

170 | Chapter 10: Client-Side JavaScript

geolocation
A Geolocation object that defines an API for determining
the user’s geographical location. The details of this API
are beyond the scope of this pocket reference.

The screen property of a Window object refers to a Screen ob-
ject that provides information about the size of the user’s dis-
play. The width and height properties specify the size of the
display in pixels. The availWidth and availHeight properties
specify the display size that is actually available; they exclude
the space required by features such as a desktop taskbar. You
might use the Screen object to determine whether your web
app is running in a small form factor device such as a tablet or
mobile phone.

Dialog Boxes
The Window object provides three methods for displaying
simple dialog boxes to the user. alert() displays a message to
the user and waits for the user to dismiss the dialog. con
firm() displays a message, waits for the user to click an OK or
Cancel button and returns a boolean value. And prompt() dis-
plays a message, waits for the user to enter a string, and returns
that string. The following code uses all three methods:

do {
 // Ask for a string
 var n = prompt("What is your name?");
 // Ask for a confirmation
 var ok = confirm("Is " + n + " okay?");
} while(!ok)
alert("Hello, " + n); // Display a greeting

Although the alert(), confirm(), and prompt() methods are
very easy to use, good design dictates that you use them spar-
ingly, if at all. Dialog boxes like these are not a common feature
on the Web, and most users will find the dialog boxes produced
by these methods disruptive to their browsing experience.

The Window Object | 171

Document Elements as Window Properties
If you name an element in your HTML document using the
id attribute, and if the Window object does not already have a
property by that name, the Window object is given a nonenu-
merable property whose name is the value of the id attribute
and whose value is the HTMLElement object that represents
that document element.

As we’ve already noted, the Window object serves as the global
object in client-side JavaScript, so this means that the id at-
tributes you use in your HTML documents become global
variables (if there are not already variables by those names)
accessible to your scripts. If your document includes the ele-
ment <button id="okay"/>, you can refer to that element using
the global variable okay.

The implicit use of element IDs as global variables is a historical
quirk of web browser evolution. It is required for backward
compatibility with existing web pages, but its use is not rec-
ommended. Instead, explicitly look up elements using the
techniques shown in Chapter 11.

Multiple Windows and Frames
A single web browser window on your desktop may contain
several tabs. Each tab is an independent browsing context. Each
has its own Window object, and each is isolated from all the
others. The scripts running in one tab usually have no way of
even knowing that the other tabs exist, much less of interacting
with their Window objects or manipulating their document
content. If you use a web browser that does not support tabs,
or if you have tabs turned off, you may have many web browser
windows open on your desktop at one time. As with tabs, each
desktop window has its own Window object, and each is usu-
ally independent of and isolated from all of the others.

HTML documents may contain nested documents using an
<iframe> element. An <iframe> creates a nested browsing con-
text represented by a Window object of its own. The

172 | Chapter 10: Client-Side JavaScript

deprecated <frameset> and <frame> elements also create nested
browsing contexts, and each <frame> is represented by a
Window. Client-side JavaScript makes very little distinction
between windows, tabs, iframes, and frames: they are all
browsing contexts, and to JavaScript, they are all Window ob-
jects. Nested browsing contexts are not isolated from one an-
other the way independent tabs usually are. A script running
in one frame can always see its ancestor and descendant frames,
though the same-origin policy described in “The Same-Origin
Policy” on page 176 may prevent the script from inspecting
the documents in those frames. Nested frames are the topic of
“Relationships Between Frames” on page 173.

Since the Window is the global object of client-side JavaScript,
each window or frame has a separate JavaScript execution con-
text. Nevertheless, JavaScript code in one window can, subject
to same-origin constraints, use the objects, properties, and
methods defined in other windows. This is discussed in more
detail in “JavaScript in Interacting Windows” on page 175.

Relationships Between Frames
You already know that the JavaScript code in any window or
frame can refer to its own Window object as window (or as
self). A frame can refer to the Window object of the window
or frame that contains it using the parent property:

parent.history.back();

A Window object that represents a top-level window or tab has
no container, and its parent property simply refers to the win-
dow itself:

parent == self; // For toplevel windows

If a frame is contained within another frame that is contained
within a top-level window, that frame can refer to the top-level
window as parent.parent. The top property is a general-case
shortcut, however: no matter how deeply a frame is nested, its
top property refers to the top-level containing window. If a
Window object represents a top-level window, top simply
refers to that window itself. For frames that are direct children

The Window Object | 173

of a top-level window, the top property is the same as the
parent property.

The parent and top properties allow a script to refer to its
frame’s ancestors. There is more than one way to refer to the
descendant frames of a window or frame. Frames are created
with <iframe> elements. You can obtain an Element object that
represents an <iframe> just as you would do for any other ele-
ment. Suppose your document contains <iframe id="f1">.
Then, the Element object that represents this iframe is:

var e = document.getElementById("f1");

<iframe> elements have a contentWindow property that refers to
the Window object of the frame, so the Window object for this
frame is:

var kid = document.getElementById("f1").contentWindow;

You can go in the reverse direction—from the Window that
represents a frame to the <iframe> Element that contains the
frame—with the frameElement property of the Window. Win-
dow objects that represent top-level windows rather than
frames have a null frameElement property:

var elt = document.getElementById("f1");
var w = elt.contentWindow;
w.frameElement === elt // Always true for frames
w.frameElement === null // For toplevel windows

It is not usually necessary to use the getElementById() method
and the contentWindow property to obtain references to the
child frames of a window, however. Every Window object has
a frames property that refers to the child frames contained
within the window or frame. The frames property refers to an
array-like object that can be indexed numerically or by frame
name. To refer to the first child frame of a window, you can
use frames[0]. To refer to the third child frame of the second
child, you can use frames[1].frames[2]. Code running in a
frame might refer to a sibling frame as parent.frames[1]. Note
that the elements of the frames[] array are Window objects,
not <iframe> elements.

174 | Chapter 10: Client-Side JavaScript

If you specify the name or id attribute of an <iframe> element,
that frame can be indexed by name as well as by number. A
frame named “f1” would be frames["f1"] or frames.f1, for
example.

You can use the name or id attribute of an <iframe> element to
give the frame a name that can be used in JavaScript code. If
you use the name attribute, however, the name you specify also
becomes the value of the name property of the Window that
represents the frame. A name specified in this way can be used
as the target attribute of a link.

JavaScript in Interacting Windows
Each window or frame is its own JavaScript execution context
with a Window as its global object. But if code in one window
or frame can refer to another window or frame (and if the same-
origin policy does not prevent it), the scripts in one window or
frame can interact with the scripts in the other.

Imagine a web page with two <iframe> elements named “A”
and “B,” and suppose that those frames contain documents
from the same server and that those documents contain inter-
acting scripts. The script in frame A might define a variable i:

var i = 3;

That variable is nothing more than a property of the global
object—a property of the Window object. Code in frame A can
refer to the variable with the identifier i, or it can explicitly
reference it through the window object:

window.i

Since the script in frame B can refer to the Window object for
frame A, it can also refer to the properties of that window
object:

parent.A.i = 4;

Recall that the function keyword that defines functions creates
a variable just like the var keyword does. If a script in frame B
declares a function f, that function is a global variable in frame
B, and code in frame B can invoke f as f(). Code in frame A,

The Window Object | 175

however, must refer to f as a property of the Window object
of frame B:

parent.B.f();

If the code in frame A needs to use this function frequently, it
might assign the function to a variable of frame A so that it can
more conveniently refer to the function:

var f = parent.B.f;

Now code in frame A can invoke the function as f(), just as
code in frame B does.

When you share functions between frames or windows like
this, it is important to keep the rules of lexical scoping in mind.
A function is executed in the scope in which it was defined, not
in the scope from which it is invoked. Thus, if the function f
above refers to global variables, these variables are looked up
as properties of frame B, even when the function is invoked
from frame A.

The Same-Origin Policy
The same-origin policy is a sweeping security restriction on
what web content JavaScript code can interact with. It typically
comes into play when a web page includes <iframe> elements.
In this case, the same-origin policy governs the interactions of
JavaScript code in one window or frame with the content of
other windows and frames. Specifically, a script can read only
the properties of windows and documents that have the same
origin as the document that contains the script.

The origin of a document is defined as the protocol, host, and
port of the URL from which the document was loaded. Docu-
ments loaded from different web servers have different origins.
Documents loaded through different ports of the same host
have different origins. And a document loaded with the http:
protocol has a different origin than one loaded with the
https: protocol, even if they come from the same web server.

It is important to understand that the origin of the script itself
is not relevant to the same-origin policy: what matters is the

176 | Chapter 10: Client-Side JavaScript

origin of the document in which the script is embedded. Sup-
pose, for example, that a script hosted by host A is included
(using the src property of a <script> element) in a web page
served by host B. The origin of that script is host B and the
script has full access to the content of the document that con-
tains it. If the script creates an iframe and loads a second docu-
ment from host B into it, the script also has full access to the
content of that second document. But if the script opens an-
other iframe and loads a document from host C (or even one
from host A) into it, the same-origin policy comes into effect
and prevents the script from accessing this document.

The same-origin policy does not actually apply to all properties
of all objects in a window from a different origin. But it does
apply to many of them, and, in particular, it applies to practi-
cally all the properties of the Document object. You should
consider any window or frame that contains a document from
another server to be off-limits to your scripts.

The same-origin policy also applies to scripted HTTP requests
made with the XMLHttpRequest object (see Chapter 13). This
object allows client-side JavaScript code to make arbitrary
HTTP requests to the web server from which the containing
document was loaded, but it does not allow scripts to com-
municate with other web servers.

The Window Object | 177

CHAPTER 11

Scripting Documents

Client-side JavaScript exists to turn static HTML documents
into interactive web applications. The Document object rep-
resents the content of a web browser window, and it is the
subject of this chapter. The Document object does not stand
alone, however. It is the central object in a larger API, known
as the Document Object Model, or DOM, for representing and
manipulating document content.

Overview of the DOM
The Document Object Model, or DOM, is the fundamental
API for representing and manipulating the content of HTML
documents. The API is not particularly complicated, but there
are a number of architectural details you need to understand.
First, you should understand that the nested elements of an
HTML or XML document are represented in the DOM as a
tree of objects. The tree representation of an HTML document
contains nodes representing HTML tags or elements, such as
<body> and <p>, and nodes representing strings of text. An
HTML document may also contain nodes representing HTML
comments. Consider the following simple HTML document:

<html>
 <head>
 <title>Sample Document</title>

179

 </head>
 <body>
 <h1>An HTML Document</h1>
 <p>This is a <i>simple</i> document.
</html>

The DOM representation of this document is the tree pictured
in Figure 11-1.

Figure 11-1. The tree representation of an HTML document

If you are not already familiar with tree structures in computer
programming, it is helpful to know that they borrow termi-
nology from family trees. The node directly above a node is the
parent of that node. The nodes one level directly below another
node are the children of that node. Nodes at the same level, and
with the same parent, are siblings. The set of nodes any number
of levels below another node are the descendants of that node.
And the parent, grandparent, and all other nodes above a node
are the ancestors of that node.

Each box in Figure 11-1 is a node of the document and is rep-
resented by a Node object. We’ll talk about the properties and

180 | Chapter 11: Scripting Documents

methods of Node in some of the sections that follow. Note that
the figure contains three different types of nodes. At the root
of the tree is the Document node that represents the entire
document. The nodes that represent HTML elements are Ele-
ment nodes, and the nodes that represent text are Text nodes.
Document, Element, and Text are subclasses of Node. Docu-
ment and Element are the two most important DOM classes,
and much of this chapter is devoted to their properties and
methods.

Node and its subtypes form the type hierarchy illustrated in
Figure 11-2. Notice that there is a formal distinction between
the generic Document and Element types, and the HTMLDo-
cument and HTMLElement types. The Document type repre-
sents either an HTML or an XML document, and the Element
class represents an element of such a document. The
HTMLDocument and HTMLElement subclasses are specific
to HTML documents and elements. In this book, we often use
the generic class names Document and Element, even when
referring to HTML documents.

Figure 11-2. A partial class hierarchy of document nodes

Overview of the DOM | 181

It is also worth noting in Figure 11-2 that there are many sub-
types of HTMLElement that represent specific types of HTML
elements. Each defines JavaScript properties to mirror the
HTML attributes of a specific element or group of elements.
Some of these element-specific classes define additional prop-
erties or methods that go beyond simple mirroring of HTML
syntax.

Selecting Document Elements
Most client-side JavaScript programs work by somehow ma-
nipulating one or more document elements. When these pro-
grams start, they can use the global variable document to refer
to the Document object. In order to manipulate elements of
the document, however, they must somehow obtain or select
the Element objects that refer to those document elements. The
DOM defines a number of ways to select elements; you can
query a document for an element or elements:

• with a specified id attribute;

• with a specified name attribute;

• with the specified tag name;

• with the specified CSS class or classes; or

• matching the specified CSS selector

The subsections that follow explain each of these element
selection techniques.

Selecting Elements by ID
Any HTML element can have an id attribute. The value of this
attribute must be unique within the document—no two ele-
ments in the same document can have the same ID. You can
select an element based on this unique ID with the getElement
ById() method of the Document object:

var sect1 = document.getElementById("section1");

182 | Chapter 11: Scripting Documents

This is the simplest and most commonly used way to select
elements. If your script is going to manipulate a certain specific
set of document elements, give those elements id attributes,
and look up the Element objects using that ID. If you need to
look up more than one element by ID, you might find the
getElements() function of Example 11-1 useful.

Example 11-1. Looking up multiple elements by ID

/*
 * This function expects any number of string arguments.
 * It treats each argument as an element id and calls
 * document.getElementById() for each. It returns an
 * object that maps ids to matching Element objects.
 */
function getElements(/*ids...*/) {
 var elements = {}; // Start with empty map
 for(var i = 0; i < arguments.length; i++) {
 var id = arguments[i]; // Argument is an elt id
 var elt = document.getElementById(id);
 if (elt == null)
 throw new Error("No element with id: " + id);
 elements[id] = elt; // Map id to element
 }
 return elements; // Return id to elt map
}

Selecting Elements by Name
The HTML name attribute was originally intended to assign
names to form elements, and the value of this attribute is used
when form data is submitted to a server. Like the id attribute,
name assigns a name to an element. Unlike id, however, the
value of a name attribute does not have to be unique: multiple
elements may have the same name, and this is common in the
case of radio buttons and checkboxes in forms. Also, unlike
id, the name attribute is only valid on a handful of HTML ele-
ments, including forms, form elements, <iframe>, and
elements.

To select HTML elements based on the value of their name at-
tributes, you can use the getElementsByName() method of the
Document object:

Selecting Document Elements | 183

var btns = document.getElementsByName("color");

getElementsByName() returns a NodeList object that behaves
like a read-only array of Element objects.

Setting the name attribute of a <form>, , or <iframe>, creates
a property of the Document object whose name is the value of
the attribute (assuming, of course, that the document does not
already have a property with that name). If there is only a single
element with a given name, the value of the automatically cre-
ated document property is the element itself. If there is more
than one element, then the value of the property is a NodeList
object that acts as an array of elements. The document prop-
erties created for named <iframe> elements are special: instead
of referring to the Element object, they refer to the frame’s
Window object.

What this means is that some elements can be selected by name
simply by using the name as a Document property:

// Get the object for <form name="shipping_address">
var form = document.shipping_address;

Selecting Elements by Type
You can select all elements of a specified type (or tag name)
using the getElementsByTagName() method of the Document
object. To obtain a read-only array-like object containing the
Element objects for all elements in a document, for ex-
ample, you might write:

var spans = document.getElementsByTagName("span");

Like getElementsByName(), getElementsByTagName() returns a
NodeList object. The elements of the returned NodeList are in
document order, so you can select the first <p> element of a
document like this:

var firstpara = document.getElementsByTagName("p")[0];

HTML tags are case-insensitive, and when getElementsByTag
Name() is used on an HTML document, it performs a case-
insensitive tag name comparison. The spans variable above, for

184 | Chapter 11: Scripting Documents

example, will include any elements that were written as
.

You can obtain a NodeList that represents all elements
in a document by passing the wildcard argument “*” to
getElementsByTagName().

The Element class also defines a getElementsByTagName()
method. It works in the same way as the Document version,
but it only selects elements that are descendants of the element
on which it is invoked. So to find all elements inside the
first <p> element of a document, you could write:

var firstp= document.getElementsByTagName("p")[0];
var firstpSpans = firstp.getElementsByTagName("span");

For historical reasons, the HTMLDocument class defines
shortcut properties to access certain kinds of nodes. The
images, forms, and links properties, for example, refer to ob-
jects that behave like read-only arrays of , <form>, and
<a> elements (but only <a> tags that have an href attribute).
These properties refer to HTMLCollection objects, which are
much like NodeList objects, but they can additionally be in-
dexed by element ID or name. Earlier, we saw how you could
refer to a named <form> element with an expression like this:

document.shipping_address

With the document.forms property, you can also refer more
specifically to the named (or ID’ed) form like this:

document.forms.shipping_address;

HTMLDocument also defines two properties that refer to spe-
cial single elements rather than element collections. docu
ment.body is the <body> element of an HTML document, and
document.head is the <head> element. The documentElement
property of the Document class refers to the root element of
the document. In HTML documents, this is always an <html>
element.

Selecting Document Elements | 185

NodeLists and HTMLCollections
getElementsByName() and getElementsByTagName() return
NodeList objects, and properties like document.images and
document.forms are HTMLCollection objects.

These objects are read-only array-like objects. They have
length properties and can be indexed (for reading but not
writing) like true arrays. You can iterate the contents of a
NodeList or HTMLCollection with a standard loop like this:

// Loop through all images and hide them
for(var i = 0; i < document.images.length; i++)
 document.images[i].style.display = "none";

One of the most important and surprising features of NodeList
and HTMLCollection is that they are not static snapshots of a
historical document state but are generally live, and the list of
elements they contain can vary as the document changes. Sup-
pose you call getElementsByTagName('div') on a document
with no <div> elements. The return value is a NodeList with a
length of 0. If you then insert a new <div> element into the
document, that element automatically becomes a member of
the NodeList, and the length property changes to 1.

Selecting Elements by CSS Class
The class attribute of an HTML is a space-separated list of zero
or more identifiers. It describes a way to define sets of related
document elements: any elements that have the same identifier
in their class attribute are part of the same set. class is a re-
served word in JavaScript, so client-side JavaScript uses the
className property to hold the value of the HTML class at-
tribute. The class attribute is usually used in conjunction with
a CSS stylesheet to apply the same presentation styles to all
members of a set. In addition, however, HTML5 defines a
method, getElementsByClassName(), that allows us to select
sets of document elements based on the identifiers in their
class attribute.

186 | Chapter 11: Scripting Documents

Like getElementsByTagName(), getElementsByClassName() can
be invoked on both HTML documents and HTML elements,
and it returns a live NodeList containing all matching descend-
ants of the document or element. getElementsByClassName()
takes a single string argument, but the string may specify mul-
tiple space-separated identifiers. Only elements that include all
of the specified identifiers in their class attribute are matched.
The order of the identifiers does not matter. Here are some
examples of getElementsByClassName():

// Find all elements with class "warning"
var w = document.getElementsByClassName("warning");
// Find descendants of the element "log" that have
// classes "error" and "fatal"
var log = document.getElementById("log");
var fatal = log.getElementsByClassName("fatal error");

Selecting Elements with CSS Selectors
CSS stylesheets have a very powerful syntax, known as selec-
tors, for describing elements or sets of elements within a docu-
ment. Full details of CSS selector syntax are beyond the scope
of this book, but some examples will demonstrate the basics.
Elements can be described by ID, tag name, or class:

#nav // An element with id="nav"
div // Any <div> element
.warning // Any element with class "warning"

More generally, elements can be selected based on attribute
values:

p[lang="fr"] // A paragraph in French: <p lang="fr">
*[name="x"] // Any element with name="x" attribute

These basic selectors can be combined:

span.fatal.error // with classes "fatal" & "error"
span[lang="fr"].warning // Any warning in French

Selectors can also specify document structure:

#log span // Any descendant of the log
#log>span // Any child of the log
body>h1:first-child // The first <h1> child of <body>

Selecting Document Elements | 187

Selectors can be combined to select multiple elements or mul-
tiple sets of elements:

div, #log // All <div> elements plus the log

As you can see, CSS selectors allow elements to be selected in
all of the ways described above: by ID, by name, by tag name,
and by class name. You can select elements that match a CSS
selector with the Document method querySelectorAll(). It
takes a single string argument containing a CSS selector and
returns a NodeList that represents all elements in the docu-
ment that match the selector. Unlike previously described el-
ement selection methods, the NodeList returned by querySe
lectorAll() is not live: it holds the elements that match the
selector at the time the method was invoked, but it does not
update as the document changes. If no elements match, query
SelectorAll() returns an empty NodeList. If the selector string
is invalid, querySelectorAll() throws an exception.

In addition to querySelectorAll(), the document object also
defines querySelector(), which is like querySelectorAll(), but
returns only the first (in document order) matching element or
null if there is no matching element.

These two methods are also defined on Elements. When in-
voked on an element, the specified selector is matched against
the entire document, and then the result set is filtered so that
it only includes descendants of the specified element.

Document Structure and Traversal
Once you have selected an Element from a Document, you
sometimes need to find structurally related portions (parent,
siblings, children) of the document. The Document object, its
Element objects, and the Text objects that represent runs of
text in the document are all Node objects. Node defines the
following important properties:

188 | Chapter 11: Scripting Documents

parentNode
The Node that is the parent of this one, or null for nodes
like the Document object that have no parent.

childNodes
A read-only array-like object (a NodeList) that is a live
representation of a Node’s child nodes.

firstChild, lastChild
The first and last child nodes of a node, or null if the node
has no children.

nextSibling, previousSibling
The next and previous sibling node of a node. Two nodes
with the same parent are siblings. Their order reflects the
order in which they appear in the document. These prop-
erties connect nodes in a doubly linked list.

nodeType
The kind of node this is. Document nodes have the value
9. Element nodes have the value 1. Text nodes have the
value 3. Comment nodes have the value 8.

nodeValue
The textual content of a Text or Comment node.

nodeName
The tag name of an Element, converted to uppercase.

Using these Node properties, the second child node of the first
child of the Document can be referred to with expressions like
these:

document.childNodes[0].childNodes[1]
document.firstChild.firstChild.nextSibling

Suppose the document in question is the following:

<html><head><title>Test</title></head><body>Hello!</body>
</html>

Then the second child of the first child is the <body> element.
It has a nodeType of 1 and a nodeName of “BODY.”

Note, however, that this API is extremely sensitive to variations
in the document text. If the document is modified by inserting

Document Structure and Traversal | 189

a single newline between the <html> and the <head> tag, for
example, the Text node that represents that newline becomes
the first child of the first child, and the second child is the
<head> element instead of the <body> body.

When we are primarily interested in the Elements of a docu-
ment instead of the text within them (and the whitespace be-
tween them), it is helpful to use an API that allows us to treat
a document as a tree of Element objects, ignoring Text and
Comment nodes that are also part of the document.

The first part of this API is the children property of Element
objects. Like childNodes, this is a NodeList. Unlike
childNodes, however, the children list contains only Element
objects.

The second part of an element-based document traversal API
is Element properties that are analogs to the child and sibling
properties of the Node object:

firstElementChild, lastElementChild
Like firstChild and lastChild, but for Element children
only.

nextElementSibling, previousElementSibling
Like nextSibling and previousSibling, but for Element
siblings only.

childElementCount
The number of Element children. Returns the same value
as children.length.

Attributes
HTML elements consist of a tag name and a set of name/value
pairs known as attributes. The <a> element that defines a hy-
perlink, for example, uses the value of its href attribute as the
destination of the link. The attribute values of HTML elements
are available as properties of the HTMLElement objects that
represent those elements. The HTMLElement type defines
properties for the universal HTTP attributes such as id, title,

190 | Chapter 11: Scripting Documents

lang, and dir, and event handler properties like onclick.
Element-specific subtypes define attributes specific to those
elements. To query the URL of an image, for example, you can
use the src property of the HTMLElement that represents the
 element:

var img = document.getElementById("myimage");
var url = img.src; // The src attribute is the img URL
img.id = "myimg" // Change the id attribute value

Similarly, you might set the form-submission attributes of a
<form> element with code like this:

var f = document.forms[0]; // First <form> in doc
f.method = "POST"; // Post this form to url below
f.action = "http://www.example.com/submit.php";

HTML attributes are not case-sensitive, but JavaScript prop-
erty names are. To convert an attribute name to the JavaScript
property, write it in lowercase. If the attribute is more than one
word long, however, put the first letter of each word after the
first in uppercase: defaultChecked and tabIndex, for example.

Some HTML attribute names are reserved words in JavaScript.
For these, the general rule is to prefix the property name with
“html.” The HTML for attribute (of the <label> element), for
example, becomes the JavaScript htmlFor property. “class” is
a reserved (but unused) word in JavaScript, and the very im-
portant HTML class attribute is an exception to the rule
above: it becomes className in JavaScript code.

The properties that represent HTML attributes usually have a
string value. When the attribute is a boolean or numeric value
(the defaultChecked and maxLength attributes of an <input> el-
ement, for example), the properties values are booleans or
numbers instead of strings. Event handler attributes always
have Function objects (or null) as their values. The HTML5
specification defines a few attributes (such as the form attribute
of <input> and related elements) that convert element IDs to
actual Element objects.

As described above, HTMLElement and its subtypes define
properties that correspond to the standard attributes of HTML

Attributes | 191

elements. The Element type also defines getAttribute() and
setAttribute() methods that you can use to query and set
nonstandard HTML attributes:

var image = document.images[0];
var width = parseInt(image.getAttribute("WIDTH"));
image.setAttribute("class", "thumbnail");

The code above highlights two important differences between
these methods and the property-based API described above.
First, attribute values are all treated as strings. getAttri
bute() never returns a number, boolean, or object. Second,
these methods use standard attribute names, even when those
names are reserved words in JavaScript. For HTML elements,
the attribute names are case-insensitive.

Element also defines two related methods, hasAttribute() and
removeAttribute(), which check for the presence of a named
attribute and remove an attribute entirely. These methods are
particularly useful with boolean attributes: these are attributes
(such as the disabled attribute of HTML form elements) whose
presence or absence from an element matters but whose value
is not relevant.

Element Content
Take a look again at Figure 11-1, and ask yourself what the
“content” of the <p> element is. There are three ways we might
answer this question:

• The content is the HTML string “This is a <i>simple</i>
document.”

• The content is the plain-text string “This is a simple
document.”

• The content is a Text node, an Element node that has a
Text node child, and another Text node.

Each of these are valid answers, and each answer is useful in
its own way. The sections that follow explain how to work with

192 | Chapter 11: Scripting Documents

the HTML representation, the plain-text representation, and
the tree representation of element content.

Element Content as HTML
Reading the innerHTML property of an Element returns the con-
tent of that element as a string of markup. Setting this property
on an element invokes the web browser’s parser and replaces
the element’s current content with a parsed representation of
the new string.

Web browsers are very good at parsing HTML and setting
innerHTML is usually fairly efficient, even though the value you
specify must be parsed. Note, however, that repeatedly ap-
pending bits of text to the innerHTML property with the +=
operator is usually not efficient because it requires both a se-
rialization step and a parsing step.

The insertAdjacentHTML() method allows you to insert a string
of arbitrary HTML markup “adjacent” to the specified ele-
ment. The markup is passed as the second argument to this
method, and the precise meaning of “adjacent” depends on the
value of the first argument. This first argument should be a
string with one of the values “beforebegin,” “afterbegin,” “be-
foreend,” or “afterend.” These values correspond to insertion
points that are illustrated in Figure 11-3.

Figure 11-3. Insertion points for insertAdjacentHTML()

Element Content as Plain Text
Sometimes you want to query the content of an element as
plain text, or to insert plain-text into a document (without
having to escape the angle brackets and ampersands used in

Element Content | 193

HTML markup). The standard way to do this is with the text
Content property of Node:

// Get first <p> in the document
var para = document.getElementsByTagName("p")[0];
// Get its text: "This is a simple document."
var text = para.textContent;
// Alter paragraph content
para.textContent = "Hello World!";

Element Content as Text Nodes
Another way to work with the content of an element is as a list
of child nodes, each of which may have its own set of children.
When thinking about element content, it is usually the Text
nodes that are of interest.

Example 11-2 shows a textContent() function that recursively
traverses the children of an element and concatenates the text
of all the Text node descendants. In order to understand the
code, recall that the nodeValue property (defined by the Node
type) holds the content of a Text node.

Example 11-2. Finding all Text node descendants of an element

// Return the plain-text content of element e,
// recursing into child elements. This function works
// like the textContent property
function textContent(e) {
 var c, type, s = "";
 for(c=e.firstChild; c!=null; c=c.nextSibling) {
 type = c.nodeType;
 if (type === 3) // Text node:
 s += c.nodeValue; // add text content
 else if (type === 1) // Element node:
 s += textContent(c); // recurse
 }
 return s;
}

Note that the nodeValue property is read/write and you can set
it to change the content displayed by a Text node.

194 | Chapter 11: Scripting Documents

Creating, Inserting, and Deleting Nodes
We’ve seen how to query and alter document content using
strings of HTML and plain text. And we’ve also seen that we
can traverse a Document to examine the individual Element
and Text nodes that it is made of. It is also possible to alter a
document at the level of individual nodes. The Document type
defines methods for creating Element and Text objects, and the
Node type defines methods for inserting, deleting, and replac-
ing nodes in the tree. The following function demonstrates
how to create and insert an element into the document:

// Asynchronously load and execute a script
function loadasync(url) {
 // Create a <script> element
 var s = document.createElement("script");
 // Set its src attribute
 s.src = url;
 // Insert the <script> into the <head>
 document.head.appendChild(s);
}

As shown above, you can create new Element nodes with the
createElement() method of the Document object. Pass the tag
name of the element as the method argument.

Text nodes are created with a similar method:

var t = document.createTextNode("text node");

Another way to create new document nodes is to make copies
of existing ones. Every node has a cloneNode() method that
returns a new copy of the node. Pass true to recursively copy
all descendants as well, or false to only make a shallow copy.

Once you have a new node, you can insert it into the document
with the Node methods appendChild() or insertBefore().
appendChild() is invoked on the Element node that you want
to insert into, and it inserts the specified node so that it be-
comes the lastChild of that node.

insertBefore() is like appendChild(), but it takes two argu-
ments. The first argument is the node to be inserted. The

Creating, Inserting, and Deleting Nodes | 195

second argument is the node before which that node is to be
inserted. This method is invoked on the node that will be the
parent of the new node, and the second argument must be a
child of that parent node. If you pass null as that second
argument, the insertBefore() behaves like appendChild() and
inserts at the end.

Here is a simple function for inserting a node at a numerical
index. The function demonstrates both appendChild() and
insertBefore():

// Insert the child node into parent at index n
function insertAt(parent, child, n) {
 if (n < 0 || n > parent.childNodes.length)
 throw new Error("invalid index");
 else if (n == parent.childNodes.length)
 parent.appendChild(child);
 else
 parent.insertBefore(child,parent.childNodes[n]);
}

If you call appendChild() or insertBefore() to insert a node
that is already in the document, that node will automatically
be removed from its current position and reinserted at its new
position: there is no need to explicitly remove the node.

The removeChild() method removes a node from the document
tree. Be careful, however: this method isn’t invoked on the
node to be removed but (as the “child” part of its name implies)
on the parent of that node. Invoke the method on the parent
node and pass the child node that is to be removed as the
method argument. To remove the node n from the document,
you’d write:

n.parentNode.removeChild(n);

replaceChild() removes one child node and replaces it with a
new one. Invoke this method on the parent node, passing the
new node as the first argument and the node to be replaced as
the second argument. To replace the node n with a string of
text, for example, you could write:

var t = document.createTextNode("[REDACTED]");
n.parentNode.replaceChild(t, n);

196 | Chapter 11: Scripting Documents

The following function demonstrates another use of replace
Child():

// Replace the node n with a new element and
// make n a child of that element.
function embolden(n) {
 // If n is a string treat it as an element id
 if (typeof n == "string")
 n = document.getElementById(n);
 // Create a element
 var b = document.createElement("b");
 // Replace n with the element
 n.parentNode.replaceChild(b, n);
 // Make n a child of the element
 b.appendChild(n);
}

Element Style
Cascading Style Sheets (CSS) is a standard for specifying the
visual presentation of HTML documents. CSS is intended for
use by graphic designers: it allows a designer to precisely spec-
ify fonts, colors, margins, indentation, borders, and even the
position of document elements. But CSS is also of interest to
client-side JavaScript programmers because CSS styles can be
scripted. This section explains how to script CSS and assumes
that you are already somewhat familiar with CSS.

The most straightforward way to script CSS is to alter the
style attribute of individual document elements. Like most
HTML attributes, style is a property of the Element object,
and you can manipulate it in JavaScript. The style property is
unusual, however: its value is not a string or other primitive
value but a CSSStyleDeclaration object. The JavaScript prop-
erties of this style object represent the CSS properties specified
by the HTML style attribute. To make the text of an element
e big, bold, and blue, for example, you can use the following
code to set the JavaScript properties that correspond to the
font-size, font-weight, and color style properties:

Element Style | 197

e.style.fontSize = "24pt";
e.style.fontWeight = "bold";
e.style.color = "blue";

Many CSS style properties, such as font-size, contain hyphens
in their names. In JavaScript, a hyphen is interpreted as a minus
sign, so it is not possible to write an expression like:

e.style.font-size = "24pt"; // Syntax error!

Therefore, the names of the properties of the CSSStyleDecla-
ration object are slightly different from the names of actual CSS
properties. If a CSS property name contains one or more hy-
phens, the CSSStyleDeclaration property name is formed by
removing the hyphens and capitalizing the letter immediately
following each hyphen. Thus, the CSS property border-left-
width is accessed through the JavaScript borderLeftWidth prop-
erty. Also, when a CSS property, such as the float property,
has a name that is a reserved word in JavaScript, that name is
prefixed with “css” to create a legal property name.

When working with the style properties of the CSSStyleDecla-
ration object, remember that all values must be specified as
strings. Also, remember that all the positioning properties re-
quire units. Thus, it is not correct to set the left property like
this:

// Incorrect: this is a number, not a string
e.style.left = 300;
// Incorrect: the units are missing
e.style.left = "300";

Units are required when setting style properties in JavaScript,
just as they are when setting style properties in stylesheets. The
correct way to set the value of the left property of an element
e to 300 pixels is:

e.style.left = "300px";

If you want to set the left property to a computed value, be
sure to append the units at the end of the computation:

e.style.left = (x0 + margin + border + padding) + "px";

198 | Chapter 11: Scripting Documents

Notice that the numeric result of the computation will be con-
verted to a string as a side effect of appending the units string.

The style attribute of an HTML element is its inline style, and
it overrides any style specifications in a stylesheet. Inline styles
are generally useful for setting style values, and that is what the
examples above have all done. You can read the properties of
a CSSStyleDeclaration object that represents inline styles, but
they return meaningful values only if they’ve previously been
set by your JavaScript code or if the HTML element with which
you are working has an inline style attribute that sets the de-
sired properties. For example, your document may include a
stylesheet that sets the left margin for all paragraphs to 30 pix-
els, but if you read the marginLeft property of one of your
paragraph elements, you’ll get the empty string unless that
paragraph has a style attribute that overrides the stylesheet
setting.

Sometimes, you may find it easier to set or query the inline style
of an element as a single string value rather than as a
CSSStyleDeclaration object. To do that, you can use the Ele-
ment getAttribute() and setAttribute() methods, or you can
use the cssText property of the CSSStyleDeclaration object:

// Set the style attribute of e to the string s
e.setAttribute("style", s);
e.style.cssText = s; // Another way to do it

// Query the inline style of the element e
s = e.getAttribute("style");
s = e.style.cssText; // Another way to do it

An alternative to scripting individual CSS styles through the
inline style property is to script the value of the HTML
class attribute. Changing an element’s class changes the set
of stylesheet selectors that apply to the element and can cause
multiple CSS properties to change at the same time. Suppose,
for example, that you want a way to draw the user’s attention
to individual paragraphs (or other elements) of a document.
You might start by defining attention-grabbing styles for any
elements that have a class name of “attention”:

Element Style | 199

.attention { /* Styles to grab the user's attention */
 background-color: yellow; /* Yellow highlight */
 font-weight: bold; /* Bold text */
 border: solid black 2px; /* Black box */
}

The identifier class is a reserved word in JavaScript, so the
HTML class attribute is available to JavaScript code using
the name className. Here is code that sets and clears the
className property of an element to add and remove the “at-
tention” class for that element:

function grabAttention(e) {
 e.className = "attention";
}
function releaseAttention(e) {
 e.className = "";
}

HTML elements can be members of more than one CSS class
and the class attribute holds a space-separated list of class
names. The className property has a misleading name: class
Names would have been a much better choice. The functions
above assume that the className property will specify zero or
one class name and do not work when more than one class is
in use. If an element already has a class assigned, calling the
grabAttention() function for that element will overwrite the
existing class.

HTML5 addresses this issue by defining a classList property
for every element. The value of this property is known as a
DOMTokenList: a read-only array-like object (“Array-Like
Objects” on page 107) whose elements contain the individual
class names for the element. More important than its array el-
ements, however, are the methods defined by DOMTokenList.
add() and remove() add and remove individual class names
from the element’s class attribute. toggle() adds a classname
if it is not already present and removes it otherwise. Finally,
the contains() method tests whether the class attribute con-
tains a specified classname.

Like other DOM collection types, a DOMTokenList is a “live”
representation of the element’s set of classes, not a static

200 | Chapter 11: Scripting Documents

snapshot of the classes at the time the classList property is
queried. If you obtain a DOMTokenList from the classList
property of an element and then change the className property
of that element, those changes are immediately visible through
the token list. Similarly, any changes you make through the
token list are immediately visible through the className
property.

Geometry and Scrolling
In this chapter so far we have thought about documents as
abstract trees of elements and text nodes. But when a browser
renders a document within a window, it creates a visual rep-
resentation of the document in which each element has a po-
sition and a size. Often, web applications can treat documents
as trees of elements and never have to think about how those
elements are rendered onscreen. Sometimes, however, it is
necessary to determine the precise geometry of an element. CSS
can be used, for example, to specify the position of an element.
If you want to use CSS to dynamically position an element
(such as a tooltip or callout) next to some ordinary browser-
positioned element, you need to be able to determine the lo-
cation of that element.

The position of an element is measured in pixels, with the x
coordinate increasing to the right and the y coordinate increas-
ing as we go down. There are two different points we can use
as the coordinate system origin, however: the x and y coordi-
nates of an element can be relative to the top-left corner of the
document or relative to the top-left corner of the viewport in
which the document is displayed. In top-level windows and
tabs, the “viewport” is the portion of the browser that actually
displays document content: it excludes browser “chrome”
such as menus, toolbars, and tabs. For documents displayed
in frames, the viewport is the <iframe> element that defines the
frame. In either case, when we talk about the position of an
element, we must be clear whether we are using document

Geometry and Scrolling | 201

coordinates or viewport coordinates. (Note that viewport co-
ordinates are sometimes called window coordinates.)

If the document is smaller than the viewport, or if it has not
been scrolled, the upper-left corner of the document is in the
upper-left corner of the viewport and the document and view-
port coordinate systems are the same. In general, however, to
convert between the two coordinate systems, we must add or
subtract the scroll offsets. If an element has a y coordinate of
200 pixels in document coordinates, for example, and if the
user has scrolled the browser down by 75 pixels, then that el-
ement has a y coordinate of 125 pixels in viewport coordinates.
Similarly, if an element has an x coordinate of 400 in viewport
coordinates and the user has scrolled the viewport 200 pixels
horizontally, the element’s x coordinate in document coordi-
nates is 600.

Document coordinates are more fundamental than viewport
coordinates, and they do not change when the user scrolls.
Nevertheless, it is quite common to use viewport coordinates
in client-side programming. We use document coordinates
when we specify an element position using CSS. But when we
query the position of an element we get viewport coordinates.
Similarly, when we register handler functions for mouse
events, the coordinates of the mouse pointer are reported in
viewport coordinates.

In order to convert between coordinate systems, we need to be
able to determine the scrollbar positions for the browser win-
dow. The pageXOffset and pageYOffset properties of the Win-
dow object provide these values.

It is sometimes useful to be able to determine the viewport
size—to find what portions of the document are currently visi-
ble, for example. Use the innerWidth and innerHeight proper-
ties of the Window object to query the viewport size.

To determine the size and position of an element, call its get
BoundingClientRect() method. It expects no arguments and
returns an object with properties left, right, top, and bottom.
The left and top properties give the x and y coordinates of the

202 | Chapter 11: Scripting Documents

upper-left corner of the element and the right and bottom
properties give the coordinates of the lower-right corner.

This method returns element positions in viewport coordi-
nates. To convert to document coordinates that remain valid
even if the user scrolls the browser window, add the scroll
offsets:

// Get position in viewport coordinates
var box = e.getBoundingClientRect();
// Convert to document coordinates
var x = box.left + window.pageXOffset;
var y = box.top + window.pageYOffset;

When an element is displayed in a browser, the element con-
tent is surrounded by an optional blank area known as pad-
ding. The padding is surrounded by an optional border, and
the border is surrounded by optional margins. The coordinates
returned by getBoundingClientRect() include the border and
the padding of the element but do not include the element
margins.

We saw above that you can query the position of a window’s
scrollbars with pageXOffset and pageYOffset. If you want to set
the scrollbar position, use the window’s scrollTo() method.
This method takes the x and y coordinates of a point (in docu-
ment coordinates) and sets these as the scrollbar offsets. That
is, it scrolls the window so that the specified point is in the
upper left corner of the viewport. If you specify a point that is
too close to the bottom or too close to the right edge of the
document, the browser will move it as close as possible to the
upper left corner but won’t be able to get it all the way there.

The scrollBy() method of the Window is similar to
scrollTo(), but its arguments are relative and are added to the
current scrollbar offsets.

Often, instead of scrolling to a numeric location in the docu-
ment, we just want to scroll so that a certain element in the
document is visible. You could compute the position of the
element with getBoundingClientRect(), convert that position
to document coordinates, and then use the scrollTo() method,

Geometry and Scrolling | 203

but it is easier to just call the scrollIntoView() method on the
desired HTML element. This method ensures that the element
on which it is invoked is visible in the viewport. By default, it
tries to put the top edge of the element at or near the top of the
viewport. If you pass false as the only argument, it will try to
put the bottom edge of the element at the bottom of the view-
port. The browser will also scroll the viewport horizontally as
needed to make the element visible.

204 | Chapter 11: Scripting Documents

CHAPTER 12

Handling Events

Client-side JavaScript programs use an asynchronous event-
driven programming model. In this style of programming, the
web browser generates an event whenever something interest-
ing happens to the document or browser or to some element
or object associated with it. For example, the web browser
generates an event when it finishes loading a document, when
the user moves the mouse over a hyperlink, or when the user
strikes a key on the keyboard. If a JavaScript application cares
about a particular type of event, it can register one or more
functions to be invoked when events of that type occur.

The event type is a string that specifies what kind of event oc-
curred. The type “mousemove,” for example, means that the
user moved the mouse. The type “keydown” means that a key
on the keyboard was pushed down. And the type “load” means
that a document (or some other resource) has finished loading
from the network. Because the type of an event is just a string,
it is sometimes called an event name, and indeed, we use this
name to identify the specific kind of event we’re talking about.

The event target is the object on which the event occurred or
with which the event is associated. When we speak of an event,
we must specify both the type and the target. A load event on
a Window, for example, or a click event on a <button> Element.
Window, Document, and Element objects are the most com-
mon event targets in client-side JavaScript applications, but

205

some events are triggered on other kinds of objects. In Chap-
ter 13 we’ll see a readystatechange event that is triggered on an
XMLHttpRequest object, for example.

An event handler or event listener is a function that handles or
responds to an event. Applications register their event handler
functions with the web browser, specifying an event type and
an event target. When an event of the specified type occurs on
the specified target, the browser invokes the handler. When
event handlers are invoked for an object, we sometimes say that
the browser has “fired,” “triggered,” or “dispatched” the event.

An event object is an object that is associated with a particular
event and contains details about that event. Event objects are
passed as an argument to the event handler function. All event
objects have a type property that specifies the event type and
a target property that specifies the event target. Each event
type defines a set of properties for its associated event object.
The object associated with a mouse event includes the coordi-
nates of the mouse pointer, for example, and the object asso-
ciated with a keyboard event contains details about the key that
was pressed and the modifier keys that were held down. Many
event types define only a few standard properties—such as
type and target—and do not carry much other useful infor-
mation. For those events it is the simple occurrence of the
event, not the event details, that matter.

Event propagation is the process by which the browser decides
which objects to trigger event handlers on. For events that are
specific to a single object (such as the load event on the Win-
dow object), no propagation is required. When certain kinds
of events occur on document elements, however, they propa-
gate or “bubble” up the document tree. If the user moves the
mouse over a hyperlink, the mousemove event is first fired on
the <a> element that defines that link. Then it is fired on the
containing elements: perhaps a <p> element, a <div> element,
and the Document object itself. It is sometimes more conve-
nient to register a single event handler on a Document or other
container element than to register handlers on each individual
element you’re interested in. An event handler can stop the

206 | Chapter 12: Handling Events

propagation of an event, so that it will not continue to bubble
and will not trigger handlers on containing elements.

In another form of event propagation, known as event captur-
ing, handlers specially registered on container elements have
the opportunity to intercept (or “capture”) events before they
are delivered to their actual target.

Some events have default actions associated with them. When
a click event occurs on a hyperlink, for example, the default
action is for the browser to follow the link and load a new page.
Event handlers can prevent this default action by invoking a
method of the event object.

With those terms defined, we can now move on to study events
and event handling in detail. The first section that follows is an
overview of the many event types supported by web browsers.
The next two sections explain how to register event handlers
and how the browser invokes those event handlers.

Types of Events
The sections below cover various categories of events: form
events, mouse events, key events, and so on. Each section de-
scribes the event types in a category, and also explains the im-
portant properties of the event objects that are associated with
events of those types.

Form Events
Forms and hyperlinks were the first scriptable elements in a
web page, way back in the early days of the Web and of Java-
Script. This means that form events are some of the most stable
and well-supported of all event types. <form> elements fire sub-
mit events when the form is submitted and reset events when
the form is reset. Button-like form elements (including radio
buttons and checkboxes) fire click events when the user inter-
acts with them. Form elements that maintain some kind of
state generally fire change events when the user changes their

Types of Events | 207

state by entering text, selecting an item, or checking a box. For
text input fields, a change event is not fired until the user has
finished interacting with a form element and has tabbed or
clicked to move focus to another element. Form elements re-
spond to keyboard focus changes by firing focus and blur
events when they gain and lose the focus.

The submit and reset events have default actions that can be
canceled by event handlers, and some click events do, too. The
focus and blur events do not bubble, but all the other form
events do.

Window Events
Window events represent occurrences related to the browser
window itself, rather than any specific document content dis-
played inside the window. (For some of these events, however,
an event with the same name can be fired on document
elements.)

The load event is the most important of these events: it is fired
when a document and all of its external resources (such
as images) are fully loaded and displayed to the user.
DOMContentLoaded and readystatechange are alternatives to
the load event: they are triggered sooner, when the document
and its elements are ready to manipulate, but before external
resources are fully loaded.

The unload event is the opposite of load: it is triggered when
the user is navigating away from a document. An unload event
handler might be used to save the user’s state, but it cannot be
used to cancel navigation. The beforeunload event is similar to
unload but gives you the opportunity to ask the user to confirm
that they really want to navigate away from your web page. If
a handler for beforeunload returns a string, that string will be
displayed to the user in a confirmation dialog before the new
page is loaded, and the user will have the opportunity to cancel
her navigation and remain at your page.

208 | Chapter 12: Handling Events

The focus and blur events described above for form elements
are also used as Window events: they are triggered on a window
when that browser window receives or loses keyboard focus
from the operating system.

Finally, the resize and scroll events are fired on a Window when
the user resizes or scrolls the browser window. Scroll events
can also be fired on any scrollable document element, such as
those with the CSS overflow property set.

Mouse Events
Mouse events are generated when the user moves or clicks the
mouse over a document. These events are triggered on the most
deeply nested element that the mouse pointer is over, but they
bubble up through the document. The event object passed to
mouse event handlers has properties set that describe the po-
sition and button state of the mouse and also specify whether
any modifier keys were held down when the event occurred.
The clientX and clientY properties specify the position of the
mouse in window coordinates. The altKey, ctrlKey, metaKey,
and shiftKey properties are set to true when the corresponding
keyboard modifier keys are held down. And for click events,
the detail property specifies whether this was a single, double,
or triple click.

The mousemove event is triggered any time the user moves or
drags the mouse. These events occur frequently, so mouse-
move handlers must not trigger computationally intensive
tasks. The mousedown and mouseup events are triggered
when the user presses and releases a mouse button. By regis-
tering a mousedown handler that registers a mousemove han-
dler, you can detect and respond to mouse drags. Doing this
properly involves being able to capture mouse events so that
you continue to receive mousemove events even when the
mouse has moved out of the element it started in.

After a mousedown and mouseup event sequence, the browser
also triggers a click event. If the user clicks a mouse button
twice in a row (within a sufficiently short amount of time), the

Types of Events | 209

second click event will be followed by a dblclick event. Brows-
ers often display a context menu when the right mouse button
is clicked. They generally fire a contextmenu event before dis-
playing the menu, and if you cancel the event, you can prevent
the display of the menu. This is also an easy way to be notified
of right mouse button clicks.

When the user moves the mouse so that it goes over a new
element, the browser fires a mouseover event on that element.
When the mouse moves so that it is no longer over an element,
the browser fires a mouseout event on that element. For these
events, the event object will have a relatedTarget property that
specifies the other element involved in the transition. mouse-
over and mouseout events bubble like all of the mouse events
described here. This is often inconvenient, because when a
mouseout handler is triggered, you have to check whether the
mouse actually left the element you are interested in or if it
merely transitioned from one child of the element to another.
mouseenter and mouseleave are new, nonbubbling versions of
mouseover and mouseout that are supported in new
browsers.

When the user rotates the mouse wheel, browsers trigger a
mousewheel event. The event object passed with these events
includes properties that specify how much, and in which di-
rection, the wheel was rotated.

Key Events
When the web browser has keyboard focus, it generates events
each time the user presses or releases a key on the keyboard.
Keyboard shortcuts that have meaning to the operating system
or to the browser itself are often “eaten” by the OS or browser
and may not be visible to JavaScript event handlers, however.
Keyboard events are triggered on whatever document element
has keyboard focus, and they bubble up to the document and
window. If no element has the focus, the events are triggered
directly on the document. Keyboard event handlers are passed
an event object with a keyCode field that specifies what key was

210 | Chapter 12: Handling Events

pressed or released. In addition to keyCode, the event object for
key events also has altKey, ctrlKey, metaKey, and shiftKey that
describe the state of the keyboard modifier keys.

The keydown and keyup events are low-level keyboard events:
they are triggered whenever a key (even a modifier key) is
pressed or released. When a keydown event generates a print-
able character, an additional keypress event is triggered after
the keydown but before the keyup. (In the case of a key that is
held down until it repeats, there may be many keypress events
before the keyup event.) The keypress event is a higher-level
text event, and its event object specifies the character that was
generated, not the key that was pressed. In some browsers (no-
tably Firefox) you must use the charCode property of a keypress
event object instead of keyCode.

The keydown, keyup, and keypress events are supported by all
browsers, but there are some interoperability problems be-
cause the values of the keyCode property are not well
standardized.

HTML5 Events
HTML5 and related standards define a host of new APIs for
web applications. Many of these APIs define events. This sec-
tion lists and briefly describes these HTML5 and web applica-
tion events. Some of these events are ready to be used now;
others are not yet widely implemented.

One of the widely advertised features of HTML5 is inclusion
of <audio> and <video> elements for playing sound and video.
These elements have a long list of events that they trigger to
send notifications about network events, data buffering status,
and playback state:

canplay loadeddata playing stalled
canplaythrough loadedmetadata progress suspend
durationchange loadstart ratechange timeupdate
emptied pause seeked volumechange
ended play seeking waiting

Types of Events | 211

These media events are passed an ordinary event object with
no special properties. The target property identifies the
<audio> or <video> element, however, and that element has
many relevant properties and methods.

The HTML5 drag-and-drop API allows JavaScript applications
to participate in OS-based drag-and-drop operations, transfer-
ring data between web applications and native applications.
The API defines the following seven event types:

dragstart drag dragend
dragenter dragover dragleave
drop

These drag-and-drop events are triggered with an event object
like those sent with mouse events. One additional property,
dataTransfer, holds a DataTransfer object that contains infor-
mation about the data being transferred and the formats in
which it is available.

HTML5 defines a history management mechanism that allows
web applications to interact with the browser’s Back and For-
ward buttons. This mechanism involves events named hash-
change and popstate. These events are life cycle notification
events like load and unload and are fired at the Window object
rather than any individual document element.

HTML5 defines a lot of new features for HTML forms. In ad-
dition to standardizing the form input event described earlier,
HTML5 also defines a form validation mechanism, which in-
cludes an invalid event fired on form elements that have failed
validation.

HTML5 includes support for offline web applications that can
be installed locally in an application cache so that they can run
even when the browser is offline (as when a mobile device is
out of network range). The two most important events associ-
ated with this are the offline and online events: they are trig-
gered on the Window object whenever the browser loses or
gains a network connection. A number of additional events are
defined to provide notification of application download pro-
gress and application cache updates:

212 | Chapter 12: Handling Events

cached checking downloading error
noupdate obsolete progress updateready

A number of new web application APIs use a message event for
asynchronous communication. The Cross-Document Messag-
ing API allows scripts in a document from one server to ex-
change messages with scripts in a document from another
server. This works around the limitations of the same-origin
policy (“The Same-Origin Policy” on page 176) in a secure way.
Each message that is sent triggers a message event on the Win-
dow of the receiving document. The event object passed to the
handler includes a data property that holds the content of the
message as well as source and origin policies that identify the
sender of the message. The message event is used in similar
ways for communication with Web Workers and for network
communication via Server-Sent Events and WebSockets.

HTML5 and related standards define some events that are
triggered on objects other than windows, documents, and
document elements. Version 2 of the XMLHttpRequest spec-
ification, as well as the File API specification, define a series of
events that track the progress of asynchronous I/O. They trig-
ger events on an XMLHttpRequest or FileReader object. Each
read operation begins with a loadstart event, followed by pro-
gress events and a loadend event. Additionally, each operation
ends with a load, error, or abort event just before the final
loadend event.

Finally, HTML5 and related standards define a few miscella-
neous event types. The Web Storage API defines a storage event
(on the Window object) that provides notification of changes
to stored data. HTML5 also standardizes the beforeprint and
afterprint events that were originally introduced by Microsoft
in IE. As their names imply, these events are triggered on a
Window immediately before and immediately after its docu-
ment is printed and provide an opportunity to add or remove
content such as the date and time that the document was
printed. (These events should not be used to change the pre-
sentation of a document for printing because CSS media types
already exist for that purpose.)

Types of Events | 213

Touchscreen and Mobile Events
The widespread adoption of mobile devices with touchscreens
has required the creation of new categories of events. In many
cases, touchscreen events are mapped to traditional event types
such as click and scroll. But not every interaction with a
touchscreen UI emulates a mouse, and not all touches can be
treated as mouse events. This section briefly explains the ges-
ture and touch events generated by Safari when running on
Apple’s iPhone and iPad devices and also covers the orienta-
tionchange event generated when the user rotates the device.

Safari generates gesture events for two-finger scaling and rota-
tion gestures. The gesturestart event is fired when the gesture
begins and gestureend is fired when it ends. Between these two
events are a sequence of gesturechange events that track the
progress of the gesture. The event object sent with these events
has numeric scale and rotation properties. The scale prop-
erty is the ratio of the current distance between the two fingers
to the initial distance between the fingers. A “pinch close” ges-
ture has a scale less than 1.0, and a “pinch open” gesture has
a scale greater than 1.0. The rotation property is the angle of
finger rotation since the start of the event. It is reported in
degrees, with positive values indicating clockwise rotation.

Gesture events are high-level events that notify you of a gesture
that has already been interpreted. If you want to implement
your own custom gestures, you can listen for low-level touch
events. When a finger touches the screen, a touchstart event is
triggered. When the finger moves, a touchmove event is trig-
gered. And when the finger is lifted from the screen, a touchend
event is triggered. Unlike mouse events, touch events do not
directly report the coordinates of the touch. Instead, the object
sent with a touch event has a changedTouches property. This
property is an array-like object whose elements each describe
the position of a touch.

The orientationchanged event is triggered on the Window ob-
ject by devices that allow the user to rotate the screen from
portrait to landscape mode. The object passed with an

214 | Chapter 12: Handling Events

orientationchanged event is not useful itself. In mobile Safari,
however, the orientation property of the Window object gives
the current orientation as one of the numbers 0, 90, 180, or –90.

Registering Event Handlers
There are two ways to register event handlers. The first is to set
a property on the object or document element that is the event
target. The second technique is to pass the handler to a method
of the object or element. To complicate matters, there are two
versions of each technique. You can set an event handler prop-
erty in JavaScript code, or for document elements, you can set
the corresponding attribute directly in HTML.

Setting Event Handler Properties
The simplest way to register an event handler is by setting a
property of the event target to the desired event handler func-
tion. By convention, event handler properties have names that
consist of the word “on” followed by the event name: onclick,
onchange, onload, onmouseover, and so on. Note that these
property names are case-sensitive and are written in all lower-
case, even when the event type (such as “readystatechange”
consists of multiple words. Here are two example event han-
dler registrations:

// Set the onload property of the Window object.
// The function is the event handler:
// it is invoked when the document loads.
window.onload = function() {
 // Look up a <form> element
 var elt = document.getElementById("address");
 // Register an event handler function that will
 // be invoked right before the form is submitted.
 elt.onsubmit = function() { return validate(this); }
}

The shortcoming of event handler properties is that they are
designed around the assumption that event targets will have at
most one handler for each type of event. If you are writing

Registering Event Handlers | 215

library code for use in arbitrary documents you can’t rely on
this technique.

Setting Event Handler Attributes
The event handler properties of a document element can also
be set as attributes on the corresponding HTML tag. If you do
this, the attribute value should be a string of JavaScript code.
That code should be the body of the event handler function,
not a complete function declaration. That is, your HTML event
handler code should not be surrounded by curly braces and
prefixed with the function keyword. For example:

<button onclick="alert('Thank you');">
 Click Here
</button>

If an HTML event handler attribute contains multiple Java-
Script statements, you must remember to separate those state-
ments with semicolons or to break the attribute value across
multiple lines.

Some event types are directed at the browser as a whole, rather
than at any particular document element. In JavaScript, han-
dlers for these events are registered on the Window object. In
HTML, we place them on the <body> tag, but the browser reg-
isters them on the Window. The following is the complete list
of such event handlers as defined by the draft HTML5
specification:

onafterprint onfocus ononline onresize
onbeforeprint onhashchange onpagehide onstorage
onbeforeunload onload onpageshow onundo
onblur onmessage onpopstate onunload
onerror onoffline onredo

When you specify a string of JavaScript code as the value of an
HTML event handler attribute, the browser converts your
string into a function that looks something like this:

function(event) {
 with(document) {
 with(this.form || {}) {
 with(this) {

216 | Chapter 12: Handling Events

 /* your code here */
 }
 }
 }
}

We’ll see more about the event argument and the with state-
ments above when we consider event handler invocation in
“Event Handler Invocation” on page 218.

addEventListener()
Any object that can be an event target—this includes the Win-
dow and Document objects and all document Elements—
defines a method named addEventListener() that you can use
to register an event handler for that target. addEventLis
tener() takes three arguments. The first is the event type for
which the handler is being registered. The event type (or name)
is a string and it should not include the “on” prefix that is used
when setting event handler properties. The second argument
to addEventListener() is the function that should be invoked
when the specified type of event occurs. The final argument to
addEventListener() is an optional boolean value. Normally,
you’ll pass false for this argument or omit it. If you pass
true instead, your function is registered as a capturing event
handler and is invoked at a different phase of event dispatch.
We will cover event capturing in “Event Propaga-
tion” on page 221.

The code below registers two handlers for the click event on a
<button> element. Note the differences between the two tech-
niques used:

<button id="mybutton">Click me</button>
<script>
var b = document.getElementById("mybutton");
b.onclick = function() { alert("Thanks!"); };
b.addEventListener("click",
 function() { alert("Thanks again!"); });
</script>

Registering Event Handlers | 217

Calling addEventListener() with “click” as its first argument
does not affect the value of the onclick property. In the code
above, a button click will generate two alert() dialog boxes.
More importantly, you can call addEventListener() multiple
times to register more than one handler function for the same
event type on the same object. When an event occurs on an
object, all of the handlers registered for that type of event are
invoked, in the order in which they were registered. Invoking
addEventListener() more than once on the same object with
the same arguments has no effect—the handler function re-
mains registered only once, and the repeated invocation does
not alter the order in which handlers are invoked.

addEventListener() is paired with a removeEventListener()
method that expects the same three arguments but removes an
event handler function from an object rather than adding it. It
is often useful to temporarily register an event handler and then
remove it soon afterward. For example, when you get a mouse-
down event, you might register temporary capturing event
handlers for mousemove and mouseup events so that you can
see if the user drags the mouse. You’d then deregister these
handlers when the mouseup event arrives. In such a situation,
your event handler removal code might look like this:

document.removeEventListener("mousemove",
 handleMove, true);
document.removeEventListener("mouseup",
 handleUp, true);

Event Handler Invocation
Once you’ve registered an event handler, the web browser will
invoke it automatically when an event of the specified type oc-
curs on the specified object. This section describes event han-
dler invocation in detail, explaining event handler arguments,
the invocation context (the this value), the invocation scope,
and the meaning of the return value of an event handler.

In addition to describing how individual handlers are invoked,
this section also explains how events propagate: how a single

218 | Chapter 12: Handling Events

event can trigger the invocation of multiple handlers on the
original event target and also on containing elements of the
document.

Event Handler Argument
Event handlers are invoked with an event object as their single
argument. The properties of the event object (described earlier
in this chapter) provide details about the event.

Recall from “Setting Event Handler Attributes” on page 216
that when you register an event handler by setting an HTML
attribute, the browser converts your string of JavaScript code
into a function with a single argument named event. This
means that HTML event handlers can refer to the event object
as event.

Event Handler Context
When you register an event handler by setting a property, it
looks as if you are defining a new method on an object:

e.onclick = function() { /* handler code */ };

It isn’t surprising, therefore, that event handlers are invoked as
methods of the object on which they are defined. That is,
within the body of an event handler, the this keyword refers
to the event target.

Handlers registered using addEventListener() are also invoked
with the target as their this value.

Event Handler Scope
Like all JavaScript functions, event handlers are lexically
scoped. They are executed in the scope in which they are de-
fined, not the scope from which they are invoked, and they can
access any local variables from that scope.

Event handlers registered as HTML attributes are a special
case, however. They are converted into top-level functions that

Event Handler Invocation | 219

have access to global variables but not to any local variables.
But, for historical reasons, they run with a modified scope
chain. Event handlers defined by HTML attributes can use the
properties of the target object, the containing <form> object (if
there is one), and the Document object as if they are local vari-
ables. “Setting Event Handler Attributes” on page 216 shows
how an event handler function is created from an HTML event
handler attribute, and the code there approximates this modi-
fied scope chain using with statements.

HTML attributes are not natural places to include long strings
of code, and this modified scope chain allows helpful short-
cuts. You can use tagName instead of this.tagName. You can use
getElementById instead of document.getElementById. And, for
document elements that are inside a <form>, you can refer to
any other form element by ID, using zipcode, for example, in-
stead of this.form.zipcode.

On the other hand, the modified scope chain of HTML event
handlers is a source of pitfalls, since the properties of each of
the objects in the chain shadow any properties of the same
name in the global object. This is a particular problem with
forms, because the names and IDs of form elements define
properties on the containing form element. So if a form con-
tains an element with the ID “location,” for example, all HTML
event handlers within that form must use window.location in-
stead of location if they want to refer to the window’s Loca-
tion object.

Handler Return Value
The return value of an event handler registered by setting an
object property or an HTML attribute is sometimes significant.
In general, a return value of false tells the browser that it
should not perform the default action associated with the
event. The onclick handler of a Submit button in a form, for
example, can return false to prevent the browser from sub-
mitting the form. (This is useful if the user’s input fails client-
side validation.) Similarly, an onkeypress handler on an input

220 | Chapter 12: Handling Events

field can filter keyboard input by returning false if the user
types an inappropriate character.

The return value of the onbeforeunload handler of the Window
object is also significant. This event is triggered when the
browser is about to navigate to a new page. If this event handler
returns a string, it will be displayed in a modal dialog box that
asks the user to confirm that she wants to leave the page.

It is important to understand that event handler return values
are significant only for handlers registered as properties. We’ll
see below that event handlers registered with addEventLis
tener() must instead call the preventDefault() method of the
event object.

Event Propagation
When the target of an event is the Window object, or some
other standalone object (such as an XMLHttpRequest), the
browser responds to an event simply by invoking the appro-
priate handlers on that one object. When the event target is a
Document or document Element, however, the situation is
more complicated.

After the event handlers registered on the target element are
invoked, most events “bubble” up the DOM tree. The event
handlers of the target’s parent are invoked. Then the handlers
registered on the target’s grandparent are invoked. This con-
tinues up to the Document object, and then beyond to the
Window object. Event bubbling provides an alternative to reg-
istering handlers on lots of individual document elements: in-
stead you can register a single handler on a common ancestor
element and handle events there. You might register a
“change” handler on a <form> element, for example, instead of
registering a “change” handler for every element in the form.

Most events that occur on document elements bubble. Notable
exceptions are the focus, blur, and scroll events. The load event
on document elements bubbles, but it stops bubbling at the
Document object and does not propagate on to the Window

Event Handler Invocation | 221

object. The load event of the Window object is triggered only
when the entire document has loaded.

Event bubbling is the third “phase” of event propagation. The
invocation of the event handlers of the target object itself is
the second phase. The first phase, which occurs even before
the target handlers are invoked, is called the “capturing” phase.
Recall that addEventListener() takes a boolean value as its
third argument. If that argument is true, the event handler is
registered as a capturing event handler for invocation during
this first phase of event propagation.

The capturing phase of event propagation is like the bubbling
phase in reverse. The capturing handlers of the Window object
are invoked first, then the capturing handlers of the Document
object, then of the body object, and so on down the DOM tree
until the capturing event handlers of the parent of the event
target are invoked. Capturing event handlers registered on the
event target itself are not invoked.

Event capturing provides an opportunity to peek at events be-
fore they are delivered to their target. A capturing event handler
can be used for debugging, or it can be used along with the
event cancellation technique described below to filter events
so that the target event handlers are never actually invoked.
One common use for event capturing is handling mouse drags,
where mouse motion events need to be handled by the object
being dragged, not the document elements over which it is
dragged.

Event Cancellation
“Handler Return Value” on page 220 explained that the return
value of event handlers registered as properties can be used to
cancel the browser’s default action for the event. You can also
cancel the default action for an event by invoking the prevent
Default() method of the event object.

Canceling the default action associated with an event is only
one kind of event cancellation. We can also cancel the

222 | Chapter 12: Handling Events

propagation of events. Event objects have a stopPropaga
tion() method that you can invoke to prevent the continued
propagation of the event. If there are other handlers defined on
the same object, the rest of those handlers will still be invoked,
but no event handlers on any other object will be invoked after
stopPropagation() is called. The stop Propagation() method
can be called at any time during event propagation. It works
during the capturing phase, at the event target itself, and during
the bubbling phase. Another method on the Event object,
named stopImmediatePropagation(), prevents the propagation
of the event to any other objects and also prevents the invoca-
tion of any other event handlers registered on the same object.

Event Handler Invocation | 223

CHAPTER 13

Networking

This chapter describes four techniques for client-side Java-
Script networking. The first, XMLHttpRequest, is well-known
and widely-used in the “Ajax” application architecture. This
API is by far the most important of the four, and the bulk of
the chapter is devoted to it. The chapter also demonstrates the
JSONP technique for Ajax-style networking with the
<script> tag, as well as “server push” or “Comet” style net-
working with the new EventSource API, and bidirectional
socket-style networking with WebSockets.

Using XMLHttpRequest
Browsers define their HTTP API on an XMLHttpRequest class.
Each instance of this class represents a single HTTP request/
response pair, and the properties and methods of the object
allow you to specify request details and extract response data.
XMLHttpRequest is often abbreviated as XHR, and this chap-
ter uses the term XHR2 to refer to cutting-edge features intro-
duced by drafts of version 2 of the XHR specification. Note
that the XMLHttpRequest API has nothing to do with XML:
the name is a historical accident that we’re simply stuck with.

The first step in using the XHR API, of course, is to instantiate
an XMLHttpRequest object:

225

var request = new XMLHttpRequest();

You can also reuse an existing XMLHttpRequest object, but
note that doing so will abort any request pending through that
object.

Any HTTP request consists of four parts:

• the HTTP request method or “verb”

• the URL being requested

• an optional set of request headers, which may include au-
thentication information

• an optional request body

The HTTP response sent by a server has three parts:

• a numeric and textual status code that indicates the suc-
cess or failure of the request

• a set of response headers

• the response body

The first two subsections below demonstrate how to set each
of the parts of an HTTP request and how to query each of the
parts of an HTTP response with the XHR API. Those key sec-
tions are followed by coverage of more specialized topics.

XMLHttpRequest and Local Files
The ability to use relative URLs in web pages usually means
that we can develop and test our HTML using the local file
system and then deploy it unchanged to a web server. This is
generally not possible when doing Ajax programming with
XMLHttpRequest, however. XMLHttpRequest is designed to
work with the HTTP and HTTPS protocols, not the file://
protocol. This means that when working with XMLHttpRe-
quest, you generally have to upload your files to a web server
(or run a server locally) in order to test them.

The basic request/response architecture of HTTP is pretty sim-
ple and easy to work with. In practice, however, there are all

226 | Chapter 13: Networking

sorts of complications: clients and server exchange cookies,
servers redirect browsers to other servers, some resources are
cached and others are not, some clients send all their requests
through proxy servers, and so on. XMLHttpRequest is not a
protocol-level HTTP API but instead a browser-level API. The
browser takes care of cookies, redirects, caching, and proxies
and your code need worry only about requests and responses.

Specifying the Request
After creating an XMLHttpRequest object, the next step in
making an HTTP request is to call the open() method of your
XMLHttpRequest object to specify the two required parts of
the request, the method and the URL:

request.open("GET", // Begin a HTTP GET request
 "data.csv"); // For the contents of this URL

The first argument to open() specifies the HTTP method or
verb. The “GET” and “POST” methods are universally sup-
ported. “GET” is used for most “regular” requests, and it is
appropriate when the URL completely specifies the requested
resource, when the request has no side effects on the server,
and when the server’s response is cacheable. The “POST”
method includes additional data in the request body and that
data is often stored in a database on the server (a side effect).

In addition to “GET” and “POST”, the XMLHttpRequest
specification also allows “DELETE,” “HEAD,” “OPTIONS,”
and “PUT” as the first argument to open().

The second argument to open() is the URL that is the subject
of the request. This is relative to the URL of the document that
contains the script that is calling open(). If you specify an ab-
solute URL, the protocol, host, and port must generally match
those of the containing document: cross-origin HTTP requests
normally cause an error. (But the XHR2 allows cross-origin
requests when the server explicitly allows it; see “Cross-Origin
HTTP Requests” on page 232.)

Using XMLHttpRequest | 227

The next step in the request process is to set the request head-
ers, if any. “POST” requests, for example, need a “Content-
Type” header to specify the MIME type of the request body:

request.setRequestHeader("Content-Type", "text/plain");

If you call setRequestHeader() multiple times for the same
header, the new value does not replace the previously specified
value: instead, the HTTP request will include multiple copies
of the header or the header will specify multiple values.

You cannot specify the “Content-Length,” “Date,” “Referer,”
or “User-Agent” headers yourself: XMLHttpRequest will add
those automatically for you and will not allow you to spoof
them. Similarly, XMLHttpRequest object automatically han-
dles cookies, and connection lifetime, charset, and encoding
negotiations, so you’re not allowed to set any of those headers
either.

The final step in making an HTTP request with XMLHttpRe-
quest is to specify the optional request body and send it off to
the server. Do this with the send() method:

request.send(null);

GET requests never have a body, so you should pass null or
omit the argument. POST requests do generally have a body,
and it should match the “Content-Type” header you specified
with setRequestHeader().

Example 13-1 uses each of the XMLHttpRequest methods
we’ve described so far. It POSTs a string of text to a server and
ignores any response the server sends. Note that the string sent
in the request body may be a complex one: it might be a Java-
Script object encoded with JSON.stringify() or a form-
encoded set of name/value pairs.

Example 13-1. POSTing plain text to a server

function postMessage(msg) {
 var r = new XMLHttpRequest(); // New request
 r.open("POST", "/log.php"); // POST to this URL
 // Specify that the request body is UTF8 text
 r.setRequestHeader("Content-Type",

228 | Chapter 13: Networking

 "text/plain;charset=UTF-8");
 // Send msg as the request body
 r.send(msg);
 // Ignore any response or any error.
}

Note that the send() method in Example 13-1 initiates the re-
quest and then returns: it does not block while waiting for the
server’s response. HTTP responses are asynchronous, as
demonstrated in the following section.

Retrieving the Response
A complete HTTP response consists of a status code, a set of
response headers, and a response body. These are available
through properties and methods of the XMLHttpRequest
object:

• The status and statusText properties return the HTTP
status in numeric and textual forms. These properties hold
standard HTTP values like 200 and “OK” for successful
requests, and 404 and “Not Found” for URLs that don’t
match any resource on the server.

• The response headers can be queried with getResponse
Header() and getAllResponseHeaders().

• The response body is available in textual form from the
responseText property.

The XMLHttpRequest object is used asynchronously: the
send() method returns immediately after sending the request,
and the response methods and properties listed above aren’t
valid until the response is received. To be notified when the
response is ready, you must listen for readystatechange events
(or the new XHR2 progress events described in “HTTP Pro-
gress Events” on page 231) on the XMLHttpRequest object.
But to understand this event type, you must first understand
the readyState property.

readyState is an integer that specifies the status of an HTTP
request, and its possible values are the following:

Using XMLHttpRequest | 229

Value Meaning

0 open() has not been called yet

1 open() has been called

2 Headers have been received

3 The response body is being received

4 The response is complete

To listen for readystatechange events, set the onreadystate
change property of the XMLHttpRequest object to your event
handler function. (Or call addEventListener()). Exam-
ple 13-2 defines a getText() function that demonstrates how
to listen for readystatechange events. The event handler first
ensures that the request is complete. If so, it checks the re-
sponse status code to ensure that the request was successful.
Then it looks at the “Content-Type” header to verify that the
response was of the expected type. If all three conditions are
satisfied, it passes the response body (as text) to a specified
callback function. That callback could then process the re-
sponse further, by passing it to JSON.parse(), for example.

Example 13-2. Getting an HTTP response onreadystatechange

// Issue an HTTP GET request for the specified URL.
// When the response arrives successfully, verify
// that it is plain text and if so, pass it the text
// to the specified callback function
function getText(url, callback) {
 var r = new XMLHttpRequest(); // New request
 r.open("GET", url); // Specify URL
 r.onreadystatechange = function() {
 // If the request is compete and was successful
 if (r.readyState === 4 && r.status === 200) {
 var type = r.getResponseHeader("Content-Type");
 // If response is text, pass it to callback
 if (type.match(/^text/))
 callback(r.responseText);
 }
 };
 r.send(null); // Send the request!
}

230 | Chapter 13: Networking

HTTP Progress Events
In the examples above, we’ve used the readystatechange event
to detect the completion of an HTTP request. The XHR2 draft
specification defines a more useful set of events. In this new
event model, the XMLHttpRequest object triggers different
types of events at different phases of the request so that it is no
longer necessary to check the readyState property.

In browsers that support them, these new events are triggered
as follows. When the send() method is called, a single loadstart
event is fired. While the server’s response is being downloaded,
the XMLHttpRequest object fires progress events, typically
every 50 milliseconds or so, and you can use these events to
give the user feedback about the progress of the request. If a
request completes very quickly, it may never fire a progress
event. When a request is complete, a load event is fired.

A complete request is not necessarily a successful request, and
your handler for the load event should check the status code
of the XMLHttpRequest object to ensure that you received an
HTTP “200 OK” response rather than a “404 Not Found” re-
sponse, for example.

There are three ways that an HTTP request can fail to complete,
and three corresponding events. If a request times out, the
timeout event is triggered. If a request is aborted, the abort
event is triggered. Finally, other network errors, such as too
many redirects, can prevent the completion of a request, and
the error event is triggered when this happens.

The event object associated with these progress events has
three useful properties in addition to the normal Event object
properties like type and timestamp. The loaded property is the
number of bytes that have been transferred so far. The total
property is the total length (in bytes) of the data to be trans-
ferred, from the “Content-Length” header, or 0 if the content
length is not known. Finally, the lengthComputable property is
true if the content length is known and is false otherwise.

Using XMLHttpRequest | 231

Obviously, the total and loaded properties are particularly
useful in progress event handlers:

request.onprogress = function(e) {
 if (e.lengthComputable) {
 var p = Math.round(100*e.loaded/e.total);
 progress.innerHTML = p + "% Complete";
 }
}

In addition to defining these useful events for monitoring the
download of an HTTP response, XHR2 also allows the events
to be used to monitor the upload of an HTTP request. In
browsers that have implemented this feature, the XMLHttpRe-
quest object will have an upload property. The value of the
upload property is an object that defines an addEventLis
tener() method and defines a full set of progress event prop-
erties, such as onprogress and onload.

You can use the upload event handlers just as you would use
the regular progress event handlers. For an XMLHttpRequest
object x, set x.onprogress to monitor the download progress
of the response. And set x.upload.onprogress to monitor the
upload progress of the request.

Cross-Origin HTTP Requests
As part of the same-origin security policy (“The Same-Origin
Policy” on page 176), the XMLHttpRequest object can nor-
mally issue HTTP requests only to the server from which the
document that uses it was downloaded. This restriction closes
security holes, but it is heavy-handed and also prevents a num-
ber of legitimate uses for cross-origin requests. You can use
cross-origin URLs with <form> and <iframe> elements, and the
browser will display the resulting cross-origin document. But
because of the same-origin policy, the browser won’t allow the
original script to inspect the contents of the cross-origin docu-
ment. With XMLHttpRequest, document contents are always
exposed through the responseText property, so the same-origin
policy cannot allow XMLHttpRequest to make cross-origin re-
quests. (Note that the <script> element has never really been

232 | Chapter 13: Networking

subject to the same-origin policy: it will download and execute
any script, regardless of origin. As we’ll see in “HTTP by
<script>: JSONP” on page 233, this freedom to make cross-
origin requests makes the <script> element an attractive Ajax
transport alternative to XMLHttpRequest.)

XHR2 allows cross-origin requests to websites that opt-in by
sending appropriate CORS (Cross-Origin Resource Sharing)
headers in their HTTP responses. As a web programmer, there
is nothing special you need to do to make this work: if the
browser supports CORS for XMLHttpRequest and if the web-
site you are trying to make a cross-origin request to has decided
to allow cross-origin requests with CORS, the same-origin pol-
icy will be relaxed and your cross-origin requests will just work.

HTTP by <script>: JSONP
For certain kinds of content, a <script> element can be used
as a useful alternative to XMLHttpRequest. Simply set the
src attribute of a <script> (and insert it into the document if
it isn’t already there) and the browser will generate an HTTP
request to download the URL you specify. <script> elements
are useful Ajax transports for one primary reason: they are not
subject to the same-origin policy, so you can use them to re-
quest data from servers other than your own.

The technique of using a <script> element as an Ajax transport
has come to be known as JSONP: it works when the response
body of the HTTP request is JSON-encoded. The “P” stands
for “padding” or “prefix”—this will be explained in a moment.

Suppose you’ve written a service that handles GET requests
and returns JSON-encoded data. Same-origin documents can
use it with XMLHttpRequest and JSON.parse(). If you enable
CORS on your server, cross-origin documents in new browsers
can also use your service with XMLHttpRequest. Cross-origin
documents in older browsers that do not support CORS can
only access your service with a <script> element, however.
Your JSON response body is (by definition) valid JavaScript

HTTP by <script>: JSONP | 233

code, and the browser will execute it when it arrives. Executing
JSON-encoded data decodes it, but the result is still just data,
and it doesn’t do anything.

This is where the P part of JSONP comes in. When invoked
through a <script> element, your service must “pad” its re-
sponse by surrounding it with parentheses and prefixing it with
the name of a JavaScript function. Instead of just sending JSON
data like this:

[1, 2, {"buckle": "my shoe"}]

It sends a padded-JSON response like this:

handleResponse(
[1, 2, {"buckle": "my shoe"}]
)

As the body of a <script> element, this padded response does
something valuable: it evaluates the JSON-encoded data
(which is nothing more than one big JavaScript expression, af-
ter all) and then passes it to the function handleResponse(),
which, we assume, the containing document has defined to do
something useful with the data.

In order for this to work, we have to have some way to tell the
service that it is being invoked from a <script> element and
must send a JSONP response instead of a plain JSON response.
This can be done by adding a query parameter to the URL:
appending ?json (or &json), for example.

In practice, services that support JSONP do not dictate a func-
tion name like “handleResponse” that all clients must imple-
ment. Instead, they use the value of a query parameter to allow
the client to specify a function name, and then use that function
name as the padding in the response. Example 13-3 uses a
query parameter named “jsonp” to specify the name of the
callback function.

Example 13-3 defines a function getJSONP() that makes a
JSONP request. This example is a little tricky, and there are
some things you should note about it. First, notice how it cre-
ates a new <script> element, sets its URL, and inserts it into

234 | Chapter 13: Networking

the document. It is this insertion that triggers the HTTP re-
quest. Second, notice that the example creates a new internal
callback function for each request, storing the function as a
property of getJSONP() itself. Finally, note that callback per-
forms some necessary cleanup: it removes the script element
and deletes itself.

Example 13-3. Making a JSONP request with a script element

// Make a JSONP request to the specified URL and
// pass the parsed response data to the specified
// callback. Add a query parameter named "jsonp" to
// the URL to specify the name of the callback
// function for the request.
function getJSONP(url, callback) {
 // Create a unique callback name for this request
 // The name will be a property of this function.
 var cbnum = "cb" + getJSONP.counter++;
 var cbname = "getJSONP." + cbnum;

 // Add the callback name to the url query string.
 if (url.indexOf("?") === -1)
 url += "?jsonp=" + cbname;
 else
 url += "&jsonp=" + cbname;

 // Create the script element for this request
 var script = document.createElement("script");

 // Define the callback function that we named above.
 getJSONP[cbnum] = function(response) {
 try {
 callback(response); // Handle the response
 }
 finally { // Always clean up, even on error
 delete getJSONP[cbnum];
 script.parentNode.removeChild(script);
 }
 };

 // Now trigger the HTTP request
 script.src = url;
 document.body.appendChild(script);
}

HTTP by <script>: JSONP | 235

// The counter used to assign callback names
getJSONP.counter = 0;

Scripts and Security
In order to use a <script> element as an Ajax transport, you
have to allow your web page to run whatever JavaScript code
the remote server chooses to send you. This means that you
must not use the technique described here with untrusted
servers. And when you do use it with trusted servers, keep in
mind that if an attacker can hack into that server, then the
hacker can take over your web page, run any code she wants
and display any content she wants, and that content will ap-
pear to come from your site.

With that said, note that it has become commonplace for web-
sites to use trusted third-party scripts, especially to embed
advertising or “widgets” into a page. Using a <script> as an
Ajax transport to communicate with a trusted web service is
no more dangerous than that.

Server-Sent Events
In normal HTTP networking with XHR or the <script> tag,
the client requests or “pulls” data from the server when it needs
it. There is another style of HTTP-based networking that is
used by some web applications. In “server push” or “comet,”
the client and server establish an HTTP connection, but leave
it open indefinitely, which allows the server to push data to the
client through that open connection.

It is possible but difficult to implement this style of networking
with XHR, but a new HTML5-related standard known as
Server-Sent Events defines a simple EventSource API that
makes it trivial to receive and respond to messages pushed by
the server. To use Server-Sent Events, simply pass a URL to the
EventSource() constructor and then listen for message events
on the returned object:

236 | Chapter 13: Networking

var ticker = new EventSource("stockprices.php");
ticker.onmessage = function(e) {
 var type = e.type;
 var data = e.data;

 // Now process the event type and event data strings.
}

The event object associated with a message event has a data
property that holds whatever string the server sent as the pay-
load for this event. The event object also has a type property
like all event objects do. The default value is “message,” but
the event source can specify a different string for the property.
A single onmessage event handler receives all events from a
given server event source, and can dispatch them, if necessary,
based on their type property.

The Server-Sent Event protocol is straightforward. The client
initiates a connection to the server (when it creates the
EventSource object) and the server keeps this connection open.
When an event occurs, the server writes lines of text to the
connection. An event going over the wire might look like this:

event: bid event type
data: GOOG sets the data property
data: 999 appends newline and more data
 blank line triggers the event

WebSockets
All of the networking APIs described so far in this chapter are
HTTP-based, which means that they are all constrained by the
fundamental nature of the HTTP: it is a stateless protocol that
consists of client requests and server responses. HTTP is ac-
tually a specialized network protocol. More general network
protocols often involve longer-lived connections and bidirec-
tional message exchange over TCP sockets. It is not safe to give
untrusted client-side JavaScript code access to low-level TCP
sockets, but the WebSocket API defines a secure alternative: it
allows client-side code to create bidirectional socket-type con-
nections to servers that support the WebSocket protocol. This

WebSockets | 237

makes it much easier to perform certain kinds of networking
tasks.

The WebSocket API is surprisingly easy to use. First, create a
socket with the WebSocket() constructor:

var s = new WebSocket("ws://ws.example.com/resource");

The argument to the WebSocket() constructor is a URL that uses
the ws:// protocol (or wss:// for a secure connection like that
used by https://). The URL specifies the host to connect to,
and may also specify a port (WebSockets use the same default
ports as HTTP and HTTPS) and a path or resource.

Once you have created a socket, you generally register event
handlers on it:

s.onopen = function(e) { /* The socket is open. */ };
s.onclose = function(e) { /* The socket closed. */ };
s.onerror = function(e) { /* Something went wrong! */ };
s.onmessage = function(e) {
 var m = e.data; /* The server sent a message. */
};

In order to send data to the server over the socket, you call the
send() method of the socket:

s.send("Hello, server!");

When your code is done communicating with the server, you
can close a WebSocket by calling its close() method.

WebSocket communication is completely bidirectional. Once
a WebSocket connection has been established, the client and
server can send messages to each other at any time, and that
communication does not have to take the form of requests and
responses.

238 | Chapter 13: Networking

CHAPTER 14

Client-Side Storage

Web applications can use browser APIs to store data locally on
the user’s computer. This client-side storage serves to give the
web browser a memory. Web apps can store user preferences,
for example, or even store their complete state, so that they can
resume exactly where you left off at the end of your last visit.
Client-side storage is segregated by origin, so pages from one
site can’t read the data stored by pages from another site. But
two pages from the same site can share storage and can use it
as a communication mechanism. Data input in a form on one
page can be displayed in a table on another page, for example.
Web applications can choose the lifetime of the data they store:
data can be stored temporarily so that it is retained only until
the window closes or the browser exits, or it can be saved to
the hard drive and stored permanently, so that it is available
months or years later. This chapter covers two forms of client-
side storage: the modern Web Storage API and the ancient
Cookies API.

Storage, Security, and Privacy
Web browsers often offer to remember web passwords for you,
and they store them safely in encrypted form on the disk. But
none of the forms of client-side data storage described in this
chapter involve encryption: anything you save resides on the
user’s hard disk in unencrypted form. Stored data is therefore

239

accessible to curious users who share access to the computer
and to malicious software (such as spyware) that exists on the
computer. For this reason, no form of client-side storage
should ever be used for passwords, financial account numbers,
or other similarly sensitive information.

Also, bear in mind that many web users mistrust websites that
use cookies or other client-side storage mechanisms to do any-
thing that resembles “tracking.” Try to use the storage mech-
anisms discussed in this chapter to enhance a user’s experience
at your site; don’t use them as a privacy-invading data collec-
tion mechanism. If too many sites abuse client-side storage,
users will disable it or clear it frequently, which will defeat the
purpose and cripple the sites that depend on it.

localStorage and sessionStorage
Browsers that implement the “Web Storage” draft specifica-
tion define two properties on the Window object: localStor
age and sessionStorage. Both properties refer to a Storage ob-
ject—a persistent associative array that maps string keys to
string values. Storage objects work much like regular Java-
Script objects: simply set a property of the object to a string,
and the browser will store that string for you. The difference
between localStorage and sessionStorage has to do with life-
time and scope: how long the data is saved for and who the data
is accessible to.

Storage lifetime and scope are explained in more detail below.
First, however, let’s look at some examples. The following
code uses localStorage, but it would also work with
sessionStorage:

// Query a stored value.
var name = localStorage.username;
// The array notation equivalent
name = localStorage["username"];
if (!name) { // If no name stored, get one and store it
 name = prompt("What is your name?");
 localStorage.username = name;

240 | Chapter 14: Client-Side Storage

}

// Iterate through all stored name/value pairs
for(var key in localStorage) {
 var value = localStorage[key];
}

Storage objects also define methods for storing, retrieving, iter-
ating, and deleting data. Those methods are covered in “Stor-
age API” on page 243.

The Web Storage draft specification says that we should be able
to store structured data (objects and arrays) as well as primitive
values and built-in types such as dates, regular expressions, and
even File objects. At the time of this writing, however, browsers
only allow the storage of strings. If you want to store and re-
trieve other kinds of data, you’ll have to encode and decode it
yourself. For example:

// Stored numbers are automatically converted to strings.
// You must parse it when retrieving it from storage.
localStorage.x = 10;
var x = parseInt(localStorage.x);

// Convert a Date to a string when setting it.
localStorage.lastRead = (new Date()).toUTCString();
// And parse it when getting.
var last = new Date(Date.parse(localStorage.lastRead));

// Use JSON to stringify and parse objects and arrays.
localStorage.data = JSON.stringify(data);
var data = JSON.parse(localStorage.data);

Storage Lifetime and Scope
The difference between localStorage and sessionStorage in-
volves the lifetime and scope of the storage. Data stored
through localStorage is permanent: it does not expire and re-
mains stored on the user’s computer until a web app deletes it
or the user asks the browser (through some browser-specific
UI) to delete it.

localStorage is scoped to the document origin. As explained
in “The Same-Origin Policy” on page 176, the origin of a

localStorage and sessionStorage | 241

document is defined by its protocol, hostname, and port, so
each of the following URLs has a different origin:

http://www.example.com
https://www.example.com // Different protocol
http://static.example.com // Different hostname
http://www.example.com:8000 // Different port

All documents with the same origin share the same localStor
age data (regardless of the origin of the scripts that actually
access localStorage). They can read each other’s data. And
they can overwrite each other’s data. But documents with dif-
ferent origins can never read or overwrite each other’s data
(even if they’re both running a script from the same third-party
server).

Note that localStorage is also scoped by browser vendor. If
you visit a site using Firefox, and then visit again using Chrome
(for example), any data stored during the first visit will not be
accessible during the second visit.

Data stored through sessionStorage has a different lifetime
than data stored through localStorage: it has the same lifetime
as the top-level window or browser tab in which the script that
stored it is running. When the window or tab is permanently
closed, any data stored through sessionStorage is deleted.
(Note, however, that modern browsers have the ability to re-
open recently closed tabs and restore the last browsing session,
so the lifetime of these tabs and their associated sessionStor
age may be longer than it seems.)

Like localStorage, sessionStorage is scoped to the document
origin so that documents with different origins will never share
sessionStorage. But sessionStorage is also scoped on a per-
window basis. If a user has two browser tabs displaying docu-
ments from the same origin, those two tabs have separate ses
sionStorage data: the scripts running in one tab cannot read or
overwrite the data written by scripts in the other tab, even if
both tabs are visiting exactly the same page and are running
exactly the same scripts.

242 | Chapter 14: Client-Side Storage

Note that this window-based scoping of sessionStorage is only
for top-level windows. If one browser tab contains two
<iframe> elements, and those frames hold two documents with
the same origin, those two framed documents will share
sessionStorage.

Storage API
localStorage and sessionStorage are often used as if they were
regular JavaScript objects: set a property to store a string and
query the property to retrieve it. But these objects also define
a more formal method-based API. To store a value, pass the
name and value to setItem(). To retrieve a value, pass the name
to getItem(). To delete a value, pass the name to
removeItem(). (In most browsers you can also use the delete
operator to remove a value, just as you would for an ordinary
object, but this technique does not work in IE8.) To delete all
stored values, call clear() (with no arguments). Finally, to
enumerate the names of all stored values, use the length prop-
erty and pass numbers from 0 to length–1 to the key() method.
Here are some examples using localStorage. The same code
would work using sessionStorage instead:

localStorage.setItem("x", 1); // Store an item "x"
localStorage.getItem("x"); // Retrieve its value

// Enumerate all stored name/value pairs
// Length gives the # of pairs
for(var i = 0; i < localStorage.length; i++) {
 // Get the name of pair i
 var name = localStorage.key(i);
 // Get the value of that pair
 var value = localStorage.getItem(name);
}

localStorage.removeItem("x"); // Delete the item "x"
localStorage.clear(); // Delete any other items, too

localStorage and sessionStorage | 243

Storage Events
Whenever the data stored in localStorage or sessionStorage
changes, the browser triggers a storage event on any other
Window objects to which that data is visible (but not on the
window that made the change). If a browser has two tabs open
to pages with the same origin, and one of those pages stores a
value in localStorage, the other tab will receive a storage event.
Remember that sessionStorage is scoped to the top-level win-
dow, so storage events are only triggered for sessionStorage
changes when there are frames involved. Also note that storage
events are only triggered when storage actually changes. Set-
ting an existing stored item to its current value does not trigger
an event, nor does removing an item that does not exist in
storage.

Register a handler for storage events with addEventListener()
(or attachEvent() in IE). In most browsers, you can also set the
onstorage property of the Window object, but at the time of
this writing, Firefox does not support that property.

The event object associated with a storage event has five
important properties (they are not supported by IE8,
unfortunately):

key
The name or key of the item that was set or removed. If
the clear() method was called, this property will be null.

newValue
Holds the new value of the item, or null if removeItem()
was called.

oldValue
Holds the old value of an existing item that changed or
was deleted, or null if a new item was inserted.

storageArea
This property will equal either the localStorage or the
sessionStorage property of the target Window object.

244 | Chapter 14: Client-Side Storage

url
The URL (as a string) of the document whose script made
this storage change.

Finally, note that localStorage and the storage event can serve
as a broadcast mechanism by which a browser sends a message
to all windows that are currently visiting the same website. If
a user requests that a website stop performing animations, for
example, the site might store that preference in localStorage
so that it can honor it in future visits. And by storing the pref-
erence, it generates an event that allows other windows dis-
playing the same site to honor the request as well. As another
example, imagine a web-based image editing application that
allows the user to display tool palettes in separate windows.
When the user selects a tool, the application uses localStor
age to save the current state and to generate a notification to
other windows that a new tool has been selected.

Cookies
A cookie is a small amount of named data stored by the web
browser and associated with a particular web page or website.
Cookies were originally designed for server-side programming,
and at the lowest level, they are implemented as an extension
to the HTTP protocol. Cookie data is automatically transmit-
ted between the web browser and web server, so server-side
scripts can read and write cookie values that are stored on the
client. This section demonstrates how client-side scripts can
also manipulate cookies using the cookie property of the Docu-
ment object.

The API for manipulating cookies is an old one, which means
that it is universally supported. Unfortunately, the API is also
cryptic. There are no methods involved: cookies are queried,
set, and deleted by reading and writing the cookie property of
the Document object using specially formatted strings. The
lifetime and scope of each cookie can be individually specified

Cookies | 245

with cookie attributes. These attributes are also specified with
specially formatted strings set on the same cookie property.

The subsections that follow explain the cookie attributes that
specify lifetime and scope, and then demonstrate how to set
and query cookie values in JavaScript.

Cookie Attributes: Lifetime and Scope
In addition to a name and a value, each cookie has optional
attributes that control its lifetime and scope. Cookies are tran-
sient by default; the values they store last for the duration of
the web browser session but are lost when the user exits the
browser. Note that this is a subtly different lifetime than ses
sionStorage: cookies are not scoped to a single window, and
their default lifetime is the same as the entire browser process,
not the lifetime of any one window. If you want a cookie to last
beyond a single browsing session, you must tell the browser
how long (in seconds) you would like it to retain the cookie by
specifying a max-age attribute. If you specify a lifetime, the
browser will store cookies in a file and delete them only once
they expire.

Cookie visibility is scoped by document origin as localStor
age and sessionStorage are, and also by document path. This
scope is configurable through cookie attributes path and do-
main. By default, a cookie is associated with, and accessible to,
the web page that created it and any other web pages in the
same directory or any subdirectories of that directory. If the
web page http://www.example.com/catalog/index.html creates
a cookie, for example, that cookie is also visible to http://www
.example.com/catalog/order.html and http://www.example
.com/catalog/widgets/index.html, but it is not visible to http://
www.example.com/about.html.

This default visibility behavior is often exactly what you want.
Sometimes, though, you’ll want to use cookie values through-
out a website, regardless of which page creates the cookie. For
instance, if the user enters his mailing address in a form on one
page, you may want to save that address to use as the default

246 | Chapter 14: Client-Side Storage

http://www.example.com/catalog/index.html
http://www.example.com/catalog/order.html
http://www.example.com/catalog/order.html
http://www.example.com/catalog/widgets/index.html
http://www.example.com/catalog/widgets/index.html
http://www.example.com/about.html
http://www.example.com/about.html

the next time he returns to the page and also as the default in
an entirely unrelated form on another page where he is asked
to enter a billing address. To allow this usage, you specify a
path for the cookie. Then, any web page from the same web
server whose URL begins with the path prefix you specified can
share the cookie. For example, if a cookie set by http://www
.example.com/catalog/widgets/index.html has its path set to
“/catalog,” that cookie is also visible to http://www.example
.com/catalog/order.html. Or, if the path is set to “/,” the cookie
is visible to any page on the http://www.example.com web
server.

Setting the path of a cookie to “/” gives scoping like that of
localStorage and also specifies that the browser must transmit
the cookie name and value to the server whenever it requests
any web page on the site.

By default, cookies are scoped by document origin. Large web-
sites may want cookies to be shared across subdomains, how-
ever. For example, the server at order.example.com may need
to read cookie values set from catalog.example.com. This is
where the domain attribute comes in. If a cookie created by a
page on catalog.example.com sets its path attribute to “/” and
its domain attribute to “.example.com,” that cookie is available
to all web pages on catalog.example.com, orders.exam-
ple.com, and any other server in the example.com domain. If
the domain attribute is not set for a cookie, the default is the
hostname of the web server that serves the page. Note that you
cannot set the domain of a cookie to a domain other than the
domain of your server.

The final cookie attribute is a boolean attribute named secure
that specifies how cookie values are transmitted over the net-
work. By default, cookies are insecure, which means that they
are transmitted over a normal, insecure HTTP connection. If a
cookie is marked secure, however, it is transmitted only when
the browser and server are connected via HTTPS or another
secure protocol.

Cookies | 247

http://www.example.com/catalog/widgets/index.html
http://www.example.com/catalog/widgets/index.html
http://www.example.com/catalog/order.html
http://www.example.com/catalog/order.html
http://www.example.com

Setting Cookies
To associate a transient cookie value with the current docu-
ment, simply set the cookie property to a string of the form:

name=value

For example:

var v = encodeURIComponent(document.lastModified);
document.cookie = "version=" + v;

The next time you read the cookie property, the name/value
pair you stored is included in the list of cookies for the docu-
ment. Cookie values cannot include semicolons, commas, or
whitespace. For this reason, you may want to use the core
JavaScript global function encodeURIComponent() to encode the
value before storing it in the cookie.

A cookie written with a simple name/value pair lasts for the
current web-browsing session but is lost when the user exits
the browser. To create a cookie that can last across browser
sessions, specify its lifetime (in seconds) with a max-age at-
tribute. You can do this by setting the cookie property to a
string of the form:

name=value; max-age=seconds

The following function sets a cookie with an optional max-
age attribute:

// Store the name/value pair as a cookie, encoding
// the value with encodeURIComponent() in order to
// escape semicolons, commas, and spaces.
// If daysToLive is a number, set the max-age attribute
// so that the cookie expires after the specified
// number of days. Pass 0 to delete a cookie.
function setCookie(name, value, daysToLive) {
 var cookie = name + "=" + encodeURIComponent(value);
 if (typeof daysToLive === "number")
 cookie += "; max-age=" + (daysToLive*60*60*24);
 document.cookie = cookie;
}

248 | Chapter 14: Client-Side Storage

Similarly, you can set the path, domain, and secure attributes of
a cookie by appending strings of the following format to the
cookie value before that value is written to the cookie property:

; path=path
; domain=domain
; secure

To change the value of a cookie, set its value again using the
same name, path, and domain along with the new value. You
can change the lifetime of a cookie when you change its value
by specifying a new max-age attribute.

To delete a cookie, set it again using the same name, path, and
domain, specifying an arbitrary (or empty) value, and a max-
age attribute of 0.

Reading Cookies
When you use the cookie property in a JavaScript expression,
the value it returns is a string that contains all the cookies that
apply to the current document. The string is a list of name =
value pairs separated from each other by a semicolon and a
space. The cookie value does not include any of the attributes
that may have been set for the cookie. In order to make use of
the document.cookie property, you must typically call the
split() method to break it into individual name-value pairs.

Once you have extracted the value of a cookie from the
cookie property, you must interpret that value based on what-
ever format or encoding was used by the cookie’s creator. You
might, for example, pass the cookie value to decodeURICompo
nent() and then to JSON.parse().

Example 14-1 defines a getCookie() function that parses the
document.cookie property and returns an object whose prop-
erties specify the name and values of the document’s cookies.

Example 14-1. Parsing the document.cookies property

// Return the document's cookies as an object of
// name/value pairs. Assume that cookie values
// are encoded with encodeURIComponent().

Cookies | 249

function getCookies() {
 var cookies = {}; // The object we return
 var all = document.cookie; // All cookies
 if (all === "") // If empty
 return cookies; // return an empty object
 // Split string into name=value pairs
 var list = all.split("; ");
 // Loop through the name=value pairs
 for(var i = 0; i < list.length; i++) {
 var cookie = list[i];
 // Split each pair at the = sign
 var p = cookie.indexOf("=");
 var name = cookie.substring(0,p);
 var value = cookie.substring(p+1);
 // Store the name and decoded value
 cookies[name] = decodeURIComponent(value);
 }
 return cookies;
}

Cookie Limitations
Cookies are intended for storage of small amounts of data by
server-side scripts, and that data is transferred to the server
each time a relevant URL is requested. The standard that de-
fines cookies encourages browser manufacturers to allow un-
limited numbers of cookies of unrestricted size but does not
require browsers to retain more than 300 cookies total, 20
cookies per web server, or 4 KB of data per cookie (both name
and value count toward this 4 KB limit). In practice, browsers
allow many more than 300 cookies total, but the 4 KB size limit
may still be enforced by some.

250 | Chapter 14: Client-Side Storage

Index

Symbols
! invert boolean value, 29, 41
! unary negation operator, 18
!= loose inequality/not equal

operator, 13, 29, 38
!== strict inequality operator, 29,

37, 82
" " (string), 9
#top identifier, 168
$ identifier, 2
$ match end, 157
% modulo operator, 7, 32
& bitwise AND operator, 29, 35
&& logical AND, 30, 39
&= operator, 43
' ' (string), 9
(?!) negative lookahead assertion,

157
(?:) grouping only, 155
(?=) positive lookahead assertion,

157
* multiplication operator, 7, 29,

32
* repetition character, 153
* wildcard argument, 185
*= operator, 43
+ addition operator, 7, 32

+ concatenate strings, 29
+ convert to number, 29
+ repetition character, 153
+ unary plus operator, 18, 33
++ increment operator, 29, 33,

51
++ pre-/post-increment, 29
+= operator, 42, 193
, discard 1st operand, return 2nd,

30, 46
- negate number, 29
- subtraction operator, 7, 33
- unary minus operator, 33
-- decrement operator, 29, 34, 51
-- pre-/post-decrement, 29
. dot operator, 14
. value of property, 79
/ division operator, 7, 32
/* */ multi-line comment, 1
// single-line comment, 1
/[]/ regular expressions, 152
; empty statement, 52
; semicolon, 3
< less than operator, 29, 38
<= less than or equal operator, 29,

38

We’d like to hear your suggestions for improving our indexes. Send email to
index@oreilly.com.

251

= assign to a variable/property,
30, 42

== equality operator, 14, 17
== loose equality operator, 29,

37
=== strict equality operator, 14,

29, 37
> greater than operator, 29, 38
>= greater than or equal operator,

29, 38
>> shift right with sign extension,

29, 36
>>> shift right with zero

extension, 29, 36
? repetition character, 153
?: conditional operator, 30, 45
[] operator, 14, 26, 94–97
[] value of property, 79
\ match digits, 154
\B not word boundary, 157
\b word boundary, 157
\d ASCII digit, 152
\D non-ASCII digit, 152
\S non-Unicode whitespace, 152
\s Unicode whitespace, 152
\w ASCII word character, 152
\W non-ASCII word character,

152
^ bitwise XOR operator, 29, 35
^ match start, 157
^ negated character class, 151
_ identifier, 2
{} curly braces, 25, 52, 68, 76,

112
| alternation, 155
| bitwise OR operator, 30, 35
| separator, 154
|| logical OR, 30, 41, 122
~ bitwise NOT operator, 35
~ invert bits, 29
∀ “for all” quantifier, 104
∃ “there exists” quantifier, 104

A
<a> element, 185, 190, 206

abs property, Math object, 7
accessor properties, 85
add() method, 200
addEventListener() method, 217,

219, 221, 230, 232, 244
alert() method, 69, 166, 171
altKey property, mouse events,

209, 211
ancestors of a node, 180
anchors, 156
apostrophe character, 10
appendChild() method, 195
Apple iPhone/iPad, 214
apply() method, 115, 120, 129
appName property, Navigator

object, 170
appVersion property, Navigator

object, 170
argument event handlers, 219
arguments, 111
Arguments object, 122
arithmetic operators, 32–36
arity, 31
arrays, 93

Array() function, 15, 77, 94
“array literal” initializers, 24
array-like objects, 107, 123
Array.concat() method, 100
Array.isArray() function, 107
Array.join() method, 98
Array.reverse() method, 98
Array.slice() method, 100
Array.sort() method, 99
Array.splice() method, 100
creating, 94
iterating, 96
length property, 96
literals, 94
methods, 98–101
multidimensional, 97
types, 107

assignment expressions, 42
asynchronous I/O events, 213
attachEvent() method, 244
attributes, 190
<audio> element, 211

252 | Index

augmenting classes, 146
availHeight property, Window

object, 171
availWidth property, Window

object, 171

B
back() method, 168
backslash (\) escape character, 9,

152
backspace character, 10
base 10, 6
beforeunload events, 208
bidirectional socket-type

connections, 237
binary operators, 31
bind() method, 130
block scope, 21
blur events, 208
<body> element, 185, 216
Boolean values, 12
Boolean() function, 17
booleans, 5
borderLeftWidth property, 198
branches, 55
break keyword, 3, 59
break statement, 50, 65
browser and screen information,

169
browser location and navigation,

167
browsing context, 172
browsing history, 168
<button> element, 172, 217

C
call() method, 91, 115, 120, 129,

145
caret (^) bitwise XOR operator,

29, 35
caret (^) negated character class,

151
carriage return character, 10, 150
Cascading Style Sheets, 197–201
case statement, 50

case-insensitive match (i), 158
case-sensitivity, 1
catch clause, 68
catch keyword, 69
ceil property, Math object, 7
change events, 208
changedTouches property, event

object, 214
character classes, 151
charAt() method, 12, 108
charCode property, keypress

event object, 211
checkscope() function, 126
child of a node, 180
childElementCount property,

190
childNodes property, Node

object, 189
children property, Element

objects, 190
class attribute, 186, 199
class fields, 141
class hierarchy, 181
class members, 141
class methods, 141
classes, 133

augmentation, 146
character, 152
and constructors, 136
extending, 144
immutable, 143
and prototypes, 134

classList property, 200
className property, 186, 191,

200
classof() function, 91
clear() method, 243
clearTimeout() method, 166
client-side JavaScript

browser and screen
information, 169

browser location and
navigation, 167

browsing history, 168
dialog boxes, 171
document elements, 172

Index | 253

embedding in HTML, 163
event-driven programming,

165
multiple windows and frames,

172–177
timers, 166
Window object, 165

client-side storage
API, 243
cookies, 245–250
events, 244
lifetime and scope, 241
storage, security, and privacy,

239
clientX property, mouse events,

209
clientY property, mouse events,

209
cloneNode() method, 195
close() method, 238
closures, 112, 125–129
color property, 197
comma operator (,), 30, 46, 112,

248
comments, 1
compound statements, 52
concat() method, 100
concatenation, 11
conditional statements, 49, 55–

59
configurable attribute, 87
confirm() method, 171
constfuncs() function, 128
constructors

built-in, 77
classes and, 136–138
Function(), 129, 131
property, 139

contains() method, 200
contentWindow property,

Window object, 174
context event handlers, 219
continue keyword, 3
continue statement, 50, 66
control character, 151
control structures, 49

cookie property, Document
object, 245

cookies, 240, 245–250
CORS (Cross-Origin Resource

Sharing), 233
count() function, 127
counter() function, 127
createElement() method, 195
Cross-Document Messaging API,

213
cross-origin URLs, 232
CSS (Cascading Style Sheets),

197–201
CSS classes, 182, 186
CSSStyleDeclaration object, 197
ctrlKey property, mouse events,

209, 211
curly braces {}

functions and, 27, 54, 112
object initializer, 25, 28
object literals and, 76
statement block, 52, 68

D
data property, event objects, 85,

213, 237
dataTransfer property, 212
Date() function, 15, 77
debugger statement, 50, 71
declaration of variables, 5, 19
declaration statements, 53
decodeURIComponent()

function, 249
default actions, 207
default statement while, 50
defineClass() function, 142, 145
defineProperties() method,

Object, 89
defineProperties() method,

Object., 143
defineProperty() method, Object,

89
defineSubclass() function, 145
“DELETE” method, 227
delete operator, 29, 32, 46, 51

254 | Index

descendants of a node, 180
detail property, mouse events,

209
dialog boxes, 171
digital clock, 163
dir attribute, 191
directives, 71
<div> element, 186
division by zero, 8
do/while loop, 50, 60
document elements, 172

selecting by CSS class, 186
selecting by CSS selectors,

187
selecting by ID, 182
selecting by name, 183
selecting by type, 184

document global variable, 182
document nodes, 195–197
Document Object Model (DOM),

179–182, 221
document property, Window

object, 166
document structure and traversal,

188
documentElement property,

Document class, 185
dollar sign ($) identifier, 2
DOM (Document Object Model),

179–182, 221
domain attribute, 246
DOMContentLoaded events,

208
dot operator (.), 14, 26, 79, 152
double quote character, 10, 155
drag-and-drop events, 212
dynamic arrays, 93

E
E property, Math object, 8
ECMAScript 3, 2, 116, 120, 130
ECMAScript 5, 2

array methods, 103–107
backslash in, 11
bind() method, 130

for/in loops, 63
function invocation, 116
getter and setter methods, 85
null and defined values, 120
Object.getOwnPropertyNam

es(), 84
Object.keys(), 84
querying and setting property

attributes, 87
strings as arrays, 94, 108
“use strict” directive, 71
variable assign to undeclared

variable, 20
element content, 192–194
element style, 197–201
elements, 93
else if statement, 56
embedding JavaScript in HTML,

163
empty statements, 50, 52
empty string, 9
encodeURIComponent()

function, 248
enumerable attribute, 82, 87
escape character (\), 9, 152
escape sequences, 10
eval() function, 15, 43, 72
evaluation expressions, 23, 43
event

bubbling, 221
cancellation, 222
capturing, 207, 217, 222
listener, 206
name, 205
object, 206
propagation, 206, 218, 221
target, 205
type, 205

event handlers, 205
argument, 219
browser, 216
context, 219
form, 207
HTML5, 211–213
key, 210
mouse, 209

Index | 255

onmessage, 237
registering, 215–218
return value, 220
scope, 219
setting attributes, 216
setting properties, 215
touchscreen and mobile, 214
window, 208

event-driven programming, 165
EventSource() constructor, 236
every() method, 104
exceptions, 67
exec() method, 161
execScript() function, 44
exp property, Math object, 8
explicit type conversion, 17
exponential notation, 7
expression statements, 51
expressions

assignment, 42
defined, 23
evaluation, 43
function definition, 26
initializers, 24
invocation, 27
logical, 39–42
method, 27
object creation, 28
primary, 24
property access, 26
relational, 36–39

F
“404 Not Found” response, 229,

231
factorial() method, 69
“factory” function, 134
falsy values, 13
filter() method, 104
finally blocks, 68
firstChild property, Node object,

189
firstElementChild property, 190
flags, 157
float property, 198

floating-point values, 6
floor property, Math object, 7
focus events, 208
font-size property, 197
font-weight property, 197
for all quantifier ∀, 104
for keyword, 62
for loop, 20, 50, 96
for statement, 50, 61
for/in loop, 20, 50, 62, 83
forEach() method, 97, 103, 145
<form> element, 184, 191, 220,

221, 232
form event handlers, 207
form feed character, 10, 150
form validation mechanism, 212
forms property, HTMLCollection

objects, 185
forward() method, 168
<frame> element, 173
frameElement property, Window

object, 174
frames, 172–177
frames property, Window object,

172–177
<frameset> element, 173
freeze() function, 92
function calls, 52
function definition expressions,

26
function invocation, 4
function keyword, 54, 86, 125,

131, 175, 216
function statement, 50
Function() constructor, 129, 131
functions, 111

arguments and parameters,
121

declaring, 54
defining, 112
invoking, 115–121
as namespaces, 124
nested, 114
scope, 6, 21

256 | Index

G
g (global match), 158
generic methods, 93
geolocation property, Navigator

object, 171
geometry and scrolling, 201–204
get attribute, 87
“GET” method, 227
getAllResponseHeaders()

method, 229
getAttribute() method, 192, 199
getBoundingClientRect()

method, 202
getCookie() function, 249
getElementById() method, 174,

182
getElements() function, 183
getElementsByClassName()

method, 186
getElementsByName() method,

183, 186
getElementsByTagName()

method, 184, 186
getItem() method, 243
getJSONP() function, 234
getOwnPropertyDescriptor()

function, 88
getOwnPropertyNames()

function, 84
getPrototypeOf() method, 90
getResponseHeader() method,

229
getters, 85
getText() function, 230
global match (g), 158
global object, 14
global property, RegExp object,

160
global scope, 21, 126
global variables, 6, 182
go() method, 168
grabAttention() function, 200
greedy repetition, 153

H
handleResponse() function, 234
hasAttribute() method, 192
hash property, Location object,

167
hasOwnProperty() method, 81
<head> element, 185
“HEAD” method, 227
height property, Window object,

171
hexadecimal, 6
history management mechanism,

212
history property, Window object,

168
hoisting, 21
horizontal tab character, 10
host property, Location object,

167
hostname property, Location

object, 167
href property, Location object,

167, 185, 190
HTML

case-insensitive, 184
DOM overview, 179–182
element content as, 193
HTML5 event handlers, 211–

213
HTMLDocument type, 181
HTMLElement, 172, 181,

190
htmlFor property, 191

HTTP
cross-origin requests, 232
http: protocol, 176
JSONP, 233–236
progress events, 231
retrieving response, 229
scripted requests, 177
USER-AGENT header, 170

hypotenuse() function, 115

I
i (case-insensitive match), 158

Index | 257

id attribute, 172, 175, 182, 190
identifiers, 1, 2
IEEE 754 standard, 6
if statement, 49, 55, 56
if/else statement, 50
<iframe> element, 169, 174, 183,

201, 232, 243
ignoreCase property, RegExp

object, 160
images property,

HTMLCollection objects,
185

 element, 183, 191
immutable classes, 143
in operator, 29, 38, 82
includes() method, 145
increment expression, 61
index, 93
index property, RegExp object,

161
indexOf() method, 106
Infinity global property, 15
infinity value, 8
inherit() function, 79, 80, 134,

145
initialize expression, 61
initializers, 24
inline HTML style, 199
innerHeight property, Window

object, 202
innerHTML property, Window

object, 193
innerWidth property, 202
<input> element, 191
input property, RegExp object,

161
insertAdjacentHTML() method,

193
insertBefore() method, 195
instance fields, 141
instance methods, 141
instance object, 142
instanceof operator, 29
instances, 133, 140
integer values, 6
interacting Windows, 175

Internet Explorer 8, Microsoft,
244

invocation
constructor, 118
context, 111
event handler, 218–223
expressions, 27
of functions, 115
indirect, 120
of methods, 115

isArray() function, 107
isExtensible() function, 91
isFinite() function, 8
isFrozen() function, 92
isNaN() function, 8, 15
isPrototypeOf() method, 90
isSealed() function, 92

J
Java-style classes, 141
join() method, 98
JSON.parse() function, 84, 230,

233, 249
JSON.stringify() function, 84
jump statements, 64–69

K
key event handlers, 210
key property, event object, 244
key() method, 243
keyboard shortcuts, 165, 210
keyCode property, 210
keydown event type, 205
keys() function, 84

L
<label> element, 191
label statement, 50
labeled statements, 64
lang attribute, 191
lastChild property, Node object,

189
lastElementChild property, 190

258 | Index

lastIndex property, RegExp
object, 161

lastIndexOf() method, 106
Latin-1 encoding, 10, 151
length of a string, 9
length property, 11, 93, 96, 107,

129
lengthComputable property,

Event object, 231
lexical scoping, 5, 125
lifetime, 240, 246
line breaks, 3
Link objects, 167
links property, HTMLCollection

objects, 185
literals

regular expression characters,
150

string, 9
values, 24

LN2 property, Math object, 8
LN10 property, Math object, 8
load events, 205, 208
loaded property, Event object,

231
local files and XMLHttpRequest,

226
local scope, 126
local variables, 21
localStorage property, Windows

object, 240–245
location property, Window

object, 165, 167
location.hash, 169
log property, Math object, 8
logical expressions, 39–42
looping statements, 59–63
lvalue, 31

M
m multiline mode, 158
malware, 240
map() method, 104
match position, 156
match() method, 159, 161

Math properties, 7
max property, Math object, 7
max() function, Math., 121, 123
max-age attribute, 246
message property, Error object,

67
metaKey property, mouse events,

209, 211
method expressions, 27
methods

invoking, 116
overriding, 144

min property, Math object, 7
modified scope chain, 220
monkey-patching, 121
mouse event handlers, 209
mousedown events, 209
mouseenter events, 210
mouseleave events, 210
mousemove events, 205, 209
mouseout events, 210
mouseup events, 209
mousewheel events, 210
multiline mode (m), 158
multiline property, RegExp

object, 160
multiple windows and frames,

172–177

N
name attribute, 175, 183
name property, Error object, 67
name property, Window object,

175
namespaces, functions as, 124
NaN (not-a-number) value, 8, 15
navigation, browser, 167
navigator property, Window

object, 169
negative infinity value, 8
nested browsing contexts, 172
networking

HTTP by <script>: JSONP,
233–236

server-sent events, 236

Index | 259

using XMLHttpRequest, 225–
233

web sockets, 237
new keyword, 28, 76, 118, 136
newline character, 10, 150
newValue property, event object,

244
nextElementSibling property,

190
nextSibling property, Node

object, 189
Node, vii, viii
nodes, 179

creating, inserting, and
deleting, 195–197

NodeList objects, 184, 188
nodeName property, Node

object, 189
nodeType property, Node

object, 189
nodeValue property, Node

object, 189, 194
nongreedy repetition, 153
not-a-number (NaN) value, 8
NUL character, 10, 150
null keyword, 13
numbers, 6–9
numeric literals, 6

O
object attributes

class attribute, 91
extensible attribute, 91
prototype attribute, 90

object creation expressions, 28
object datatype, 75
“object literal” initializers, 24
object literals, 76
object types, 5, 39
Object() function, 15, 17, 77

Object.create() method, 76,
78, 89, 134, 145

Object.defineProperties()
method, 89

Object.defineProperty, 88

Object.defineProperty()
method, 89

Object.getOwnPropertyNam
es, 84

Object.keys, 84
Object.prototype, 77, 80, 83
Object.reload() method, 167

offline web applications, 212
oldValue property, event object,

244
onbeforeunload handler,

Window, 221
onchange property, event object,

215
onclick attribute, event object,

191
onclick property, event object,

215, 218
onhashchange event handler,

169
onLine property, Navigator

object, 170
onload event handler, 165
onload property, event object,

215, 232
onmouseover property, event

object, 215
onpopstate event handler, 169
onprogress property, 232
onreadystatechange property,

XMLHttpRequest object,
230

onstorage property, Window
object, 244

open() method, 227
operands, 23
operators, 23, 28–32, 44

arithmetic, 32–36
relational, 36–39

optional parameters, 122
optional semicolons, 3
“OPTIONS” method, 227
orientation property, Window

object, 215
orientationchange event, 214
origin of a document, 176

260 | Index

origin policy, 213
overflow, 8
overflow property set, 209
overriding methods, 144

P
<p> element, 185, 192
padding, 203
pageXOffset property, Window

object, 202
pageYOffset property, Window

object, 202
parameters, 111, 122
parent of a node, 180
parent property, Window object,

173
parentheses, 112, 154
parentNode property, Node

object, 189
parseFloat() function, 19
parseInt() function, 15, 19
path attribute, 246
pathname property, Location

object, 167
pattern-matching

RegExp properties and
methods, 160

string methods for, 158
PI property, Math object, 8
pinch close gesture, 214
pinch open gesture, 214
plain text, element content as,

193
platform property, Navigator

object, 170
pop() method, 101
port property, Location object,

167
“POST” method, 227, 228
pow property, Math object, 7
preventDefault() method, 221
preventExtensions() function, 91
previousElementSibling property,

190

previousSibling property, Node
object, 189

primary expressions, 24
primitive types, 5
privacy, 239
procedures, 111
prompt() method, 69, 171
properties, 75

access, 26, 85
attributes, 87
constructor, 139
data, 85
deleting, 29, 81
descriptors, 87
document elements as, 172
enumerating, 50, 83
existence (in operator), 38
extensibility and, 91
function, 129–132
inheritance, 80
propertyIsEnumerable()

method, 81
prototype, 130, 138
querying and setting, 79
shortcut, 185
testing, 81

protocol property, Location
object, 167

prototype attribute, 90
prototype property, 77, 119, 130,

136, 138
prototypes, 77

chains, 78
and classes, 134
object, 130, 142

push() method, 101
pushState() method, 169
“PUT” method, 227

Q
querySelectorAll() method, 188

R
random property, Math object, 7
range class, 136

Index | 261

Range() constructor, 136–140
range() function, 136
reading cookies, 249
readyState property,

XMLHttpRequest object,
229, 231

readystatechange events, 208,
229

real values, 7
reduce() method, 105
reduceRight() method, 105
RegExp() function, 15, 77, 149,

159
registering event handlers, 215–

218
regular expressions, 149

alternation, grouping, and
references, 154

character classes, 152
describing patterns with, 149
flags, 157
pattern-matching with, 158–

162
repetition in, 152
specifying match position,

156
relatedTarget property, event

object, 210
relationships between frames,

173
reload() method, 167
remove() method, 200
removeAttribute() method, 192
removeChild() method, 196
removeEventListener() method,

218
removeItem() method, 243
repetition, 152
replace() method, 12, 158, 160
replaceChild() method, 196
reserved words, 2, 191
reset events, 208
reset() function, 127
response body, 229
response headers, 229

responseText property,
XMLHttpRequest object,
229, 232

return keyword, 3, 119
return statement, 27, 50, 66
returning a value, 23, 111, 220
reverse() method, 98
rotation property, event object,

214
round property, Math object, 7
rounding, 9

S
Safari, 214
same-origin policy, 176
scale property, event object, 214
scope, 240, 246
scope of a variable, 21
scope of event handlers, 219
screen information, 169
screen property, Window object,

169, 171
<script> element, 163, 177, 225,

232
scroll offsets, 202
scrollBy() method, 203
scrolling, 201–204
scrollIntoView() method, 204
scrollTo() method, 203
seal() function, 91
search property, Location object,

167
search() method, 158
secure attribute, 247
security, 239
security and scripts, 236
selecting elements by CSS class,

186
selecting elements by CSS

selectors, 187
selecting elements by ID, 182
selecting elements by name, 183
selecting elements by type, 184
selectors, CSS, 187
semicolon (;), 3, 248

262 | Index

send() method, 228, 231, 238
serialization, 84
Server-Sent Events, 213
sessionStorage property,

Windows object, 240–
245

set attribute, 87
setAttribute() method, 192, 199
setInterval() method, 166
setItem() method, 243
setRequestHeader() method, 228
setters, 85
setTimeout() method, 166
shift left (<<), 29, 35
shift() method, 102
shiftKey property, mouse events,

209, 211
shortcut properties, 185
sibling of a node, 180
side effects, 31
sin property, Math object, 8
single quote character, 10, 155
slice() method, 100
some() method, 104
sort() method, 99
source policy, 213
source property, RegExp object,

160
 element, 184
specifying match position, 156
splice() method, 100
split() method, 98, 160, 249
spyware, 240
sqrt property, Math object, 8
square bracket operator [], 79
square() function, 115
src property, HTMLElement,

177, 191
statement blocks, 52
statements, 49, 70–73

; (semicolon) separator, 3
compound and empty, 52
conditional, 55–59
declaration, 53
expression, 51
jump, 64–69

looping, 59–63
syntax, 50
termination rules, 4

status property,
XMLHttpRequest object,
229

statusText property,
XMLHttpRequest object,
229

stopImmediatePropagation()
method, 223

stopPropagation() method, 223
storageArea property, event

object, 244
strict code, 71
strict mode, 2, 20, 71, 120
string literals, 9
String() function, 15, 17
strings, 5, 9–12

immutability of, 12
and pattern-matching, 158

style property, Element object,
197

subclasses, 144
submit events, 208
subroutines, 111
superclasses, 144
switch statement, 49, 51, 57

T
“200 OK” response, 229, 231
tab character, 150
target property, event object, 206,

212
ternary operator (?:), 31
test expression, 61
test() method, 161
text nodes, element content as,

194
text string literals, 9–12
textContent property, Node

object, 194
textContent() function, 194
there exists quantifier ∃, 104

Index | 263

this keyword, 15, 28, 103, 116,
129, 219

throw statement, 50, 51, 67
timers, 166
timestamp property, Event object,

231
title attribute, 190
toggle() method, 200
top property, Window object,

173
toString() method, 18, 91, 102,

131, 145, 167
total property, Event object, 231
touchscreen and mobile event

handlers, 214
toUpperCase() method, 12, 118
trace() function, 121
tree structure, 180
trim() method, String, 147
truthy values, 13
try statement, 51
try/catch/finally statement, 68
type hierarchy, 181
type property, event object, 206,

231, 237
typeof operator, 29, 31, 45
types, 5

automatic conversion, 5
conversions, 15–19

U
unary operators, 31, 33
undecremented value, 34
undefined keyword, 14
underflow, 8
underscore (_) identifier, 2
Unicode characters, 10, 151, 152
unincremented value, 34
uniqueInteger() function, 127
unload events, 208
unshift() method, 102
untyped arrays, 93
upload property,

XMLHttpRequest object,
232

URL decomposition properties,
167

url property, event object, 245
URLs, 227, 232, 242
use strict statement, 51, 71
USER-AGENT HTTP header,

170
userAgent property, Navigator

object, 170

V
value attribute, 87
values, 5
var keyword, 5, 19, 175
var statement, 51, 53
varargs functions, 123
variable arity functions, 123
variable-length argument lists,

122
variables, 5

declaration, 5, 19
global, 6
local, 21
untyped, 5

variadic functions, 123
vertical tab character, 10, 150
<video> element, 211
viewport, 201
void operator, 29, 46

W
WebSocket() constructor, 238
WebSockets, 213, 237
while loop, 52, 55
while statement, 50, 51, 60
whitespace, 248
width property, Window object,

171
window event handlers, 208
window identifier, 165
Window object, 165, 174
window property, Window

object, 15, 166
window.onhashchange, 169
window.onpopstate, 169

264 | Index

with statements, 51, 70, 220
writable attribute, 87

X
XHR2 draft specification, 231
XML, 181
XMLHttpRequest object, 177,

221, 227, 229

Z
zero, division by, 8
zero-based arrays, 93

Index | 265

About the Author
David Flanagan is a JavaScript programmer at Mozilla. His
books with O’Reilly include JavaScript: The Definitive Guide,
jQuery Pocket Reference, The Ruby Programming Language,
and Java in a Nutshell. David has a degree in computer science
and engineering from the Massachusetts Institute of Technol-
ogy. He lives with his wife and children in the U.S. Pacific
Northwest between the cities of Seattle, Washington, and
Vancouver, British Columbia. David has a blog at http://www
.davidflanagan.com/.

Colophon
The animal on the cover of JavaScript Pocket Reference is a
Javan rhinoceros. All five species of rhinoceros are distin-
guished by their large size, thick armor-like skin, three-toed
feet, and single or double snout horn. The Javan rhinoceros,
along with the Sumatran rhinoceros, is a forest-dwelling spe-
cies. The Javan rhinoceros is similar in appearance to the In-
dian rhinoceros, but it is smaller and has certain distinguishing
characteristics (primarily skin texture).

The cover image is from the Dover Pictorial Archive. The cover
font is Adobe ITC Garamond. The text font is Linotype Birka;
the heading font is Adobe Myriad Condensed; and the code
font is LucasFont’s TheSansMonoCondensed.

http://shop.oreilly.com/product/9780596805531.do
http://shop.oreilly.com/product/0636920016182.do
http://shop.oreilly.com/product/9780596516178.do
http://shop.oreilly.com/product/9780596007737.do
http://www.davidflanagan.com/
http://www.davidflanagan.com/

	Table of Contents
	Preface
	Chapter 1. Lexical Structure
	Comments
	Identifiers and Reserved Words
	Optional Semicolons

	Chapter 2. Types, Values, and Variables
	Numbers
	Text
	String Literals

	Boolean Values
	null and undefined
	The Global Object
	Type Conversions
	Variable Declaration

	Chapter 3. Expressions and Operators
	Expressions
	Initializers
	Property Access
	Function Definition
	Invocation
	Object Creation

	Operators
	Arithmetic Operators
	Relational Operators
	Logical Expressions
	Assignment Expressions
	Evaluation Expressions
	Miscellaneous Operators
	The Conditional Operator (?:)
	The typeof Operator
	The delete Operator
	The void Operator
	The Comma Operator (,)

	Chapter 4. Statements
	Expression Statements
	Compound and Empty Statements
	Declaration Statements
	var
	function

	Conditionals
	if
	else if
	switch

	Loops
	while
	do/while
	for
	for/in

	Jumps
	Labeled Statements
	break
	continue
	return
	throw
	try/catch/finally

	Miscellaneous Statements
	with
	debugger
	“use strict”

	Chapter 5. Objects
	Creating Objects
	Object Literals
	Creating Objects with new
	Prototypes
	Object.create()

	Properties
	Querying and Setting Properties
	Property Inheritance
	Deleting Properties
	Testing Properties
	Enumerating Properties
	Serializing Properties and Objects
	Property Getters and Setters
	Property Attributes

	Object Attributes
	The prototype Attribute
	The class Attribute
	The extensible Attribute

	Chapter 6. Arrays
	Creating Arrays
	Array Elements and Length
	Iterating Arrays
	Multidimensional Arrays
	Array Methods
	join()
	reverse()
	sort()
	concat()
	slice()
	splice()
	push() and pop()
	unshift() and shift()
	toString()

	ECMAScript 5 Array Methods
	forEach()
	map()
	filter()
	every() and some()
	reduce(), reduceRight()
	indexOf() and lastIndexOf()

	Array Type
	Array-Like Objects
	Strings as Arrays

	Chapter 7. Functions
	Defining Functions
	Nested Functions

	Invoking Functions
	Function Invocation
	Method Invocation
	Constructor Invocation
	Indirect Invocation

	Function Arguments and Parameters
	Optional Parameters
	Variable-Length Argument Lists: The Arguments Object

	Functions as Namespaces
	Closures
	Function Properties, Methods, and Constructor
	The length Property
	The prototype Property
	The bind() Method
	The toString() Method
	The Function() Constructor

	Chapter 8. Classes
	Classes and Prototypes
	Classes and Constructors
	Constructors and Class Identity
	The constructor Property

	Java-Style Classes in JavaScript
	Immutable Classes
	Subclasses
	Augmenting Classes

	Chapter 9. Regular Expressions
	Describing Patterns with Regular Expressions
	Literal Characters
	Character Classes
	Repetition
	Nongreedy repetition

	Alternation, Grouping, and References
	Specifying Match Position
	Flags

	Matching Patterns with Regular Expressions
	String Methods for Pattern-Matching
	RegExp Properties and Methods

	Chapter 10. Client-Side JavaScript
	Embedding JavaScript in HTML
	Event-Driven Programming
	The Window Object
	Timers
	Browser Location and Navigation
	Browsing History
	Browser and Screen Information
	Dialog Boxes
	Document Elements as Window Properties
	Multiple Windows and Frames
	Relationships Between Frames
	JavaScript in Interacting Windows
	The Same-Origin Policy

	Chapter 11. Scripting Documents
	Overview of the DOM
	Selecting Document Elements
	Selecting Elements by ID
	Selecting Elements by Name
	Selecting Elements by Type
	Selecting Elements by CSS Class
	Selecting Elements with CSS Selectors

	Document Structure and Traversal
	Attributes
	Element Content
	Element Content as HTML
	Element Content as Plain Text
	Element Content as Text Nodes

	Creating, Inserting, and Deleting Nodes
	Element Style
	Geometry and Scrolling

	Chapter 12. Handling Events
	Types of Events
	Form Events
	Window Events
	Mouse Events
	Key Events
	HTML5 Events
	Touchscreen and Mobile Events

	Registering Event Handlers
	Setting Event Handler Properties
	Setting Event Handler Attributes
	addEventListener()

	Event Handler Invocation
	Event Handler Argument
	Event Handler Context
	Event Handler Scope
	Handler Return Value
	Event Propagation
	Event Cancellation

	Chapter 13. Networking
	Using XMLHttpRequest
	Specifying the Request
	Retrieving the Response
	HTTP Progress Events
	Cross-Origin HTTP Requests

	HTTP by <script>: JSONP
	Server-Sent Events
	WebSockets

	Chapter 14. Client-Side Storage
	localStorage and sessionStorage
	Storage Lifetime and Scope
	Storage API
	Storage Events

	Cookies
	Cookie Attributes: Lifetime and Scope
	Setting Cookies
	Reading Cookies
	Cookie Limitations

	Index

