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Gravitational N -Body Simulations

This book discusses in detail all the relevant numerical methods for the classical N -
body problem. It demonstrates how to develop clear and elegant algorithms for models
of gravitational systems and explains the fundamental methematical tools needed to
describe the dynamics of a large number of mutually attractive particles. Particular
attention is given to the techniques needed to model astrophysical phenomena such as
close encounters and the dynamics of black-hole binaries. The author reviews relevant
work in the field and covers applications to the problems of planetary formation and
star-cluster dynamics, both of Pleiades-type and globular clusters.
Self-contained and pedagogical, this book is suitable for graduate students and re-

searchers in theoretical physics, astronomy and cosmology.

s v erre aar s eth received his B.Sc. from the University of Oslo in 1959 and his
Ph.D. from the University of Cambridge in 1963. After a few years as research assistant
to Professor F. Hoyle, he joined the newly created Institute of Theoretical Astronomy
in 1967 (which then became the Institute of Astronomy in 1972). His entire career
has been spent at this Institute as a post-doctoral research fellow, giving him complete
freedom to devote himself exclusively to all aspects of the modern N -body problem. The
stimulating Cambridge environment has been ideal for establishing collaborations with
visiting astronomers. Dr Aarseth has developed a unique set of codes that include the
latest techniques, and are now publicly available. These codes are suitable for laptops
and workstations as well as for the most powerful special-purpose computers.
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J. A. de Azcárrage and J. M. Izquierdo Lie Groups, Lie Algebras, Cohomology and Some

Applications in Physics†

O. Babelon, D. Bernard and M. Talon Introduction to Classical integral Systems

V. Belinkski and E. Verdaguer Gravitational Solitons

J. Bernstein Kinetic Theory in the Early Universe

G. F. Bertsch and R. A. Broglia Oscillations in Finite Quantum Systems

N. D. Birrell and P. C. W. Davies Quantum Fields in Curved Space†

M. Burgess Classical Covariant Fields

S. Carlip Quantum Gravity in 2+1 Dimensions

J. C. Collins Renormalization†

M. Creutz Quarks, Gluons and Lattices†

P. D. D’Eath Supersymmetric Quantum Cosmology

F. de Felice and C. J. S Clarke Relativity on Curved Manifolds†

P. G. O. Freund Introduction to Supersymmetry†

J. Fuchs Affine Lie Algebras and Quantum Groups†

J. Fuchs and C. Schweigert Symmetries, Lie Algebras and Representations: A Graduate Course

for Physicists†

Y. Fujii and K. Maeda The Scalar–Tensor Theory of Gravitation

A. S. Galperin, E. A. Ivanov, V. I. Orievetsky and E. S. Sokatchev Harmonic Superspace

R. Gambini and J. Pullin Loops, Knots, Gauge Theories and Quantum Gravity†
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Preface

This book spans my entire life as a research worker at Cambridge. The
circumstances that created this opportunity were based entirely on luck
and this aspect played a vital part during subsequent developments. In the
following chapters, I have tried to give details of the most relevant meth-
ods used in so-called ‘direct integration’ of the classical N -body problem,
a method of attack somewhat analogous to scaling a mountain the hard
way. This has been enhanced by an extensive discussion of the main algo-
rithms implemented in the associated computer codes. A comprehensive
review of related work in the field over the last 40 years is also presented.
Throughout the term N -body simulations is used exclusively for methods
based on direct summation, in keeping with tradition.

Although a wide range of problems is covered, the emphasis is on the
dynamics of star clusters. This involves many aspects of stellar evolution.
It is fortuitous that the University of Cambridge has a long tradition in
this field that dates back to Eddington and Jeans. Fred Hoyle continued
this school, which eventually gave rise to the application of synthetic stel-
lar evolution. This subject was pioneered entirely at the Institute, mainly
by the sequential efforts of Peter Eggleton, Christopher Tout and Jarrod
Hurley, whose work has been vital for realistic star cluster simulations.

I would like to acknowledge the assistance of colleagues who read and
commented critically on various chapters – Raul de la Fuente Marcos,
Dougles Heggie, Jarrod Hurley, Pavel Kroupa, Derek Richardson, Rainer
Spurzem, Christopher Tout and Mark Wilkinson. Specific suggestions
for improvements of the contents were made by Doug Lin, Rosemary
Mardling and HongSheng Zhao. My thanks also go to Robert Izzard who
did most of the figures.

Among my many collaborators, I am especially indebted to Avishai
Dekel, Richard Gott, Douglas Heggie, Jarrod Hurley, Pavel Kroupa, Mike
Lecar, Doug Lin, Jun Makino, Rosemary Mardling, Steve McMillan,

xiii



xiv Preface

Seppo Mikkola, Rainer Spurzem, Christopher Tout and Khalil Zare. Like-
wise, the pioneers Michel Hénon, Sebastian von Hoerner and Roland
Wielen provided impetus and advice in the early days. More recently,
Piet Hut has acted as a catalyst for stimulating new developments.
Claude Froeschlé, Douglas Heggie, E.L. Stiefel, Victor Szebenely and

Khalil Zare educated and influenced me in the fundamental topic of reg-
ularization. Moreover, the contributions of Seppo Mikkola to our collab-
orations in this subject over the past 15 years have been invaluable.
Lastly, in the scientific field, I have benefited greatly from the techni-

cal assistance given to me by Jun Makino, Steve McMillan and Rainer
Spurzem. My sincere thanks are due to Jun Makino and Makoto Ito who
designed the special-purpose HARP-2 computer that occupied my office
from 1994, and likewise to Jun Makino who is the driving force behind
GRAPE-6, which has recently become the simulator’s dream machine.
I made an auspicious start at the newly created Institute of Theoretical

Astronomy, founded in 1967 by Sir Fred Hoyle. He was also my Ph.D.
supervisor and directly responsible for independently suggesting N-body
simulations as a research topic. For all this I am immensely grateful.
My subsequent career would not have been possible without strong

support from the Directors of the Institute of Astronomy since the name
change in 1972, Donald Lynden-Bell, Sir Martin Rees, Richard Ellis and
Douglas Gough. They allowed me complete freedom to pursue my sin-
gular interest in dynamics. I have also depended utterly on continuous
post-doctoral funding since 1963 by the Government Research Establish-
ments that have undergone several name changes but lately are known as
PPARC.
On the personal side, I would like to express my deepest thanks to

Patricia who supported my work and also endured my other obsessions
of chess and mountaineering. I am very grateful to my mother and father
for their help and encouragement during the difficult formative years in
Norway. Most of this book was written at the family mountain retreat near
beautiful Lake Reinunga, which provided tranquility and inspiration.
Because of my involvement since the beginning, I have taken the op-

portunity to review the whole subject of N -body simulations as defined
above. In view of the increasing activity this is a daunting task, particu-
larly when it comes to making critical comments. In such circumstances
my opinion is often expressed instead of merely quoting published work.
I apologize for significant omissions and take full responsibility for any
misrepresentations that are bound to occur. This book has been in prepa-
ration for a very long time. I would like to thank my editor, Tamsin van
Essen, and the staff at Cambridge University Press for their patience and
advice. Special thanks are due to my copy editor, Robert Whitelock, for
his critical appraisal.



Preface xv

In conclusion, our field has undergone a remarkable development, fu-
elled by an exponential growth of computing power as well as software
advances. Although the beginnings were modest and the developments
slow, it has now blossomed into a fully fledged scientific activity. For the
longer term, further progress is only possible if we attract the younger
generation to seek new challenges and enrich our subject. It is therefore
my hope that this book will prove timely and serve a practical purpose.
Finally, the dedication reflects my many sources of inspiration, whether it
be the awesome beauty of the Atacama Desert or more accessible wildlife
environments. May our planet’s fragile ecosystem and rich diversity be
preserved for future enjoyment.

Sverre Aarseth January 2003





1
The N-body problem

1.1 Introduction

The main purpose of this book is to provide algorithms for direct N -
body simulations, based on personal experience over many years. A brief
description of the early history is included for general interest. We concen-
trate on developments relating to collisional direct integration methods
but exclude three- and four-body scattering, which will be discussed in
a separate chapter. In the subsequent section, we introduce some basic
concepts which help to understand the behaviour of self-gravitating sys-
tems. The topics covered include two-body relaxation, violent relaxation,
equipartition of kinetic energy and escape. Although the emphasis is on
collisional dynamics, some of the theory applies in the large-N limit that
is now being approached with modern hardware and improved numerical
techniques. After these theoretical considerations, we turn to the prob-
lem at hand and introduce the general principles of direct integration as
a beginner’s exercise and also describe the first N -body method.

1.2 Historical developments

Numerical investigations of the classical N -body problem in the modern
spirit can be said to have started with the pioneering effort of von Hoerner
[1960]. Computational facilities at that time were quite primitive and it
needed an act of faith to undertake such an uncertain enterprise.∗ Looking

∗ The story of how it all began is told in von Hoerner [2001]. Also of historical interest
is the early study of gravitational interactions between two model galaxies based
on measuring the intensity of 37 light bulbs at frequent intervals [Holmberg, 1941].
Finally, a general three-body integration by Strömgren [1900, 1909] was carried out
by hand, albeit for only part of an orbit. More than 100 years ago he anticipated that
the method of ‘mechanical integration’ may be extended to deal with four or more
bodies and be of considerable importance for the theory of stellar systems.

1



2 1 The N -body problem

back at these early results through eyes of experience, one can see that the
characteristic features of binary formation and escape are already present
for particle numbers as small as N = 16, later increased to 25 [von Ho-
erner, 1963]. In the beginning, integration methods were to a large extent
experimental and therefore based on trial and error. This had the bene-
ficial effect of giving rise to a variety of methods, since every worker felt
obliged to try something new. However, by Darwinian evolution it soon
became clear that force polynomials and individual time-steps† were im-
portant ingredients, at least in the quest for larger N [Aarseth, 1963a,b].
The basic idea of a force fitting function through the past points is to

enable a high-order integration scheme, with the corresponding intervals
satisfying specified convergence criteria. Consistent solutions are then en-
sured by coordinate predictions before the force summation on each par-
ticle is carried out. At the same time, the lack of a suitable method for
dealing with persistent binaries inspired the introduction of a softened
interaction potential Φ = −Gm/(r2 + ε2)1/2, for the separation r with
ε the softening parameter, which reduces the effect of close encounters.
This potential gives rise to a simple expression for the force between two
particles. Hence a large value of the softening scale length ε describes the
dynamics of a so-called ‘collisionless system’, whereas smaller values may
be used to exclude the formation of significant binaries. Although the ap-
plication was to galaxy clusters, some general results on mass segregation
were obtained for N = 100 and a mass spectrum [Aarseth, 1963a,b].
Later the integration method was improved to third order [Aarseth,

1966a] and eventually became a fourth-order predictor–corrector scheme
[Aarseth, 1968], which survived for some considerable time and was widely
used. The subsequent study of star clusters by Wielen [1967] was actu-
ally based on a fifth-order polynomial with special error control [Wielen,
1974]. This work compared the extrapolated half-life of simulated star
clusters with observations and concluded that median life-times of about
2×108 yr could be accounted for. The nature of the numerical errors is of
prime concern in such work and will be considered in a later chapter. In
this context we mention that exponential error growth was demonstrated
by Miller [1964] in an important paper where the short time-scale was
emphasized. This fundamental feature was highlighted in a code compar-
ison study for a collapsing 25-body system [Lecar, 1968]. In fact, these
results led many people to question the validity of N -body simulations
and this took many years to dispel.
At that time, the lack of computational facilities dictated a strategy

of performing a few calculations at the largest possible value of N or

† The method of individual time-steps was originally suggested by A. Schlüter [private
communication, 1961].
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undertaking a systematic study of smaller systems. The latter choice was
made by van Albada [1968] and yielded considerable insight into funda-
mental processes involving binary formation and exchange, as well as the
energy of escaping particles. Thus it was demonstrated that a dominant
binary containing the heaviest components in systems with up to 24 mem-
bers sometimes acquires more than 100% of the total initial energy. Some
interesting properties of long-lived triples were also presented for the first
time, including evidence for the so-called ‘Kozai cycle’ of induced inner
eccentricity (to be discussed later). Small systems are notoriously difficult
to integrate but here a special fourth-order predictor–corrector method
proved highly accurate, at the expense of two force evaluations per step
in order to ensure convergence. The same time-step was used for all the
particles; however, this becomes expensive above N � 10 and the scheme
of individual time-steps was never implemented.
By concentrating on just one system and using a dedicated computer, it

proved possible to reach N = 250 [Aarseth, 1968]. Because of a favourable
mass spectrum with two dominant (i.e. factor of 5 in mass) bodies, the
final binary acquired some 150% of the initial total energy. The softening
was still a factor of 10 below the small final semi-major axis, thereby
justifying this device which does place a lower limit on binary separation.
The early trend towards greater realism led to the study of two new

effects. Since open star clusters move in nearly circular Galactic orbits,
the external tidal field can be added to the equations of motion using lin-
earized terms. The first such pure N -body implementation was presented
by Hayli [1967, 1969, 1970, 1972]. This work showed the characteristic be-
haviour of low-energy escaping stars passing near the Lagrange points L1
and L2. Again an original method was used called the ‘category scheme’
[cf. Hayli, 1967, 1969, 1974]. It was never fully developed but has some
similarities to the popular Hermite method (to be discussed later).
A second effect relating to open clusters is the perturbation by inter-

stellar clouds. The first attempt for N = 25 [Bouvier & Janin, 1970] expe-
rienced some technical problems in the boundary treatment, which goes
to show that even intuitive selection procedures can be misleading. More-
over, distant particles exaggerated the predicted disruption time based on
the change in total energy.‡ In this case the integration method was again
of fourth order with two force evaluations per step.
Among other integration schemes that have served a useful purpose we

mention explicit Taylor series based on higher force derivatives. In the
context of the N -body problem this idea was implemented by successive
differentiations of the Newtonian acceleration [Gonzalez & Lecar, 1968;
Lecar, Loeser & Cherniack, 1974]. Although quite accurate, a high-order

‡ This problem was studied more extensively by Terlevich [1983, 1987].



4 1 The N -body problem

expansion is too expensive to be practical for N ≥ 10. On the positive
side, the initialization of higher derivatives for standard force polynomials
employs the explicit derivative approach to good effect.
In the late 1960s, several efforts were made to take advantage of the two-

body regularization formulated by Kustaanheimo & Stiefel [1965; here-
after KS]. It became clear that special treatments of energetic binaries
are desirable in order to study the long-term evolution of point-mass sys-
tems. One brave attempt to avoid the apparent complications of the KS
method for N -body applications was based on the variation of parame-
ters method [Aarseth, 1970]. The dominant central binary that usually
emerges was represented by the osculating (or instantaneous) two-body
elements. Apart from some problems due to secular perturbations, this
method worked quite well.§ It also had the advantage of permitting un-
perturbed solutions which speed up the calculation. On the debit side,
the method must be replaced by direct integration for significant pertur-
bations. Still, much useful experience of algorithmic decision-making was
gained by this application of celestial mechanics.
The impetus for introducing KS regularization was inspired by the

beautiful three-body solution illustrated graphically by Szebehely & Pe-
ters [1967]. However, the Hamiltonian development of Peters [1968a,b] for
the three-body problem bypasses the problem of evaluating the changing
energy of the dominant two-body motion by an explicit calculation of the
N(N − 1)/2 regular terms, which is too expensive in the general case.
This was eventually solved by introducing an additional equation of mo-
tion for the change in the two-body energy due to perturbations. Thus
by the time of IAU Colloquium 10 on the N -body problem in 1970 two
general codes were presented which included KS regularization [Aarseth,
1972b; Bettis & Szebehely, 1972]. Sadly, the latter proved too expensive
for large systems since it employed a high-order Runge–Kutta integrator
and was not developed further. However, it did prove itself in an investi-
gation of high-velocity escapers in small systems [Allen & Poveda, 1972].
On the personal front, the next few years saw some interesting appli-

cations. One collaboration adopted hierarchical initial conditions inspired
by fragmentation theory [Aarseth & Hills, 1972], which led to some en-
ergetic interactions. It is now well established that very young clusters
show evidence of subclustering. Another effort examined the depletion
of low-mass stars and concluded that the preferential effect was some-
what less than expected on theoretical grounds [Aarseth & Wolf, 1972].
The question of energetic binaries halting core collapse was also dis-
cussed [Aarseth, 1972a]. It was shown that a central binary may acquire a

§ The treatment of mixed secular terms was later improved by Mikkola [1984a] who
introduced the variation of the epoch.
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significant fraction of the total energy even for systems with N = 500; a
calculation that took some 500 hours to complete [Aarseth, 1974]. It is
noteworthy that the dominant binary acquired 50% of the total energy
after only 12 crossing times (defined in the next section). Finally, a small
contribution contained the first simulation of what we now call primordial
binaries [Aarseth, 1975], which has become a major industry.¶

The 1970s brought about two important technical developments which
are still being used. First we mention the Ahmad–Cohen [1973] neighbour
scheme. The basic idea here is to represent the force acting on a particle by
a sum of two polynomials, with the neighbour contribution being updated
more frequently. Although there are programming complications due to
the change of neighbours, the method is truly collisional and speeds up
the calculation significantly even for quite modest values of N . Before the
advent of the HARP special-purpose computer (to be described later), this
algorithm facilitated the simulation of larger cluster models with N � 104

where the gain may be a factor of 10.
The second innovation occurred by a happy combination of circum-

stances which resulted in a three-body regularization method [Aarseth &
Zare, 1974]. This was achieved by the introduction of two coupled KS
solutions which permit two of the particle pairs to approach each other
arbitrarily close, provided this does not take place simultaneously. It turns
out that the third interaction modifies the equations of motion in a way
that still maintains regularity, as long as the corresponding distance is not
the smallest. Following this development, the global formulation by Heg-
gie [1974] was a notable achievement, especially since it was generalized
to the N -body problem.
It is perhaps surprising that, for practical purposes, the algorithm based

on two separable KS solutions is preferable to the global regularization for
N = 3. However, the treatment of just four particles in a similar way had
to wait for a technical simplification, eventually conceived by Mikkola
[1985a].‖ In the event, the Ahmad–Cohen method was combined with
standard KS as well as the unperturbed three- and four-body regulariza-
tion methods to form the embryonic NBODY 5 code towards the end of the
1970s. Right from the start, the KS treatment was generalized to an arbi-
trary number of simultaneous particle pairs, necessitating a considerable
amount of automatic decision-making.
A comparison of the multiple regularization methods has been carried

out for N = 3 and N = 4 [Alexander, 1986], whereas a general review
of integration methods for few-body systems is also available [Aarseth,
1988a]. An early study of core collapse for N = 1000 illustrated the

¶ The study of initial hard binaries was urged in the thesis of Heggie [1972b].
‖ The early history of multiple regularization has been recorded by Mikkola [1997b].
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usefulness of the new techniques [Aarseth, 1985b]. Finally, we mention
a pioneering development of a hybrid code which combined the Fokker–
Planck method with direct integration and KS regularization [McMillan
& Lightman, 1984a,b].
We end this historical review by noting that ideas for increasing the

speed of the calculation were discussed at an early stage [Aarseth & Hoyle,
1964]. At that time an increase in the particle number from 100 to 300
seemed to be the practical limit based on an argument that gave the
computing time proportional to N3 for a given degree of evolution. This
analysis also anticipated subsequent developments of introducing a colli-
sionless representation in order to reach much larger values of N . It was
estimated that a shell method with up to five spherical harmonics would
allow N � 5000 to fit the current maximum memory of 64K.

Modern times have seen some significant advances, both as regards
software and hardware. The N -body problem has matured and we are
now entering an exciting new area. In this spirit we leave history behind
and will attempt to discuss a variety of relevant N -body developments in
subsequent chapters.

1.3 Basic concepts

In this book, we are primarily interested in applications of the original
Newton’s Law of Gravity, as opposed to a modified expression including
softening. The equations of motion for a particle of index i in a system
containing N particles then take the form

r̈i = −G
N∑

j=1; j �=i

mj(ri − rj)
|ri − rj |3 . (1.1)

For convenience, we use scaled units in which G = 1 and define the
left-hand side of (1.1) as the force per unit mass, Fi. Given the initial
conditions mi, ri,vi for the mass, coordinates and velocity of each parti-
cle at some instant t0, the set of 3N second-order differential equations
(1.1) then defines the solutions ri(t) over the time interval (−∞,∞). Al-
ternatively, the complete solutions are also specified by 6N first-order
equations that must be solved in a self-consistent manner, and the latter
procedure is in fact usually chosen in practice.
It has been known since Newton’s days that the N -body problem de-

fined by (1.1) only admits exact solutions for the case of two interacting
particles. All that is known with certainty beyond this is that there exist
ten integrals of the motion. For completeness, let us introduce these fun-
damental relations which are often used as a check on accuracy. The total
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energy and angular momentum (E and J) of the system are defined by

E =
1
2

N∑
i=1

miv2i −
N∑
i=1

N∑
j>i

Gmimj

|ri − rj | , (1.2)

J =
N∑
i=1

ri ×mivi . (1.3)

The two terms of (1.2) represent the total kinetic and potential energy,
respectively. Multiplying (1.1) by mi and performing a summation, we
obtain

N∑
i=1

mir̈i = 0 (1.4)

by symmetry. Integrating, we find that in the absence of any external
forces the centre of mass of the system moves with constant velocity, thus
providing an additional six conserved quantities. The demonstration that
the total energy and angular momentum are also constant can be left as
an exercise [see e.g. Roy, 1988, pp.113–115 for proofs]. We define T,U,W
as the total kinetic, potential and external energy, with U < 0. The basic
energy relation then takes the more general and compact form

E = T + U +W , (1.5)

which is convenient for discussions. Another quantity useful for numerical
algorithms is the Lagrangian energy,

L = T − U , (1.6)

although the positive sign convention for U is often chosen here.
From the above, it follows that a good numerical scheme for conserva-

tive systems needs to maintain satisfactory values for the ten constants of
the motion during all times of interest. Unfortunately, errors are always
present in any step-wise scheme (as in the simplest numerical computa-
tion), hence we speak about the deviation from the initial values instead.
Since the total energy is the difference between two large numbers, T
and |U |, experience has shown that this is the most sensitive quantity for
monitoring the accuracy. However, if we are unlucky, the errors might still
conspire in such a way as to cancel and thereby render energy conservation
meaningless. Yet, the general tendency is for such errors to be systematic
and hence more readily identified. In order to make progress beyond the
basic scheme outlined above, we shall simply take a positive attitude to-
wards obtaining numerical solutions and delay a fuller discussion of this
difficult subject until later.
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The crossing time is undoubtedly the most intuitive time-scale relat-
ing to self-gravitational systems. For a system in approximate dynamical
equilibrium it is defined by

tcr = 2RV/σ , (1.7)

where RV is the virial radius, obtained from the potential energy by
RV = GN2m̄2/2|U |, and σ is the rms velocity dispersion. In a state of
approximate equilibrium, σ2 � GNm̄/2RV, which gives

tcr � 2
√
2 (R3V/GNm̄)1/2 , (1.8)

with m̄ the mean mass, or alternatively tcr = G(Nm̄)5/2/(2|E|)3/2 from
E = 1

2U . Unless the total energy is positive, any significant deviation from
overall equilibrium causes a stellar system to adjust globally on this time-
scale which is also comparable to the free-fall time. The close encounter
distance is a useful concept in collisional dynamics. It may be defined by
the expression [Aarseth & Lecar, 1975]

Rcl = 2Gm̄/σ2 , (1.9)

which takes the simple form Rcl � 4RV/N at equilibrium.
Since much of this book is devoted to star clusters, it may be instruc-

tive to introduce some basic parameters for clusters to set the scene for
the subsequent numerical challenge. A rich open star cluster may be
characterized by N � 104, m̄ � 0.5M� and RV � 4 pc, which yields
tcr � 5 × 106 yr. Many such clusters have ages exceeding several Gyr,
hence a typical star may traverse or orbit the central region many times,
depending on its angular momentum. Another relevant time-scale in N -
body simulations is the orbital period of a binary. Let us consider a typical
close binary with separation a � RV/N . With a period of � 700 yr this
would make some 7000 orbits in just one crossing time. Thus, in general,
if a = fRV/N there would be � N/f3/2 Kepler orbits per crossing time.
The subject of relaxation time is fundamental and was mainly formu-

lated by Rosseland [1928], Ambartsumian [1938, 1985], Spitzer [1940] and
Chandrasekhar [1942]. The classical expression is given by

tE =
1
16

(
3π
2

)1/2(NR3

Gm

)1/2
1

ln(0.4N)
, (1.10)

where R is the size of the homogeneous system [Chandrasekhar, 1942].
For the purposes of star cluster dynamics, the half-mass relaxation time
is perhaps more useful since it is not sensitive to the density profile.
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Following Spitzer [1987], it is defined by∗∗

trh = 0.138

(
Nr3h
Gm

)1/2
1

ln(γN)
, (1.11)

where rh is the half-mass radius and Λ = γN is the argument of the
Coulomb logarithm. Formally this factor is obtained by integrating over
all impact parameters in two-body encounters, with a historical value of
γ = 0.4. Some of the most important subsequent determinations are due
to Hénon [1975] and Giersz & Heggie [1994a], who obtained the respective
values 0.15 and 0.11 for equal masses, with the latter derived from nu-
merical measurements. Although this factor only enters through the term
ln(γN), it can still make a significant difference in numerical comparisons
which are now becoming quite reliable when using ensemble averages. As
the second authors point out, the corresponding value for a general mass
spectrum is reduced considerably. From the numerical example above we
then have trh � 3 × 108 yr for rh � 4 pc and an equal-mass system with
N = 1 × 104 stars of half a solar mass. In comparison, trh � 3 × 1010 yr
for a globular cluster with N � 106 and rh � 25 pc.
An alternative viewpoint on the derivation of the two-body relaxation

time is promoted in the review by Spurzem [1999]. Based on the pio-
neering work of Larson [1970] which was continued by Louis & Spurzem
[1991] and Giersz & Spurzem [1994], the collisional term in the Fokker–
Planck description can be developed to yield unambiguous expressions for
the classical types of relaxation discussed here. Now the relaxation time
emerges naturally as the consequence of the interaction of two distribu-
tion functions and the choice of their form as well as that of the Coulomb
logarithm uniquely determines the nature of the different processes. Thus
instead of assuming the usual small angle deflections of the orbit, it is
inferred directly that the Coulomb integral starts at an angle of 90◦.
The expression (1.11) gives an estimate of the time for the rms velocity

change arising from small angle deflections at the half-mass radius to
become comparable to the initial velocity dispersion. It serves as a useful
reference time for significant dynamical changes affecting the whole cluster
even though there is no corresponding numerically well-defined quantity.
The assumption of approximate equilibrium with the above definition of
the crossing time leads to the relation [Spitzer, 1987]

trh
tcr

� N

22 ln(γN)
, (1.12)

which shows that close encounters become less important for increasing
particle number since the potential is smoother. Hence if the relaxation

∗∗ Also see Spitzer & Hart [1971a] for an alternative derivation.



10 1 The N -body problem

time for an equal-mass system exceeds the time interval of interest by a
significant factor, the use of the collisionless approximation which neglects
close encounters may be justified. However, the approach to the collision-
less regime is slow and in any case the central relaxation time may be
much shorter.
An equivalent formulation of the relaxation time in terms of the de-

flection angles suffered by a test star yields comparable values to (1.10)
[Williamson & Chandrasekhar, 1941]. This expression has in fact been
tested numerically for different velocities [Lecar & Cruz-González, 1972]
and particle numbers N ≤ 2500 [Aksnes & Standish, 1969], providing
agreement with theory on the assumption of independent individual en-
counters.
The concept of dynamical friction was introduced by Chandrasekhar

[1942] who elucidated the tendency for a star to be decelerated in the
direction of its motion. This refinement reconciled the predicted escape
rate with the possible presence of some old open clusters. However, the
analysis was not extended to the case of massive stars which later merited
considerable interest with the emphasis on mass segregation in stellar
systems. In the case of a slow-moving body of mass m2 	 m̄ but within
20% of the total mass, the frictional force can be written in the simplified
form [Binney & Tremaine, 1987]

dv2
dt

= −4π lnΛG2ρm2

v32

[
erf(X)− 2X√

π
exp(−X2)

]
v2 , (1.13)

where ρ is the background density and X = v2/(2σ)1/2.
Rich star clusters are usually centrally concentrated, with an extended

halo. The majority of central stars are strongly bound and therefore expe-
rience changes in their orbital elements on shorter time-scales than given
by (1.11). A corresponding mean relaxation time can be derived by inte-
grating the general expression [e.g. Chandrasekhar, 1942] for a given clus-
ter model. This was done a long time ago for polytropic models, increasing
the classical value by a factor of 4 in the case of n = 5 [King, 1958]. On
the other hand, the central relaxation time can be much shorter for real-
istic models with high central densities. This runaway process called core
collapse (and its aftermath) has fascinated theoreticians and will be dis-
cussed further in another chapter. Let us just remark that the formation
of a bound halo, together with a small fraction of escaping particles, is
a direct consequence of this process by virtue of energy conservation. In
short, the evolution takes place because there is no equilibrium.
So far we have mainly considered equal-mass systems, which are more

amenable to analytical treatment and have therefore attracted more at-
tention. However, the general case of a mass spectrum is more relevant for
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star cluster simulations. The time-scale associated with some aspects of
mass segregation is probably better determined than the relaxation times
above. Analysis of a two-component system dominated by light particles
gave rise to the equipartition time for kinetic energy [Spitzer, 1969]

teq =
(v̄21 + v̄22)

3/2

8(6π)1/2G2ρ01m2 lnN1
, (1.14)

where ρ01 is the central density of the N1 light stars of mass m1. It is
envisaged that the heavy particles of mass m2 lose kinetic energy through
encounters with lighter particles of mass m1 and spiral inwards.
The expression above holds, provided that the heavy particles do not

form a self-gravitating system, in which case standard relaxation takes
over. The equipartition condition is expressed in terms of the correspond-
ing total masses asM2/M1 < β(m1/m2)3/2, where β � 0.16 for large mass
ratios. After a phase of contraction the heavy particles begin to form a
self-gravitating system and the evolution rate slows down. To the extent
that the expression (1.14) is applicable, it can be seen that the presence
of a mass spectrum speeds up the early evolution. Hence, in general, we
have that teq � tEm̄/m2 for the case of two unsegregated populations with
comparable velocity dispersions [Spitzer, 1969]. Comprehensive theoreti-
cal discussions of time-scales and evolution processes in rich star clusters
can be found in several reviews [Meylan & Heggie, 1997; Gerhard, 2000].
However, we emphasize that as yet there is no consistent theory of the
relaxation time for a realistic IMF.
Although most old clusters are in a state of approximate virial equilib-

rium, this may not be the case for very young clusters. Non-equilibrium
initial conditions are often chosen in simulations in order to model systems
with significant mass motions. Some early simulations that employed a
spherical shell model demonstrated that collisionless systems reach overall
equilibrium on a relatively short time-scale [Hénon, 1964, 1968]. The con-
cept of violent relaxation [Lynden-Bell, 1967] was introduced to describe
galaxy formation but is equally relevant for star clusters. Before making
some general comments, let us write the virial theorem in the traditional
scalar form [Chandrasekhar, 1942, p.219; Fukushige & Heggie, 1995]

d2I/dt2 = 4T + 2U + 4A− 4W , (1.15)

where I is the moment of inertia and A represents the angular momentum
contribution, ΩzJz, for cluster motion in the Galactic plane with angular
velocity Ωz. Hence in this case the virial ratio is defined by

Qvir = (T +A)/|U − 2W |) . (1.16)
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Setting A = 0 and W = 0 for simplicity and choosing initial velocities,
collapse takes place if Qvir < 0.5, with enhanced mass motions for small
values.
A qualitative description of the collapse phase may be made by consid-

ering the energy per unit mass of a particle,

Ei = 1
2v
2
i + Φi , (1.17)

with velocity vi and potential Φi. In the extreme case of starting from
rest, all the particles move inwards on radial orbits. These orbits are
perturbed by neighbouring particles, acquiring angular momentum. This
leads to a dispersion in the collapse times, even for a homogeneous sys-
tem. Consequently, the early arrivals are decelerated in their outward
motion, whereas the late-comers experience a net acceleration. Follow-
ing the bounce, the core–halo system may also have a significant fraction
of particles with positive energy that subsequently escape. The initial
collapse therefore leads to a considerable redistribution of the binding
energies and the system undergoes violent relaxation. An early investiga-
tion of homogeneous N -body systems starting from rest [Standish, 1968a]
showed that about 15% of the particles gained enough energy to escape. A
variety of one-dimensional experiments made at the time also confirmed
that an equilibrium distribution is only reached for the inner part [Lecar
& Cohen, 1972].
A much more careful analysis is needed to provide a detailed description

of even the simplest collapsing system and is beyond the present scope
[Aarseth, Lin & Papaloizou, 1988]. However, it is worth emphasizing that
such systems can be studied by numerical methods, which may be used to
test theoretical ideas. In the present context, violent relaxation is assumed
to be collisionless and is therefore only applicable in the limit of large N .
However, the general process is also effective in systems with N = 500
which are in fact subject to mass segregation at the same time [Aarseth
& Saslaw, 1972; Aarseth, 1974].
Following on from non-equilibrium systems, the analogy with an eccen-

tric binary illustrates some aspects relating to the virial theorem. Consider
a plot of the virial ratio, Qvir, for collapsing systems that shows several os-
cillations of decreasing amplitude about the equilibrium value Q̄vir = 0.5
[Standish, 1968a].†† However, small fluctuations are still present even af-
ter many crossing times. This behaviour can be understood by examining
an isolated binary. Taking the ratio of kinetic and potential energy leads
to the simple expression

Qvir = 1 − R(t)/2a , (1.18)

†† We are not concerned with the excess of kinetic energy due to escaping particles.
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where R(t) is the instantaneous separation. Hence an eccentric binary
exhibits a varying virial ratio which depends on the phase and eccentricity.
Now let such an energetic binary be part of the system. Even if its energy
is constant, the contribution to the virial ratio may dominate the whole
system near an eccentric pericentre. Needless to say, this feature is not of
dynamical significance and because of the special treatment of binaries in
the present formulation, such contributions are not included here.

Star clusters orbiting the Galaxy are subject to an external tidal field
which tends to increase the disruption rate. In this connection we intro-
duce the classical concept of tidal radius [von Hoerner, 1957; King, 1962].
The simple picture of the tidal radius is that stars that move outside this
distance escape from the cluster on a relatively short time-scale. However,
actual orbit calculations show that the situation is more complicated even
for clusters in circular orbits [Ross, Mennim & Heggie, 1997; Heggie, 2001].
In the case of globular clusters, the process of tidal shocks also needs to
be modelled [Ostriker, Spitzer & Chevalier, 1976; Spitzer, 1987].

According to theory, close encounters act to maintain a Maxwellian ve-
locity distribution in equilibrium systems. Thus after one relaxation time,
a fraction Qe � 0.007 should exceed the escape velocity in an isolated
system [Chandrasekhar, 1942] and then be replenished. When discussing
escape from stellar systems, we distinguish between ejection due to one
close encounter [Hénon, 1969] and evaporation, caused by the cumulative
effect of many weak encounters. From general considerations, the former
outcome declines in importance with increasing N for systems dominated
by single stars, whereas the presence of binaries complicates the issue.
Although the process of escape is fundamental, the complexity of the in-
teractions is such that only general statements can be made, especially
when different masses are involved. For example, classical theory states
that equipartition of kinetic energy will be achieved on a time-scale teq
which is comparable to trh for N � 100 and modest mass ratios. A mo-
ment’s reflection is enough to show that this argument is fallacious.

In self-gravitating systems the central escape velocity is some factor,
fe ≥ 2, times the rms velocity, where the actual value depends on the
density profile. Consequently, the equipartition conditionmv2 = const can
only be satisfied for modest mass ratios, beyond which escape invariably
occurs. What actually happens is that the lighter particles occupy a larger
volume and hence their relaxation time increases. A better way to look
at energy equipartition is to compare mv̄2 for certain mass groups at
similar central distances, rather than globally. In any case, the tendency
for massive particles to be preferentially concentrated in the central region
is a direct consequence of the equipartition process, whereby the loss of
kinetic energy leads to inward spiralling [Aarseth, 1974]. These simple
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considerations show that although theoretical concepts are very useful
for a general understanding of dynamics, numerical solutions can often
obtain a more consistent picture, albeit for limited particle numbers.

1.4 The first steps

The well-known saying about learning to walk before you can run is highly
appropriate for the aspiring N -body simulator, since much play is made
of making runs. Hence we start our Odyssey at the most primitive stage
in order to illustrate the main principles involved for performing direct
numerical integrations.
In order to obtain numerical solutions, we proceed by advancing all

coordinates and velocities using sufficiently small intervals, re-evaluating
the accelerations by the summation (1.1) after each increment. At the
most primitive level we can relate the solutions at time t to the previous
solution at time t0 by a Taylor series expansion to lowest order as

vi(t) = Fi∆t+ vi(t0) ,
ri(t) = 1

2Fi∆t2 + vi(t0)∆t+ ri(t0) , (1.19)

where ∆t = t− t0 is a suitably chosen small time interval and Fi is evalu-
ated by (1.1) at t = t0. From dimensional considerations, we require that
|vi|∆t 
 rh for meaningful results. A complete solution then involves
advancing (1.19) simultaneously for all the particles until some specified
condition has been satisfied. This step-by-step method (standard Euler)
is clearly very laborious since each force summation includes O(N) opera-
tions and ∆t needs to be small in order to maintain a reasonable accuracy.
However, it does contain the basic idea of obtaining self-consistent solu-
tions for the set of coupled differential equations (1.1).
Numerical solutions of equations (1.19) are readily obtained for the

two-body problem. Choosing a circular binary, we find a relative error of
the semi-major axis per orbit of ∆a/a � 8× 10−3 when averaged over ten
initial periods. Here the time-step was chosen according to 2πηR3/2 from
Kepler’s Law, with η = 0.0002, which gives 5000 steps for each revolution.
The errors reduce dramatically by going to the improved Euler method.

First provisional coordinates are predicted in the usual way by

r̃i(t) = 1
2Fi∆t2 + vi(t0)∆t+ ri(t0) , (1.20)

whereupon the new force, Fi(t), is obtained from (1.1). We define the
average force during the interval ∆t as

F̄i = 1
2 [Fi(t) + Fi(t0)] . (1.21)
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The average force is then used to calculate the final values of vi(t) and
ri(t) according to (1.19). Now we obtain ∆a/a � −6 × 10−9 per revolu-
tion, whereas η = 0.002 gives ∆a/a � −6 × 10−6, which is considerably
more accurate than the standard Euler method above for ten times as
many steps. Eccentric orbits require more integration steps because of
the smaller pericentre distance and also produce somewhat larger errors.
Thus in the case of the improved Euler method an eccentricity e = 0.75
leads to ∆a/a � −4× 10−5 per revolution with η = 0.002.
This simple exercise demonstrates an important aspect about numerical

integrations, namely that the accuracy may be improved significantly by
making better use of existing information at small extra cost. In view of
the expensive summation (1.1) for large N , it is worth emphasizing that
the improved scheme also uses only one force evaluation per step. This
desirable property is exploited in the more sophisticated developments
discussed below and in the next chapter.
After illustrating the general principles of direct N -body integration,

it may be appropriate to present the basic integration method of von
Hoerner [1960] since it is not available in the English literature. For his-
torical reasons, we retain the original notation which does not use vectors.
Denoting the coordinates and velocity of a particle i by xαi and uαi, re-
spectively, with α = 1, 2, 3, the coupled equations of motion for a system
of equal masses take the form

dxαi

dt
= uαi ,

duαi

dt
= −Gm

N∑
j=1; j �=i

xαi − xαj

r3ij
, (1.22)

where rij is the mutual separation. The original derivation adopted the
scaling Gm = 1 for equal-mass systems but in any case the following
discussion is general.
The new time-step is determined from the closest particle pair by taking

the harmonic mean of the travel time, τ1 = Dm/Vm, and free-fall time,
τ2 = Dm(2Dm)1/2, according to

h2 =
Dm(2Dm)1/2

µ
[
1 + Vm(2Dm)1/2

] . (1.23)

Here Dm is the minimum separation, Vm the corresponding relative ve-
locity and µ is an accuracy parameter. Consider the system at an epoch
t0 = 0, with h1 the previous step. Moreover, let u1 and x1 denote the
velocity at −1

2h1 and coordinates at t0, respectively, where the subscripts
have been omitted for clarity. Assuming a linear dependence over the
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interval [−h1, h2], we write the force as

b = b1 + a1t , (1.24)

where a1 = (b1 − b0)/h1 is the divided force difference over the previous
interval, [−h1, 0]. After some algebra we obtain the predicted velocity and
coordinates

u02 = u1 + k0b1 + k2a1 ,

x02 = x1 + h2u
0
2 + k1a1 , (1.25)

with the coefficients k0 = 1
2(h2 + h1), k1 = 1

24h
3
2 and k2 = 1

8(h
2
2 − h21).

The solution can be improved after calculating the new force, b2, at
t = h2. This is achieved‡‡ by writing a parabolic force fitting function as

b = b1 + a1t+ d2(h1t+ t2)/(h2 + h1) . (1.26)

Setting b = b2 at the end of the interval h2 simplifies to

d2 = (b2 − b1)/h2 − a1 . (1.27)

The contributions from the last term of (1.26) can now be included to
yield the corrected solutions for u2 at t = h2/2 and x2 at t = h2,

u2 = u02 + k3d2 ,

x2 = x02 + k5d2 , (1.28)

where§§ k3 = 1
24(h

2
2 + 2h2h1 − 2h21) and k5 = 1

12h2(h
2
2 + h2h1 − h21).

The employment of a leapfrog method gives rise to enhanced stability
for a given integration order [cf. Hut, Makino & McMillan, 1995]. How-
ever, the question of the initial velocity requires special attention. Thus
it is advantageous to choose a conservative initial step, h1, and integrate
backwards an interval ∆t = −1

2h1 before beginning the calculation. The
subsequent few time-steps, h2, may then be restricted to grow by a small
factor to ensure convergence of the force polynomials. Special care is also
needed for evaluating the total energy, since the velocities are known at
t− 1

2h2 and it is desirable to attain the highest accuracy consistently. Thus
for the purpose of calculating the kinetic energy at the end of the current
time-step, h2, the predicted velocity is obtained by integrating (1.26) over
[h2/2, h2] and adding u2 which finally gives

u = u2 + b1h2/2 + 3a1h22/8 + d2h
2
2(3h1/8 + 7h2/24)/(h2 + h1) . (1.29)

‡‡ The so-called ‘semi-iteration’ was also proposed by A. Schlüter [cf. von Hoerner, 1960].
§§ Corrected for a typographical error in the last term of k3.
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Table 1.1. Integration errors with von Hoerner’s method.

N Steps t/tcr µ ∆E/E ∆Jz amin

16 6200 5 6 1× 10−4 2× 10−7 0.046
16 8800 5 10 9× 10−6 3× 10−8 0.080
16 18 000 10 6 2× 10−4 4× 10−7 0.022
25 10 000 5 10 1× 10−6 1× 10−8 0.029
25 16 000 5 20 5× 10−8 1× 10−9 0.086
25 127 000 10 20 7× 10−6 2× 10−9 0.007

Unless there are long-lived binaries with short period, test calculations
generally give satisfactory energy errors when using µ = 10.

It is instructive to compare von Hoerner’s method for the two-body
example discussed above. The eccentric orbit with e = 0.75 and η = 0.002
now gives ∆a/a � −1.3×10−5 per revolution for the case of semi-iteration.
This improves to � −3×10−7 when the corrector (1.28) is included. Hence
the first N -body method is superior to the improved Euler method for
the same number of steps per orbit.
A more general comparison test has also been performed. The initial

conditions are generated in the same way as the original paper, which
employed virialized velocities inside a homogeneous sphere of radius 1
and m = 1. All the calculations are carried out with standard double
precision. Table 1.1 gives some characteristic values of relative energy er-
rors and change in the angular momentum about the z-axis for intervals
of 0.2tcr. All deviations are measured with respect to initial values and
the last column shows the smallest semi-major axis. Although the rela-
tive energy errors are satisfactory in these examples, the presence of a
highly eccentric binary introduces a noticeable systematic orbital shrink-
age which is expensive to counteract with the present basic treatment.
The device of including the semi-iteration (or corrector) without recal-

culating the force improves the solutions by almost one full order. It was
also adopted in subsequent formulations¶¶ based on high-order force poly-
nomials [cf. Wielen, 1967, 1972; Aarseth, 1968] with N ≤ 250, whereas
the original calculations were performed with up to 16 equal-mass par-
ticles. The choice of accuracy parameter µ = 6 led to maximum relative
energy errors ∆E/E � 4 × 10−3 for t � 9 tcr in spite of only about ten
figure machine accuracy combined with a relatively low order. However,
the very first general N -body simulation already produced some interest-
ing information on topics such as relaxation time, binary formation and
escape that have stood up to the test of time.

¶¶ Already included in a third-order polynomial scheme for N = 100 [Aarseth, 1966a].
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Predictor–corrector methods

2.1 Introduction

In this chapter, we provide the tools needed for standard N -body inte-
gration. We first review the traditional polynomial method which leads
to increased efficiency when used in connection with individual time-
steps. This self-contained treatment follows closely an earlier description
[Aarseth, 1985a, 1994]. Some alternative formulations are discussed briefly
for completeness. We then introduce the simpler Hermite scheme [Makino,
1991a,b] that was originally developed for special-purpose computers but
is equally suitable for workstations or laptops and is attractive by its sim-
plicity. As discussed in a later section, the success of this scheme is based
on the novel concept of using quantized time-steps (factor of 2 commen-
surate), which reduces overheads. Variants of the Hermite method were
attempted in the past, such as the low-order scheme of categories [Hayli,
1967, 1974] and the full use of explicit Taylor series derivatives [Lecar,
Loeser & Cherniack, 1974]. The former study actually introduced the idea
of hierarchical time-steps with respect to individual force calculations us-
ing a low-order scheme, whereas the latter formulation is expensive (but
accurate) even for modest particle numbers.

2.2 Force polynomials

The force acting on a particle usually varies in a smooth manner through-
out an orbit, provided the particle number is sufficiently large. Hence by
fitting a polynomial through some past points, it is possible to extend
the time interval for advancing the equations of motion and thereby re-
duce the number of force evaluations. In other words, we can use the past
information to predict the future motion with greater confidence. Such
a scheme was already introduced in the pioneering work of von Hoerner

18
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Fig. 2.1. Force polynomial fitting.

[1960], who adopted a quadratic interpolation of the force on each particle.
In the following years formulations based on higher orders were employed
[Aarseth, 1966a, 1968; Wielen, 1967]. Experience has shown that there
is some gain in increasing the order of the integration scheme but the
law of diminishing returns applies and it appears that four orders is suffi-
cient for most purposes [Wielen, 1967, 1974]. A subsequent investigation
[Makino, 1991a] showed that the fourth-order scheme∗ is within 30% of
the minimum cost for all values of the rms energy error. The present dif-
ference formulation is based on the notation of Ahmad & Cohen [1973;
hereafter AC] and follows closely an earlier treatment [Aarseth, 1985a].
In the subsequent description we omit the particle subscript in Fi and
related quantities for clarity.
On some time-scale, the force on a particle can be considered to be

smoothly varying, as illustrated by Fig. 2.1, and can therefore be approx-
imated by a continuous function. Given the values of F at four successive
past epochs t3, t2, t1, t0, with t0 the most recent, we write a fourth-order
fitting polynomial at time t valid in the interval [t3, t0 +∆t] as

Ft =
{[(
D4(t− t3) +D3

)
(t− t2) +D2

]
(t− t1) +D1

}
(t− t0) + F0 .

(2.1)
Using compact notation, the first three divided differences are defined by

Dk[t0, tk] =
Dk−1[t0, tk−1]−Dk−1[t1, tk]

t0 − tk
, (k = 1, 2, 3) (2.2)

whereD0 ≡ F and square brackets refer to the appropriate time intervals,
such thatD2[t1, t3], for instance, is evaluated at t1. The termD4 is defined
similarly by D3[t, t2] and D3[t0, t3].

∗ This is two orders more than used by von Hoerner but one order less than Wielen.
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Conversion of the force polynomial into a Taylor series provides simple
expressions for integrating the coordinates and velocities. Equating terms
in the successive time derivatives of (2.1) with an equivalent Taylor series
and setting t = t0 yields the corresponding force derivatives

F(1) = [(D4t′3 +D
3)t′2 +D

2]t′1 +D
1 ,

F(2) = 2![D4(t′1t
′
2 + t′2t

′
3 + t′1t

′
3) +D

3(t′1 + t′2) +D
2] ,

F(3) = 3![D4(t′1 + t′2 + t′3) +D
3] ,

F(4) = 4!D4 , (2.3)

where t′k = t0 − tk. These equations are mainly used to obtain the Taylor
series derivatives at t = t0, when the fourth difference is not yet known.
Thus the contribution from D4 to each order is only added at the end
of an integration step, t0 + ∆t. This semi-iteration, first introduced by
von Hoerner [1960], gives increased accuracy at little extra cost (on scalar
machines) and no extra memory requirement.
We now describe the initialization procedure, assuming one force poly-

nomial. From the initial conditions, mj , rj ,vj , the respective Taylor series
derivatives are formed by successive differentiations of (1.1). Introducing
the relative coordinates, R = ri − rj , and relative velocity, V = vi − vj ,
all pair-wise interaction terms in F and F(1) are first obtained by

Fij = −mjR/R3 ,

F(1)ij = −mjV/R3 − 3aFij , (2.4)

with a = R ·V/R2. The total contributions are obtained by summation
over all N particles. Next, the mutual second- and third-order terms are
formed from

F(2)ij = −mj(Fi − Fj)/R3 − 6aF(1)ij − 3bFij ,

F(3)ij = −mj(F
(1)
i − F(1)j )/R3 − 9aF(2)ij − 9bF(1)ij − 3cFij , (2.5)

with

b =
(
V

R

)2
+
R · (Fi − Fj)

R2
+ a2 ,

c =
3V · (Fi − Fj)

R2
+
R · (F(1)i − F(1)j )

R2
+ a(3b− 4a2) . (2.6)

A second double summation gives the corresponding values of F(2) and
F(3) for all particles. This pair-wise boot-strapping procedure provides a
convenient starting algorithm, since the extra cost is usually small. Here
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we have employed a compact derivation [Findlay, private communication,
1983] instead of the equivalent but more cumbersome expressions used
previously [cf. Aarseth, 1972b].
Appropriate initial time-steps, ∆ti, are now determined, using the gen-

eral criterion discussed in the next section. Setting t0 = 0, the backwards
times are initialized by tk = −k∆ti (k = 1, 2, 3). Hence this assumes con-
stant time-steps over the past fitting interval. Inversion of (2.3) to third
order finally yields starting values for the divided differences,

D1 = (16F
(3)t′1 − 1

2F
(2))t′1 + F

(1) ,

D2 = −1
6F

(3)(t′1 + t′2) +
1
2F

(2) ,

D3 = 1
6F

(3) . (2.7)

It should be remarked that polynomial initialization may also be re-
quired at any stage of the calculation, after switching from standard in-
tegration to more sophisticated treatments and vice versa.
The introduction of a softened potential of the form

Φ = −m/(R2 + ε2)1/2 (2.8)

is of historical interest [Aarseth, 1963a,b]. This represents a Plummer
sphere [Plummer, 1911] with half-mass radius given by rh � 1.3ε [Aarseth
& Fall, 1980]. Originally it was used to model galaxies with ε represent-
ing the characteristic size, and has been employed more generally to re-
duce the effect of close encounters. Softening may readily be included by
modifying all inverse R terms in the denominators of equations (2.4)–
(2.6). For some purposes, the corresponding radial force does not fall
off sufficiently fast with distance and a steeper r-dependence given by
Φ = −m/(R4 + ε4)1/4 has been tried [Oh, Lin & Aarseth, 1995]. This
representation also has the advantage that outside some distance it can
be replaced by the basic point-mass interaction without significant loss of
accuracy. Finally, it may be remarked that a softened potential necessi-
tates modifying the virial expression which is often used in simulations.
Neglecting external effects, the potential energy is then replaced by a
double summation over mirij · Fij which gives the virial energy

V = −
N∑
i=1

N∑
j=1; j �=i

mj |ri − rj |2
(|ri − rj |2 + ε2)3/2

. (2.9)

2.3 Individual time-steps

Stellar systems are characterized by a range in density that gives rise
to different time-scales for significant changes of the orbital parameters.
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In order to exploit this feature, and economize on the expensive force
calculation, each particle is assigned its own time-step which is related to
the orbital time-scale. Thus the aim is to ensure convergence of the force
polynomial (2.1) with the minimum number of force evaluations. Since all
interactions must be added consistently in a direct integration method,
it is necessary to include a temporary coordinate prediction of the other
particles. However, the additional cost of low-order predictions still leads
to a significant overall saving since this permits a wide range of time-steps
to be used.
Following the polynomial initialization discussed above, the integration

cycle itself begins by determining the next particle, i, to be advanced;
i.e. the particle, j, with the smallest value of tj + ∆tj , where tj is the
time of the last force evaluation. It is convenient to define the present
epoch, or ‘global’ time, t, at this endpoint, rather than adding a small
interval to the previous value. The complete integration cycle consists of
the sequence given by Algorithm 2.1.

Algorithm 2.1. Individual time-step cycle.

1 Determine the next particle: i = minj {tj +∆tj}
2 Set the new global time by t = ti +∆ti
3 Predict all coordinates rj to order F(1)

4 Form F(2) by the second equation (2.3)
5 Improve ri and predict vi to order F(3)

6 Obtain the new force Fi

7 Update the times tk and differences Dk

8 Apply the corrector D4 to ri and vi
9 Specify the new time-step ∆ti
10 Repeat the calculation at step 1

The individual time-step scheme [Aarseth, 1963a,b] uses two types of
coordinates for each particle. We define primary and secondary coordi-
nates, r0 and rt, evaluated at t0 and t, respectively, where the latter are
derived from the former by the predictor. In the present treatment, unless
high precision is required, we predict all the coordinates to order F(1) by

rj = [(16F
(1)δt′j +

1
2F)δt

′
j + v0]δt

′
j + r0 , (2.10)

where δt′j = t − tj (with δt′j ≤ ∆tj). The coordinates and velocity of
particle i are then improved to order F(3) by standard Taylor series in-
tegration (cf. 2.3), whereupon the current force is calculated by direct
summation. At this stage the four times tk are updated (i.e. replacing tk
with tk−1) to be consistent with the definition that t0 denotes the time
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of the most recent force evaluation. New differences are now formed (cf.
2.2), including D4. Together with the new F(4), these correction terms
are combined to improve the current coordinates and velocity to highest
order. The coordinate and velocity increments of (2.1) due to the correc-
tor D4 contain four terms since all the lower derivatives are also modified
in (2.3). Consequently, we combine the corresponding time-step factors
which yield in compact notation, with t′ = t− t0

∆ri = F(4)
{
[(23 t

′ + c)0.6t′ + b] 112 t
′ + 1

6a
}
t′3 ,

∆vi = F(4)
{
[(0.2t′ + 0.25c)t′ + 1

3b]t
′ + 0.5a

}
t′2 , (2.11)

where all factorials are absorbed in the force derivatives. The coefficients
are defined by a = t′1t′2t′3, b = t′1t′2+t′1t′3+t′2t′3, c = t′1+t′2+t′3, respectively,
where the old definition of t′k still applies. Finally, the primary coordinates
are initialized by setting r0 = rt. Hence we have a fourth-order predictor–
corrector scheme.
New time-steps are assigned initially for all particles and at the end of

each integration cycle for particle i. General considerations of convergence
for the corresponding Taylor series (2.1) suggest a time-step of the type

∆ti =
(
η|F|
|F(2)|

)1/2
, (2.12)

where η is a dimensionless accuracy parameter. Such an expression would
have the desirable property of ensuring similar relative errors of the force.
Moreover, two particles of different mass interacting strongly would tend
to have very similar time-steps, which also has certain practical advan-
tages. However, there are situations when this simple form is less sat-
isfactory. After considerable experimentation, we have adopted a more
sensitive composite criterion given by

∆ti =

(
η(|F||F(2)|+ |F(1)|2)
|F(1)||F(3)|+ |F(2)|2

)1/2
. (2.13)

For this purpose only the last two terms of the first and second force
derivatives in (2.3) are included. This expression ensures that all the force
derivatives play a role and it is also well defined for special cases (i.e.
starting from rest or |F| � 0). Although successive time-steps normally
change smoothly, it is prudent to restrict the growth by an inertial factor
(e.g. 1.2). Being more sensitive, typical time-steps are about

√
2 times

smaller than given by (2.12) for the same value of η.
In summary, the scheme requires the following 30 variables for each par-

ticle: m, r0, rt, v0, F, F(1), D1, D2, D3, ∆t, t0, t1, t2, t3. It is also useful
to employ a secondary velocity, denoted vt, for dual purposes, such as
temporary predictions and general evaluations.
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2.4 Alternative formulations

Over the years there have been several attempts to determine the opti-
mal order for the individual time-step scheme, as well as other proposals
for time-step criteria and polynomial representations. Following the dis-
cussion of the divided difference scheme introduced by AC above, it is
instructive to consider briefly the original formulation [Aarseth, 1963a,b].
In the improved version with one extra order [Aarseth, 1968], the force
polynomial for a given particle is written as an expansion about the ref-
erence time t = 0 by

F = F0 +
4∑

k=1

Bkt
k . (2.14)

The coefficients Bk for k = 1, 2, 3 are obtained by a fitting over three
previous times, whereas the fourth coefficient is not evaluated until the
end of the current step when its contribution is added as a semi-iteration
or corrector. Although this representation is equivalent to the divided
difference form (2.1), the coefficients which were derived by Newton’s
interpolation formula are cumbersome and codes based on (2.14) were
phased out in the early 1970s.
A formulation for arbitrary orders was employed by Wielen [1967, 1974]

who also introduced divided differences. Following numerical tests, the
order n = 4 was chosen, compared with n = 3 for (2.1) and (2.14).†

The time-step is obtained from the difference between the actual and
extrapolated values of the particle force. An approximation of the former
by a polynomial that includes one more fitting point gives the time-step
as a solution of the non-linear equation

|F̃(ti +∆ti)− F(ti +∆ti)| = εabs + εrel|F| . (2.15)

Here F̃ represents the force polynomial of one degree higher than available
at the prediction, and the right-hand side consists of absolute and relative
error terms. From the known coefficients, the new time-step can be readily
obtained by iteration. Provided that εabs 
 εrel|F|, this criterion is based
on the relative change of the force in a similar manner to (2.13). Although
this procedure ensures that the next omitted term is acceptably small, the
alternative expression (2.13) involving all the higher force derivatives has
proved satisfactory for the particle numbers studied so far. In fact, no
specific claim for an improved criterion at this order of integration has
been suggested up to now.
Force polynomials can be dispensed with altogether by an explicit calcu-

lation of the derivatives. This procedure was introduced by Lecar, Loeser

† With n = 3, pair-wise initialization can be done in just two stages (cf. (2.5)).
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& Cherniack [1974] who employed up to five force derivatives in the Taylor
series solution.‡ Since evaluation of the higher orders is increasingly expen-
sive without allowing much larger time-steps, this scheme is only suitable
for relatively small systems. However, it proved useful in early investi-
gations of Solar System problems since the dominant central body in-
troduces additional errors when integrated by the fourth-order difference
method. In the event, the explicit differentiation up to order F(3) was
implemented for initialization of standard force polynomials.
Another early method which was only used by its inventor is the so-

called ‘category scheme’ of Hayli [1967, 1974]. The concept of time quanti-
zation was first introduced here and this work may therefore be regarded
as a precursor for the Hermite method. Thus the particles are assigned
individual time-steps, t0/b, t0/b2, . . . , t0/bp, where t0 is the time unit and
b an integer greater than one. Individual forces are evaluated in two parts,
with direct summation over all interactions arising from the current and
higher levels, whereas the remaining contributions are added as a sum
based on linear extrapolation of the first derivative. Finally, appropri-
ate adjustments to the latter are made when a given particle changes its
level in the hierarchy. Unfortunately, this scheme was never generalized
to higher orders and the relatively large energy errors that result seem a
high price to pay for the gain in execution time.
A study by Mann [1987] considered a variety of standard methods.

Since only three- and five-body systems were examined, however, the con-
clusions are not strictly applicable to larger memberships where the force
calculation dominates the cost. The absence of close encounters also made
the comparison tests less representative of typical situations.
The choice of order and extrapolation method was examined by Press &

Spergel [1988] who claimed that considerably higher orders would be ben-
eficial. However, the authors did not take into account that higher order
schemes have smaller radii of convergence than lower order ones [Mikkola,
private communication]. Thus the theoretical limiting time-step factor of
4 with respect to the standard case for a relative force error of 10−4 does
not seem a practical proposition. The conclusion of a higher optimal or-
der was also challenged by Sweatman [1994], who proposed that a fixed
error per time unit is more appropriate. Addition of a constant part due
to the force calculation led to an optimal order n ≤ 5, in good agreement
with Wielen [1967] who adopted n = 4. Finally, the investigation by Press
& Spergel compared the merits of using rational function extrapolation.
It was found that this approach does not offer any significant advantage
compared with the standard polynomial representation.

‡ The original third-order formulation was given by Gonzalez & Lecar [1968].
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In a careful analysis of integration schemes, Makino [1991a] suggested
a time-step criterion based on the difference between the predicted and
corrected velocity change according to

∆tnew = ∆told

(
εv∆told|F|

|∆vp −∆vc|

)1/(p+1)
, (2.16)

where εv is a parameter controlling the accuracy and p is the step-number
(p = n+1). Note that when evaluating ∆vp, we need the full p-step pre-
dictor as opposed to F and Ḟ used in the original scheme. Depending on
other factors, such as hardware and particle number, the extra effort of
performing a high-order prediction for the particle (or particles) under
consideration may well be acceptable in return for a more sensitive crite-
rion if this should prove to be the case.§ However, the expression (2.16)
did not show any significant improvement for the step-number p = 4,
whereas the unfavourable comparison for p > 4 is not justified without
including the highest force derivatives by generalizing (2.13).
The question of calculation cost was also addressed by Makino [1991a].

Thus from actual N -body simulations, as opposed to a formal analysis
of extrapolation methods, it was concluded that the standard difference
formulation p = 4 is within 30% of the minimum value for a range of prac-
tical accuracies. It should be noted that higher orders would be prone to
numerical problems and be more cumbersome both as regards initializa-
tion¶ and use of the corrector.
An investigation of rational extrapolation by Sweatman [2002b] con-

tains some interesting ideas. This work generalizes the scalar extrapola-
tion formalism of Press & Spergel to a vector representation that appears
to have considerable merit. One of the expressions considered is of the
form

fv(t) =
p3t3 + p2t2 + p1t+ p0

q4t4 + q3t3 + q2t2 + q1t+ q0
, (2.17)

where p(t) is a polynomial with vector coefficients. Although a complete
N -body code based on this development has yet to be constructed, the
maximum interval of force extrapolations for a given accuracy tends to be
larger for the vector rational interpolant. In particular, there is a greater
relative increase in extrapolation time for the smallest time-steps, which
are also the most time-consuming. Hence after all this time, a new way of
looking at our old problem may result in code improvements. This theme
is taken up in the next section and has already proved itself in practical
applications.

§ For large N and ∆t, (2.16) is now used as a secondary criterion (cf. section 15.9).
¶ The higher differences may be set to zero at the expense of the time-step criterion.
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2.5 Hermite scheme

Although the standard polynomial scheme has proved itself over more
than 30 years, the rapid advance in computer technology calls for a criti-
cal appraisal and search for alternative formulations. The recent design of
special-purpose computers, to be described in chapter 13, poses a partic-
ular challenge for software developments. The essential idea is to provide
a very fast evaluation of the force and its first derivative by special hard-
ware, and these quantities are then utilized by the integration scheme
which is implemented on some front-end machine, such as a standard
workstation.
In order to increase the accuracy of integration based on the explicit

values of F and F(1), it is desirable to include a high-order corrector in
the manner of the polynomial formulation. Following Makino [1991a], we
write a Taylor series for the force and its first derivative to third order
about the reference time t as

F = F0 + F
(1)
0 t+ 1

2F
(2)
0 t2 + 1

6F
(3)
0 t3 , (2.18)

F(1) = F(1)0 + F(2)0 t+ 1
2F

(3)
0 t2 . (2.19)

Substituting F(2)0 from (2.19) into (2.18) and simplifying, we obtain the
third derivative corrector

F(3)0 = 6[2(F0 − F) + (F(1)0 + F(1))t]/t3 . (2.20)

Similarly, substitution of (2.20) into (2.18) gives the second derivative
corrector

F(2)0 = 2[−3(F0 − F)− (2F(1)0 + F(1))t]/t2 . (2.21)
Using F and F(1) evaluated at the beginning of a time-step, the

coordinates and velocities are predicted to order F(1) for all particles by

ri = [(16F
(1)
0 δt′i +

1
2F0)δt

′
i + v0]δt

′
i + r0 ,

vi = (12F
(1)
0 δt′i + F0)δt

′
i + v0 , (2.22)

where again δt′i = t− ti. Following the evaluation of F and F(1) by sum-
mation over all contributions in (2.4), the two higher derivatives are ob-
tained by (2.20) and (2.21). This gives rise to the composite corrector for
the coordinates and velocity of a particle with time-step ∆ti,

∆ri = 1
24F

(2)
0 ∆t4i +

1
120F

(3)
0 ∆t5i ,

∆vi = 1
6F

(2)
0 ∆t3i +

1
24F

(3)
0 ∆t4i . (2.23)

For the purpose of subsequent predictions, an improved value of the
second force derivative at the end of the current time-step is obtained by

F(2) = F(2)0 + F(3)0 ∆ti . (2.24)
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The prediction (2.22) can also be written in an equivalent implicit form
(cf. section 2.7) which brings out the time-symmetric nature of the Her-
mite integrator. We emphasize the simplicity of the scheme which com-
pensates for the extra operations of obtaining the force derivative. The
name Hermite is used in numerical analysis to denote a polynomial based
on the function and its derivative [see e.g. Stoer & Bulirsch, 1980, p. 52].
The basic Hermite interpolation scheme was first introduced by Makino
[1991a], who also compared the convergence characteristics with the di-
vided difference method. In addition to greater simplicity, the coefficient
in the leading error term is significantly smaller than for the corresponding
order of the polynomial representation.

2.6 Block time-steps

In order to reduce the prediction overheads of the Hermite scheme, it is
advantageous to quantize‖ the time-steps, permitting a group of particles
to be advanced at the same time [Hayli, 1967, 1974; McMillan, 1986]. In
arbitrary units, with the maximum time-step defined by ∆t1, we choose
hierarchical levels by the rule

∆tn = ∆t1/2n−1 . (2.25)

In principle, any level n may be prescribed. However, it is rare for more
than about 12 levels to be populated in a realistic simulation with N ≤
1000, increasing by a few levels for N � 104.
At the start of a calculation, the natural time-step given by (2.13), or

a suitable low-order expression, is first specified. The nearest truncated
value is then selected according to (2.25). At a general time, one of the
following three cases apply when comparing the previous time-step, ∆tp,
with the new value given by (2.13):

• Reduction by a factor 2 if ∆ti < ∆tp

• Increase by 2 if ∆ti > 2∆tp and t commensurate with 2∆tp

• No change if ∆tp < ∆ti < 2∆tp

Hence time-steps can be reduced after every application of the corrector,
and more than once if necessary, whereas increase by a factor 2 is only
permitted every other time (or a factor 4 every fourth time). This be-
haviour reminds us of an orchestra of N members, where all the different
players are in harmony. One false note, and the whole performance ends
in chaos. A schematic distribution of hierarchical time-steps is illustrated
in Fig. 2.2, where the membership at each level is arbitrary. However, the
presence of small time-steps does affect the efficiency.

‖ The phrase ‘quantization of time’ was introduced at an early stage [cf. Hayli, 1974].
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Fig. 2.2. Hierarchical time-step levels. The steps can be reduced at (a) and
increased at (b). Each level l contains nl members with time-steps ∆t1/2l−1.

Extra care is necessary when initializing Hermite integration at an ar-
bitrary time, which may be required in a sophisticated code. Thus af-
ter truncation according to (2.25), the new time-step must now also be
commensurate with the current time, t. This frequently involves large re-
duction factors; i.e. ten or more successive reductions by 2, but is the
price one must pay for such a scheme. Note that in this case, every time-
step can be increased by a factor of 2, and even by 4 every other time,
thereby reaching the appropriate value quite quickly. On the other hand,
the following advantages may be emphasized:

• The Hermite scheme is self-starting

• New polynomials do not require evaluation of (2.5)

• Stability is increased due to the explicit F(1)

• The corrector is significantly faster

• Hierarchical time-steps reduce predictions

• Special-purpose computers can obtain F and F(1)

So far, experience with the Hermite integration scheme has been very
favourable. Thus even on a standard workstation, the simpler formulation
compensates for the extra cost of evaluating F(1) explicitly, and the cor-
responding code based on the Ahmad–Cohen [1973] neighbour scheme is
slightly faster than the standard code for N � 1000 and a similar number
of steps. The Hermite scheme may also permit slightly longer time-steps
because of the increased stability of the corrector. A detailed discussion
is given by Makino [1991b] and Makino & Aarseth [1992] (but see chap-
ter 13). For a listing of the basic method see Appendix H.
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2.7 Time-symmetric method

In principle, the Hermite integration scheme can be applied to a wide
range of self-gravitating systems. However, in some problems it is possible
to take advantage of characteristic features, such as dominant two-body
motion or overall expansion. We now discuss a particular adaptation for
planetary integration, whereas the next chapter deals with a comoving
method for cosmological simulations.
Even the Hermite method produces systematic errors when integrat-

ing a two-body orbit over many periods. Instead of reducing the time-
step, which is costly, the accuracy can be controlled by employing a time-
symmetric algorithm. In fact, there are no secular errors in the semi-major
axis for periodic orbits when using a constant time-step here [Quinlan &
Tremaine, 1990]. This suggests that an application to a system of minor
bodies orbiting the Sun may be beneficial since the planetary perturba-
tions are usually small. Thus the method of Kokubo, Yoshinaga & Makino
[1998] achieves a significant improvement in the long-term accuracy by
employing almost constant time-steps combined with an iteration for the
dominant force. This scheme is quite easy to implement and fits in well
with the other predictor–corrector methods presented in this chapter.
The basic integration employs the Hermite scheme which can also be

expressed in implicit form [Hut et al., 1995; Makino et al., 1997] as

r1 = r0 + 1
2(v1 + v0)∆t− 1

10(a1 − a0)∆t2 + 1
120(ȧ1 + ȧ0)∆t3 ,

v1 = v0 + 1
2(a1 + a0)− 1

12(ȧ1 − ȧ0)∆t2 , (2.26)

where the acceleration is denoted by a. The subscripts 0 and 1 at the
beginning and end are used symmetrically, thereby making the integrator
time-symmetric. The time-steps, ∆t, are first obtained by the standard
criterion (2.13) before truncation to the nearest block-step value (cf. 2.25).
It can be verified by a simple two-body integration that (2.26) yields
essentially the same accuracy as the basic Hermite formulation. Although
the local truncation error for the coordinates is O(∆t5) compared with
O(∆t6) in the latter, the velocity error is O(∆t5) for both schemes. Note
that the simplified Hermite scheme (2.26) is expressed in terms of a and
ȧ. However, this is not more efficient than the standard form if the two
higher derivatives are used for time-step selection.
Comparisons for the two-body problem with modest eccentricity show

that the well-known errors in the standard predict–evaluate–correct
(PEC) scheme are reduced significantly by going to a P(EC)2 scheme
of the same (i.e. fourth) order. With about 200 steps per orbit for
e = 0.1 and some 100 orbits, the relative errors per orbit change from
∆a/a � −7×10−9 to � 10−12 and ∆e/e reduces from � 10−7 to � 10−11,
respectively. The main reason for this improvement is that the PEC
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corrector step is not time-symmetric [cf. Makino, 1991a]. Moreover, for a
longer interval of 105 orbits, these errors decrease essentially to zero for a
P(EC)n scheme, with n = 3 or 4. Unfortunately, the main improvements
only apply to the semi-major axis and eccentricity, which are the most im-
portant elements, whereas the argument of pericentre and the pericentre
passage time still exhibit a small linear error growth.
When going to a larger system, even the P(EC)2 scheme becomes quite

expensive since this involves recalculating all the accelerations. Note that
the original time-symmetric formulation [Hut et al., 1995] has only been
demonstrated to be viable for hierarchical triples [Funato et al., 1996] and
it is difficult to maintain shared time-steps in more complicated situations.
However, the application to planetary systems exploits the dominant so-
lar force and hence preserves some of the advantage at modest extra cost.
For most of the time, the planetesimals move on nearly circular orbits
with small perturbations. Consequently, the time-steps can remain con-
stant over long intervals when using block-steps. The main points of the
integration cycle are given by Algorithm 2.2.

Algorithm 2.2. Time-symmetric integration scheme.

1 Determine the members of the current block-step at time t
2 Predict coordinates and velocities of all particles to order Ḟ
3 Improve the coordinates and velocity of particle i to F(3)

4 Obtain the force and first derivative from the planetesimals
5 Add the dominant contributions to F and Ḟ
6 Include the Hermite corrector F(2) and F(3) for ri and vi
7 Repeat steps 5 and 6 using the corrected values
8 Specify new time-step and update the reference time, ti
9 Complete the cycle for all other particles with tj +∆tj = t

As demonstrated [Kokubo et al., 1998], the overall conservation of total
energy is improved by about two orders of magnitude compared with
the standard Hermite integration. In practice, the errors of an n = 3
iteration scheme are almost indistinguishable from the case n = 2. On the
other hand, the improved prediction at step 3 speeds up the convergence
significantly and is therefore worthwhile. Finally, it should be emphasized
that such simulations can be very expensive on workstations if the number
of planetesimals is large, since the evolution time is also rather long. This
poses the question of devising approximate methods where the distant
interactions are either neglected or included by a tree code approach, as
will be discussed in subsequent chapters.
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Neighbour treatments

3.1 Introduction

Most star clusters are characterized by large memberships that make di-
rect N -body simulations very time-consuming. In order to study such
systems, it is therefore necessary to design methods that speed up the
calculations while retaining the collisional approach. One good way to
achieve this is to employ a neighbour procedure that requires fewer total
force summations. The AC neighbour scheme [Ahmad & Cohen, 1973,
1974] has proved very effective for a variety of collisional and collision-
less problems. It is particularly suitable for combining with regularization
treatments, where dominant particles as well as perturbers can be selected
from the corresponding neighbour lists without having to search all the
particles.
The AC method can also be used for cosmological simulations. The

study of galaxy clustering usually employs initial conditions where the
dominant motions are due to the universal expansion. By introducing
comoving coordinates, we can integrate the deviations from the smooth
Hubble flow, thereby enabling much larger time-steps to be used, at least
until significant density perturbations have been formed. Naturally, such
a direct scheme cannot compete with more approximate methods, such
as the P 3M algorithm [Efstathiou & Eastwood, 1981; Couchman, 1991]
or the parallel tree code [Dubinski, 1996], which have been developed for
large N , but in some problems the ability to perform detailed modelling
may still offer considerable advantages.
Several other methods to speed up direct N -body calculations have

been tried for a wide range of problems. In subsequent sections, we pro-
vide a description of multipole expansion and grid perturbations, as well
as the so-called ‘particle in box method’. Although the potential repre-
sentation in spherical harmonics is essentially collisionless for practical

32
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Fig. 3.1. Irregular and regular steps.

purposes, such expansions can be combined with direct summation in re-
gions where encounters are important. In another class of problems, the
motions are dominated by a smooth central force field (i.e. the Solar Sys-
tem or interstellar clouds in a disc galaxy), together with an irregular force
component. One way to study such problems is to employ a perturbed
two-body formulation (p. 45). Finally, we discuss some related methods
for studying planetesimal dynamics that are based on the idea of selecting
a typical patch or azimuthal ring of particles in differential motion around
the Sun while subject to local perturbations and boundary conditions.

3.2 Ahmad–Cohen method

The main idea of the AC scheme is to reduce the effort of evaluating the
force contribution from distant particles by combining two polynomials
based on separate time-scales. Splitting the total force on a given particle
into an irregular and a regular component by

F = FI + FR , (3.1)

we can replace the full N summation in (1.1) by a sum over the n nearest
particles, together with a prediction of the distant contribution. Likewise,
(3.1) may be differentiated once for the purpose of low-order prediction.
This procedure can lead to a significant gain in efficiency, provided the
respective time-scales are well separated and n 
 N . The two-time-scale
scheme for one particle is illustrated in Fig. 3.1.
In order to predict the coordinates of neighbours at the irregular time-

steps, we need to extrapolate the regular force and its first derivative.
The former can be readily obtained from (2.3), without the term D4R and
using appropriate time arguments, t− Tk, where Tk refers to the regular
force times. Similarly, differentiation of the regular part of (3.1) using Tk

yields the corresponding derivative which should be added to F(1)I .



34 3 Neighbour treatments

To implement the AC scheme, we form a list for each particle contain-
ing all members inside a sphere of radius Rs. In addition, we include any
particles within a surrounding shell of radius 21/3Rs satisfying the con-
dition R · V < 0.1R2s/∆Ti, where again V = vi − vj and ∆Ti denotes
the regular time-step. This ensures that fast approaching particles are se-
lected from the buffer zone. A subsidiary search criterion based on m/r2

may be introduced for including more distant massive bodies.
The size of the neighbour sphere is modified at the end of each reg-

ular time-step when a total force summation is carried out. A selection
criterion based on the local number density contrast has proved itself for
a variety of problems, but may need modification for interacting subsys-
tems. To sufficient approximation, the local density contrast is given by

C =
2ni

N

(
rh
Rs

)3
, (3.2)

where ni is the current membership and rh is the half-mass radius. In
order to limit the range, we adopt a predicted membership

np = nmax(0.04C)1/2 , (3.3)

subject to np being within [0.2nmax, 0.9nmax], with nmax denoting the
maximum permitted value.∗ The new neighbour sphere radius is then
adjusted using the corresponding volume ratio, which gives

Rnews = Rolds

(
np
ni

)1/3
. (3.4)

An alternative and simpler strategy is to stabilize all neighbour mem-
berships on the same constant value np = n0 [Ahmad & Cohen, 1973;
Makino & Hut, 1988]. Since it is not clear whether this strategy is advan-
tageous, the original density-related expression which has proved itself is
still being used. A recent analysis by Spurzem, Baumgardt & Ibold [2003]
concluded that the Makino–Hut relation np ∝ N3/4 may not be neces-
sary for large systems with realistic density contrasts. Hence it appears
that relatively small neighbour numbers of about 50 are sufficient to take
advantage of the AC scheme even for N ∼ 40 000. In any case, the actual
code performance does not depend sensitively on the neighbour number
because of compensating factors: reduction of ni speeds up the irregular
force summation but leads to shorter regular time-steps. A number of
refinements are also included as follows:

• To avoid a resonance oscillation in Rs, we use (np/ni)1/6 in (3.4) if
the predicted membership lies between the old and new values

∗ As a recent refinement, ñp = np(rh/r) is now used outside the half-mass radius.
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• Rs is modified by the radial velocity factor 1+ ri ·vi∆Ti/r
2
i outside

the core

• The volume factor is only allowed to change by 25%, subject to a
time-step dependent cutoff if ∆Ti < 0.01tcr

• If ni ≤ 3, r < 3rh and the neighbours are leaving the standard
sphere, Rs is increased by 10%

Following the recalculation of the regular force, the gain or loss of par-
ticles is recorded when comparing the old and new neighbour list. Regular
force differences are first evaluated, assuming there has been no change of
neighbours. This gives rise to the provisional new regular force difference

D1R = [FnewR − (FoldI − FnewI )− FoldR ]/(t− T0) , (3.5)

where FoldR denotes the old regular force, evaluated at time T0, and the
net change of irregular force is contained in the middle brackets. In the
subsequent discussions of the ACmethod, regular times and time-steps are
distinguished using upper case characters. All current force components
are obtained using the predicted coordinates (which must be saved), rather
than the corrected values based on the irregular term D4I since otherwise
(3.5) would contain a spurious force difference. The higher differences
are formed in the standard way, whereupon the regular force corrector is
applied (if desired).
A complication arises because any change in neighbours requires ap-

propriate corrections of both the force polynomials, using the principle
of successive differentiation of (3.1). The three respective Taylor series
derivatives (2.4) and (2.5) are accumulated to yield the net change. Each
force polynomial is modified by first adding or subtracting the correction
terms to the corresponding Taylor series derivatives (2.3) (without the
D4 term), followed by a conversion to standard differences by (2.7).
Implementation of the AC scheme requires the following additional set

of regular variables: FR, D1R, D
2
R, D

3
R, ∆T, T0, T1, T2, T3, as well as the

neighbour sphere radius Rs and neighbour list of size nmax + 1. The cor-
responding code for softened potentials (NBODY 2) has been described in
considerable detail elsewhere [Aarseth, 2001b]. In the point-mass case,
close encounters are treated by KS regularization, giving rise to an anal-
ogous code for the AC scheme [Aarseth, 1985a], as well as a new Hermite
AC code with full regularization. As an application of the AC method,
we mention a scheme for studying the interaction between a star cluster
and a molecular cloud in which the latter is treated by smoothed particle
hydrodynamics [Theuns, 1992a].
The combination of the Hermite method with the AC scheme (HACS)

gives rise to a very efficient treatment. Following the discussion in chapter
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2, the implementation of these two methods is much facilitated. Here we
summarize some of the main features for evaluating the derivatives. A
full description with actual comparisons is given elsewhere for a softened
interaction potential [Makino & Aarseth, 1992].
In HACS, we need to form the current total force for the predictions as

well as for the next corrector step by the low-order extrapolation

F(t) = FI(t) + FR(T0) + F
(1)
R (T0)(t− T0) . (3.6)

Similarly, the total force derivative is just the sum

F(1)(t) = F(1)I (t) + F(1)R (T0) . (3.7)

At the end of a regular time-step, we need the equivalent of the dif-
ference (3.5), namely the change in the regular force assuming there has
been no loss or gain of neighbours, which yields

∆FR = FnewR − (FoldI − FnewI )− FoldR . (3.8)

Note that the inner bracket of (2.20) and (2.21) requires the reverse sign of
this expression. Likewise, the corresponding new regular force derivative
based on the old neighbours is given by

F(1)R = F̃(1)R − (F(1)I − F̃(1)I ) , (3.9)

where the quantities F̃(1) denote the respective new derivatives and the
terms in brackets contain the net change. Finally, we combine (3.9) with
the previous regular force derivative to form the higher derivatives used
for the corrector. If required, the corresponding corrected values at the
end of the interval may be obtained by including contributions from the
change of neighbours.
In the Hermite versions, we employ the code convention that the quan-

tities Dk denote Taylor series derivatives, rather than differences as used
in the old polynomial formulation. Consequently, the first derivatives are
initialized by

D1I = F̃
(1)
I ,

D1R = F̃(1)R . (3.10)

Construction of the second and third irregular and regular derivatives
proceeds according to (2.21) and (2.20), which are still expressed with
respect to the old neighbours. If desired, corrections for any change in
membership may be carried out by employing the explicit derivatives
given by (2.5). However, this procedure may be omitted for single particles
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(but not for c.m. particles), provided the interval for energy checks is
commensurate with the largest time-step [cf. Makino & Aarseth, 1992].
The main advantage of HACS is its simplicity and slightly improved

efficiency. It has much in common with the basic AC scheme, including a
similar number of variables. Thus the backwards times tk(k = 1, 2, 3) of
both types are no longer needed, whereas the separate variables F(1)I and
F(1)R must be introduced. A discussion of various practical aspects will be
delayed until chapter 10.

3.3 Cosmological adaptation

Cosmological N -body simulations are characterized by dominant radial
motions, with subsequent formation and growth of clusters due to density
inhomogeneities which then develop peculiar velocities. Such systems may
be studied more efficiently by a comoving formulation that integrates
the deviations from overall expansion rather than the absolute motions.
Although there are fast Fourier transform methods and tree codes for
large N , it is still of some interest to employ direct summation which can
handle more modest particle numbers (sayN � 105). Again the derivation
is based on a previous formulation [cf. Aarseth, 1985a].
In standard Newtonian cosmology, a spherical boundary of radius S

containing total mass M is governed by the equation of motion

S̈ = −GM/S2 . (3.11)

Comoving coordinates for each galaxy, ρi = ri/S, are then introduced
by scaling the physical coordinates in terms of the expansion factor. We
introduce a softened potential of the form −m/(r2+ ε20)

1/2, where ε0 may
be associated with the half-mass radius of a galaxy. After a combination
of the softened version of (1.1) with (3.11), the corresponding comoving
equation of motion takes the form

ρ̈i = −2Ṡ
S

ρ̇i −
G

S3

 N∑
j=1;j �=i

mj(ρi − ρj)
(|ρi − ρj |2 + ε2)3/2

−Mρi

 , (3.12)

where ε = ε0/S.
Although this equation may be integrated directly (say by a low-order

method), the presence of S3 in the denominator is inconvenient in the
AC scheme because of the explicit derivative corrections during neighbour
changes. This problem can be avoided by introducing the time smoothing

t′ = S3/2 . (3.13)
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Hence differentiation with respect to the fictitious time, τ , can be per-
formed using the operator d/dτ = S3/2d/dt. This gives the new velocity

ρ′
i = S3/2ρ̇i . (3.14)

Similarly, by differentiating ri = ρiS, the physical velocity is recovered
from

vi = S′ρi/S
3/2 + ρ′

i/S
1/2 . (3.15)

We note that the comoving peculiar velocities tend to increase in magni-
tude according to (3.14), whereas the fictitious time-steps are decreasing
in a similar manner. A second differentiation of (3.14) with substitution
from (3.12) then yields the new equation of motion

ρ′′
i = − S′

2S
ρ′
i −G

N∑
j=1;j �=i

mj(ρi − ρj)
(|ρi − ρj |2 + ε2)3/2

+GMρi . (3.16)

The corresponding equation of motion for S is readily derived by ap-
plying the rule of differentiation with respect to the fictitious time twice.
We introduce scaled units with G = 1 and obtain

S′′ = 3S′2/2S −MS . (3.17)

This equation may be integrated using the method of explicit derivatives.
For this purpose it is sufficient to include two further Taylor series terms,
provided that a conservative time-step is used based on for example some
fraction of (S′′/S(4))1/2. Two successive differentiations of (3.17) then give
rise to the corresponding derivatives, which simplify to

S(3) =

(
3S′2

S2
− 4M

)
S′ ,

S(4) = 15

(
S′2

2S2
−M

)
S′2

S
+ 4M2S . (3.18)

Particles crossing the boundary may be subject to a mirror reflection in
order to conserve the comoving mean density inside S. Any such particle
(i.e. ρi > 1, ρ′i > 0) is assigned an equal negative comoving radial veloc-
ity and new polynomials are initialized to avoid discontinuity effects. A
corresponding correction to the total energy can also be performed, giving

∆Ei = 2miS
′(S′ρi + Sρ′i − S′)/S3 (3.19)

when converted to physical units, where ρ′i denotes the old radial velocity.
The comoving formulation may readily be adapted to the standard AC

scheme. Thus the velocity-dependent term of (3.16) can be absorbed in the
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neighbour force. It can be seen that this viscous force acts as a cooling
during the expansion to counteract the increase in peculiar velocities.
Although the last term of (3.16) would combine naturally with the regular
force, experience has shown that it is advantageous to retain it separately;
i.e. this procedure provides increased stability at the expense of a few
additional operations. This can be readily understood from the experience
with the Hermite scheme, where the first force derivative is also obtained
by explicit differentiation. We therefore write the total force as a sum of
three contributions,

F = FI + FR +Mρi , (3.20)

where the last term is treated by explicit differentiation whenever time
derivatives are needed.
Initialization of the force polynomials is similar to the case of standard

integration, except that the softening parameter must also be differenti-
ated; i.e. ε′ = −ε0S′/S2. In the differentiation of (3.20) the three required
derivatives of ρi can be substituted from known quantities. The principle
of boot-strapping also applies during the integration when converting to
the Taylor series force derivatives (2.3) for prediction purposes.
The integration itself is quite similar to the AC scheme, but now the

boundary radius must also be advanced, instead of using the time it-
self which is less useful here. However, if desired, the physical time may
be integrated by using the explicit derivatives of (3.13) which are readily
formed. Irregular and regular time-steps are first obtained by (2.13), writ-
ten in terms of prime derivatives. In comoving coordinates, the regular
force tends to remain constant, whereas the irregular component grows
in magnitude due to increased clustering. The regular interval, δτR, is
therefore incremented iteratively by a small factor (e.g. 1.05), provided
that the predicted change of the regular force does not exceed a specified
fraction of the irregular component by

[(16 |F
(3)
R |δτR + 1

2 |F
(2)
R |)δτR + |F′R|]δτR < ηR|FI| , (3.21)

where ηR is a dimensionless tolerance parameter.
Because of the small peculiar motions of distant particles with respect

to a given particle, it is possible to omit the full coordinate prediction
when evaluating the total force (3.20). Likewise, the neighbour prediction
is performed to order F only. Also note that the softening length must
be updated frequently according to ε = ε0/S; this is done after each
integration of the boundary radius. The actual gain in efficiency depends
on the expansion rate and degree of clustering or initial peculiar velocities,
but may exceed a factor of 2 for a typical hyperbolic model with N = 4000
members (Aarseth, Gott & Turner, 1979).
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3.4 Multipole expansion

So far, we have been concerned with direct summation methods. This
approach inevitably leads to a restriction in the particle number that can
be considered. One of the biggest technical challenges is concerned with
the simulation of star clusters. Such systems usually develop a core–halo
structure with a large range in dynamical time-scale. Thus in the simple
theory of relaxation due to stellar encounters, the orbital energy of each
star changes at a rate that is related to the inverse square root of the local
density. Hence more distant stars move in essentially collisionless orbits
as far as nearest neighbour interactions are concerned. This behaviour can
be modelled by representing the cluster potential in terms of a multipole
expansion based on Legendre polynomials. First the basic formulation
as applied to the whole system is given [Aarseth, 1967]. This approach is
also relevant for other developments in stellar dynamics, such as tree codes
[Barnes & Hut, 1986] and several related multipole expansions of lower
order [Villumsen, 1982; White, 1983]. In the second part, we describe the
(unpublished) implementation of a fully consistent collisional scheme that
combines the two techniques.
Given the distribution of K mass-points inside a radius r, the total po-

tential at an external point can be expressed as a sum over the individual
contributions,

Φext = −1
r

K∑
i=1

mi

l∑
n=0

(
ri
r

)n

Pn(cos θ) , (3.22)

where Pn(cos θ) are Legendre polynomials of order n and cos θ = r ·ri/rri.
This series converges at a rate depending on the ratio ri/r and the direct
summation (1.1) is approached in the limit of large l. To third order,
this multipole expansion can be written in compact notation by [Aarseth,
1967; McMillan & Aarseth, 1993]

Φ(r) = −M

r
− Dixi

r3
− Qijxixj

2r5
− Sijx

2
ixj + S123x1x2x3

2r7
, (3.23)

where the repeated indices i and j run from 1 to 3 and xj denotes the
cyclic components of r. Explicit expressions for the monopole, dipole,
quadrupole and octupole coefficients are obtained by a summation over
the K internal particles as

M =
∑

mk ,

Di =
∑

mkxi,k ,

Qij =
∑

mk(3xi,kxj,k − |rk|2δij) ,
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Sij =
∑

mk[5(3− 2δij)x2i,k − 3|rk|2]xj,k ,

S123 =
∑

mkx1,kx2,kx3,k . (3.24)

The case of an internal point, r < ri, gives rise to an analogous expan-
sion for Φint in terms of r/ri, with the factor 1/r appearing as 1/ri inside
the first summation of (3.22). Let Φ = Φint + Φext represent the total
potential. The equation of motion for a test particle at r with respect to
the reference centre is then

r̈ = −∂Φ
∂r

− r
r

∂Φ
∂r

, (3.25)

where the second term yields only contributions for r > ri. We have also
included the dipole term here since it may not be zero in an actual simu-
lation, due to external perturbations or reference to the density centre.
For practical implementations, it is convenient to divide the mass dis-

tribution into nshell spherical shells of equal thickness, with membership
Nshell � N1/2. This facilitates using the same moment coefficients for all
the particles in one shell. The total force on a particle in shell J (> 1)
is then a sum of J − 1 internal and nshell − J external (if any) terms of
different order. In addition, we need to include contributions from the Jth
shell, which may also be divided into an internal and external region.
The gravitational attraction from a given shell, J , to the potential at r

arising from the zeroth order is

MJ =
1
r

∑
mi ,

LJ =
∑ mi

ri
, (3.26)

for the external and internal contributions, respectively. Assuming con-
stant density inside a given shell, we may approximate the corresponding
density-weighted integrals within some interval [rJ , rJ+1] by

MJ = 4πρM (r3J+1 − r3J)/3 ,

LJ = 2πρL(r2J+1 − r2J) . (3.27)

The potential at rJ < r < rJ+1 due to these contributions is then

∆ΦJ =
4π
r

∫ r

rJ

r2ρMdr + 4π
∫ rJ+1

r
rρLdr

=
MJ

r3J+1 − r3J
(r2 − r3J/r) +

LJ

r2J+1 − r2J
(r2J+1 − r2) , (3.28)

and the associated force is obtained by differentiation. The six coefficients
from the dipole term are treated in a similar way, whereas the simpler
linear interpolation is used for higher-order terms.
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The total potential, Φ, and corresponding force components can now
be obtained consistently at an arbitrary point. However, it is necessary
to subtract the self-force from the particle under consideration in order
to eliminate a systematic effect. An exact correction for this contribution
can be applied using the original expression (3.22), provided that the
coordinates r0 at the previous evaluation are known. Thus, omitting the
mass, the term k = 2 in the case r > r0 yields a force component

∆Fj =
3(r · r0)x0,j

r5
+

3
2
r20x0,j
r5

− 15
2
(r · r0)2x0,j

r7
, (3.29)

which must be subtracted. Special care is needed when r and r0 lie inside
the same shell; i.e. both the internal and external solutions must be used
in the interpolation. It can be seen that the approximation P2(cos θ) � 1
gives rise to a force −3xk/r

3 when r ≥ r0, whereas the corresponding
value for r ≤ r0 is 2xk/r

3. Hence each term of the expansion contributes
on average −xk/r

3 to the self-force and it is therefore necessary to include
these cumbersome corrections in the basic scheme.
The formulation outlined above was used to study a star cluster con-

taining N = 1000 members in the presence of an external tidal field
[Aarseth, 1967]. Although this early simulation demonstrated some de-
gree of flattening due to the tidal field, the approximate treatment of the
inner regions is not suitable for highly concentrated systems. It was not
until about 1988 that the collisionless scheme was combined with the di-
rect approach of NBODY 5 to yield a fully consistent code, which will now
be summarized for completeness. In the following we omit any reference
to two-body regularization that was also included (to be discussed in sub-
sequent sections) and concentrate on aspects relevant to the standard AC
method.
The basic strategy for a full implementation is to divide the cluster

into a small number of spherical zones of equal membership. Dictated by
the size of characteristic neighbour radii, a choice of only seven zones was
made in order to simulate a cluster population of N = 4000. Hence larger
systems might be divided into slightly more zones. The shell radii are
redetermined at least once per crossing time, whereas new moments are
evaluated at conservative intervals of 0.004tcr which still exceed the typical
regular time-steps and therefore this effort does not add significantly to
the overheads.
As might be expected, the neighbour scheme itself is not affected by the

new treatment. Before the evaluation of the total force, we determine an
inner and outer shell index, Ik (k = 1, 2), such that the actual summation
is restricted only to the associated particles. These boundaries are chosen
by comparing the shell radii Rshell with the range r±2Rs, which in practice
represents the maximum for neighbour selection (after including some
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additional criteria). Here, the distance r is measured with respect to the
so-called ‘density (or symmetry) centre’ of the cluster. Hence, the direct
summation is only made over some fraction of the total membership.
Finally, the contributions from the moments are added to yield the total
force.
The advantages of a full-blown moment scheme can be summarized as

follows:

• There is no need to subtract the self-force contribution

• Convergence of (3.22) is increased by avoiding the nearest zones

• The treatment in a dense core requires only evaluation of Φint

• A considerable efficiency gain is achieved at modest extra cost

3.5 Grid perturbations

Historically, several early N -body simulations were devoted to large scales
(i.e. clusters of galaxies) since the time was not ripe for an attack on the
technically more challenging star cluster problem. The realization that
such an approach might also be fruitful for planetary systems developed
more slowly. An early attempt by Hills [1970] investigated the evolution
of planetary orbits towards more stable configurations. The work of Cox
& Lewis [1980] introduced a greater degree of realism by allowing for
physical collisions in an ensemble of 100 planetesimals distributed inside
a thin ring. However, in this study the orbits were Keplerian, except
when two bodies came within the sphere of influence, whereupon the
encounter was treated by a special three-body algorithm obtained from
fitting functions. Here we discuss a direct N -body scheme, suitable for
a flattened system, where the numerical effort is reduced by including
only those perturbations that are significant. The basic method has been
described elsewhere [Aarseth, 1985a], together with the results [Lecar &
Aarseth, 1986].
In the case of a flattened system of planetesimals orbiting the Sun, it is

convenient to perform the calculation in a heliocentric coordinate system.
The equation of motion for one body of mass mi and relative coordinates
ri is then given by [Brouwer & Clemence, 1961]

r̈i = −Ms +mi

r3i
ri −

N∑
j=1;j �=i

mj

(
ri − rj
|ri − rj |3 +

rj
r3j

)
, (3.30)

whereMs denotes the mass of the Sun. In the planetesimal case,mi 
 Ms

and the orbits are subject to a large number of weak encounters with an
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occasional close approach. Moreover, the system is characterized by dif-
ferential rotation, such that nearby orbits suffer significant gravitational
focusing that induces changes in the eccentricity. The essential features of
the evolution are therefore preserved if we exclude the numerous distant
interactions from the summation (3.30).
Let us divide the orbital plane intoNa heliocentric azimuthal zones. The

active perturbers for inclusion in (3.30) are then selected within an angle
2π(na + 1)/Na centred on the zone associated with mi, where na is the
number of perturber zones on either side, making 2na +1 zones (or bins)
in all. In order to minimize systematic errors caused by non-symmetrical
edge effects, the choice of Na is a compromise between resolution and
computational effort. During the early stage when N is relatively large,
all indirect terms of (3.30) are also neglected. Thus for a uniform angular
distribution, the vectorial contributions in each annular ring tend to cancel
and only the small fluctuating part of the indirect accelerations is therefore
neglected.
For an actual simulation, the membership,N , is determined by the total

planetesimal mass as well as the extent of the system. If a narrow ring
is chosen, then undesirable boundary effects are introduced. However, we
can increase the ring width, and thereby N , by restricting the perturber
selection also in the radial direction to speed up the calculation. Let the
particles be distributed initially within an annular ring of radius R1 and
R2. We choose radial zones at rk = R2/k

1/2, with k = 1, 2, . . ., such that
the grid cells are smaller in the inner regions. Let nr denote the number
of zones to be included on either side of the current particle zone. Each
particle j is then assigned a radial zone index kj = [R22/r

2
j ] with kj = 0

for rj > R2, and an azimuthal index lj = 1 + [Naφj/2π], where φj is
the corresponding phase angle. Active perturbers for particle i must then
satisfy the conditions

|lj − li| ≤ na , (3.31)
|kj − ki| ≤ nr . (3.32)

The storage requirement for this scheme is quite modest. A matrix Laj

contains the list of all particles in each azimuthal zone, whereas kj and lj
are obtained from lists Lφ and Lr of size N . These lists are then updated
as necessary at the end of each integration cycle. Although the grid cells
provide a strictly two-dimensional (2D) description, this representation
can also be used for flattened systems. In that case, the third dimension
is ignored when assigning perturber zones. This device enables systems
with thickness of several typical grid cells to be studied efficiently.
The numerical integrations are performed using the standard differences

described in chapter 2, with the coordinates of active perturbers predicted
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to order F(1). As a new feature of N -body integrations, we have imple-
mented the energy stabilization of Baumgarte [1973] in order to reduce
the usual systematic errors associated with elliptic orbits. The concept
of energy stabilization was originally introduced by Nacozy [1972] as a
least-squares correction procedure involving an expensive recalculation of
the total energy at frequent intervals. In the case of dominant two-body
motion, we ensure that solutions stay on the correct energy surface by
introducing a control term in the equation of motion which now takes the
form

r̈i = −Ms +mi

r3i
ri +Pi − α(h̃i − hi)

v2i
vi , (3.33)

where Pi is the perturbing force, with or without the indirect terms. Here,
the last term represents the difference between the explicitly calculated
and integrated two-body binding energy per unit reduced mass, respec-
tively, and α is a parameter which depends on the time-step. Initially, the
binding energy is evaluated by the standard two-body expression

hi =
1
2
v2i − (Ms +mi)/ri , (3.34)

and subsequent values are obtained by integrating the equation of motion

ḣi = vi ·Pi . (3.35)

The quantity h̃i is calculated from (3.34) at the start of each integration
cycle, when the osculating orbit is known to the highest order. The correc-
tion term is then included in the force when predicting the coordinates and
velocity of mi to third order, but is not added explicitly to F itself (and
hence is absent from the force differences). Following some experimenta-
tion which depends on the integration scheme, we choose α = 0.4/∆ti [cf.
Baumgarte & Stiefel, 1974].
The effectiveness of the stabilization procedure depends on the relative

two-body perturbation defined by

γi = |Pi|r2i /Ms . (3.36)

Hence it is prudent to omit the stabilizer from (3.33) if the perturbation
exceeds some specified value, γcr, when the conic reference orbit is not a
good approximation. The solution is continued with a new osculating en-
ergy once the perturbation becomes sufficiently small again. However, the
overheads due to initialization are relatively modest in typical planetes-
imal systems. We also note that the extra cost of including stabilization
is relatively small, since Pi is already known.
Individual time-steps are again determined by the relative convergence

criterion (2.13). In addition, there is a further reduction by a factor
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1 + 4(γi/γcr)2 if γi ≤ γcr or by 4 if γi > γcr. The former reduction fa-
cilitates the detection of collisions, whereas the latter improves further
the treatment of close encounters. A discussion of the collision procedures
and other practical details of this scheme will be deferred until the relevant
section on applications.
Finally, we include some technical improvements here that resulted from

a further investigation of planetary formation [Beaugé & Aarseth, 1990].
In view of the long-range effect of massive bodies that form by accretion,
it is desirable to employ a mass-dependent perturber criterion, instead of
using a constant number of azimuthal bins. Thus the perturbation from
so-called ‘embryo planets’ (mi > 4m0, where m0 is the initial mass) were
included out to at least four radial bins on either side. For smaller masses,
perturbations were considered when the difference in azimuthal bins by
(3.31) were at most an integer determined by nb = 1 + (mi/m0)1/2Nb,
with Nb a parameter depending on the requirements. This refinement is
particularly beneficial when the process of fragmentation is studied, since
there may be a large number of bodies with small (< m0) masses, while at
the same time the long-range effect of an embryo is treated more carefully.
Once this critical mass has been reached, it is also desirable (and not too
expensive) to include all the interactions for these emerging planets in
order to have more confidence in the final result.
The grid perturbation method was initially devised for studying an

interacting ring of molecular clouds in the Galaxy [cf. Aarseth, 1988b],
and this application will be discussed in a later chapter.

3.6 Particle in box

In spite of the efficiency gain achieved by the grid perturbation method,
direct integration of planetesimals is still quite expensive and therefore
only suitable for the later stages. During the earlier stages, when the par-
ticle number is large, different local regions tend to evolve in a self-similar
manner. Based on this assumption, Wisdom & Tremaine [1988] presented
a scheme for studying the collisions of massless particles in a small patch
of particles with periodic boundaries in differential rotation about a cen-
tral planet. Here we are interested in including the mutual gravitational
interactions. Because of the long-range nature of such interactions, it is
also necessary to add the forces from similar neighbouring regions. Hence
this box scheme actually involves force summations over eight surround-
ing shadow boxes in addition to the usual gravitational interactions, and
collisions between ghost particles and real particles across the boundaries
are also taken into account.
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We adopt a rotating coordinate system with origin at the box centre
and the x-axis pointing away from the Sun, which is located at x = −a.
Let the y-axis be in the direction of circular motion with angular velocity
Ω. The linearized equations of motion for a given particle can then be
written as [Aarseth, Lin & Palmer, 1993]

ẍ = 3Ω2x+ 2Ωẏ + Fx + Px ,

ÿ = −2Ωẋ+ Fy + Py ,

z̈ = −Ω2z + Fz + Pz , (3.37)

where the total force (per unit mass) is expressed as the sum of the usual
internal force F and the ghost contributions P.
In order to evaluate particle coordinates and velocities in the ghost

boxes, we construct a 2D transformation matrix with components Xb, Yb.
Let the central box be contained within an area given by ±Rb in the x−y
plane. The eight surrounding boxes are labelled sequentially from 1 to 8,
with the respective coordinates of the initial box centres defined by the
matrix

(Xb, Yb) = (−1,−1), (0,−1), (1,−1), (−1, 0), (1, 0), (−1, 1), (0, 1), (1, 1)
(3.38)

when expressed in units of the box size, Sb = 2Rb, (
 a). The centres
of the six boxes for which Xb < 0 or Xb > 0 are subject to differential
rotation about the central body. This shearing motion is included by
introducing the sliding distance

D = 3
2ΩSbt+Rb − (K + 0.5)Sb (3.39)

where K = (32ΩSbt + Rb)/Sb denotes the integer part. Figure 3.2 shows
the geometry of the sliding box configuration.
In order to obtain the force due to the members of a ghost box of

index L∗, we first define appropriate displacements which are added to
the corresponding coordinates of a central box particle at xj , yj . This
yields the ghost particle coordinates

xg = xj +Xb(L∗)Sb ,
yg = yj +Xb(L∗)D + Yb(L∗)Sb . (3.40)

An additional check is carried out to ensure that yg falls inside the range
[(Yb(L∗)−0.5)Sb] to [(Yb(L∗)+0.5)Sb], otherwise it is modified by adding
or subtracting the box size, Sb.
Collisions play an important role in planetesimal systems. For rigid

particles we define a collision by the overlapping condition r < ri + rj ,
which refers to the sum of the two relevant radii. The outcome of a
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Fig. 3.2. Sliding boxes.

physical collision depends on the impact energy as well as the coefficient
of restitution. In the case involving a ghost particle near the boundary we
first determine the coordinate and velocity displacements

∆x = Xb(L∗)Sb ,
∆y = Xb(L∗)D + Yb(L∗)Sb ,
∆ẏ = −3

2ΩXb(L
∗)Sb , (3.41)

where L∗ denotes the relevant box index for the transformation matrix
Xb. Once a collision has been accepted, the second component is predicted
to highest order and any ghost displacement terms are added. From the
velocity of each particle mk with respect to the c.m.,

wk =
(rk − rcm) · (ṙk − ṙcm)

|rk − rcm|2 (rk − rcm) , (3.42)

we determine the new reflected velocity by

ṙ′k = ṙk − (1 + εr)wk , (3.43)

where εr is the coefficient of restitution. The case of small impact velocity
is treated as an enforced coalescence in order to prevent excessive inte-
gration of the sliding phase, and similarly for a semi-major axis smaller
than the overlapping distance. After the reflection, force polynomials are
initialized for both components in the usual way.
In order to speed up the calculation, a fast square root procedure [cf.

Aarseth et al., 1993] was developed† outside a radius Rs = Sb/π
1/2N1/4.

The distance Rs also serves to identify neighbours that are predicted to

† The square root function was relatively expensive on older computers.
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order Ḟ before the force evaluation. Upon obtaining the total force, each
planetesimal is advanced a small time interval to ensure convergence of the
fourth-order fitting polynomial. Since these time intervals may span many
orders of magnitude, it is again beneficial to use individual time-steps. The
basic time-step is chosen by a nearest neighbour criterion involving the
relative distance, r, and velocity, v, according to

∆ti = min {η r/v, ∆tmax} , (3.44)

where ∆tmax = 2πβ/Ω denotes the maximum value. The standard pa-
rameters η = 0.02, β = 0.003 ensure collision detection. In the case that
the closest particle is a ghost, the y-component of the relative velocity is
modified by the sliding factor ∆ẏ above.
The last part of the integration cycle treats boundary crossings, defined

by |x| > Rb or |y| > Rb. After identifying the relevant box index, L∗, of
the corresponding ghost particle, the new coordinates and y-velocity of
the injected particle are obtained by

x′ = x−Xb(L∗)Sb ,
y′ = y −Xb(L∗)D − Yb(L∗)Sb ,
ẏ′ = ẏ + 3

2ΩXb(L
∗)Sb . (3.45)

Finally, the increments 32ΩSbXb(L
∗) and ∆Jz = 1

2ΩaSbXb(L
∗) are added

to the y-component of the linear momentum and the z-component of the
angular momentum in order to achieve conservation during the boundary
crossing.

3.7 Ring scheme

The development of new integration methods sometimes faces subtle prob-
lems which may introduce spurious effects. Accordingly, it is also useful to
be aware of unsuccessful implementations. In this spirit we discuss a ring
formulation that has some similarities with the box method of section 3.6
but is also based on the grid perturbation scheme of section 3.5 [Lin &
Aarseth, unpublished, 1997]. Let us consider the dynamical interactions
of a thin circular ring of planetesimals moving around the Sun. This de-
scription takes into account the curvature of the orbit and therefore would
permit the study of more advanced stages of evolution when the collisional
mean free path becomes comparable to 2πa. Moreover, the treatment of
the physical processes involving collisions can be readily taken over with
little modification.
As long as the planetesimal masses remain small, the main effects of the

gravitational interactions are due to neighbours within a few per cent of
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the system size. We therefore employ the 2D perturbation scheme of sec-
tion 3.5 in which only the nearest members are included as perturbers. In
the present formulation, we are mainly concerned with a relatively narrow
ring of small planetesimals. For this reason it is sufficient to divide the
system into a set of Na azimuthal segments which are used for the per-
turber selection. The total force on a given planetesimal then consists of
contributions from a fixed number of neighbouring perturber bins that are
added to the solar term according to (3.37), except that the z-component
is included directly to prevent growth after boundary reflections. Here the
perturbing force field due to the planetesimals is obtained by summation
over the central ring as well as the two adjacent ghost rings, using the
sliding box procedure.
Implementation of this neighbour scheme requires a matrix Laj (typi-

cally of size Na × N1/2) containing the locations of all members in each
azimuthal bin together with a reference array La of size N . Here, the az-
imuthal index of a planetesimal, j, is given by lj = 1 + [Naφj/2π], where
φj is the phase angle. Active perturbers for particle i must then satisfy
the condition (3.31), where Na is a specified parameter.
The centres of the ghost rings are located at different radii from the

Sun. Hence the sliding-ring procedure introduces not only different semi-
major axes but also eccentricity and inclination distributions for the ghost
particles. This prescription can lead to artificial heating and spurious
torque due to other rings and similar problems also arise from boundary
crossings.
A simplified scheme, based on direct integration of a narrow ring of

planetesimals by GRAPE-4, used a procedure in which the eccentricity
and inclination were modified to fit the local rms values [Kokubo & Ida,
2000]. Using a selective semi-major axis boundary criterion affects the
velocity distribution such that the tangential component becomes larger
than the Keplerian circular velocity near the inner boundary, and vice
versa. This velocity anomaly exerts a torque at the ring boundary that
tends to shrink the ring. Hence it was argued that the artificial torque due
to the boundary condition is to some extent compensated by the finite ring
approximation. Although the most massive protoplanets were confined
inside the ring during the later stages, this claim was not substantiated
and all that can be said is that the effect of gas drag appears to be more
important. In conclusion, the present ring scheme was abandoned after
several attempts of introducing consistent ghost-ring prescriptions and
boundary crossing conditions which do not lead to artificial heating or
cooling.
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Two-body regularization

4.1 Introduction

Sooner or later during the integration of an N -body system close encoun-
ters create configurations that lead to difficulties or at best become very
time-consuming if studied by direct methods. On further investigation one
usually finds a binary of short period slowing down the calculation and in-
troducing unacceptable systematic errors. Moreover, the eccentricity may
attain a large value that necessitates small time-steps in the pericentre
region unless special features are introduced. It can be seen that a rela-
tive criterion of the type (ηR/|F|)1/2 for a binary yields an approximate
time-step ∆t ∝ R3/2, where R is the two-body separation. From this it
follows that eccentric orbits require more steps for the same period. Even
a relatively isolated binary may therefore become quite expensive to in-
tegrate as well as cause a significant drift in the total system energy. It
is convenient to characterize the systematic error of a binary integration
by the relative change per Kepler orbit, α = ∆a/a. For example, using
the basic Hermite method we find α = −1.3 × 10−6 with 270 steps per
orbit and an eccentricity e = 0.9. At this rate of inward spiralling, the
binary energy would be significantly affected after 104 − 105 periods. Al-
though better behaved, less eccentric systems are also time-consuming,
giving α = −4×10−8 for e = 0.2 and 135 steps per orbit. These examples
highlight the numerical problems associated with the integration of close
binaries and point to the need for improved treatments.
There is a long tradition in celestial mechanics for dealing with domi-

nant two-body motion, and we start with some simple developments that
are based on time transformations before moving on to more complicated
formulations. Naturally, one cannot expect the full treatment by paying
half the price, but so-called ‘time smoothing’ serves as a good introduc-
tion to the subject of regularization. It might be considered a bit of an

51
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overkill that regularization itself deals with the removal of the collision
singularity in the equations of motion. However, experience shows that
the transformed equations are much better behaved, even for a circular
orbit of the same period. Thus we speak about the benefits of numerical
regularization for binaries that may be considered close. The alternative
concept of a hard binary [Heggie, 1972b, 1975; Fullerton & Hills, 1982] is
slightly more precise, and the corresponding energy may be defined by

εhard = −m̄σ2 , (4.1)

where σ is the velocity dispersion. Using the virial theorem for a bound
system of total mass M we write σ2 � GM/2rh, where rh is the half-mass
radius. Hence substitution in (4.1) gives ahard = rh/N as a characteristic
hard binary semi-major axis for components of mean mass. The dynamical
significance of a hard binary is that it has sufficient binding energy to
avoid being disrupted by an incoming particle at twice the rms kinetic
energy, which is an approximate representation of the central conditions.
After these basic considerations we turn to various technical treatments.

4.2 Principles of regularization

The equation of relative motion for a binary with mass componentsmk,ml

and separation R is given by

R̈ = −(mk +ml)R/R3 + Fkl , (4.2)

where Fkl = Fk−Fl is the external perturbation. In the case of dominant
two-body motion it is convenient to define the relative perturbation as
γ = |Fkl|R2/(mk+ml), which measures the strength of the external tidal
acceleration. For small γ, the first term of (4.2) is responsible for the
numerical problems outlined in the previous section. We now introduce a
differential time transformation by

dt = Rndτ , (4.3)

where the exponent n can take arbitrary values for experimentation. We
denote differentiation with respect to the fictitious time, τ , by primes and
construct the operators

d

dt
=

1
Rn

d

dτ
, (4.4)

d2

dt2
=

1
R2n

d2

dτ2
− n

R′

R2n+1
d

dτ
. (4.5)

Substitution for the second derivative in (4.2) yields the new equation of
motion

R′′ = nR′R′/R− (mk +ml)R/R3−2n +R2nFkl . (4.6)
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The classical choice n = 1 [Sundman, 1912] replaces the R−2 type
singularity by an undetermined expression, R/R, as R → 0 which is
clearly better behaved for small separations. In section 3.3 we introduced
the value n = 3/2 together with comoving coordinates for cosmological
equations of motion. This is also a good compromise for eccentric two-
body orbits since using the eccentric anomaly (n = 1) is favourable at
apocentre and the true anomaly (n = 2) is better at pericentre.
Other alternative smoothing functions have been examined [Zare & Sze-

behely, 1975]. In particular, it was found that the inverse Lagrangian func-
tion offers practical advantages. However, for most purposes, integration
of the perturbed two-body problem with the time transformation t′ = R
is preferable when it comes to two-body regularization. For completeness,
we also mention a brave early attempt to introduce time smoothing based
on the potential or kinetic energy of the most strongly bound cluster mem-
bers [Heggie, 1972a]. Although the requirement of equal time-steps proved
too expensive as far as star cluster simulations are concerned, this method
was put to good use in a series of three-body scattering experiments [Hills,
1975].
The essential idea behind regularization is to transform both the time

and the coordinates, and the latter proves much harder in the general
case of three-dimensional (3D) motion. Since we are discussing the basic
concept here, this can be done in 1D, which permits simplifications to be
made in the absence of the term R/R with n = 1. If we neglect external
perturbations and set t′ = x, equation (4.6) reduces to

x′′ = x′2/x− (mk +ml) . (4.7)

To proceed we make use of the binding energy per unit reduced mass,

h = 1
2Ṙ

2 − (mk +ml)/R , (4.8)

which is a constant of the motion evaluated from the initial conditions.
Substitution of ẋ = x′/x from (4.4) then gives

x′′ = 2hx+ (mk +ml) . (4.9)

As can be readily seen, this equation is regular∗ for x → 0. However, the
displaced harmonic oscillator equation can be simplified by introducing
new coordinates from the relation u2 = x. Twice differentiation of u2,
with one more use of the energy equation, finally yields the extremely
simple result

u′′ = 1
2hu . (4.10)

We note that the coordinate transformation has reduced the frequency
by a factor of 2, as well as eliminated the constant term.

∗ Regularization of two-body collision in 1D is attributed to Euler [cf. Szebehely, 1967].
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In summary, the motion of two mass-points on a line can be integrated
to high accuracy even though collisions take place. It is useful from a
practical point of view to consider 1D as the limiting case for the eccen-
tricity approaching unity. Finally, such an orbit may be calculated with
constant time-step,

∆τ = ηU/|2h|1/2 , (4.11)

where ηU/2π is a specified fraction of the physical period.

4.3 Levi-Civita transformation

An increase of dimension from 1D to 2D first is quite instructive since
it deals with the undetermined expression R/R. By analogy with the
former development, we write R = u21 + u22 which permits the coordinate
transformation for the components x and y, denoted R1 and R2,

R1 = u21 − u22 ,

R2 = 2u1u2 . (4.12)

By summation of the squares, it is readily verified that the original relation
is recovered. The transformation (4.12) may be written as

R = L(u)u , (4.13)

where the Levi-Civita [1920] matrix is given by

L(u) =
[
u1 −u2
u2 u1

]
. (4.14)

The formal derivation of two-body regularization in 2D may be done in
terms of manipulations with the Levi-Civita matrix. In the following we
follow the presentation of Bettis & Szebehely [1972]. According to Stiefel
& Scheifele [1971], the linear matrix (4.14) has the properties

LT(u)L(u) = RI ,
L′(u) = L(u′) ,
L(u)v = L(v)u ,

u · uL(v)v − 2u · vL(u)v + v · vL(u)u = 0 . (4.15)

Here I is the unit matrix and u,v are arbitrary vectors. The second of
these equations holds for linear matrices, whereas the third obeys the
commutative rule and the fourth defines the so-called ‘bilinear relation’.
We now aim to express (4.6) in terms of the new dependent variable u.

The first regularized derivative of (4.13) is readily derived by employing
the second and third properties (4.15), which yields

R′ = 2L(u)u′ . (4.16)
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From L′(u) = L(u′) we then obtain

R′′ = 2L(u)u′′ + 2L(u′)u′ . (4.17)

Using this form for R′′, we substitute (4.13) and (4.16) in (4.6) with the
choice n = 1 to give

2u · uL(u)u′′ + 2u · uL(u′)u′ − 4u · u′L(u)u′ + (mk +ml)L(u)u
= (u · u)3Fkl , (4.18)

where R′ = 2u · u′ has been substituted for the scalar radial velocity. By
virtue of the last equation (4.15), this expression reduces to

2u · uL(u)u′′ − 2u′ · u′L(u)u+ (mk +ml)L(u)u = (u · u)3Fkl . (4.19)

In the next step we multiply by L−1(u) and introduce the transpose
defined by the first relation (4.15), which results in

u′′ + 1
2{[(mk +ml)− 2u′ · u′]/u · u}u = 1

2u · uLT(u)Fkl . (4.20)

From (4.16) and the definition Ṙ = R′/R this yields the velocity trans-
formation

Ṙ = 2L(u)u′/R . (4.21)

Combining (4.21) with ṘT = 2u′LT(u)/R and the orthogonality condi-
tion, we obtain the simplified square velocity relation

Ṙ2 = 4u′ · u′/R . (4.22)

With u ·u = R, this enables the final equation of motion to be written as

u′′ = 1
2hu+

1
2RLT(u)Fkl . (4.23)

By (4.8) and (4.22), the binding energy per unit reduced mass takes the
form

h = [(2u′ · u′ − (mk +ml)]/R . (4.24)

The two-body energy h changes with time due to the perturbing force.
The scalar product of Ṙ and (4.2) leads to the rate of energy change

d

dt

[
1
2Ṙ

2 − (mk +ml)
R

]
= Ṙ · Fkl , (4.25)

which reproduces the well-known expression ḣ = Ṙ · Fkl. Conversion to
regularized derivative by h′ = R′ · Fkl and use of the velocity expression
(4.16) then results in the equation of motion

h′ = 2u′ · LT(u)Fkl . (4.26)

We conclude this derivation by remarking that the beautiful Levi-Civita
treatment is seldom used in practical work. It is particularly suitable for
educational purposes when introducing students to the subject.
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4.4 Kustaanheimo–Stiefel method

The relations (4.12) exploit properties of mapping in the complex plane;
hence generalization to 3D is not possible. This stumbling block prevented
progress until it was realized by Kustaanheimo & Stiefel [1965] that a 4D
formulation could be achieved. Their generalization of the Levi-Civita
formalism gave rise to the 4× 4 matrix

L(u) =


u1 −u2 −u3 u4
u2 u1 −u4 −u3
u3 u4 u1 u2
u4 −u3 u2 −u1

 . (4.27)

It is convenient to use the same symbol as in (4.14) since it is clear from the
context which formulation is intended. Now the basic relation (4.13) still
applies but, because of some redundancy, a fourth fictitious coordinate
and corresponding velocity is introduced. For completeness, the explicit
components of R are given by

R1 = u21 − u22 − u23 + u24 ,

R2 = 2(u1u2 − u3u4) ,
R3 = 2(u1u3 + u2u4) ,
R4 = 0 . (4.28)

Note that the fourth component of R is zero by application of (4.13). As
can be readily verified, the square root of the sum of the distance squares
(4.28) simplifies to

R = u21 + u22 + u23 + u24 . (4.29)
When we go from a 2D to a 4D treatment, the fourth property (4.15)

is not satisfied in general. Thus it can be shown [Stiefel & Scheifele, 1971]
that for this to be the case, we require the relation

u4u
′
1 − u3u

′
2 + u2u

′
3 − u1u

′
4 = 0 . (4.30)

This is called the bilinear relation and plays a fundamental role for un-
derstanding some theoretical aspects of the development† [cf. Stiefel &
Scheifele, 1971]. In practical terms, it is a constraint and corresponds to
the identity Ṙ4 = 0. Here we merely remark that (4.30) may also be used
as a check on the reliability of the numerical solutions, although this does
not seem to have been tried.
Since one of the components of u is arbitrary, we have some freedom

of choice when it comes to specifying the initial components. If R1 > 0,
we combine the first equation (4.28) with (4.29), which results in

u21 + u24 =
1
2(R1 +R) . (4.31)

† An alternative derivation of the KS variables clarifies its meaning [Yoshida, 1982].
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The redundancy choice u4 = 0 then gives rise to the relations

u1 = [12(R1 +R)]1/2 ,

u2 = 1
2R2/u1 ,

u3 = 1
2R3/u1 . (4.32)

Likewise, if R1 < 0, we subtract the first equation (4.28) from (4.29) and
obtain

u22 + u23 =
1
2(R−R1) . (4.33)

Thus by setting u3 = 0 we have

u2 = [12(R−R1)]1/2 ,

u1 = 1
2R2/u2 ,

u4 = 1
2R3/u2 . (4.34)

The reason for these alternatives is that the initial values must be numer-
ically well defined, and this is ensured by the above choice.
We also need an expression for the initial regularized velocity, u′. This

is achieved by inverting (4.16) and making use of the first relation (4.15),
which leads to

u′ = 1
2L(u)R′/R . (4.35)

Using the definition (4.4), we have Ṙ = R′/R. This yields the more con-
venient expression

u′ = 1
2L(u)Ṙ . (4.36)

From the above, it can be seen that the 2D formalism carries over
to the KS treatment of 3D systems. However, as emphasized by Stiefel
& Scheifele [1971], the same line of approach in going from the time-
smoothed equations of motion (4.6) to (4.23) cannot be repeated in the
general case. The reason is that the KS transformation is ambiguous and
there is no unique set of vectors u for a givenR. Accordingly, the only way
around this difficulty is to postulate the form (4.23) and verify that the
original equations of motion are satisfied. Following this formal exercise,
we omit the argument from the Levi-Civita matrix and also represent the
perturbing force as F for simplicity. Hence the equations of motion take
the final form

u′′ = 1
2hu+

1
2RLTF , (4.37)

h′ = 2u′ · LTF , (4.38)
t′ = u · u . (4.39)

It is evident that these equations are well behaved for R → 0. In partic-
ular, the relative contribution from the perturbing term is proportional to
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R3 for a circular orbit. Consequently, h tends to a constant rapidly with
decreasing perturbation. A total of ten regularized equations are required
in order to obtain the solution for the relative motion, compared with
just six in the case of direct integration. The method employed here is
based on the standard polynomial or Hermite formulations and will be
discussed in a subsequent chapter.
In practical applications, the question arises of how to determine the

physical time. Notwithstanding the concept of the time element [cf. Stiefel
& Scheifele, 1971], which has proved useful in satellite theory, a direct
integration of (4.39) to high order has some merit. First, it can also be
employed for near-parabolic and hyperbolic motion. A second advantage
is that it is suitable during intervals of strong perturbations. Hence the
simplicity of such a treatment for general N -body problems outweighs
some loss of accuracy for small perturbations on elliptic orbits when phase
errors may be tolerated.
For future reference we note that when using the KS variables, the

semi-major axis is obtained from a = −1
2(mk + ml)/h. Another useful

expression is the eccentricity, evaluated at an arbitrary phase in the orbit
by means of the eccentric anomaly. Hence combining e cos θ = 1 − R/a
and e sin θ = R · Ṙ/[(mk +ml)a]1/2 we have

e2 = (1−R/a)2 + 4(u · u′)2/(mk +ml)a . (4.40)

Here we have used the definition R′ = ṘR and substituted from t′′ = R′
by (4.39).
To describe the motion completely, we introduce the centre of mass as

a fictitious particle. The corresponding equation of motion is given by the
mass-weighted sum of perturbations,

r̈cm = (mkFk +mlFl)/(mk +ml) . (4.41)

Note that the dominant two-body interaction cancels analytically here.
Accordingly, the spatial coordinates of the components are recovered from

rk = rcm + µR/mk ,

rl = rcm − µR/ml , (4.42)

with µ = mkml/(mk +ml), and similarly for the velocities ṙk, ṙl. Further
details of how to obtain the complete solutions are given in a later chapter.
The device of energy stabilization has also been tried with success.

Following the discussion of section 3.5, we generalize (4.37) from (3.33)
and include a correction term which yields

u′′ = 1
2hu+

1
2RLT F− α(h̃− h)Ru′/(mk +ml) . (4.43)
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Accordingly, h̃R is calculated explicitly at every step (cf. 4.24) and this
quantity is well defined for R → 0. Likewise for the scaling factor α, which
we take to be 0.4/∆τ on dimensional grounds, with the numerical constant
being an optimum choice for the present integration scheme. Although the
perturbation may be arbitrarily large in principle because the integration
step is shortened, the stabilizing term should only be included for fairly
modest values.
The standard KS formulation has also been implemented for a real

application to geocentric satellite orbits [Palmer et al., 1998]. Compar-
isons with direct integration showed that the regularized equations are
beneficial for obtaining accurate solutions of highly eccentric orbits.
On a historical note, the first application of KS regularization to the

N -body problem was given by Peters [1968a,b]. This development made
use of the elegant Hamiltonian formalism which will be exploited in the
next chapter. Numerical examples for N = 3 [Szebehely & Peters, 1967]
and N = 25 [Peters, 1968b] were discussed at an early stage. In particular,
the former study illustrating a sequence of close encounters did much to
publicize the power of regularization in stellar dynamics.
It may also be remarked that the earliest N -body implementations of

KS employed the explicit recalculation of (4.24) instead of integrating the
perturbation effect according to (4.26). However, very soon thereafter it
was realized that the latter procedure is advantageous [Bettis & Szebehely,
1972; Aarseth, 1972b]. One of the reasons for the improved behaviour is
that the explicit expression involves the predicted velocity which is known
to lower order, but in addition the singular nature of (4.24) gives rise to
growing oscillations at small separations.
Some advantages in adopting regularization of dominant two-body mo-

tion may be summarized as follows:

• The equations of motion are regular and well behaved for R → 0

• A smaller number of integration steps per orbit is required

• The numerical stability of even circular motion is improved

• Further error reduction may be achieved by rectification‡

• Distant contributions can be neglected since F ∝ 1/r3

• Two-body elements can be used to study tidal interactions

The main point on the debit side is the need for coordinate transforma-
tions. However, the number of operations involved is not very large and
no square root is required. In the next section we discuss an alternative
regularization that employs the actual physical variables.

‡ Rescaling of u, u′ to the correct value of h will be discussed in chapter 11.
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4.5 Burdet–Heggie alternative

Although elegant, the KS formulation involves frequent transformations
from the coordinates u to rk, rl, as well as setting up the initial relations
(4.32). Such complications may act as a deterrent to the new practitioner
who has to get used to working with fictitious quantities. It is therefore
of interest to present an alternative method that is based on physical
coordinates, thereby avoiding repetitive transformations. In the following
we discuss the independent derivation of Heggie [1973], although an earlier
formulation was presented by Burdet [1967, 1968].
We begin by choosing the standard time transformation, t′ = R, which

again gives rise to an equation of motion of the form

R′′ = R′R′/R−MR/R+R2F , (4.44)

with the notation M = mk +ml.
Following Heggie [1973], let us define the quantities P and B by§

P = −2M/R+R′2/R2 ,
B = MR/R−R′2R/R2 +R′R′/R . (4.45)

Straightforward application of (4.4) results in

P = −2M/R+ Ṙ2 , (4.46)
B = MR/R− Ṙ2R+ (R · Ṙ)Ṙ . (4.47)

This enables us to write (4.44) as

R′′ = PR+B+R2F . (4.48)

From (4.2), (4.46) and (4.47), we readily obtain the first-order companion
equations for Ṗ and Ḃ which, after conversion to primed derivatives by
(4.4), take the final form

P ′ = 2R′ · F ,
B′ = −2(R′ · F)R+ (R · F)R′ + (R ·R′)F . (4.49)

The resulting equations of motion are well behaved for R → 0, and two-
body regularization has therefore been achieved. We also note that, in
the absence of perturbations, the quantities P and B are constants of the
motion, and hence in the general case are slowly varying elements.
It remains to determine an equation for the time. By differentiating

twice the identity R2 = R ·R we obtain, by (4.47) and (4.48), the relation

R′′ = PR+M +R · FR . (4.50)

§ The original notation Q has been replaced by B here to avoid confusion with KS.
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Higher-order terms may be constructed by further differentiation. How-
ever, since this procedure would involve derivatives of the perturbing
force, it is advantageous to develop a fitting polynomial for the function
(4.50) itself. Hence by (4.3) we have that

t(3) = Pt′ +M + (R · F)R . (4.51)

This function is well behaved near the two-body singularity. Given the
first three time derivatives by explicit expressions involving R and R ·F,
higher orders may be constructed from divided differences of (4.50) if
desired. An alternative solution method is discussed in the next section.
We now turn to the interpretation of the relevant quantities. Since

P = 2h, the semi-major axis is obtained from

a = −M/P . (4.52)

In the absence of perturbations, the equation of motion (4.48) represents a
displaced harmonic oscillator. The frequency is therefore twice that given
by KS regularization, which is the price to pay for avoiding the coordinate
transformation. From R′′ = 0 for the centre of the orbit at R0, we have
B = −PR0. Since |R0| = ea measures the distance from the centre to
the focal point, B is related to the eccentricity vector by

B = −Me . (4.53)

Here −B/M is sometimes known as the Runge–Lenz–Laplace vector, or
alternatively it is also named after Hamilton or even Newton.
The Burdet–Heggie scheme has been used successfully for a series of

three-body scattering experiments with regularization of the dominant
two-body motion [Valtonen, 1974, 1975]. It was also employed for studying
linearized departures from a given orbit in theoretical investigations of
binary evolution [Heggie, 1975]. Finally, it is pleasing to record that this
method proved itself in N -body simulations of core collapse [Giersz &
Heggie, 1994a,b].

4.6 Hermite formulation

Hermite integration also lends itself to KS regularization. Although such a
scheme has been used successfully in earlier versions of the code§ NBODY 4

[Aarseth, 1996a] and the more recent NBODY 6, it has now been replaced
by a more sophisticated development, to be presented in the next section.
However, this method does represent an attractive alternative for some
problems and will therefore be discussed here. Its simplicity also serves as

§ To be described in subsequent chapters.
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a useful introduction to this approach. Before proceeding, we note that
the divided difference method of section 2.2 was used to integrate the KS
equations of motion since 1969 [cf. Aarseth, 1972b]. The success of the
Hermite N -body method [Makino, 1991b; Makino & Aarseth, 1992] soon
led to a change-over in order to have a uniform treatment.
Since higher derivatives feature more prominently, we change the no-

tation and define the regularized force (per unit mass) as FU = U′′, with
U replacing u to conform with the following sections. For simplicity, we
also set Q = LTP, where P from now on is the perturbing force (to avoid
confusion with FU). The equations of motion (4.37) and (4.39) then take
the Hermite form

FU = 1
2hU+ 1

2RQ ,

F′U = 1
2(h

′U+ hU′ +R′Q+RQ′) ,
h′ = 2U′ ·Q ,

h′′ = 2FU ·Q+ 2U′ ·Q′ ,
t′ = U ·U , (4.54)

where the standard equation for t′ has been included for completeness.
Once again, the energy stabilization term in (4.43) may be included.

Note that the stabilization term is only added to FU for the purpose of
predicting U and U′ and the contribution to F′U is not included. Hence
only the basic expression (4.37) is saved for further use by the integration
scheme. Following the tradition of NBODY 5, the stabilized Hermite scheme
was tried with low-order prediction (i.e. up to F′U) of the KS variables
which gives rise to a fairly simple formulation. However, subsequent ex-
perience [Kokubo, Yoshinaga & Makino, 1998; Mikkola & Aarseth, 1998]
showed that significant accuracy may be gained by employing higher-
order prediction at the expense of some additional operations. Procedures
for initialization and integration will be presented in a later section. Fi-
nally, we remark that the Burdet–Heggie scheme discussed above could
be converted to Hermite form; this might be particularly beneficial for
the integration of physical time.
We end this brief section by pointing out an additional equation for

R that does not seem to have been employed in actual KS integrations.
Twice differentiation of R = U · U gives R′′ = 2U′′ · U + 2U′ · U′.
Combining the equation of motion with the definition of h from (4.24),
we obtain the expression [cf. Bettis & Szebehely, 1972]

R′′ = 2hR+ (mk +ml) +U ·QR . (4.55)

This differential equation may be solved and used as a check on the ac-
curacy of R or substituted in the higher derivatives of t′.
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4.7 Stumpff functions

The emphasis of the present chapter is on the treatment of perturbed
binaries. So far, it would appear that the KS method is the ultimate tool
for N -body simulations but no stone must be left unturned. Numerical
integration of binaries presents formidable problems, mainly because of
the time-scale since millions of Kepler periods may be involved. Hence we
need to search for methods that combine long-term accuracy with effi-
ciency. In this section, we describe an alternative two-body regularization
that builds on the existing KS framework and appears to have signifi-
cant advantages. The basic idea of the Stumpff KS method [Mikkola &
Aarseth, 1998] is to expand the solution in Taylor series, where the higher
orders are modified by coefficients representing the truncated terms.
The following discussion is based on the original adaptation. For sim-

plicity, we introduce the notation Ω = −h/2, V = U′ and Q = LT(U)P
with P the perturbation. This allows us to write the equations of motion
in the shorter form

U′′ +ΩU = 1
2RQ ,

Ω′ = −V ·Q . (4.56)

The solution for the unperturbed Keplerian case (Q = 0) is given by

UK = U0G0(Ω0, τ) +V0G1(Ω0, τ) ,
VK = V0G0(Ω0, τ)− Ω0U0G1(Ω0, τ) ,
tK = t0 +R0τ + 2U0 ·V0G2(4Ω0, τ) +MG3(4Ω0, τ) . (4.57)

Here the functions Gn are defined in Stiefel & Scheifele [1971, pp 141–143].
We have the relations

Gn(Ω, τ) = τncn(Ωτ2) , (4.58)

where

cn(z) =
∞∑
k=0

(−z)k
(n+ 2k)!

(4.59)

are the Stumpff [1962] functions and z = Ωτ2. It can be seen from the
series expansion that these functions satisfy the recursion relation

cn =
1
n!

− z cn+2 . (4.60)

This expression may be used instead of the power series to evaluate the
Stumpff functions for small arguments. The choice of order is a matter
for the implementation, to be discussed in a subsequent chapter, but we
note here that the expansion converges fast for small z.
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In order to discuss the solution of (4.57), we begin by considering the
perturbed harmonic oscillator

Y ′′ +ΩY = g(τ) , (4.61)

where primes denote differentiation with respect to τ and Ω = −h/2 is
the square of the frequency if h < 0. We obtain a Taylor series solution
with derivatives given by

Y (k+2) +ΩY (k) = g(k) . (4.62)

Hence if g is a polynomial of at most degree n, the recursion relation
above for k > n reduces to the trigonometric one,

Y (k+2) +ΩY (k) = 0 . (4.63)

With the notation Y (k) for the derivatives at τ = 0, the expansion for Y
becomes

Y =
n−2∑
k=0

Y (k)
τk

k!

+Y (n−1)
(

τn−1

(n− 1)!
− Ωτn+1

(n+ 1)!
+

Ω2τn+3

(n+ 3)!
−+ . . .

)

+Y (n)
(
τn

n!
− Ωτn+2

(n+ 2)!
+

Ω2τn+4

(n+ 4)!
−+ . . .

)
. (4.64)

The terms associated with the two highest order derivatives are the
G-functions defined by (4.58). Hence the Taylor series expansion of a
perturbed harmonic oscillator can be made exact for an equation of the
type (4.61), provided we modify the coefficients of the last two derivatives
of (4.64). Extracting the common terms, we are left with a power series
close to unity in each case, with the respective multiplicative factors

c̃n−1 = (n− 1)! cn−1(z) ,
c̃n = n! cn(z) . (4.65)

This enables the solution to be obtained by

Y (τ) =
n−2∑
k=0

Y k τ
k

k!
+ Y (n−1)

τ (n−1)

(n− 1)!
c̃n−1 + Y (n)

τn

n!
c̃n . (4.66)

We now proceed to discuss the solution of the equations of motion
(4.56). If polynomial approximations are formed for the right-hand sides
of the equations for U and Ω, we can integrate the former with the above
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method, while for the latter it is sufficient to use the basic polynomial
because Ω is slowly varying. Hence we express the three solutions in the
form

U =
n−2∑
k=0

Uk

k!
τk +

U(n−1)

(n− 1)!
τn−1c̃n−1(z) +

U(n)

n!
τnc̃n(z) ,

Ω = Ω0 +Ω′τ + 1
2Ω

′′τ2 + . . . ,

t =
n−2∑
k=0

t(k)

k!
τk +

t(n−1)

(n− 1)!
τn−1c̃n−1(4z) +

t(n)

n!
τnc̃n(4z), (4.67)

where the derivatives are evaluated at τ = 0. The c̃-functions obey the
relations

c̃k(z) = k! ck(z) , (4.68)

with z = Ω0τ2, and similarly for c̃k(4z).
In this formulation it is more meaningful to rewrite the original equation

of motion in the form

U′′ +Ω0U = (Ω0 − Ω)U+ 1
2RQ , (4.69)

which shows that the expansion has been carried out to sufficient order
when the right-hand side has converged.
This concludes the formal development of the KS integration scheme.

We remark that the differential term Ω0 − Ω in (4.69) is reminiscent of
the classical Encke’s method that solves an equation of motion for small
displacements from two-body motion [cf. Brouwer & Clemence, 1961]. Al-
gorithms for the implementation of the Stumpff KS method in an N -body
code will be described in a later chapter. Some aspects of KS regulariza-
tion are discussed elsewhere [cf. Aarseth, 1972b, 1985, 1994, 2001c].
For completeness, we mention an original formulation that was also

based on Stumpff functions [Jernigan & Porter, 1989]. Although the ap-
plication employed a recursive binary tree code, the integration method
was concerned with weakly perturbed two-body motion of the form (4.56).
However, instead of conventional step-wise advancement of the regular-
ized equation of motion, the solutions are expressed as polynomials in
terms of Stumpff functions. A key feature is that the perturbing force
acting on a binary is given by an expression that takes account of the
tidal field and also its time derivative. Provided the perturbing environ-
ment of a binary changes slowly, this method allows the solution to be
advanced accurately over many Kepler periods in one time-step. Given
that most hard binaries in cluster simulations are weakly perturbed, this
novel method could be combined with one of the other KS treatments for
dealing with more rapidly varying tidal forces.
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5.1 Introduction

In the preceding chapter, we have considered several methods for dealing
with the perturbed two-body problem. Formally all these methods work
for quite large perturbations, provided the regularized time-step is chosen
sufficiently small. However, the selection of the dominant pair in a triple
resonance interaction frequently calls for new initializations where the in-
truder is combined with one of the components. Likewise, one may have
situations in which two hard binaries approach each other with small im-
pact parameter. Hence a description in terms of one dominant two-body
motion tends to break down during strong interactions, precisely at times
when interesting outcomes are likely to occur. Since the switching of dom-
inant components reduces the efficiency and also degrades the quality of
the results, it it highly desirable to seek alternative methods for improved
treatment.
In this chapter, we discuss several multiple regularization methods that

have turned out to be very beneficial in practical simulations. By multiple
regularization it is understood that at least two separations in a compact
subsystem are subject to special treatment where the two-body singu-
larities are removed. We begin by describing a three-body formulation
that may be considered the Rosetta Stone for later developments. The
generalization to more members with just one reference body is also in-
cluded for completeness. A subsequent section outlines the elegant global
formulation and is followed by a detailed discussion of the powerful chain
regularization. We then present a method for treating binaries of arbi-
trarily small periods in subsystems by scaling the external perturbation.
Finally, we include a new time-smoothing scheme for studying a massive
binary in the presence of perturbers. All these methods are invariably
somewhat technical but the end result justifies the effort.

66
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Fig. 5.1. Three-body configuration.

5.2 Aarseth–Zare method

According to Whittaker [1904], the general three-body problem is the
most celebrated problem in dynamical astronomy. Hence an improved
numerical treatment is likely to be of considerable interest. Whereas there
is a vast literature on the restricted three-body problem [Szebehely, 1967],
in which one of the masses is zero, relatively little attention has been
devoted to the general case. No doubt the reason for the neglect is the
intractable nature of this problem, and it is only in modern times that
numerical investigations have become the theoretician’s tool, requiring
more sophisticated treatments.
The basic idea in the following derivation is to introduce two coupled

KS regularizations. Let a general three-body configuration be described
by the non-zero particle masses m1,m2,m3, with coordinates q̃k and cor-
responding momenta p̃k (k = 1, 2, 3). This system has the Hamiltonian

H̃ =
3∑

k=1

p̃2k/2mk −m1m3/R1 −m2m3/R2 −m1m2/R , (5.1)

where the distances Rk, R are defined in Fig. 5.1. The corresponding equa-
tions of motion form a system of 18 first-order differential equations.
We first reduce the order by six, employing the centre-of-mass (c.m.)

integrals; in other words, placing the system at rest in an inertial frame.
Using the c.m. condition p3 = −(p1 + p2), we express the kinetic energy
in terms of the two independent momenta, pk (k = 1, 2), associated with
the mass-points mk. Likewise, from the figure, qk = Rk represents the
distance vectors with respect to m3 which is known as the reference body,
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whereas R = |R1 −R2|.∗ Hence the Hamiltonian simplifies to

H =
2∑

k=1

1
2µk3
p2k +

1
m3
p1 ·p2−m1m3/R1−m2m3/R2−m1m2/R , (5.2)

where µk3 = mkm3/(mk +m3) is the reduced mass of mk. Since the cor-
responding equations of motion describe a system with six independent
coordinates, it is natural to perform regularization in eight dimensions by
increasing the set of physical variables in analogy with the KS formula-
tion. This is achieved by defining the corresponding fourth components
of qk,pk to be zero.
We now introduce a new set of canonical variables in eight dimensions,

denoted by Q and P. According to the theory of canonical contact trans-
formations, we choose a generating function W = W (p,Q). This enables
us to obtain the new momenta in terms of the old ones by Pk = ∂W/∂Qk,
and likewise the new coordinates by qk = ∂W/∂pk. At this point we fol-
low the notation of Szebehely [1967] and adopt a separable generating
function of the form

W =
2∑

k=1

pk · fk , (5.3)

with each fk a function of Qk. This crucial step yields a simple result for
the two relative coordinates (k = 1, 2),

qk = fk . (5.4)

The corresponding transformation for the momenta becomes

Pk = Akpk , (5.5)

where the 4× 4 matrix, Ak, is composed of terms ∂fk/∂Qk. From a com-
parison of (5.5) with the regularized velocity transformation (4.36), we see
that the matrixAk is identical to twice the corresponding transpose of the
generalized Levi-Civita matrix (4.27). However, in view of the manner in
which Ak is introduced here,† it is more natural to present the derivation
based on this quantity.
Since the matrix Ak is orthogonal, it can be shown that

AkATk = 4RkI , (5.6)

where I is the identity matrix. This allows the physical momenta and
relative coordinates to be recovered from standard KS transformations,

∗ The notation R3 would cause confusion with the development in the next section.
† Traditionally, the derivation of KS begins with the fundamental relation R = Lu.
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with p2k = P2k/4Rk. Let us introduce the Hamiltonian function in the
extended phase space, Γ = H(Q,P) − E0, where E0 is the total energy.
Regularization is now achieved by employing the time transformation

dt = R1R2dτ . (5.7)

With Γ∗ = R1R2Γ, the regularized Hamiltonian takes the form

Γ∗ =
1

8µ13
R2P21 +

1
8µ23

R1P22 +
1

16m3
PT1A1 ·AT2P2

−m1m3R2 − m2m3R1 − m1m2R1R2
|R1 −R2| − E0R1R2 . (5.8)

From an inspection of (5.2) one can readily identify the terms, with
P2k/µk3 representing the kinetic energy of the relative two-body motions.

The corresponding equations of motion for k = 1, 2 are given by

dQk

dτ
=

∂Γ∗

∂Pk
,

dPk

dτ
= − ∂Γ∗

∂Qk
. (5.9)

These equations are regular for R1 → 0 or R2 → 0 since Pk → const as
Rk → 0, and hence a practical regularization of the three-body problem
has been achieved [Aarseth & Zare, 1974].
It may be helpful for implementations to provide the full equations of

motion in explicit form. Differentiation according to the first equation
(5.9) yields the straightforward result

dQk

dτ
=

1
4µk3

RlPk +
1

16m3
AkAl

TPl , (5.10)

where l = 3 − k. Likewise, we obtain the more complicated derivative of
the momentum in compact notation as

dPk

dτ
= 2

(
RlE0 − 1

8µl3
P2l + mlm3 +

m1m2

|R1 −R2|Rl

)
Qk

− 1
8m3
PkATl Pl − m1m2R1R2

|R1 −R2|3Ak(Rk −Rl) . (5.11)

With a total of eight components, evaluation of the second equation of
motion requires a considerable numerical effort. However, to compensate,
the regular structure permits quite large time-steps to be used.
The time transformation (5.7) regularizes all terms in the Hamilto-

nian associated with the distances R1 and R2, leaving one singularity
due to the potential energy term m1m2/R. After differentiation, equa-
tion (5.11) contains two singular terms involving division by R and R3.
In view of the time transformation, these terms have a different origin,
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with the former having a kinematical interpretation and the latter rep-
resenting the dynamical interaction. From the geometry of the problem,
R � R1 if R > R2 and R1 > R2; hence in most cases the inequality
R > min {R1, R2} ensures that the critical terms are numerically smaller
than the regularized contributions. This desirable property compensates
for the divisions and is mainly responsible for the improved treatment of
even close triple encounters.
On the debit side, implementation of the switching procedure requires

a transformation to physical variables with consequent small loss of ac-
curacy before assigning new particle labels, whereupon the regularized
quantities are introduced. However, when the masses are different, the
heaviest particle tends to dominate the motion and is a natural reference
body, thereby reducing the number of switching transformations.
A comment on the role of the mass ratios may also be in order. Since

the present formulation does not include the case of one massless body, a
significant loss of accuracy may be anticipated for very large mass ratios;
i.e. the contributions from some terms would be downgraded. Moreover,
the reason for the inability to deal with one zero mass particle is due to the
c.m. condition becoming indeterminate. Equivalently, the Hamiltonian is
based on reciprocals of the masses. For a regular treatment of the massless
body in the restricted problem see the formulation by Heggie [1974].
In order to make a connection with the standard KS formulation, it is

instructive to consider the analogous Hamiltonian equations for just two
particles. For this purpose we select the two-body system m1 and m3 in
the expression (5.8) for Γ∗ by omitting all terms connected with m2, as
well as the distance R2. This simplification leads to a regularized two-body
Hamiltonian which was first applied by Peters [1968a,b] to the dominant
interaction in the general three-body problem. Introducing the binding
energy per unit reduced mass, h = E0/µ13 and omitting subscripts, we
obtain the simple expression

Γ∗
2 = P2/8µ − m1m3 − µhQ2 . (5.12)

The equations of motion then follow by differentiation according to (5.9),
which yields

dQ
dτ

= P/4µ ,

dP
dτ

= 2µhQ . (5.13)

Finally, the familiar formQ′′ = 1
2hQ is obtained after introducing the reg-

ularized velocity V = P/µ in the second equation since the first equation
implies that V = 4Q′.
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In the case of 2D problems, (5.10) and (5.11) still apply but we may use
the simpler Levi-Civita matrix (4.14). Problems in 1D are ideally suited
to the present formulation since no switching is needed by placing the
reference body in the middle. Following Mikkola & Hietarinta [1989], we
introduce three equal-mass bodies,mi = 1, with coordinates x1 < x0 < x2
and take q1 = x0−x1, q2 = x2−x0 as new relative coordinates. From the
generating function S = p1(x0 − x1) + p2(x2 − x0), with momenta pi, the
new Hamiltonian becomes

H = p21 + p22 − p1p2 − 1
q1

− 1
q2

− 1
q1 + q2

. (5.14)

If we adopt the coordinate transformation q1 = Q21, q2 = Q22, the new
generating function gives rise to the momenta Pi = 2Qipi. Combined with
the time transformation t′ = q1q2, this yields the regularized Hamiltonian
Γ∗ = q1q2(H − E). Thus in explicit form

Γ∗ = 1
4(P

2
1Q

2
2+P

2
2Q

2
1−P1P2Q1Q2)−Q21−Q22−

Q21Q
2
2

Q21 +Q22
−Q21Q22E , (5.15)

which results in simple equations of motion. Note that the divisor rep-
resents the sum of the two distances and is therefore optimal. For data
analysis or movie making, the coordinates x1, x2 are obtained from substi-
tuting the c.m. relation x0 = 1

3(q1− q2). The relative velocities are deter-
mined by q̇i = ∂H/∂pi, combined with the c.m. condition ẋ0 = 1

3(q̇1− q̇2),
whereas (5.14) can be used for the energy check. A formulation for un-
equal masses is given by Mikkola & Hietarinta [1991]. The corresponding
Hamiltonian looks similar to the form (5.8), if we note the factor 2 in the
definition of Ak and take account of the reverse sign in the third term
due to the different generating function.
To conform with the present style, a discussion of practical details such

as decision-making will be postponed to a later section. Next we provide
a complete summary of the relevant transformations. Given the initial
relative coordinates, qk, and momenta, pk, if q1 ≥ 0 the regularized co-
ordinates for the first two-body motion are specified by

Q1 = [12(|q1|+ q1)]1/2 ,

Q2 = 1
2q2/Q1 ,

Q3 = 1
2q3/Q1 ,

Q4 = 0 , (5.16)

otherwise the appropriate choice is taken to be

Q2 = [12(|q1| − q1)]1/2 ,
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Q1 = 1
2q2/Q2 ,

Q3 = 0 ,
Q4 = 1

2q3/Q2 . (5.17)

Likewise, the regularized momenta are given by (5.5). Because of the
redundant fourth components of physical coordinates and momenta, nu-
merical work only requires the 4 × 3 submatrix of Ak, which for k = 1
takes the complete form

A1 = 2


Q1 Q2 Q3 Q4

−Q2 Q1 Q4 −Q3
−Q3 −Q4 Q1 Q2
Q4 −Q3 Q2 −Q1

 . (5.18)

Inverse transformations yield the physical variables. Thus the relative
coordinates, denoted by Rk (k = 1, 2) in Fig. 5.1, are obtained from

qk = 1
2Ak

TQk , (5.19)

which reproduces the well-known KS transformations, whereas the mo-
menta are inverted by (5.5) and (5.6) according to

pk = 1
4Ak

TPk/Rk . (5.20)

Corresponding relations for the second KS pair are derived in a similar
way. Finally, the coordinates and momenta expressed in the local c.m.
frame are recovered from

q̃3 = −
2∑

k=1

mkqk/M ,

q̃k = q̃3 + qk ,
p̃k = pk ,
p̃3 = −(p1 + p2) , (k = 1, 2) (5.21)

where M = m1 +m2 +m3.
The time transformation (5.7) employed above is not unique and several

alternatives have been examined [Aarseth, 1976]. One such case is the
choice of the inverse potential energy using t′ = −1/Φ, which gives rise
to the explicit relation for the time [Baumgarte & Stiefel, 1974] by

t = −(τ + C)/2E0 +
3∑

i=1

ri · pi/2E0 . (5.22)

Here the coordinates and momenta are expressed in the c.m. frame and
the constant C is determined initially, when τ = 0. Utilization of the



5.3 External perturbations 73

regularized variables developed above, together with the condition (5.6),
results in the final regular expression (excepting E0 = 0)

t = −(τ + C)/2E0 +
2∑

k=1

QTkPk/4E0 . (5.23)

A change of time transformation requires the equations of motion to
be modified. Taking the cue from (5.7), we write

dt = g1g2dτ , (5.24)

with g1 = R1R2. Consequently, the potential energy formulation gives

g2 = (m1m3R2 +m2m3R1 +m1m2R1R2/R)−1 . (5.25)

We absorb g1 in the definition of Γ∗ which gives rise to the new equations
of motion

dQk

dτ
= g2

∂Γ∗

∂Pk
,

dPk

dτ
= −g2 ∂Γ

∗

∂Qk
− Γ∗ ∂g2

∂Qk
. (5.26)

The existence of an improper integral for the time if both the distances
R1 and R2 approach zero together has prompted yet another time trans-
formation, given by g2 = (R1+R2)−1/2. Thus the property that t′ ∝ R3/2

near triple collisions represents the limiting case for convergence. Actual
experiments show that this choice of time transformation may give better
results in practice, together with the condition Γ∗ = 0 [Aarseth, 1976],
but g2 = (R1+R2)−1 also merits attention. Note that in the original for-
mulation, with g1 = R1R2, this procedure is not justified since regularity
of the equations is lost. Finally, equations of motion for the more recently
suggested time transformation t′ = 1/L can be readily constructed [cf.
Alexander, 1986; Appendix B] and deserves consideration.

5.3 External perturbations

The above method may also be used to study close encounters between
binaries and single particles that occur inN -body simulations. In this case
we need to include the effect of the external particles in the equations
of motion, unless the unperturbed approximation is assumed. Consider
a system of N particles and three mass-points mi with corresponding
coordinates ri which form a subsystem to be regularized. Consequently,
we write the regularized Hamiltonian as

Γ∗ = R1R2(H3 +R−E) , (5.27)
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where H3 is given by (5.1), R is the perturbing function expressed in
terms of the physical variables r and p, and E is the total energy. Since
R does not depend on the momenta Pk, the new equations of motion for
k = 1, 2 take the form

dQk

dτ
=

∂(R1R2H3)
∂Pk

, (5.28)

dPk

dτ
= −(H3 − E3)

∂(R1R2)
∂Qk

−R1R2
∂

∂Qk
(H3 +R) , (5.29)

where E3 = E −R is the subsystem energy.
For the present purpose we need only consider the external potential

energy part of R, since the kinetic energy of the subsystem is treated
independently. Hence we obtain the desired perturbation term from

∂R
∂Qk

=
3∑

i=1

∂R
∂ri

∂ri
∂qk

∂qk
∂Qk

. (5.30)

Explicit differentiation yields the perturbing force

∂R/∂ri = −miFi , (5.31)

where Fi is defined by

Fi = −
N∑
j=4

mj(ri − rj)
|ri − rj |3 . (i = 1, 2, 3) (5.32)

The actual coordinates are required for several purposes when study-
ing a perturbed subsystem. Thus from (5.21) and the subsystem c.m.
condition r0 =

∑
miri/M we obtain the explicit conversion formulae

r1 = r0 + (m2 +m3)q1/M −m2q2/M ,

r2 = r0 −m1q1/M + (m1 +m3)q2/M ,

r3 = r0 −m1q1/M −m2q2/M . (5.33)

Hence the expressions for ∂ri/∂qk simplify to mass ratios. From the basic
transformation (5.19) it follows that

∂qk/∂Qk = Ak . (5.34)

Finally, combining all the terms results in

∂R/∂Qk = −Ak[m1m2(F2 − F1)(−1)k +mkm3(Fk − F3)]/M . (5.35)

We remark that differential (or tidal) accelerations appear. Hence only
contributions from relatively nearby perturbers need to be taken into
account in the summation (5.32), in analogy with standard KS.



5.4 Wheel-spoke generalization 75

It remains to derive an expression for the energy that is affected by the
perturbations. From E3 = E −R, the internal energy change is

dE3/dτ = −dR/dτ . (5.36)

Consequently, we can also use (5.35) to evaluate E′
3 because

dR
dτ

=
2∑

k=1

∂R
∂Qk

dQk

dτ
. (5.37)

Substituting for the equation of motion (5.10) combined with the expres-
sion (5.35) and employing the orthogonality condition AkAk

T = 4Rk, we
finally arrive at the desired equation

dR
dτ

= −1
4

2∑
k=1

RlPk
TAk(Fk − F3) . (5.38)

Hence when external perturbations are included, the energy, E3, needs to
be updated in a consistent manner for use in (5.29). On the other hand,
(5.28) does not contain the external potential. Since the perturbers are
advanced separately, the total energy is a sum of two independent terms
and can therefore still be used as a check.
This concludes the formal development of the basic three-body regu-

larization. Practical matters relating to code implementation and appli-
cations will be discussed in a subsequent chapter.

5.4 Wheel-spoke generalization

The concept of a parallel regularization with respect to one reference body
was extended to an arbitrary membership by Zare [1974] at the same time
as the method discussed above was developed. This method only appears
to have been tried in a binary–binary scattering experiment [Alexander,
1986]. However, since the verdict was favourable and applications to stellar
systems with a central black hole seem relevant, the essential points will be
presented here. As shown by Fig. 5.2, the generalization to larger systems
conjures up the image of a wheel-spoke and we shall employ this name
here in the absence of a recognized alternative.
The basic formulation starts with the Hamiltonian for a system of N+1

particles containing a subsystem of n + 1 members. Let the generalized
coordinates and momenta be denoted by q̃i and p̃i, with Rij = |q̃i − q̃j |
representing the inter-particle distances. As before, we reduce the order
by employing the six c.m. integrals. Accordingly, the coordinates and mo-
menta are redefined with respect to the reference body, m0, such that q0
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Fig. 5.2. Wheel-spoke geometry.

and p0 are the corresponding position and momentum. The transforma-
tion is achieved by the generating function

W (qi, p̃i) =
N∑
i=1

p̃i · qi +
(

N∑
i=0

p̃i

)
· q0 . (5.39)

Since the reduced Hamiltonian has q0 as an ignorable coordinate, we can
set p0 = 0 for the c.m. The Hamiltonian then takes the form

H =
N∑
i=1

p2i
2µi

+
1
m0

N∑
i<j

pTi · pj −m0

N∑
i=1

mi

Ri
−

N∑
i<j

mimj

Rij
, (5.40)

where µi = mim0/(mi +m0) and Ri = |qi|.
The system is divided into two subsystems, with massesm1,m2, . . . ,mn

in the first one which will be considered for special treatment. The regu-
larization procedure itself is quite similar to the three-body case, and in
practice the local Hamiltonian is used instead of (5.40). We introduce n
canonical variables Qi and Pi and write the generating function

W (pi,Qi) =
N∑
i=1

pTi · fi(Qi) , (5.41)

where fi(Qi) represents KS coordinates for i ≤ n. The corresponding
regularized momenta are obtained by

Pi = Aipi , (i = 1, . . . , n) (5.42)

where the matrix Ai is defined by (5.18) in the usual way. Moreover,
the coordinates and momenta for the remaining system are simply taken
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as Qi = qi and Pi = pi. Thus the new Hamiltonian consists of two
parts, where the equations of motion for i > n are of standard form.
By analogy with the preceding section, an additional equation can be
derived for the change in the energy of the regularized subsystem due to
the perturbations, instead of using the original explicit formulation based
on a time-consuming summation if N is large.
A variety of time transformations are available here, as discussed in the

original paper. However, from systematic comparisons of binary–binary
scattering experiments [Alexander, 1986] it appears that the inverse La-
grangian (i.e. dt = dτ/L) is the best choice in practice. The latter form
is also simple to implement and, as discussed below, has been found ad-
vantageous in other multiple regularizations. With a suitable time trans-
formation, the equations of motion are regular and permit Ri → 0 for all
the n spokes.
For completeness, the relevant transformations are summarized here.

Given the initial conditions mi, q̃i, p̃i, the relative coordinates and abso-
lute momenta are defined by

qi = q̃i − q̃N ,

pi = p̃i , (5.43)

with i = 1, 2, . . . , N . The standard KS coordinate transformations apply
for i ≤ n, whereas for i > n we use the physical coordinates with respect to
m0. Likewise, the regularized momenta are obtained from (5.42). Inverse
transformations yield the physical coordinates

qi = 1
2A

T
i Qi , (i = 1, 2, . . . , n)

qi = Qi , (i = n+ 1, . . . , N) (5.44)

and corresponding momenta

pi = 1
4A

T
i Pi/Ri , (i = 1, 2, . . . , n)

pi = Pi . (i = n+ 1, . . . , N) (5.45)

The final coordinates and momenta are then obtained from

q̃0 =
N∑
i=1

miqi/
N∑
i=0

mi ,

q̃i = q̃0 + qi ,
p̃i = pi , (i = 1, 2, . . . , N)

p̃0 = −
N∑
i=1

pi . (5.46)
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One can envisage several ways of using the wheel-spoke regularization.
However, in order to be efficient, the reference body should contain most
of the mass of the regularized subsystem. An attractive feature of this for-
mulation is that no switching of the reference body may be required if this
condition is fulfilled. One possible new application would be to a central
dominant black hole system, where the closest stars would constitute the
regularized part with the external members advanced by (say) the self-
consistent field method [Hernquist & Ostriker, 1992]. Such a treatment
would permit changes of membership due to collisions and boundary cross-
ings. The method also lends itself to studying collisions in small systems
(i.e. n = N). In either case, the solutions might be advanced by an indi-
vidual time-step scheme to speed up the calculation, or the Bulirsch–Stoer
[1966] integrator for increased accuracy. Although dominant motions can
be integrated more accurately when regularized, any applications to plan-
etary simulations are probably best carried out with the time-symmetric
method [Kokubo, Yoshinaga & Makino, 1998] discussed in section 2.7.

5.5 Heggie’s global formulation

Although highly efficient, the three-body development discussed above
lacks the property of symmetry between the particles. This treatment
was extended to a global formulation by Heggie [1974] whose derivation
will be followed closely for the case N = 3. A somewhat complicated
generalization to N > 3 is also available but for practical purposes the
reformulation of Mikkola [1984a, 1985a] is preferable.
We begin with a Hamiltonian of the form (5.1) but adopt slightly differ-

ent notation. Let q̃i (i = 1, 2, 3) be the Cartesian coordinates in an inertial
frame and p̃i the conjugate momenta. The Hamiltonian then takes the
symmetrical form

H̃ =
3∑

i=1

p̃2k/2mi −m2m3/|q̃2 − q̃3| −m3m1/|q̃3 − q̃1| −m1m2/|q̃1 − q̃2| .
(5.47)

We consider the solution of the corresponding Hamiltonian equations
˙̃q1 = p̃i/mi , (i = 1, 2, 3)

˙̃p1 = −m1m2(q̃1 − q̃2)
|q̃1 − q̃2|3 − m1m3(q̃1 − q̃3)

|q̃1 − q̃3|3 , (∗) (5.48)

where the asterisk indicates two similar equations by cyclic interchange
of indices.
In the following we assume for simplicity that the c.m. is at rest. Let

us define the relative distance vectors

q1 = q̃2 − q̃3 . (∗) (5.49)
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From this symmetrical definition we see that the meaning of the associated
distances, Ri, is reversed from that of Fig. 5.1. We now introduce new
momenta satisfying the relation

p̃i =
3∑

j=1

pTj ∂qj/∂q̃i . (5.50)

By (5.49) this simplifies to

p̃1 = −p2 + p3 . (∗) (5.51)

Substitution of (5.49) and (5.51) into (5.47) yields the new Hamiltonian

H =
p21
2µ23

+
p22
2µ31

+
p23
2µ12

−
(
pT2 p3
m1

+
pT3 p1
m2

+
pT1 p2
m3

)
− m2m3

q1
− m3m1

q2
− m1m2

q3
, (5.52)

where qi = |qi| and µij = mimj/(mi+mj). This gives rise to the equations
of motion

q̇1 = p1/µ23 − p3/m2 − p2/m3 ,

ṗ1 = −m2m3q1/q31 . (∗) (5.53)

Explicit relations for qi and pi are recovered by similar expressions to
those in the previous section and other quantities have the usual meaning.
As above, there is considerable freedom in the choice of time transfor-

mations. In the first instance, we adopt the basic relation

dt = R1R2R3dτ . (5.54)

Denoting the new Hamiltonian by H̃(Qi,Pi), we write as before

Γ∗ = R1R2R3(H̃ − E0) , (5.55)

where E0 is the numerical value of H̃ along the solution path. From the
definition of H̃, the final regularized Hamiltonian becomes

Γ∗ =
1
8

(
R2R3
µ23
PT1P1 +

R3R1
µ31
PT2P2 +

R1R2
µ12
PT3P3

)
− 1

16

(
R1
m1
PT2A2A

T
3P3 +

R2
m2
PT3A3A

T
1P1 +

R3
m3
PT1A1A

T
2P2

)
−m2m3R2R3 −m3m1R3R1 −m1m2R1R2 − E0R1R2R3 . (5.56)

Again the corresponding equations of motion are obtained from the usual
expressions (5.9). Differentiation leads to considerable simplification and
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it can be seen that the resulting equations are regular for collisions be-
tween any particle pair.
Alternative time transformations may also be tried here. By analogy

with the preceding section, the choice

g2 = (R1 +R2 +R3)−3/2 (5.57)

leads to regularized equations with the desirable asymptotic behaviour.
The modified equations of motion for i = 1, 2, 3 then take the form

dQi

dτ
= g2

∂Γ∗

∂Pi
,

dPi

dτ
= −g2

[
∂Γ∗

∂Qi
− 3
2Γ

∗ ∂

∂Qi
ln(R1 +R2 +R3)

]
. (5.58)

It has been found [Heggie, 1974] that setting Γ∗ = 0 introduces unsta-
ble modes as triple collision is approached. This behaviour is connected
with the modified time transformation where growing modes are present
without the last term in the momentum equation, which has a stabilizing
effect. However, the additional complications introduced by (5.57) may
be avoided for less extreme configurations if a lower limit on the system
size for non-zero angular momentum can be estimated.
By analogy with the treatment of section 5.3, the global formulation has

been extended to the perturbed three-body problem [Heggie, 1974]. This
formulation does not appear to have been implemented in any existing
N -body code and is given at the end of Appendix A.

5.6 Mikkola’s derivation

The previous development was also generalized to arbitrary memberships
[Heggie, 1974]. Since this treatment involves a total of 4N(N − 1) + 1
equations, the complexity increases rapidly with N , especially as the
right-hand side of the second member (5.9) also grows faster than N .
The complications of the original formulation are such that N = 4 al-
ready represents a formidable challenge to the practitioner. Given the
importance of binary–binary interactions in star cluster simulations, we
therefore present a simpler derivation due to Mikkola [1984a, 1985a] which
is easier to implement. This task is accomplished by employing a modified
notation while retaining the essential features.
We begin by writing the Hamiltonian in terms of the physical coordi-

nates and momenta,

H =
N∑
i=1

w2i
2mi

−
N−1∑
i=1

N∑
j=i+1

mimj

|ri − rj | . (5.59)
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Let qij = ri − rj be the new coordinates and define new momenta by

wi =
N∑

j=i+1

pij −
i−1∑
j=1

pji . (5.60)

This transformation introduces N(N − 1)/2 fictitious particles. A direct
substitution shows that a solution of (5.60) is given by

pij = (wi −wj)/N . (5.61)

In order to achieve a simpler notation, we now replace the double indices
by a single running index, k. Thus henceforth we work with qk,pk, where
k = (i − 1)N − i(i + 1)/2 + j for i < j is a 1D array that contains
K = N(N − 1)/2 members. This enables (5.60) to be expressed as

wi =
K∑

k=1

aikpk , (5.62)

where by definition aik = 1 and ajk = −1 when k = k(i, j) and zero oth-
erwise. We define the mass products Mk = mimj . The new Hamiltonian
then takes the form

H =
K∑

u,v=1

Tuvpu · pv −
K∑

k=1

Mk/qk , (5.63)

where the matrix elements are given by

Tuv = 1
2

N∑
e=1

aeuaev/me . (u = 1, . . . ,K) (v = 1, . . . ,K) (5.64)

The standard KS transformations now provide the necessary relations
between physical and regularized quantities, where the generalized Levi-
Civita matrix L defined by (4.27) plays the usual role. After introducing
the time transformation dt = g(P,Q), we obtain the desired regularized
form Γ∗, with the Hamiltonian function itself in terms of P,Q as

H = 1
4

K∑
u,v

TuvPTuLTuLvPv/Q
2
uQ

2
v −

N∑
e=1

Me/Q
2
e . (5.65)

Given the final Hamiltonian above, the standard way of carrying out
the differentiations after multiplying by the function g of (5.54) leads to
complicated expressions for N > 3. Instead we revert to the basic form of
Γ∗ and write the equations of motion as

dQ
dτ

= g
∂H

∂P
+ (H − E0)

∂g

∂P
,

dP
dτ

= −g∂H
∂Q

− (H − E0)
∂g

∂Q
. (5.66)
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Note that H − E0 = 0 on the solution path but the regularity of the
equations is actually lost if this term is omitted.
Several time transformations have been considered. However, use of the

Lagrangian by g = 1/L appears to have practical advantages [Zare & Sze-
behely, 1975; Alexander, 1986]. The paper by Alexander provides a useful
systematic comparison of the multiple regularization methods discussed
above. Among the few applications of the global regularization method
we mention the pioneering work on binary–binary interactions [Mikkola,
1983, 1984b], as well as use of an unperturbed four-body treatment in
star cluster simulations with primordial binaries [Aarseth, 1985a; Heggie
& Aarseth, 1992]. We also note that the global formulation is simple in
one respect, namely there is no decision-making connected with switching
of dominant components. Further discussions concerning the properties of
the method can be found in the original exposition [Mikkola, 1985a]. Suf-
fice it to state that an examination of the equations shows that two-body
collision configurations can be studied without any problems. Appendix A
contains the equations of motion and a collection of the relevant formulae,
including external perturbations.

5.7 Chain treatment

The basic Aarseth–Zare regularization method has proved itself in scat-
tering experiments and star cluster simulations [Aarseth & Heggie, 1976;
Heggie & Aarseth, 1992], as well as in more traditional three-body investi-
gations [Aarseth et al., 1994a,b]. Subsequently, the Heggie–Mikkola global
formulation was employed to study binary–binary interactions, likewise
for compact subsystems where the external perturbation can be ignored.
In view of this activity, it is perhaps remarkable that it took another 17
years for the three-body method to be extended to N = 4 [Mikkola &
Aarseth, 1990]. This new treatment was reformulated for arbitrary mem-
berships [Mikkola & Aarseth, 1993] with an improved notation, which will
be used in the following.
The concept of a chain is very simple and is illustrated in Fig.5.3 for a

system of four mass-points. We introduce the dominant two-body forces
along a chain of inter-particle vectors, where the pair-wise attractions are
treated by the KS formalism. Contributions from the other less dominant
interactions are added to the regular terms in a similar way to the original
three-body formulation. Hence the number of equations to be integrated
is 8(N−1)+1, compared with 4N(N−1)+1 in the global implementation.

Consider a system of N particles with inertial coordinates ri, velocities
vi and masses mi, i = 1, 2, . . . , N . Further, take the c.m. to be at rest
with the local coordinates qi and momenta pi = mivi. After selecting the
chain vectors connecting the N mass-points, we relabel them 1, 2, . . . , N
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Fig. 5.3. Four-body chain.

as shown in the figure. The generating function

S =
N−1∑
k=1

Wk · (qk+1 − qk) (5.67)

then gives the old momenta pk = ∂S/∂qk in terms of the new ones. The
relative momentum vectorsWk are obtained recursively by

Wk =Wk−1 − pk , (k = 2, . . . , N − 2) (5.68)

with W1 = −p1 and WN−1 = pN . These momenta and corresponding
relative coordinates,Rk =qk+1−qk, are substituted into the unperturbed
Hamiltonian which becomes

H = 1
2

N−1∑
k=1

(
1
mk

+
1

mk+1

)
W2

k −
N∑

k=2

1
mk
Wk−1 ·Wk

−
N−1∑
k=1

mkmk+1

Rk
−

N∑
1≤i≤j−2

mimj

Rij
. (5.69)

We now employ the time transformation dt = gdτ , where g = 1/L is
the inverse Lagrangian [cf. Alexander, 1986]. The regularized Hamiltonian
Γ∗ = g (H −E) again gives rise to equations of motion of the form (5.9).
Inspection of these equations reveals that the two-body solutions are reg-
ular for any Rk → 0. Since the time transformation does not introduce
terms that cancel analytically, the differentiation of each term is carried
out separately. Some care is needed to obtain the partials with respect to
Q of the non-chained part, Unc, represented by the last term of (5.69). Let
us adopt the traditional notation L for the generalized Levi-Civita matrix
instead of Q̃ used in the original paper. Thus if Q is the KS transform of
R and Unc = U(R), then ∂Unc/∂Q = 2LTF, where F = ∂Unc/∂R. Thus
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a conservative external potential may be treated as an additional part
of the non-chained potential. This is discussed below for the perturbed
formulation.
When required, the relative coordinates and momenta are recovered

from the standard KS relations by

Rk = LkQk ,

Wk = 1
2LkPk/Q2k . (5.70)

Procedures for chain selection require special care in order to ensure
that the dominant two-body motions are included. Still, the scheme ad-
mits of a certain elasticity at the expense of efficiency, as long as the non-
chained distances do not become too small compared with the chained
distances. Since this feature forms an important part of the chain algo-
rithms, it may be useful to discuss some relevant aspects.
The chain needs to be constructed ab initio before the calculation can

begin. First the shortest inter-particle vector is determined. We proceed
by searching for the particle which is closest to either end of the known
chain. This operation is repeated until all the particles have been included.
To facilitate the procedure, it is beneficial to sort all the distances and
perform a sequential search for the missing terms.
We readily see that the new chain vectors can be expressed as sums or

differences of the old ones. This is achieved by writing physical vectors
as sums of chain vectors in a coordinate system where the first particle is
located at the origin. Special attention is also required to retain accuracy
by carrying out the transformations directly from the old chain vectors,
Rk, to the new ones, instead of using the physical coordinates, ri.
Let the identity of the chain particles defined above be I1, I2, . . . , IN

and denote the identities in the old and new chains by Ioldk and Inewk . We
then express the old partial sums along the chain by

qIold
k

=
k−1∑
ν=1

Roldν , (5.71)

with the new chain vectors given by

Rnewµ = qInewµ+1
− qInewµ

. (5.72)

Hence we need to use the correspondence between the old and new indices
to obtain the new chain vectors, Rk. It can be seen that if k0 and k1 are
such that Ioldk0

= Inewµ and Ioldk1
= Inewµ+1, then we have

Rnewµ =
N−1∑
ν=1

BµνRoldν , (5.73)



5.7 Chain treatment 85

where Bµν = 1 if (k1 > ν and k0 ≤ ν) and Bµν = −1 if (k1 ≤ ν and k0
> ν), otherwise Bµν = 0. In practical applications the chain configuration
is rechecked every integration step but the overheads are still modest be-
cause the high-order Bulirsch–Stoer [1966] integrator requires many func-
tion calls. Moreover, the total number of such switchings by relabelling is
relatively small in typical calculations.
The chain method may be used for two purposes. First we have the

simple case of a small-N system, in which all the members may be in-
cluded [Sterzik & Durisen, 1998; Kiseleva et al., 1998]. Distant escapers
may be removed from the chain in order to speed up the calculation, but
otherwise the procedures outlined above suffice. The alternative usage of
studying energetic interactions in a general N -body code requires special
considerations. Below we provide the necessary details for including the
external perturbations, whereas corresponding algorithms for the inter-
face with an N -body system will be discussed in a later chapter.
Let Fj be the perturbing acceleration acting on a body of massmj in the

inertial coordinate system. For consistency with the previous notation, let
the chain membership still be denoted by N , with each component subject
to an external acceleration, Fj , considered as a known function of time.
Hence we assume that all the other bodies are advanced by some direct
integration scheme. We now augment the original Hamiltonian (5.69) by
adding the perturbing potential

δU =
N∑
j=1

mjqj · [Fj(t)− F0(t)] +Mr0 · F0(t) , (5.74)

where F0 =
∑N

j=1mjFj/M is the c.m. acceleration in the inertial system
defined by r0 =

∑
mjrj/M and M is the associated mass.

Next we should express the coordinates, qj , in terms of the chain coor-
dinates, Rk, and substitute these into the expression for δU , which yields
the corresponding contributions, δẆk, to the derivatives of the chain mo-
menta,Wk. However, from the transformation formulae one easily derives
the recursive relations

δṗj = mj(Fj − F0) , (j = 1, . . . , N)

δẆ1 = −δṗ1 ,
δẆk = δẆk−1 − δṗk , (k = 2, . . . , N − 2)

δẆN−1 = δṗN , (5.75)

where δ denotes the perturbative part of the derivative. The corresponding
corrections to the derivatives of the KS momenta are then given by

δPk
′ = 2gLk

TδẆk , (5.76)
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and the rate of change of the internal energy may be written

dE/dτ = 2
N−1∑
k=1

Qk
′TLk

TδẆk . (5.77)

The total energy previously denoted by E0 may now be integrated as
an additional equation. Since only the perturbation with respect to the
c.m. enters in the expressions for δẆk, it is usually sufficient to include
tidal contributions from nearby particles. We also note that (5.77) makes
use of the term dQk/dτ , which is already known.
A complete collection of formulae for chain regularization is given in

Appendix B. The original paper [Mikkola & Aarseth, 1990] makes a com-
parison with the global method for N = 3 and discusses practical aspects.

5.8 Slow-down procedure

Extremely close binaries occur frequently in modern star cluster simula-
tions which usually include a distribution of primordial binaries [McMil-
lan, Hut & Makino, 1990; Heggie & Aarseth, 1992]. Normally such bina-
ries are unperturbed and easily treated but configurations in hierarchical
subsystems may give rise to considerable time-scale problems, whether
treated by KS or chain regularization. In the case of small perturbations,
we may apply the principle of adiabatic invariance and still represent the
motions to a good approximation although the orbital phase is lost. Such
a scheme has turned out to be very useful [Mikkola & Aarseth, 1996] and
will be presented in the following. The question of whether it could also be
introduced into the other multiple regularizations described above does
not appear to have been addressed.‡

Consider a weakly perturbed binary with the standard equation of rel-
ative motion

r̈ = −Mbr/r3 + F , (5.78)

where Mb is the combined mass of the binary components and F is the
external perturbation. One way to solve this equation numerically is to
employ the variation of constants method. In that case the equation of
motion for a two-body element q = q(r,v, t) takes the simple form

q̇ = ∂q/∂v · F , (5.79)

where the right-hand side is a small quantity. However, the rapid fluctu-
ations persist and the time-step can only be increased for relatively small
perturbations.

‡ A compact triple with superhard inner binary and an eccentric outer orbit could also
be partially treated in this way.
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The new idea is to slow down the internal dominant two-body motion
such that one orbit may represent several Kepler periods. This is achieved
by scaling the small perturbation and the physical time-step by a slowly
varying factor exceeding unity. In this approximation, we therefore ensure
a correct treatment of the secular effects. To demonstrate more carefully
what is involved, we write the coupled equations containing the slow-down
factor κ as

v̇ = −κ−1r/r3 + F ,
ṙ = κ−1v . (5.80)

Hence the new period is κ times the original one and the integration
is speeded up by the same amount. Let us write the equation for the
variation of an element q = q(t/κ, r,v), with t/κ representing the scaling
of time. This leads to

q̇ =
∂q

∂t
+
∂q

∂r
· ṙ+ ∂q

∂v
v̇

= κ−1
[

∂q

∂(t/κ)
+
∂q

∂r
· v − r

r3
· ∂q
∂v

]
+

∂q

∂v
· F

=
∂q

∂v
· F , (5.81)

where the final result simplifies to the earlier form (5.79), because the
two-body terms cancel due to q being an element. It should be noted that
now the short-period terms are multiplied by the factor κ which therefore
tends to counteract the advantage.
In the original Hamiltonian formulation we have

H = 1
2p
2/µ−Mb/r − U , (5.82)

where µ is the reduced mass and U is the perturbing force function which
yields the external force by F = ∂U/∂r. The modified formulation may
be described by the new Hamiltonian

H̃ = κ−1(12p
2/µ−Mb/r)− U , (5.83)

which leads to the above slowed-down equations of motion. This principle
can also be applied more generally in an N -body system, and even in
complicated situations that may occur in chain regularization [Mikkola &
Aarseth, 1993].
The idea may be formulated in the following way. First, separate from

the Hamiltonian, H, those terms which give the internal interaction of
the pair of particles forming the weakly perturbed binary, denoted Hb.
Second, multiply the part Hb by the slow-down factor κ−1 to get

Hnew = κ−1Hb + (H −Hb) , (5.84)
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and form the usual Hamiltonian equations of motion

Ṗ = −∂Hnew/∂Q , Q̇ = ∂Hnew/∂P . (5.85)

Alternatively, for a regularized formulation, we first write

Γnew = Hnew − E , (5.86)

and multiply by the time transformation, g, before forming the equations
of motion. Since κ changes with time, Hnew is not constant and for the
associated numerical value we may write

Ė = ∂κ−1/∂tHb . (5.87)

In practice, κ is adjusted by a small discrete amount after each step.
Hence the corresponding change in E is a delta function, obtained as a
fraction 1/κnew − 1/κold of the instantaneous binding energy, Hb.
The formulation (5.84) may be applied to many dynamical problems

featuring weakly perturbed systems and long time-scales. However, in the
following we focus on implementation in the chain regularization discussed
above.
Given the chain coordinates, Rk, and momenta, Wk, we write the

Hamiltonian as

H =
∑

TijWi ·Wj −
∑

Mk/Rk −
∑

Mij/Rij , (5.88)

where the auxiliary quantities affected by the present formulation are
given by the original expressions,

Tkk = 1
2(1/mk + 1/mk+1) ,

Tk k+1 = −1/mk ,

Mk = mkmk+1 . (k = 1, . . . , N − 1) (5.89)

To construct an expression for the internal interaction of a binary within
the chain, we first note that the relevant term in the potential energy is
Mb/Rb if b is the index of the distance between the binary components§

mb,mb+1. Hence we must select from the kinetic energy those terms which
have 1/mb or 1/mb+1 as a factor. The resulting combination of terms,
however, also contains the c.m. kinetic energy which must be subtracted
and added to the rest of the Hamiltonian.
We write the c.m. kinetic energy for the pair mb, mb+1 as

Tcm = 1
2(Wb+1 −Wb−1)2/(mb +mb+1) . (5.90)

§ This notation is employed here for convenience, whereas mb is used generally to
define the total binary mass.
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This is valid in all cases, provided that the quantitiesWk are defined to
be zero whenever the index k is outside the range [1, N − 1]. Selection of
the relevant terms from the Hamiltonian and expansion of the expression
for Tcm gives the following new expressions for evaluating the matrix Tij

and vector Mk in the presence of a slowed-down binary. First we calculate

Tk k+1 = −1/mk/κk ,

Tk+1 k+2 = −1/mk+1/κk , (k = 1, 3, 5, . . . ,≤ N) (5.91)

where a slow-down coefficient κk = 1 has been defined for every chain
vector, except for k = b. Next we evaluate the expressions

Tb−1 b+1 = −(1− κ−1b )/(mb +mb+1) ,
δTb−1 b−1 = δTb+1 b+1 = −1

2Tb−1 b+1 , (5.92)

and finally

Tkk = −1
2(Tk k+1 + Tk+1 k+2) + δTkk ,

Mk = mkmk+1/κk . (5.93)

Only two modifications remain which affect the evaluation of the equa-
tions of motion. First we must change the equation for Ak that appear in
the algorithm for the chain derivatives (cf. B.11) to read

Ak = 1
2

∑
(Tki + Tik)Wi , (|i− k| ≤ 2) (5.94)

because there are more non-zero off-diagonal elements in the T -matrix.
Hence only the summation limit has changed here. Finally, the total en-
ergy that appears explicitly in the usual equations of motion must be
modified by the amount

δE = −mbmb+1

2a

(
1

κnewb

− 1
κoldb

)
, (5.95)

where a is the actual semi-major axis. This contribution should be added
to the total energy when the slow-down factor changes from the old value,
κoldb , to the new one, κnewb .
So far we have discussed the slow-down procedure for only one binary.

However, we may have several such binaries in a chain subsystem and the
operations above may then be repeated for any relevant index b if desired.
It may also be remarked that the addition of external perturbations does
not affect the slow-down scheme since the internal tidal forces dominate.
Another type of N -body system of current interest consists of one or

more planets orbiting a central star which interacts with other cluster
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members [de la Fuente Marcos & de la Fuente Marcos, 1999] or is per-
turbed in scattering experiments [Laughlin & Adams, 1998]. In this case
the above strategy needs to be modified slightly. Thus the binary energy
appearing in (5.95) is replaced by the total subsystem energy which must
be calculated explicitly. Moreover, the size of the perturbation is now es-
timated by considering the outermost planet. The chain regularization
is quite effective for studying different types of configurations, provided
the condition of approximate isolation is satisfied. Thus the slow-down
procedure is applied to a compact subsystem for long time intervals of
small perturbations and yet we retain the advantage of treating strong
interactions leading to exchange or escape.

5.9 Time-transformed leapfrog scheme

The regularization schemes discussed so far are quite satisfactory for most
stellar systems. However, application to the case of very large mass ratios
leads to loss of efficiency as well as accuracy. In particular, the problem
of black hole binaries in galactic nuclei is currently topical. So far the
standard KS treatment discussed above has only been partially successful
[Quinlan & Hernquist, 1997; Milosavljević & Merritt, 2001]. On general
grounds, extension to chain regularization is also unlikely to be satisfac-
tory because the total subsystem energy that appears explicitly in the
equations of motion is dominated by the binary components. In view of
the small period and large binding energy of such a binary, some other
kind of regularization or smoothing method is therefore desirable.
Below we describe a new time-transformed leapfrog scheme that offers

practical advantages for studying systems with large mass ratios [Mikkola
& Aarseth, 2002]. Consider first the standard leapfrog equations

r1/2 = r0 +
h

2
v0 ,

v1 = v0 + h F(r1/2) ,

r1 = r1/2 +
h

2
v1 , (5.96)

where h is the time-step and F denotes the acceleration at t = 1
2h. We

adopt a time transformation ds = Ω(r)dt, with Ω an arbitrary function
and introduce a new auxiliary quantity W = Ω. The new idea here is to
evaluate W by the auxiliary equation

Ẇ = v · ∂Ω
∂r

, (5.97)

rather than explicitly. This allows us to solve the two sets of equations in
separate stages; namely (i) r′ = v/W, t′ = 1/W, v′ = 0, W ′ = 0, and (ii)
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v′ = F/Ω, W ′ = Ẇ/Ω, r′ = 0, t′ = 0. Consequently, we write

r = r0 + s
v
W

,

t = t0 + s
1
W

, (5.98)

and

v1 = v0 + s
F(r1/2)
Ω(r1/2)

,

W1 = W0 + s
v + v0
2Ω(r1/2)

· ∂Ω(r1/2)
∂r1/2

. (5.99)

Hence the solutions have been combined into a form of leapfrog, taking
s = 1

2h in (5.98); then s = h in (5.99) and finally again s = 1
2h in (5.98),

using the midpoint rule. The numerical solutions are obtained by employ-
ing the high-order Bulirsch–Stoer method. Thus, with the above leapfrog
algorithm, several integrations are performed with gradually decreasing
substeps, h, and the results are extrapolated to zero step-length.
Up to now, the choice of the time transformation has not been specified.

When considering an application to small subsystems, it is convenient to
choose the function

Ω =
∑
i<j

Ωij

rij
, (5.100)

where Ωij may be taken as the mass products or simply as unity. Here we
make the latter choice which assigns equal weights to all the members.
Hence the gradient is simply the force function

∂Ω
∂rk

≡ Gk =
∑
j �=k

rj − rk
r3kj

. (5.101)

The corresponding equations of motion for each particle, k, are given by

r′k =
vk
W

, t′ =
1
W

, (5.102)

v′k =
Fk

Ω
, W ′ =

1
Ω

∑
k

vk ·Gk , (5.103)

whereupon the leapfrog algorithm (5.96) is attained.
This formulation has also been generalized to include separately exter-

nal perturbations of conservative type as well as relativistic effects. In this
case we replace the last pair of equations (5.103) by

v′ = (F+ f(v))/Ω , W ′ = v ·G/Ω , (5.104)
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where f(v) denotes the velocity-dependent part of the acceleration and
subscripts have been omitted for simplicity. For small relativistic correc-
tions, the leapfrog velocity integration may be replaced by the implicit
midpoint method

v1 = v0 + h(F+ f(va))/Ω , (5.105)

with va = 1
2(v0+v1) the average velocity. Convergent solutions are usu-

ally obtained after a few iterations. In either case, the energy of the subsys-
tem is no longer constant but its change can be determined by integration
of the additional equation

E′(va) =
∑
k

mkvk · fk(va)/Ω , (5.106)

where va represents all the average velocities. Finally, this equation can
be treated in the same way as (5.104) to yield the energy jump ∆E = hE′.
Tests of small systems (N = 10 with two heavy bodies) show that

the time-transformed leapfrog (TTL) method is performing well. Thus
significantly higher accuracy with about half the number of function eval-
uations was achieved when including the time transformation. Reliable
solutions for coalescence by gravitational radiation have also been ob-
tained involving one or both of the massive binary components. Since the
Bulirsch–Stoer integrator is rather expensive when including many inter-
actions, the new method is intended for treating a compact subsystem
containing a massive binary and significant perturbers, but intervals of
unperturbed motion may also be studied. Finally, it may be noted that
integration of the time transforming function W ensures a more well-
behaved solution than direct evaluation. A particular advantage is that if
any other distances become very large, the time transformation function
approaches more closely to the inverse binary separation, which would
give exact binary motion by the leapfrog integration.

5.10 Algorithmic regularization

The power of special time transformations was demonstrated in the pre-
vious section. Thus when combined with leapfrog integration we essen-
tially achieve a practical regularization scheme where arbitrarily close but
non-singular encounters may be studied. This property was first discov-
ered when considering a simplified form of the Hamiltonian [Mikkola &
Tanikawa, 1999a,b]. In view of the connection with the TTL method, a
brief discussion of the main idea is of interest.¶

¶ Full details of symplectic integration can be found in Mikkola & Saha [2003]. See
Mikkola [1997a] for a discussion of time transformations for the few-body problem.
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We begin by writing the two-body Hamiltonian as

H = T − U , (5.107)

where T and U > 0 define the kinetic and potential energy, respectively.
Application of the time transformation

ds = Udt (5.108)

gives rise to the time-transformed Hamiltonian

Γ = (T − U + Pt)/U . (5.109)

Here Pt = −E0 with E0 the initial total energy. Although this Hamil-
tonian is not separable, Γ = 0 on the solution path. This enables us to
define the logarithmic function

Λ = ln(1 + Γ) , (5.110)

which after simplification leads to the separable form

Λ = ln(T + Pt)− lnU . (5.111)

A modified leapfrog algorithm can now be introduced that produces
correct positions and momenta for an elliptic orbit, albeit with a third-
order phase error. Provided the coordinates are not evaluated at the sin-
gularity, this treatment also applies to collision orbits. Hence a practical
regularization is achieved in the absence of a coordinate transformation.
The formulation has been generalized to arbitrary memberships and used
successfully to study collisions in a 1D system of six particles.
The numerical solutions are improved by introducing chain coordinates

in order to reduce round-off errors. However, comparison with the basic
chain method shows that the latter is still more efficient for critical triple
encounters. One paper [Mikkola & Tanikawa, 1999b] also contains some
useful explanations of the first- and second-order Bulirsch–Stoer method.
Finally, for completeness, we mention an analogous derivation of the loga-
rithmic Hamiltonian for symplectic integration [Preto & Tremaine, 1999].
We end this chapter by reviewing two global regularization methods of

the general three-body problem in 2D [Lemâıtre, 1955; Waldvogel, 1972].
The first derivation is based on a complicated Hamiltonian which is not
suitable for numerical work. It is also not clear whether a generalization to
3D introduces singular terms [cf. Heggie, 1974]. However, the Hamiltonian
of the second formulation does satisfy the requirement of simplicity. A
comparison with the three-body methods of sections 5.2 and 5.5 would
therefore be of considerable interest.
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6.1 Introduction

Direct N -body simulations are of necessity expensive because of the need
to evaluate all the N(N −1)/2 force interaction terms. We have seen that
the Ahmad–Cohen [1973] neighbour scheme only alleviates the problem
to some extent. However, once the particle number becomes sufficiently
large, the dynamical behaviour begins to change because close encounters
are less important. This behaviour has inspired methods for collisionless
systems to be developed, such as tree codes or multipole expansions. In
this chapter, we are concerned with tree codes since some relevant as-
pects of the latter have already been discussed. First we review the basic
features of the pioneering Barnes & Hut [1986] scheme which is widely
used in a variety of applications. Since the emphasis in this book is on
collisional stellar dynamics, we devote a section to describing a tree code
for point-mass interactions [McMillan & Aarseth, 1993] in the hope that
it might be revived. The final section deals with an independent devel-
opment for flattened systems [Richardson, 1993a,b] that has been used
to study different stages of planetary formation as well as ring dynamics,
where collisions play an important role.

6.2 Basic formulation

In view of the rapid growth in the computational requirements for increas-
ing particle numbers when using direct summation, it is not surprising
that several tree-based approaches have been made to speed up the ex-
pensive force calculation. The basic idea of employing a tree structure is
that the interactions due to a group of distant members can be described
by a small number of parameters involving low-order moments of the mass
distribution. Depending on the opening angle subtended by each group,

94
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B

A

Fig. 6.1. Tree structure.

the total force is then obtained as a sum over these contributions, as well
as any individual nearby particles. In the following we outline the basic
ideas of the Barnes–Hut [1986] tree-based force algorithm which has been
adopted in the methods described in the subsequent sections.
We begin by constructing one empty cubical cell containing the whole

system, called the root node. If more than one particle is assigned to any
cell, it is split into eight daughter cells, and this procedure is continued
recursively until all the members have been allocated single cells. The data
structure of each cell provides information about global quantities such as
mass and c.m. position accumulated at that level, as well as pointers to
the relevant daughter cells that contain further information. Because of
the hierarchical subdivision needed to separate two particles, many of the
cells will in fact be empty. A typical cell arrangement is shown in Fig. 6.1
for ten particles distributed in 2D.
Given the tree structure, the force on any particle may be obtained by

a recursive procedure that starts at the root cell containing the whole sys-
tem. Let l be the size of the cell under consideration and D the distance
from its c.m. to a particle. If l/D < θ, where θ is the opening angle or
tolerance, the respective interactions are summed; otherwise the current
cell is subdivided into eight cells and each one examined in a similar man-
ner. This procedure continues until all the particles have been included,
either in groups or as individual summations. For large N , the total num-
ber of such interactions for one particle is of order logN . In some types
of simulations involving softened potentials, an opening angle θ � 1 is
often used. However, this results in relatively large force errors, albeit of
a random nature.
Two strategies may be used to increase the accuracy of the force cal-

culation. By reducing θ below unity more neighbouring particles will be
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considered individually but the limit θ → 0 reverts to the direct summa-
tion method with additional overheads. The alternative way of providing
more information for each cell employs a multipole expansion to be de-
scribed in the next section. For simplicity, the original formulation did not
include the quadrupole terms and the leapfrog integrator used the same
time-step for all particles. However, the computational cost of going to
higher orders will eventually become prohibitive; hence a compromise of
moderate opening angles combined with a relatively low-order expansion
offers the best practical solution. Since the cost of rebuilding the whole
tree is somewhat less than the cost of one tree force evaluation on all
particles, the total cost of this part is still O(N logN) for large values of
N . As will be seen in the next section, the scaling coefficient is surpris-
ingly large if high accuracy is desired; hence special features are needed
to achieve an efficient formulation.
Before going on to discuss a code suitable for point-mass calculations,

we mention an astrophysical application of the Hernquist [1987] tree code
since it pertains to collisions [Arabadjis & Richstone, 1996]. This work
included the effects of stellar evolution and collisions, as well as a central
black hole and rotation. Star formation was also modelled by reprocess-
ing material ejected through stellar mass loss. The rotationally flattened
systems showed a steeper density profile than spherical systems, with
preferential radial velocities in the halo.

6.3 Collisional treatment

Several improvements are required in order to achieve satisfactory per-
formance for star cluster simulations. In the first place, it is desirable to
increase the accuracy of each force evaluation which can then be used
in a high-order polynomial instead of the basic leapfrog integration. The
second objective is to introduce an individual time-step scheme both for
the particles and the cells. Third, close encounters and persistent binaries
may be treated by regularization techniques. The following developments
[McMillan & Aarseth, 1993] are based on the Barnes–Hut scheme because
of its ease of construction and conceptual simplicity.
Consider a test particle at the position r = (r1, r2, r3) in the centre-

of-mass (c.m.) system of K particles with masses mk and coordinates
xk. The potential at an external position r is then given in terms of the
multipole expansion [Aarseth, 1967]

Φ(r) = −M

r
− Qijrirj

2r5
− Sijr

2
i rj + S123r1r2r3

2r7
+O

(
∆x

r

)5
. (6.1)

Here ∆x represents the size of the system and repeated indices i and j
are summed from 1 to 3. The explicit expressions for the monopole, M ,
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quadrupole, Q, and octupole, S, Legendre coefficients take the form

M =
∑

mk ,

Qij =
∑

mk(3xi,kxj,k − |xk|2δij) ,
Sij =

∑
mk[5(3− 2δij)x2i,k − 3|xk|2]xj,k ,

S123 = 15
∑

mkx1,kx2,kx3,k , (6.2)

where the summation is over K internal mass-points. Although the dipole
term D =

∑
mkxk does not appear in the expansion (6.1) since r is

expressed with respect to the c.m. of the K particles, the value of D/M
for each node must still be known. Analogous expressions are readily
constructed for internal points (cf. section 3.4).
The question of expansion order must be decided after appropriate

tests. Thus going to one more order than given explicitly here (i.e. hexade-
capole) would be quite expensive in view of the rapidly growing number of
terms, and it would probably be more efficient to reduce the opening an-
gle slightly. Figure 1 of the original paper illustrates typical relative force
errors for different orders and opening angles. For a target median force
accuracy of about 10−4 considered adequate for the present purpose, we
need an opening angle θ ≤ 0.4 for quadrupole moments, whereas θ ≤ 0.5
is sufficient when octupole terms are included. This general result is in
good agreement with other findings [cf. Makino, 1990].
When constructing the cell moments in a tree, we employ a recursive

calculation, from the leaves up, such that the moments of each cell are
determined by a sum over its eight daughter cells. We begin with the
monopole and dipole terms and denote by md and xd the known masses
and c.m. of the daughters. The mass M and c.m. coordinates X of the
parents are then simply

M =
∑

md ,

X =
1
M

∑
mdxd , (6.3)

where the summation over d is from 1 to 8 and subscripts have been
omitted. For the quadrupole moments Q and qd, similar expressions to
(6.2) again apply, except that the moments of each daughter, qd, must be
included explicitly, which gives

Qij =
∑

md(3xi,dxj,d − |xd|2δij) + qij,d . (6.4)

Lastly, for the octupole terms S and sd, we obtain in a similar way

Sij =
∑

md[5(3− 2δij)xi,d
2 − 3|xd|2]xj,d +
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5(1− δij)xi,dqij,d + 5
2xj,dqii,d − xl,dqjl,d + sij,d ,

S123 = 15
∑

md[x1,dx2,dx3,d

+ 5
3(x1,dq23,d + x2,dq31,d + x3,dq12,d)] + s123,d , (6.5)

where the repeated index, l, in the penultimate term of the first equation is
summed. If we define single particles to have zero quadrupole and octupole
moments, the above expressions apply whether the daughters of a node
are nodes or particles.
Traditionally tree codes have used a low-order integrator and older ver-

sions also employed the same time-step for all particles. Since the com-
putational effort of a complete tree construction is O(N logN), with the
same scaling but a smaller coefficient than for determining all the forces,
it has been customary to continue this practice. However, star cluster
simulations span a much wider range in length- and time-scale which
requires the use of high-order integration together with individual time-
steps. Hence a different strategy must be devised in order to replace the
full reconstruction of the tree at every step.
A solution to the tree construction problem is to consider the deforma-

tion of the cells with time and update the current values by prediction.
The growing deformation modifies the size of each cell, but this can be
controlled by using the effective size in the algorithm, or by reducing θ
slightly. Although the particles do not need to fit exactly into the original
cubical grid, it is important that the c.m. values for the higher moments of
each cell are known to sufficient accuracy. We therefore introduce the idea
of individual time-steps for the tree structure, and update the relevant
moments by prediction, without explicit reference to the corresponding
particle motions. The cells then take on the characteristics of particles,
with their own internal derivatives, Q̇, Ṡ, as well as time-steps. Now dif-
ferent regions evolve on their own time-scale, and various parts of the
tree must be reconstructed at the appropriate time. We delay details of
determining the cell time-steps until later and go on to discuss how to
extrapolate partial moments.
Suppose that a part of the tree is reconstructed at some time t0. More-

over, assume that all the relevant particles are synchronized, as in the
Hermite scheme, so that any relevant quantity can be evaluated without
extrapolation. In addition to X0,Q0,S0, we also require the correspond-
ing derivatives V0 = Ẋ0,A0 = Ẍ0, etc. at time t0 which are formed by
explicit differentiation of (6.2). Cell centroids are predicted to the same
order as the particles, i.e.

X(t0 + δt) = X0 +V0δt+ 1
2A0δt

2 + 1
6Ȧ0δt

3 , (6.6)

where δt < ∆t is the cell time-step. The cell monopole derivatives are
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obtained from the relevant particle quantities in an analogous manner to
the recursive construction of X from the array {xd}.
Prediction of quadrupole moments also needs to be performed to third

order. The corresponding derivatives are evaluated by successive differen-
tiation of (6.4), with ak = v̇k, which gives

Q̇ij =
∑

mk(3vi,kxj,k + 3xi,kvj,k − 2xk · vkδij) + q̇ij,k ,

Q̈ij =
∑

mk[3ai,kxj,k + 6vi,kvj,k + 3xi,kaj,k

− 2(xk · ak + |vk|2)δij ] + q̈ij,k ,

Qij
(3) =

∑
mk[3ȧi,kxj,k + 9ai,kvj,k + 9vi,kaj,k + 3xi,kȧj,k

− 2(xk · ȧk + 3vk · ak)δij ] + q
(3)
ij,k . (6.7)

With multipole prediction, the descent of the tree proceeds almost as
previously, except that before the opening criterion is applied to a cell,
its c.m. position is updated. If the cell remains unopened, its quadrupole
moments are also predicted before use by

Q(t0 + δt) = Q0 + Q̇0δt+ 1
2Q̈0δt

2 + 1
6Q

(3)
0 δt3 . (6.8)

The earlier remark about the cost of the hexadecapole moments also ap-
plies to the octupole derivatives which would contain a large number of
terms. We neglect the prediction of these derivatives by choosing to limit
the time-step instead. However, it seems likely that there would be some
benefit by introducing the Ṡ terms obtained by differentiating (6.5).
A number of criteria have been used to determine time-steps for the

cells. We define three characteristic time-scales for each cell as follows.
The first is the crossing time

∆tcross = min
k

[
(∆X)2

(xk −X) · (vk −V)

]
, (6.9)

where the index k refers to all particles in the cell and ∆X is the cell size.
Next we introduce a monopole prediction time by

∆tmono =

(
∆X|A|+ |V2|
|V||Ȧ|+ |A|2

)1/2
. (6.10)

Finally, we take the quadrupole prediction time as

∆tquad =

(
|Q||Q̈|+ |Q̇2|

|Q̇||Q(3)|+ |Q̈|2
)1/2

. (6.11)
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We now choose the actual cell time-step from

∆tC = ηcmin {∆tcross,∆tmono,∆tquad} , (6.12)

where the choice ηc � 0.1 for the accuracy parameter gives satisfactory
results. In practice, the quadrupole time-scale is the most sensitive. The
expressions for the monopole and quadrupole time-steps are based on the
original time-step criterion for direct N -body integration.
A cell C is due to be reconstructed when t0,C+∆tC ≤ t, in which case the

whole part of the tree below C is rebuilt. This has the effect of updating
all the cells descended from C. Hence a daughter cell whose updating time
exceeds that of its parent can simply be excluded from consideration by
the time-step scheduling algorithm.
There are several reasons why the standard individual time-step scheme

is not well suited to the present tree-based code. First, the cost of fre-
quent particle prediction can become substantial and comparable to a
force calculation. Another consideration is that it is difficult to ensure
synchronization when both particles and, cells are involved. Moreover,
the corrector as well as time-step determinations are scalar operations
when particles are advanced one at a time, whereas it is desirable to im-
plement procedures for parallel or vector supercomputers. For these and
other reasons we introduce a block time-step algorithm [McMillan, 1986].
This procedure anticipated the later quantization of time-steps in the Her-
mite integration scheme [Makino, 1991b]. Since the relevant aspects have
already been discussed in chapter 2, it suffices to state that the time-steps
take values 2n∆t0, where ∆t0 is the smallest at a given time.
The scheduling itself is concerned with determining all the members

of block n, which are advanced together. A novel algorithm is adopted
which does not appear to have been used by others. Thus at the jth
step, all particles in or below the njth block are updated, where nj takes
the successive values 1, 2, 1, 3, 1, 2, 1, 3, 1, 4, . . . This scheme is quite fast
and is implemented by maintaining a sorted list {i%} of all the particles
such that ∆ti% ≤ ∆ti%+1 for 1 ≤ G < N . The block structure then con-
sists of a second list of pointers {pk} to the ordered time-step list, so
that particles i1, i2, . . . , ip1 are in block 1, with time-step ∆t0, and parti-
cles ip1+1, ip1+2, . . . , ip2 are in block 2, with time-step 2∆t0, etc. Thus at
step j, the particles to be advanced are i1, i2, . . . , inj , where nj is defined
above. The advantage of this algorithm is that the choice of particles to
be integrated does not require any further search.
For the scheduling to work, it is important that the time-step list {i%} be

ordered such that the block boundaries are correct. Thus particles moving
to a lower block are exchanged with the last element in the current block,
and the block pointers are adjusted. If necessary, the process is repeated
until the correct level has been reached. Likewise, particles moving to a
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higher block are treated similarly, except that to maintain synchronization
at the next block-step, only one adjustment is allowed each time-step.
Unlike the present procedure in standard Hermite integration, the natural
steps of all particles are retained and are used for limiting the new step
in order to ensure convergence. Finally, when a new block is added below
block 1, ∆t0 and the step counter j must be replaced by 1

2∆t0 and 2j,
respectively. Hence at a given time ∆t0 represents the smallest time-step.
Cells also have associated time-steps which must be scheduled in some

way. It is convenient to employ the same scheme as above so that when a
cell is rebuilt, its time-step and those of any descendants are determined
and added to the block list. The block structure itself is defined by the
particles and, because two-body regularization is used, the condition ∆t <
∆t0 for cells never arises. Hence after a given block of particles has been
advanced, we rebuild any cells that are due for updating.
Unlike the particles, cells can contain other cells, and some care is

needed to avoid redundancies and inconsistencies, as for example attempt-
ing to reconstruct both a cell and its parent at the same time. One can
easily avoid this by including a cell in the block list only if its time-step
is smaller than that of any ancestor. All the affected cells can then be
rebuilt at once, with the entire operation being completely vectorizable,
which is desirable for some hardware.
It is quite inexpensive and highly advantageous to ensure that the tree

is rebuilt at least as often as the whole system is synchronized; i.e. at the
largest time-step. This is achieved by placing the root node in or below
the top particle block. Since the tree is predicted to the same accuracy as
the particles, we do not impose that the time-step of a particle be smaller
than that of its parent cell. The situation can easily be remedied if it
were desirable to construct the tree from synchronized particles, namely
by requiring that no particle has a time-step exceeding that of its parent
node. As can be seen, the present scheme is very flexible and can be
modified to suit particular requirements.
Even if there were no numerical problems connected with hard bina-

ries, their presence would cause complications in the construction and
maintenance of the tree and block structure. It is therefore natural to im-
plement two-body regularization in analogy with standard N -body codes,
and there is no reason why multiple regularization cannot be included.
Since practical details of the KS method will be discussed elsewhere, it
suffices to deal with some aspects relating to the tree code formulation.
As far as the tree structure is concerned, the c.m. of a regularized pair

is treated as one particle since its internal motion is advanced separately.
Regularization therefore places a lower limit of ahard � rh/N on the parti-
cle separation, where rh is the half-mass radius, and consequently this also
prevents the time-step ∆t0 from reaching rather small values. Although
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the tree sees a binary as a mass-point which is resolved into individual
components when necessary, its quadrupole and octupole moments are
included correctly in its parent cell.
A bonus of the tree formulation is that it dispenses with the perturber

lists used in direct N -body codes. This feature may not lead to much
gain in efficiency since the AC method provides lists of relevant particles
for perturber selection. However, there is the question of soft binaries for
which the neighbour list allocation may not be sufficiently large. This
problem may be partially circumvented by restricting regularization to
hard binaries and, since the number of perturbers actually decreases with
increasing N , it is convenient to retain the standard perturber lists which
are calculated from the tree.
Since regularization employs a non-linear internal time, the correspond-

ing physical time-steps cannot be incorporated into the block scheme.
However, regularized solutions are distinct from the other treatment and
we simply perform all the necessary operations before beginning each
block-step. Hence each KS solution is advanced until its next treatment
time exceeds the current block time. This part may be vectorized if a
large number of perturbed KS pairs require attention simultaneously.
Two particles are selected for KS treatment if their two-body motion

is dominant, with time-steps ∆ti < ∆tcl, where the close encounter time-
step is derived from the corresponding distance Rcl � 4rh/N , slightly
modified by the density contrast. Use of this time-step criterion normally
implies that the two particles are approaching each other with R < Rcl,
unless other particles are involved. Because a relative time-step criterion
is used, two such particles are normally in the same block, otherwise
synchronization can be enforced at the previous step.
The presence of a KS pair requires minor modification of the cell-

opening algorithm in order to maintain continuity of the force. Since the
KS pair will normally be resolved into its components, we require that
the same be true of the separate components in the tree. This is achieved
by opening any cell whose diameter D and distance R from the particle
in question satisfies D + αa > θR, where α � 1 and a is the relevant
semi-major axis.
The collisional tree code described above has reached a state of devel-

opment where it may be used in large-scale simulations. Based on com-
parison tests with a fairly modest particle number (i.e. N = 1024), the
cross-over point with respect to standard summation is estimated to be
in the region of N � 104. One reason is the rather large scaling coefficient
required for a high-order scheme. Even at this particle number, the tree
code will barely reach its asymptotic N logN regime; hence a fairly pow-
erful computer will be needed in order to exploit the performance. It is
also very encouraging that the results of a core collapse calculation shows
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excellent agreement with direct integration. Further details of accuracy
and timing can be found in the original paper [cf. McMillan & Aarseth,
1993]. Finally, the present formulation is suitable for both workstations
and conventional supercomputers, and the time is now ripe for a more
serious application to be attempted on faster hardware.
An earlier tree code development which was not pursued [Jernigan &

Porter, 1989] also employed two-body regularization. This novel formula-
tion is based on a recursive binary tree data structure and an accurate
KS integration method for every level of the binary tree. Given that the
computing time scaled as Tcomp ∝ N1.62 for N ≤ 32K compared with
N1.63 for θ = 0.5 above, this method deserves to be resurrected.

6.4 Flattened systems

Planetesimal systems exhibit two characteristic features that facilitate
a tree-code approach. First, the dominance of the central body, be it a
star or a planet, reduces the effects of the mutual interactions which can
therefore be considered as perturbations during most of the motion. Such
systems also tend to be disc-like and hence may require less computational
effort for dealing with the vertical dimension than fully 3D systems. In
the following we describe a unique tree code method [Richardson, 1993a,b]
which has also been applied to the problem of planetary rings [Richardson,
1994]. More recently, the cosmological tree code PKDGRAV (discussed in
a later chapter) was adapted to studying planetary formation as well as
ring simulations [Richardson et al., 2000].

The planetesimal method combines two techniques in order to study
large particle numbers efficiently. In the first place, the particle in box
scheme [Wisdom & Tremaine, 1988] discussed in section 3.6 has been
adopted to represent a small self-similar patch, thereby increasing the dy-
namical range significantly. Again the interactions are evaluated by the
Barnes–Hut [1986] tree code, with periodic boundary conditions which
include the effect of eight surrounding ghost boxes [Aarseth et al., 1993].
By referring the individual coordinates to the centre of a comoving Carte-
sian coordinate frame, the equations of motion take the linearized form
(3.37). The sliding box procedure is carried out according to section 3.6,
and particles leaving the central box are replaced by corresponding ghost
images such that, apart from collisions, the particle number is preserved.
The multipole expansion includes terms up to quadrupole order as a

compromise between complexity and efficiency. Once again, three deriva-
tives of the quadrupole tensor are calculated explicitly and used for up-
dating during the quadrupole prediction [cf. McMillan & Aarseth, 1993].
The integration scheme is based on the divided difference formulation of
section 2.2. To speed up the treatment, a 2D tree is used to describe the
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flattened 3D system. This calls for special procedures, such as ‘effective
size’ for each node that is recalculated during updates. The effective size
is defined as the maximum of the actual size of the node and the pre-
dicted y- or z-extensions of each child from the c.m., whereas excursions
in the radial x-direction are usually small. This device prevents excessive
subdivision for two particles that are arbitrarily close in 2D projection.
A variety of special features have been implemented in the planetesimal

code. Most original is the concept of tree repair which is very useful in
collision-dominated systems with small time-steps, since otherwise tree
construction after every time-step would be extremely expensive. Thus
if a particle crosses the boundary of its cell, the relevant nodes are up-
dated consistently without affecting other parts of the tree. This entails
destroying old nodes which become de-populated, or creating new ones.
The treatment of collisions also requires considerable care. Both dissipa-

tion and spin (discussed in section 17.4) are included for greater realism.
In order to reduce the amount of collision overshooting, a more sensitive
time-step criterion is employed inside small separations r < 10r0, with

∆t = 2−10r0/rηr/ṙ , (6.13)

where r0 is a typical particle size and η is the tolerance factor (� 0.02).
This results in significant improvement of angular momentum conserva-
tion at little extra effort since collisions are relatively rare. The choice
of opening angle, θ = 0.6, shows factors of 2–3 speed-up with respect to
the direct method for N = 250. However, the asymptotic approach to the
theoretical N logN algorithm may require even larger particle numbers
[cf. McMillan & Aarseth, 1993].
The planetesimal tree code called BOX TREE has also been applied to

a simulation of Saturn’s B ring [Richardson, 1993a, 1994], which demon-
strated its versatility. Here collisions are a main feature and the time-step
criterion (6.13) proved inadequate at high densities. Instead the general
expression (2.13) was found to be satisfactory, although it is relatively
expensive in the tree code formulation. Another feature of general inter-
est concerns the determination of post-collision velocities and spin rates
when normal and transverse restitution coefficients appropriate to small
bodies are prescribed. More details of this treatment are presented in sec-
tion 17.4. Finally, we note that test results for low particle densities are in
good agreement with the original box formulation, as well as an analytical
model [Goldreich & Tremaine, 1978] when self-gravity is not included.
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Program organization

7.1 Introduction

We now make an abrupt transition to a presentation of various algorithms
utilized by the direct summation codes. Before proceeding further, it will
be useful to include some practical aspects in order to have a proper set-
ting for the subsequent more technical procedures. First we introduce the
main codes that have been developed for studying different gravitational
N -body problems. Where possible, the same data structure has been em-
ployed, except that the most recent versions are formulated in terms of
the Hermite integration scheme. Since the largest codes are quite com-
plicated, we attempt to describe the overall organization by tables and
a flowchart to provide some enlightenment. Later sections give further
details concerning input parameters, variables and data structure; each
of these elements play an important role for understanding the general
construction. We also discuss a variety of optional features which provide
enhanced flexibility for examining different processes.

7.2 N-body codes

Before describing the characteristics of the codes, we introduce some
short-hand notation to illustrate the different solution methods employed
[cf. Makino & Aarseth, 1992]. Thus by ITS we denote the basic individual
time-step scheme, whereas ACS defines the Ahmad–Cohen [1973] neigh-
bour scheme. Likewise, HITS and HACS are used for the corresponding
Hermite integration methods. Finally, MREG refers to the implemen-
tations of unperturbed three-body [Aarseth & Zare, 1974] and four-body
chain regularization [Mikkola & Aarseth, 1990], as well as perturbed chain
regularization [Mikkola & Aarseth, 1993]. Also note that the latter con-
tains (optionally) the slow-down procedures discussed earlier. Because of

105
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the programming complexities involved, only one multiple regularization
of each type is currently permitted, but it is extremely rare for more than
one such critical interaction to occur at the same time in standard clus-
ter simulations. However, an extension to several compact subsystems or
the introduction of wheel-spoke regularization (cf. section 5.4) would be
beneficial for some problems. On the other hand, an arbitrary number
of simultaneous KS solutions can be used to study large populations of
primordial binaries [Aarseth, 1985a, 2001a; Wilkinson et al., 2003].
Table 7.1 summarizes the combination of integration schemes in the

main codes, together with typical particle numbers for applications. The
choice of names is historical but indicates an increasing degree of com-
plexity in the solution methods, starting with one force polynomial. The
codes NBODY 1 and NBODY 2 are of less interest here since they are based
on a softened potential and are only suitable for collisionless systems.
Moreover, a detailed description of these codes can be found elsewhere
[Aarseth, 2001b]. Equivalent Hermite versions of NBODY 1 and NBODY 2

also exist [cf. Makino & Aarseth, 1992]. Likewise, the cosmological simu-
lation code COMOV E discussed in section 3.3 is based on NBODY 2. Still,
it is very useful to gain experience with simple codes before attempting
more complicated tasks.
Star cluster simulations are facilitated by the introduction of two-body

regularization [Aarseth, 1972b; Bettis & Szebehely, 1972]. The KS method
adopted is of the same type as the corresponding direct N -body inte-
grator for compatibility; i.e. the older codes NBODY 3 and NBODY 5 are
still entirely based on divided differences. Of the four point-mass codes,
one (NBODY 3) is intended for small-N systems, whereas another one
(NBODY 4) has been adapted for the special-purpose HARP and GRAPE
computers,∗ and is likewise based on brute-force solutions of the gravita-
tional many-body problem. This leaves us with the three last codes for
general use on laptops, workstations or conventional supercomputers.
It does not follow that a code for small particle numbers is much more

compact since many of the key building blocks are essentially similar and
the data structure is preserved. Thus the main technical difference be-
tween NBODY 3 and NBODY 5 is the lack of neighbour lists in the former,
although the latter also contains additional astrophysics. Since N is usu-
ally relatively modest when using NBODY 3 (i.e. N ≤ 100 for efficiency
reasons), the extra cost of obtaining perturber lists for two-body regu-
larization by full summation is not a concern, otherwise one could devise
an analogous strategy connected with the centre-of-mass (c.m.) motion.

∗ The names are derived from ‘Hermite AcceleratoR Pipeline’ and ‘GRAvity piPE’
[Makino et al., 1997]. We denote by HARP-2 and HARP-3 the older hardware located
at Cambridge, whereas GRAPE is used for the generic family of all such machines.
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Table 7.1. Direct N-body codes.

Code Characteristic description Membership

NBODY 1 ITS with softening 3− 100
NBODY 2 ACS with softening 50− 104

NBODY 3 ITS with KS and MREG 3− 100
NBODY 4 HITS with KS and MREG 10− 105

NBODY 5 ACS with KS and MREG 50− 104

NBODY 6 HACS with KS and MREG 50− 104

NBODY 7 As NBODY 6 with BH binary 50− 104

In other words, the corresponding neighbour list could be renewed on
a somewhat longer time-scale to mimic the regular time-step used by
NBODY 2.
The codes NBODY 5 and NBODY 6 are mainly intended for star cluster

simulations. The former has been a work-horse for more than 20 years now
and the main features have been described elsewhere [cf. Aarseth, 1985a,
1994]. With the subsequent arrival of Hermite integration [Makino, 1991a;
Makino & Aarseth, 1992], the code NBODY 6 appears to be more robust
and at least as accurate for the same CPU time. Some general aspects have
been discussed elsewhere [Aarseth, 1994, 1996b, 1999a,b] but a complete
description is still lacking. After a period of testing and developments, it
is now beginning to produce useful results [Kroupa, Aarseth & Hurley,
2001]. Although the actual integration methods differ somewhat, many
other aspects of interest are in fact very similar and can be discussed
together. The very recent code NBODY 7 [Aarseth, 2003a] contains the
additional implementation of BH binary dynamics discussed in section 5.9
and there is also an equivalent GRAPE-6 version which has proved itself
[cf. Aarseth, 2003b]. Finally, the HARP or GRAPE code NBODY 4 deals
with several additional astrophysical processes that are of general interest
and can be readily included in NBODY 6.

7.3 Flowcharts

A general description of complicated code structure is facilitated by re-
course to flowcharts, supported by tables defining variables, as well as
algorithms. The following schematic illustration shown in Fig. 7.1 pro-
vides an overview. The simplicity is deceptive and even the first segment
contains a number of special features in the star cluster codes.
For convenience, we concentrate on describing the generally available

code NBODY 6 but remark that NBODY 4 is broadly similar apart from
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Integration

Initialization

Data Analysis

Fig. 7.1. Schematic code structure.

lacking the AC neighbour scheme. Turning first to initialization, the main
steps are outlined in Algorithm 7.1 for clarity, whereas the actual scaling
from any initial units to N -body units as well as the final astrophysical
data conversion is detailed in section 7.4. In view of the variety of initial
conditions, there is some provision for explicit generation (i.e. Plummer
model); otherwise specially prepared data may be supplied (cf. Table 7.4).
Independent optional features such as external tidal fields, primordial
binaries (and hierarchical triples), stellar evolution and interstellar clouds
are also catered for, as discussed further in the next chapter. Finally, force
polynomials and time-steps are assigned and any hard primordial binaries
initialized for KS treatment.

Algorithm 7.1. Initialization procedures.

1 Initialize useful counters and variables
2 Read input parameters and options
3 Obtain initial conditions (in situ or prepared file)
4 Scale all mi, ri, ṙi to N -body units
5 Define scaling factors for data conversion
6 Introduce external tidal field (optional)
7 Generate a primordial binary distribution (optional)
8 Assign stellar evolution parameters (optional)
9 Add a population of interstellar clouds (optional)
10 Evaluate force polynomials and specify time-steps
11 Regularize any close primordial binaries (optional)

Next we consider the more complicated part which deals with the dif-
ferent ways of obtaining numerical solutions. Since a full discussion of the
data structure is deferred until later in this chapter, only some general
aspects are included in the flowchart of Fig. 7.2.
Each integration cycle consists of advancing all equations of motion

consistently up to the end of the block-step. The new cycle begins by
selecting all single and c.m. particles due for treatment by the Hermite
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Fig. 7.2. Integration cycle.

scheme (cf. section 9.2). Before dealing with the standard case, any KS
or compact subsystem solutions are advanced. If the particle sequence
is maintained (e.g. no physical collision), the coordinates and velocities
of the relevant neighbours are predicted. Assuming a conventional com-
puter, the irregular and regular integration of each particle is carried out
sequentially. However, in order to preserve an invariant outcome, the cur-
rent coordinates and velocities, ri, vi, for particles in the same block are
only copied from the corresponding corrected values at the end of the
block-step. In the case of KS termination or multiple subsystem initial-
ization, the program flow is interrupted by special procedures discussed
later. For completeness, we also mention new KS initialization here, al-
though this task is in fact considered at the beginning of the block-step.
This entails setting the time equal to the previous block time, whereupon
the cycle starts again with a new sorted sequence. The cycle ends by
checking the optional procedures for implementing stellar evolution.

The decision of whether to produce results is also taken just after the
new block time has been determined. Thus if the next output time is
exceeded, the integration cycle is suspended temporarily and the current
time is redefined as the previous block time when all the relevant solutions
are updated. Likewise, any additional data saved for later analysis may be
initiated at this stage by introducing an appropriate time interval. This
requires the prediction of all quantities to highest order, which is also
needed for the energy check. At such times, most solutions will usually
be known to order Ḟ at least. A discussion of any other procedures is less
relevant here and is therefore left to a later chapter.

A special indicator is used to facilitate program control. Historically
this was introduced to overlay different modules in order to save valuable
memory, hence the notation IPHASE for this indicator. It may be helpful
to consult the list of possible values, given in Table 7.2.
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Table 7.2. Indicator for flow control.

0 Standard value
1 New KS regularization
2 KS termination
3 Output and energy check
4 Three-body regularization
5 Four-body regularization
6 New hierarchical system
7 Termination of hierarchy
8 Chain regularization
9 Physical collision

−1 Exceptional cases

All these indicators are used and have the same meaning in the codes
NBODY 3 and higher versions, and a few are also found in NBODY 2. It
is convenient to employ a negative value for denoting exceptional cases,
such as using only part of a routine, signalling additional procedures or
denoting a change of the particle sequence (cf. section 7.7).

7.4 Scaling and units

The use of units in N -body simulations has been rather non-uniform.
Ideally, results should be presented in a way that at least facilitates com-
parison with other models, if not observations. The comparison problems
were due to the theoretician’s preference for considering a wide variety
of scales and reporting the results in terms of natural variables, unlike
observers who are constrained by reality. Eventually, it was agreed by the
small community of practitioners to employ so-called ‘standard N -body
units’ for the actual calculations [Heggie & Mathieu, 1986]. Briefly stated,
the scaled total mass, M , and equilibrium virial radius, rV, are taken to
be unity, with the total energy E0 = −0.25 for bound systems.

Algorithm 7.2. Scaling to standard units.

1 Initialize ri, ṙi in the inertial c.m. frame
2 Scale the masses by

∑
imi = 1, giving m̄ = 1/N

3 Calculate kinetic, potential and tidal energy T,U,W
4 Define the virial energy expression V = U + 2W
4 Multiply the velocities by Qv = (Qvir|V |/T )1/2
5 Scale ri, ṙi to E0 = −0.25 using β = (1−Qvir)U/E0
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The steps for achieving the desired scaling are given by Algorithm 7.2.
Here Qvir is the specified virial ratio which is a half for overall equilibrium
and V = U +2W is the virial energy. Note that W is not yet determined
during the scaling procedure and is therefore only included with zero value
to be formally correct. For open star clusters, the z-component of the
angular momentum is absorbed in the kinetic energy [cf. Chandrasekhar,
1942, eq. 5.535]. The last operation involves multiplying all coordinates
by β and dividing the velocities by β1/2. As a check, the total energy
should now be† E = −0.25. In these units we have σ2 = 1

2 for the mean
square equilibrium velocity, which gives a constant crossing time

tcr = 2rV/σ = 2
√
2 . (7.1)

Since the central velocity dispersion in a bound cluster exceeds σ by some
factor (about 2 for a typical King [1966] model), we define the energy of
a hard binary by (4.1). The corresponding scaled binding energy per unit
mass is then obtained by the general expression

hhard = −4max {T, |T + U |}/M , (7.2)

which takes the dimensionless value hhard = −1 at equilibrium. Note that
although M = 1 initially, the removal of escapers affects all the global
quantities, including the total energy itself. For this reason, a consistent
updating of the relevant parameters is desirable as the cluster evolves.
In the case of a cluster with regularized binaries, T represents the sum

of contributions from single particles and c.m. motions, whereas the po-
tential energy, U , excludes all internal two-body interactions. Hence the
quantity T+U+W is the total energy that binds the cluster and 2Qvir−1
denotes the fractional departure from overall equilibrium in per cent. With
regularized binaries present, the actual total energy is obtained by adding
all the predicted two-body binding energies. Note that if the alternative
definition of including all the potential energy in U is used, the virial ratio
Qvir = T/|U + 2W | may be dominated by a single eccentric binary.
The scaling of astrophysical quantities to internal units is often a source

of confusion. The main reason for this is due to taking G = 1 for the
gravitational constant. Such problems are readily resolved by performing
dimensional analysis. Let us now introduce some basic relations in terms of
physical units. A cluster is essentially defined by the two global parameters
RV andMS together withN , which are usually specified as input (see next
section). For most work in stellar dynamics, it is convenient to express
the length scale, RV, in pc and mean stellar mass, MS, in M�, from which
all quantities of interest can be derived. Distances and masses are then
simply obtained from the N -body units by r̃ = RV r and m̃ = MS m̄.

† Subject to a possible small contribution from the optional tidal force.
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For the velocity we determine the conversion factor in km s−1from

Ṽ ∗ = 1× 10−5(GM�/L∗)1/2 , (7.3)

where L∗ is a length scale. With G,M�, L∗ expressed in cgs units and
choosing L∗ = 1pc, this gives Ṽ ∗ = 6.557 × 10−2. Taking account of the
total mass and cluster length scale then yields the scaling relation

V ∗ = 6.557× 10−2(NMS/RV)1/2 . (7.4)

The scaling of time is also done in two stages as follows. First the fiducial
time factor is taken to be T̃ ∗ = (L∗3/GM�)1/2, or 14.94 in units of Myr.
Converting to the cluster parameters, we obtain

T ∗ = 14.94 (R3V/NMS)1/2 . (7.5)

Hence the velocity in units of km s−1and the time in Myr are obtained by
ṽ = Ṽ ∗ v and t̃ = T̃ ∗ t, where v and t are in N -body units. Finally, the
relation for the crossing time in Myr becomes

Tcr = 2
√
2T ∗ . (7.6)

Applying the basic conversion factors MS, RV, V
∗, T ∗ and dimensional

analysis, we can now evaluate all the relevant quantities in convenient
physical units. Note that individual masses, mi, may be expressed in
scaled N -body or astrophysical units, depending on the context.

7.5 Input parameters and options

Each code has its own choice of input parameters that can take a range
of values according to the desired objective. In practice it is useful to be
aware of any limitations and a well-designed code should include consis-
tency checks to prevent inappropriate usage. However, one should also
allow a certain flexibility for experimentation; hence any restrictions are
often curtailed by compromise. It is useful to distinguish between param-
eters specifying the model to be investigated and those that control the
solutions. Alternatively, an optional facility for including a prepared set of
initial conditions can be used to over-ride the choice of model parameters,
since only a few explicit models are generated in situ.
Table 7.3 gives suggested numerical values for the main variables con-

trolling the integration in the codes NBODY 5 and NBODY 6 in the case
N = 1000 and, as can be seen, the simplicity is evident. Given the stan-
dard scaling to N -body units discussed above, only a few of these quanti-
ties depend on the particle number. First, the central value of the initial
neighbour sphere may be taken as S0 � 0.3 (N/1000)1/3 for the standard



7.5 Input parameters and options 113

scaling rV = 1. At larger distances, the initial neighbour radius is modi-
fied according to the expression S2 = S20 (1+ r2) if the system is centrally
concentrated.
A good choice for the maximum neighbour number is nmax � 2N1/2,

but this has not been investigated above N � 1000.‡ However, in the
case of primordial binaries with a general IMF it is desirable to employ
more generous values of nmax since even a hard binary may have a rel-
atively large semi-major axis that requires many perturbers inside the
distance λa(1 + e), where λ is a dimensionless quantity. From the basic
close encounter distance Rcl = 4 rh/N defined by (1.9) and dimensional
analysis, the corresponding time-step for typical parabolic motion is de-
termined empirically as ∆tcl � 0.04 (R3cl/m̄)1/2, where m̄ is the mean
mass. A slightly smaller value of Rcl is used in practice (cf. (9.3)). Note
that a binary with mass components mi = 10m̄ would already be hard at
a semi-major axis a � 100/N .
The codes contain an option for automatic adjustments of all regulariza-

tion parameters, carried out at intervals ∆tadj. The regularized time-step,
to be defined in a later section, is chosen such that there are 2π/ηU steps
per unperturbed orbit. The suggested value refers to the Hermite Stumpff
integration, whereas ηU = 0.1 is appropriate for the other KS methods.
The value of hhard follows directly from εhard/µ̄, with µ̄ the mean reduced
mass (cf. (4.1)). Most of the remaining quantities are a matter of personal
taste but have been included for completeness.
As can be seen, the most important parameters are either dimensionless

or have dynamical significance. Hence a change to different particle num-
bers requires minor modifications of the basic input template. Needless to
say, a number of additional features are included in order to permit differ-
ent effects to be studied, whereas others ensure a smooth running of the
code. These are optional and offer facilities for a wide variety of paths to
be decided on initially and, if desired, can also be changed during the cal-
culation after a temporary halt which saves the current state. Since many
of the relevant procedures will be discussed in later sections, Table 7.4
includes a representative subset (out of 40 options) for inspection. We re-
mark that options offer greater flexibility than logical variables, since the
former can be assigned multiple values and defined in order of increasing
complexity. Naturally, care must be exercised to ensure that the different
options are mutually consistent. This is usually achieved by constructing
a template when investigating a specific problem.

‡ See Spurzem, Baumgardt & Ibold [2003] or Makino & Hut [1988] for different view-
points regarding large simulations.
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Table 7.3. Integration parameters.

ηI Time-step parameter for irregular force 0.02
ηR Time-step parameter for regular force 0.03
S0 Initial radius of the neighbour sphere 0.3

nmax Maximum neighbour number 70.0
∆tadj Time interval for energy check 2.0
∆tout Time interval for main output 10.0
QE Tolerance for energy check 1.0 ×10−5
RV Virial cluster radius in pc 2.0
MS Mean stellar mass in solar units 0.8
Qvir Virial theorem ratio (T/|U + 2W |) 0.5
∆tcl Time-step criterion for close encounters 4.0 ×10−5
Rcl Distance criterion for KS regularization 0.001
ηU Regularized time-step parameter 0.2

hhard Energy per unit mass for hard binary –1.0
γmin Limit for unperturbed KS motion 1.0 ×10−6
γmax Termination criterion for soft binaries 0.01

7.6 Basic variables

All N -body codes require a number of variables for each particle, the
minimum being just six if equal masses are chosen. In the following we
concentrate on describing NBODY 6, although NBODY 5 contains exactly the
same direct integration variables. For ease of reference, these are listed
in Table 7.5 together with a brief definition. The actual variables em-
ployed by the codes are also included for convenience according to the
programming style of upper case for all FORTRAN statements.
Given the theoretical exposition of the preceding chapters, the com-

ments to all the entries are self-explanatory. Because of the static memory
allocation in older FORTRAN versions, maximum array sizes are speci-
fied before compilation. A number of FORTRAN parameters are included
in a header file params.h and these are defined in Table 7.6. For illustra-
tion, Column 3 contains representative values for a cluster simulation that
allows up to Ns = 1000 single particles and Nb = 1000 hard primordial
binaries to be studied. Since every new KS solution also requires a cor-
responding c.m. particle to be introduced, the storage requirement is for
Ns+3Nb particle arrays. Moreover, some allocation should also be made
for additional regularizations during the early stages since all the original
binaries may still be present.
All the important variables are kept together in a global common block

common6.h to facilitate data communication and restart of a calculation
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Table 7.4. Optional features.

1 Manual common save on unit 1 at any time
2 Common save on unit 2 at output time or restart
3 Data bank on unit 3 with specified frequency
5 Different types of initial conditions
7 Output of Lagrangian radii
8 Primordial binaries (extra input required)
10 Regularization diagnostics
11 Primordial triples (extra input required)
13 Interstellar clouds (extra input required)
14 External tidal force; open or globular clusters
15 Multiple regularization or hierarchical systems
16 Updating of regularization parameters Rcl, ∆tcl
17 Modification of ηI and ηR by tolerance QE
19 Synthetic stellar evolution with mass loss
20 Different types of initial mass functions
22 Initial conditions mi, ri, ṙi from prepared data
23 Removal of distant escapers (isolated or tidal)
26 Slow-down of KS and/or chain regularization
27 Tidal circularization (sequential or continuous)
28 Magnetic braking and gravitational radiation
30 Chain regularization (with special diagnostics)
32 Increase of output interval (limited by tcr)
34 Roche lobe overflow (only NBODY 4 so far)
35 Integration time offset (cf. section 15.9)

from the saved state. Since the integration variables represent 48N double-
precision words (cf. section 3.2), this part is of size 96N words. In addition,
the recommended neighbour list allocation is of size 2(Ns +Nb)1/2, with
some extra locations for algorithmic complications.
The corresponding common variables for the KS scheme are given in

Table 7.7. In addition to the 18 basic entries there are another ten arrays
pertaining to the Stumpff method. This makes a total of 110 words for
each KS solution, compared with 94 words for the difference formulation.
As in direct integration, we use the convention ‘force’ to denote acceler-
ation. Note that standard variables such as t0,∆t and L are also used
for KS solutions, with the convention that the first component, mk, is
referred to; i.e. k = 2Ip− 1 for pair index Ip. This scheme was introduced
before primordial binaries became relevant, but in any case disc space is
not usually an issue for direct N -body simulations.
A modern code employs a large number of unique variable names to
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Table 7.5. Basic variables.

x0 X0 Primary coordinates
v0 X0DOT Primary velocity
x X Coordinates for predictions
v XDOT Velocity for predictions
F F One half the total force (per unit mass)
F(1) FDOT One sixth the total force derivative
m BODY Particle mass (also initial mass m0)
∆t STEP Irregular time-step
t0 T0 Time of last irregular force calculation
FI FI Irregular force
D1I FIDOT First derivative of irregular force
D2I D2 Second derivative of irregular force
D3I D3 Third derivative of irregular force
∆T STEPR Regular time-step
T0 T0R Time of last regular force calculation
FR FR Regular force
D1R FRDOT First derivative of regular force
D2R D2R Second derivative of regular force
D3R D3R Third derivative of regular force
Rs RS Neighbour sphere radius
L LIST Neighbour and perturber list

Table 7.6. FORTRAN parameters.

Nmax Total particle number and c.m. bodies 4010
Kmax KS solutions 1010
Lmax Neighbour lists 100
Mmax Hierarchical binaries 10
Mdis Recently disrupted KS components 22
Mreg Recently regularized KS components 22
Mhigh High-velocity particles 10
Mcloud Interstellar clouds 10
Nchain Chain membership 10

define useful quantities, most of which are scalars. Accordingly, the choice
is between local and global allocation. The strategy of the present design is
to keep all essential variables for direct and KS integration in one common
block, whereas the more complicated chain regularization is described
by temporary common variables. Since most chain interactions are of
short duration, this usage enables a calculation to be restarted from the
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Table 7.7. KS regularization variables.

U0 U0 Primary regularized coordinates
U U Regularized coordinates for predictions
U′ UDOT Regularized velocity
FU FU One half the regularized force
F′U FUDOT One sixth the regularized force derivative
F(2)U FUDOT2 Second derivative of regularized force
F(3)U FUDOT3 Third derivative of regularized force

h H Binding energy per unit reduced mass
h′ HDOT First derivative of the specific binding energy

h(2) HDOT2 Second derivative of the binding energy
h(3) HDOT3 Third derivative of the binding energy
h(4) HDOT4 Fourth derivative of the binding energy
∆τ DTAU Regularized time-step
t(2) TDOT2 Second regularized derivative of physical time
t(3) TDOT3 Third regularized derivative of physical time
R R Two-body separation
R0 R0 Initial value of the two-body separation
γ GAMMA Relative perturbation

latest common save by continuing the high-order integration cycle as if
no interruption had occurred, so that the end result should be identical
to a continuous calculation. This is usually achieved even in the large
codes and it is highly desirable that a given outcome be reproducible, at
least over short intervals in order to deal with any technical problems.
Provisions are also included for changing a variety of input variables and
options at restart time. Such a procedure makes it possible to study the
effect of varying some condition at a given stage in the evolution, or simply
extend the simulation beyond the prescribed termination time.

7.7 Data structure

Elegant code design assists greatly in delineating the complex paths that
are an inevitable feature of any such large undertaking. To this end, the
data structure itself plays a vital role. Thus we need to allow for a chang-
ing situation in which new KS solutions appear or are terminated and es-
caping particles are removed during the calculation. These requirements
make it desirable to abandon a rigid data structure in favour of a flexi-
ble scheme. There are essentially two ways to overcome this problem. We
can either adopt the style of C-programming and introduce pointers, or
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Fig. 7.3. Ordering of KS pairs. The figure shows the data structure for (a)
creation of new pair, and (b) KS termination.

modify the relevant particle arrays according to the changing situation.§

Apart from questions of hardware and efficiency, a FORTRAN program is
easier to follow if the arrays can be maintained in an ordered fashion. How-
ever, the latter strategy does involve extra cost as well as programming
complexities. Fortunately the cost of the relabelling scheme is relatively
modest in practice since the number of new KS and other regularized
solutions is usually small even with primordial binaries.
The present data organization is based on updating the particle arrays

to give a sequential representation [cf. Aarseth, 1985a]. This is achieved by
re-ordering all the relevant variables at each new change of configuration.
For each KS pair, Ip, the corresponding c.m. location is situated at N+Ip.
Hence given the particle number, N , and number of pairs, Np, the first
single particle is located at Is = 2Np + 1 and the last c.m. at N +Np.
Figure 7.3 illustrates the general case of increasing or reducing the num-

ber of regularized solutions with other pairs present. At a given time, all
the KS components occupy the 2Np first sequential locations, followed
by the single particles. In Fig. 7.3(a), the particle pair k, l has been se-
lected for regularization. Consequently, all particle arrays at locations
2Np + 1 and 2Np+2 are exchanged with those of the regularization can-
didates and the corresponding c.m. is introduced at N + Np + 1. At an
appropriate stage during the initialization, the current pair index, Np, is
increased by one. In the reverse case of terminating an existing KS so-
lution, as in Fig 7.3(b), all more recent pairs are moved up to liberate

§ An alternative tree-type data structure is discussed in Appendix F.
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the locations 2Np − 1 and 2Np for the terminated components at 2Ip − 1
and 2Ip, which now become the first single particles, whereupon the cor-
responding c.m. is removed by compression.
The data structure enables a sequential force summation to be carried

out from Is to Ntot = N+Np, provided due care is exercised for i > N . In
this case, if r2ij > λ2R2, the force is obtained by including the mass-point
contribution, otherwise the two components are first resolved. The c.m.
approximation parameter is related to the unperturbed two-body limit
for consistency and given by λ = γ

−1/3
min .

The advantage of having a well-ordered scheme is evident. Given that
the cost of a new initialization is O(N), the required switching of arrays
does not add significantly since the effort of obtaining the force polyno-
mials themselves dominates on a conventional computer. However, there
are additional costs of updating all the internal neighbour and perturber
lists due to the changed locations of a few particles. Fortunately this effort
can be speeded up in many ways by taking advantage of the sequential
ordering, and in any case these operations are fast because only integer
arithmetic is involved. Hence the cost of all KS-related initializations in
a large simulation is essentially negligible since the total number of such
episodes is relatively small even when the number of binaries is large.
In the case of escaper removal, the common arrays of bound cluster

members are compressed. Now there is no polynomial initialization but
again all relevant lists must be made consistent with the new sequence.
Since both the particle number and relevant locations change with time,
it is convenient to define a unique label or so-called ‘name’, Ni, at the
beginning. Thus we adopt Ni = i for all initial binary components and
single particles and Nj = N2k−1 + N0 for the c.m. of each KS pair, k,
where N0 is the initial particle number. This is particularly useful for
identification of binary components that may be involved in exchange or
collisions. Further details of reconfiguration and escape procedures will
be given in later sections, together with a discussion of the data structure
for hierarchies.



8
Initial setup

8.1 Introduction

A variety of procedures need to be carried out before the calculation
proper can begin. The prescriptions for input parameters and options are
discussed in chapter 7. Here we concentrate on different types of initial
conditions for star cluster simulations, whereas planetary systems are de-
scribed elsewhere. The cluster models are first generated for single stars
with a specified initial mass function (hereafter IMF) and scaled to inter-
nal units. Since a variety of distributions may be considered, we provide
several detailed algorithms. Next we present some procedures for includ-
ing a realistic distribution of primordial binaries. Modelling of star clusters
also requires external effects to be added. We distinguish between the mo-
tion of open clusters in circular orbits and globular clusters in 3D, with
the galactic tidal force truncating the outer parts. Interstellar clouds form
another perturbing agent which may be taken into account. Finally, with
these procedures completed, the force polynomials for direct solutions as
well as for any dominant two-body motions can be initialized.

8.2 Initial conditions for clusters

Although the choice of starting configurations for star cluster simulations
is extremely wide, we may be guided by certain principles and obser-
vational constraints. Such models are usually represented by a smooth
IMF and centrally concentrated density distribution. Depending on the
objectives, the velocities may represent approximate equilibrium or initial
collapse, whereas cosmological models are characterized by expansion.
The subject of the IMF has a long and chequered history. On the

computational side, it has been known for a long time [Wielen, 1967;
Aarseth, 1973] that a general mass spectrum increases the evolution rate

120
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significantly. The question of the upper and lower mass limits is still a
matter for debate. However, the consensus is emerging that the low-mass
stars do not form a significant proportion of the total mass [Kroupa,
2001a]. As far as small clusters are concerned, a few massive stars may
play an important role due to mass loss on short time-scales. Going to
larger clusters (N � 104), this effect is probably less and we may consider
a power-law distribution where the maximum stellar mass is a stochastic
variable.
Guided by analysis of observational data, the simplest choice for open

clusters is a classical Salpeter-type IMF, given by the power law

f(m) ∝ m−α (8.1)

for a specified mass range [m1,mN ]. The exponent is traditionally taken as
α = 2.3 [Salpeter, 1955]. The corresponding distribution for each member
i is readily obtained by the expression

m
−(α−1)
i = m

−(α−1)
1 − (i− 1)gN , (8.2)

with
gN = (m−(α−1)

1 −m
−(α−1)
N )/(N − 1) . (8.3)

A more realistic alternative is provided by the mass generating function
[Kroupa, Tout & Gilmore, 1993]

m(X) = 0.08 +
γ1X

γ2 + γ3X
γ4

(1−X)0.58
, (8.4)

with the random number X uniform in [0, 1]. The best-fit coefficients for
the solar neighbourhood are given by γ1 = 0.19, γ2 = 1.55, γ3 = 0.05, γ4 =
0.6. If desired, values outside a specified range may be rejected, withmN >
0.08 as the lower limit. A more flexible form of the fitting function (8.4) has
also been developed to allow for any five-part power-law in specified mass
intervals [Kroupa, 2001a,b]. As an example, a smaller effective power-law
index is indicated below 0.5M�; i.e. α = 0.3 for the mass range 0.01–
0.08M� and α = 1.3 for 0.08–0.5M�. Consequently, the mass fraction in
brown dwarfs below 0.08M� would be less than 6% with a corresponding
membership fraction of 37%. Instead of using α = 2.3 for all masses above
0.5M�, there is some evidence for α � 2.5−2.7 above 1M�. Note that in
the case of the standard IMF given by (8.2) it is convenient to specify the
mean mass (in solar units) as an input parameter, whereas this quantity
is redetermined from the actual distribution when using the relation (8.4).
The initial density distribution is usually taken to be fairly spherical

with some degree of central concentration. Traditionally, the Plummer
model [Plummer, 1911] has served this purpose well. We therefore begin
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this exercise by giving the complete algorithm before turning to more
versatile models [Aarseth, Hénon & Wielen, 1974].
The space density of the Plummer model is given by

ρ(r) =
3M
4πr30

1
[1 + (r/r0)2]5/2

, (8.5)

where r0 is a scale factor related to the half-mass radius by rh � 1.3r0
[Aarseth & Fall, 1980]. In the following we adopt the scaling M = 1,
r0 = 1, which gives the mass inside a sphere of radius r as

M(r) = r3(1 + r2)−3/2 . (8.6)

First a radius, r, is chosen by setting M(r) = X1, where X1 is a random
number in [0, 1]. Substituting into (8.6) and simplifying we obtain

r = (X−2/3
1 − 1)−1/2 . (8.7)

A rejection may be applied in rare cases of large distances (e.g. r > 10rh).
The three spatial coordinates x, y, z are now selected by choosing two
normalized random numbers, X2, X3, and writing

z = (1− 2X2)r ,

x = (r2 − z2)1/2 cos 2πX3 ,

y = (r2 − z2)1/2 sin 2πX3 . (8.8)

Let us assume isotropic velocities. From the corresponding potential
Φ = −(1 + r2)−1/2 in scaled units, the escape velocity is given by ve =
21/2(1 + r2)−1/4. Since the system is assumed to be in a steady state, we
have f(r,v) ∝ (−E)7/2 for the distribution function [Binney & Tremaine,
1987], where E is the specific energy. Hence the probability distribution
of the dimensionless velocity ratio q = v/ve is proportional to

g(q) = q2(1− q2)7/2 . (8.9)

To obtain the velocities we use von Neumann’s rejection technique and
note that g(q) < 0.1 with q in [0, 1]. Let X4, X5 be two normalized
random numbers. If 0.1X5 < g(X4) we take q = X4; otherwise a new
pair of random numbers is chosen. The isotropic velocity components
vx, vy, vz are obtained by employing the principle of (8.8) above, using
two further random numbers, X6, X7. If a general mass function is chosen,
the individual masses can also be assigned sequentially since the system
has some discreteness. This introduces further statistical fluctuations in
the density distribution but, as can be verified, departures from overall
equilibrium during the first crossing time are small if Qvir = 0.5.
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Next we turn to the more general case of King [1966] models with
varying central density contrast. The basic models are characterized by
isotropic velocities, subject to a local truncation at the escape velocity.
However, the King–Michie [1963] models include a velocity anisotropy
and are more appropriate for realistic cluster simulations. The distribution
function can be written in the convenient form [Binney & Tremaine, 1987]

f(E,J) =
ρ1

(2πσ2)3/2
exp

(
− J2

2r2aσ2

)[
exp

(
− E

σ2

)
− 1
]
, (8.10)

where J here is the specific angular momentum, ra is the anisotropy radius
and ρ1 is the normalization of the density obtained by integrating over
velocities with dispersion σ. Hence in the limit ra → ∞ this expression
reduces to the standard King model. Moreover, from the separable form,
it can be seen that at large distances orbits of high angular momentum are
deficient, thereby giving rise to velocity anisotropy for isolated systems.
More than 30 years ago, preferentially eccentric orbits were also observed
outside the half-mass radius of the Pleiades [Jones, 1970].
Until recently, anisotropic velocity distributions have been little used in

simulations although detailed models with rotation for the orbit–averaged
Fokker–Planck method have been presented [Einsel & Spurzem, 1999]. An
early study employed King–Michie models to analyse 111 radial velocities
in the globular cluster M3 [Gunn & Griffin, 1979]. Evidence for velocity
anisotropy and mass segregation was obtained by a consistent iteration
technique. A more general formulation introduced the additional factor
exp(−γJz) in (8.10) to describe solid-body rotation in the core [Lupton
& Gunn, 1987]. In this treatment, E, J2 and Jz are assumed to be inte-
grals of the motion but, because of the non-spherical potential, J2 is only
an approximate integral. This work also contains various procedures for
constructing initial conditions.
More detailed algorithms for generating King–Michie models are now

available [Spurzem & Einsel, private communication, 2002]. These proce-
dures are based on generalized two-integral models with rotation that
yield density distributions ρ(r) or ρ(r, z) of a continuous system by
Runge–Kutta integration. A Monte Carlo rejection technique is then used
to create the desired N -body realization. The first simulations of axi-
symmetric N -body models based on this approach have been reported
[Boily, 2000; Boily & Spurzem, 2000].
A sequence of isotropic models can be constructed for different con-

centration parameters, W0 = |Φ0|/σ20, where Φ0 is the central potential
and σ0 the corresponding velocity dispersion. Typical values range from
W0 = 3 for extended systems to W0 = 9 for highly concentrated sys-
tems with small core radii. The King-type models are more dynamically
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relevant than the Plummer model which has a relatively large core when
used with a tidal cutoff. Detailed algorithms for the generation of initial
conditions including tidal truncation are available [Heggie & Ramamani,
1995] and will therefore not be repeated here. These models are approx-
imately self-consistent, with the Galaxy represented by either a point
mass or an extended disc potential which are suitable for globular clus-
ter and open cluster simulations, respectively (to be described below). A
number of investigations have employed the tidally truncated multi-mass
King models which are convenient for systematic studies [cf. Aarseth &
Heggie, 1998; Portegies Zwart et al., 1999, 2001; Hurley et al., 2001a].

8.3 Primordial binaries

Already the earliest N -body simulations of point-mass interactions with
N ≤ 25 [von Hoerner, 1960, 1963; van Albada, 1968] demonstrated that
binaries are an important feature of self-gravitating systems. Later stud-
ies confirmed that this process is also effective for systems with N = 500
[Aarseth, 1972a]. At this time, few binaries were known in open clusters
and essentially none in globulars. Although this situation was consistent
with theoretical expectations of small formation rates, some early N -body
and Monte Carlo simulations included the effect of primordial binaries
[Aarseth, 1975, 1980; Spitzer & Mathieu, 1980]. In spite of detection dif-
ficulties [Trimble, 1980], evidence in favour of a significant distribution
accumulated [Mathieu, 1983; van Leeuwen, 1983; Pryor et al., 1989], and
close binaries are now observed by the Hubble Space Telescope (HST) at
the very centres of globulars∗ [Grindlay, 1996]. These observational de-
velopments gave rise to more systematic explorations of this fascinating
subject [McMillan, Hut & Makino, 1990, 1991; Heggie & Aarseth, 1992).
After these historical remarks we turn to the problem at hand, namely

the initialization of primordial binaries. This procedure will be illustrated
by choosing a flat distribution in log(a), where a is the semi-major axis
[Kroupa, 1995a]. Such a distribution is consistent with the classical re-
sult for low-mass stars in the solar neighbourhood [Duquennoy & Mayor,
1991]. Let us assume that the minimum and maximum periods have been
specified, either on astrophysical or dynamical grounds. Next we must
address the delicate question of the mass ratio. There is currently much
uncertainty about this aspect even if we limit our attention to open star
clusters. For the present purpose it suffices to combine component masses
obtained separately from an unbiased IMF, although the possibility of
some correlation for massive binaries may be justified observationally
[Eggleton, private communication, 1997].

∗ For an early review of binaries in globular clusters see Hut et al. [1992].



8.3 Primordial binaries 125

The following algorithmic steps are now carried out for an initial popu-
lation of Nb primordial binaries. This explicit notation is equivalent to the
conventional definition of the binary fraction, fb = Nb/(Nb + Ns), with
Ns being the number of single stars, and is actually used by the codes.
Accordingly, we define a provisional particle number, N = Ns+Nb, which
is specified as an input parameter. After generating the 2Nb component
masses independently, we form the sum of pair-wise masses in decreasing
order and record the individual values separately. If Ns > 0, the single
bodies are also generated from the IMF and ordered sequentially, such
that the most massive single body is at location 2Nb + 1. From the ini-
tial coordinates and velocities of these Nb +Ns objects we now perform
the scaling in the usual way, which produces a system with total energy
E0 = −0.25 (modified slightly by any external potential) satisfying the de-
sired virial ratio. Because of the sampling involved in generating the IMF
by (8.4), the maximum binary mass usually only exceeds the heaviest sin-
gle mass by a modest factor for fb � 0.5, even though the average binary
mass is twice that of the singles. Hence a relatively large membership is
needed in order for the upper mass limit to be approached.
At this stage, the component masses are introduced by splitting the

relevant centre-of-mass (c.m.) body according to the initialization. Let
us define the range ψ (say ψ = 1000) in semi-major axis, starting from
an upper limit a0. Here a0 is an input parameter, already scaled by the
length unit, RV. The semi-major axis for pair index i is chosen by

ai = a0/10β , (8.11)

with β = Xi log ψ and Xi a normalized random number. Corresponding
eccentricities are assigned from a thermal distribution [Jeans, 1929] by
ei = Y 2i , with Yi another random number, or given a constant value, as re-
quired. Using classical expressions [Brouwer & Clemence, 1961, p. 35], we
form two-body elements by randomizing the perihelion, node and inclina-
tion angles appropriately for each binary. For computational convenience,
the initial separation is taken as the apocentre, Ri = ai(1+ei). Combining
the c.m. coordinates, rcm, with the relative separation, Ri = r2i−1 − r2i,
we obtain the global coordinates

r2i−1 = rcm +m2iRi/(m2i−1 +m2i) ,
r2i = rcm −m2i−1Ri/(m2i−1 +m2i) , (8.12)

and similarly for the velocities. Upon completion of the binary initializa-
tion, the total particle number is assigned the final value N = Ns + 2Nb.
Procedures for so-called ‘eigenevolution’ [Kroupa, 1995b] have also been

included as an alternative to the above. The basic idea is to modify the
two-body elements for small pericentre distances, Rp, due to pre-main-
sequence evolution when stellar radii are larger. Although this scheme
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should be considered experimental, the essential steps are given below.
First the period is assigned from a distribution with specified minimum
period, Pmin [cf. eq. 11b of Kroupa, 1995b], whereas the eccentricity is
again sampled from a thermal distribution. Given the period and mass,
the pericentre distance is derived via the semi-major axis. A pre-main-
sequence radius of 5 (m/M�)1/2 is used to reflect the earlier contraction
stage. Using tidal circularization theory [Mardling & Aarseth, 2001], we
obtain the modified eccentricity ẽi during a characteristic time interval of
105 yr. Angular momentum conservation then yields the new semi-major
axis by ai = Rp/(1 − ẽi). Finally, any case of overlapping enlarged radii
is defined as collision and rejected. Depending on the minimum period,
only a small fraction of the binaries are affected, with typically a dozen
circularized orbits for Pmin = 5d and Nb = 2000.
One useful feature of the data structure is that the primordial binary

components have neighbouring labels, Ni,Nj , referred to as ‘names’ in
the codes, which are helpful for distinguishing original and exchanged
binaries. In this connection, we remark that in subsequent data analy-
sis the definition of a primordial binary does not necessarily imply that
|Ni − Nj | = 1, since exchanged descendants still possess a certain bind-
ing energy and should therefore also be considered as primordial. On the
other hand, new binaries form from single stars even if some of these may
originally have been members of disrupted primordials. We now have a
cluster of Nb binaries with total internal binding energy

Eb = −1
2

Nb∑
i=1

m2i−1m2i/ai . (8.13)

Finally, any binary satisfying the close encounter condition Ri < Rcl is
initialized as a KS solution before the calculation starts. This explicit
initialization provides a convenient dataset for subsequent comparison.
Given the preponderance of binaries and even multiple systems in a

variety of clusters, it is natural to extend the algorithm outlined above to
include hierarchical configurations. We concentrate on the case of primor-
dial triples which can be readily generalized to higher-order systems. The
basic idea is to split the mass of the primary into an inner binary, with
suitably chosen two-body parameters. Using the outer pericentre and ec-
centricity, we test the stability (to be defined in the next chapter) before
accepting the new initial conditions, otherwise a new inner semi-major
axis is generated. Since the first sequential binaries are selected for this
procedure, the combined mass will also tend to be slightly larger than
for the standard binaries, but other mass distributions may be chosen
if desired. As in the case of primordial binaries, the total particle num-
ber is increased accordingly. Moreover, the outer components are placed
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sequentially at j > 2Nb after all the inner binaries have been assigned.
This arrangement therefore results in a well-defined data structure that
facilitates KS initialization and membership identification. A popular al-
ternative data structure is discussed in Appendix F.

8.4 Open clusters and clouds

A cluster orbiting in the Galaxy is subject to an external tidal force that
affects the motions in the outer parts and, indeed, often determines the
spatial extent. We consider in turn three different perturbing components,
i.e. circular motion near the Galactic plane, an irregular force due to
passing interstellar clouds and a constant external potential. A discussion
of the latter is left for subsequent sections.
We begin with the simple case of a circular orbit in the solar neighbour-

hood and adopt a right-handed coordinate system whose origin rotates
about the Galaxy with constant angular velocity, Ωz, and the x-axis point-
ing away from the centre. Since typical cluster radii are small compared
with the size of the Galaxy, it is sufficient to expand the perturbing poten-
tial to first order. The well-known equations of motion for the coordinates
xi, yi, zi take the form [Aarseth, 1967; Hayli, 1967]

ẍi = Fx + 4A(A−B)xi + 2Ωz ẏi ,

ÿi = Fy − 2Ωzẋi ,

z̈i = Fz +
∂Kz

∂z
zi . (8.14)

The first terms represent the sum over all the internal interactions, A and
B are Oort’s constants of Galactic rotation and ∂Kz/∂z is the local force
gradient normal to the plane of symmetry.
The equations (8.14) induce a tidal torque since Kz is directed towards

the plane of symmetry, leading to flattening as well as velocity anisotropy.
Taking ṙi · r̈i and summing over the masses, we readily obtain the Jacobi
energy integral

EJ = T + U − 2A(A−B)
∑

mix
2
i −

1
2
∂Kz

∂z

∑
miz

2
i , (8.15)

since the Coriolis terms cancel. An equivalent constant of motion also
applies to individual stars in the absence of encounters and significant
mass motions or mass loss.
The concept of tidal radius [von Hoerner, 1957; King, 1962] has played

an important role towards the understanding of cluster dynamics. For a
star at rest on the x-axis, the central attraction of the cluster is balanced
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by the tidal force at a distance

Rt =
[

GM

4A(A−B)

]1/3
, (8.16)

where all quantities are now expressed in physical units. According to
classical perceptions, the energy per unit mass for a star to escape from
an idealized cluster model is given by [Wielen, 1972]

Ccrit = −3
2 [4G

2M2A(A−B)]1/3 . (8.17)

Although this energy limit is less stringent compared with an isolated
system, a star satisfying this condition may still take a long time to reach
one of the Lagrange points, L1 or L2, and some excess is usually required
to ensure escape. We shall see later that there exist some orbits that return
to the cluster after moving well outside the tidal radius [Ross, Mennim &
Heggie, 1997].
The tidal parameters are scaled to N -body units in the following way.

First we choose the Oort’s constants A = 14.4, B = −12.0 km s−1 kpc−1
[Binney & Tremaine, 1987]. After converting A and B to cm s−1 pc−1
and comparing dimensions, star cluster units of solar mass and pc are
introduced into the x-component of the tidal coefficient by the scaling

T̃1 = 4Ã(Ã− B̃)β , (8.18)

with β = L∗/GM� and L∗ in pc. Hence the final scaling to the appropriate
length unit and total mass gives

T1 = T̃1(R3V/NMS) , (8.19)

where T̃1 � 0.3537.
For the z-component, denoted by T̃3, we have according to the theory

of stellar dynamics [Oort, 1965]

T ∗
3 = −4πGρ0 − 2(A−B)(A+B) , (8.20)

where ρ0 = 0.11M� pc−3 is the local density [Kuijken & Gilmore, 1989].
Converting to the above units and transforming to T̃3 as above, we obtain

T3 = T̃3(R3V/NMS) , (8.21)

with T̃3 � −1.4118. Note that the vertical force gradient is a factor of 4
greater than the x-component for the assumed Galactic model.
The final conversion concerns the angular velocity, given by Ωz = A−B.

Let us define
T̃4 = 2(Ã− B̃)β1/2 (8.22)
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as twice the actual value for computational convenience, with T̃4 � 0.8052.
Accordingly, the final scaled value becomes

T4 = T̃4(R3V/NMS)1/2 . (8.23)

The corresponding Galactic rotation period is readily obtained using (7.5).
For completeness, the scaled tidal radius takes the form

rt = (M̃/T1)1/3 , (8.24)

with M̃ denoting the total mass in N -body units.† We remark that one
may study tidal effects for circular orbits at different locations in the
Galaxy by using appropriate differential rotation constants and vertical
force gradients derived from models and/or observation. Moreover, since
the coefficient T3 is approximately constant for z ≤ 0.5 kpc, the present
treatment is also valid for open clusters at moderate heights above the
Galactic plane, i.e. tidal shocks are not important here.
As far as the AC integration scheme is concerned, the additional force

terms in (8.14) must be assigned to the appropriate component of (3.1).
Since the tidal contributions arising from T1 and T3 change smoothly with
position, it is natural to combine them with the regular force. However,
the Coriolis terms vary with the velocity and are therefore added to the
neighbour force. Note that expressions for the corresponding derivatives
are readily obtained for Hermite integration.
The perturbation by interstellar clouds may also be modelled by N -

body simulations [Bouvier & Janin, 1970; Terlevich, 1983, 1987]. Consider
a spherical region of size Rb surrounding an open cluster and containing a
number of individual clouds. These clouds exert an irregular tidal force on
the cluster members. By ignoring the contributions from clouds outside
the boundary, it is shown below that only the external fluctuating force
component is neglected. The perturbing effect of each cloud, represented
as a polytrope of index 5 (or Plummer model), is included in the equations
of motion and provides a regular force

Fc = −GMc

[
ri − rc

(|ri − rc|2 + ε2c)3/2
− ri − rd

R3b

]
. (8.25)

Here Mc, rc, εc is the cloud mass, vectorial position and softening length,
and rd is the density (or symmetry) centre of the cluster. The repul-
sive force is added to cancel a spurious net inward attraction that would
otherwise reduce the escape rate; i.e. the local fast-moving clouds con-
tribute an average density distribution and resulting retardation at large

† In the following, M by itself will be in N -body units unless stated otherwise.
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distances. Again this treatment is suitable for implementation in the Her-
mite codes since taking the time derivative of (8.25) is straightforward.
The clouds are integrated in the rotating frame, with the cluster attrac-

tion omitted from their equations of motion (8.14). When the boundary
is crossed, a new cloud is introduced at random position angles with
isotropic velocities [cf. Terlevich, 1987]. The resulting small force discon-
tinuity is alleviated by employing a mass smoothing function near Rb.
Although the actual force from a given cloud may be large, the differ-
ential effect is relatively small due to the high velocity dispersion. Even
so, the regular time-steps are reduced by a significant factor because the
higher derivatives are affected by the cloud velocities and masses.
The employment of a relatively small boundary radius can be justified

by the following considerations. Let us write the equation of motion in an
inertial coordinate system as

r̈i = Fi +Aout +Ain , (8.26)

where Aout and Ain represent all additional accelerations outside and in-
side the cloud boundary, respectively, and the first term is due to the
cluster members. We now assume that Aout = Āout; i.e. we neglect ir-
regular effects outside the boundary. Adding and subtracting Āin then
results in

r̈i = Fi + Ā+Ain − Āin , (8.27)

which is readily converted to rotating coordinates. The combined term
Ain−Āin refers to the clouds and Ā is the usual total galactic tidal accel-
eration. Hence this exercise also provides the justification for subtracting
the average cloud force in the basic equation (8.25).
The effect of interstellar clouds on the internal dynamics of star clus-

ters was examined in a classical paper by Spitzer [1958], who based his
conclusions of reduced life-times on somewhat higher cloud densities and
masses than employed in the numerical simulations. From the impulse ap-
proximation, the energy change of the cluster due to a cloud with impact
parameter p > rh, relative velocity V and mass M2 is given by

∆E =
4G2M2

2Mr̄2

3b4V 2
, (8.28)

where r̄2 is the mean square radius of the cluster members with mass M
and b the impact parameter. This compares with ∆E = G2M3/3V 2a2 for
the case of a head-on encounter between two equal-mass Plummer models
with scale factor a [Binney & Tremaine, 1987].
An independent derivation, based on the so-called ‘extended impulse

approximation’, gave rise to a convergent expression for close encounters
between two Plummer spheres [Theuns, 1992b]. Here the magnitude of
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the velocity change in the orbital plane, ∆v � 2M2/a
2v, replaces the

singular expression ∆v � 2M2/b
2v, in agreement with the head-on en-

counter result. It was also pointed out that the relative energy gain from
the cluster heating does not scale in a simple manner with the parameters
defining the encounter.
Numerical simulations [Aguilar & White, 1985] show good agreement

with theory for b ≥ 5max {rh, εc}. The heating is a small effect and the
actual energy change will be less because the cluster size is usually smaller
than typical impact parameters. Finally, we remark that, given the field
star density, there may be several hundred such stars inside the tidal
radius. Their disrupting effect on open clusters is likely to be small due
to the high velocity dispersion but a quantitative investigation is lacking.

8.5 Eccentric planar orbits

Let us now turn to modelling general motions of bound subsystems in
a galactic environment. Some examples are globular clusters and dwarf
spheroidal galaxies, both of which have received considerable attention
[Grillmair, 1998; Oh, Lin & Aarseth, 1995]. We begin by deriving equa-
tions of motion suitable for the divided difference formulation which are
easier to implement and restrict the treatment to motion in the plane.
The next section deals with the case of 3D motion, using a formulation
that is also suitable for Hermite integration.
Consider a system of self-gravitating particles orbiting the Galaxy at a

distance R0. We define right-handed coordinates centred on the cluster,
with the x-axis pointing towards the Galactic centre. The acceleration in
the inertial reference frame of a local test particle at r = rR is given by

r̈I = r̈R + 2Ω× ṙR +Ω× (Ω× rR) + Ω̇× rR , (8.29)

where Ω is the instantaneous angular velocity and rR refers to rotating
coordinates. This equation contains the well-known Coriolis terms as well
as the centrifugal and Euler terms.
First we discuss the case of a point-mass potential. In the inertial frame,

the equation of motion for a cluster member is

r̈I = Σ− Mg

R3
R+

Mg

R30
R0 , (8.30)

with Σ the internal attraction and the last two terms representing the
tidal acceleration due to the mass Mg located at R = R0 + r.
In the following we consider motion in the x–y plane with angular

velocity Ωz. The position and angular velocity of the Galactic centre are
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then given in terms of the unit vectors x̂, ŷ, ẑ such that

R0 = −R0x̂ ,
Ω = (R0 × Ṙ0)/R20 = Ωzẑ . (8.31)

This allows the centrifugal term to be expressed as

Ω× (Ω× r) = −Ω2zẋx̂− Ω2z ẏŷ . (8.32)

Similarly, the angular momentum per unit mass is

J = R0 × Ṙ0 = R20Ωz ẑ = Jz ẑ . (8.33)

Differentiation of (8.31) combined with the above relation results in

Ω̇ = −2Ṙ0(R0 × Ṙ0)
R30

= −2Ṙ0Ωz

R0
ẑ . (8.34)

Substituting for Ωz from (8.33) gives rise to the Euler term

Ω̇× r = −2Ṙ0Jz
R30

(xŷ − yx̂) . (8.35)

The equation of motion in rotating coordinates can now be written
down by inverting (8.29) and making use of (8.30) and the definition of
R0. This yields the explicit expressions

ẍ = Σx +
Mg

R30

[
R0 − (R0 + x)

(
R0
R

)3]
− 2Ṙ0Jz

R30
y +Ω2zx+ 2Ωz ẏ ,

ÿ = Σy − Mg

R3
y +

2Ṙ0Jz
R30

x+Ω2zy − 2Ωzẋ ,

z̈ = Σz − Mg

R3
z . (8.36)

If r 
 R, which is frequently the case, the evaluation of the tidal force
terms may be speeded up by expanding (R0/R)−3 to first order. Taking
account of the vectorial relation R2 = R20 + 2R0 · r+ r2, we have

R−3 = R−3
0

[
1− 3R0 · r

R20
+O(

r2

R20
)

]
, (8.37)

which can be used to simplify the equations of motion above. The full
equations were used to study the tidal evolution of globular clusters in
eccentric orbits and also the tidal disruption of dwarf spheroidal galaxies
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[Oh, Lin & Aarseth, 1992, 1995]. As can be readily verified, these equa-
tions reduce to the form (8.14) with reversed sign of ẍ for circular motion
if the point-mass nature of the model is taken into account.
The energy of the cluster centre associated with the rotating frame is

E = 1
2Ṙ

2
0 +

1
2J

2
z /R

2
0 −Mg/R0 . (8.38)

Since this quantity is conserved, we derive the equation of motion by
differentiation. Cancelling Ṙ0 from the common scalar products yields

R̈0 =

(
−Mg

R30
+

J2z
R40

)
R0 . (8.39)

The case of a logarithmic potential, Φ = V 20 ln(R/a0) represents another
useful galaxy model that has many applications. Since the kinematical
terms are the same as before, we need consider only the equation of motion
in the inertial frame. The alternative form of (8.30) is then

r̈I = Σ− V 20
R2
R+

V 20
R20
R0 . (8.40)

Hence the factors Mg/R
3
0, Mg/R

3, and (R/R0)3 in (8.36) are replaced by
V 20 /R

2
0, V

2
0 /R

2 and (R/R0)2, respectively. The corresponding energy per
unit mass for the cluster centre is now given by

E = 1
2Ṙ

2
0 +

1
2J

2
z /R

2
0 + V 20 ln(R0/a0) + C , (8.41)

where V0 and a0 denote velocity and radius scales and C is a constant.
From Ė = 0 and the procedure above we obtain the equation of motion

R̈0 =

(
−V 20
R20

+
J2z
R40

)
R0 . (8.42)

All these equations are in exact form and therefore suitable for gen-
eral use. Moreover, the additional equations for the cluster centre itself,
(8.39) or (8.42), are simple and can be integrated to high accuracy. Since
the third derivative of R0 involves only the velocity Ṙ0 additionally,
the Hermite scheme would be appropriate. Hence the values of Ωz and
Ṙ0 = R0 ·Ṙ0/R0 which appear in the equations of motion can be updated
frequently. Finally, note that these formulations are suitable only for the
divided difference method (i.e. NBODY 5) since the force derivatives needed
for Hermite integration are rather cumbersome.

8.6 Motion in 3D

The case of 3D globular cluster orbits requires special care with a Hermite
method. Thus, in order for such a scheme to work, we need to obtain
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explicit force derivatives of all the terms. For this purpose we have a choice
of two strategies, both of which exploit the computational advantage of a
local reference system when the internal dimensions are small compared
with the size of the orbit. By generalizing the procedure of section 8.5
to 3D, the number of terms in the equation of motion is larger and their
form less amenable to differentiation. In the alternative and preferable
formulation, we take a non-rotating, but accelerating, coordinate system
also with the origin at the cluster centre, with axes having fixed directions
in space.
The construction of realistic galactic potentials requires a significant

disc component as well as a halo. Hence we consider a superposition of
different characteristic contributions, with each part having a 3D repre-
sentation. Let us first introduce a spherical potential due to a point-mass
Mg, adapted for Hermite integration. After linearizing the tidal terms in
(8.30) using (8.37), the equation of motion in non-rotating coordinates
for a mass-point at r takes the form

r̈ = Σ− Mg

R30

(
r− 3r ·R0

R20
R0
)
. (8.43)

By differentiation the corresponding force derivative becomes

d3r
dt3

= Σ̇− Mg

R30

(
ṙ− 3ṙ ·R0

R20
R0 − 3r · Ṙ0

R20
R0 − 3R0 · Ṙ0

R20
r

)

+
3Mg

R50

[
Ṙ0 − 5(R0 · Ṙ0)

R20
R0

]
(r ·R0) . (8.44)

In the absence of encounters, (8.43) yields a conserved Jacobi integral,

EJ = 1
2 ṙ
2 −Ω · (r× ṙ) + 1

2Ω
2r2 − 3

2Ω
2
(
r ·R0
R0

)2
+Φc , (8.45)

with the angular velocity Ω2 = Mg/R
3 and Φc the cluster potential at r

[Heggie, 2001].
From the definition of the total energy or virial theorem, the external

tidal field contribution is given by

W =
Mg

2R30

∑
i

mi

(
r2 − 3

(r ·R0)2
R20

)
. (8.46)

For the special case of circular cluster motion, the Jacobi energy in the
rotating frame given by (8.15) is conserved. This quantity can also be
expressed in the non-rotating frame as

E = T + U +W −Ω · J , (8.47)
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where J is the standard angular momentum. For some purposes, it may
be desirable to construct initial conditions without rotation in a rotating
frame. This is achieved by adding the quantity

∆ṙ = − 1
R20

[
(r · Ṙ0)R0 − (r ·R0)Ṙ0

]
(8.48)

to the velocity of each star. Finally, the integration of the cluster centre
can be carried out according to the prescription of the previous section. As
before, the equation of motion (8.39) can be integrated accurately using
explicit derivatives of higher order.
At this stage we introduce a disc potential which breaks the spheri-

cal symmetry. Given the requirement of an analytical force derivative,
the choice is somewhat limited. In the following we derive the relevant
expressions for the Miyamoto–Nagai [1975] potential that in cylindrical
coordinates R, z takes the form

Φ = − Md

{R2 + [a+ (b2 + z2)1/2]2}1/2 . (8.49)

This expression can represent the full range, from infinitely thin discs to a
spherical system by the choice of the coefficients a, b. Taking the gradient
gives rise to the radial and vertical force components

FR = −Md

A3
R ,

Fz = −Mdz[a+ (b2 + z2)1/2]
A3(b2 + z2)1/2

, (8.50)

with R = R0 + xx̂+ yŷ

and A = {R2 + [a+ (b2 + z2)1/2]2}1/2 . (8.51)

Differentiation with respect to time and collection of terms yield

ḞR = −Md

A3

{
Ṙ− 3

A2

[
RṘ+

a+ (b2 + z2)1/2

(b2 + z2)
zż

]
R

}
,

Ḟz = −3Md[a+ (b2 + z2)1/2]z
A5(b2 + z2)1/2

[
RṘ+

a+ (b2 + z2)1/2

(b2 + z2)
zż

]

− Md[ab2 + (b2 + z2)3/2]
A3(b2 + z2)3/2ż

. (8.52)

The disc potential contains expressions which do not appear amenable
to linearization, although analytical derivation by special software is fea-
sible. Alternatively, we may obtain the smoothly varying differential effect
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by subtracting the corresponding values for the cluster centre. Note that
the latter evaluations are in any case performed at frequent intervals for
the purpose of integrating the cluster centre. In view of the many com-
mon factors in these expressions, the numerical effort may be considered
acceptable even if carried out on the GRAPE-6 host. If necessary, several
such components may be superimposed, albeit at extra cost.
As the final part of a realistic galaxy model, we include the logarithmic

potential discussed earlier. An expansion to second order gives

Φ = V 20

[
ln
(
R0
a0

)
+
R0 · r
R20

+ 1
2

(
r2

R20
− 2(r ·R0)2

R40

)]
. (8.53)

In the inertial frame, the corresponding linearized tidal force and first
derivative are given by

FL = −V 20
R20

(
r− 2R0 · r

R20
R0
)
,

ḞL = −V 20
R20

(
ṙ− 2R0 · r

R20
Ṙ0
)
+

2V 20
R40

(Ṙ0 · r+R0 · ṙ)R0

+
2V 20
R40

(
r− 4R0 · r

R20
R0
)
(R0 · Ṙ0) . (8.54)

Hence the total force is the sum of the contributions (8.43), (8.50) and
(8.54), bearing in mind the use of cylindrical coordinates for the disc
component. Alternatively, the halo potential may be included by direct
evaluation as for the disc above, with acceptable loss of precision.‡

8.7 Standard polynomials

The last task before beginning the calculation is usually to initialize force
polynomials and time-steps. These procedures are essentially identical in
the divided difference and Hermite formulations, and we therefore con-
centrate on the latter in connection with the AC neighbour scheme (i.e.
the code NBODY 6). Note that the case of initializing a single force poly-
nomial has already been described in chapter 2, where all the necessary
expressions are given.
Only two main input parameters are needed to create the desired poly-

nomials. This stage begins by forming neighbour lists for all the particles.
For Plummer or King–Michie models, the basic neighbour radius S0 is
modified by the central distance according to R2s = S20(1 + r2i ) in order
to yield an acceptable membership at different radii. This relation com-
pensates for the density profile but should not be used if subsystems are

‡ For moderately flattened logarithmic potentials see Binney & Tremaine [1987].
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present. In any case, the radius Rs is increased if there are no neighbours
and reduced if the membership exceeds a prescribed value, nmax (which
should be a bit smaller than Lmax for technical reasons).
Having determined sequential neighbour lists, Lj,i, with the member-

ship ni = L1,i, we now evaluate the force and its derivative by explicit
summation over all particles. If the summation index is identified in the
neighbour list, the corresponding contributions are added to the irregular
components FI, D1I ; otherwise they are included in the regular terms. Af-
ter all the particles have been considered, any external contributions are
added to the respective components as discussed above. Lastly, the total
force and first derivative for each particle are formed by

F = FI + FR ,
Ḟ = D1I +D

1
R , (8.55)

where the index i has been suppressed and D now denotes a derivative.
Another full N summation is performed in order to obtain the second

and third force derivatives. This boot-strapping procedure requires all F
and Ḟ to be known, as can be seen from the basic derivation in chap-
ter 2. Again the neighbour list is used to distinguish the irregular and
regular components, D2I , D

3
I and D2R, D

3
R. Since distant particles do not

contribute significantly to the regular derivatives, their effect may be ne-
glected outside some distance (say 5Rs). Higher derivatives of any external
forces are added consistently according to type, using boot-strapping.
It now remains for new irregular and regular time-steps, ∆ti, ∆Ti, to

be assigned from the definition (2.13), using the block-step rule, (2.25), if
relevant. At the same time, the primary coordinates and velocity, x0, v0,
are initialized and the factorials 12 and

1
6 are absorbed in F and Ḟ for com-

putational convenience. Finally, the quantity tnext = ti+∆ti is introduced
for decision-making in the Hermite scheme.
We note that, strictly speaking, the evaluation of the two higher force

derivatives can be omitted in the Hermite AC formulation, as is done
in NBODY 4, the only significant draw-back being the need to construct
new time-steps from lower derivatives. In the latter case, we employ the
conservative expression

∆t = 1
2 ηmin {|F|/|Ḟ|, tcr|} , (8.56)

with tcr the initial crossing time. However, the extra cost for the stan-
dard versions is very small, both initially and at subsequent initializa-
tions, and consistency with the difference formulation is retained. The
initialization of the latter method contains one essential step more, i.e.
conversion of all force derivatives to divided differences according to the
formulae of section 2.2. On the other hand, the corresponding time-steps
are not truncated to commensurate values.
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8.8 Regularized polynomials

The case of primordial binaries discussed above also requires special at-
tention initially. Thus it is elegant and numerically more accurate to begin
a KS solution at t = 0, instead of delaying by up to half a period when
the selection would otherwise be made. Since the primordial binary com-
ponents are already ordered pair-wise, the regularized quantities can be
initialized for each pair in turn satisfying the usual close encounter con-
dition rij < Rcl without the time-step test; otherwise direct integration
will be used. We shall now concentrate on a given pair with index i.
Initialization of regularized polynomials is also required at subsequent

times as a result of close encounters. The following treatment combines
both cases if it is assumed that the two selected particles, mk,ml, have
already been placed in adjacent locations with pair index i and all arrays
are updated, such that the situation is similar to the above.
Standard force polynomials are first formed for each component follow-

ing the procedure outlined in the previous section. In a general situation,
neighbour lists contain single particles as well as the c.m. locations cor-
responding to the KS components. For the irregular contributions the
summation is over both components of other perturbed binaries, whereas
the point-mass approximation can normally be used for most of the regu-
lar interactions. The two individual quantities F2i−1 and F2i are combined
to give the new c.m. force by

Fcm = (m2i−1F2i−1 +m2iF2i)/(m2i−1 +m2i) , (8.57)

and likewise for the derivative, Ḟcm. However, the more expensive second
and third derivative are obtained by one summation, using the binary
c.m. which is sufficient for the present purpose. The last part of the c.m.
initialization proceeds as described in the previous section.
Next it is the turn of the KS polynomials to be constructed. The basic

variables U, U′, R, h are initialized in the standard way of section 4.4,
whereupon the perturber list is formed from the existing neighbour list
if available (i.e. NBODY 5 and NBODY 6). A direct selection is carried out
if N is small, whereas for NBODY 4 the HARP and GRAPE provide the
desired list of candidates. Perturbers mj are then selected according to
the tidal approximation by

rij <

[
2mj

(mk +ml)γmin

]1/3
R . (8.58)

A more efficient criterion, r2ij > f(m)λ2R2 with f(m) = 2m1/mN+i in-
volving the maximum mass, m1, is first used to exclude more distant
particles. Recall that λ = γ

−1/3
min is a subsidiary c.m. distance parameter.



8.8 Regularized polynomials 139

It is sometimes the case in the AC method that the neighbour list is not
sufficiently large to ensure that enough perturbers can be selected when
using the apocentre condition λai(1 + ei) < Rs.§ However, this is not
usually a problem for large N or hard binaries.
Considerable care is involved in forming the highest derivatives of the

KS force polynomials, especially in Hermite formulations that employ
additional differentiation (cf. section 4.6). The essential procedure consists
of the following steps summarized in Algorithm 8.1.

Algorithm 8.1. Initialization of KS polynomials.

1 Predict rj , ṙj for all the perturbers to order Ḟj

2 Obtain P and Ṗ by summation over all perturbers
3 Add any external effects on the relative motion R, Ṙ
4 Introduce regularized derivative by P′ = R Ṗ
5 Define relative perturbation γ = |P|R2/(m2i−1 +m2i)
6 Scale P and P′ by the slow-down factor if κ > 1
7 Construct Q = LTP and the expression for FU
8 Form F′U, t

(2), t(3), h′, h(2) by explicit differentiation
9 Include Q = LTP and Q′ in F′U, h

(2), h(3), t(4)

10 Save f (2)0 = 1
2RQ, f

(3)
0 = 1

2(RQ)
′, h0 = h for corrector

11 Derive two of the terms in Q(2) = (LTP)′′ using L(U′′)
12 Evaluate F(2)U , F(3)U , h(4), t(5) t(6) by boot-strapping
13 Improve F(2)U , F(3)U , h(3), h(4) to order Q(2)

14 Set regularized time-step ∆τ , including perturbation
15 Generate Stumpff coefficients c̃3, c̃4, c̃5, c̃4(4z), c̃5(4z)
16 Find ∆t from ∆τ to order t(6) with c̃4(4z), c̃5(4z)
17 Increase ∆t by slow-down factor κ if applicable
18 Absorb factorials 1

2 ,
1
6 in FU and F′U for fast prediction

This condensed algorithm is almost self-explanatory. Note that the
derivatives F(2)U and F(3)U are required for high-order prediction in the
Stumpff formulation, with the short-hand notation FU = U′′. As for the
slow-down factor κ, the procedure differs slightly from that in chain reg-
ularization and will be discussed subsequently. In any case, the nominal
value κ = 1 is assigned for most perturbed initializations. We recall that
the perturbing force is obtained from the expression P = Fk − Fl and
Q = LTP as defined in section 4.7. Being of a tidal nature, this has
the advantage that only relatively nearby members (specified in terms of

§ Note that this expression does not include any mass dependence, whereas more dis-
tant massive perturbers are also copied from the neighbour list if relevant.
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γmin) need to be selected. For the regularized time-step we still use the
original criterion [Aarseth, 1972b]

∆τ = ηU

(
1

2 |h|
)1/2 1

(1 + 1000 γ)1/3
, (8.59)

where ηU is an input parameter. Hence this gives 2π/ηU steps per unper-
turbed orbit, which is reduced by a factor of 10 for γ � 1. In the case
of nearly parabolic orbits, the factor 1/2|h| is replaced by R/(mk +ml)
which has the property of yielding a small relative change in the variables.
If desired, an additional condition to ensure convergence of the Taylor se-
ries solution may be obtained by considering the predicted change of the
orbital energy,

∆h = h′∆τ̃ + 1
2h

′′∆τ̃2 , (8.60)

and specifying some tolerance for the relative change (e.g. 0.001|h| but
taking care near zero). The smallest of the two values given by (8.59) and
(8.60) may then be chosen for the regularized step. At present the second
algorithm is only used for initializations, whereas subsequent values of ∆τ
are restricted to an increase by a factor of 1.2.
The theory of the Stumpff coefficients is given in section 4.7 [cf. Mikkola

& Aarseth, 1998]. Suffice it to note that c̃4(4z), c̃5(4z) with argument
4z = −2h∆τ2 are used to modify the last two terms in the Taylor series
for the physical time interval, while the first three coefficients appear in
the predictor and corrector. In comparing this method with the basic
Hermite formulation, it can be seen that the Stumpff coefficients have
values close to unity for properly chosen time-steps, ∆τ .

The algorithm above is also relevant for the standard Hermite KS
method. Thus only steps 10 and 15 are not needed in this treatment,
although the refinement of steps 13 and 16 (to order t(6)) was not imple-
mented for some time. A comparison of the two methods (without energy
stabilization) can be found elsewhere [Mikkola & Aarseth 1998], together
with the original derivation. In this connection we remark that in order to
compensate for a larger recommended value of ηU for the Stumpff method
(i.e. 0.2 vs 0.1), a slightly steeper perturbation dependence in (8.59) may
be beneficial.
We conclude by remarking that even the earlier KS difference formula-

tion [cf. Aarseth, 1985a] has many similarities with the procedures above.
Thus the number of equations to be integrated are actually less but on
balance the Hermite schemes are preferable, with the Stumpff method
being the most efficient at the cost of some extra programming efforts.
However, the original difference method may be useful for problems where
it is impractical to calculate the time derivative of the perturbing force.
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Decision-making

9.1 Introduction

N -body simulations involve a large number of decisions and the situation
becomes even more complex when astrophysical processes are added. The
guiding principle of efficient code design must be to provide a framework
for decision-making that is sufficiently flexible to deal with a variety of
special conditions at the appropriate time. Since the direct approach is
based on a star-by-star treatment at frequent intervals, this prerequisite
is usually satisfied. However, we need to ensure that the relevant tests
are not performed unnecessarily. The development of suitable criteria for
changing the integration method or identifying procedures to be carried
out does in fact require a deep understanding of the interplay between
many different modes of interactions. Hence building up the network for
decision-making is a boot-strapping operation needing much patience and
experience. The aim of a good scheme should be that this part of the
calculation represents only a small proportion of the total effort.
This chapter discusses several distinct types of decisions necessary for

a smooth performance. First we deal with the important task of selecting
the next particle, or block of particles, to be advanced in time. The chal-
lenge is to devise an optimized strategy in order to reduce the overheads.
Another aspect concerns close encounters, either between single particles
or where one or more subsystems already consist of binaries. Such in-
teractions may be studied by multiple regularization or procedures for
hierarchical systems in the case of stable configurations. Once selected for
special treatment, these systems may need to be terminated either due
to external perturbations or internal evolution. The escape process is a
characteristic feature of star cluster evolution and it is desirable to remove
distant members in order to concentrate on the bound system. Other algo-
rithms discussed below are concerned with mass loss from evolving stars

141
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as well as physical collisions. A well-tried scheme for error checking by
relying on energy conservation is also described. Finally, it is worth em-
phasizing that all the above procedures are completely automatic. Ideally
a large-scale simulation should proceed from start to finish without any
external intervention.

9.2 Scheduling

The procedure of determining the next particle(s) for consideration is
known as scheduling, which is a queueing problem. Although many solu-
tions to this logistical challenge exist, it is often better to develop special
procedures by exploiting certain features. In the following we distinguish
between small and large N -values. The basic problem can be formulated
as follows. Given a wide distribution of N time-steps, ∆tj , and the cor-
responding times, tj , of the last force evaluation, the next particle to be
advanced is selected by

i = min
j

{tj +∆tj} , (9.1)

such that t = ti + ∆ti defines the new time. Moreover, in the case of
quantized time-steps, a number of particles may satisfy this condition.
Let us begin by outlining a simple scheme as follows. Construct a list L

containing all particles satisfying tj +∆tj < tL. Initially tL = ∆tL, where
∆tL is a suitably small time interval that is modified to stabilize the list
membership on N1/2 at each updating of tL and L. A redetermination
of the list is made as soon as t > tL, followed by another search over all
the members. The next particle to be advanced is then determined using
(9.1) for the list L.
A more sophisticated algorithm based on the above was developed for

the code NBODY 2 [Aarseth, 2001b]. The list is now ordered by sequential
sorting such that the next particle due to be advanced is simply given
by the next member. A complication arises for repeated small steps in
the interval ∆tL. In order to ensure that the global time increases mono-
tonically, we employ an insert procedure which maintains the sequential
ordering. Thus the index of a particle satisfying t + ∆ti < tL, evaluated
at the end of the cycle, is inserted at the appropriate sequential location.
The interval ∆tL is stabilized on a membership chosen as a compromise
between the cost of sorting the quantities tj +∆tj and inserting a small
number of particles in the sequential list. Thus a target membership of
2N1/2 is chosen initially but the value is modified according to the num-
ber of inserts. In spite of this complication, comparison with the so-called
‘heap-sort algorithm’ advocated by Press [1986] favoured the present algo-
rithm above N � 100, although the cost of both procedures is ∝ N lnN .
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With Hermite integration, the block-step structure presents a new fea-
ture because a number of particles from several levels are usually advanced
together. This situation is handled in the following way. Given the array
{t̃j ≡ tj+∆tj} and the smallest value, tmin, the particles in the next block
are those for which {t̃j} = tmin. A list of members is maintained for the
corresponding interval ∆tL, with the membership stabilized on the square
root of the effective population, (N −Np)1/2, where Np is the number of
KS pairs. Unless there are changes in the particle sequence, this simply
requires the next value of tmin to be determined during the integration
cycle itself. Hence the subsequent block-step is defined by min {t̃j} − t,
where t is the current time. A full N search is also carried out a second
time after each non-standard termination or initialization of special con-
figurations, such as multiple regularizations, since this may have resulted
in smaller time-steps prescribed at the current block time. Profiling tests
show that this scheme is efficient at least up to N � 105; i.e. the overheads
arising from (9.1) only account for at most 1.5% of total CPU.
Modern star cluster simulations often deal with a large number of pri-

mordial binaries [McMillan, Hut & Makino, 1990; Heggie & Aarseth,
1992]. If two-body regularization is used, it is necessary to have a sep-
arate scheduling algorithm because the corresponding physical time-steps
are not quantized.∗ In a typical situation the majority of KS solutions
are unperturbed, with look-up times of many periods which may still be
small. Two different algorithms have been tried for determining the next
KS solution to be advanced. An earlier version consisted of the following
three-level approach. We begin by constructing a list of members for all
KS pairs satisfying ti+∆ti < tb, where the epoch, tb, is updated by an in-
terval, ∆tb, stabilized on a membership of Np/4. At each new block-step,
another list is formed by selecting those pairs for which tj +∆tj ≤ tblock,
where tblock defines the block boundary time for direct integration. This
second list is then examined before each new KS step to determine the
smallest look-up time. The first list is also initialized when there is a
change in the sequence, but this occurs much less frequently than the
renewals after the interval ∆tb.
For relatively large values of Np, the sorting algorithm described above

is a better alternative. Again the principle of sequential selection is main-
tained by the insert procedure. The sorted list is stabilized on a mem-
bership of 2N1/2

p as a compromise between renewals and list size. The
conditions for reconstructing the full time-step list are the same as above,
namely at the end of the interval ∆tL or after each change in the particle
sequence. Most of the latter changes occur at the end of a block-step and

∗ This may be done in principle by truncating to the nearest quantized value but would
not serve any purpose with the two separate treatments.
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are much less frequent (by a factor of about 104) in large simulations.
Since the relevant pointer is advanced by one at the beginning of each
block-step, the current value must also be reduced by one on exit. Al-
though the number of inserts may be comparable to the total number of
KS steps due to some small values of ∆ti, the insert procedure is speeded
up with an appropriate initial guess based on the remaining interval. Pro-
filing of the relative costs shows that the second algorithm for KS selection
is significantly faster for large memberships and this procedure has in fact
been implemented in the Hermite codes.
Finally, for completeness, we also mention the independent and efficient

block-step algorithm of McMillan [1986] that was employed in the tree
code described in section 6.3 [cf. McMillan & Aarseth, 1993].

9.3 Close two-body encounters

The question of when to regularize a close encounter is based on consider-
ations of numerical accuracy as well as computational efficiency. However,
given that the number of such method changes is relatively small in a typ-
ical calculation, the decision-making must be aimed at gaining accuracy.
In fact, introduction of the relative motion does not alter the cost per
step significantly on conventional computers. Now only one particle is
advanced by direct integration, albeit with some force summations over
both components, whereas the cost of the regularized solution depends on
the perturber number together with initialization and termination. Hence
in the limit of few perturbers, the cost of integrating a binary essentially
reduces to that of a single particle.† Since hyperbolic two-body encoun-
ters are relatively infrequent compared with the various types of bound
interactions, the main consideration is to define dominant two-body mo-
tion. The benefit of switching to KS regularization is two-fold: accuracy
is gained while reducing the number of steps per orbit.
Let us describe an encounter between two stars of massmk, ml in terms

of the deflection angle [Chandrasekhar, 1942]

cos δ =

[
1 +

R2V 40
G2(mk +ml)2

]−1/2
, (9.2)

where R is the impact parameter and V0 is the pre-encounter relative
velocity. We now define a close encounter by a total deflection 2δ = π/2
and replace V0 by the approximate rms velocity from the virial theorem,
(GNm̄/2rh)1/2. For equal masses, the close encounter distance is given by

† A hard binary has some N periods in a crossing time whereas each typical c.m. step,
estimated by ∆tcm � tcr/500, requires N force summations.
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Rcl = 4rh/N (cf. (1.9)). However, we are dealing with centrally concen-
trated clusters so it is more prudent to use the density-related expression

Rcl = 4rh/[N(ρd/ρh)1/3] , (9.3)

where ρd/ρh is the central density contrast (to be discussed in chapter
15). With both integration schemes, the corresponding time-scale for a
typical parabolic encounter is found empirically to be

∆tcl � 0.04(ηI/0.02)1/2(R3cl/m̄)1/2 , (9.4)

where m̄ is the mean mass (i.e. 1/N in N -body units).
Having defined dynamically relevant parameters for close two-body en-

counters, we now turn to the actual implementation. If a particle k satisfies
the condition ∆tk < ∆tcl, a search is made for other nearby particles. For
large N , this procedure uses either the neighbour list (NBODY 5, NBODY 6)
or an existing list containing short steps (NBODY 4); otherwise all particles
need to be considered. Every particle inside a distance 2Rcl is recorded‡

and the closest single particle is denoted by index l. The pair k, l is ten-
tatively accepted for regularization, provided the minimum distance con-
dition R < Rcl is satisfied and, in the case of other close particles j, the
two-body force is dominant which requires

(mk +ml)/R2 > (ml +mj)/|rl − rj |2 . (9.5)

This condition excludes the possibility of particle l being close to another
regularized pair. It is also prudent to accept approaching particles only
(i.e. Ṙ < 0). Moreover, nearly circular orbits may be included by extend-
ing the radial velocity test to angles slightly less than 90◦, using

R · (ṙk − ṙl) < 0.02[R(mk +ml)]1/2 . (9.6)

This modification is especially useful in the difference formulation since
the velocity ṙl is not predicted, in which case a factor 0.1 is used instead.
Note that, with Hermite integration, synchronization of time-steps is re-
quired but the steps tend to be identical because a relative criterion is
employed. If necessary, we achieve synchronization by halving the value
of ∆tk, but only if t0,l +∆tl < t+∆tk.
If massive binaries with low eccentricity are present, the time-step con-

dition (9.4) may be too conservative for a close encounter search. Such bi-
naries are often quite energetic and may contribute noticeably to system-
atic errors. A separate search procedure allowing somewhat wider criteria
has therefore been included, i.e. ∆tk < 4∆tcl and mk > 2m̄. The closest

‡ The square search distance may be modified by (mk +ml)/2m̄ for massive particles.
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single particle is then identified from either the neighbour list (NBODY 6)
or a list of short time-steps (GRAPE). Provided we have Eb < εhard, e < 0.5
and the estimated nearest neighbour perturbation is relatively small, the
binary components are chosen for KS regularization. This procedure can
be very beneficial for systems with significant mass dispersion.
Following acceptance of the regularization conditions, the initializa-

tion proceeds as described in section 8.8. The next question relating to
decision-making is concerned with the possible termination of a regular-
ization. We distinguish between hard and soft binaries, as well as hyper-
bolic fly-by’s, since these cases require different considerations. The latter
are simplest and for them the termination conditions R > R0, Ṙ > 0
may be employed, where R0 is the initial separation (taken as 2a for hard
binaries). An additional criterion based on the perturbation is also used
to prolong the integration in case R0 < Rcl (see below).
Soft binaries require more care since high eccentricities are often in-

volved. Hence termination during the outward motion with R > Rcl might
be followed by a new initialization after the apocentre passage even if the
maximum perturbation is modest. Hence if such a binary is in a low-
density region this switching might occur repeatedly unless some precau-
tion is taken. Instead we introduce a secondary perturbation parameter,
γmax, (usually 0.01) and employ the termination conditions

R > R0 , γ > γmax , (9.7)

otherwise λR > Rs is used for the AC scheme.
Hard binaries often experience strong perturbations without suffering

exchange. Thus if γ > 0.2 (say) a search for the dominant perturber is
made based on the vectorial force. Termination with subsequent selection
of the new component is only carried out if the negative radial velocity
condition is also satisfied. In the rare case of no such test being successful
before γ = 0.5 is reached, a direct comparison of dominant force terms
among the perturbers usually results in a new companion being identified,
whereupon termination is activated.§

Termination in the Hermite scheme has been modified slightly to fit
in with the existing block-steps. Thus, except for collisions, it is advan-
tageous to switch over to direct integration at the end of the current
block-step instead of the need to create a smaller new step. Even if the
termination conditions are satisfied, the regularized solution is extended
until the corresponding physical time-step exceeds the remaining interval,

∆t2i−1 > tblock − t , (9.8)

§ The vectorial expression of the perturbation gives γ = 0.5 for an equilateral triangle
and equal-mass bodies.
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where i is the pair index. The final solution is then predicted at the
time tblock by iteration of the regularized time (discussed in chapter 11).
This novel procedure works well because the block-steps are usually small
compared with the time-scale for significant changes in two-body configu-
rations; i.e. the very nature of a strong perturbation implies a small value
of the associated centre-of-mass (c.m.) step.
In conclusion, the identification of dominant two-body motion for KS

regularization and its termination is essentially carried out with only two
parameters, the close encounter time-step, ∆tcl, and individual dimen-
sionless perturbation, γi.

9.4 Multiple encounters

Compact subsystems where binaries are involved in strong interactions
with single particles or other binaries may be treated by several types
of multiple regularization described previously. Since many aspects of
decision-making are similar, we concentrate on the more versatile chain
regularization method. Let us first consider the case of a single particle of
mass mj approaching a hard binary with component masses mk and ml,
semi-major axis a and eccentricity e. A convenient time to check for chain
regularization is at each binary apocentre passage, provided ∆tcm < ∆tcl.
Thus a small value of the c.m. time-step ensures a strong interaction. The
following conditions for the intruder need to be satisfied before the con-
figuration can be selected for treatment. In addition to a negative radial
velocity, we employ the condition of a compact subsystem,

|rcm − rj | < max {3Rgrav, Rcl} . (9.9)

Here Rgrav is the characteristic gravitational radius defined by

Rgrav = (mkml +mcmmj)/|Eb + Eout| , (9.10)

with Eb, Eout the binding energies of the inner and outer relative motion.
If the subsystem is not well bound (i.e. Eout 	 0), we employ the ex-
pression Rgrav = 1

2(R + |rcm − rj |) instead for decision-making purposes,
with R the binary separation. In order to ensure a strong interaction, the
condition for a small pericentre distance is also imposed by

aout(1− eout) < |a|(1 + e) , (9.11)

where aout is the semi-major axis of the intruder with respect to the
binary c.m. and eout is the corresponding eccentricity. Moreover, a factor
2 may be included on the right-hand side for small apocentre distances
(e.g. aout(1 + eout) < 0.01Rcl), and even a factor 2.5 might be tried for
large outer eccentricities¶ (e.g. eout > 0.9).

¶ Such systems still violate the hierarchical stability condition (9.14).
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The condition (9.9) ensures that the transition from a perturbed KS
system is not made until the interaction can be said to be strong, and
chain regularization becomes a more appropriate solution method. For a
parabolic intruder orbit and equal masses, Rgrav = 6a and the perturba-
tion at this distance would only be a few per cent, whereas the remain-
ing time until maximum interaction barely exceeds one orbital period.
However, it is more efficient to initiate the chain regularization with the
existing KS pair, otherwise another dominant solution may be initialized
before the next check. Because orbital phase is a random element here,
the desirable change from a binary KS solution to chain regularization
is usually achieved with the present criteria, but a small fraction of new
hyperbolic KS motions do occur. Hence if a second approaching KS bi-
nary is terminated prematurely, both components are in fact subject to
a distance test and may be selected, instead of the fourth particle being
treated as a strong perturber.
Chain regularization may also be initiated with four members if two

hard binaries approach each other closely. In this case the second binary is
treated analogously with the single particle above and its internal energy
added to Eb for use by (9.10). We generalize (9.11) by enlarging the
apocentre cross section such that the semi-major axes are added. Once
accepted for treatment, both KS solutions are terminated in the usual
way. A discussion of aspects pertaining to the actual integration will be
presented in another chapter.
A more general chain selection scheme has been added in order to pre-

vent the intruder approaching too closely before being identified, as might
be the case between two apocentre passages. Thus if the perturbation is
significant (say γ > 0.2), the configuration is examined more carefully.
Before deciding on termination of the KS solution, we consider the suit-
ability for chain regularization. The actual decision for acceptance is then
made using the standard conditions (9.9) and (9.11).
Decision-making for termination is much more involved than in KS

regularization. A search for escape candidates is performed after each
integration step if

∑
k Rk > 3Rgrav. Since this procedure requires velocity

information, the basic variables are obtained after every integration step.
The distances Rk are ordered and the index of the largest one with mass
mesc is noted. First we express the relevant distance and radial velocity
in the local c.m. frame. Multiplication by the factor Msub/(Msub−mesc),
with Msub the subsystem mass, then yields the corresponding distance d
and radial velocity ḋ with respect to the remaining system, which for a
chain membership Nch = 3 would be the binary c.m. This gives rise to
the approximate two-body equation

Ed = 1
2 ḋ
2 −Msub/d . (9.12)
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The simplest case is a single particle being ejected from a three-body
system with hyperbolic motion (i.e. ḋ > 0, Ed > 0). Such a particle
is a candidate for escape provided d > 3Rgrav [cf. Standish, 1971]. In
addition, we employ a subsidiary distance condition which may continue
the solution for small external perturbations up to a somewhat larger
distance. If Ed < 0, termination also occurs for an extended orbit with
d > 2Rcl, provided certain conditions are met. In practice it is beneficial to
delay KS initialization for small pericentre separations. For this purpose
the semi-major axis of the inner two-body motion is evaluated by inverting
the expression Eb = −mkml/2a in (9.10). Combining with (9.12) we write
Eout = µoutEd, where µout = mescmcm/Msub and mj = mesc is the outer
mass. Re-arranging terms, we finally obtain

a =
Rgrav

2 + 2mj

µ (1 + Rgrav

Msub
Ed)

, (9.13)

with µ = mkml/mcm. Consequently, we delay starting a new two-body
solution for any value of (9.12) in the pericentre region R < a. The
most distant single particle is treated similarly if Nch > 3, except for
the semi-major axis condition above. Now the remaining subsystem is re-
tained, whereupon initialization takes place as described previously and
the ejected particle is prepared for direct integration in the usual way.
Configurations with Nch > 3 may also contain two particles escaping

together, rather than just one. Provisional close components are identified
by examining the smallest particle separation at either end of the chain.
Again the procedure above is used, with (9.12) describing the relative
motion of the combined c.m. Such particle pairs may be initialized as one
KS solution if the separation is suitably small. The alternative case of
Ed < 0 and an extended orbit is also considered. Thus Nch = 4 and the
potential binary exerting a small perturbation on the two other particles
may result in termination with two separate KS solutions. Furthermore,
two KS solutions may be initialized if the two smallest distances are well
separated; e.g. R1 +R3 < R2/5, where R2 is the middle distance.
Change of membership by the addition of an intruder, followed by es-

cape of another body may lead to long-lived systems that become time-
consuming when treated by chain regularization. At the simplest level,
stable triples form during strong binary–binary interactions and may per-
sist over long intervals even in the presence of external perturbations. The
possibility of more complex structures also needs to be considered. Thus
the case Nch = 4 with an inner or outer binary of small size can be re-
duced to a hierarchical triple and likewise a five-body subsystem may be
simplified. In the event of approximate stability being satisfied, the chain
treatment is replaced by the appropriate combination of KS and direct
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solutions. Although semi-stable systems of higher orders are relatively rare
during chain regularization, it is desirable to include such terminations
in the decision-making. Fortunately, the available two-body separations
together with the value of Nch can be used to distinguish the different
cases (cf. section 11.7).
Finally, we note that procedures exist for initiation of unperturbed

treatments of three-body regularization [Aarseth & Zare, 1974] as well
as four-body chain regularization [Mikkola & Aarseth, 1990]. The un-
perturbed global four-body regularization [Heggie, 1974; Mikkola, 1985a]
was also used for some time [cf. Aarseth, 1985a] until replaced by the
chain method for N = 4. Although the selection criteria are essentially
similar to those above, the relevant procedures will be discussed later in
connection with initialization and termination.

9.5 Hierarchical configurations

The formation and persistence of hierarchical systems poses difficult tech-
nical problems for N -body simulations. Such configurations are known to
exist in the Galactic field, and it is therefore not surprising that they
should appear in cluster models containing a significant binary popula-
tion. The technical problem arises because the inner binary in a triple
invariably has a short period that needs to be integrated as a perturbed
KS solution over long time intervals, and likewise the outer orbit by the
direct method. It has been known for a long time [cf. Harrington, 1972]
that most observed triples appear to be quite stable as indicated by their
age. According to perturbation theory, the inner semi-major axis does not
exhibit any secular effects for sufficiently large ratios of the outer peri-
centre to the inner apocentre distance and this feature can be exploited
in numerical integrations.
A number of systematic studies of triple systems have been made in or-

der to determine the boundaries of stable configurations. Most of these in-
vestigations [cf. Harrington, 1975; Eggleton & Kiseleva, 1995] have specif-
ically addressed the problem of comparable masses. However, only a re-
stricted set of initial conditions can be explored because of the large pa-
rameter space; i.e. usually both the inner and outer orbits are taken to be
circular. The importance of stable hierarchies in cluster simulations has
been recognized for some time and such criteria were used extensively [cf.
Aarseth, 1985a] until replaced by a more general expression.
A new approach, based on the binary–tides problem [Mardling, 1995],

inspired a semi-analytical stability criterion that holds for a wide range
of outer mass ratios and arbitrary outer eccentricities [Mardling &
Aarseth, 1999]. The limiting outer pericentre distance, Rcritp , is expressed
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in terms of the inner semi-major axis, ain, by the relation

Rcritp = C

[
(1 + qout)

(1 + eout)
(1− eout)1/2

]2/5
ain , (9.14)

where qout = m3/(m1 + m2) is the outer mass ratio, eout is the corre-
sponding eccentricity and C � 2.8 is determined empirically. This cri-
terion applies to coplanar prograde orbits, which are the most unstable,
and ignores a weak dependence on the inner eccentricity and mass ra-
tio m1/m2.‖ Since inclined systems tend to be more stable, we adopt an
heuristic linear correction factor of up to 30%, in qualitative agreement
with early work [Harrington, 1972] and recent unpublished experiments.
The criterion (9.14) ensures stability against escape of the outermost

body. However, the alternative outcome of exchange with one of the inner
components also needs to be considered. The latter case is treated by the
semi-analytical criterion [Zare, 1976, 1977]

(J2E)crit = − G2f2(ρ)g(ρ)
2(m1 +m2 +m3)

, (9.15)

where J is the total angular momentum, with f(ρ) and g(ρ) algebraic func-
tions of the masses which can be solved by iteration. If J2E < (J2E)crit
(with E < 0), no exchange can occur and the inner binary retains its
identity. However, this criterion is only sufficient; hence exchange is not
inevitable if the criterion is violated, but if it does occur, escape follows.
Application of the expression (9.15) shows that for planar prograde mo-
tion, the escape boundary lies above the exchange limit for qout < 5 [cf.
Mardling & Aarseth, 2001], and this is mostly satisfied in star cluster
simulations.
We now define a triple that satisfies the outer pericentre condition

aout(1 − eout) > Rcritp to be stable, in the sense that ain will be assumed
constant in spite of small short-term fluctuations. Such a system is then
converted to a KS solution, where the combined mass m1 +m2 plays the
role of the inner component. Notwithstanding some current terminology,∗∗

we refer to this procedure as a merger but emphasize that it is only a
temporary approximation and the two components are re-activated at
the end. Quadruples and higher-order systems may also be treated in
an analogous way by modifying the relation (9.14) appropriately, with a
correction factor f = 1 + 0.1a2/ain for the smallest binary of size a2.
The actual identification of a stable hierarchy is again carried out at

the apocentre phase, provided ∆tcm < ∆tcl. This may appear to be

‖ A complete criterion has now been derived from first principles [Mardling, 2003b].
∗∗ The identity of the two high-density cores is retained during the major phase of a

long-lived galaxy merger, whereas two colliding stars soon become indistinguishable.
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rather conservative but the additional condition Eout < 1
4εhard is em-

ployed, mainly because a long life-time is still possible. Hence it follows
that the time-step for the c.m. will be quite small for such configurations.
We also note that even an unperturbed binary may be found inside a sta-
ble hierarchy. If we ignore the cube root of the mass ratio, this condition
arises when we have

aout(1− eout) > λain(1 + ein) , (9.16)

where λ = γ
−1/3
min . Hence a stability search is also performed during the

check for unperturbed two-body motion, provided the time-step is below
∆tcl. As an alternative to the more careful standard procedure, a fast
evaluation of the stability parameter and inclination is carried out first
if ∆tcm < 4∆tcl, with existing information of the closest perturber. For
a typical hard outer orbit, (9.16) allows for a large range of inner binary
sizes and hence stable configurations of higher order are possible.
Occasionally, long-lived hierarchies occur that do not satisfy the sta-

bility criterion (9.14), even after the inclination effect has been included.
A fraction of such systems exhibit relatively large outer eccentricity. In
the case of high outer eccentricity and in analogy with tides in binaries,
the amount of energy exchanged during a pericentre passage of the outer
body is proportional to (ain/Rp)6. Hence the small energy exchange at
each passage owing to a small ratio would take a long time for the ran-
dom walk process to reach eout > 1. In order to include such systems
for a shorter interval, we introduce the experimental concept of practical
stability (not yet included in NBODY 6). Accordingly, if eout > 0.99, we
assign the number of outer periods by [cf. Aarseth & Mardling, 2001]

nout = 1 + 10 eout/(1− eout) , (9.17)

where the corresponding time interval is used for termination.
Termination of hierarchies is somewhat similar to the case of hard bi-

naries treated by KS in one respect. Based on the predicted apocentre
perturbation, γapo � γ[a(1 + e)/R]3, termination occurs if γapo > 0.25
together with R > a. The stability condition (9.14) must be checked reg-
ularly. This is done conveniently at each apocentre. Thus we compare the
unperturbed expression aout(1− eout), slightly modified by the empirical
factor 1 − 2γ, with Rcritp which is now represented by R0. The simple
convention of associating each c.m. particle with a negative identification
label, or name, (to be discussed later) allows the variable R0 to be used
for a second purpose. Recall that it is also used as termination distance
for regularized soft binaries. Finally, the inner components are again re-
initialized as a KS binary in the usual way, whereas the outer component
is treated as a single particle or another KS solution, as required.
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9.6 Escapers

Star clusters evolve by losing members to the galactic field. It therefore
makes sense to remove distant cluster members and concentrate on the
bound system. Although the classical tidal radius might be expected to
be a good choice for the cluster boundary, simulations show that a sig-
nificant population is present further out [cf. Terlevich, 1987]. Likewise,
stars above the escape energy may linger for a long time when the orbits
are calculated in a fixed potential [Fukushige & Heggie, 2000]. Theoret-
ical considerations also suggest that some orbits may reach quite large
distances and still return to the cluster [Ross, Mennim & Heggie, 1997].
However, such orbits appear to be of a special type and only a small frac-
tion of escapers in the present models exhibit this behaviour when their
motion is investigated. The old criterion of using twice the tidal radius for
escaper removal has therefore been retained [Aarseth, 1973], in conformity
with other studies [Portegies Zwart et al., 2001].

As is well known [cf. Hayli, 1970; Wielen, 1972], the zero velocity bound-
ary for the symmetrical Lagrange points, L1 and L2, is highly flattened
in the presence of a galactic field. Likewise, if a particle has a small ex-
cess energy, Ei > Ccrit (cf. (8.17)), it can only escape in the vicinity of
the Lagrange points. Consequently, most particles satisfying the energy
escape criterion will experience random reflections inside the zero velocity
boundary before finding the energy-dependent exit window. Hence kinetic
energy in the z-direction is converted to x- or y-motion, and vice versa, by
the agency of the core as well as the non-symmetrical tidal torque. This
behaviour is analogous to the absence of a third integral for eccentric or-
bits in certain galactic potentials [Aarseth, 1966b]. For completeness, we
mention an extensive analysis of the escape process performed recently
[Heggie, 2001].
The central distance of each single and c.m. particle, i, is examined at

regular intervals. For open clusters we employ the escape criterion

|ri − rd| > 2 rt , (9.18)

where rd defines the density centre (to be discussed later) and rt is the
scaled tidal radius given by (8.24). At the same time, the energy per unit
mass, Ei, is obtained; this includes any external tidal field. Hence escapers
from isolated systems may also be treated in a similar way, provided
Ei > 0 and a nominal value (say 10 rh) has been assigned to rt. In any
case, the quantity miEi is needed in order to correct the total energy,
permitting conservation to be maintained.
A given particle is removed from the data structure by compressing

all arrays with members j ≥ i and reducing N by one. Additionally, all
relevant lists must be updated consistently, as well as the total mass and
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tidal radius. Since the distance between an escaper and other particles
is usually fairly large, no force corrections are needed to account for the
slight discontinuity. However, care is taken if a neighbouring single particle
is present that does not satisfy the escape condition, when a delay may
be imposed depending on the perturbing force.
In the case i > N which defines a KS solution, we proceed as follows.

First the c.m. particle is removed, using the procedure above. The cor-
responding KS components mk,ml of pair i − N are also removed after
noting the binding energy Eb = µklh, with µkl the reduced mass. Again
the latter quantity is subtracted from the total energy and all the list
arrays are modified consistently. From time to time even hierarchical sys-
tems escape. The treatment is similar to that for binaries, except that
additional quantities relating to the inner binary must also be removed.
Detailed procedures for escaper removal are discussed in Appendix C.

9.7 Mass loss and tidal interactions

A realistic simulation of stellar systems needs to consider various processes
connected with the finite size of stars as well as their change of mass with
time. The modelling of synthetic stellar evolution is based on fast look-up
algorithms for the radius, luminosity and type as a function of the initial
mass and age [Eggleton, Tout & Fitchett, 1989; Tout et al., 1997; Hurley,
Pols & Tout, 2000]. Here we are mainly concerned with decision-making
aspects for instantaneous mass loss due to stellar winds or supernovae
explosions and processes related to tidal interactions.
Each star is assigned an evolutionary time-scale, tev, when the relevant

parameters are updated according to some prescription. As well as using
the current mass, this scheme requires the initial mass, m0, as a variable
for several purposes. Suitably small time intervals are used for advancing
tev which produces fairly smooth changes in the basic quantities. In the
Hermite scheme, all individual values of tev are examined at small quan-
tized intervals of 100–200 yr coinciding with the end of an integration
cycle, or block-step. Each star is also characterized by a stellar type, k∗,
in order to distinguish different evolutionary states in the Hertzsprung–
Russell (HR) diagram, which facilitates decision-making. For many years
a basic scheme was used [cf. Tout et al., 1997] but this has now been
replaced by a more general representation [Hurley, Pols & Tout, 2000]
comprising some 16 types, ranging from low-mass main-sequence stars to
neutron stars and black holes.
The introduction of evolutionary time-scales and types for c.m. parti-

cles as well provides greater flexibility of program control. Thus the former
specifies the appropriate time for the next mass transfer episode in cir-
cularized binaries, whereas the latter is used to define the binary type.
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Subsequent to a standard initial state (k∗ = 0), binaries may undergo
chaotic energy exchange (k∗ = −1) or tidal circularization (k∗ = −2)
until the orbit is circular (k∗ = 10), followed by Roche-lobe mass transfer
(k∗ = 11, etc.), of which there may be several distinct phases.
The process of tidal circularization has been described in detail else-

where [cf. Mardling & Aarseth, 2001], together with chaotic motion, and
some relevant algorithms will be given in a subsequent section. As far as
decision-making is concerned, the orbital elements a, e are updated in a
smooth manner either at each pericentre passage of a perturbed binary
or, more usually, at the time of rechecking unperturbed motion. Hence, in
general, the computational effort here is relatively insignificant, although
the recent inclusion of stellar spin (NBODY 4 only) requires integration of
some extra equations. Since the regularized coordinates for standard un-
perturbed binaries by convention specify the first point past apocentre, we
need an algorithm for transforming the elements to pericentre. The phase
angle is first advanced by half a physical period (i.e. π/2). Using general
transformation expressions [Stiefel & Scheifele, 1971], we take θ = π/2
and obtain the regularized coordinates and velocity

U = U0 cos θ +U′ sin θ/ν ,
U′ = U′

0 cos θ −U0 sin θ ν , (9.19)

where ν = |12h|1/2. Finally, if necessary, transformation to exact pericentre
employs the analytical solution after solving Kepler’s equation. However,
an actual integration is performed if the motion is perturbed. Further
algorithms are given in Appendix D.4.
An interval of circular motion usually precedes the Roche stage which

is triggered by the increase of stellar radii. Since this type of mass transfer
is essentially continuous, we need to discretize it in order to fit in with
the integration scheme. The process is initiated when one of the stars fills
its Roche lobe, with the effective radius [Eggleton, 1983]

rR � 0.49q2/3/[0.6q2/3 + ln(1 + q1/3)]a , (9.20)

where q = mk/ml is the mass ratio, mk being the primary. From the
known mass transfer rate [cf. Tout et al., 1997], we limit the amount
transferred to a small fraction (say 0.5%) of the primary mass. The mass
transfer activity is halted temporarily when the corresponding time ex-
ceeds the next c.m. force calculation time, whereupon there is a quiescent
or coasting stage until tev is exceeded again. During this process it is
important to make sure that the look-up times of the individual com-
ponents stay ahead of the c.m. value; otherwise mass loss without any
transfer would occur. Once an active stage is completed, the relevant
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type indices and evolution times are updated. More details can be found
in section 11.10.
Close binaries consisting of low-mass or degenerate stars are subject

to magnetic and gravitational wave braking [cf. Tout et al., 1997]. Now
the time-scale might be several Gyr, with correspondingly longer inter-
vals between each orbital modification in the absence of mass loss. For
convenience, the angular momentum losses due to magnetic braking and
gravitational radiation at small separations (< 10R�) are combined to
yield the final semi-major axis by angular momentum conservation. Fi-
nally, the KS variables are scaled at constant eccentricity, followed by
standard initialization in the case of perturbed motion (cf. (11.44)).
The actual procedures concerned with mass loss will be described later

but it may be instructive here to consider how a supernova event is han-
dled. Let us suppose that a massive component of a hard binary undergoes
a sudden transition to a neutron star. According to consensus, such an
object will generate a velocity kick because the rapid mass ejection is not
symmetrical. Here we mention the main steps for implementing this effect,
assuming that the kick occurs at an arbitrary phase (cf. section 15.5). Af-
ter assigning a random phase shift θ in [0, π], equation (9.19) is employed
to generate new regularized variables. This is followed by termination of
the KS solution, together with corrections of the neighbour forces and
total energy resulting from the mass loss. Even if the modified two-body
motion is hyperbolic, a new KS regularization is initialized for consistency,
subject to the condition R < Rcl.

9.8 Physical collisions

The interaction of close binaries undergoing mass transfer frequently leads
to the stage known as common-envelope evolution [Paczynski, 1976]. A
significant fraction of these events results in coalescence of the two stars,
accompanied by mass loss and should not be considered as collisions. For
practical purposes it is useful to distinguish between hyperbolic encoun-
ters and nearly circular motion leading to the common-envelope stage,
even though the former may occasionally produce the same outcome.††

Other types of collision also occur (i.e. induced inner eccentricity) and
the possible formation of exotic objects is of particular interest.
The simplest case of collision is between two single stars in a hyper-

bolic regularized orbit. Although some giant stars are present, estimates
indicate that such collisions are quite rare. Thus in a typical open clus-
ter with N � 104 members, we have Rcl/R� � 5 × 104. We assume a

†† Coalescence using the KS method will also be discussed in section 11.10.
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provisional collision criterion‡‡ of the type obtained by smoothed particle
hydrodynamics or SPH [e.g. Kochanek, 1992],

Rcoll = 1.7
(
m1 + m2

2m1

)1/3
r∗1 , (9.21)

where r∗1 is the largest stellar radius. Although the decision-making for
coalescence is quite different, the actual KS treatment is based on the same
principles and need not be commented on specifically here. For clarity, we
summarize the main steps of the collision procedure in Algorithm 9.1.

Algorithm 9.1. Physical collision in KS regularization.

1 Identify the turning point by t′′0 t′′ < 0, R < a
2 Determine the pericentre distance, Rp
3 Compare Rp with the collision distance, Rcoll
4 Predict back to the exact pericentre
5 Terminate the KS solution in the standard way
6 Form the new c.m. particle with rcm, ṙcm
7 Implement stellar evolution for mcm = mk +ml

8 Replace body ml by a massless particle
9 Perform mass-loss corrections of potential energy
10 Update lists to new single body, mcm

11 Obtain improved force polynomials for neighbours
12 Initialize force polynomials for mcm

13 Correct the total energy, Ecoll by µklh

The first point past pericentre is identified by comparing the sign of the
old and new radial velocity, t′′ = R′, for R < a. This algorithm is also used
for determining the apocentre of binaries which requires the alternative
condition R > a. In order to have a regular expression for the distance of
closest approach, we introduce the semi-latus rectum

p = 4 (U×U′)2/mb , (9.22)

with mb = mk+ml for brevity. Since e2 = 1−p/a and we have the energy
relation 1/a = (2− 4U′ ·U′/mb)/R, this finally gives

Rp = p/(1 + e) . (9.23)

Note that the determination of the eccentricity and semi-major axis from
the physical variables of a collision solution is prone to errors and may in
fact lead to non-physical values, whereas p contains numerically the factor

‡‡ At present a more general velocity-dependent criterion is still not available.
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R which compensates for the division. If the collision condition is satisfied,
the actual pericentre is obtained by backwards integration together with
a final iteration using the procedure described below. Having replaced
two particles by one composite body, we create a so-called ‘ghost particle’
with zero mass and large distance so that it will be removed as a massless
escaper. One possibility not mentioned in the collision algorithm is that
step 12 may be replaced by initializing a KS solution of mcm with respect
to another close single particle.
The case of collision inside a compact subsystem is much more fre-

quent and quite complicated to deal with. Some of these events are of the
common-envelope type which occur if at least one of the components has a
dense core and an extended envelope, but technically the treatment is the
same (cf. section 12.9). We now consider a situation with more than three
chain members since the case Nch = 3 leads to immediate termination
after some simple procedures, followed by a new KS solution.
The first prerequisite is to have a decision-making algorithm for de-

termining a possible collision. One way to identify the pericentre pas-
sage of two bodies in a system of arbitrary membership is to note when
the quantity 1/

∑
j R

2
j starts to decrease after successive increases. If

min {Rj} < 8 max {r∗k, r∗l } at the same time, the smallest pericentre dis-
tance is determined after the first subsequent function evaluation. In chain
regularization, the procedure for obtaining the osculating pericentre dis-
tance, Rp, from (9.23) is given by Algorithm 18.1. The essential steps
involved in achieving the objective of identifying tidal interaction or col-
lision candidates are elucidated by Algorithm 9.2.

Algorithm 9.2. Pericentre determination in chain regularization.

1 Determine the smallest pericentre distance, Rp
2 Check distance criterion Rp < 4 max {r∗k, r∗l }
3 Form KS radial velocity from R′ = 2Qk ·Q′

kRk/t
′

4 Evaluate a using non-singular energy expression
5 Obtain pericentre time, tp, by Kepler’s equation
6 Convert to chain step ∆τ = (tp/a−R′/mb)Rk/t

′
7 Choose ∆τ < 0 if R′ > 0 ; otherwise ∆τ > 0
8 Ensure convergence by R′ < 1× 10−9(2mbRk)1/2

Here r∗k, r
∗
l denote the stellar radii and mk,ml are the masses at each

end of the smallest chain separation, Rk. Again the pericentre distance
is obtained by (9.22) and (9.23), with Qk substituted for U. However,
each velocity Q′

k needs to be modified by the factor Rk/t
′ (with t′ = 1/L

here) in order to convert from chain to KS derivatives. Formally the slow-
down factor κ should be included but κ = 1 is imposed here because
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of possible convergence problems in the solution of Kepler’s equation for
high eccentricity. Note the extra factor 2 used to initiate the search which
is based on osculating elements.
Evaluation of the semi-major axis from the physical variables at small

pericentres suffers from numerical uncertainty. Instead we obtain the two-
body energy from the regular expression

Eb = Ech − V , (9.24)

where Ech is the energy of the subsystem and V represents the non-
dominant chain and non-chained contributions. From this the semi-major
axis is obtained by a = −1

2mkml/Eb. We remark that collisions represent
near-singular conditions and care should therefore be exercised to work
in terms of well-defined variables.
An analytical estimate for the pericentre time can be obtained by ne-

glecting the perturbation of any nearby members, whereupon convergence
is attained by iteration. The desired expression is derived by the following
algorithm [Mikkola, private communication, 1999]. First we establish the
unperturbed two-body relation

dR′/dt = d(R · Ṙ)/dt = mb/R−mb/a , (9.25)

where Ṙ2 has been replaced by 2mb/R−mb/a. From the definition (4.4)
a straightforward integration gives

R′ −R′
0 = mbτ −mbt/a . (9.26)

Setting R′ = 0 at the pericentre, we obtain the regularized interval§§

∆τ = tp/a−R′
0/mb . (9.27)

The pericentre time, tp (< 0 if R′ < 0) is obtained from Kepler’s equation,

tp = [θ − t′′0/(mba)1/2]tK/2π , (9.28)

where tK is the period. Finally, if relevant, the KS interval (9.27) is con-
verted to chain regularization time units by the scaling factor Rk/t

′. Note
that Rk = Qk to high accuracy after reaching a small radial velocity. This
is usually achieved in three iterations which cost the same as full integra-
tion steps. Since a is obtained by means of the non-singular expression
(9.24), the eccentricity is also well determined by e = 1−Qk/a.
Let us now suppose that the collision condition Rp < Rcoll is satisfied.

A few of the procedures are the same as for hyperbolic collision but all
are listed by Algorithm 9.3 for completeness.

§§ An alternative derivation is given by Stiefel & Scheifele [1971].



160 9 Decision-making

Algorithm 9.3. Implementation of chain collision.

1 Transform to rj , ṙj for all chain members
2 Evaluate the two-body energy from Eb = Ech − V
3 Form coordinates and velocity of the c.m. particle
4 Implement stellar evolution for mcm = mk +ml

5 Create a massless particle at location of ml

6 Add the tidal energy correction ∆Φ to Ecoll
7 Prescribe new force polynomials for the neighbours
8 Compress the membership list {Ij} to remove j = l
9 Update the total energy by Eb to ensure conservation
10 Re-initialize the chain with reduced membership, Nch

The energy Eb (a local quantity) is again obtained by (9.24). In order
to maintain energy conservation, the change in potential energy in going
from two particles to one is added to the quantity Ecoll which forms part
of the total energy (defined in the next section). This differential effect,
arising from the nearest neighbours, is also included for two-body colli-
sions, where it tends to be quite small. From the negative sign convention,
it can be seen that the addition of ∆Φ = Φ1 − Φ2 preserves the value of
the total energy, E = T +Φ, with Φ1 due to the interaction between the
two colliding bodies and the other chain members, and Φ2 arising from
the c.m. approximation. Since the chain membership {Ij} is contained
in a sequential list, the massless particle is removed by compressing the
array. This allows for re-initialization of the chain regularization directly,
unless only two particles are left which implies termination.
In conclusion, we have seen how the membership of a chain regulariza-

tion may be increased or also decreased by either escape or collision. Gen-
eral algorithms for changing the membership will be outlined in a subse-
quent section. Although such procedures illustrate the practical usefulness
of the chain method, it should be emphasized that the technical treatment
requires some complicated programming. However, the advantages of de-
scribing near-singular interactions in terms of well-defined variables are
tangible.

9.9 Automatic error checks

The star cluster codes, which form the basis for discussion, contain a num-
ber of dissipative processes as well as discontinuous dynamical events.
In this chapter, we have discussed mass loss, tidal circularization, col-
lisions, escape and the temporary creation of stable hierarchies. Since
each event or process is corrected for, it becomes possible to maintain an
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energy-conserving scheme, and its use as a check of the calculation is
included as an option.
The change in total energy is monitored at regular time intervals and

is considered to represent the global error, although the main source may
well be connected with the integration of some difficult interaction. We
compare the relative error, qE = |∆E/E|, with the specified tolerance,
QE, and have implemented the following scheme. If 0.2QE < qE < QE,
the calculation is continued normally. On the other hand, if the error is
larger there are two courses of action. ThusQE < qE < 5QE results in a re-
duction of the time-step parameters η or ηI and ηR by a factor (qE/QE)1/2.
However, errors exceeding 5QE are not acceptable and a restart is made
from the last save of the common variables, together with a factor of 2
reduction of η or ηI , ηR. A further restart is allowed for, but such cases
are usually connected with technical problems which may require atten-
tion. Finally, if qE < 0.2QE, the time-step parameters are increased by a
small amount unless already at their initial values which should not be
exceeded.
Hence by adopting the old procedure of saving all common variables

for acceptable solutions [Aarseth, 1966a], we have a practical scheme for
controlling the progress of a simulation that can therefore be left to itself
on a dedicated machine for long periods of time. Detailed investigations
are carried out if the calculation is halted because the error limit has been
exceeded. This requires the results to be reproducible, which is usually the
case with workstation versions. However, time-sharing on special-purpose
HARP or GRAPE computers may sometimes cause problems in this re-
spect, due to small variations in the time ration and reloading of the data
which affects the scheduling.
The present data structure allows the total energy to be obtained by

adding different contributions which are evaluated separately. Thus the
total energy is defined by a sum of ten terms as

E = T+U+Etide+Ebin+Emerge+Ecoll+Emdot+Ecdot+Ech+Esub . (9.29)

The various quantities are listed in Table 9.1, together with brief defini-
tions. Note that here T and U do not include any internal contributions
from binaries or multiple subsystems. This definition arises naturally from
the way in which the different classes of objects are integrated. For conve-
nience, we have introduced some new definitions which correspond more
closely to code usage, hence Etide = W . The collision energy, Ecoll, con-
tains the tidal (or differential) energy corrections associated with the c.m.
approximation when combining two particles.¶¶ Moreover, note that the
energy budget contains two terms for multiple regularization. Thus Esub

¶¶ Differential corrections when starting perturbed two-body motion are also beneficial.
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Table 9.1. Components of the energy budget.

T Kinetic energy of single bodies and c.m. particles
U Potential energy of single and c.m. bodies
Etide Tidal energy due to external perturbations
Ebin Binding energy in regularized pairs,

∑
i µklhi

Emerge Total internal energy of hierarchical systems
Ecoll Sum of binding energies released in collisions
Emdot Energy change from mass loss and Roche mass transfer
Ecdot Neutron star kicks and common-envelope evolution
Ech Total energy of any existing chain subsystem
Esub Energy in unperturbed triple and quadruple subsystems

remains constant and the original value is subtracted from the total en-
ergy at the end of an unperturbed multiple regularization, whereas the
internal chain energy, Ech, changes with time and cannot be treated in
the same way if we want (9.29) to be conserved during the interaction.

Some further comments on the entries in the table are in order. The
expression for the potential energy contains the interaction between each
KS pair and other pairs, as well as with single particles. For consistency,
the energy of each perturbed KS solution is predicted to highest order
before being accumulated in Ebin. As regards hierarchies, contributions
from changes in the data structure are also included in the form of differ-
ential corrections, both at initialization and termination. Thus we need to
take account of the changing nature of the equations of motion, since the
resulting c.m. approximation affects the force on nearby particles. Various
safety procedures are therefore employed to check the external perturba-
tion on a hierarchical configuration before it is accepted for treatment (cf.
Algorithm 11.3).

On conventional computers, the change in potential energy due to mass
loss from single stars or binaries is obtained by explicit summation over
all members. A separate quantity, Ecdot, accumulates the kinetic energy
contained in the velocity kick when neutron stars are formed. By analogy
with the other entries here, one could also introduce a quantity, Eesc, for
the energy carried away by escaping members but, for historical reasons,
the relevant correction is subtracted directly. However, information about
the different escape processes is kept separately for further analysis.

A different strategy for mass-loss correction is possible when using
GRAPE. Thus in addition to F and Ḟ, the potential Φ is also evaluated
by the hardware. For most cases, i.e. significant time-steps and small mass
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loss, the value at a subsequent time, t ≤ t0 +∆t, is obtained from

Φ(t) = Φ(t0)− ṙ0 · F . (9.30)

Moreover, any external tidal contributions contained in F are subtracted
to give the net effect.
Given the general energy expression (9.29) for star cluster simulations,

the question of the relative energy error usually quoted in the literature
requires special consideration. We first remark that |E| itself may be very
large initially when studying primordial binaries. Moreover, the ejection of
dynamically formed binaries or fast escapers may result in large changes
of opposite sign. Consequently, we adopt a conservative definition of the
relative error, based on the energy binding the cluster (discussed later),

α = ∆E/(T + U + Etide) . (9.31)

Again T and U represent the contributions from N − Np single objects,
except that the pair-wise potential energies are evaluated more carefully.
As a result of mass loss and other dissipative processes, the absolute
value of the denominator tends to decrease with time and may in fact
become quite small compared with the initial value. However, the energy
exchanged, or liberated, in strong interactions may still be large in sys-
tems containing significant amounts of so-called ‘fossil fuel’. Moreover,
the formation of hierarchies also absorbs some of the available interaction
energy. Consequently, the accumulated quantity

∑
∆E for all the energy

check intervals provides an alternative measure of the energy error, and
in particular any systematic effects are readily evident.
The acceptable error tolerance is a matter of taste and depends on the

type of problem being investigated. For general star cluster simulations,
a typical value α � 10−5 per crossing time can usually be achieved using
standard time-step parameters. However, it is desirable to aim for even
smaller values above N � 104 in order to ensure an adequate description
of energy generation in the core [Heggie, 1988], particularly because of
the longer time-scale required. We defer a general discussion of numerical
errors to section 13.2.
To increase the practical usefulness and obtain physically meaningful

results, a variety of consistency warnings are included. Termination oc-
curs if any of these are sufficiently serious, i.e. so-called ‘danger signals’.
This may occur on inappropriate input data or some rare condition that
has not been catered for. However, many warnings are only intended for
information and their occurrence does not degrade the results.
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Neighbour schemes

10.1 Introduction

Direct N -body simulations on conventional computers benefit greatly
from the use of the Ahmad–Cohen [1973] or AC neighbour scheme. Algo-
rithms for both the divided difference method and Hermite formulation
will therefore be discussed in the following sections. We also consider the
implementation of the code NBODY 6++ on a popular type of parallel com-
puter [Spurzem, Baumgardt & Ibold, 2003], since it seems that the future
of large-N calculations is evolving in this direction at least for those who
do not use the special-purpose HARP or GRAPE machines described pre-
viously. The important problem of massive black hole binaries in galactic
nuclei is very challenging and appears amenable to direct integration us-
ing parallel architecture and neighbour schemes. A direct solution method
is described [Milosavljević & Merritt, 2001]. This treats the massive com-
ponents by two-body regularization, whereas the formation process itself
is studied by a tree code. Some of the drawbacks of this method inspired
a new formulation where the massive binary is considered as part of a
compact subsystem which is advanced by a time-transformed leapfrog
method [Mikkola & Aarseth, 2002]. Over the years, the quest for larger
particle numbers has also encouraged the construction of partially colli-
sional methods. An early attempt to introduce multipole expansion for
the outer cluster regions [Aarseth, 1967] was eventually combined with
the code NBODY 5 and will be considered here since it still forms a viable
alternative. Finally, we outline two other hybrid formulations [Quinlan &
Hernquist, 1997; Hemsendorf, Sigurdsson & Spurzem, 2002] that combine
the self-consistent field method [Hernquist & Ostriker, 1992] with direct
integration as well as two-body regularization.

164
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10.2 Basic Ahmad–Cohen method

Having described the theory and initialization procedures for the AC
scheme in previous chapters, we now concentrate on some practical al-
gorithms for efficient use. It will be assumed in the following that point-
mass calculations are intended since a detailed description of the NBODY 2

code already exists [Aarseth, 2001b]; otherwise any reference to regular-
ized binary components and centre-of-mass (c.m.) particles can simply be
ignored.
In order to focus on the specific tasks, Algorithm 10.1 summarizes the

main steps of the integration cycle for the divided difference scheme, to-
gether with some procedures for two-body regularization.

Algorithm 10.1. Integration cycle for the AC scheme.

1 Select the next particle, i, and define the time by t = ti +∆ti
2 Make a new sorted time-step list, L, if t > tL and adjust ∆tL
3 Advance any regularized solutions up to the current time
4 Decide regular force prediction [case (1)] or summation [case (2)]
5 Search for close encounter if ∆ti < ∆tcl and ∆ti decreasing
6 Predict neighbour coordinates [case (1)] or all particles [case (2)]
7 Combine polynomials for particle i and predict r, ṙ to order F(3)

8 Obtain the irregular force FoldI and update the times tk
9 Form new irregular differences and include the term D4I
10 Initialize any new KS regularization and go back to step 1
11 [Case (1).] Extrapolate FR,F

(1)
R to give Ft,F

(1)
t ; go to step 20

12 Evaluate new forces, FnewI , FnewR , and form new neighbour list
13 Repeat step 12 if ni = 0 and ri < 10rh; reduce list if ni > nmax
14 Adjust the neighbour sphere Rs and update the times Tk

15 Construct new regular differences and include the term D4R
16 Set Ft from (3.1) and F(1)t by combining (2.3) for both types
17 Identify the loss or gain of neighbours and sum the derivatives
18 Update the neighbour list and convert to differences by (2.7)
19 Specify the new regular time-step ∆Ti

20 Assign the new irregular time-step ∆ti
21 Exit on KS termination, new chain or hierarchical merger
22 Check for optional mass loss or updating of stellar radii
23 Continue the cycle at step 1 until termination or output

A regular force calculation is decided on by comparing t + ∆ti with
T0+∆Ti . If the former exceeds the latter, the regular step is shortened to
end at the present time, t. Note that we are comparing the next estimated
irregular force time with the regular force time. Both the irregular and
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regular force summations extend over the individual components in case
of regularized pairs, unless the c.m. approximation applies. The second
regular derivative required at general output times is obtained from a
differentiation of (2.1) at t �= T0 which yields an extra term in D3R,

F(2)R = D3R[(t0 − T0) + (t0 − T1) + (t0 − T2)] +D2R . (10.1)

Likewise for step 11, the regular force and its first derivative are evaluated
to highest order (i.e. D3R) at an intermediate time before the contribu-
tions are added to the respective irregular parts. Since a general time is
involved, the regular derivative is obtained by the extrapolation

F(1)R = D3R(t
′
0t

′
1 + t′0t

′
2 + t′1t

′
2) +D

2
R(t

′
0 + t′1) +D

1
R , (10.2)

where t′k = t0 − tk and t0 = t. Substituting tk = Tk, (k = 0, 1, 2) for the
regular times then yields the desired value which is added to the irregular
force derivative given by

F(1)I = (D3I t
′
2 +D

2
I )t

′
1 +D

1
I . (10.3)

In the case of a successful close encounter search (i ≤ N), both particles
are predicted to order F(3) before applying the corrector for particle i. The
integration cycle is then terminated and the KS initialization procedure
begins (cf. section 8.8). Since the time-steps are not synchronized, the
neighbour coordinates are predicted before the c.m. force polynomials are
formed.
The new total force evaluation (step 12) follows an irregular step which

includes the fourth-order corrector. Some care is required in order to avoid
spurious contributions to the regular force differences. Thus in the case of
no change of neighbours, the old and new irregular force should be numer-
ically identical to yield the actual first difference (3.5). This is achieved by
using the predicted coordinates at step 12 instead of the corrected values,
and likewise when evaluating derivative corrections.
Appropriate measures are taken in case there are no neighbours. Alter-

natively, if ni ≥ nmax, the neighbour sphere radius is reduced by a factor
0.9 and, for particles outside the new boundary, identical contributions
are subtracted from the irregular force and added to the regular force. A
procedure that adds approaching particles in an outer shell to the neigh-
bour field is beneficial on conventional computers. We also need to make
sure that enough neighbours are retained for uneven distributions which
invariably occur. In some situations (i.e. for increased accuracy with bina-
ries or shorter CPU time), it may be desirable for the average neighbour
number to exceed a specified fraction of the maximum value. An optional
procedure is therefore included which increases the predicted membership
(3.3) by a suitable factor if n̄ < 1

2 nmax.
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The case i > N requires special attention because the neighbour list is
used to select the perturbers and the membership may not be sufficient. If
R̃s > Rs, with R̃s = −100mi/hi−N , the neighbour radius is stabilized on
0.9nmax by (3.4). Here R̃s denotes the maximum perturber distance for
equal-mass particles, according to (8.58). Hence for long-lived binaries an
attempt is made to increase the neighbour sphere if it is too small for the
perturber range λa(1+e), with λ � 100. This problem only tends to occur
for relatively small N , since the inter-particle distance scales as N−1/3
and Rcl ∝ N−1. However, systems containing massive binary components
require additional consideration because the two-body separation may be
fairly large. One simple expedient is to redefine the termination distance
by setting R0 = 2 a for hard energies (Eb < εhard), provided the neighbour
radius is sufficiently large (i.e. a(1 + e) < 0.02Rs).
Because of frequent coordinate predictions, it is convenient to include

the c.m. particles in the neighbour list instead of the components, where-
upon the latter can be obtained by KS transformations if desired. Hence at
every termination the relevant c.m. body needs to be replaced by the two
components in their sequential location. Several such list expansions may
occur within one regular time-step and some allowance for extra members
must therefore be made when allocating the maximum size. Conversely, it
may happen that only one component of a future KS solution is included
in the neighbour list and regularization occurs before the next update. To
circumvent this problem we initialize all the prediction variables to zero
such that the current coordinates are used in the force evaluation. Only a
small error is incurred here since the separation is comparable to Rs. The
corresponding c.m. particle will then be selected at the next regular step.
In the case when primordial binaries are initialized, a recent procedure
ensures that both the components are selected together as neighbours,
which avoids the difficulty above.
When the force on a single particle is considered, the contribution from

any neighbouring c.m. particle is evaluated in the point-mass approxima-
tion provided rij > λR, where R is the current two-body separation. In
the alternative case, a coordinate transformation is performed and the
summation is over both components. However, if the same particle is also
a member of the corresponding perturber list by virtue of its larger mass
(cf. (8.58)), its effect on the internal motion will be included. This ap-
parent inconsistency can be justified if we note that the orbital energy
change, ḣ = Ṙ ·P, cancels to first order when a weak perturbation (here
γ � γmin) is integrated over one period. Hence use of the c.m. approxima-
tion according to a distance test avoids additional complications in the
evaluation of FI and FR, which must use the same expression.
A more serious problem with the divided difference formulation is due to

large derivative corrections which are difficult to avoid without additional
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algorithms. Thus one can to a certain extent anticipate some problems
by, for instance, selecting a particle undergoing a close non-regularized
encounter with an existing neighbour; otherwise large high-order force
derivatives may appear. Note that the selection of two such particles in-
stead of one still gives rise to some high derivatives, but the dipole terms
cancel. Likewise, a previous neighbour with small time-step is retained
out to a distance 2Rs in order to minimize the derivative corrections
(F(2) ∝ r−4). Alternatively, such a particle may belong to a soft binary
of high eccentricity which becomes regularized at some stage.

Even if the optional treatment to minimize high derivatives is acti-
vated, the regular force polynomial may sometimes reveal non-convergent
behaviour. Thus the rare case of the second difference being abnormally
large compared with the first regular force difference is best handled by
neglecting the corrector D4R altogether; i.e. if |D2R|(T0−T1) > |D1R|. This
behaviour may be due to force derivative corrections for a particle near the
boundary that is repeatedly included and excluded when the neighbour
radius is modified according to (3.4).

Finally, we consider a special algorithm to alleviate possible problems
connected with high velocities. Superfast particles are often ejected from
a cluster following strong interactions inside compact subsystems of three
or more members, or may be due to a neutron star velocity kick. Unless
some precaution is exercised, such a particle may penetrate deeply into the
neighbour sphere before the next regular force update, and hence produce
an unacceptable change in the irregular force. An optional procedure has
therefore been added to create a list of high-velocity particles for possible
inclusion in the neighbour field already at a distance of 2Rs, provided the
impact parameter is less than Rs. A high-velocity particle is defined by
v2j > 8v2∞ together with ∆tj > ∆tcl, where v∞ is the estimated central
escape velocity of twice the current rms value. In practice, the limiting
square velocity is derived from the expression 16|hhard| (cf. (4.1)). The
condition ∆Tj > 20∆tcl for the regular step ensures that only genuinely
freely moving particles are selected. In addition, we may also employ
the subsidiary condition |Fi|2 < 4N which excludes an ongoing close
encounter. Members of the high-velocity list are checked and removed at
frequent intervals if rj > 3rh or if the velocity has decreased below the
specified limit.

In conclusion, we see that regularization is beneficial in placing a lower
limit on existing time-steps and also assists in suppressing high-frequency
force fluctuations that have no significant secular effects. Hence the combi-
nation of the AC neighbour scheme with regularization has proved itself,
although a considerable programming effort has been invested towards
the achievement of this goal.
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10.3 Hermite implementation

The Hermite version of the AC scheme (HACS) gives rise to the code
NBODY 6 and has many features in common with the standard formula-
tion discussed above. On the whole, the block-step structure allows for
a simpler treatment and the main differences are sufficiently distinct to
warrant a separate section. The special scheduling has been described in
section 9.2 and we therefore move on, assuming that a list of particles due
for updating is given.
Since there are usually a number of particles, Nblock, to be advanced at

the same time, we employ a different prediction strategy. Thus for small
block memberships (say Nblock ≤ 10 for N � 1000) and no regular force
update, the neighbour lists are combined by an efficient sorting procedure
for prediction; otherwise the coordinates and velocities of all particles are
predicted for simplicity.∗ Unless already done, any c.m. particles are pre-
dicted next, followed by iteration of the regularized time for prediction of
U, U′ and KS transformations to obtain the state vector of the compo-
nents. Most of the procedures concerning the irregular and regular force
polynomials are now essentially similar to the previous case, including the
use of predicted coordinates and velocities for step 12 of Algorithm 10.1.
However, high-order derivative corrections are simplified and the corrector
is of different form (cf. (2.23)), containing less terms.
The irregular time-step is determined by the original criterion of chap-

ter 2. Following an earlier suggestion [Makino & Aarseth, 1992], we modify
the expression slightly to

∆ti =

[
ηI(|F||F(2)I |+ |F(1)I |2)
|F(1)I ||F(3)I |+ |F(2)I |2

]1/2
. (10.4)

Thus the total force is used instead of the irregular force, in case the latter
happens to be small. This leads to somewhat larger irregular steps since
the error of the neighbour force is now a constant fraction of the total
force. The same expression would also be beneficial in NBODY 5.
The basic regular time-step takes the same form as (2.13), with the

corresponding regular quantities substituted. However, there are situa-
tions where the value of ∆Ti may be increased because the fractional
change in the regular force is below the tolerance. We therefore evaluate
the predicted change due to an increased trial value ∆T̃i = 2∆Ti from

∆FR = [(16F
(3)
R ∆T̃i + 1

2F
(2)
R )∆T̃i + F

(1)
R ]∆T̃i . (10.5)

The trial value is chosen on a successful outcome of the convergence test

|∆FR| < ηR min {|FR|, |FI|} (10.6)

∗ Note that regular time-steps are rarely commensurate with the time for small Nblock.
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for isolated systems, with a suitable modification of the first force term
on the right-hand side for an external tidal field. The final values of ∆ti
and ∆Ti are chosen according to the block-step synchronization rules
discussed in section 2.6. In order to satisfy decision-making requirements,
the irregular time-step is not allowed to exceed the regular value.
In Hermite integration, the second and third force derivatives are ob-

tained at the end of the time-step. Hence it is not necessary to perform the
relatively expensive initialization of these quantities by explicit summa-
tion, provided a satisfactory time-step can be prescribed. For this purpose
we have again adopted an expression of the type (8.56). This form is also
used to initialize regular time-steps in NBODY 6.
Early use of the neighbour scheme was mainly confined to relatively

homogeneous systems. However, systems that have experienced core col-
lapse produce a wide range in density. Although the computational cost is
dominated by the central region, the original limit on the predicted mem-
bership (cf. (3.3)) may be relaxed. Somewhat belatedly we now introduce
a modified lower limit outside the half-mass radius,

nmin = 0.2nmax(rh/r) . (10.7)

This condition leads to a gradually decreasing neighbour membership for
particles moving into the far halo.
The case of zero neighbours requires special treatment. A similar al-

gorithm exists for standard AC but here we need both the force and its
derivative. Very distant particles, say ri > 10 rh, do not usually have any
natural neighbours and are therefore allocated a nominal mass of 0.01 m̄
at the coordinate centre in order to facilitate the integration. The corre-
sponding first derivative is evaluated explicitly and any optional external
perturbations are added to give a well-defined irregular time-step which
is usually fairly large. In order to reach the state of zero neighbour num-
ber, the radius Rs is reduced gradually outside a specified central distance
according to

R̃s = max {0.75Rs, 0.01rh} , (10.8)

which achieves the desired objective unless escaper removal occurs. Note
that, in the standard scheme, this modification of the neighbour radius
for distant particles may lead to some reduction of the time-steps because
of the force derivative corrections.
The HACS scheme provides for a simplified treatment of high-order

derivative corrections compared with the standard ACS. As has been dis-
cussed elsewhere [Makino & Aarseth, 1992], the high-order derivatives
are not actually used for the integration of single particles. However, for
some purposes (i.e. diagnostics) it may be useful to predict coordinates
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and velocities to highest order, and there is also the new feature of regu-
larization to consider. On the other hand, all particles are synchronized at
the longest time-step (typically 0.5), whereas output intervals are usually
a few time units. Hence the derivative corrections are only performed if
the relevant option is activated, except for the case i > N and signifi-
cant perturbation. The latter is useful in connection with regularization
terminations which do occur at arbitrary times.
The higher force derivative corrections on a c.m. particle are not based

on the mass-weighted contributions because the component values of F
and Ḟ required to construct F(2) and F(3) are not available. Consequently,
use of the c.m. approximation is only consistent outside the perturber
distance, λR, and, for this reason, it is desirable to ensure a sufficiently
large neighbour radius or, failing that, place an upper limit on the size of
the two-body separation, R.
The Hermite integration cycle is essentially similar to Algorithm 10.1.

One difference is that any new KS regularization is initialized at step 3,
whereupon the cycle begins again since the sequential data structure may
have changed. Moreover, following a successful close encounter search at
step 8, the relevant particle indices are saved for the next cycle. The end
of each irregular or regular corrector step is characterized by initializing
the basic integration variables, r0, v0. In HACS, and also for parallel
implementations, it is preferable to delay setting the final values of r, v
until the end of the block-step, copied from r0, v0. In other words, the
predicted values are used throughout the current cycle for consistency.
Since memory is no longer a concern, two different regular force deriva-

tives are defined for convenience in HACS. Thus we distinguish between
the regular force derivative based on the new neighbours and the deriva-
tive (3.9) with respect to the old neighbours. The former is only used to
construct the prediction variables (3.6) and (3.7). Note that the latter,
which preserves the sum of the derivative corrections at the end of a regu-
lar step, may not be updated to include the change of neighbours for single
particles. Likewise, the irregular derivatives are treated analogously.
With the block-step scheme, the candidates for KS regularization need

to be synchronized before initialization so that both components are ad-
vanced in the same block. The time-steps are usually equal but, if neces-
sary, this is achieved by enforcing a step reduction for the particle being
advanced. Unless other complications prevail, the new KS solution is ini-
tialized at the start of the next cycle by re-instating the previous value
of the time. On the other hand, procedures for KS termination, new mul-
tiple regularizations or hierarchical mergers are activated at the end of
the integration cycle. We note that the total number of such initialization
procedures is very small compared with the number of block-steps (by a
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factor of about 104) so that coincidence conflicts are extremely rare and
not harmful; i.e. this causes a possible delay by one small block-step.
Star cluster simulations often exhibit examples of superfast particles,

especially if hard binaries are present. As in the code NBODY 5, this may
result in an approaching particle moving well inside the neighbour sphere
before it is identified at the next regular force calculation. The check
for possible penetrations is done differently as follows. Since the ejection
of a fast particle is usually associated with strong interactions involving
KS or chain regularization, it is natural to initiate a special search at
terminations that are defined by the control index in Table 7.2. Again
the conditions for acceptance described previously are employed. Given
a list of high-velocity particles, any contribution to the irregular force is
considered together with other optional procedures when evaluating the
total force.
A subsequent search for neighbour sphere intersections is made at

moderately large commensurate intervals; i.e. ∆tnb = 1/32 (scaled by
(1000/N)1/3 for N > 1000). This provides an opportunity for the regu-
lar time-step to be reduced. Hence we treat the case of close and distant
neighbours separately. The search itself only considers particles j with
regular time-steps ∆Tj ≥ ∆tnb, because these are the most vulnerable.
Provided the radial velocity is negative, we form the time until minimum
approach by

∆t̃min = min {T0 +∆Tj − t, −D ·V/V2} , (10.9)

where D and V denote the relative distance and velocity. The minimum
impact parameter can be estimated if we assume straight-line motion,

Dmin = |D+V∆t̃min| . (10.10)

If the corresponding intruder force is significant, i.e.

mi/D
2
min > 0.1|Fj | , (10.11)

the regular time-step is reduced by a factor 2, subject to the synchro-
nization condition T0 + 1

2∆Tj > t, and further reductions are performed
if relevant. The above algorithm is also implemented in NBODY 4 for the
time-step ∆ti.
A check for removal of high-velocity particles is carried out at intervals

of ∆tnb. Such particles are removed from the special list outside a central
distance of 3rh and also if their velocity falls below the critical value, given
by v2 = 16|hhard| (cf. (4.1)). Moreover, the list is updated to take account
of any changes in the particle sequence.
Comparison of the two versions of the AC scheme depends on the hard-

ware even if we consider only workstations or laptops. In fact, on a RISC-
based workstation, the total CPU time for the same number of steps of
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both types favoured HACS slightly for a test problem with N = 1000.
Thus the extra effort to obtain Ḟ with HACS is compensated by less pre-
dictions and a simpler corrector. The original investigation [cf. Makino &
Aarseth, 1992] showed that nearly twice as many steps were needed by
the latter method for the same accuracy when softening is used. However,
recent laptop comparisons of NBODY 5 and NBODY 6 with N ≤ 1000 yield
more comparable energy errors for standard parameters, the latter still
being faster per step. The Hermite block-step version is also considerably
easier to implement and exhibits greater numerical stability [cf. Makino,
1991a]. Finally, we emphasize that, although of fourth order, the general
Hermite scheme has the attractive feature of being self-starting.

10.4 Parallel adaptations

As a first case study, we discuss the adaptation of the parallel code
NBODY 6 to the CRAY T3E [Spurzem, Baumgardt & Ibold, 2003]. This de-
velopment also aims to provide a portable code for LINUX cluster config-
urations by a comprehensive code-building algorithm which ideally should
reduce to NBODY 6 for single CPUs. The implementation has necessitated
several important changes, both as regards general strategy and exploita-
tion of the different architecture. This code has therefore been given the
new name NBODY 6++ to distinguish it from the original version. The main
structural changes facilitate parallelization of three independent proce-
dures as follows:

• Advance all KS solutions up to the end of the current block-step

• Evaluate new irregular forces and apply the corrector

• Obtain regular forces, neighbour lists and perform corrections

The second and third stages have already been fully parallelized. More-
over, the prediction of neighbours has also been included in the second
part. In order to ensure that the results do not depend on the order in
which the particles in a given block are treated, the final corrector initial-
ization r = r0,v = v0 for all the members is delayed until the end of the
block-step, as is also done in NBODY 6.
The parallelization of KS solutions presents a challenge for efficient use

of multi-processor machines like the T3E. The non-linearity of the time
transformation dt = Rdτ does not by itself prevent such procedures be-
cause one can always define a set of approximate hierarchical levels. Con-
sider a number of perturbed binaries that are due to be updated during
the next block-step. Depending on their location in the cluster, some may
have joint perturbers of single particles or even other binaries. It follows
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that a random assignment to different processors may cause problems of
inconsistency in the latter case since predictions are involved. One possible
way is to take account of the spatial distribution and construct a binary
tree structure in order to facilitate the decision-making. An alternative
solution method for the immediate future is to subdivide the block-step
by factors of 2 into sufficiently small subintervals to prevent predictions
outside the range of validity. All such members in one sub-block can then
be distributed to different processors which would achieve a significant
speed-up. By analogy with the parallel procedures for the irregular and
regular integration steps, it can be anticipated that the number of si-
multaneous KS solutions will be large enough to justify this approach.
Provisional experimentation along the latter lines has been carried out
and appears to be promising [Spurzem, private communication, 2001].

In considering this problem, one should envisage studying a large pop-
ulation of primordial binaries (say Nb � 5 × 104). Such a distribution
would contain a significant number of unperturbed binaries, where inte-
gration of the corresponding c.m. motions proceeds as for single particles.
This leaves the checking for perturbers that occurs on time-scales from
one binary orbit up to the c.m. time-step, depending on the local den-
sity and velocity distribution. Fortunately, this procedure does not create
any conflicts and all the necessary checks can be carried out in parallel,
provided the operation is performed as an additional step. Alternatively,
by making no distinction, the latter task may be carried out together
with the advancement of KS solutions, since the numerical effort to check
unperturbed motion is less.

Again the hierarchical time-step algorithm is employed for both the
irregular and regular time-steps, which must be individually commensu-
rate. Since the distribution of block-steps is quite wide, with less mem-
bers at small values in realistic systems, there is some loss of efficiency
and serial integration may in fact be preferable. As N increases, so does
the number of particles, Ngr, due to be advanced at the same time. The
theoretical prediction Ngr ∝ N2/3 [Makino & Hut, 1988] appears to be in
reasonable agreement with present simulations of inhomogeneous systems.
Hence for large N , the average number of group members starts to exceed
the number of available processors, nproc. The typical amount of com-
munication after each block-step is kNgr/nproc double-precision words,
where k = 19 and 41 + nmax, respectively, for the irregular and regu-
lar force calculation. Consequently, it is beneficial to limit the maximum
neighbour number as much as possible. Notwithstanding the theoreti-
cal prediction np � (N/1.8)3/4 [Makino & Hut, 1988], a constant value,
64 ≤ nmax ≤ 128, has been found satisfactory for a wide range of parti-
cle numbers. We may distinguish between the theoretical speed-up and
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actual performance. Thus when communication times are neglected, the
efficiency does improve up to the maximum processor number. However,
at present the computing time only scales linearly with N up to about 512
processors (for N = 104) owing to memory and communication limits.

The parallel algorithm considered above does not assign specific par-
ticles to any processor and every node contains an identical copy of the
whole dataset. So-called ‘domain decomposition’ is employed in the re-
cent cosmological tree code GADGET [Springel, Yoshida & White, 2001]
(and other such codes) which takes advantage of the slow mixing when
using comoving coordinates. Accordingly, at the end of each block-step
the new data must be broadcast to all the other processors. The net result
is that maximum efficiency is achieved at some intermediate number of
processors that depends on N [cf. Spurzem et al., 2003]. Thus we have
an example where further software development is desirable in order to
exploit an existing hardware configuration that is potentially very pow-
erful. Judging from the history of conventional computers and given the
incentive, there is bound to be progress in this young subject.†

A separate version of NBODY 6++ has been prepared for the HARP-3
special-purpose computer [Spurzem et al., 2003]. Such an attempt faces
the problem that only the force calculations can be executed in parallel.
Moreover, since the irregular force is now evaluated on the host, the reg-
ular force is obtained by subtraction after setting the neighbour masses
to zero in a second full N summation on HARP. In order to utilize many
pipelines, the neighbour lists of all the particles due for regular force up-
dates are first combined, with a subsequent modification of the affected
individual components on the host. Hence the additional effort is less for
relatively small neighbour numbers which in any case must be below the
hardware limit. However, this somewhat laborious procedure suffers from
numerical problems because of the different accuracy employed by HARP,
which results in reduction of the regular time-steps produced by spuri-
ous force derivatives. In view of this exploratory investigation, we may
anticipate that future hardware developments will take advantage of the
potential gain from using a neighbour scheme.

10.5 Black hole binaries in galactic nuclei

The problem of formation and dynamical evolution of a black hole (BH)
binary with massive components is of considerable topical interest. Sev-
eral past efforts employed direct integration methods to elucidate the

† So-called ‘systolic and hyper-systolic algorithms’ are now available for this purpose
[Dorband, Hemsendorf & Merritt, 2003]. Alternatively, the processors may be orga-
nized in a 2D network which yields reduced communication costs [Makino, 2002].
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behaviour of such systems but applications to galactic nuclei pose severe
limitations with regard to the particle number that can be studied. The
formation is usually envisaged as the end product of two separate un-
equal galactic nuclei spiralling together by dynamical friction, but there
are other scenarios. In view of the different numerical requirements for
the early and late stages, it is natural to consider this problem in two
parts and take advantage of direct integration where it matters most.
A recent investigation [Milosavljević & Merritt, 2001] employed the

parallel version of the GADGET code [Springel et al., 2001] to study the
formation process. This code maintains individual and adaptive time-
steps and maps the particles on to an octal tree structure. For initial
conditions, two spherical stellar systems containing a central BH mass-
point were placed in a moderately eccentric orbit with semi-major axis
aG � 4rh. The relatively small softening length used, ε = 0.001, was well
below the BH hard binary separation, ahard = (m1 +m2)/8σ2 � 0.0025.
A mass ratio m1/M = 0.01 and total particle number N = 256K was
adopted. This model is close to current computational limits, although
still well short of realistic requirements. Another important aspect here
is the presence of a steep stellar density cusp, ρ ∝ r−2, surrounding each
BH, whereas previous studies tended to use shallower King models.
Following the early phase of dynamical friction acting between the two

BHs together with their bound subsystems, the collisionless simulation
was continued until a � ε. However, new datasets were generated by ran-
dom sampling of the whole population already at an earlier stage when
a � 30ahard, with effective memberships up to 32K and enhanced masses.
These reduced datasets were then integrated by NBODY 6++ in order to
ascertain the N -dependence of the subsequent evolution. A nearly con-
stant hardening rate, da−1/dt, was observed, with a modest eccentricity
increase during shrinkage by a factor of 20. Contrary to previous find-
ings, the hardening rate appeared to be independent of N ; this result was
ascribed to a larger reservoir of central stars. It is also significant that a
simulation with initial supermassive black holes inside steep density cusps
produced nuclei with shallow cusps and ρ ∝ r−1.
The presence of a supermassive binary poses several new technical chal-

lenges for the numerical treatment. Since the regularization scheme em-
ployed by NBODY 6 was developed for conventional star clusters containing
a realistic IMF, it is essential to modify the strategy in order to prevent
inefficient usage. One characteristic feature that requires fresh consider-
ation is the occurrence of persistent orbits of short periods around one
of the BHs. For sufficiently small length scales, the effect of gravitational
radiation should be included and this may eventually induce coalescence.
In any case, a few strongly bound orbits are of little dynamical signifi-
cance here and such stellar companions can therefore be combined with
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their BH. Since the dominant binary is surrounded by a large number of
stars in bound orbits, the standard criteria for chain regularization and
even the KS regularization scheme require modification. In general, the
code scales well with the number of processors for a moderate spread in
time-steps. However, the scaling was poor when a few particles had small
time-steps and so a switch was made to serial integration.
If the decay of the binary continues sufficiently far, energy loss by grav-

itational radiation will eventually play an important role. The time-scale
for this stage to be reached depends on the Brownian motions generated
by recoil effects due to slingshot interactions [Saslaw, Valtonen & Aarseth,
1974]. Since the amplitude of the binary wandering is much larger in an
N -body simulation than in a real galaxy, the question of the loss-cone
replenishment cannot be settled by direct integration alone. However, the
ejection of stars by the BH binary tends to lower the central density, per-
mitting the binary an increased amplitude for further interactions. On
the other hand, for some density profiles, BH binaries may essentially
complete their evolution before gravitational radiation takes over.
The simulation of BH binary evolution is an exciting problem that

demonstrates well the power of direct integration and holds great promise.
Given the undoubted advantage of treating the BH binary as a perturbed
system, it might be worthwhile trying the wheel-spoke regularization dis-
cussed in section 5.4. The two BH components would then be permanent
members, with a small number of the most critical orbits considered for
inclusion in the chain. Although this method has yet to be tried in a seri-
ous application, the development is based on the same principles as chain
regularization. If it works, such a formulation would in fact lead to much
simplification elsewhere because most of the other regularization proce-
dures would become redundant. However, complications are also likely to
arise due to the need for a generalized branching chain structure to be de-
veloped [cf. Mikkola & Aarseth, 1990]. Hence this idea remains a project
for the future. Another promising avenue of dealing with this problem
was opened up recently [Mikkola & Aarseth, 2002]. Because of similar-
ities with chain regularization, algorithms for the associated new code
NBODY 7 will be discussed in a subsequent chapter.

10.6 Hybrid formulations

Many stellar systems are characterized by a core–halo structure where
the stars in low-density regions move in essentially collisionless orbits.
Algorithms that include the star-by-star treatment in the inner regions
and represent the outer parts in an approximate but consistent way can
therefore still be considered to be collisional. Although the integration
steps increase significantly with central distance in such systems, the force
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calculation for the inner particles can be speeded up on conventional ma-
chines by a fast evaluation of the distant interactions. This point was not
considered in an analysis of computational cost [Makino & Hut, 1988].
The use of multipole expansion, discussed in section 3.4, can be formu-

lated as a hybrid method while the collisional aspects are retained. In the
following we describe a scheme for combining the direct force summation
over particles in the inner regions with external contributions from an
expansion in spherical shells [Aarseth, 1967]. The so-called ‘shell method’
was implemented during the early 1980s in a separate code, NBODY S,
based on NBODY 5 but was never used to obtain any published results.
Some of the most relevant steps are displayed in Algorithm 10.2, which is
an abbreviated form of Algorithm 10.1.

Algorithm 10.2. Integration cycle for the shell method.

1 Divide the cluster into radial zones of equal membership
2 Evaluate all the moments at regular intervals, ∆tsh
3 Combine sum of external and internal moments for each shell
4 Select the next particle, i, to be treated (KS, single or c.m.)
5 Predict the coordinates of neighbours or all particles
6 Advance the solution for the irregular time-step, ∆ti
7 Repeat steps 4, 5 and 6 until t+∆ti > Ti +∆Ti
8 Perform regular force summation and determine neighbour list
9 Add external and internal contributions from the shell force
10 Form new regular force differences and include the corrector
11 Update irregular and regular differences and set new time-steps
12 Return to step 2 (t ≥ tsh) or step 4 (t < tsh)

The main idea is to divide the system into a relatively small number
of zones (e.g. 7) of comparable size to twice the largest neighbour radii.
Hence we extend the AC force expression to a sum of three terms by

F = FI + FR + FS , (10.12)

where contributions from all non-overlapping shells are included in the
smooth component, FS. The moments are updated at times tsh with in-
tervals ∆tsh = 0.004tcr at a cost of O(N). For each shell we then form
separate sums of any internal and external terms of different order (cf.
(3.24)), as well as a sequential list of the relevant particles. Accordingly,
the main difference with the standard treatment of NBODY 5 is in the
total force evaluation. Given a particle at radial position r̃i = |ri − rd|
with respect to the density centre, rd, and neighbour radius Rs, the par-
ticles involved in the direct summation are those that fall inside shells
in the distance range [r̃i − 2Rs, r̃i + 2Rs]. After the determination of the
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corresponding shell indices, the new regular and irregular force are ob-
tained by a sum over the respective list members. Contributions from the
smooth component are then combined with the standard regular force.
The present treatment avoids the problem of boundary crossings if

neighbour selection (including high-velocity stars) falls inside a distance
of 2Rs. Moreover, there is no need for interpolation within the associ-
ated shell as in the original formulation of section 3.4. We also note that
for particles inside the innermost shell, which tend to have the smallest
time-steps, only the external contributions are required. Hence the shell
moment method appears to be an attractive alternative for allowing in-
creased particle numbers.
Before returning to the problem of black hole binaries, we mention a

simpler approach where the AC method for softened potentials was com-
bined with the SCF code to model the dynamical evolution of elliptical
galaxies containing a central singularity [Merritt & Quinlan, 1998]. Fol-
lowing the initial approach to equilibrium, a single massive body was
introduced. The evolution of the central region was towards nearly spher-
ical shape while the outer parts became axisymmetric, with the rate of
change depending on the final BH mass ratio.
The behaviour of black hole binaries has been investigated by a hy-

brid method with some ingredients of a neighbour scheme. An attempt
to cover more realistic mass ratios [Quinlan & Hernquist, 1997] combined
the self-consistent field (SCF) method [Hernquist & Ostriker, 1992] with
direct integration. Since the basic version of the SCF code employs one
expansion centre, the existence of a relatively wide BH binary inside the
same system was assumed at the outset. However, the lack of a consistent
starting model has certain implications for the results [cf. Milosavljević &
Merritt, 2001]. Nevertheless, we summarize this work below as an inter-
esting example of a hybrid method spanning three different techniques.
The dominant two-body motion was included in the point-mass form,

whereas attractions from the other stars were added by direct summation
using a softened potential. Moreover, the stellar contributions to each
BH were split into two parts according to the AC scheme of NBODY 2.
Likewise, a softened potential was employed for the star–BH interactions,
with the star–star attractions evaluated according to the SCF method.
After some time, the BH binary components became close enough for
their relative motion to be regularized. A KS treatment was used, based
on the standard Hermite formulation of section 4.6 as implemented in the
original version of NBODY 6. Special efforts were also made to circumvent
problems connected with the large mass ratio. Thus stars within a distance
of 50a of the binary were included in the perturber list regardless of the
size of their perturbation. The parameter γmin controlling unperturbed
two-body motion was also reduced to 10−7.
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Galaxy models with density cusps and some 105 particles with the
masses decreasing towards the centre for improved resolution were se-
lected for study. The softening was chosen as ε = m1/v

2
ε , where the soft-

ening velocity, vε, was 2–3 times the BH orbital velocity for aBH = ahard.
The two BHs with masses m1 = m2 = 0.01M were initialized on nearly
circular orbits at a distance 0.5rh and spiralled inwards to the centre in
about six crossing times. From then on, regularization was employed and
subsequent shrinkage by a factor of 12 beyond the hard binary limit (de-
fined above) was observed. After a while, some stars were captured into
bound orbits with small time-steps around the BHs and were absorbed by
their massive component, subject to the condition a < 2ε. In the event,
the corresponding growth of the BH masses was at most 0.2%.
The basic integrator starts by generating the first three force derivatives

which are not available for the coefficients of the potential expansion. In
such situations it is adequate to begin with smaller time-steps and set
the higher derivatives to zero, whereupon the next few time-steps can be
increased gradually while the proper differences are formed. In this con-
nection, we remark that although the Hermite method requires only the
first derivative, it needs to be evaluated precisely for the corrector. It is
also reassuring to note that the evolution of the hard binary was indepen-
dent of the integrator used for the two-body motion, i.e. NBODY 1, NBODY 2

or NBODY 6. However, the accuracy parameters for direct integration need
to be chosen conservatively in order for the well-known systematic errors
to be acceptable. Although this study did not provide any definite model
for the later stages of BH binary evolution and the initial conditions were
somewhat unrealistic, it highlighted many essential aspects of a difficult
problem and pointed the way forward.
An even more recent development combined the SCF method with the

point-mass code NBODY 6++ [Hemsendorf et al., 2002]. In order to use
Hermite integration, the SCF code was upgraded to include evaluation
of the force derivative. The initial application did not emphasize the im-
portance of density cusps and used a Plummer model instead, with two
massive components mBH = 0.01M placed on the x-axis at ±0.64 rh with
small y-velocity of opposite sign. In scaled units, the BH binary formed
at t � 10 and hardened linearly with time to aBH � 2 × 10−3. The full
hybrid code used 64K and 128K particles, whereas comparison tests with
the basic NBODY 6++ were restricted to N = 16K. This new implementa-
tion demonstrated that large-N systems can be studied by direct means.
However, some numerical difficulties were also reported, suggesting that
this is a challenging problem that requires further attention.
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Two-body algorithms

11.1 Introduction

A large number of algorithms are connected with regularization. Many of
these concern the KS treatment which plays a key role in the N -body sim-
ulation codes. In this chapter, we derive some expressions relating to the
conversion of regularized time, followed by other considerations of a prac-
tical nature. A separate section provides essential details of the Stumpff
KS method as employed in an N -body code. This is followed by an algo-
rithmic discussion of KS termination. Next we describe decision-making
procedures for unperturbed two-body motion which speed up the calcula-
tion by a large factor. Another important feature with the same objective
is the so-called ‘slow-down device’, where the principle of adiabatic in-
variance is exploited. The theory was given previously in connection with
chain regularization and here we discuss the KS implementation. Special
treatments of stable hierarchies also contribute significantly to enhanced
efficiency while retaining the essential dynamics. Finally, the last sections
deal with several processes relating to tidal interactions in close binaries
that are connected through an evolutionary sequence. We discuss tidal
circularization and two-body capture, as well as Roche-lobe mass transfer
which all contribute to making star cluster modelling such an exciting
and challenging project.

11.2 General KS considerations

We first discuss various general features that are applicable to all the KS
methods and also include some aspects of the divided difference scheme,
while the next section deals specifically with the Stumpff version.
In order to advance the whole N -body system consistently, we need to

integrate the equation of motion for the time (4.39). The conversion from
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regularized time to physical time is most conveniently carried out by a
Taylor series expansion to order n,

∆t =
n∑

k=1

1
k!
t
(k)
0 ∆τk . (11.1)

Provided n ≤ 6, all the necessary derivatives are already known in the
high-order integration schemes, and hence the Hermite method applies
directly. For the divided differences, n = 5 was chosen as sufficient. How-
ever, one more order, i.e. U(5), is available for (11.1) and has been im-
plemented in the Hermite codes for increased accuracy when combined
with the Stumpff functions. The high-order coefficients are formed by
successive differentiation of (4.39), with the first two terms given by

t
(2)
0 = 2U′ ·U ,

t
(3)
0 = 2U′′ ·U+ 2U′ ·U′ . (11.2)

Substitution of U′′ from (4.37) and U′ ·U′ from (4.24) yields

t
(3)
0 = 2hR+mb +RU · LTF . (11.3)

By definition R′′ = t
(3)
0 ; hence this equation may also be used to obtain

the integrated value of R as a numerical check of the basic relation (4.29).
Although of harmonic oscillator type, it is not clear whether its use would
present any practical advantage. Thus R is connected with U by a sum-
mation constraint and the regularized coordinates are already evaluated
from linear equations of motion.
An inverse relation is required for interpolation within the interval ∆τ

in order to determine physical coordinates at a general time. This occurs
when the force on other particles due to the KS pair is evaluated and
the centre-of-mass (c.m.) approximation does not apply. Let δt = t − t0
denote the subinterval since the last KS treatment. We can either obtain
a solution of (11.1) by iteration or from the inverse expansion

δτ =
n∑

k=1

1
k!
τ
(k)
0 δtk , (11.4)

in which n = 3 usually suffices. From the definition (4.39), τ̇0 = 1/R and
the next two terms are obtained by differentiation which gives

τ
(2)
0 = −t(2)0 /R3 ,

τ
(3)
0 = (3t′′20 /R− t

(3)
0 )/R4 . (11.5)

The division by small values of R is not harmful because it does not affect
the integration of the relative motion. Moreover, the c.m. approximation
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is used if the distance ratio, rij/R, exceeds some prescribed value (i.e.
the parameter λ). Thus the inversion (11.4) is usually called for when
the solution of (4.42) is obtained after predicting a nearby c.m. particle
in connection with force evaluations. Note that all the quantities on the
right-hand side of (11.5) are known for each KS solution.
The prediction of the corresponding values of U (and U′ for Hermite)

is carried out to highest order if required. Alternatively, if the distance
ratio exceeds an appropriate value (e.g. 25), it is sufficient to expand the
regularized interval to second order only. In this case, less accuracy is
required and the coordinate prediction is performed to order FU (and U′
to order F′U).
Although the program structure for the two KS alternatives discussed

here is formally similar, different prediction strategies were employed orig-
inally. Thus in the difference scheme it is natural to predict U and U′ to
highest order before evaluating the perturbation and then apply the cor-
rector to all the derivatives according to (2.3). Since the Hermite corrector
takes a simpler form, with two terms added to the low-order prediction,
it is convenient to treat these contributions separately and this is also
in keeping with the spirit of the standard formulation. However, a more
careful analysis [Funato et al., 1996; Mikkola & Aarseth, 1998] showed
that it is advantageous to predict the regularized variables more accu-
rately. The new procedure differs sufficiently from the basic approach to
merit an outlined here.
We first perform a Taylor series prediction of the regularized coordi-

nates and velocity to second or third order in the derivatives of FU , with
the energy stabilization (4.43) included if the perturbation is suitably
small (say γ � 0.01–0.001). Using the transformed physical coordinates
and velocity, the perturbation (P, Ṗ) is obtained in the usual way. After
obtaining the relevant expressions for the corrector, we form the higher
Taylor series derivatives where all the terms are evaluated at the be-
ginning of the step. Note that the stabilization factor may be saved at
the prediction stage since it must be combined with FU again for the
corrector.∗ This enables the complete solution for U and U′ to be writ-
ten in nested form, instead of combining the predicted values with the
corrector. According to the usual rationale of the Hermite formulation,
the standard correction procedure may still be used for the energy in-
tegration, provided h is predicted to order h′′ only, otherwise the above
scheme may readily be adopted. Recent experimentation shows that there
is little gain in an extension to order F(3)U in the prediction (with energy
stabilization), whereas the addition of one more order to the integration
is beneficial in return for about 20 extra operations. When combined with

∗ This point was not appreciated when using low-order prediction.
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the slow-down algorithm, the Hermite KS method is quite effective and
deserves attention because of its simplicity.
Let us next consider some aspects connected with the external tidal

field. In the standard case (cf. (8.14)), the Coriolis terms are omitted from
the perturbation because the contributions to h′ cancel identically, as can
be seen by taking the scalar product Ṙ ·R̈ which implies Ṙ ·(Ωz×Ṙ) = 0.
However, the angular momentum would be affected to a small extent. The
rate of change of the specific angular momentum is given by R× R̈. The
contribution from the Coriolis force is then −2Ωz(XẊ + Y Ẏ ), with X,Y
the relative coordinates in the plane. For constant semi-major axis this
averages to zero over an orbit. Hence we neglect the effect of the rotating
coordinate system on the longitude of the periapse since the orientation
is of a random nature when it comes to encounters with other particles.
According to the equations of motion (8.14), the linear tidal field gives

rise to the contributions

ḣtide = 1
2T1

d

dt
(xk − xl)2 + 1

2T3
d

dt
(zk − zl)2 , (11.6)

where R = rk − rl. Assuming harmonic motion by R = A cosωt, we
obtain −A2j cosωt sinωt from each term. Here ω = 2π/tK, with tK the
period. Ignoring the different signs, we integrate the change over an orbit
for each component j which yields

∆htide = A2jTjω

tK∫
0

sinωt cosωtdt = 0 . (11.7)

From the definition of the tidal radius (8.24), the relative galactic tidal
perturbation in the x-direction for equal masses is

γtide � 1
2N(R/rt)3 . (11.8)

This is negligible for most KS binaries in large clusters but is included at
present for general validity in case large separations should occur. Thus
in the approximation (8.58), the magnitude is equivalent to a perturber
distance of about (2/N)1/3rt which is usually sufficiently large for unper-
turbed motion. Note that the assumption of constant period leading to
∆htide = 0 does not apply in general; however, the effect of the perturbers
will in any case dominate when the period is changing.
In the divided difference scheme we employ the standard expressions

developed for direct integration, except that now we are dealing with the
nine equations (4.37) and (4.38). Note that since the latter gives h′ ex-
plicitly, we form the higher divided differences of this quantity. Again
the respective polynomials are extended to fourth order and the correc-
tor is included in the usual way. For this purpose a nominal reference
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time, τ0, is defined and updated by the step ∆τ every time. However, the
decision-making for advancing KS solutions is based on the corresponding
expression ti + ∆ti, which is part of the scheduling, unlike in the stan-
dard Hermite case where all the physical time-steps are quantized and
regularized solutions must be selected by a separate procedure.
Perturbers are determined from the general expression (8.58) for hard

binaries, with the substitution R = a(1+e) to allow for possible initializa-
tion at smaller separations (e.g. after chain regularization or tidal dissipa-
tion). For soft binaries (i.e. Eb > εhard), R is replaced by max {fεRcl, R}
with fε = 1− |(Eb− εhard)/εhard|. This modification is intended to antici-
pate any significant expansion during the next orbit. At initialization, the
actual apocentre distance is used, irrespective of energy, since the starting
value of R may be relatively small.
The perturber selection is formally carried out at the end of the step

following the apocentre passage, defined by t′′0t′′ < 0 and R > a. However,
the old perturbers may be retained if the next estimated apocentre time
occurs before the corresponding c.m. update, i.e.

tK < t0 +∆tcm − t . (11.9)

Hence some unnecessary operations are saved for large values of ∆tcm/tK.
By analogy with the energy stabilization procedure in the difference

formulation (cf. (4.43)), we have introduced rectification of the regularized
elements at every apocentre subject to (11.9). This is achieved by the
following algorithm. Given the correct value of h obtained from integrating
h′, we seek to modify U,U′ by the coefficients C1, C2 such that h̃ = h,
where h̃ is the explicit energy expression (4.24). Accordingly, we first write
the energy relation in the form

h = (2U′2C22 −mb)/U2C21 . (11.10)

By virtue of angular momentum conservation, C1C2 = 1, from which we
obtain

C2 =
{
1
4mb/U′2 ± [12hR/U

′2 + (14mb/U′2)2]1/2
}1/2

. (11.11)

Here the square root sign is chosen according to the eccentric anomaly,
with positive value if 14mb/U′2 < 1, or R < a. The resulting modifications
then yield the corrected values

Ũ = C1U ,

Ũ′ = C2U′ , (11.12)

which are used to initialize R,U0 and t′′0. Since these adjustments are
usually very small, there are no further complications. We note that the
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additional effort amounting to some 13 additions, 22 multiplications, two
divisions and two square roots is insignificant compared with the cost of
an entire orbit integration. For completeness, an alternative procedure is
included for any rare case, which might be a circularized orbit, if the inner
square root argument is negative. In that case we choose

C1 = mb/(−8hRU′2)1/2 , (11.13)

together with C2 = 1. This corresponds to C1 = 1 for circular orbits or
C1 = 1/(1− e2)1/2 at pericentre or apocentre.
Finally, if ∆tcm < ∆tcl, a search is made for a possible chain regular-

ization or hierarchical configuration at every apocentre consistent with
(11.9) and also at the end of updates of unperturbed motion. The former
check is in fact the last procedure of the KS integration cycle.

11.3 Stumpff Hermite version

Since the Stumpff version of KS regularization is now the method of
choice, it is useful to concentrate on some aspects of implementation in
a separate section. This method differs significantly in construction from
the alternatives discussed in chapter 4, particularly when it comes to im-
proving the solution by iteration.
Using the notation of section 4.7, we begin by writing the basic equa-

tions of motion at the start of an integration step in Hermite form as

U(2)0 = −Ω0U0 + f
(2)
0 ,

U(3)0 = −Ω0U′
0 + f

(3)
0 , (11.14)

where Ω = −1
2h and f (2)0 = 1

2RQ with Q = L(U)P as the perturbed force
function, evaluated at the end of the previous corrector cycle. Likewise,
the last term of the second equation (11.14) is obtained by comparing
with the differentiated form of (4.69) and setting Ω = Ω0,

f (3)0 = 1
2RQ

′ + 1
2 t

′′
0Q− Ω′

0U . (11.15)

The integration cycle begins by standard prediction of the coordinates and
velocities of all perturbers and the c.m. particle. The prediction of U, R
andU′ is carried out to highest order which includes the pairwise Stumpff
[1962] functions (4.59), c̃4, c̃5 and c̃3, c̃4, respectively, as factors in the two
derivatives U(4) and U(5). After transformation to global coordinates and
velocity, the perturbations P,P′ are obtained in the usual way and the
slow-down factor κ (to be described later) is included if relevant.
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The corrector cycle first evaluates the new perturbative functions

f (2) = (Ω0 − Ω)U+ 1
2RQ ,

f (3) = (Ω0 − Ω)U′ − Ω′U+ 1
2R

′Q+ 1
2RQ

′ . (11.16)

It can be seen that the first of these equations takes its form from (4.69),
where the analogy with an Encke-type formulation is evident. This enables
construction of the higher derivatives by the Hermite rule (2.20), which
yields the expressions

U(4)0 = −Ω0U
(2)
0 + f (4)0 ,

U(5)0 = −Ω0U
(3)
0 + f (5)0 . (11.17)

Note that Q′ is obtained from P′ = R Ṗ together with L(U′). The pro-
visional solution of the first equation (4.67) and its derivative, U′, is
improved by one full iteration of (11.16) and (11.17) without recalculat-
ing the perturbations. Hence the nested solution is evaluated twice to full
order, including the pairwise Stumpff functions. As compensation for the
extra effort of the iteration, high accuracy is achieved for a somewhat
larger integration step.
According to the second equation (4.56), the energy integration

Ω′ = −U′ ·Q (11.18)

remains the same as for the standard Hermite case. Substitution for U(2)

gives rise to the second derivative

Ω(2) = Ω0U ·Q− f (2) ·Q−U′ ·Q′ . (11.19)

The two Hermite corrector terms formed from Ω′ and Ω(2) are added to
the predicted value to yield an improved solution for Ω at the start of an
iteration or at an endpoint.
The corrector cycle ends by saving all the derivativesU(n), n = 2, 3, 4, 5,

as well as the perturbative derivatives (11.16). For this purpose it is ad-
vantageous to employ the final values of R and R′ since the re-evaluation
of (11.16) is fast and these expressions also enter U(2) and U(3). Finally,
it is beneficial to improve the penultimate derivatives by addition of the
next order,

U(4) = U(4)0 +U(5)0 ∆τ ,

Ω(3) = Ω(3)0 +Ω(4)0 ∆τ . (11.20)

Unless the step ∆τ is constant, new coefficients c̃n must be re-evaluated
every time. The summation to twelfth order does represent a modest extra
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cost, estimated as a few per cent of one KS step; however, the improvement
in accuracy is substantial [cf. Mikkola & Aarseth, 1998]. The coefficients
c̃n for n = 3, 4, 5 are generated by recursion from n = 12. The argument
4z then yields c̃5(4z) and c̃6(4z) by the same method; hence orders n < 5
need not be evaluated.† This task is most conveniently carried out just
after the determination of the regularized step, (8.59), since the next
physical time-step (11.1) must be modified by including the coefficients
c̃5(4z), c̃6(4z) in the last two terms (cf. (4.67)). At the same time, the
reference energy Ω0 must be updated and saved. Accordingly, this scheme
requires 16 additional variables for each KS pair, including seven Stumpff
functions, compared with the standard Hermite KS formulation.
Finally, we note some similarity of this scheme to the recalculation of

the dominant term in the time-symmetric method [Kokubo, Yoshinaga &
Makino, 1998], discussed in section 2.7. Thus, for small perturbations, the
term 1

2hU and its derivative are analogous to the role of the dominant
solar interaction. Moreover, the regularized step is also fairly constant
if the perturbation is small. Note that a constant value of ∆τ does not
avoid a re-evaluation of the Stumpff functions because the argument Ω∆τ2

would still be changing slightly.

11.4 KS termination

The actual termination of two-body regularization requires a number of
special procedures to be carried out and is best described in a separate
section. In the following we assume the Stumpff version, although many
algorithms are fairly similar for the alternative formulations. The main
steps are summarized in Algorithm 11.1.
Unless collision occurs, it is advantageous to advance the KS solution

to the end of the block-step. In the case of large perturbations, this is
achieved by delaying the termination procedure until the physical time-
step is smaller than the remaining interval. Alternatively, one or more
standard KS steps are carried out in situ if required. The residual in-
terval δτ is then obtained by one Newton–Raphson iteration of (11.1)
to third order, whereupon the final integration step is performed with-
out any further complications. Since the Stumpff functions depend on δτ
by (4.59), the coefficients also need to be recalculated. Consequently, the
global time is now defined to be at the end of the block-step.
Any dominant perturbers are predicted to high order before the poten-

tial energy interaction between the components and all the perturbers is
obtained. Following rectification of U and U′ to ensure consistency, the

† A general algorithm for large arguments is given in the original paper. However, this
is not needed here since z = 0.25 η2U for unperturbed motion and therefore small.
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Algorithm 11.1. Termination of KS regularization.

1 Advance the KS solution for pair i until tblock − t2i−1 < ∆t2i−1
2 Take the final step with δτ obtained by third-order iteration
3 Predict coordinates and velocity for any dominant perturber
4 Evaluate potential energy of binary components and perturbers
5 Rectify the orbit to yield U,U′ consistent with the value of h
6 Determine current coordinates and velocities of KS components
7 Save basic KS variables in case of a stable hierarchical merger
8 Obtain improved coordinates and velocities of the components
9 Include differential energy correction following rectification
10 Copy modified c.m. neighbour list and radius for the components
11 Move common arrays of components unless most recent KS pair
12 Reduce the pair number, Np, by one and redefine Is = 2Np + 1
13 Update all relevant lists to correspond with the new sequence
14 Initialize force polynomials and time-steps for the components

differential energy correction is obtained and added to the term Ecoll for
conservation purposes.
If the terminating KS pair is not the last in the sequence (i.e. i <

Np), all the relevant common arrays are moved down to the first single
particle locations, 2Np + 1, 2Np + 2, while the subsequent quantities are
compressed, and likewise for the corresponding KS and c.m. arrays. It is
also necessary to update all common array lists since global locations are
referred to. This entails replacement of the c.m. by its components and
reduction of any subsequent members, j > N + i, by one. Although this
is an O(N) procedure, only a few operations per particle are needed, and
the overheads for the sequential data structure are less than the cost of
polynomial initialization.‡ In any case, the number of KS terminations is
usually quite modest. Finally, in addition to step 14, the force polynomial
for any dominant perturber that triggers termination is also initialized in
order to be consistent with the current configuration.
Time quantization in the Hermite scheme has certain implications for

the time-steps relating to close two-body encounters. In the first place, KS
solutions are inevitably initialized at small values of ∆ti, which usually
means few block-step members. Consequently, both the irregular and reg-
ular steps for the associated c.m. body are severely restricted by the small
block-step even if the natural step is large. The inefficiency on termina-
tion is less significant, since such procedures are performed at arbitrary
block times, where at least the regular time-steps may be assigned more
typical values. To compensate, most KS solutions are connected with

‡ This probably also remains true when obtaining F and Ḟ on the HARP.
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binaries which tend to have long life-times and the initial c.m. steps also
increase quickly if conditions are favourable. The question remains, how-
ever, whether improved strategies can be devised.

11.5 Unperturbed two-body motion

The perturber search for hard binaries frequently results in zero member-
ship for the adopted criterion (8.58). This situation is inevitable, given the
N -dependence of the mean particle separation and the typical perturber
distance λRcl, particularly since many primordial binaries are superhard.
If no perturbers are identified following a new search at apocentre, the
two-body motion is defined to be unperturbed during the next orbit, with
the time-step given by the period, ∆t = tK. Consequently, only the centre
of mass needs to be advanced, with the further simplification that the
force evaluation is identical to that of a single particle.
The status of an unperturbed binary needs to be rechecked one period

later. However, by a more careful analysis of the associated neighbour
velocity field, it is possible to estimate the time for approaching parti-
cles to come within a certain distance and hence extend the interval of
unperturbed motion. The main steps of this procedure are set out below.
From the corresponding list§ of c.m. neighbours, we determine the par-

ticle, j, giving the maximum force as well as the smallest inverse travel
time, βs = rs · ṙs/r2s for particle index s. In the following all distances
and velocities are expressed with respect to the c.m. Although there may
not be any approaching particles, we still use this quantity which defines
a radial velocity ṙs = rs|βs|. Let us introduce the perturber boundary for
any particle mass m̃ by

rγ = R[2m̃/(mbγmin)]1/3 , (11.21)

with mb the mass of the binary. The time to reach this boundary with
inward motion is then

∆tin = (rs − rγ)/|ṙs| , (11.22)

with ms substituted for m̃ in (11.21).
We now evaluate a second travel time for the same particle, based on

the acceleration, by

∆ta = [2∆tin|ṙs|r2s/(mb +ms)]1/2 . (11.23)

Similarly, if j �= s the dominant body, which may be near a turning point,
would have a return time

∆tj = [2(rj − rγ)r2j/(mb +mj)]1/2 , (11.24)

§ With NBODY 4, the list is obtained on HARP using an appropriate argument.
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with mj substituted in (11.21). The next unperturbed time interval is
then chosen by

∆tγ = min {∆tin,∆ta,∆tj} . (11.25)

In case the background force dominates, it is also prudent to include the
safety condition ∆tγ = min {∆tγ , 2∆tcm}.
An additional check is performed if the final value of the time interval

exceeds the period. Thus if we have ∆tγ < 2 × 109tK, the number of
unperturbed periods is chosen conservatively by

K = 1 + 1
2∆tγ/tK . (11.26)

Finally, the corresponding time-step itself is taken to be

∆tk = Kmin {tK,∆tcm} , (11.27)

where k = 2(i−N)− 1 denotes the first KS index of the c.m. particle i.
The latter precaution is included if the period exceeds ∆tcm. In the case
of an extremely short period, with K > 109, it is sufficient to use the c.m.
step itself.
Given the neighbour list, the above procedure is relatively inexpensive

and may be speeded up further by restricting the initial search distance.
The use of two time-scales provides for the possibility of a more distant
perturber approaching first. If there is no such particle and the dominant
body is also moving outwards, the above expressions are conservative.
Hence the main purpose of the algorithm is to prevent the unperturbed
condition from being violated during the next interval, which is chosen as
large as possible subject to kinematical considerations.
If it turns out that ∆tk < tK, a new perturber search is performed in the

usual way. In the unlikely event that no perturber is selected, the motion
is assumed to be unperturbed during the next period. Alternatively, an
update of the physical coordinates and velocity takes place, followed by
initialization of the KS polynomials using a slow-down factor κ = 1.
For completeness, we remark that a counter accumulates the number

of elapsed unperturbed orbits, given by

nK = (t− t0)/tK , (11.28)

where t0 refers to the previous epoch. If this counter exceeds the integer
limit 2 × 109, it is set to zero again and a second counter is advanced
by one. This situation occurs quite frequently in large simulations and
demonstrates the necessity of introducing unperturbed two-body motion.
An algorithm for partial unperturbed motion, no longer used in the codes,
is given by Appendix D.5.
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11.6 Slow-down in KS

The theory of the adiabatic invariance for weakly perturbed binaries in
chain regularization is given in chapter 5, together with the algorithm.
The same principle can be used in KS regularization, where weak pertur-
bations are a characteristic feature to be exploited. Since explicit infor-
mation is available for the two-body elements, it is possible to change the
strategy and only re-evaluate the slow-down factor at the apocentre. In
the following we describe the implementation in the Stumpff KS formu-
lation [Mikkola & Aarseth, 1998], but all the procedures have also been
adopted in the older codes, NBODY 3 and NBODY 5.
Given the basic equations of motion (4.37) and (4.38), the slow-down

concept is introduced by scaling the perturbing force and its derivative
according to

P̃ = κP ,
P̃′ = κP′ , (11.29)

where the dimensionless factor κ plays the same role as in chain regular-
ization. In addition, (4.39) should be replaced by

t′ = κU ·U. (11.30)

Hence one regularized period now represents κ actual periods, with the
regularized time-step chosen as before. Now the required modifications
are simple and only represent minor complications. However, in order to
achieve an optimized scheme the determination of κ provides a new chal-
lenge. This is desirable since a typical N -body simulation with primor-
dial binaries usually involves large numbers of perturbed periods, with a
significant proportion having small perturbations. It is these weakly per-
turbed binaries that can be studied advantageously with the slow-down
procedure.
The value of κ is most conveniently determined at an apocentre point,

where the magnitude (but not necessarily the effect) of the perturbation
tends to be largest. Not every apocentre passage needs be considered.
Thus we only perform this check at the same time as the redetermination
of new perturbers, defined as the time for which κ tK > tcm + ∆tcm − t,
where tK denotes the binary period and tcm is the time of the last c.m.
integration endpoint.
In order to implement the slow-down procedure, we define κ to be an

integer and introduce a hierarchical slow-down vector Isl = 2k−1, where k
takes the values 1, 2, . . . up to some maximum (say 10). Given the relative
perturbation γ, the steps for obtaining the new κ from the old value κ0 are
set out in Algorithm 11.2, originally given in Mikkola & Aarseth [1996].
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Algorithm 11.2. Steps for changing the slow-down factor.

1 Estimate the slow-down factor by κ̃ = γ0/γ, where γ0 has a
suitably small value (say 5× 10−5)

2 Adopt the standard procedure with κ = 1 if κ̃ ≤ 1; continue the
integration if κ0 = 1, otherwise go to step 10

3 Determine the largest provisional new index K by the condition
2K−1 < κ̃, with a maximum permitted increase of two levels

4 Obtain the time interval ∆t for the perturbation to reach γ0 by
analysing the relative motion of the perturbers

5 Reduce the level K if the provisional factor would yield too large
interval, such that tKIsl(K) < ∆t, and update κ

6 Evaluate the eccentric anomaly and obtain the time interval δtap
since apocentre passage by use of the eccentric anomaly

7 Find the corresponding regularized time interval δτ by Newton–
Raphson iteration from δtap = 1

6 t
(3)δτ3 + 1

2 t
′′δτ2 +Rδτ

8 Integrate U,U′ and h a step δτ (< 0) back to the apocentre
[include new Stumpff coefficients if relevant]

9 Predict the current coordinates and velocities for the perturbers,
c.m. and KS components

10 Initialize the KS solution for the standard difference formulation
or the Hermite schemes with the new value of κ

Some comments on this algorithm may be helpful. The interval ∆t at
step 5 is derived by the procedure of the previous section, substituting γ0
for γmin in the relevant expressions. In practice, γ0 = 5× 10−5 is a good
choice for this parameter if γmin = 1× 10−6. The eccentric anomaly, θ, is
most conveniently obtained by solving the companion equations

e cos θ = 1−R/a ,

e sin θ = t′′0/(mba)1/2 . (11.31)

From Kepler’s equation, the pericentre passage time is then

δtp = [θ − t′′0/(mba)1/2]tK/2π , (11.32)

which gives the apocentre time δtap = 1
2 tK + δtp. The integration back

to the apocentre with an interval δt = −δtap before κ has been changed
by a discrete factor ensures that the same value is employed during the
whole orbit. This is an essential difference from chain regularization, where
κ changes slowly after each step when using a self-starting integrator.
Another difference is that the effect of changing κ enters directly through
the equations of motion and no energy correction is needed. The number
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of such changes is in any case a small fraction of the number of regularized
steps. Thus the block-step scheme that changes κ by a factor of 2 (or 4)
is also working well here. Finally, the initialization of KS polynomials is
made consistent with the new value of κ by the scaling (11.29).

In principle, the slow-down treatment can be extended to arbitrar-
ily large values of κ. However, it is convenient to employ unperturbed
two-body motion if the relative perturbation at apocentre falls below
some specified value, traditionally taken as γmin = 10−6. This facilitates
decision-making in the force calculation, since the c.m. approximation
is used if there are no perturbers. Otherwise a distance test is required.
The relevant procedures for unperturbed motion are given in the previous
section.

11.7 Hierarchical mergers

The identification of stable hierarchies uses some of the procedures em-
ployed for the chain regularization search. At first sight this may appear
incompatible since the latter deals with highly unstable systems. How-
ever, as remarked earlier, both subsystem types are usually comparable
in size to the close encounter distance and, consequently, any participat-
ing binary will inevitably have a small c.m. time-step. Again we recall
that, for historical reasons, the terminology merger applies to the tem-
porary formation of a stable hierarchical system where the inner binary
components are combined into one composite body which is initialized on
termination.
The condition ∆tcm < ∆tcl at an apocentre passage indicates a possible

case for treatment. A general situation is illustrated in Fig. 11.1. Thus in
the first instance we need to distinguish between hierarchical structure
and strong interactions, but it is desirable to exclude unsuitable config-
urations at an early stage. This is done by the simple evaluations and
checks of Algorithm 11.3.
Some of the above conditions rule out chain regularization which will be

discussed in a subsequent chapter. The strategy is based on determining
the most likely merger candidate together with the strongest perturber.
Note that in the AC codes the neighbour list is used if there are less than
three perturbers. After excluding positive radial velocity with respect to
the binary, the pericentre separation, Rp, essentially distinguishes the
type of interaction, although stable subsystems require aout > 0 as well.
In either case the dominant perturber may be another binary, and for
cross-section purposes the two semi-major axes are simply added. The
vectorial perturbation, P, with respect to mi +mj is obtained at step 5.
Rare configurations of parabolic type may also be accepted for temporary
merger in the pericentre region (step 8), since the associated time-steps
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Fig. 11.1. Binary with two perturbers.

Algorithm 11.3. Hierarchical system search.

1 Identify the dominant and second perturber, j and p, from m/r3

2 Form r · ṙ for mj and γ3 = 2mp/mb(R/rp)3 with respect to mi

3 Exit on positive radial velocity or γ3 > 104γmin
4 Evaluate the minimum distance, Rp = aout(1− eout)
5 Obtain actual perturbing force, P, and γ̃ = |P|r2j/(mi +mj)
6 Define perturbation due to mp by γ4 = 2(rj/rp)3mp/(mi +mj)
7 Combine semi-major axes if second binary is present; i.e. j > N
8 Check stability if eout > 0.99, Rp > 10R, max {γ̃, γ4} < γmax
9 Continue checking if rj > max {3Rgrav, Rcl}, Rp > 2ain(1 + ein)
10 Consider stability of two binaries if j > N and Rp > ain + a2

can become extremely small without significant energy exchange. Subsys-
tems with rj > max {3Rgrav, Rcl} or large Rp are excluded from chain
regularization, where Rgrav is the characteristic gravitational radius de-
fined by (9.10). Finally, in the case of two binaries (step 10), such a system
is considered for merging instead if Rp > ain + a2, where a2 is the semi-
major axis of the second binary. However, there is usually an intermediate
region where neither treatment is suitable; i.e. stability is not satisfied and
chain regularization would be inefficient.
Having established a possible hierarchical configuration, we now need

to examine various supplementary criteria in addition to the basic one
given by (9.14). Some of the main points for consideration are listed by
Algorithm 11.4.
As can be seen, the environment is also considered in order to ensure

a significant life-time. Since configurations outside the core are likely to
survive longer, the energy condition may be reduced for larger distances.
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Algorithm 11.4. Hierarchical stability checks.

1 Delay for inner region of eccentric orbit: rj < aout, eout > 0.95
2 Exit on modified energy condition Eout >

1
4εhard/(1 + ri/rh)

3 Check for tidal circularization or collision using ain(1− ein)
4 Exclude large two-body perturbations: γ4 > γmax or γ̃ > 0.05
5 Ensure sufficient perturbers by λaout(1 + eout) < 2Rs
6 Evaluate the basic stability condition aout(1− eout) > Routp
7 Determine inclination angle, ψ, of the outer orbit
8 Include inclination effect by empirical factor f0 = 1− 0.3ψ/π
9 Increase criterion for two binaries by f̃0 = f0 + 0.1(a2/ain)
10 Accept marginal stability test after 104 inner orbits
11 Perform Zare exchange stability test for small inclinations

Accepting Eout as one quarter of the hard binding energy, εhard, is per-
haps on the generous side, but hierarchies tend to be massive and therefore
more robust. In any case, the requirement of sufficient perturbers may be
a limiting factor for neighbour scheme codes, particularly with modest
values of N . We relax the standard condition slightly by a factor of 2, be-
cause the neighbour radius is increased gradually after a new initialization
if necessary.
It is well known that inclined systems are more stable for the same value

of the outer pericentre distance [e.g. Harrington, 1972]. Consequently, we
modify the basic stability criterion (9.14) by an empirical factor (step 8),
with the inclination ψ in radians, such that the correction for retrograde
motion represents 30%. We evaluate the inclination angle from the scalar
product of the two relevant angular momenta, which gives cosψ. The case
of two binaries in a bound orbit requires further attention. Based on ex-
perience with the binary–tides problem for two extended stars [Mardling,
1991], the appropriate correction factor is taken as 10% of the smallest
semi-major axis ratio. At the same time, the definition of primary and
secondary binary is reversed if the latter gives a larger value of Routp . With
regard to step 8 of Algorithm 11.3, the first five steps of Algorithm 11.4
are omitted here in order to increase the chance of acceptance. Moreover,
if eout > 0.96, the factor f0 is reduced further by 10(eout−0.96) to account
for the increased practical stability.
On rare occasions, hierarchies may persist over long times even if the

stability tests fail. Such configurations often have very large outer eccen-
tricity (say eout > 0.99), which results in short times for random energy
exchanges in the pericentre region. From chaos theory it is well known that
a so-called ‘fuzzy boundary’ exists; this provides conditions for relatively
long life-times. Since we are concerned with practical rather than absolute
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stability here, it may be justified to employ the following heuristic test.
Thus if dmin falls within the boundary region f0R

out
p and 0.6Routp , we

define marginal stability after a large number of attempts (say 104–105

inner orbits).
It should be noted that the stability condition discussed above refers

to the outer component not being able to escape. In this context the Zare
[1977] exchange criterion (9.15) is also relevant. Defining the stability
measure in terms of the total angular momentum and energy by

S = J2E/(J2E)crit , (11.33)

it has been shown that no exchange can occur if S > 1. However, S < 1
does not imply exchange since this condition is necessary but not suffi-
cient. The essential reason is that the angular momentum of the outer
orbit has opposite sign for retrograde motion and the degeneracy in J
cannot be distinguished from a case of small angular momentum when
both motions are in the same sense, and the system is clearly unstable.
The exchange criterion is therefore of limited use, but has nevertheless
been included for small inclinations since violation would affect stabil-
ity. Note also that for coplanar motion, the stability boundary (9.14) lies
above the exchange limit for qout < 5, which is predominantly the case in
realistic simulations [cf. Mardling & Aarseth, 2001].
Once formed, a hierarchy may combine with another particle or bi-

nary to produce a higher-order binary system of up to a current limit of
six members or two subsystems may become bound with small enough
eccentricity to be stable. An example of the former type is illustrated
in Fig. 11.2. Direct integration of such structures is sufficiently time-
consuming for a generalization of the above scheme to be worthwhile
since otherwise the loss of efficiency can be significant. The identifica-
tion of stable higher-order systems is carried out using all the procedures
above where some quantities are also used for possible chain regulariza-
tion tests. However, the conditions for higher multiplicity become more
favourable in the so-called ‘post-collapse phase’ when the central density
has decreased, particularly in simulations with mass loss from evolving
stars. Hence there is ample hierarchical space for more complex configu-
rations to exist, although their formation rate may be low. Since there is
no distinction between different levels of hierarchies (e.g. restricting the
dominant perturber mj to be a binary), two such systems can in principle
be combined and, although unlikely, a few examples are seen.
Up to now we have considered algorithms for accepting stable hierar-

chies of variable membership. Once this task has been carried out, there
are still several technical problems to be considered before the solution can
be treated as one KS system. Some of the essential stages are presented
in Algorithm 11.5.
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Fig. 11.2. Hierarchical configuration with subsystems.

Algorithm 11.5. Initialization of merger.

1 Choose the primary binary to be widest [case j > N only]
2 Save the component masses and neighbour or perturber list
3 Terminate KS regularization of primary and save elements
4 Obtain potential energy of neighbours and primary components
5 Record final values R and Ṙ of the primary components
6 Set initial conditions for the c.m. body by mcm = mi +mj

7 Create ghost particle ml = 0 with large values of r0, r and t0
8 Form tidal potential energy and define ghost binary [case j > N ]
9 Evaluate potential energy of neighbours and inner body, mcm

10 Increase the neighbour list if λaout(1 + eout) > 2Rs
11 Initialize KS polynomials for new binary mcm and mj

12 Maintain the ghost name for identification at termination
13 Specify negative c.m. name for the decision-making
14 Update Emerge by the old binding energy and tidal correction

This sequence is also similar for all the standard N -body codes, except
that the AC versions use the neighbour list instead of the perturber list.
In the case of two binaries, we select the widest one as primary. Thus
for stability checking purposes, a quadruple of unequal binary size may
be considered as a degenerate triple and this also gives an advantage at
termination (see below). The merger procedure introduces a small discon-
tinuity in the equations of motion since the local force field is simplified
to one binary. Hence in order to maintain energy conservation, we add
differential corrections due to the potential energy change with respect to
the neighbours or perturbers, both for the primary and any secondary.
The new c.m. of the inner components is formed in the usual way. A
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novel feature here is the introduction of so-called ‘ghost particles’ in or-
der to maintain relevant quantities of the original second KS component,
which is now replaced by mj . This is achieved by setting ml = 0 after
step 6, together with large values of coordinates and the reference time,
t0. Hence special care is needed to avoid removing distant members of
zero mass as escapers. Moreover, all the relevant prediction variables, in-
cluding D3 or F(3), are set to zero in order to avoid large numerical terms
during predictions. Such a particle will therefore not be advanced, nor
will it be part of any neighbour list, once removed. In the case j > N ,
the corresponding binary becomes a ghost. This entails specifying zero
component masses and perturber number after carrying out the tidal en-
ergy correction. At this stage, the new KS solution can be initialized and
all relevant lists made consistent with the new sequence. According to
the data structure, all ghost arrays are then exchanged with the second
KS component but the precise location is not recorded because it can be
recovered later by identifying the relevant name. To facilitate the decision-
making, the new c.m. is given a negative name, Ncm = −Nk, related to
the name of the first KS component with original mass mk and the new
name is saved. Finally, the dormant binding energy (or energies) is added
to the merger energy, Emerge, together with the relevant tidal corrections.
Hence the correction procedures enable an energy-conserving scheme to
be maintained throughout the calculation.
It remains to consider termination of the hierarchical motion which is

the reverse procedure of initialization. Again we list the essential steps in
Algorithm 11.6 for clarity.

Algorithm 11.6. Termination of merger.

1 Locate the current index in the merger table
2 Save the neighbour or perturber list for corrections
3 Predict the c.m. motion to highest order
4 Terminate the KS regularization in the standard way
5 Add the old outer component to the perturber list
6 Obtain the potential energy of neighbours and primary c.m.
7 Identify the location, j, of the corresponding ghost particle
8 Restore the basic quantities of the primary components
9 Form new force polynomials for the old outer component
10 Copy the saved KS variables and initialize the primary binary
11 Set unperturbed polynomials for second binary [case j > N ]
12 Subtract new energy µh from Emerge and add tidal correction
13 Compress the merger table, including any escaped hierarchies

Since an arbitrary number of hierarchies may exist at the same time,
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the procedure begins by locating the desired entry corresponding to the
c.m. name. Likewise, the relevant ghost particle is identified by comparing
the names of all particles with the separately saved name. The individual
masses, coordinates and velocities of the primary components are recon-
structed from the saved quantities (cf. Appendix D.2), whereupon the
force acting on the old outer component is initialized as for a single par-
ticle even if j > N , since the perturbation tends to be smaller. After
restoring the basic KS quantities, the primary binary is initialized as a
perturbed two-body solution, followed by the same procedure for any sec-
ond binary. The relevant binding energies are subtracted from the merger
energy, Emerge, together with the tidal corrections. Note that this quantity
does not revert to zero after one episode since the duration may be sig-
nificant, during which the environment is subject to change. Finally, the
merger table is updated and the entries of any escaped hierarchies (which
leave behind a remnant merger energy) are removed for convenience.
As noted above, higher-order systems are also catered for. Although the

identification and termination procedures are essentially identical, the rest
of the treatment differs in certain respects. To avoid repetitions, some of
the relevant algorithms are therefore given in Appendix C.

11.8 Tidal circularization

The process of circularization in close binaries involves several aspects
of stellar structure that are not well understood. In particular, a better
treatment of the damping time-scale for different stellar types is needed.
However, the qualitative features are sufficiently well known to warrant
a detailed model which increases the realism of star cluster simulations.
Since such binaries are invariably treated by KS or chain regularization,
the orbital adjustments are carried out in terms of well-behaved two-
body elements. In the following we distinguish between continuous and
sequential tidal circularization. The former process is characterized by a
fully consistent treatment of stellar structure [cf. Mardling & Aarseth,
2001] and may be preceded by a stage of chaotic evolution, whereas the
latter involves a step-wise adjustment of the orbital parameters [Portegies
Zwart et al., 1997].
We first consider the simpler case of sequential circularization which

is also the standard implementation in the code NBODY 6 and optional in
NBODY 4. The basic condition for modifying the binary elements is

Rp < 4r∗1 , (11.34)

where Rp is the predicted pericentre distance¶ for perturbed or

¶ Obtained by the regular expression (9.23).
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unperturbed motion and r∗1 = max {r∗k, r∗l } is the largest stellar radius.
The orbit is then integrated or predicted back to the actual pericentre
before proceeding. From the eccentricity, e = 1−Rp/a, and angular mo-
mentum conservation, the semi-major axis resulting from circularization
would be

acirc = a(1− e2)/(1− e2min) , (11.35)

where a small minimum value, emin = 0.002, is used. If acirc > 4r∗1, instan-
taneous circularization is replaced by a sequential procedure. The new
eccentricity, e1, is then obtained from angular momentum conservation
combined with a1(1− e1) = 4r∗1 which gives

e1 = 1
4a(1− e2)/r∗1 − 1 , (11.36)

subject to e1 = max {e1, 0.9e}. Hence the new semi-major axis becomes

a1 = a(1− e2)/(1− e21) . (11.37)

Modifications of the binary parameters require corrections of the KS
variables, with the new values

Ũ = C1U ,

Ũ′ = C2U′ , (11.38)

where
C1 = [a1(1− e1)/Rp]1/2 (11.39)

and C2 = 1/C1 by angular momentum conservation in the absence of
stellar spins. The corresponding energy correction is given by

∆h = 1
2mb

(
1
a
− 1
a1

)
, (11.40)

with mb = mk +ml. Finally, the total energy loss, Ecoll, is updated by an
amount µkl∆h and the KS solution is initialized if the motion is perturbed.
Since stellar radii tend to increase with time, it may be necessary to repeat
the above sequence until the orbit is circularized, taking care to delay if
the condition (11.34) is barely satisfied.
One possible problem may arise if a circularized orbit increases its ec-

centricity owing to the influence of an outer hierarchical component (i.e.
the Kozai cycle, to be discussed later). Unless some action is taken, this
would allow repeated episodes of circularization until external effects in-
tervene or the hierarchy becomes stable and a merger takes place. Since
there is only one pericentre check for each orbit when using two-body
or chain regularization, the eccentricity may in fact increase significantly
before the next pericentre passage. This could lead to a considerably re-
duced value of Rp and hence also of acirc. One acceptable solution is to
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replace the factor 4 above by a much larger value (say 50) when e is large
(say e > 0.95). This produces a more gradual adjustment.
The simulation of primordial binaries combines the subtle interplay

of many diverse astrophysical processes. It is therefore natural to take
advantage of the synthetic stellar evolution scheme in order to improve
the modelling of tidal effects. The basic idea is to represent the stars as
polytropes, with an effective polytropic index for evolving stars. Instead
of using a factor of 4 in (11.34), the circularization time, tcirc, is evalu-
ated inside Rp = 10 max {r∗k, r∗l }, assuming constant masses and radii [cf.
Mardling & Aarseth, 2001]. Normal tidal evolution is then initiated pro-
vided tcirc < 2× 109 yr, although the actual time interval is usually much
reduced because of the steep dependence on stellar radii which tend to
grow. However, normal tidal evolution may begin only if the chaos bound-
ary has been crossed (see next section). In the first instance, we neglect
stellar spin and model the evolution of the orbit due to dissipation of the
equilibrium tide [Hut, 1981].
Using angular momentum conservation, the new eccentricity is obtained

from a fitting function based on appropriate damping constants for dif-
ferent stellar types and the elapsed time interval, t − tp [cf. Mardling
& Aarseth, 2001]. For unperturbed two-body motion, the corresponding
pericentre distance is

Rp = R0p(1 + ep)/(1 + e1) , (11.41)

where the parameters tp, R0p, ep are revised only for perturbed motion or
stellar evolution updates.‖ The orbital corrections now proceed as above,
with the binding energy change for unperturbed motion given by the
equivalent expression

∆h = 1
2mb(e21 − e2)/a(1− e2) . (11.42)

In the case of perturbed motion, we superimpose the predicted change
in eccentricity, e1 − ep, since the previous pericentre as a differential cor-
rection and write

∆h = mbe(e1 − ep)/a(1− e2) . (11.43)

Alternatively, if the time interval is large (i.e. a dormant hierarchy), the
new energy is calculated explicitly from the corrected elements in order
to ensure a consistent pericentre.
Binaries undergoing circularization also experience exchange of angular

momentum between the orbital and rotational motion. Since the orbital
angular momentum is now coupled to the spins, the treatment above must

‖ For perturbed motion R0
p should be replaced by the actual distance.
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be replaced by direct integration of all the relevant equations of motion,
as will be described in section 15.8.

11.9 Chaotic motions

Highly eccentric binaries may experience a chaotic exchange of energy
between the orbit and the tides before reaching a state of normal circu-
larization. This process is also relevant for binary formation by two-body
capture and provides an alternative channel for the production of exotic
objects. The question of whether the tidal energies that build up can be
absorbed by the stars without serious structural changes, or are radiated
away, is still open [Kumar & Goodman, 1996; Podsiadlowski, 1996]. How-
ever, some of these interactions have parameters that lead to relatively
mild chaos and it is therefore worthwhile to explore the consequences of
this process in order to have a uniform treatment.
The adopted form of the chaos boundary is based on the generalized

Press–Teukolsky [1977] theory which also includes the eccentricity in the
similarity variable [Mardling, 1995a]. The corresponding energy dissipa-
tion due to two f -modes is obtained from fitting functions for different
polytropes [Portegies Zwart & Meinen, 1993]. Detailed expressions for
the energy transfer at each pericentre passage are given elsewhere [cf.
Mardling & Aarseth, 2001]; here we concentrate on procedures affecting
the N -body KS treatment. The chaos boundary itself is a function of ec-
centricity in terms of the mass ratio and polytropic index. We define chaos
to begin if the critical point on the curve for constant angular momentum,
ec, satisfies a disruption criterion, ec > edis [Mardling, 1995b], with the
reverse condition resulting in enforced collision. Likely candidates for the
chaos treatment are selected in the same way as for tidal circularization,
which is chosen instead if e < ec.
During the chaotic motion we calculate the energy transferred to the

stellar oscillations and accumulate the linear and non-linear damped con-
tributions. Knowledge of the total energy lost from the system, together
with the loss of angular momentum ascribed to oscillations, allows deter-
mination of the new orbital energy and angular momentum which yield
the semi-major axis and eccentricity. The corresponding KS solution must
now be modified in a consistent way, with the first scaling factor in (11.38)
given by (11.39). Since the orbital angular momentum is no longer con-
served, we use the explicit KS energy relation (4.24) to form the velocity
correction factor

C2 =
(
mb + hRp
mb + h0R

)1/2
, (11.44)

where h0 is the uncorrected binding energy and R the corresponding
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pericentre distance. After performing the corrections (11.38), the KS poly-
nomials are re-initialized in the standard way.∗∗

Unless collision occurs during the irregular eccentricity changes, the
chaos treatment is terminated when the system has lost enough energy to
reach the critical point ec on the chaos boundary [cf. Mardling & Aarseth,
2001]. At this stage transition to normal circularization is initiated in the
same way as discussed in section 11.8.
The chaos treatment outlined above also extends readily to the case

of initial hyperbolic motion. However, most hyperbolic encounters do not
suffer enough kinetic energy loss to become bound even for quite small
impact parameters. To reduce the amount of excessive calculations, we
consider only periastron separations satisfying

Rp < Rmaxp r∗1 , (11.45)

where the dimensionless quantity Rmaxp is given by a fitting formula that
depends on the mass ratio and polytropic index, as well as the relative
velocity at infinity [Mardling, 1996b; Mardling & Aarseth, 2001]. Since
this is only a necessary condition for capture, not all such encounters
form bound orbits on the first pericentre passage. However, those that
do are examined by the standard chaos procedures without any further
complications. Note that capture candidates invariably form a KS pair
during the approach and, if capture occurs, the pair may still be termi-
nated temporarily as for soft binaries. Hence the possibility exists that an
eccentric capture binary may subsequently be recognized as a standard
chaotic orbit.
Since the onset of chaotic motion usually involves high eccentricities,

such events are likely to occur in strong interactions studied by chain
regularization. Although the principle of the treatment is the same, this
calls for several new algorithms which will be described in a subsequent
section.

11.10 Roche-lobe mass transfer

The stage of Roche lobe overflow follows naturally from tidal circulariza-
tion and is full of astrophysical complications. All the relevant processes
have been discussed in considerable detail elsewhere [Tout et al., 1997;
Hurley, 2000; Hurley, Tout & Pols, 2002], and we therefore concentrate
on some dynamically-related aspects here. The procedure is initiated upon
completion of circularization†† and one of the stars filling its Roche radius,
rR, defined by (9.20). We distinguish between the primary and secondary

∗∗ Unperturbed motion is suppressed during the chaotic stage which is usually short.
†† Defined by a nominal small eccentricity 0.002 for technical reasons.
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star, otherwise referred to as the donor and accretor. The former is de-
termined by the binary component having the largest ratio r∗/rR, rather
than the largest radius.
When combining orbit integration with mass transfer, the question

arises as to how this can be done in an efficient and consistent man-
ner. A step-wise approach has been devised, in which a small fraction
of the primary mass (at most 1

2%) is transferred or lost, subject to the
elapsed time not exceeding the next c.m. integration step. This leads to
intervals of active mass transfer, interspersed by quiescent coasting until
the standard Roche condition is satisfied again. At the end of each cycle,
the c.m. look-up time is advanced until the next active episode while the
components are assigned larger values to prevent individual evolution.
Where relevant, the processes of magnetic or gravitational braking are
also implemented in a similar way, with the c.m. look-up time advanced
according to a small fractional change in the semi-major axis.
Depending on the masses and mass ratio, four basic Roche stages are

possible for each star, associated with main sequence, giant, asymptotic
giant branch and white dwarf evolution. During the last stage, a doubly
degenerate binary of white dwarf components may start spiralling inwards
by gravitational radiation if the period is sufficiently short. This effect is
included inside a = 10R� and, if enough time is available, the condition
for mass transfer may be reached. The ultimate fate is either coalescence
for unstable mass transfer or slow orbital expansion.
Some of the basic N -body procedures are connected with the change

in mass. First the binary orbit is expanded at constant eccentricity, us-
ing the expressions (11.12). Hence the correction coefficient for the KS
coordinates is given in terms of the ratio of semi-major axes by

C1 = (a/a0)1/2 . (11.46)

Since we perform a homologous expansion at an arbitrary phase, by (4.24)
the KS velocity scale factor takes the form

C2 =
[
1
2(mb + hRa/a0)/U ′2

0

]1/2
, (11.47)

with U ′
0 denoting the old regularized velocity. Note that stages of mag-

netic or gravitational braking that do not result in mass loss are also sub-
ject to the same corrections. Following the KS modifications, new global
coordinates and velocities are predicted, whereupon standard force and
potential energy corrections are carried out. Likewise, the total energy
loss, Emdot, is updated by the amount

∆E = µ0h0 − µh , (11.48)
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due to the change of reduced mass and semi-major axis. The current c.m.
coordinates and velocity are also updated to be consistent with the new
masses, followed by polynomial initialization of the neighbours.
One complication that arises relatively frequently concerns common-

envelope evolution. This occurs when the mass transfer from a giant enters
a run-away phase and may lead to coalescence. Alternatively, a superhard
binary may remain if there are two cores with enough binding energy to
expel the whole envelope [cf. Tout et al., 1997]. A discussion of the relevant
procedures is delayed until section 12.9 (cf. Algorithm 12.10) since the
treatment is more complicated in chain regularization.
Technically, the case of Roche-type coalescence is essentially similar to

the collision that has been discussed in section 9.2 for both KS and chain
regularization. However, when using the KS description, we may combine
a close neighbour with the composite c.m. body and initialize a new two-
body solution directly. This is done, provided the nearest neighbour is
a single particle within the close encounter distance, otherwise the new
remnant is considered by itself.
Roche cycles are normally completed following the specified mass trans-

fer or orbital shrinkage due to braking without mass loss. However, even-
tually these processes are terminated. This entails a change to an inactive
phase, common-envelope evolution or the formation of a contact binary
when both stars fill their Roche lobes.‡‡ In the former case, the time inter-
val until the next overflow stage is determined in a consistent manner and
the c.m. index (k∗) is advanced. This results in a quiescent phase which
may be long. The subsequent time intervals are rechecked at appropriate
times, using special functions to evaluate the stellar radius. For ongoing
mass transfer during the coasting phase (k∗ = 11, 13, . . .), the next look-
up time is determined from the 1

2% mass transfer rate, subject to limits
for single star evolution of the primary.
In general, the scheme outlined above has proved itself and is rather

inexpensive, although some cases involving massive main-sequence or
Hertzsprung-gap primaries may require several hundred cycles. By its na-
ture, an active Roche condition implies a small semi-major axis in most
systems; hence such binaries tend to be unperturbed. However, the treat-
ment does not assume this and there is provision for termination, followed
by tidal circularization, if the eccentricity increases as may occur in wide
hierarchies. Very occasionally, the treatment of a relatively compact hi-
erarchy may lead to some inefficiency because of the need to terminate
a formally stable configuration, although most of the mass-transferring
stage can be readily handled in situ if desired. Among the rare events
noted, we mention the formation of Thorne–Żytkow [1977] objects during
the common-envelope stage between a neutron star and a giant.

‡‡ At present contact binaries are treated by the coalescence procedure.
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12.1 Introduction

The basic theory of chain regularization [Mikkola & Aarseth, 1990, 1993]
is described in chapter 5, while algorithms that deal with different treat-
ments of physical collisions are detailed in chapter 9. Here we are con-
cerned with a number of additional features that deal with aspects re-
lating to what might be termed the N -body interface, namely how to
combine two different solution methods in a consistent way. Strong in-
teractions in compact subsystems are usually of short duration, with the
ejection of energetic particles a characteristic feature. First we give some
algorithms for unperturbed triple and quadruple systems while the more
extensive treatment of perturbed chain regularization is discussed in the
subsequent sections. As far as the internal chain subsystem is concerned,
this requires extra procedures that add to the program complexity and
cost. Having selected a suitable subsystem for special treatment, we also
need to consider the change of membership and possible astrophysical pro-
cesses. Moreover, the question of when to terminate a given configuration
requires suitable decision-making for the switch to alternative methods,
as well as identification of hierarchical stability in order to prevent ineffi-
ciency. Finally, since the implementation of the time-transformed leapfrog
scheme has many similarities with chain regularization, we include some
relevant algorithms here.

12.2 Compact subsystems

The treatment of strong interactions in subsystems can be divided into
two categories. We discuss the case of unperturbed three- or four-body
regularization, while perturbed chain regularization is dealt with in
the next section. The essential difference in the selection procedure is

207
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characterized by the external perturbation, which needs to be smaller in
the former case. As far as the present N -body codes are concerned, the
Aarseth & Zare [1974] unperturbed three-body and Mikkola & Aarseth
[1990] four-body chain regularizations∗ are usually employed only when a
perturbed chain configuration already exists. However, the former method
may readily be extended to external perturbations (cf. section 5.3), in
which case some of the conditions would be relaxed. Although neither
the original three-body nor four-body regularization methods employ the
chain concept, the subsequent development can be seen to be a general-
ization and hence it is natural to consider these methods together.
The selection procedure follows closely the first seven steps of Algo-

rithm 11.3. If a perturbed chain configuration already exists, the stricter
condition max {γ̃, γ4} < 100γmin is imposed. The maximum subsystem
size permitting unperturbed motion may be estimated by

dmax = (100γminmcm/Pmax)1/3 , (12.1)

where Pmax = 2 max {mp/r
3
p} is the largest perturbation. Hence a pertur-

bation of 100γmin on the most distant internal member is acceptable for
a short time before termination is enforced. In addition, the conditions
of a strong interaction must also be accepted, whereas the opposite ap-
plies to the selection of stable hierarchies. There are essentially two such
requirements, Rp < 2ain(1 + ein) and also Rp < ain + a2 if there are two
binaries (cf. steps 9 and 10). Here the latter condition covers the case of
two unequal binaries. Finally, the subsidiary condition rj < Rcl ensures a
compact subsystem.
If all the above conditions have been accepted, we have a triple (n =

3) or quadruple (n = 4) subsystem to be initialized for the integration
scheme. The latter case is distinguished by the index of the intruding
particle, i.e. j > N . Initialization procedures for both systems are listed
in Algorithm 12.1.
All these algorithms, except for step 2, also apply to subsystems with

four members. Most of these points are self-explanatory and do not require
comment. Here n − 1 ghost particles are created in the same way as in
Algorithm 11.5. In order to conserve energy, the differential correction
at step 12 is converted into a velocity change of the c.m. motion as an
alternative to a correction of the energy budget itself. In any case, such
corrections are relatively small because of the stricter perturbation limit
and so is the neglected energy exchange because of the short duration.
Finally, in the case of four members the initial separation vectors must be
prescribed, with the middle distance usually connecting the two binaries.

∗ The unperturbed four-body regularization of Heggie [1974] as reformulated by
Mikkola [1985a] was first used for this purpose [cf. Aarseth, 1985a].
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Algorithm 12.1. Initialization of compact subsystem.

1 Terminate primary KS solution and any second binary [j > N ]
2 Allocate dominant binary component as reference body [n = 3]
3 Set coordinates and velocities in the local reference frame
4 Evaluate the internal energy and update the subsystem energy
5 Save global (i.e. N -body) indices and attributes of the members
6 Form perturber list inside λRcl from neighbours or full search
7 Obtain the potential energy, Φ1, of members and perturbers
8 Create n− 1 ghost particles and define composite body, mcm

9 Initialize force polynomials and time-steps for mcm

10 Determine maximum system size for unperturbed motion
11 Calculate potential energy, Φ2, of mcm and the perturbers
12 Modify the velocity ṙcm by a factor [1 + 2|Φ2 − Φ1|/mcmṙ2cm]

1/2

13 Remove all ghost particles from perturber [and neighbour] lists
14 Transform to regularized variables and define initial quantities
15 Introduce distances R1 and R2 or select chain vectors [j > N ]
16 Define the gravitational radius by Rgrav =

∑
mimj/|E|

We now turn our attention to some key aspects connected with ad-
vancing the internal solutions, and first deal with the three-body case.
After transformations to regularized variables in the local rest frame, the
integration proceeds according to Algorithm 12.2.

Algorithm 12.2. Integration of unperturbed triple.

1 Set initial step ∆τ = [d3/mb]1/2δ1/10/t′, with d = min {R1, R2}
2 Advance the solution by one Bulirsch–Stoer step
3 Check for tidal dissipation or physical collision
4 Switch reference body if |R1 −R2| < min {R1, R2}
5 Perform hierarchical stability test after any tidal dissipation
6 Make temporary exit at end of the c.m. time-step
7 Terminate on escape, collision or |R1 −R2| > dmax
8 Continue the cycle at step 2 until termination

The initial step is controlled by the dominant two-body motion, with
δ being the absolute tolerance for the Bulirsch–Stoer [1966] integrator
(usually 10−10 or 10−12). The internal solutions are advanced until the
elapsed time exceeds the corresponding c.m. time-step or termination is
indicated. In order to facilitate scheduling, we introduce a sub-block of
nsub members and determine the minimum value (if any) by

t̃sub = min {tsub +∆tsub} , (12.2)
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where tsub denotes the epoch of initialization and ∆tsub is the elapsed time
interval. Provided t̃sub < tblock, the pointer isub then defines the solution
type to be treated, namely unperturbed three-body, four-body or chain
regularization. Information about any current multiple regularizations is
also useful to exclude new two-body or hierarchical system candidates.
If isub ≤ 2, the composite body of mass Msub is considered as a single
particle, consistent with the unperturbed approximation, and no refer-
ence to its internal composition is made. The scheme allows for possible
extensions to perturbed versions should the need arise.
The case of tidal dissipation will be discussed in a subsequent section.

As for physical collisions, the iteration to pericentre follows essentially
the procedure of section 9.8. We note that tidal dissipation may lead to
significant shrinkage of the inner binary; hence a stability test based on
(9.14) is required in order to terminate the treatment. A switch of refer-
ence body occurs if |R1−R2| becomes the shortest distance. This entails
a transformation to local physical variables, followed by a relabelling and
introduction of new regularized coordinates and momenta. In addition to
the distance test (12.1), we also employ the Standish [1971] radial velocity
escape criterion, ḋ2 > v2crit, with

v2crit = 2Msub

[
1
d
+

m3m3−i

d−Rgrav

(
Rgrav
mbd

)2]
. (12.3)

This criterion applies to an escaping body mi (with i = 1 or 2) if we have
d > Rgrav and ḋ > 0. For completeness, we mention that sharper criteria
are available, albeit in more complicated form [Griffith & North, 1974;
Marchal, Yoshida & Sun, 1984]. In practice the escape test is delayed until
a somewhat larger distance is exceeded, i.e. (Rgravdmax)1/2. This ensures
a smaller initial perturbation for the new KS solution. Also note that,
in the case of escape, termination may be delayed slightly if the orbital
phase is unfavourable for the evaluation of new elements (i.e. R < a).
According to (9.13), we may in fact have a 
 Rgrav for large values of
vcrit, especially if all the particles are strongly bound. However, in general
N -body simulations the subsystem under consideration usually contains
at least one energetic binary. Hence this strong inequality may not be
reached for typical ejections.
The treatment of unperturbed four-body motion differs slightly from

the above algorithm. First, the particle labels are assigned as for standard
chain regularization. Moreover, the escape criterion (12.3) does not apply.
Instead we compare the maximum size of any two-body separation with
dmax; this provides a conservative measure for an escape configuration
since the relation (12.1) is a measure of the distance to the subsystem
centre.
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In the following we suppose that some condition for termination has
been satisfied. This requires the procedures listed in Algorithm 12.3 to be
carried out.

Algorithm 12.3. Termination of compact subsystem.

1 Transform to physical variables, r̃j , ˙̃rj , in the local frame
2 Identify global indices of ghost particles and note mcm

3 Define new quantized time [Hermite] or take t = tsub +∆tsub
4 Predict current coordinates and velocity of mcm to order F(3)

5 Redetermine the external perturber list in case of changes
6 Evaluate the potential energy, Φ1, of body mcm and perturbers
7 Restore masses and introduce global coordinates, rj = r̃j + rcm
8 Obtain potential energy, Φ2, of the subsystem and perturbers
9 Adjust velocity ṙcm by tidal factor [1 + 2|Φ2 − Φ1|/mcmṙ2cm]

1/2

10 Form global velocities and predict the perturbers to order Ḟ
11 Update the subsystem tables and the internal binding energy
12 Replace composite particle by the members in all relevant lists
13 Set force polynomials for non-dominant third [and fourth] body
14 Initialize new KS solution for the dominant two-body motion

Again all the above steps are applicable to the four-body case. The
only difference is that the new KS solution is identified from the smallest
ordered distance. The algorithm for time quantization (i.e. truncation to
a commensurate value) will be given in a later section. In the alternative
case of the difference formulation, the current time is the sum of the
initial epoch and the elapsed interval. We note that now the differential
energy correction is performed in reverse order, so that the net effect
tends to cancel for a stationary perturber field. The subsystem tables
contain entries for each of the three types, with masses, particle names,
initial epoch, elapsed interval, maximum size, current value of ∆tcm and
stellar evolution indicator. Chain regularization is also treated on the same
footing as far as the internal decision-making is concerned. Finally, we see
that, following termination, the integration is continued in the usual way
because the new solutions are already in place.

12.3 Selection and initialization

The decision-making involved in the selection of a subsystem for the chain
treatment has already been discussed in sections 9.4 and 11.7. Ideally such
configurations should be identified before the perturber (a single particle
or another binary) approaches so close that the KS solution is terminated.
On the other hand, multiple regularization methods are less efficient for
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large distance ratios; hence the choice of the appropriate moment can be
quite delicate, since the dominant binary may be highly eccentric. Consid-
eration of the initial size is also of special relevance for the chain method
since this affects the number of perturbers to be included in the equa-
tions of motion (cf. section 5.7). Although the search for possible chain
candidates, carried out at each apocentre passage during strong interac-
tions (i.e. small c.m. steps), is a good compromise, there are situations
when this strategy may be improved to include more frequent checks (cf.
section 9.4). Finally, it should be emphasized that only relatively com-
pact subsystems are suitable for treatment. Thus the total number of
such events might be about 1000 in a typical star cluster simulation with
N � 104 and some 2000 primordial binaries.
Initialization takes place after a suitable configuration has been se-

lected for treatment. The main steps of this procedure are presented in
Algorithm 12.4. If the perturber is another binary (j > N), an initial
membership of four is equally acceptable.

Algorithm 12.4. Initialization of chain subsystem.

1 Terminate primary KS solution and any second binary [j > N ]
2 Set coordinates and velocities in the local reference frame
3 Evaluate the internal energy and specify global energy, Ech
4 Save global (i.e. N -body) indices and attributes of the members
5 Form perturber list from neighbours or full search
6 Create n− 1 ghost particles and define composite body, mcm

7 Initialize force polynomials and time-steps for mcm

8 Remove all ghost particles from perturber [and neighbour] lists
9 Include differential corrections of Fcm, Ḟcm due to perturbers

10 Determine minimum value of tj +∆tj for perturbers and c.m.
11 Select two chain vectors Rk [or three if j > N ]
12 Transform to regularized variables and define initial quantities
13 Specify the gravitational radius by Rgrav =

∑
mimj/|E|

Algorithm 12.4 does not contain some of the steps of the correspond-
ing Algorithm 12.1 because the differential potential energy correction is
not needed in a perturbed formulation. One extra complication here is
that the c.m. force and first derivative are modified by the tidal effect
of the perturbers after the standard initialization which assumes a single
particle. In order to distinguish the c.m. particle during the subsequent
integration, the corresponding name is taken to be zero which is a unique
identification since there is only one perturbed chain solution. In the data
structure, the components of two KS binaries are placed sequentially at
the first single particle location, as is normal for termination. However, in
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the case of a triple, or if a fifth member is added later, the single particle
is assigned zero mass at its current location. For convenience, the first
member is chosen as the c.m. reference body which is therefore assigned
the total mass. Note that upon the creation of a new KS solution in the
data structure or escape from the chain, the reference body may no longer
be found at the original location but it can always be recovered.
Strictly speaking, Algorithm 12.4 as well as Algorithm 12.1 should con-

tain one more procedure; namely to advance the internal solution up to
the end of the c.m. step, or first perturber step for the chain, if shorter.
This is done for technical reasons in order to distinguish between the
very first step and the continuation steps which are treated differently.
However, the description of the integration itself is delayed until the next
algorithm to avoid repetition.

12.4 Time stepping

The equations of motion for the internal chain are advanced consistently
with the rest of the N -body system. Moreover, the associated c.m. body
is treated on the same footing as any other particle, except that the ex-
pressions for the force and first derivative are modified by the differential
effect of the perturbers. Likewise, F and Ḟ for other particles which are
members of the chain perturber list are modified in a similar manner, with
no distinction made between c.m. or single particles since the additional
tidal effect on the former would be second order. The essential steps to
advance the internal chain members are given by Algorithm 12.5.

Algorithm 12.5. Integration of chain subsystem.

1 Determine t∗ = minj {tj +∆tj} for c.m. and any perturbers
2 Derive the maximum regularized step from inverting t∗ − t
3 Advance the solution by one Bulirsch–Stoer step
4 Update the slow-down factor κ for weakly perturbed binary
5 Obtain physical coordinates and velocities in the local frame
6 Renew list and predict perturbers before every c.m. step
7 Check for tidal dissipation or physical collision
8 Switch to a new configuration if the chain is deformed
9 Examine the system for gain or loss of membership
10 Perform hierarchical stability test for large distance ratios
11 Make temporary exit when exceeding the c.m. time-step
12 Terminate on escape or if max {Rk} > Rcl [Nch = 3]
13 Continue the cycle at step 2 until t > t∗ or termination

Some comments on this algorithm may be instructive. The first step,
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which may well exceed the current block-step, defines the endpoint for
advancing the chain solution. There is no simple way to ensure that the
physical value of the internal chain step will not exceed the temporary
endpoint defined by t∗ since the former is known only after the integration
step has been completed. If this occurs in the presence of perturbers,
the coordinate prediction may be outside the permitted range (i.e. the
physical step). A simple solution based on estimating the next chain step
from the first-order relation ∆τ � L∆t, with L the Lagrangian may
be tried, albeit at the expense of additional integration steps compared
with a similar isolated system. However, if L is varying rapidly (i.e. small
pericentre distances) this procedure may give rise to excessive values.
An improved algorithm has now been implemented [Mikkola, private

communication, 1999]. We first assume that the chain contains one domi-
nant two-body motion and write the relation for the maximum regularized
time-step as

∆τ �
∫ ∆t

0
[(L− Lb/κ) + Lb/κ]dt . (12.4)

By analogy with the slow-down expression (5.84), the first term excludes
the largest contribution and may therefore be considered as slowly varying
compared with the second which is treated more carefully. Having split the
integral into two parts, we introduce the Lagrangian Lb = Eb+2mkml/r,
with Eb the binding energy and r the corresponding separation for the
dominant two-body motion, which gives

∆τ � [L− (Eb + 2mkml/r)/κ]∆t+
1
κ

∫ ∆t

0
(Eb + 2mkml/r)dt . (12.5)

Hence the solution reduces to

∆τ � (L− 2mkml/κr)∆t+ 2mkmlY/κ . (12.6)

The integral Y =
∫
r−1dt can be solved by iteration, using the c-

functions of section 4.7. For the slow-down motion we have Y =
∫
r−1dt =

κy, where y =
∫
r−1dt is evaluated over the reduced interval [0,∆t/κ].

Defining r0 as the initial value, the Stumpff hauptgleichung takes the form

∆t = r0y + ηy2c2 + ζy3c3 , (12.7)

with η = r · ṙ and ζ = mb(1 − r/a), where mb now denotes the binary
mass. From the property of c-functions [Danby, 1992, p. 174] we have

d

dy
[yncn(βy2)] = yn−1cn−1(βy2) , (12.8)

with β = −2h. In the case of small pericentre distances (say r/a < 0.1), a
more reliable value of the semi-major axis may be determined by (9.24).
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The solution for y can now be obtained by standard iteration, which gives
the desired result after we combine the two terms of (12.6). To avoid pos-
sible convergence problems for eccentric binaries, it is advantageous to im-
prove the initial guess using a fast bisection procedure. For completeness,
the derivatives employed in the Newton–Raphson iteration procedure are
given by

y′ = −(r0 + ηc1y + ζc2y
2) ,

y′′ = −η(1− zc2)− ζc1y , (12.9)

where z = βy2 is the argument of the c-functions which are constructed
in analogy with section 4.7. Also note that the slow-down factor κ cancels
in the last term of (12.6). The actual choice of the next regularized step
is made by comparing ∆τ with the current value based on convergence
of the integrator. The above procedure is not activated during pericen-
tre iterations when the next step is determined separately after the first
derivative evaluation.
For more than three particles, it is occasionally useful to extend the

above scheme to include a second two-body term. This may be associated
with a close hyperbolic encounter or another (possibly eccentric) binary;
hence there is no assumption of a hard binary. The generalization is based
on the identification of the two shortest distances in the chain and the
estimate of the relative perturbation due to the nearest particle. For this
purpose it is sufficient to use an expression for the tidal approximation
because the distances are available. If the perturbation is fairly large (say
γ > 0.01), we take ∆τ = L∆t as the result, otherwise the two acceptable
terms may be treated consecutively by a sum of the respective contribu-
tions independently. For simplicity the present implementation includes
at most one binary with slow-down factor different from unity; however,
the algorithm works equally well in the absence of slow-down.
We note that the high-order integrator makes a large number of function

calls during each step. This requires that the physical chain coordinates
(but not velocities) are obtained by the KS transformation at every stage,
together with a consistent prediction of the c.m. and any perturbers.
However, the former quantities are also needed to evaluate other terms in
the equations of motion and the extra effort is not unduly large for modest
perturber numbers. In any case, the external effect (and the calculation
of E′) can be neglected if we have a small nominal perturbation, say
γcrit < 10−5, with

γcrit = 2 max {mp/r
3
p}
(∑

Rk

)3
/mcm (12.10)

denoting the largest contribution. This expression actually provides an
over-estimate when the sum of the chain vectors is used since the distance
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Fig. 12.1. Deformed chain. Dotted lines indicate possible switching.

to the local c.m. would be more appropriate. The slow-down procedure
of section 5.8 has proved very beneficial to deal with superhard binaries.
This allows arbitrarily small periods to be studied consistently and re-
places the inert approximation that was used in the case of binary–binary
interactions before the slow-down method became available.
Algorithms for physical collisions can be found in section 9.8 and tidal

dissipation will be considered in section 12.9. The next point concerns
relabelling of the chain vectors following significant deformation. This in-
volves a check of whether any non-chained distance is the shortest in each
triangle formed by two consecutive chain vectors and one non-chained
vector, as in the example of Fig. 12.1. A switch also takes place if any
other non-chained vector is shorter than the smallest of the chained vec-
tors that are in contact with either end of the vector under consideration.
To speed up the operation, distances larger than twice the average length,∑

Rk/Nch, are not checked. In order to avoid loss of accuracy, it is ben-
eficial to transform directly from the old chain vectors, Rk, to the new
ones. However, round-off problems are less pronounced for the momentum
transformations. Thus velocity contrasts are typically proportional to the
square root of the corresponding inverse distances. Since the chain defor-
mation is usually modest, there is no need to rescale the next integration
step. Finally, it should be emphasized that in the present treatment of
chain regularization, all the members are advanced with the same time-
step. This is inefficient for large distance ratios but is to some extent
alleviated by the slow-down procedure and small membership.
The question of membership change is considered in a later section,

followed by hierarchical stability tests and termination procedures.
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12.5 Slow-down implementation

The theory of slow-down and its application to chain regularization con-
tained in section 5.8 still leaves several practical aspects to be considered
more carefully. Let us first assume that the semi-major axis that enters
the expression (5.95) for the energy change is known.
For decision-making it is convenient to employ the sum of tidal forces.

With the maximum apocentre, 2a, as an over-estimate, the relative per-
turbation is evaluated by

γ =
8a3

mb

∑
j

mj

rij3
, (12.11)

where the summation is over all the other bodies and the distances are
computed from the nearest binary component, i, rather than the c.m. In
practice, unless there is a large mass dispersion, it is usually sufficient
to include neighbouring contributions and use the existing distances, Rk,
since a is small during slow-down. In situations with another hard binary
as the nearest neighbour, this simple procedure ignores the additional ef-
fect of its companion. Alternatively, all the interactions may be added
after constructing the chain coordinates, qk. This permits vectorial con-
tributions to be obtained. Note that the typical membership of a chain
configuration rarely exceeds four, in which case there are at most two con-
tributions to the above sum. With more than three members, the use of
chain distances for evaluating the perturbation (12.11) may produce an
occasional discontinuity if a switch occurs. However, the corresponding
energy correction (5.95) does not assume small changes and hence there
is no need to employ vectorial quantities even though this would only add
slightly to the computational effort.
The expression (12.11) has the desired property of changing slowly,

provided the binary is relatively isolated. Although γ is re-evaluated after
every integration step, the additional cost is modest because of the large
number of function calls with the high-order Bulirsch–Stoer [1966] inte-
grator. The actual choice of κ-values depends to some extent on the overall
accuracy requirement as well as the type of problem being investigated.
Thus at present an expression of the type

κ = (γ0/γ)1/2 , (12.12)

with γ0 � 5 × 10−5 has been found adequate for small systems. If there
are more than four members and several eccentric hard binaries, a value
γ0 � 1 × 10−5 is safer in order to avoid undesirable fluctuations. We
note that the expression (12.11) contains the square of the binary pe-
riod, a3/mb, whereas the terms in the summation represent an inverse
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time-scale squared. This suggests that the square root relation for κ is
appropriate, and a suitably small value of γ0 ensures a regime in which
the adiabatic invariance conditions apply. In the case of circularized bi-
naries, the actual semi-major axis may be used in (12.11) instead of the
conservative choice 2a if suitable precautions are taken to avoid confusion.

We now turn to the evaluation of the semi-major axis which is a deli-
cate matter. Experience shows that even a moderately high eccentricity
may pose occasional numerical problems if a is obtained from the physical
variables and the binding energy is significant (i.e. a circularizing binary).
Instead, we base the determination on the regular expression (9.24) by
means of the following algorithmic steps. If slow-down is inactive, we first
identify the shortest two-body distance and the corresponding chain in-
dex. This permits the sum of mj/r

3
bj due to any neighbouring members to

be evaluated. Substitution of r for 2a in (12.11) gives rise to a provisional
perturbation, γ:, and no further action need be taken if γ: > γ0. Note
that so far only the masses and known chain distances have been used.
If γ: < γ0, the next stage involves transforming the current vectorsQ,P

to chain coordinates and momenta, which are used to derive the individual
physical momenta, pj . From the latter we obtain the kinetic energy, T ,
and corresponding sum of momenta, S, excluding the dominant two-body
contributions due to mk and ml. Replacing the associated particle names
by indices, we write

T =
∑
j �=k,l

p2j/mj ,

S =
∑
j �=k,l

pj . (12.13)

Hence for three particles there is only one non-singular term. We also
obtain the potential energy, Φ1, from the non-dominant chain, followed
by the non-chained part, Φ2. This gives rise to the perturbing function

V = 1
2(T + S2/mb) + Φ1 +Φ2 . (12.14)

Note that the kinetic energy contribution of the binary c.m. follows by
virtue of the condition

∑
k pk = 0. The binding energy relation (9.24) now

yields the regular value of a, whereupon the slow-down correction (5.95)
is carried out. This can be achieved by a rectification of the accumulated
value by setting it equal to H−Ech at certain times, or initializing to zero
on transition to the non-modified state κ = 1. Finally, the matrix elements
Tkk and mass products Mk are modified according to the prescription of
section 5.8.
Occasionally, it is desirable to switch off the slow-down procedure even

if the adiabatic condition is satisfied. This occurs for example in connec-
tion with the determination of a small pericentre which requires careful
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iteration. Consequently, κ = 1 is enforced for the relevant two-body in-
teraction, followed by an update of the corresponding mass factors.

12.6 Change of membership

Chain regularization is not restricted to the initial membership of three
or four and this introduces additional complications. Consider an existing
subsystem being perturbed by another particle. If the latter approaches
closely and the new system satisfies the conditions of strong interaction
(cf. Algorithm 11.3 and section 12.2), it is more natural to include it with
the internal members. Such a search is carried out only if the nominal per-
turbation (12.10) is significant (> 0.05). The main steps are summarized
in Algorithm 12.6 for convenience. The process of absorbing or emitting
particles reminds us of molecules recombining or breaking up, according
to the binding energy. Note that the absorbed particle may even be an
existing KS binary, in which case Nch is increased by two. Because of
practical complications, the present treatment is limited to six members
but more than four is relatively rare.

Algorithm 12.6. Addition of perturber to the chain.

1 Identify the dominant perturber, j, from mj/r
3
j

2 Obtain the distance, d, and radial velocity, ḋ
3 Abandon checking if d > 3

∑
k Rk or γ < 0.05 and ḋ > 0

4 Specify the outer pericentre distance Rp = aout(1− eout)
5 Quit further tests if Rp >

∑
k Rk and γ < 0.4

6 Accept the intruder if
∑

k Rk + d < Rcl
7 Absorb if d <

∑
k Rk and ḋ2 > 1

2(Msub +mj)/d
8 Check for inert binary [j > N ] and switch off slow-down
9 Quantize the current time and predict old c.m. and intruder
10 Redefine chain coordinates and velocities in new c.m. frame
11 Create ghost particle(s) and remove from the relevant lists
12 Re-initialize c.m. polynomials and add tidal force correction
13 Re-evaluate the total energy and the gravitational radius
14 Select chain vectors and transform to regularized variables

Provided the pericentre distance is small, acceptance by any of the crite-
ria above ensures a strong interaction. In principle, the accuracy will also
be higher (with somewhat greater cost) by an inclusion of such a particle
in the chain structure. The subsequent steps are mostly self-explanatory,
except for the time quantization which will be discussed in a later section
that deals with termination. In case the membership is increased by two,
the intruding binary is terminated in the usual way before the components
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are expressed in the new c.m. frame. On rare occasions, the new chain may
consist of two superhard binaries, defined by the small size 0.01

∑
k Rk.

Since the slow-down procedure presently only applies to one binary, any
such intruder is treated temporarily in the unperturbed approximation
as an inert particle which is restored on termination. The last few steps
are similar to those of Algorithm 12.4. Hence the chain integration can
be continued after an update of relevant quantities and selection of chain
vectors.
We now turn to the opposite process, namely reduction of membership

without termination, since termination will be considered in a separate
section. Typically this involves a four-body system which decays to a
triple by escape or, alternatively, experiences physical collision. Some as-
pects of decision-making for these processes were already discussed in
sections 9.4 and 9.8, respectively. Chain reduction is only considered if
we have d > 3Rgrav together with ḋ > 0, where d is the distance to the
new local c.m. We distinguish between hyperbolic and nominal escape.
Thus if the simplified two-body energy (9.12) is positive, the candidate is
accepted provided that also max {Rk} > Rcl, where the relevant distance
must be associated with the first or last chain member. Some additional
conditions are described in section 9.4. In the alternative case of sub-
parabolic motion, the candidate is accepted if the maximum excursion
(when ḋ = 0 in (9.12)) exceeds 2Rcl. The essential steps associated with
particle removal are outlined in Algorithm 12.7.

Algorithm 12.7. Removal of particle from the chain.

1 Quantize the current time and predict old c.m. and perturbers
2 Redefine chain coordinates and velocities in new c.m. frame
3 Identify global index of the escaper and check name of c.m.
4 Switch to another c.m. body [case of escaper with zero name]
5 Determine the global index, j, of any exchanged reference body
6 Restore the ghost in relevant lists containing particle j
7 Exchange name of reference body and initialize new c.m. name
8 Update the mass and set new c.m. coordinates and velocity
9 Specify global coordinates and velocity of the escaper
10 Remove the escaper from the relevant subsystem tables
11 Re-initialize c.m. polynomials and associated perturber list
12 Set chain coordinates and velocities of new configuration
13 Form polynomials for the escaper [single particle or KS]

A new point here is that the c.m. reference body may be associated with
the escaper. In the beginning it is not known which particle may become
an escaper and the first member is therefore selected to represent the new
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c.m. In that case the identification at step 3 would fail, because the par-
ticle name is defined as zero, and the reference body must be re-assigned
another chain member, together with redetermination of the correspond-
ing global index (steps 4 and 5). This also entails a restoration of the
ghost in the perturber (and neighbour) list, as well as saving the global
c.m. name before it is set to zero for identification purposes (steps 6 and
7). Removal of a binary follows similar procedures, where each member
is treated in turn before the binary is initialized as a KS solution at step
13. Again the remaining chain configuration is re-initialized according to
Algorithm 12.4, starting from step 11 together with re-evaluation of the
chain energy (which is also done at step 3 for standard initialization).

12.7 Hierarchical stability

There are several ways in which a chain subsystem may satisfy the con-
dition of hierarchical stability and hence be suitable for the merger treat-
ment described in section 11.5. In the first place, a triple can become
stable by decreasing the outer eccentricity due to strong external pertur-
bations. A stable triple may form during a binary–binary interaction in
which the least energetic binary is terminated as a KS solution, thereby
giving rise to a chain regularization of just three members with the fourth
more distant component carrying away the excess energy and angular mo-
mentum. However, the ejection of one member from an existing quadruple
system is also seen frequently. If the semi-major axes differ significantly,
this represents a temporary exchange in which the small binary plays the
role of a single particle. Last, we may have five-body or even six-body sys-
tems consisting of very hard binaries which can be decomposed into stable
subsystems. When relevant, each of these cases needs to be considered in
order to avoid loss of efficiency by continuing the chain integration.
In the case of three remaining chain members, the stability check is

carried out if
∑

Rk > 4 min {Rk}. This implies a length ratio in ex-
cess of 3 which is near the boundary of the stability relation (9.14) with
zero outer eccentricity and equal masses. If Nch = 4, we only select
systems for further consideration if min {Rk} < 0.1

∑
Rk. We distin-

guish between two binaries and a degenerate triple containing a small
binary, as shown in Fig. 12.2(a). The former system is considered if
max {Rk} > 0.7

∑
Rk, which corresponds to a maximum two-body dis-

tance ratio of 4.6 for two equal-size binaries, while the latter case is ex-
amined if min {Rk} < 0.01

∑
Rk. Unless the middle distance is small, a

chain consisting of two binaries is assessed by first evaluating the respec-
tive semi-major axes denoted by ain and a2, where a2 is the smallest. In
addition, the two-body elements aout, eout of the outer binary motion are
determined. All these quantities can be obtained using the sorted particle
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Fig. 12.2. Degenerate triple systems. Schematic illustration of chain configura-
tion with (a) N = 4 and (b) N = 5.

separations to identify the configuration type. The stability expression
(9.14) can be checked after the inclination effect is included, as well as
the ratio a2/ain according to steps 8 and 9 of Algorithm 11.4.
In the alternative situation of a degenerate triple in a four-body system,

the small binary is described by its c.m. motion, whereupon the usual
stability relations are introduced with no further modification. Note that
the binary may occupy any one of the three possible positions in the
chain, corresponding to inner, middle or outer membership. Hence such
configurations define a higher-order system (discussed in Appendix C), as
opposed to a quadruple consisting of two well separated binaries.
Five-body systems constitute another special case for consideration.

First we exclude configurations where the ratio of successive chain sepa-
rations falls in the range 0.25–4, which would be unlikely to satisfy the
stability condition. We also ensure that there is a close binary with sepa-
ration Rj < 0.04

∑
Rk at either end of the chain before continuing. With

the sorted indices, In, for square separations of the five mass-points, the
inner and outer binary masses are defined by mI1 +mI2 and mI3 +mI4 ,
respectively. We now form the three respective distances required for the
analysis of Fig. 12.2(b). This enables the inner binary to be selected from
the smallest of these distances. The appropriate orbital elements, includ-
ing the inclination of the outermost member with respect to the inner
binary, are evaluated in the usual way. Finally, the stability test (9.14) is
carried out, including steps 8 and 9 of Algorithm 11.4.
Chain integration is terminated upon a successful test of the stability
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condition, or if the subsystem ceases to be compact due to ejection of one
or more members. If the innermost binary is highly eccentric, it is desirable
to prolong the chain integration slightly in order to avoid initialization
at small pericentre separations (i.e. min {Rk} > ain). In the following
section we discuss the relevant procedures which are also employed when
a subsystem decays into two parts due to escape.

12.8 Termination

The termination of a chain integration requires a variety of procedures
to deal with the different configurations that may arise. Thus the final
membership may be three, four or five, with one or two hard binaries in the
second case and usually two in the last. The main steps are summarized
by Algorithm 12.8.

Algorithm 12.8. Termination of chain subsystem.

1 Transform to physical variables, r̃j , ˙̃rj , in the local frame
2 Identify global indices of the ghost particles and note mcm

3 Modify identification list for special cases Nch = 2 or 3
4 Choose the components of the first KS solution as I1 and I2
5 Define new quantized time [Hermite] or take t = tsub +∆tsub
6 Predict current coordinates and velocity of mcm to order F(3)

7 Redetermine the external perturber list in case of changes
8 Restore masses and introduce global coordinates, rj = r̃j + rcm
9 Specify global velocities and predict the perturbers to order F(1)

10 Update the subsystem tables and set internal energy Ech = 0
11 Replace composite particle by the members in all relevant lists
12 See whether a second KS pair is present [Nch > 3; d34 < Rcl]
13 Set force polynomials for non-dominant third [and fourth] body
14 Initialize KS solution for the first and any second dominant pair

In order to identify the global indices of all the chain members at step 2,
the name of the reference body (i.e. zero) is first restored. By definition, it
is also the only chain member with non-zero global mass and this property
is used to ensure a unique determination. The closest particle pair (or
dominant term) is selected for KS solution and will usually be a hard
binary, but this is not assumed.
Quantization of the physical time is required at the termination of

every type of multiple regularization, which employs a non-linear time
transformation, in order to assign new commensurate time-steps.† Until

† A similar procedure is applied for collisions and coalescence when using KS.
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recently, a general expression was used for all quantizations of the time
(including collision in KS), with the new value given by

tnew = tprev + [(tch − tprev + δt)/δt̃]δt̃ . (12.15)

Here tprev is the previous block time and δt = 0.1∆tcm a suitably small
interval. The new initialization epoch was restricted to the current block
time; hence a full N search to determine the next value was also needed
a second time after each such initialization because of the way in which
the block-step is determined.
Since (12.15) is slightly arbitrary, it has been replaced by the definition

tnew = tprev + [(tch − tblock)/δt̃]δt̃ , (12.16)

where the term in square brackets represents the nearest integer and
δt̃ = (tch− tblock)/8 is a small interval, truncated to the next lower hierar-
chical level by (2.25). The previous block time is employed here because
no particles have yet been advanced to tblock. This yields an appropriate
discrete time which is taken to be the new epoch of initialization. Note
that for collision, which involves iteration back to pericentre, the new time
increment may be negative and even exceed the block-step in magnitude.
Likewise, the increment may be negative after change of membership that
requires one or more initializations. Since both the c.m. and perturbers
are predicted to the new time, this means we ignore a small phase error
and the choice of the interval δt̃ represents a compromise; a smaller value
would also reduce the block-steps significantly. With the unrestricted ex-
pression (12.16), however, it is now necessary to perform a third search of
all values tj+∆tj in order to ensure the correct particle sequence, bearing
in mind that the new time-step may differ from the latest block-step and
the sequence has also changed.‡

In the general case of termination without collision, all the steps of
Algorithm 12.8 are carried out. If there are more than three members, a
second KS pair may be chosen for initialization provided it is well sepa-
rated from the smallest pair; i.e. d34 < 1

2 min {d13, d24} with the indices
denoting the sorted particle labels. The polynomial initialization now pro-
ceeds according to type and membership. Thus in the case Nch = 4 and
one dominant pair, the new force polynomials are first obtained for the
two single particles as described in section 8.7, followed by KS initializa-
tion according to Algorithm 8.1.
This concludes the standard procedures connected with the chain in-

terface to the N -body system. As can be seen, many delicate aspects are
involved and particular attention is paid to the decision-making which

‡ This procedure is only needed in connection with chain and TTL integration.
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is quite complicated. Even after several years of experience with the al-
gorithms there are still a number of heuristic procedures which would
benefit from improvement.

12.9 Tidal interactions

In this section, we include some technical details of astrophysical processes
that are implemented for multiple regularization. Since physical collisions
have already been treated elsewhere (cf. section 9.8), we concentrate on
aspects connected with tidal dissipation and common-envelope evolution
which may also occur inside compact subsystems. In either case, an iter-
ation procedure is needed to determine the smallest two-body pericentre,
as described by Algorithm 9.2. Although multiple regularization methods
are ideally suited to the study of strong interactions, explicit expressions
are not available for the semi-major axis and eccentricity of the dominant
motion; hence special algorithms must be developed. In the following we
refer specifically to chain regularization but similar treatments are in-
cluded in the alternative methods.
Since the time-scale for tidal circularization is usually long compared

with the duration of chain interactions, we suppress the standard treat-
ment of section 11.8 after initiation but continue to follow any chaotic
phase until termination or normal tidal motion is reached. The alternative
formulation of sequential circularization is also included [Portegies Zwart
et al., 1997], with the main KS algorithms developed in section 11.8. Again
only one adjustment is likely to be needed because the stellar radii are
not updated during the short interval, although the pericentre distance
may change in response to point-mass perturbations.
Let us first consider the less extreme situation of a small pericentre

distance, Rp = a(1− e), which falls outside the collision criterion (9.21),
where the semi-major axis is obtained by Algorithm 9.2 and e = 1−Rp/a.
Here we should distinguish between hyperbolic and elliptic motion, since
the former may lead to capture. The rare capture process is discussed
together with the corresponding KS treatment in section 11.9. It suffices
to say that the case of hyperbolic motion is included in the general treat-
ment below which also allows for the dissociation of bound orbits. Once
the pericentre iteration has converged, the circularization time is eval-
uated. If tcirc < 2 × 109 yr and the chaos boundary has been crossed,
no further action is taken after initialization of the relevant parameters
and the standard update follows on termination. More common is the
case of a sudden increase in eccentricity, triggering the onset of chaos. In
the following we outline the general treatment where the orbital changes
may refer to any one of the three formulations, except that the correction
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procedure differs slightly. The main steps of the orbital modification for
the particle pair mk, ml are given by Algorithm 12.9.

Algorithm 12.9. Tidal dissipation in subsystems.

1 Evaluate the two-body energy Eb from non-singular expressions
2 Form osculating elements a = −1

2mkml/Eb and e = 1−Rp/a
3 Obtain tidal energy and angular momentum change, ∆E, ∆J
4 Determine the new semi-major axis, ã, and eccentricity, ẽ
5 Derive scale factors for KS coordinates and physical momenta
6 Modify the KS coordinates U and both the momenta, pk,pl
7 Construct the physical chain momenta by the recursion (5.68)
8 Transform to regularized momenta using basic KS relations
9 Update the internal energy by ∆E and differential effect ∆Φ
10 Carry out stability test according to section 12.7

Again the energy of the dominant two-body motion is derived by the
non-singular expression (9.24) and the eccentricity is given by the peri-
centre relation since the radial velocity is negligible after a successful
iteration. Moreover, the tidal energy dissipation and angular momentum
change are evaluated in essentially the same way as in section 11.8. Upon
obtaining the new elements, the KS coordinate scaling factor C1 takes
the form of relation (11.39), whereupon the new values of the relevant
coordinates Qk are introduced by

Q̃k = C1Qk . (12.17)

To determine the second scaling factor, let us consider the case of
chaotic motion first. Now we need to scale the physical velocity by the
ratio of the pericentre values taken from the basic energy equation (4.8),
which yields the explicit form

C2 =
{
[h̃+mb/ã(1− ẽ)]/[h+mb/a(1− e)]

}1/2
. (12.18)

Since h̃ = −mb/2ã, this can also be written as

C2 =
[
a(1− e)
ã(1− ẽ)

]1/2 [1 + ẽ

1 + e

]1/2
. (12.19)

Hence the first term on the right-hand side is the inverse of C1. Note
that these coefficients relate to regularized and physical quantities, re-
spectively, and the relation C1C2 = 1 therefore no longer applies. Given
C2, the relative velocity is changed by an amount

∆vcm = C2(pk/mk − pl/ml) . (12.20)
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This gives rise to the modified physical momenta

pk = mkvcm + µkl∆vcm ,

pl = mlvcm − µkl∆vcm , (12.21)

with µkl the reduced mass and vcm the local c.m. velocity,

vcm = (pk + pl)/mb . (12.22)

For sequential circularization, the effect of stellar spin is not included
and angular momentum is conserved. This implies that C2 = 1/C21 since
the physical velocity is modified instead of the regularized velocity, U′.
The new eccentricity and semi-major axis are then given by (11.36) and
(11.37), with the corresponding energy change

∆E = 1
2µkl(1/a− 1/ã) . (12.23)

We convert to physical chain momenta,Wk, by (5.68) (or the equivalent
5.5) and perform a KS transformation, whereupon the internal energy is
updated by ∆E. Since the coefficient C1 may deviate considerably from
unity, we include a potential energy correction due to changes in the non-
chained distances as a result of the pericentre adjustment. A stability
test is also performed (cf. section 12.7) in case the orbital shrinkage is
significant. Unless stability is indicated, the modified system can now be
advanced by another integration step according to Algorithm 12.5.
Since the local data structure does not contain the usual c.m. indicators,

a special procedure is needed to denote any change in the chaotic motion
or tidal circularization index (k∗ = −1 or −2). This is achieved by use
of the sum of the relevant component names for one or two binaries;
hence any exchange from a previously tidally active binary will be noted
and the old c.m. name removed during subsequent table updates. On
termination, the corresponding c.m. name is entered in the relevant table
such that the standard KS procedures can be continued. Note that, if
required, the pericentre parameters Rp, ep, tp can be assigned appropriate
values when increasing the global chaos index. To summarize, the present
treatment allows one or two tidally active binaries to interact strongly
and emerge with the correct status, including possible exchange, and any
new dissipation event is also recorded.
Common-envelope evolution may occur in chain configurations if the

collision criterion (9.21) is satisfied and at least one of the stars is a
giant. The outcome still depends on the energy budget connected with
the associated mass loss [Tout et al., 1997], because coalescence is defined
if the two cores would spiral inwards so much that Roche overflow occurs
before the common envelope is expelled. If coalescence does not occur, we
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assume the formation of a circularized binary of short period (i.e. typically
a few days at most), where the semi-major axis is derived from energy
considerations.§ This enables new initial conditions for the two binary
components to be specified, albeit with physical variables instead of the
KS description of section 11.10.
Once the conditions for coalescence have been satisfied, the treatment

is essentially similar to that for a normal collision (cf. Algorithm 9.3), ex-
cept for the mass loss, ∆m. Two new points need to be considered here.
To maintain a uniform treatment with the KS method, a list of neigh-
bours inside (1+∆m/M�)rh/N is first formed. This is followed by mass-
loss corrections of potential and kinetic energy, together with polynomial
initialization for the neighbours. The remaining collision procedures are
outlined in section 9.8. Unless termination is indicated (i.e. Nch = 2), the
chain integration continues in the normal way.
In the case of common-envelope evolution without coalescence, the or-

bital shrinkage is usually considerable. This is an important process for
the formation of very close binaries which is of observational interest.
Moreover, such configurations frequently lead to stable hierarchical sys-
tems that can be identified as described in section 12.7, together with the
stability condition (9.14). Thus with just three members, the probability
of this occurring is high since the main requirement is for the outer com-
ponent to be bound with respect to the inner c.m. Algorithm 12.10 lists
the main points in the transition to a superhard binary.

Algorithm 12.10. Common-envelope evolution without coalescence.

1 Obtain the two-body energy, Eb, from non-singular expressions
2 Specify R0, Ṙ0 and define rcm, ṙcm for the close binary
3 Evaluate the semi-major axis, a0, and energy, h0, from Eb
4 Perform common-envelope evolution which yields a and ∆m
5 Add total energy correction µ0h0; also kinetic energy 1

2∆mṙ2cm
6 Construct new relative motion R, Ṙ for modified values a and e
7 Form global coordinates and velocities using the old c.m. values
8 Update masses and correct energy by −µh, with h = −1

2mb/a
9 Include mass-loss correction of potential energy and tidal field
10 Re-initialize chain regularization with current initial conditions

Some of these steps have been discussed before. For consistency with
the two-body treatment, we specify a small final eccentricity, emin. If the
new binary is initialized at apocentre, the relative coordinates and velocity

§ This has recently been replaced by a sequential procedure that limits the mass loss
at each pericentre passage, resulting in a reducing eccentricity.
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become

R = R0 a(1 + emin)/R0 ,

Ṙ = Ṙ0
(
mb

av20

)1/2 (1− emin
1 + emin

)1/2
, (12.24)

where v0 is the old orbital velocity. The mass-loss corrections are included
in the energy component Ecdot (cf. section 9.9) because of the association
with a discontinuous process. After the relevant modifications have been
carried out, new c.m. polynomials are formed. Since the chain membership
is unchanged, standard initialization can now be performed, starting at
step 2 of Algorithm 12.4.

12.10 Black hole binary treatment

The possible presence of black hole [BH] binaries in galactic nuclei and
even globular clusters is currently receiving much attention [Magorrian
& Tremaine, 1999; Miller & Hamilton, 2002]. Given a high-density en-
vironment, exotic processes such as tidal disruption of stars outside the
Schwarzschild radius and coalescence due to gravitational radiation may
occur. As discussed in chapter 10 and a subsequent chapter, several studies
have been made of the dynamical behaviour of N -body systems contain-
ing a massive binary, and there are still open questions regarding the final
stages. Hence, in view of the potential importance, this subject merits fur-
ther examination.
In the following we describe an implementation of the time-transformed

leapfrog method [Mikkola & Aarseth, 2002; hereafter TTL] which has
many similarities with chain regularization, especially concerning aspects
relating to the N -body interface. We do not address the question of suit-
able initial conditions, which necessitates astrophysical considerations,
but take a simple model with two identical stellar distributions contain-
ing a massive central body. The two clusters are placed in an elliptic orbit
with overlapping pericentre distance which leads to the rapid formation
of a composite system. As a compromise, we choose mBH = N1/2m̄ in the
case of two equally heavy masses. The initial distribution is taken to be
cusp-like with a stellar density profile

ρ(r) ∝ 1
r1/2(1 + r5/2)

(12.25)

and corresponding 1D velocity dispersion [Zhao, 1996]

σ2(r) =
1

ρ(r)

∫ ∞

r

ρ(r)
r2

[m(r) +mBH]dr . (12.26)
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In view of the different parameters and extra decision-making, a new
code called NBODY 7 has been developed [Aarseth, 2003a], with a work-
station version analogous to NBODY 6 as well as a subsequent GRAPE-6
implementation. The early evolution of binary hardening that follows the
mass segregation stage can be readily studied by the standard KS and
chain methods [cf. Quinlan & Hernquist, 1997; Milosavljević & Merritt,
2001]. Eventually, conditions become favourable for a switch to the TTL
scheme which is both more expensive and accurate, with aBH � Rcl rep-
resenting a natural choice.
Once the massive binary has been accepted for special treatment, the

KS description is replaced by conventional two-body variables, as dis-
cussed in section 5.9. In order to facilitate decision-making, the corre-
sponding global particle names¶ Nk, Nl are assigned negative values and
the second component is defined as a ghost particle. The c.m. motion
is then initialized in the usual way with a small time-step for the rel-
ative motion. At subsequent intervals, suitable subsystem members are
selected from the nearest perturbers. Provisionally, we use a distance cri-
terion d = λBH aBH, with λBH � 25 for subsystem members and 50 for
external perturbers, with further enlargement on increased membership.
Hence the adopted component masses would include relative perturba-
tions out to at least γBH � 3 × 10−7 for N � 105 and high eccentricity.
Special procedures are required to include a regularized binary as two
single particles and the inert approximation may be appropriate for su-
perhard energies in the early stages. Likewise, two strongly bound ejected
particles are initialized as a KS pair.
The method that advances the internal evolution is essentially similar

to the chain treatment, with each interaction evaluated explicitly in the
equations of motion that are integrated by the Bulirsch–Stoer method.
We take special care to avoid losing precision for large distance ratios
by a transformation of coordinates and velocities to the BH binary c.m.,
otherwise chain vectors are used. Since there are many force evaluations
for each binary period, the additional cost of Npert perturbers ∝ NBHNpert
per step. In order to obtain the net perturbing force on NBH subsystem
members of total mass MBH, the c.m. contribution

Fcm =
1

MBH

NBH∑
i=1

mi

Npert∑
j=1

mj(rj − ri)
r3ij

(12.27)

is subtracted from the corresponding individual expressions. However, in
view of the large mass ratio and small binary size involved, the number of

¶ In the general case of N1 and N2 primordial binaries in two subsystems with N0

members in the first, we would have Nk = 1 + N1 + N2, Nl = 1 + N0 + N1 + N2.
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perturbers tends to be modest. Moreover, the extra computational effort
goes as the inverse period, ∝ a

−3/2
BH , whereas Npert diminishes with a3BH

modulated by the central density, which tends to compensate.
Frequent checks are made of the subsystem and neighbour membership.

Any changes necessitate the creation and initialization of ghost particles.
Some of the relevant procedures are similar to the chain treatment dis-
cussed above, with one important exception related to the energy budget.
Let EBH denote the subsystem energy at the previous updating, with sep-
arate contributions, Epert and EGR, due to external perturbers and grav-
itational radiation, respectively. Accordingly, the error of the subsystem
energy is given by

∆EBH = EBH + EGR + Epert − Eexp , (12.28)

where the last term represents the current energy and is evaluated explic-
itly for checking purposes only. In order to monitor energy conservation,
any contributions from the relativistic terms (denoted GR) and external
perturbers are kept separate. Since Eexp contains the effect of the exter-
nal perturbation, the term Eexp − EGR is added to the quantity (9.29)
and yields the desired constant of the motion. However, the actual er-
rors defined by (12.28) are usually well below the tolerance for so-called
‘rectification’, whereby EBH would be assigned the explicit value.
The subsystem energy is updated by an amount ∆Ecorr after each

change of membership according to the expression

∆Ecorr = ∆T1 +∆Φ−∆T2 . (12.29)

If a new particle is added, ∆T1 represents the combined kinetic energy of
the c.m. and the intruder, and ∆T2 denotes the final c.m. kinetic energy.
These terms have the reverse meaning for ejection. Likewise, ∆Φ is the
potential energy of the relevant particle with respect to the subsystem,
with negative and positive sign, respectively. Moreover, in the case of a
binary entering or leaving the subsystem, the internal binding energy is
included and appropriate measures taken for the KS treatment. As before,
a check is made on the possible reduction of time-steps for high-velocity
particles that experience the slingshot effect. The present implementation
has the advantage that particles ejected from the subsystem may readily
be included in the relevant list at the earliest opportunity.
Following each updating, the energy change due to external perturbers

is added to the subsystem energy for convenience and initialized to zero.
The corresponding effect on the perturbers is contained in the external
budget (9.29). Once a given particle is identified from the perturber list,
the corrected force is obtained by a subtraction of the c.m. approximation
term, followed by direct force summation over the internal components.
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Such differential force corrections are also carried out in connection with
polynomial initializations resulting from membership changes.
The consistent advancement of two systems that employ different times

requires special care. As far as the subsystem solutions are concerned, each
step is completed when t > tblock. During this interval, the perturbers
are predicted at all substeps and it is desirable for the corresponding
predictor steps to be convergent. Since the total number of block-steps is
comparable to the number of Bulirsch–Stoer steps, this does not appear to
present a problem; i.e. the smallest perturber time-steps evolve in a self-
similar manner together with the block-step. Following this brief outline,
it remains to consider the strategy for adding GR effects.
In the case of an ultra-hard binary containing black hole components,

the (post)5/2-Newtonian approximation may be included for the most
critical two-body interaction. The full expression is given by [Soffel, 1989]

F = F0 + c−2F2 + c−4F4 + c−5F5 , (12.30)

where F0 denotes the Newtonian force per unit mass and c is the speed of
light. The additional terms describe the post-Newtonian acceleration, rel-
ativistic precession and gravitational radiation, respectively. Optionally,
the latter may be considered without contributions from the more time-
consuming precession, which then gives rise to the well-known decay of
the semi-major axis and eccentricity. For clarity, some of the main points
discussed above are summarized in Algorithm 12.11.

Algorithm 12.11. Binary black hole procedures.

1 Identify a hard massive binary for special treatment
2 Define new variables and initialize polynomials
3 Predict coordinates and velocities of perturbers and c.m.
4 Advance the equations of motion up to end of block-step
5 Check gain or loss of subsystem members and update energy
6 Select new perturbers from neighbour list or GRAPE-6
7 Activate GR options for short evolution time-scales
8 Include implementation of BH coalescence or accretion
9 Allow for the case of unperturbed non-GR two-body motion

We distinguish between the situation when the osculating pericentre
of the BH binary falls below a specified small value and orbits of field
stars making close approaches to one massive component. In view of the
time-consuming nature of the additional terms in (12.30), we tentatively
consider three different stages of increasing importance which are also
reflected in the computational cost. For this purpose we write the classical
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gravitational radiation time-scale a/ȧ [Peters, 1964] in the scaled form

τGR � 1.3× 1018
a4BH

χ(1 + χ)m3
BH

(1− e2)7/2

1 + 73e2/24 + 37e4/96
, (12.31)

where χ = m2/m1 and mBH represents the primary mass. This yields the
time in yr if the semi-major axis is expressed in au and the mass in M�.
As an example, aBH = 20 au and mBH = 500M� would require e � 0.99
for a time-scale τGR � 107 yr.
Depending on the problem under investigation, the respective addi-

tional perturbations are included at three suitably chosen limiting values
of τGR, with the first effect due to the radiation term. Accordingly, we
need to define the astrophysical length and mass units that are already
specified in a realistic simulation. Integration of ȧ from the inverse (12.31)
and the companion equation for ė from specified initial conditions gives
the time to reach a smaller eccentricity. This can be used as a check for
the code implementation in the absence of perturbations. Note that the
actual time interval tends to be slightly longer than the linear prediction,
with the eccentricity decreasing slowly during the early stage.
The expression (12.31) is evaluated after each integration step, using

Newtonian expressions for the two-body elements which are usually well
defined near the boundaries. An alternative approach, tried at first, was
to consider the velocity at the osculating pericentre but this is somewhat
arbitrary. In the absence of perturbations, GR coalescence takes place if
τGR is sufficiently small. Writing the coalescence condition as

RGR = fGRG(mk +ml)/c2 , (12.32)

we take fGR = 6 or three Schwarzschild radii if the two massive compo-
nents are involved. Unless there are more than two black holes, termi-
nation usually takes place at this stage or even slightly earlier following
significant GR energy loss. It is also of interest to consider the possible ac-
cretion of field stars. This can be readily studied by a suitable relabelling
of one reference body, together with appropriate decision-making within
the integration itself. So far, favourable experience of the GR regime has
been gained and the scheme promises to become a valuable tool in fu-
ture investigations. Some provisional results using GRAPE-6 with up to
N = 2.4 × 105 particles have already been reported in which GR coales-
cence was achieved [Aarseth, 2003b].
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Accuracy and performance

13.1 Introduction

The question of numerical accuracy has a long history and is a difficult
one. We are mainly concerned with the practical matter of employing
convergent Taylor series in order to obtain statistically viable results. At
the simplest level, the basic integration schemes can be tested for the
two-body problem, whereas trajectories in larger systems exhibit error
growth on short time-scales. However, it is possible to achieve solutions
of high accuracy for certain small systems when using regularization meth-
ods. There are no generally agreed test problems at present but we sug-
gest some desirable objectives, including comparison with Monte Carlo
methods. Since large simulations inevitably require the maximum avail-
able resources, due attention must be paid to the formulation of efficient
procedures. The availability of different types of hardware adds another
dimension to programming design, which therefore becomes very special-
ized. Aspects of optimization and alternative hardware are also discussed,
together with some performance comparisons.

13.2 Error analysis

It is a fact of computer applications that an error is made every time
two arbitrary real numbers are added. Hence the task is to control the
propagation of numerical errors and if possible keep them below an ac-
ceptable level. Since the N -body problem constitutes a system of non-
linear differential equations the error growth tends to be exponential, as
was demonstrated right at the outset of such investigations [Miller, 1964]
and emphasized in a subsequent study [Miller, 1974]. Numerical experi-
ments with up to 32 particles were made by measuring the deviation of
neighbouring solutions, which were found to have a short time-scale. This

234
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implies that such integrations are likely to be invalid after surprisingly
short time intervals if we are concerned with nearly exact solutions. In
fact, this property poses a challenge to any justification for doing dynam-
ical simulations by direct methods.
The numerical measurement of error growth was carried out only on a

few subsequent occasions. Thus the effect of using a softened potential in
25-body systems reduced the rate of divergence of solutions in configura-
tion and velocity space for ε � 0.08rh, whereas the behaviour was similar
to the point-mass case for ε � 0.016rh [Standish, 1968b]. More extensive
simulations for a range of particle numbers up to 340 indicated a mean
e-folding time, te, of one crossing time, albeit with a small tendency to
decrease with N [Kandrup & Smith, 1991]. It was also shown that only
a relatively large value of the softening size affects the result. A similar
investigation with 32–512 particles concluded that te � tcr/8 for all the
N -values considered [Goodman, Heggie & Hut, 1993]. Finally, the ques-
tion of N -dependence was tested more fully in a recent systematic study
that extended the particle number to 6 × 104 [Hemsendorf & Merritt,
2002]. For the first time a clear trend of the instability growth rate
emerged, with te ∼ 1/ lnN . However, the practical implications of this
surprising result remains to be understood.
On the theoretical side, the question of the appropriate time-scale for

error growth in large systems has also been considered. Arguments in
favour of a short time-scale have been presented using the estimated clos-
est approach [Heggie, 1988]. More detailed analysis confirmed that the
characteristic growth time-scale is indeed shorter than one crossing time
for large N [Goodman et al., 1993]. To counteract this, ideas based on
the concept of shadow orbits have been presented [Quinlan & Tremaine,
1992] which did much to restore the confidence in directN -body solutions.
Moreover, the statistical properties of global quantities are well behaved
[Giersz & Heggie, 1994a,b, 1996, 1997]. Hence it is recognized that other
methods need to verify agreement with direct integration where possible
in order for the results to be accepted [Spurzem, 1999].
We now turn from general considerations to some practical topics of

error measurements. As is well known, even the integration of a binary
orbit by direct means is subject to systematic errors that affect both the
semi-major axis and eccentricity.∗ Although such solutions are actually
obtained by the more accurate two-body regularization in the present
context, it is useful to evaluate the different schemes that are employed
in general integrations. Thus, in some sense, a typical cluster orbit has
a characteristic eccentric shape that tends to become smoother with

∗ Here we are not concerned with errors in the longitude of the periapse.
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increasing N -values and, being perturbed, therefore requires somewhat
more integration steps per orbit than a corresponding isolated binary.
First we compare different methods for two-body orbits with low and

high eccentricity. Table 13.1 contains the relative and absolute errors,
∆a/a and ∆e, respectively, together with the number of integration steps
for an initial eccentricity e = 0.1 and 0.90, as well as e = 0.99 in the
case of direct integration. The average values per orbit are quoted for
an integration over 1000 periods in order to improve the measurement of
the secular errors. Results for the standard divided differences are shown
first, followed by the Hermite method. These results are obtained using
the actual codes NBODY 1 and NBODY 1H for N = 2, where the latter was
developed for another purpose and does not use block-steps† [Makino &
Aarseth, 1992]. Hence, for pure two-body motion, the systematic errors
per step are approximately comparable for similar fourth-order implemen-
tations. The increased number of time-steps for large eccentricity is due to
using a relative force criterion (cf. (2.13)) which is analogous to the Kepler
relation ∆ti ∝ R3/2 (or equivalently, ∆ti = (ηR/|F|)1/2 for N ≤ 2).
It is also of interest to examine the basic schemes implemented for a test

particle. Based on the Kepler time-step expression, Hermite integration
is somewhat more accurate than divided differences for large eccentricity
[cf. Makino, 1991a]. Thus we obtain ∆a/a � −1.1×10−7 and −1.7×10−7
for e = 0.1 and 105 steps per orbit, whereas ∆a/a � −2.0 × 10−6 and
−4.1× 10−7, respectively, for e = 0.9 and 340 steps. In the latter case the
relative error for the difference method is reduced to −1.5×10−7 with the
same step number when using a relative criterion based on the force and
its second derivative (cf. (2.12)) instead of the Kepler relation. This sug-
gests that the general time-step criterion (2.13) is efficient in minimizing
the two-body integration error. In particular, the time-steps are slightly
smaller in the pericentre region for the same total step number. However,
the corresponding Hermite formulation is in fact slightly worse, yielding
∆a/a � −4.9 × 10−7. Note that although these methods are formally of
the same order, the difference formulation benefits from prediction to or-
der F(3) for a test particle integration (i.e. N = 1), whereas in the general
case all the other particles are predicted to low order.
A comparison of three different regularization methods is also included

in the table. We illustrate the Hermite KS method, rather than the
Stumpff formulation, since the latter does not produce any errors for
unperturbed motion. The standard value ηU = 0.1 is used for all the
KS solutions (cf. (8.59)). Without taking the corresponding merits of the
numerical effort into account, it can be seen that two-body regularization
is significantly better than direct integration for any eccentricity.

† The block-step code NBODY 1B is less accurate for the same step number here.
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Table 13.1. Integration errors for two-body motion.

Method e0 ∆a/a ∆e Steps

Differences 0.1 6.2× 10−7 −3.8× 10−7 105
0.9 −1.0× 10−6 2.2× 10−7 340
0.99 −4.2× 10−6 2.5× 10−9 550

Hermite 0.1 −3.7× 10−7 8.0× 10−7 105
0.9 −6.5× 10−7 −7.8× 10−8 341
0.99 −6.2× 10−6 −6.4× 10−8 550

Hermite KS 0.1 5.9× 10−11 −4.0× 10−11 63
0.9 2.9× 10−11 −1.9× 10−11 63

Standard KS 0.1 −3.3× 10−8 1.6× 10−8 63
0.9 −1.9× 10−8 1.8× 10−9 63

Stabilized KS 0.1 −1.0× 10−12 −5.6× 10−11 63
0.9 −1.0× 10−12 −3.1× 10−10 63

An earlier comparison of the standard Hermite and time-symmetric KS
schemes was rather unfavourable [Funato et al., 1996]. Although no details
are given about the algorithm used in the first method, the estimated
error ∆a/a � 1 × 10−6 per orbit is consistent with low-order prediction
for half the usual number of steps per orbit for e � 0.9. This reduces to
∆a/a � 4× 10−9 when predicting the KS variables to highest order and
again using ηU = 0.2, or 31 steps per orbit (see Table 13.1 for results with
ηU = 0.1). Alternatively, even low-order prediction with ηU = 0.1 yields a
corresponding error ∆a/a � −4.4× 10−8. Finally, we emphasize that the
time-symmetric method does in fact benefit from high-order prediction,
with at least one iteration, as is also the case in the equally accurate
Stumpff KS method [cf. Mikkola & Aarseth, 1998].
Table 13.1 also shows the effect of including energy stabilization in two-

body regularization (cf. (4.43)). Note that this can be readily done for the
difference scheme as well, but only in situations with dominant two-body
motion (cf. (3.33)). We now obtain much improved conservation of the
semi-major axis at the expense of some deterioration in eccentricity, as
has also been found independently [cf. Funato et al., 1996]. It should be
emphasized that stabilization is no longer effective in cases of significant
perturbation (say γ > 0.001) since the osculating binary elements are
not sufficiently regular. For completeness, we remark that although the
time-symmetric scheme is considerably more accurate than Hermite KS
for two-body motion, it has only proved itself in three-body scattering
experiments and planetesimal N -body simulations [cf. McMillan & Hut,
1996; Funato et al., 1996; Kokubo, Yoshinaga & Makino, 1998].
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The results above were obtained using standard codes and hence give
an idea of typical integration errors. Note that high eccentricities are of-
ten seen, particularly in connection with strongly interacting binaries or
Kozai cycles in hierarchical triples, when values of 0.99 and even 0.999
may be reached. Thus, unless some special features are included, such
as unperturbed motion in the neighbourhood of small pericentres, direct
integration requires considerably more steps and is less accurate than KS.
Even so, this strategy has been advocated on the grounds of simplicity
[Makino & Taiji, 1998; Portegies Zwart et al., 2001], especially in connec-
tion with GRAPE-6.
So far we have been concerned with systematic errors in idealized sys-

tems. Since the accuracy is improved for smaller time-steps that take
longer to perform, it follows that a compromise must be made when de-
ciding on the value of the time-step parameters η or ηU . Fortunately the
high-order methods produce considerable accuracy gains for modest in-
creases in effort and hence there is a tendency to be conservative. It is
an interesting question to what extent reliable results may be obtained
by choosing rather large time-steps. Thus a three-body scattering exper-
iment appeared to show no noticeable dependence on η for several global
quantities when 800 outcomes were combined [Valtonen, 1974]. More gen-
eral investigations of small systems [Smith, 1974, 1977] also showed that
there are no significant differences in the overall characteristics during
the first few relaxation times. Moreover, even relatively low accuracy ap-
pears to give reliable results. Note, however, that this does not mean that
time-step parameters η � 0.05 (cf. (2.13)) can be recommended since this
would lead to rapid disruption of an isolated binary.‡

The emphasis on relative energy errors may be reassuring but is no
guarantee of accuracy even though there is a general correlation between
∆E/E and η. On the other hand, time reversal provides a stricter test of
most methods. This aspect was examined at an early stage using NBODY 3,
where some escapers in small systems (i.e. N � 25) could be traced back
to the initial conditions after several crossing times. A similar conclusion
was reached for the generation of high-velocity escapers in Trapezium-
type systems [Allen & Poveda, 1972], where the emphasis was on actual
reproducibility.
The time-scale for reproducibility depends sensitively on the history

of interactions, as can more readily be ascertained using the regularized
three-body code TRIPLE. Thus in the so-called ‘Pythagorean Problem’
[Szebehely & Peters, 1967], which terminates in escape after about 16
crossing times, time-reversed rms errors in coordinates and velocities of
5×10−3 and 2×10−3 are obtained with a tolerance of 10−10. This reduces

‡
NBODY 1 gives ∆a/a � −4× 10−5 per orbit for e = 0.9 with η = 0.02 or 170 steps.
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to 2×10−5 and 8×10−6, respectively, if the tolerance is 10−12. On the other
hand, the correct outcome of the final binary energy and high eccentricity
is also reproduced with a tolerance of 10−8. This is mainly connected with
the delay of the time reversal until max {R1, R2}/a � 70, rather than soon
after escape, so that phase errors due to the binary accumulate. Hence
performing the time reversal instead at a corresponding distance ratio of
9 with tolerance 10−9 gave a satisfactory outcome.
Another way of looking at the reproducibility question is to consider

the sensitivity of solutions to small changes in the initial conditions. Thus
neighbouring trajectories in phase space exhibit exponential growth of
their differences, pointing to the chaotic nature of the evolution. Such be-
haviour is most readily demonstrated in the general three-body problem,
where individual orbits can be studied more confidently by regularization
methods. However, even with the best methods, some three-body orbits
are too complicated to be reproduced by time reversal. One investiga-
tion based on global three-body regularization [Dejonghe & Hut, 1986]
demonstrated large amplification factors due to small changes in initial
conditions; in particular, resonant scattering exhibited great sensitivity.
Thus we may adopt the point of view [Mikkola & Hietarinta, 1989] that
the numerical solutions of the Hamiltonian system

ṗ = −∂H

∂q
+ ξ ,

q̇ =
∂H

∂p
+ ζ , (13.1)

are explored and the unknown additional functions ξ and ζ include the
integration errors. It is further surmised that numerical noise adds to the
randomness which may introduce new properties. On the other hand, the
concept of shadow orbits enhances the confidence in N -body simulations
[Quinlan & Tremaine, 1992].
The choice of time transformation may also affect the accuracy. As

discussed previously, the secondary expression (5.57) improves the nu-
merical behaviour during critical triple encounters. However, following
subsequent suggestions [Zare & Szebehely, 1975; Alexander, 1986], the
alternative t′ = 1/L is preferable. Thus in the former case we still have
that t′ ∝ R3/2 for an equilateral system, whereas t′ ∝ R when choosing
the Lagrangian. Moreover, it can be shown that if Γ0 denotes a small de-
viation from the regularized Hamiltonian, the corresponding equation of
motion implies an acceleration correct to second order [Mikkola, private
communication, 2001],

r̈ = (1− Γ20)F , (13.2)

where F represents the true physical force per unit mass.
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When it comes to errors in large simulations, there is little alternative
but to fall back on the energy check. However, much can be gained by com-
bining several independent calculations in order to improve the statistics
[cf. Giersz & Heggie, 1994a]. This study showed that the averaged results
of a suitable number of statistically independent N -body models con-
verges to predictions obtained by the Fokker–Planck approach, thereby
demonstrating the correctness of the models. Thus the ensemble of these
integrated models is within the range of physically allowed models or tra-
jectories of the system. Further comparisons between Fokker–Planck and
N -body models for two-component systems also showed reasonable agree-
ment [Spurzem & Takahashi, 1995], given the restriction of the former
method to isotropic velocities, which was later overcome [cf. Takahashi,
1995].
It is reassuring to know that any significant problem invariably shows

up in the calculation of the total energy, which essentially represents the
difference between two large numbers but, even so, the loss of precision is
usually not too serious.§ Moreover, the choice of integration parameters is
guided by examining smaller systems, as was done above. Now a variety
of effects are included, some of which are dissipative. It is therefore very
encouraging that energy conservation can be maintained to a satisfactory
level, which is usually better than 1×10−5 per crossing time for N � 1000
and may be considerably less for larger systems.
Since N -body simulations cover a wide range of densities and time-

scales, as well as different modes of energy exchange or transport, it is
prudent to take a fresh look at the underlying levels of approximations. In
general, the largest energy exchanges are connected with close encounters
involving one or two binaries, some of which can be studied in confidence
by regularization methods. Provided the pre-encounter impact parameters
are unbiased, the outcome of strong interactions should also be statisti-
cally reliable. Hence it is desirable to direct further efforts towards an
analysis of less energetic interactions which are much more numerous.
On the practical side, the relative energy errors produced by the Her-

mite method appear to be randomly distributed such that the accumu-
lated value is often remarkably small, provided that dominant binaries
are treated by regularization. It should also be emphasized that making
adjustments to the energy budget does not affect the calculations them-
selves. Still, the quality of the results depends a great deal on careful
development and checking having taken place. However, in the final anal-
ysis, it is desirable to make comparisons with independent work, if at all
possible. This is done in a subsequent section for the core collapse time
which is a characteristic feature of cluster evolution.

§ The energy associated with close encounters is added as a well-defined quantity.
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13.3 Time-step selection

In order to derive the maximum benefit from a high-order scheme, it is
essential to employ a sensitive time-step criterion. Since the largest er-
ror contributions are usually due to close encounters, it is also important
that the time-step is reduced by an appropriate amount already during
the approach. Regularization may then be applied below some suitable
value (cf. (9.4)). To achieve this objective, we make use of all the available
force derivatives in the form (2.13) which has proved itself. This expres-
sion is quite general and has several desirable properties. First, it gives
a well-defined value in the case of starting from rest when the odd force
derivatives are zero, which yields the simple relation (2.12). Moreover, if
the force is close to zero, which may occur with an external tidal field,
the time-step can still be relatively large because the orbit is smooth.
On a historical note, in the late 1970s it was found that the choice

(2.12) was not satisfactory for collapsing systems with softened potential,
and the more general expression (2.13) was therefore introduced after
some experimentation. Here the basic philosophy is that all the force
derivatives should play a role in order to ensure convergence of the Taylor
series. Consequently, the actual value of the time-step is not significantly
affected by any particular term being unduly small. There are several
good reasons for choosing a relative force criterion. This has to do with
minimizing individual error contributions as well as the property that the
time-steps of two unequal-mass particles will tend to be similar during a
dominant two-body encounter. The latter feature is especially useful for
identification of candidates selected for regularization.
The property of the time-step criterion (2.13) may be illustrated by an

application to the KS formulation. We restrict our attention to unper-
turbed two-body motion without lack of generality and define the regu-
larized force in the usual way by

FU = 1
2hU . (13.3)

Applying successive differentiation with respect to the fictitious time and
using absolute values on dimensional grounds, we put U ′2 = 1

4mb for a
circular orbit (cf. (4.24)) and obtain after some simplification

∆τ = ηU

( |h|U2 + 1
2mb

1
4 |h|mb + 1

2h
2U2

)1/2
. (13.4)

We substitute U2 = a and |h| = 1
2mb/a so that ∆τ = ηU(2/|h|)1/2,

which is the standard form involving the frequency (cf. (8.59)). Hence
this exercise yields the desired result without using any factorials.
We now carry out a direct test integration of an isolated binary with

NBODY 1 in order to illustrate the error behaviour for different time-step
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Fig. 13.1. Time-steps for eccentric two-body orbit. Solid line shows the standard
relation (2.13) and dotted line is for Kepler’s Law.

criteria. We adopt an expression based on Kepler’s Law by ∆t ∝ R3/2 and
compare the errors over 100 periods for low and high eccentricity with the
standard criterion. An error sampling after ten periods shows the expected
linear growth in the relative error, giving ∆E/E � −1×10−9 per orbit for
e = 0.5 and both time-step choices adjusted to 570 steps. For e = 0.9, the
Kepler choice is marginally worse with mean relative errors of −3.8×10−9
and −1.8× 10−9, respectively, for about 1200 steps per particle per orbit.
Thus the general time-step expression (2.13) appears to perform rather
well during a close two-body encounter if it can be assumed that the
comparison is optimal. As indicated above, for pure two-body motion the
simpler criterion (2.12) is slightly better. However, the general form is
more sensitive for detecting close encounters.
As shown in Fig. 13.1, the general expression spans a wider range and

yields smaller values in the pericentre region, except for the innermost
part. It should also be remarked that even soft binaries are chosen for
regularization if the eccentricity is sufficiently large, although such bina-
ries are not usually persistent.

13.4 Test problems

Since there are no general analytical solutions beyond the two-body prob-
lem, it is difficult to devise suitable tests for large simulation codes even in
idealized form. Historically, the so-called ‘IAU Comparison Problem’ for
N = 25 [Lecar, 1968] created some confusion, especially since the initial
conditions gave rise to collapse and violent relaxation. The alternative
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approach of comparing the evolution rate with approximate methods was
more successful [Aarseth, Hénon &Wielen, 1974]. Subsequently, the agree-
ment with the Monte Carlo method improved further after taking into ac-
count the non-dominant terms neglected in the standard relaxation theory
[Hénon, 1975]. A more thorough recent effort concentrated on the ques-
tion of scaling to different values of N and hence bridging the gap with
continuum methods [Heggie et al., 1998].
The classical theory of dynamical friction has been tested by combining

the gaseous model for single stars with a Monte Carlo formulation for su-
perelastic binary scattering [Spurzem & Giersz, 1996]. This work studied
the evolution of hard binaries interacting with the single stars, assuming
initial equipartition. The agreement obtained with theoretical expecta-
tions also serves as a test of the Monte Carlo treatment of relaxation.
Comparison between Fokker–Planck and N -body results again supports
the correctness of the theory. Although these attempts are instructive
since they establish a connection with theory, they do not provide strict
tests of direct N -body codes.
The evolution of idealized cluster models is characterized by core col-

lapse [cf. Spurzem & Aarseth, 1996]. It is therefore natural to formulate
a test problem in terms of determining the time of core collapse, tcc, for
different values of N . This has to some extent been done for the Monte
Carlo, Fokker–Planck¶ and gaseous methods. It is instructive to compare
these time-scales with some results from direct N -body simulations. The
collection of data is presented in Table 13.2 with the scaling τcc = tcc/trh.
For the Monte Carlo methods, Column 3 specifies the typical number

of so-called ‘superstars’. The algorithm of Spitzer & Hart is denoted ‘ex-
plicit’ since it is based on integration of all the superstars, whereas the
‘implicit’ scheme originated by Hénon [1972, 1975] selects superstars by
random sampling. Moreover, recent developments permit a large number
of superstars (currently 1–2× 106) to be treated so that individual stars
can now be represented [Joshi, Rasio & Portegies Zwart, 2000; Freitag
& Benz, 2001; Giersz, 2001a,b]. The essential difference between these
two formulations is that the time-steps in the former are related to the
crossing time, whereas the latter employs a fraction of the relaxation
time. Consequently, the implicit method is much faster where its use can
be justified.‖ Recently, a new Monte Carlo code has been developed for
studying dense galactic nuclei, including tidal disruptions of stars by a
central black hole [Freitag & Benz, 2002].
The comparison of numerical methods cannot be undertaken without

¶ The Fokker-Planck equation was first used by A. Fokker [1914] and M. Planck [1917]
to describe Brownian motion of particles [cf. Risken, 1984].

‖ See Hénon [1972] or Freitag & Benz [2001] for implicit Monte Carlo algorithms.
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Table 13.2. Determinations of core collapse times.

Method Algorithm N τcc Reference

Monte Carlo Explicit 1000 8.0 Spitzer & Hart [1971b]
Monte Carlo Explicit 1000 18.0 Spitzer & Thuan [1972]
Monte Carlo Implicit 1000 17.5 Hénon [1975]
Monte Carlo Implicit 1200 17.0 Stodóblkiewicz [1982]
Monte Carlo Implicit 2000 17.5 Giersz [1996]
Monte Carlo Implicit 100K 15.2 Joshi et al. [2000]
Monte Carlo Implicit 512K 17.8 Freitag & Benz [2001]
Fokker–Planck 1D ∞ 15.0 Cohn [1980]
Fokker–Planck 2D ∞ 17.6 Takahashi [1995]
Fokker–Planck 2D ∞ 11.8 Einsel & Spurzem [1999]
Gaseous Anisotropy ∞ 15.0 Louis & Spurzem [1991]
Tree NBODY X 1000 22.0∗ McMillan & Aarseth [1993]
Direct NBODY 5 3000 3.0 Inagaki [1986]
Direct Parallel 1000 20.0 Giersz & Heggie [1994a]
Direct NBODY 5 104 20.7∗ Spurzem & Aarseth [1996]
Direct NBODY 6++ 8192 16.4 Baumgardt et al. [2002]

∗ This reduces to 17.2 when using γ = 0.1 in (1.11).

due allowance for differences in initial conditions, as well as the way in
which the measurements are reported. Moreover, the low value of τcc
obtained by Spitzer & Hart was increased by using better diffusion co-
efficients [cf. Spitzer & Thuan, 1972], whereas τcc � 15 for a subsequent
Plummer model [Spitzer & Shull, 1975a]. On the other hand, a sequence of
King models gave τcc = 15.0, 13.0, 11.0 forW0 = 3, 5, 7, respectively [Joshi
et al., 2000]. There is also some indication that the dispersion is quite
small, with about 1% spread for 105 superstars [cf. Freitag & Benz, 2001].
Note that the gaseous model includes a density-dependent heat source to
account for the hardening of binaries formed by the three-body process
[cf. Bettwieser & Sugimoto, 1984]. In the latter investigation, τcc � 15.4
based on γ = 0.4.
Only one of the table entries [i.e. Inagaki, 1986] relates to a mass spec-

trum, with power-law exponent α = 2.5 and mass ratio 10. As expected on
general grounds, this leads to an accelerated evolution. The much shorter
time-scale is in qualitative agreement with early Monte Carlo simulations
for three discrete mass groups [Spitzer & Shull, 1975b], and also with
Fokker–Planck models which produced values of τcc in the range 3–15
by varying the IMF [Inagaki & Saslaw, 1985]. A similar result of τcc � 3.1
has been obtained for a King model (W0 = 5), continuous mass function,
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simplified stellar evolution and tidal field [Giersz, 2001b]. Also note that
rotation reduces the evolution time [Einsel & Spurzem, 1999].
Since the N -body results are expressed in terms of the half-mass re-

laxation time, trh (cf. (1.11)), the theoretical scaling factor, N/ ln(γN),
has been absorbed and the small internal dispersion is reassuring, con-
sidering that the results of Giersz & Heggie are for a King model instead
of the Plummer model. Likewise, the core collapse times for the contin-
uum models are mostly in reasonable agreement with the N -body results.
Thus it appears that core collapse times for direct integrations are mu-
tually consistent, as has also been emphasized previously∗∗ [cf. Spurzem,
1999]. Finally, we note that the traditional value of the Coulomb factor for
equal masses, γ = 0.4, is too large. The smaller value γ = 0.11 has been
determined by N -body simulations [cf. Giersz & Heggie, 1994a], whereas
Freitag & Benz [2001] used γ = 0.14.
Most large-N simulations are not of the idealized type considered above.

However, we need to be confident that the basic process of relaxation is
modelled correctly before introducing complications, and this appears to
be the case. In this spirit, we may go on to include additional dynamical
effects due to an IMF with or without primordial binaries, as well as rota-
tion. Now the parameter space becomes too big for specific comparisons
and the results must be taken on trust to a large extent. This makes it
important to be aware of the possible dispersion so that a given calcula-
tion can be interpreted properly [cf. Giersz & Heggie, 1994a,b]. Although
there is no good theory of fluctuations to guide us, it is fortunate that
global quantities tend to become better defined with increasing N or the
use of ensemble averages. This leaves the difficult question of scaling the
results to larger N which is yet to be resolved, even though attempts have
been made [cf. Heggie et al., 1998; Baumgardt, 2001].
N -body simulations provide many opportunities for comparison with

theory. Although analytical work is invariably based on approximations,
the theory of dynamical friction is sufficiently well established to permit
detailed comparison with numerical experiments [Bonnell & Davies, 1998].
The phase of mass segregation is of particular interest because it precedes
core collapse and can therefore be compared more readily with approxi-
mate methods. Moreover, the presence of a mass spectrum gives rise to
an early evolution that may be compared with theoretical estimates [cf.
Spitzer, 1987]. In particular, a two-component system is more amenable to
analysis and therefore constitutes a possible test problem. The outcome is
also of astrophysical interest since massive stars are usually found in the
inner cluster region [Raboud & Mermilliod, 1998b]. However, the question
of a possible initial segregation still remains open.

∗∗ A recent case N = 64K gave τcc = 17.8 [Baumgardt, private communication, 2002].
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13.5 Special-purpose hardware

Ideally, a FORTRAN N -body code should work on any computer. How-
ever, the situation has become more complicated with the construction of
both parallel and special-purpose machines. In the former case, the main
new feature is message-passing between the different processors in order
to advance the integration consistently. Such procedures take the form
of a replication of all common variables across the processor network in
order to keep them synchronous. Moreover, the standard data structure
needs to be modified slightly [cf. Spurzem et al., 2003].
The development of parallel computers is undoubtedly favourable for

many tasks in comparison with the older vector supercomputers that seem
to have gone out of fashion as far as direct N -body simulations are con-
cerned. It provides opportunities for attacking large computations in new
ways that inevitably bring rewards to those who make the effort. However,
the cost-effectiveness of such expensive installations should be questioned,
since what we now call medium-sized simulations (i.e. N � 1000) can be
made on laptops in a few hours without any overheads.
An exciting new technology for special-purpose computers has emerged

during the last decade. It started with the GRAPE family [Sugimoto et
al., 1990], where the force evaluations are performed by hard-wired op-
erations that supply the result to a host machine. Later, the more accu-
rate HARP-1 was designed for collisional calculations [Makino, Kokubo
& Taiji, 1993] and in 1994 the Cambridge HARP-2 with eight pipelines
was acquired, yielding an actual performance of 1.9Gflops for N = 104.
Subsequently, an innovative project led to the more powerful GRAPE-4
[Makino et al., 1997] with peak performance of 1Tflop [see also Makino,
1996a]. In addition to significantly improved precision, these machines
provide the explicit derivative of the force, thereby facilitating a fourth-
order integration scheme. Since HARP is also designed for the Hermite
method, we continue to use the original name to distinguish it from the
low-precision GRAPE-3 and GRAPE-5 versions which are mainly em-
ployed in cosmological or collisionless simulations.
In some sense, this new technology is a backwards step because it re-

lies on the brute force method of solution. However, the large gain in
speed outweighs the loss of efficiency and makes this solution method
highly cost-effective. Several smaller versions have been used for dedi-
cated studies of star clusters and planetary dynamics, and the experience
is favourable. HARP-2 calculates F and Ḟ for up to eight particles at
the same time after predicting all N coordinates and velocities on the
hardware. A more powerful version called HARP-3 with up to 88 simul-
taneous force calculations has also been in use, with an actual performance
of about 20Gflops for N = 4× 104, near the chip memory limit 42K.
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Table 13.3. Pipe-line efficiency.

Machine Pipes N Levels Cycles Efficiency

HARP-2 8 10 543 16 5.1× 105 0.962
HARP-3 88 10 543 16 7.3× 104 0.519
HARP-3 88 20 461 18 3.2× 105 0.644
GRAPE-6 48 50 705 20 2.6× 106 0.826
GRAPE-6 48 50 081 22 6.7× 106 0.731
GRAPE-6 48 100 145 22 1.1× 107 0.841

The code NBODY 4 has been specially adapted for HARP, as well as the
new GRAPE-6 [Makino, 2003; Makino, Fukushige & Namura, 2003], and
many features are discussed elsewhere in this book. Here we comment on
some aspects relating to the performance and first consider the simplified
case of single particles. Although the number of force evaluation pipes
is relatively small compared with the number of processors on a CRAY
T3E supercomputer, there are many occasions when only a few particles
are advanced at the same time. Such small time-steps are invariably con-
nected with terminations of KS or chain regularization and the subsequent
initialization. Hence it becomes a question of the pipeline efficiency due
to the hierarchical time-step distribution. Some examples are illustrated
in Table 13.3 for three different types of hardware.
We have included the two older Cambridge machines as well as the

newly acquired GRAPE-6 with theoretical peak of 1Tflop and 600Gflops
actual performance for N = 256K with P4 2GHz host.†† Although the
latter has 32 chips, there are 48 virtual pipelines for parallel force calcula-
tions. Each entry is for an appropriate value of N , together with a typical
number of hierarchical levels. In general the number of levels increases
slightly with N and depends on the core–halo density contrast. Moreover,
the shape of the time-step distribution is a reflection of the density.
We assume a bell-shaped curve with relative membership distribution

P (l) = 2l−1+l for level l up to l∗ = lmax/2 and P (l) = P (l−1)/2 for l > l∗,
where lmax is the maximum number of time-step levels. The symmetry is
preserved by setting P (l∗ + 1) = P (l∗) and using even values of l∗. This
distribution is unfavourable for a parallel treatment but representative
of realistic cluster models. The efficiency is obtained by considering the
number of force evaluations during an interval equal to the maximum
time-step, and adding the total number for each block-step according
to the weights P (l). Column 3 shows the corresponding particle number

†† A more powerful version with 1024 chips and four hosts has reached 11.5Tflops in a
binary BH simulation with N � 1× 106 particles [Makino & Fukushige, 2002].
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and the last column displays the efficiency. The actual hardware cost is
reflected by the total number of cycles given by Column 5 because the
CPU time is independent of the block-size.
A comparison of HARP-2 and HARP-3 for a Plummer model with

N = 104 equal-mass particles yielded a factor of 4.8 in the ratio of CPU
times when the initialization cost was excluded. Given a substantially
faster host on HARP-2, this relative performance agrees quite well with
the last two entries of Table 13.3. As for GRAPE-6, the efficiency for
N > 5× 104 should be judged in relation to its performance. In any case,
the host is a bottleneck for realistic simulations with stellar evolution and
primordial binaries.‡‡ However, the amount of slowing-down cannot be
quantified without reference to a specific model.
Working with the special-purpose hardware gives several opportunities

for optimization. Thus there is a useful feature that some tasks can be
carried out on the host while HARP or GRAPE-6 is busy evaluating the
forces. The main time-saving procedures consist of predicting the next
sequence of particles on the block (if any) and correcting the previous
block members. Moreover, the facility for creating a list of neighbours
inside a specified distance is invaluable since this is needed for many dif-
ferent purposes. Among some of the main requirements are KS perturber
selection, finding the closest neighbours for the chain and merger proce-
dures, checking for unperturbed motion and performing force corrections
due to stellar mass loss. This entails making a suitable initial guess of the
search distance, taking into account the location in the cluster and, where
relevant, the semi-major axis, as well as the perturbation itself since the
latter is a good indicator of the nearest neighbour.
Some of the most frequent uses of the neighbour list are concerned with

the redetermination of perturbers. It is necessary to ensure a sufficiently
large membership for including more distant massive particles (cf. (8.58)).
On the other hand, when only a few close neighbours are needed, the
following strategy has been adopted. Given the distance to the density
centre, ri, the core radius, rc, and membership, Nc (to be defined later),
we choose a basic search distance

d = (r2c + r2i )
1/2/N1/3

c (13.5)

if r < 2rh, otherwise d = ri − 1.9rh subject to a suitable maximum.
When primordial binaries are present, the neighbour list is used heavily
for checks of unperturbed motion. However, we may take advantage of a
faster hardware facility that returns only the closest particle index.

‡‡ Notwithstanding early globular cluster simulations of primordial binaries [Spitzer &
Mathieu, 1980], a cost analysis of direct integration in the large-N limit did not
consider this aspect and concluded that the decreasing formation rate would lead to
reduced computational requirements for the binaries [Makino & Hut, 1990].
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Since HARP is used together with a workstation host, the actual per-
formance depends on many factors which affect the load balance. One
important aspect concerns the treatment of perturbed binaries which is
described in Appendix E. In addition to obtaining differential corrections
of F and Ḟ for the c.m. as well as the associated perturbers, the rela-
tive motion must be integrated on the host. From the experience so far,
the performance is degraded when a large binary population is present,
especially for binding energies near the hard/soft boundary that usually
require a significant perturber membership. Hence if an effective algorithm
can be developed for parallelizing such binaries on a multi-processor ma-
chine or so-called ‘Beowulf configuration’, this may well prove a better
way to carry out such demanding simulations.

At present some exciting hardware developments are emerging that
will undoubtedly become part of future configurations. Thus Field Pro-
grammable Gate Arrays (FPGAs) may replace the host for carrying out
certain time-consuming tasks [Kuberka et al., 1999]. For example, in the
limit of large N , it appears feasible to evolve stars or treat collisions by
SPH in real time. One project has already made significant progress us-
ing a workstation host combined with an FPGA board and the GRAPE
[Spurzem et al., 2002]. Thus the FPGA architecture facilitates the evalua-
tion of neighbour interactions in an analogous manner to the AC scheme.
Thus a successful implementation of SPH has been achieved with consid-
erable gain in performance compared with a standard GRAPE configura-
tion. Moreover, such a hybrid architecture has the potential to overcome
bottlenecks on the host for a variety of applications. We also emphasize
the advantage of a short development time for new software as well as
rapid reconfiguration of existing algorithms in much the same way as
current libraries are used.

As far as the GRAPE hardware is concerned, it is highly desirable to
improve the design by including a general neighbour scheme in order to
achieve higher performance. At the same time, the rapid advances being
made in computer design will surely continue to present new opportuni-
ties, especially as regards parallel developments. In addition to the new
breed of parallel supercomputers [Tamaki et al., 1999; Brehm et al., 2000],
we mention the recent trend of constructing Beowulf PC clusters that in-
volves combining a large number of fast processors. Thus one such system
consisting of 20 Pentium 4 processors has recently been installed and used
for the code NBODY 6++ described in section 10 [Spurzem, private com-
munication, 2002]. In conclusion, judging from the substantial progress
on many fronts since the early days, it can be anticipated that further
software innovation and technological improvements will open up many
new exciting avenues.
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Fig. 13.2. CPU time comparisons. The symbols are: asterisks for the worksta-
tion tests, open circles for HARP-2 and filled squares for GRAPE-6.

13.6 Timing comparisons

We conclude this chapter with a brief comparison of performance in order
to illustrate the power of special-purpose hardware and also demonstrate
what can be achieved on a standard workstation or fast laptop. The actual
performance of a code depends on many factors. As an illustration of the
capability of the AC method, the Hermite version with small softening was
used to obtain some characteristic timings, although NBODY 6 was found
to be be similar. Further calculations were made with the special-purpose
machines HARP-2 and GRAPE-6.
Figure 13.2 displays the CPU times for a few values of the particle

number and an equal-mass Plummer model in virial equilibrium. Standard
accuracy parameters ηI = 0.02, ηR = 0.03 were used with softening ε =
4rh/N , while η = 0.02 on the special-purpose computers that do not use
softening. A short integration to tf = 2 was chosen, during which there
were only a few close hyperbolic encounters. It was found experimentally
that increasing the predicted neighbour number (3.3) by a factor of 2
produced the minimum CPU times. Note that the original expression was
based on tests with N ≤ 200, influenced by memory considerations that
are no longer relevant. To a good approximation, the total CPU time in
minutes per scaled time unit can be expressed as Tcomp � A(N/10 000)2.1,
where A � 4.5 for a 500Mflops (2GHz) workstation. Likewise, we obtain
Tcomp � 6.7(N/50 000)1.7 for GRAPE-6 and N in [5×104, 3×105]. Hence
the AC exponent is somewhat larger than the original value 1.6 for small
N [Aarseth, 1985a], also found by Ahmad & Cohen [1974], but in full
agreement with Makino & Hut [1988] for N ≤ 1000.
In the case of special-purpose hardware, the additional time spent on
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Table 13.4. Comparison of integration steps.

N Irregular Regular n̄ time

2500 9.83× 105 1.03× 104 41 2.1
2500 9.83× 105 1.05× 104 57 2.1

10 000 5.21× 106 4.32× 105 82 44.8
10 000 5.21× 106 4.05× 105 154 44.6
25 000 1.56× 107 1.10× 106 136 288.6
25 000 1.56× 107 9.88× 105 304 287.0

initialization is not included here since the host computer is perform-
ing the most expensive tasks. Comparing a 500Mflops workstation with
HARP-2 itself forN = 10 000, the respective times are 9.0 and 21 minutes.
Thus 5.28×106 integration steps on the latter and 57 equivalent floating-
point operations for each interaction yields 2.4Gflops with the enhanced
host. These timings are consistent with the theoretically predicted speed-
up factor of (N/2)1/4 for the AC method [Makino & Aarseth, 1992]. Note
also that the number of time-steps are remarkably similar.
A second purpose of the timing tests was to compare the present AC

code with the proposal for a different form of the predicted neighbour
number based on theoretical considerations [Makino & Hut, 1988]. In the
event, the suggested choice np = (N/10.8)3/4 gave a slightly smaller CPU
time than the bracketing factors N/10 and N/12 with the chosen pa-
rameters for N ≤ 104. The results are summarized in Table 13.4 for a
100Mflops workstation. The corresponding entries are for the modified
original method, followed by the Makino–Hut proposal. Note the similar
number of irregular time-steps, while the final average neighbour num-
bers are significantly different. In fact, constant small neighbour numbers
provide better parallelization and load balancing in parallel execution
and would also be an advantage for the design of the next generation of
special-purpose hardware [cf. Spurzem et al., 2003]. In this connection,
we mention a simulation with N = 104 and nmax = 100 which took 60
minutes and yielded an acceptably small energy error. The corresponding
number of integration steps was 5.20× 106 and 7.11× 105, with n̄ = 15.
Hence it is possible to employ small neighbour numbers with some loss of
efficiency which is not a major concern on parallel computers.
In conclusion, we note that the workstation tests with N = 25 000

represent a factor exceeding 103 with respect to the initial investigation
of von Hoerner [1960], although the latter study covered somewhat longer
time intervals. Moreover, GRAPE-6 is already a factor of 20 faster than
the corresponding host in spite of using the brute-force method.
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Practical aspects

14.1 Introduction

In the preceding chapters, we have described a variety of numerical meth-
ods and their implementation. Given these tools and algorithms, it should
be possible in principle to construct direct N -body codes for dynamical
studies. However, the combination of methods introduces considerable
complications which have taken many years to master and it is therefore
much easier to take over one of the large codes.∗ On the other hand, it
would be good programming practice to implement a stand-alone code
based on direct summation with softened potential or three-body regu-
larization, where decision-making is considerably simplified.
In the following we provide some hints to facilitate the use of one of the

main codes, as well as guidelines for implementing movies. These range
from practical comments on getting started to producing a meaningful
description of the results. Special counters that record events of interest
provide further information. Graphics packages are generally avoided in
the codes for reasons of compatibility. However, two versions of stand-
alone regularization codes are available with software for movie making
which is a good way to study dynamical interactions. We also discuss some
diagnostic aspects that may assist in the dissemination of the results and
outline various strategies for identifying numerical problems.

14.2 Getting started

Each computational project invariably has certain objectives which are
defined by choosing specific initial conditions. This may also entail minor
code changes to deal with particular requirements. A general understand-
ing of the data structure then becomes desirable because any modification

∗ Most of the codes are freely available on http://www.ast.cam.ac.uk/∼sverre.
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may have unforeseen repercussions. Ideally, a user manual should be avail-
able, describing relevant machine-related aspects, together with input
templates. However, this is a big task and to avoid duplication it is hoped
that this book will provide most of the information needed. The manual
will therefore mostly be limited to some practical issues. In addition, a
list of all the routines and their main purpose has been prepared.
To start with, an appropriate choice of the maximum array sizes for the

common blocks (cf. Table 7.6) must be made. Memory is usually not an
issue on modern computers but unduly large array declarations produce
unwieldy common data saves, and in any case recompilations are very
fast. Before compiling, it is also necessary to select the most suitable
FORTRAN compiler for the chosen hardware.
The main input parameters and options are listed in Tables 7.3 and

7.4, respectively. One useful feature of the codes concerns the verification
of acceptable values of the main input data, otherwise termination oc-
curs. Since the network of options is rather complicated, it is difficult to
detect any mutual inconsistency even after consulting the definitions in
the table. We distinguish between idealized and realistic cluster simula-
tions, where the latter require several additional options related to stellar
evolution, primordial binaries and finite-size effects. To assist users, in-
put templates have been constructed for both types of system. As far as
input data are concerned, many are dimensionless and appropriate to a
wide range of particle numbers, whereas most of the others have dynam-
ical significance. Although the number of input lines is quite small for
a standard calculation, additional options call for some insertions which
can be confusing for the unwary.
Before making changes, any existing test results should be consulted

and compared, but such results are often both machine- and compiler-
dependent. Hence a satisfactory outcome, defined by the energy check
(9.31), is perhaps the best one can hope for in a complicated code when
the luxury of an alternative reliable solution method is not available.
Hopefully, there should be no difficulties when making a long standard
calculation without modifications. More stringent tests are possible with
the three-body or chain regularization codes in the form of time reversed
solutions, which can often be reproduced to high accuracy.
As for making changes, a distinction should be made between includ-

ing more data analysis and other implementations affecting the integra-
tion scheme. The former should be straightforward, whereas any genuine
modifications require a good understanding of the code design and data
structure. In particular, great care must be taken when introducing ad-
ditional variables, and this also holds for data analysis. Still, the data
structure is sufficiently versatile to permit manipulation of complicated
configurations, as can be seen from the treatment of ghost particles.
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14.3 Main results

Every practitioner has different ideas on how to display the results. As
a compromise, summaries of interesting quantities are available at regu-
lar time intervals. Some of this information is not fully documented but
headings assist in the interpretation and inspection of the relevant part
of the code should lead to clarification. Among the various optional data
available are Lagrangian radii for different mass percentiles, relevant core
parameters and distributions of binary properties, as well as integration
steps. However, there is no attempt to determine the density profile since
the Lagrangian radii are usually preferred.
An optional general data bank is also produced with prescribed fre-

quency in terms of the standard interval for main results. This contains
the basic variables mj , rj , ṙj for all single particles and c.m. bodies, as
well as other useful data such as particle identity, potential energy, local
density contrast and stellar type. Thus, if desired, all data analysis can
be performed afterwards using this information which also contains some
relevant global quantities readily identified by code inspection. Moreover,
it is a simple matter to include additional data summaries of any desired
information, which can always be constructed from the basic variables.
Note that the data bank contains only the current cluster members when
using the optional escape procedures, and hence is much reduced in size
at later times. In any case, it is not appropriate to retain distant particles
in the orbit integration, at least when using a linearized tidal field.
Since a given state is likely to contain hierarchical systems, it is de-

sirable to reconstruct the properties of the associated ghost particles (cf.
section 11.7). This is achieved by means of identifying the correspond-
ing merger index that enables the relevant quantities to be obtained, as
described in detail by Appendix D.2. When it comes to the analysis of
hierarchical binaries, the energy of a dormant KS pair may be recovered
from the merger table by combining the reduced mass with the corre-
sponding saved value of the binding energy (cf. Appendix D.2).
The rare case of an active chain regularization occurring at the time

of data analysis also needs to be allowed for since ghost particles play
a similar role here. This is much simpler than for hierarchical systems
and consists of the following two steps. First the global location of each
member is determined by comparing the names Nj with the chain ta-
ble names, taking care to include the case of zero name for the reference
body which may not always come first in the sequence because of possible
ejections. This permits the combination of the global coordinates and ve-
locity of the reference body with the individual local values, as is done for
perturbation calculations. Hence the basic data arrays may be modified
accordingly.
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Further procedures are invoked by employing a second time interval,
∆tadj, which is usually smaller for convenience but this is not a require-
ment. Among these are the energy check, escaper removal and updating
of the density centre as well as of the integration parameters (cf. sec-
tion 9.9). In the Hermite versions, and especially NBODY 6, it is slightly
advantageous to make use of time intervals that are commensurate with
unity or the first few fractions 1/2n [cf. Makino & Aarseth, 1992], when
all of the most sensitive solutions are known to full accuracy.
The structure of the codes relating to the generation of data files is rela-

tively simple. After all the coordinates and velocities have been predicted
to highest Order and the current density centre evaluated, any special
procedure for data analysis may be implemented. Since the evolution rate
of a cluster tends to slow down with time, it may be desirable to sample
the data less frequently. This is achieved by increasing both time intervals
by a factor of 2, subject to the checking interval being less than the cur-
rent crossing time (which increases significantly) and the cluster binding
energy sufficiently small in absolute value.

14.4 Event counters

One good way to describe the history of a simulation is to make use of
special counters, since this type of information cannot be reconstructed
from the general data bank which only provides occasional snapshots.
We distinguish between various counters monitoring the integration and
others that refer to events of one kind or another. It may be instructive
to illustrate some of the main counters from a typical simulation with
1800 single stars and 200 primordial binaries, as displayed in Table 14.1.
These results were produced by a workstation using NBODY 6, hence some
astrophysical processes discussed in this book are not included.
The results were obtained using the input data specified by Table 7.3

which is also part of the standard template when primordial binaries and
stellar evolution are included (except for nmax = 140). The ratio of irreg-
ular and regular time-steps gives a measure of code efficiency, where the
separation of time-scales increases slowly with N . Given that relatively
smooth motion still requires about 100 regular time-steps for a typical
cluster crossing, the actual ratio is decided by the amount of close en-
counters and other irregularities. Moreover, the extent of any core–halo
structure is also relevant. As for regularization activity in general, this
depends on any primordial binaries being present. In the present exam-
ple, the amount of chain regularization is fairly modest as measured by
the internal step counter, NSTEPC, whereas the external c.m. time-steps
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Table 14.1. Characteristic counters.

Name Definition Counts

NSTEPI Irregular time-steps 8.0× 107
NSTEPR Regular time-steps 2.1× 107
NBLOCK Block steps 5.1× 106
NKSTRY Regularization attempts 2.4× 106
NKSREG KS regularizations 2.2× 103
NKSHY P Hyperbolic regularizations 800
NKSMOD KS slow-down modifications 6.6× 104
NKSPER Unperturbed two-body orbits 4.6× 1011
NMERGE Hierarchical mergers 359
NEWHI Independent new hierarchies 25
NCHAIN Chain regularizations 86
NSTEPU Regularized time-steps 4.2× 107
NSTEPC Chain integration steps 1.1× 105
NMDOT Stellar evolution look-ups 5.0× 104
NSN Supernova events 5
NWD White dwarfs 90
NCOLL Stellar collisions 4
NBS Blue stragglers 2
NSY NC Circularized binaries 9
NSESC Single escapers 1833
NBESC Binary escapers 176
NMESC Hierarchical escapers 2

tend to be larger. An assessment of the relative numerical effort of these
procedures is difficult in view of the different solution methods. However,
when using HARP, an occasional long-lived chain configuration may slow
the host computer noticeably and therefore affect the load balance.

Unperturbed two-body motion is employed extensively in the simu-
lation. This is reflected in the choice of the initial period distribution
which has a lower cutoff of 5 days, whereas the hard binary limit is near
ahard � 200 au. On the other hand, modifications of the slow-down factor
κ for KS solutions (cf. Algorithm 11.2) occurred surprisingly few times.
This may be taken to mean that a given value is applicable over many
orbits before any adjustment by a factor of 2 either way and also that
unperturbed motions are predominant.

The last part of the table refers to aspects connected with stellar evolu-
tion. Given the actual disruption time of about 2.0Gyr, the total number
of look-up procedures is quite modest. This is essentially due to the small
fraction of stars that evolves substantially during this time. The number
of collisions is also small, as might be expected. In addition to the two
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blue stragglers and two other collisions, there were two so-called ‘contact
binaries’ following coalescence in circularized orbits. Note that the coun-
ters give the accumulated as opposed to the current number. Finally, as a
bonus, one hyperbolic capture was recorded. It also appears that signifi-
cantly larger cluster ages are needed to produce the maximum observable
number of blue stragglers at any one time [Hurley et al., 2001a], which
can therefore only be reached for larger cluster models.
Escape of binaries is a common process in this type of simulation. This

includes a significant percentage of low-mass binaries which retain their
pre-escape values of a and e, and are therefore ejected as point-mass ob-
jects. Out of the 176 binaries that escaped before termination at Nf = 2,
eight did not consist of the original components. The escape of hierarchies
generally takes place after the half-life stage, when the central potential
is weaker. It has been noted that such systems tend to be centrally con-
centrated, as is also the case for binaries [Aarseth, 2001a; Aarseth &
Mardling, 2001]. In the present small simulation, there are typically one
or two stable systems at one time but this increases to about ten for
N � 104 and even 50 for N � 3 × 104 with 50% binaries. From the
counter of independent hierarchies, the formation rate is quite small but,
in compensation, the life-times are often long.
The Hermite integration scheme gives rise to highly satisfactory energy

conservation, bearing in mind the many dissipative events. Thus the sum
of all relative energy errors,

∑
∆E/E, amounts to only about −1× 10−4

for the whole calculation. Likewise, the alternative measure of adding the
actual deviations,

∑
∆E, represents less than 0.03% of the standard initial

energy, E0. Finally, we remark that the test calculation presented here
involves many energetic interactions and is therefore quite challenging.

14.5 Graphics

The introduction of graphics in a code invariably raises questions of com-
patibility. Hence it may seem preferable to produce separate versions that
can only be used with commonly available software. Examples of the al-
ternative approach are contained in the NEMO package [Teuben, 1995]
and also the STARLAB facility [McMillan & Hut, 1996].† Here the user
can generate a variety of initial conditions and perform some integrations
illustrated by movies. However, most of these procedures are based on the
C and C++ programming languages which may deter some.

The philosophy adopted here is to include movie making facilities in the
special FORTRAN codes that employ multiple regularization, TRIPLE

and CHAIN, and also the simplest N -body code, NBODY 1. There is a

† See http://www.astro.umd.edu/nemo and http://www.sns.ias.edu/∼starlab.



258 14 Practical aspects

choice between the X11 graphics that is generally available on UNIX
systems and the popular PGPLOT package, but not all permutations
have been implemented.‡ This provides good opportunities for further
programming developments and is therefore suitable for classroom exer-
cises. There is considerable educational benefit in visual demonstrations
of even quite simple dynamical interactions.
One new feature when making computer movies in real time of few-

body systems with the regularization codes is that the calculations are
usually too fast and need to be slowed down artificially. In any case, it
is desirable to have control over the viewing time. The amount of delay
depends on the hardware which may have widely different cycle times and
experimentation is needed. Moreover, in some cases the standard integra-
tion steps are too big for the visualization to appear continuous and may
need to be reduced by a specified factor. The reason is that the high-order
Bulirsch–Stoer [1966] integrator is used, where smaller tolerances tend to
increase the number of function calls rather than decrease the time-steps.
In practice it is convenient to plot the motion after each integration step,
instead of using constant intervals of physical time, but this may not suit
every purpose and can easily be changed.
Other types of graphics may readily be incorporated in the codes. We

mention simultaneous displays of global quantities of interest, such as the
density and velocity profile or the synthetic HR diagram. Relevant data
for the latter purpose are available as an optional feature. However, the
requirements will generally depend on the nature of the project and any
implementations are therefore best left to the practitioner.
It is clear from these modest beginnings that graphics representation

may take diverse forms. This tool can be readily used to good advantage
in order to gain insight into complicated processes, such as dynamical
interactions of compact subsystems or, indeed, scattering experiments. It
can also be employed for diagnostical purposes when other means fail.
A particular mode of graphics not mentioned here concerns 3D displays
which are particularly suited for visual illustrations of N -body dynamics.
Hence we may anticipate considerable creative efforts in this area, ranging
from personal studies to IMAX displays of large simulations.

14.6 Diagnostics

Simulation codes tend to produce much special information that is only
consulted during the development phase or if there are technical problems.
Given that some calculations may require months of dedicated effort, this
is good programming practice, and in any case the data may not appear

‡ Some movie versions are available on http://www.ast.cam.ac.uk/∼sverre.
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in hardcopy form. In this section, we are mainly concerned with the type
of information needed for disseminating results, whereas the question of
error diagnostics is discussed in the final section. In the first place, it is
useful to distinguish between general data banks and information about
different kinds of dynamical configurations or unusual objects.
The structure of the basic data bank has already been discussed above.

Another systematic table of data is concerned with binaries and is sam-
pled with the same frequency. It consists of the following twelve entries
for each binary in standard notation: Eb, e, Ecm, rcm − rd, mk, ml, Pb,
Nk, Nl, k∗k, k

∗
l , k

∗
cm. Here Ecm is the specific binding energy of the c.m.

body and Pb is the period in days. This optional table facilitates tracing
the history of a given binary that may experience several exchanges or
memberships of hierarchies. We exploit the program data structure and
include only binaries treated by two-body regularization for convenience,
whereas softer binaries may be identified from the basic data bank if de-
sired, albeit at some cost. The case of a hierarchical system being present
is denoted by a special value (i.e. −10) of the c.m. index, k∗cm, and the
entries for Nl and k∗l relevant to the outer component are given instead.
However, an additional table provides more specific information on hier-
archical systems [cf. Aarseth, 2001a].
The question of new binary formation is of considerable interest. A bi-

nary is still defined as primordial even if it exchanges both its components,
since the binding energy is more relevant dynamically than the identity of
the components. Also note that both the mass and absolute value of the
binding energy tend to increase as a result of exchange [Heggie, 1975]. The
identification of any newly formed binary poses an interesting challenge.
For this purpose, we have adopted the following algorithm. A special list
containing the names of the 20 most recently terminated KS components
is maintained and checked for membership when the next two-body so-
lution is initialized. The second condition that must be satisfied is that
the two particle names should not differ by one if the first is a primor-
dial component. However, any hierarchical binary is recognized as being
new, and likewise for a KS pair containing one or even two independent
primordial components if not identified in the termination list.
Given that long-lived hierarchies are an important feature of star clus-

ter models, the question of their origin and evolution deserves attention.
The merger algorithm constitutes one useful tool for this purpose. Such
systems are only accepted for treatment if the outer binding energy ex-
ceeds 1

4εhard, softened by the central distance factor 1 + r/rh. The actual
formation process itself is often elusive and not well defined. However,
we may obtain some interesting data on earlier stages by recording failed
mergers, taking care to avoid too many successive attempts [cf. Aarseth,
2001a]. Recall that this search is performed at each apocentre of a KS
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binary and also after the check for unperturbed motion, in either case
provided that the c.m. time-step is suitably small.
One type of hierarchical formation is associated with binary–binary col-

lisions where the fourth body carries away the excess energy and angular
momentum [Mikkola, 1984a,b]. If chain regularization is used, the outer
triple component is likely to be strongly bound with respect to the in-
ner c.m. Such interactions are readily identified if the stability condition
(9.14) is satisfied since this leads to enforced termination. The fascinating
question of quadruple system formation remains, although some tentative
clues are beginning to emerge [Aarseth & Mardling, 2001].
Further comments on the energy budget may be instructive. According

to Table 9.1, the sum Ebin+Emerge represents the current energy of two-
body motions, with the second term containing the internal energy of any
inactive hierarchical components. During chain regularization, however,
the quantity Ech defined in Table 9.1 is usually dominated by one or
more binaries and should therefore be combined with the above sum to
give a more representative value of the total energy available in fossil fuel.
For some purposes, we may refer to Emerge as latent energy [cf. Aarseth
& Mardling, 2001]. Since the escape of hierarchical triples or quadruples
affects the merger energy, the relevant contributions are subtracted from
Emerge to yield a consistent value after an escape, likewise for any higher-
order systems, where each subsystem is treated separately.
It is useful to distinguish between the total energy (9.29) and the part

that binds the cluster, i.e. Ebind = T + U + Etide. Assuming Ebind < 0,
this gives the current equilibrium crossing time

tcr =
(∑

mi

)5/2
/(−2Ebind)3/2 . (14.1)

Because of energy generation due to binary processes and mass loss from
evolving stars, |Ebind| decreases significantly with time, thereby increasing
tcr even in tidally truncated systems. This can be seen qualitatively by
writing Ebind � −M2/4rh at equilibrium which yields tcr � 2(2r3h/M)1/2.
By analogy with the adiabatic invariance relation amb = const for a bi-
nary undergoing slow mass loss, it follows that both terms contribute to
the increasing crossing time. Finally, we emphasize again that the partic-
ular form of the total energy expression is completely regular since the
additional terms of (9.29) are obtained from well-defined quantities.¶

Another table of interest provides information about distant escaping
particles that are usually removed from the calculation since the lin-
earized tidal field would not be appropriate any longer. One line for each
escaper (single particle, binary or composite c.m.) with non-zero mass

¶ The initial value of Ech is well defined and so is the integrated change.
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contains the quantities tphys, mi/M�, v2∞/v2rms and v∞, where tphys = T ∗t
is in Myr and v∞ is in km s−1. The third term measures the specific es-
cape energy scaled by the current rms velocity, which decreases with time.
The distribution of terminal escape velocities displays a long tail of su-
perfast particles due to strong interactions involving binaries. Thus for
rich open cluster models with N � 104 and rh � 3 pc, examples in ex-
cess of 100 km s−1have been noted, compared with a typical initial value
vrms � 2 km s−1. The summary of results also gives additional information
for each escaping binary or any inner hierarchical components, which may
be extracted and used for analysis (cf. Appendix C.4).
Let us now turn briefly to some astrophysical aspects. The construction

of sequential synthetic HR diagrams illustrates well the opportunities for
observational comparisons [see e.g. Hurley et al., 2001b]. The cluster sim-
ulation codes contain optional procedures for creating such data banks.
One instructive feature is that binaries undergoing different evolutionary
stages are displayed with special symbols to facilitate identification. Many
of these objects are monitored using event counters as discussed above. In
addition, other files contain histories of exotic objects formed by collision
or coalescence via the common-envelope process.
As the modelling improves, further processes involving mass transfer

will be included. In particular, there is considerable interest in the differ-
ent kinds of objects that may be produced, especially since some of them
have short life-times and hence may not be observable in practice. Since
the scheme of combining dynamics with stellar evolution is relatively new
and quite complicated, it is worthwhile to compare many of these results
with population synthesis procedures, where the astrophysics is based on
the same algorithms [cf. Hurley, Tout & Pols, 2002]. This is particularly
relevant for primordial binaries that have experienced small perturbations
to their orbital elements. In conclusion, the provision of a consistent treat-
ment enriches the possible outcomes and is therefore certain to improve
our understanding of star cluster evolution and furnish a comprehensive
description of exotic objects.

14.7 Error diagnosis

In the previous section, we commented on a variety of useful data banks
that are produced by the simulation codes and also discussed some related
algorithmic aspects. Naturally, the availability of such results presupposes
that there are no technical problems. The question then arises of what to
do if this is not the case. Below we offer some simple suggestions that are
connected with the topic of diagnostics.
Several main types of behaviour may be distinguished when discussing

numerical problems in N -body simulations. In the first category we have
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abrupt termination caused by a non-standard condition, such as division
by zero or another illegal operation. It is often possible to pinpoint the
exact location in the code, using special software. However, identifying
the nature of a problem and where it goes wrong is only half the story,
and some understanding of the relevant algorithm will usually be needed
in order to find the right cure. It may be possible to perform a temporary
modification unless something is fundamentally wrong.
The case of infinite looping is another common occurrence that is usu-

ally more difficult to isolate, and a few hints on how to proceed are given
here. Since the process of numerical integration consists of advancing the
solutions by many discrete time intervals, the first task is to ascertain the
precise moment when things begin to go wrong. One way is to restart the
calculation from a recent common save and record some information at
the start of every new cycle or block-step, taking care to stop on any un-
reasonably small value of the current step due to convergence problems. In
order to determine the onset of any deterioration, it is also useful to make
a note of the time-step counters and the given particle identity. Without
any further clues, different processes can be ruled out by elimination.
In the alternative case of termination due to large energy errors it is de-

sirable to monitor the solution in as much detail as possible, paying special
attention to the high-order derivatives which are sensitive to any discon-
tinuities. One tell-tale sign of a force irregularity in the Hermite scheme
is that the natural time-step decreases abruptly, whereas the quantized
value may be reduced by at most a factor of 4. Hence a time-step reduc-
tion trap may facilitate identification at an early stage, instead of waiting
for any extreme condition to develop.
Several other strategies are available if the problem is not connected

with standard integration. For instance, options relating to mergers, two-
body regularization or multiple regularization may be activated to pro-
vide further details about these features. Should the problem be due to
the chain method, two deeper levels of diagnostics are available with in-
formation about each integration step. Likewise, the value of the basic KS
parameters R, h, γ may be obtained after each cycle following the last re-
liable initialization or termination. Moreover, if an unperturbed KS pair
is being updated and the c.m. step is small, there could still be prob-
lems in procedures relating to tidal dissipation, or the search for stable
hierarchies may just fail. Also note that the calculation may slow down
significantly in the presence of a long-lived hierarchy that falls outside
the stability limit and this may give rise to errors. If all this does not
reveal anything unusual, it may also be a good idea to look carefully at
any treatment of stellar evolution. A picture of the general state should
eventually emerge after examining all the available clues. However, it is
important to recognize that there are other processes on short time-scales
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which are intrinsically difficult to handle. We also mention the trouble-
some case of eccentric Roche lobe overflow for an inner hierarchical binary
due to inclination effects, which requires repeated circularization.
Finally, we return again to the question of what to do if the energy

check is not satisfactory. This situation is often related to the existence of
some borderline configuration treated by a less efficient algorithm, thereby
giving rise to systematic errors. For example, in relatively small systems
studied by the AC method, a massive wide binary may not be accepted
for KS regularization because the c.m. neighbour list is too small (e.g.
λR > Rs). This problem is usually remedied by assigning a relatively large
maximum neighbour number, rather than the standard value of 2N1/2.
Other difficulties may be associated with long-lived hierarchical systems,
treated by direct integration or chain regularization, which fail narrowly
to satisfy the stability criterion. In any case, a general understanding of
the current state of the system is desirable, and further information may
be obtained by activating various optional procedures.
One useful strategy is to sub-divide the checking interval in order to as-

certain whether the error accumulation is gradual or caused by a sudden
glitch. Such behaviour might point to the presence of a massive binary
that is too wide to be accepted for KS treatment, or a hierarchical system
just outside the stability limit. The latter may be formed in binary–binary
collisions which are a common feature of realistic cluster simulations. Note
that, depending on the nature of the problem, the results may not always
be reproducible in some codes with complex decision-making, because a
few variables are not part of the saved data. Moreover, any extra predic-
tion of coordinates and velocities to high orders for neighbour schemes
could also affect the outcome.‖

Since the structure of N -body codes is invariably complicated, it is
not always easy to diagnose the initial cause of a problem. Hence trying
to follow a certain suspect sequence may yield many false trails which
must be investigated. Once a troublesome procedure has been located by
a process of elimination, the final search can be narrowed down by energy
checks using the bisecting principle. In particular, the last good value
of the relevant time-step counter may be employed in order to limit the
amount of diagnostic information before identifying the underlying cause.
After determining the exact cause of a problem, the task of improve-

ment is by no means simple and may necessitate significant modification.
This is especially the case if some new condition has been encountered
that falls outside the range of the specified parameters. In conclusion, we
may therefore say that a complicated code is never fully tested and there
are always new challenges to be faced.

‖ For simplicity, present code versions do not employ separate variables for this purpose.
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15.1 Introduction

Simulating star clusters by direct N -body integrations is the equivalent
of scaling mountains the hard way. At any time the maximum particle
number depends on hardware and is therefore limited by technology. Some
of the methods that have been described in this book are ideally suited
to studying the classical point-mass problem. In addition, a wide variety
of astrophysical processes can be included for realistic modelling of actual
clusters. Recently the simulations have been devoted to systems with up
to N � 104 particles which includes rich open clusters. However, with the
construction of the GRAPE-6 special-purpose computer we are now able
to investigate small globular clusters as observed in the Large Magellanic
Cloud (LMC) [Elson et al., 1998].
In the following we concentrate on various aspects of star cluster sim-

ulations not covered in earlier chapters. We first describe algorithms for
determining the core radius and density centre which are useful tools for
data analysis. For historical reasons, idealized models (i.e. isolated sys-
tems) are also considered, particularly because of their relevance for more
approximate methods. After further discussions of the IMF, we return
to the subject of assigning primordial binaries and illustrate their impor-
tance by some general results. External effects due to the tidal field and
interstellar clouds form an important ingredient in star cluster modelling
even though the latter are rarely studied. Algorithms for combining stel-
lar evolution with the dynamical treatment have been outlined previously.
Here we review procedures for mass loss, tidal interactions as well as col-
lisions and highlight the implications for cluster simulations. In addition,
processes connected with stellar rotation are also included. We conclude
by addressing aspects relating to globular cluster simulations, especially
as regards the projected usefulness of the present scheme.

264
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15.2 Core radius and density centre

Most star clusters tend to have regular shapes with a pronounced density
increase towards the centre. However, the symmetry centre used by ob-
servers often deviates significantly from the c.m. in a simulation. This is
mainly due to recoil when fast particles are ejected from the core follow-
ing strong interactions. Already the early N -body discussions [Aarseth,
1963b; von Hoerner, 1963] recognized the need for measuring global quan-
tities with respect to the maximum particle concentration.
The concept of density centre [von Hoerner, 1963] is based on assigning

individual densities, ρj = (3/4π)3.5m/r3j3, defined by the third nearest
neighbour distance, rj3, and forming the expression

rd =
N∑
j=1

ρjrj/
N∑
j=1

ρj . (15.1)

Likewise, the core radius is introduced empirically as a weighted sum over
the individual central distances by

rc =
N∑
j=1

ρj |rj − rd|/
N∑
j=1

ρj . (15.2)

These definitions served their purpose well for a long time. Subsequently,
a systematic investigation of this problem [Casertano & Hut, 1985] pro-
posed the sixth nearest neighbour as the best criterion. Although based
on equal-mass particles, this formulation has been used by several N -body
practitioners after generalization to a mass spectrum.
The present codes employ a slightly different procedure. It is based on

the principle of convergence, namely that the density centre determina-
tion should give essentially the same result by excluding the outer parts.
Since this is an N2 process, we restrict the sample to the innermost N/5
members, based on the provisional guess,∗ max {3rc, rh}. A sorted list of
the six shortest distances is formed, based on the over-estimated value
2(6/nj)1/3Rs, with nj the neighbour number and Rs the neighbour ra-
dius. In the case of the HARP code, the (square) central distances are first
sorted, whereupon local neighbour lists are created using an r-dependent
initial guess which increases gradually outwards. Individual densities are
now assigned according to the generalized expression

ρj =
5∑

k=1

mk/r
3
6 , (15.3)

∗ More than half the particles are usually located outside the half-mass radius.
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Fig. 15.1. Core radius, half-mass radius and tidal radius as functions of time in
Myr. The depicted model has Ns = 8000, Nb = 2000 and rh = 3pc.

where r6 is the sixth shortest distance. Note that Casertano & Hut showed
that an unbiased estimator for equal masses is provided by defining the
density ρk = (3/4π)(k − 1)m/r3k, thus omitting the kth neighbour, and
this has been adopted. With this definition, the density centre is again
given by (15.1), where the summation is over the reduced membership,
N∗, with all single KS components replaced by the corresponding c.m.
body. However, the core radius used by NBODY 5 since 1986 is taken to be

rc =

N∗∑
j=1

ρ2j |rj − rd|2/
N∗∑
j=1

ρ2j

1/2 . (15.4)

Provided N∗ ≥ N/5, this expression converges for different central sam-
ples and agrees quite well with the more expensive form (15.2), which
does not have this property. The evolution of three characteristic radii
are shown in Fig. 15.1 for a typical star cluster model.
Although the operational definition differs from the classical expression

[cf. King, 1962], it describes the characteristic size of the core well and
may also be used for some observational applications.† For completeness,
we define Nc as the corresponding membership inside rc. Likewise, we
may define the density-weighted average of the density by [Casertano &
Hut, 1985]

ρd =
N∗∑
j=1

ρ2j/
N∗∑
j=1

ρj . (15.5)

† Recall that the observational core radius employs the e-folding density. In the follow-
ing, the more common phrase ‘core radius’ will be used instead of ‘density radius’.
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The maximum density, ρmax = max {ρj}, is also recorded after scal-
ing by the mean density, 1

2M/r3h. Up to now it has been used for the
determination of the close encounter distance (9.3) but this may well be
too conservative and has recently been replaced by ρd. In practice it is
sufficient to update the density centre and core radius at the same time
as performing the total energy check and escaper removal. Perhaps the
procedure most affected by the discontinuous re-evaluation of the density
centre concerns the codes NBODY 5 and NBODY 6 which impose an optional
shortening of the regular time-step inside compact cores according to

∆T̃i = 1
2(1 + |ri − rd|2/r2c)∆Ti . (15.6)

Finally, we note that the results may not be reproducible in detail for dif-
ferent checking intervals when using the algorithms above. In particular,
the optional updating of regularization parameters that depend on the
core density is carried out after each total energy calculation.

15.3 Idealized models

Broadly speaking, N-body simulations have at least three main objectives.
At the simplest level, equilibrium models with equal masses are studied in
order to make comparisons with more approximate methods, such as the
Monte Carlo, gaseous or Fokker–Planck description [Heggie & Aarseth,
1992; Makino, 1996a; Spurzem, 1999]. At the other end of the spectrum,
the effort is devoted to the modelling of astrophysical processes [Terlevich,
1987; Portegies Zwart et al., 1997; Aarseth & Heggie, 1998; Hurley et al.,
2001a,b]. The third approach is taken much less frequently and consists
of investigating detailed dynamical processes such as escape [van Albada,
1968], binary formation [Aarseth, 1972a] or the formation of hierarchical
systems [Kiseleva et al., 1996; Aarseth, 2001a]. This type of investigation
may readily be undertaken for idealized models, where the addition of a
mass spectrum broadens the scope.
Now that powerful methods are available, it can be anticipated that

the study of classical processes will be rewarding. Hence both the two-
body and chain descriptions are ideally suited for investigating strong
interactions involving one or more binaries. The former may be used to
examine the formation of binaries or different types of hierarchical con-
figurations, whereas the latter often gives rise to very energetic escapers
and highly eccentric binaries. Moreover, the fascinating question of stable
triples forming in binary–binary collisions‡ [Mikkola, 1983] also needs to
be addressed further [cf. Aarseth, 2001a]. We emphasize that the use of

‡ Here we adopt the physicist’s definition in the sense of a cross section.
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regularization techniques enables the determination of well-defined orbital
elements in the neighbourhood of numerical singularities.

The subject of core collapse has a long history but much of it is based on
an obsession with the singular density solution which turned out to be a
mirage. It required the direct numerical approach to resolve this dilemma
finally, even though the crucial point that a central source absorbs the
excess energy was first inspired by analytical work [Hénon, 1961]. This
remarkable study, which was ahead of its time, laid the foundations for
a proper understanding of globular cluster evolution. From the so-called
‘homology model’, the formation of a central singularity is relatively fast,
i.e. about 7×109 yr for a 105M� cluster. Moreover, in order to resolve the
predicted infinite density, it was proposed that negative energy accumu-
lating at the centre is absorbed by binaries and multiple stars, as hinted
by the earliest N -body simulation [cf. von Hoerner, 1960].

The homology model was confirmed by an early continuum simulation
using the Fokker–Planck method [Cohn, 1979], which resulted in the den-
sity relation ρ ∝ r−2.0 in the region between the shrinking core and the
halo just prior to core collapse. Following technical refinements, the non-
isothermal self-similar structure led to an asymptotic solution ρ ∝ r−2.23
[Cohn, 1980]. In a pioneering theoretical investigation, Lynden-Bell &
Eggleton [1980] determined the power-law index –2.21 from fundamental
principles. Subsequently, such similarity solutions have also been obtained
for gaseous models in several investigations [Heggie & Ramamani, 1989;
Louis & Spurzem, 1991]. However, the central energy source proposed by
Hénon sets the scale for the maximum density and was later implemented
in the Monte Carlo method [Hénon, 1975].

N -body simulations of core collapse with equal-mass particles were
hampered by small-N limitations for a long time. However, compari-
son of averaged solutions for different particle numbers in the range
250–1000 [Giersz & Heggie, 1994a] shows excellent agreement during the
pre-collapse phase when the time is scaled by the standard relaxation time
factor N/ ln(γN). Some of these simulations employed a modified version
of the code NBODY 1 which included a special two-body regularization
method based on time smoothing [Heggie, 1972a]. Likewise, anisotropic
gaseous and isotropic Fokker–Planck models are in good agreement with
ensemble-averaged N -body simulations both in the pre- and post-collapse
phase after including an N -dependent energy generation by three-body
binaries [Giersz & Heggie, 1994a; Giersz & Spurzem, 1994]. Moreover,
the stochastic nature of the energy generation was emphasized. Statisti-
cal N -body studies also revealed self-similar solutions in the post-collapse
phase in spite of energetic escapers [Giersz & Heggie, 1994b]. More re-
cently, it was demonstrated that the core collapse time is at least halved
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for equal-mass models with initial rotation [Boily, 2000]. The first such
post-collapse simulations have also been reported [Kim et al., 2002].

A good example of core collapse with the direct method for N = 6000
and a mass spectrum was obtained after some six months dedicated in-
tegration [Aarseth & Heggie, 1993]. Another heroic effort using NBODY 5

with N = 104 and equal-mass particles yielded further insight and demon-
strated conclusively that core collapse is halted by the formation of a few
central binaries [Spurzem & Aarseth, 1996]. Following these investiga-
tions, the time was ripe to explore other initial conditions.
The introduction of primordial binaries for equal-mass systems adds

another degree of complexity. One study compared gas-dynamical solu-
tions with direct integrations for N = 2500 during the pre-collapse stage
and found reasonable agreement in the presence of primordial binaries
[Heggie & Aarseth, 1992]. There have also been other notable efforts to
explore the effect of primordial binaries in isolated systems [McMillan,
Hut & Makino, 1990, 1991]. Equal-mass systems with up to 20% hard bi-
naries were studied, with the result that most binaries were destroyed in
binary–binary collisions. However, a system of equal-mass single stars and
binary components tends to exhibit early mass segregation, thereby en-
hancing the collision rate. A similar later investigation [McMillan & Hut,
1994], which included the galactic tidal field, argued that a critical binary
fraction above about 10% ensures the retention of sufficient binaries in
the later stages. The question of binary survival during the early phase of
violent relaxation has also been addressed using an approximate method
[Vesperini & Chernoff, 1996]. This simulation considered a population of
5% medium-hard binaries in collapsing clusters of 1000–5000 equal-mass
stars. Thus a characteristic N -dependent cutoff energy ensured survival
of the initial collapse phase.
Idealized Monte Carlo models with primordial binaries were also ex-

plored at an early stage [Spitzer & Mathieu, 1980]. This work employed
approximate rate coefficients for binary–binary interactions adapted from
analytical and numerical results for single star–binary interactions [cf.
Heggie, 1975; Hills, 1975]. Again the use of equal masses for all particles
gave rise to a collapsing core dominated by binaries that may neverthe-
less display some characteristic features of late cluster evolution. Thus
over half the energy released went into reaction products which escaped,
in qualitative agreement with N -body simulations, albeit for small bi-
nary fractions [Heggie & Aarseth, 1992]. Modelling of primordial binary
interactions has now been much improved [Giersz & Spurzem, 2000].
Looking beyond core collapse, the occurrence of core oscillations was

first demonstrated by both the fast gas-dynamical and Fokker–Planck
methods [Bettwieser & Sugimoto, 1984; Cohn, Hut & Wise, 1989]. After
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several attempts, the crowning achievement in the quest for the equivalent
N -body effort was accomplished by Makino [1996a,b] who used N = 32K
on the 1 Tflop GRAPE-4 with NBODY 4, although its full power was not
available. Thus the central density varied by a factor of 1000 and several
oscillation cycles were seen. Although of little astrophysical consequence
for real star clusters, this calculation provided considerable justification
for the validity of alternative methods. In this connection, we remark
that three-body effects are not important during the pre-collapse phase
of large idealized systems, whereas the modelling of more advanced stages
by approximate methods require the addition of energy production by
binaries based on semi-analytical considerations.
Early claims to have reached this goal [Makino, Tanekusa & Sugimoto,

1986; Makino & Sugimoto, 1987] have been re-assessed in the light of
further work. The apparent gravothermal oscillations exhibited in models
with N = 100 and 1000 are now interpreted as being due to stochas-
tic binary activity. A linear stability analysis of gravothermal oscillations
[Goodman, 1987] showed that such stochastic fluctuations dominate be-
low N � 7000. It is generally agreed that two ingredients are needed to
establish gravothermal oscillations, namely a temperature inversion in the
core, followed by an expansion without energy production due to binary
interactions or three-body encounters. These features do occur in the pi-
oneering gaseous models of Bettwieser & Sugimoto [1984] and are taken
as signatures of the gravothermal nature. A subsequent simulation with
N = 104 narrowly failed to find convincing evidence for such oscillations
[Spurzem & Aarseth, 1996]. On the other hand, slow gravothermal expan-
sion was confirmed in an N -body system with slight initial temperature
inversion for 3000 particles [Heggie, Inagaki & McMillan, 1994].
The question of scaling N -body models has received further attention.

Simulations withNBODY 6++ forN ≤ 16K [Baumgardt, 2001] showed that
the life-time does not scale with the relaxation time when the escapers are
removed beyond a cutoff distance, irrespective of whether an external tidal
field is present. However, there is no scaling problem if escaping stars are
removed promptly on exceeding the critical energy. We also mention an
investigation of long-term evolution of isolated clusters [Baumgardt, Hut
& Heggie, 2002]. Plummer models with equal masses and particle numbers
N ≤ 8K were again studied with NBODY 6++. The focus was on post-
collapse evolution until complete dissolution which involved extremely
long time-scales. The final structure was characterized by two parameters,
the current particle number and half-mass radius. As might be expected
for equal masses, binary activity was relatively unimportant.
Notwithstanding the remarkable recent accomplishments, we note that

some of the general features of cluster evolution were already exhibited in
the earliest models based on very modest particle numbers [von Hoerner,
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1960; Aarseth, 1963b; Wielen, 1967; van Albada, 1968]. Moreover, the
subsequent history of the Monte Carlo methods [cf. Hénon, 1972; Spitzer
& Hart, 1971a; Stodóblkiewicz, 1982] illustrates that new avenues of inves-
tigation can yield fruitful results.

15.4 Realistic models

It has been known for a long time that there are binaries in open clusters.
However, the realization of their dynamical importance was slow to take
hold until the results of N -body calculations became available. On the
other hand, some well established examples of suitable cluster members
(i.e. not too short period) were actually beginning to emerge during the
early epoch of realistic simulations [e.g. Wickes, 1975].§ In spite of con-
siderable observational efforts, the main properties of open clusters – i.e.
the IMF, mass segregation, binary abundance and membership – was only
placed on a firm footing relatively recently [Mathieu, 1983; van Leeuwen,
1983]. Likewise, the birth of the HST has provided a wealth of high quality
data to inspire simulators of globular clusters.
The first step towards increased realism is to introduce a mass function.

This has the general effect of reducing the relaxation time and increasing
the escape rate. Although the classical half-mass relaxation time is well
defined for an equal-mass system [Spitzer, 1987], this is not the case for a
mass spectrum. On the numerical side, we are still without a satisfactory
operational definition of the relaxation time even though this was already
attempted in the early days [von Hoerner, 1960; Aarseth, 1963b]. This is
mainly due to the problem of adding energy changes in such a way that
the result does not depend on the time interval. The best one can do is
therefore to invoke the time-scale for dynamical friction [Spitzer, 1969]
when considering early stages of mass segregation. In fact, there has been
much confusion in the literature between the two concepts because they
give similar values for N � 100 (cf. (1.11) and (1.14)).

Many theories of escape have been proposed but comparisons with nu-
merical models are generally unfavourable [Wielen, 1972, 1975]. Although
such comparisons are fraught with uncertainty, i.e. small number statis-
tics and model dependence, the theory of Hénon [1969] appears to show
some qualitative agreement. This permits the influence of the most mas-
sive members on the escape rate to be calculated explicitly for an isotropic
Plummer model without mass segregation. The predicted escape rate per

§ But see Aitken [1914] for an early reliable determination of HD 30810 with period
16.6 yr, eccentricity 0.445 and inclination 9◦ in the Hyades.
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crossing time for a group of Ni members of mass mi is given by

∆Ni

tcr
= −

√
2Ni

4M2

k∑
j=1

Nj Fij(ν)m2
j , (15.7)

where the interaction coefficient Fij is a known function of the mass ratio
ν = mi/mj and there are k discrete groups. Hence the contributions
from different masses may be evaluated from the IMF. As an illustration,
in a cluster with N = 500, f(m) ∝ m−2 and a mass ratio of 32, the
eleven heaviest members provide 50% of the total escape probability when
considering the lightest particle. Likewise, only the three heaviest particles
contribute 50% to the much smaller escape rate of the fourth body. It can
also be seen that, with this mass function, the dependence is even steeper
than ∝ m3. Combining two particles in a binary therefore enhances their
effect considerably, although the general tendency will be somewhat less
for relaxation. To contrast with an equal-mass system, the theory predicts
just one escaper for 30 crossing times (i.e. F (1) � 0.076), compared with
46 actual and 32 predicted escapers in the quoted example [Aarseth, 1974].
On the other hand, some of the seven escapers in the equal-mass model
with N = 250 may have been due to binaries or a steeper central density
which are not accounted for by the theory.
In order to evaluate the importance of the mass spectrum, it is useful to

introduce the notion of an effective particle number [Farouki & Salpeter,
1982], defined by

Neff = M2/
∑

m2
i . (15.8)

Hence a steeper IMF produces a smaller value of Neff/N which reflects
the increased graininess of the system and from this one can also under-
stand qualitatively why the evolution rate speeds up. As an example, the
standard HARP model with 8000 single stars and 2000 hard binaries gives
Neff = 3751, whereas the actual particle number is 12 000. As a cluster
evolves, the heaviest stars undergo mass loss, whereas there is some pref-
erential escape of light members, such that the mean mass remains nearly
constant for some time. Consequently, Neff tends to increase slightly.
The tendency for only a small depletion rate in simulations with

N = 250, tidal field and mass loss [Aarseth & Wolf, 1972] contrasts with
most theoretical expectations. This result was later confirmed for some-
what larger models (N ≤ 1000) that included interstellar clouds as well
as stellar evolution, and where the absence of core collapse was noted
[Terlevich, 1987]. A flattening of the mass function was also observed in
HARP-3 simulations with NBODY 4 for N = 4096 [Vesperini & Heggie,
1997]. The models included point-mass external tidal field, disk shock-
ing and simplified stellar evolution with instant mass loss. An increasing
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mass fraction in white dwarfs was seen during the later stages (also see
Hurley & Shara, 2003). Although disc shocking has no direct differential
effect, it still promotes preferential escape via the existing mass segre-
gation. However, these results were obtained without primordial binaries
and are based on a somewhat idealized tidal field, as well as a relatively
small particle number, and can therefore not be scaled to globular clusters.
Fokker–Planck models also show clear evidence of the evolution rate

dependence on the IMF for isolated systems [Inagaki & Saslaw, 1985].
The evolution of the mass function was emphasized in subsequent Fokker–
Planck simulations appropriate for relatively small globular clusters [Lee,
Fahlman & Ricker, 1991]. This work included the effect of binary heating
as well as a tidal field. A gradual flattening of the mass function was found
due to the preferential evaporation of low-mass stars.
A large survey of globular cluster evolution was undertaken with the

Fokker–Planck method [Chernoff & Weinberg, 1990], which included the
effect of stellar mass loss and an external tidal field for circular orbits
at different central distances. One important result was that mass loss
during the first 5Gyr appeared to be sufficiently large to disrupt weakly
bound clusters (i.e. W0 ≤ 3) with a Salpeter [1955] IMF. However, further
collisionless calculations with GRAPE-3 yielded some agreement but a
factor of 10 longer life-times [Fukushige & Heggie, 1995].
Eventually, direct N -body simulations using GRAPE-4 with N = 32K

[Portegies Zwart et al., 1998] confirmed the longer life-times. This dis-
agreement for non-isolated systems is mainly due to the implementation of
an instant energy escape criterion in the isotropic Fokker–Planck scheme,
whereas a more recent anisotropic formulation admits an apocentre crite-
rion that delays escape [Takahashi, 1997]. Finally, the improved treatment
of escape in the anisotropic Fokker–Planck method produced good agree-
ment with the direct N -body approach¶ [Takahashi & Portegies Zwart,
1998].
Several systematic studies of small to medium-size isolated clusters have

been made in order to elucidate their general behaviour. A comprehensive
investigation for unequal masses [Giersz & Heggie, 1996, 1997] showed
that average global quantities are well defined even for modest values of
N (i.e. 250–1000). As expected, the core collapse is accelerated when a
mass spectrum is included. This work also provides a better idea of the
dispersion in the core collapse times and mass percentile radii. Somewhat
surprisingly, post-collapse solutions appear to be homologous, with no
significant evidence of further mass segregation. Moreover, massive stars
escape due to binary activity and even dominate the relative depletion
of low-mass stars. However, this trend should become less pronounced in

¶ Also see the so-called ‘Collaborative Experiment’ [Heggie et al., 1998].
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clusters where stellar evolution is important. As expected, the addition
of a tidal field speeds up the escape rate significantly, yielding a factor of
20 shorter half-life for a tidally truncated cluster.
The effect of the IMF itself has been evaluated in another systematic

study using NBODY 5 [de la Fuente Marcos, 1995, 1996a,b, 1997]. Here the
main purpose was to compare the outcomes as a function of particle num-
ber in the range 50−500 for five different choices of the IMF. In particular,
it is possible to distinguish between a standard power-law IMF and more
recent proposals which invariably contain some structure. This series of
papers included various realistic effects, such as mass loss from evolving
stars, primordial binaries and a tidal field. The question of the ultimate
fate of open clusters has also been examined [de la Fuente Marcos, 1998].
Thus it appears that the stellar types of poorly populated clusters pro-
vide important clues about their original membership. Finally, the fate of
brown dwarfs in open cluster was considered [de la Fuente Marcos & de
la Fuente Marcos, 2000], confirming earlier work of a modest preferential
escape of low-mass stars.
The choice of an IMF for star cluster simulations should be guided by

observations of young systems. It is becoming increasingly clear that the
distribution of low-mass stars is significantly depleted with respect to the
classical power-law index α = 2.3 [Kroupa, private communication, 1999],
and this has been implemented (cf. section 8.2). On the other hand, the
maximum mass is rather arbitrary. Hence a conservative choice of 15M�
seems more appropriate for open clusters instead of some value represent-
ing the stochastic nature of star formation. In any case, the number of
stars above, say 5M�, is relatively small and their evolution times short.
As for the slope of the IMF, tidally truncated clusters with low central

concentrations and α ≤ 2.5 are more likely to be disrupted before reach-
ing core collapse [Chernoff & Weinberg, 1990; Aarseth & Heggie, 1998].
Likewise, for increased concentration, the disruptive effect of mass loss by
stellar evolution occurs at smaller values (i.e. α ≤ 1.5). Hence such work
provides important constraints on the IMF of old clusters. Strong tidal
fields are also important for compact clusters near the Galactic centre.
Recent N -body simulations with 12 000 stars and rh � 0.2 pc led to dis-
solution in about 50Myr at 100 pc [Portegies Zwart et al., 2002], whereas
similar models obtained with NBODY 6 for N ≤ 3000 and a flatter IMF
gave about 10Myr [Kim et al., 2000].
An ambitious survey of N -body models has recently been completed

with NBODY 4 and a powerful GRAPE-6 configuration [Baumgardt &
Makino, 2003]. Different families of multi-mass clusters up to N = 128K
were studied with emphasis on the r-dependence of a logarithmic tidal
field. A significant depletion of low-mass stars was found, together with
scaling laws for the life-times as a function of the eccentricity. Although
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neutron stars were retained, the adoption of a shallower initial slope for
masses below 0.5M� gives a more realistic description. Also note that the
gradient of a logarithmic tidal field is less than for the point-mass case.
The IMF is also very important when including primordial binaries.

Here there are additional questions to consider, such as the mass ratio
distribution and period range, as well as the binary fraction itself. Much
observational data has become available since the earliest exploratory
simulations with so-called ‘initial binaries’ [Aarseth, 1975, 1980]. Even
so, the measured binary fractions differ significantly, ranging from pos-
sibly as high as 95% for young clusters [Duchêne, 1999] to more modest
values of about 48% in the inner region of the Pleiades [Raboud & Mer-
milliod, 1998a] and ≥ 38% in M67 [Montgomery, Marschall & Janes,
1993]. The presence of spectroscopic binaries in M67 is another pointer
to realistic initial conditions [Mathieu, Latham & Griffin, 1990]. Already
there is some evidence for hierarchical triples in open clusters such as
the Pleiades [Raboud & Mermilliod, 1998a]. A remarkable quadruple sys-
tem in NGC 2362 contains a massive O-type close binary which itself has
an inner triple component [van Leeuwen & van Genderen, 1997]. This is
hardly surprising in view of the numerical experience [cf. Aarseth, 2001a;
Aarseth & Mardling, 2001]. Initial conditions for primordial triples have
been implemented in the present N -body codes, but not yet explored.
Now the question of mass ratios becomes quite delicate and the lack of
observational evidence necessitates some experimentation.
The general effect of primordial binaries on cluster evolution soon be-

came apparent [Giannone & Molteni, 1985]. This work was among the first
to use NBODY 5 for star cluster simulations. Several models with 300 equal-
mass objects and a binary fraction fb = 0.2 were considered, with constant
binding energy for each model in the range 5–50 times the mean kinetic
energy. Super-elastic binary–binary encounters accounted for about 80%
of the total binary exchange, leading to a spread in the energy distribu-
tion. In view of the relatively short time studied (t � 25tcr), the models
with the hardest binaries experienced much less energy exchange and
consequently had a smaller effect on the core expansion. This early inves-
tigation also emphasized that encounters with very hard binaries produce
high-velocity escapers, whereas the energy released in interactions with
medium hard binaries gives rise to general cluster expansion. Although
somewhat limited by present-day standards, this first systematic explo-
ration of primordial binary dynamics formed a template for future work.
The possibility that young high-velocity stars may originate in strong

interactions involving superhard binaries was studied at an early stage
with NBODY 5 [Leonard, 1988; Leonard & Duncan, 1988]. The emphasis
was on including a population of massive binaries with short periods. Al-
though the particle number was relatively modest (i.e. N � 50), this was a
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serious test for the code which did not yet employ chain regularization, but
it did include unperturbed three- and four-body regularization as well as
a more primitive treatment of hierarchies. Subsequently, the simulations
were extended to larger systems (N � 500) without binaries [Leonard
& Duncan, 1990], and it was demonstrated that there would have been
enough close encounters to produce energetic escapers by binary–binary
collisions. The emphasis of these studies was to associate the origin of run-
away stars with the fast escapers of both singles and doubles which are
characteristic of such systems. Hence this work did much to demonstrate
the energetic importance of primordial binaries.
With more accurate distance and radial velocity observations becoming

available, it is now possible to determine the common origin of runaway
stars. Thus a recent investigation [Hoogerwerf, de Bruijne & de Zeeuw,
2000, 2001] demonstrated several convincing examples of backwards in-
tegrations with intersecting orbits in young stellar groups such as the
Trapezium. Since some of these examples contain an eccentric binary,
this provides evidence for the dynamical ejection scenario. An interesting
question concerns the limiting velocity following strong interactions when
due allowance is made for the stellar radii [Leonard, 1991].
Considerable efforts have now been devoted to the study of primor-

dial binaries. Some of this work was mainly concerned with including a
binary fraction of up to about 20% for equal-mass systems [McMillan,
Hut & Makino, 1990, 1991]. The results indicate that the binary fraction
decreases with time so that less fossil fuel will be available to halt core col-
lapse. However, in view of theoretical uncertainties, such results cannot be
scaled to globular clusters. The situation may be more favourable if a tidal
field is included and the binary fraction exceeds about 10% [McMillan &
Hut, 1994]; however, this conclusion is still based on equal masses for the
single stars which leads to artificial mass segregation. Subsequently, it
was shown that only a small binary fraction is needed to affect the cluster
evolution significantly when an IMF and stellar evolution are considered
[Aarseth, 1996a]. The reason is that the most massive single stars are de-
pleted first, leaving the binaries with an increased central concentration
of up to about 50%. Moreover, it appears that these binaries are able to
survive in an environment of reduced central density.
The fraction in hard binaries was later increased from 5% to 20% which

may be more representative of young clusters [cf. Aarseth, 2001a]. Note
that the KS treatment of binaries at intermediate energies, say a � ahard,
are relatively expensive when using the HARP special-purpose computer.
This is due to the interactions between binaries and nearby particles be-
ing evaluated on the host, as described in Appendix E. In addition, the
perturbed and unperturbed two-body motions are also advanced on the
host, which represents a considerable overhead.
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A variety of models with maximum binary fractions of up to 100% have
also been investigated with NBODY 5 [Kroupa, 1995a,b,c; Kroupa, Petr
& McCoughrean, 1999]. An interesting new idea of inverse dynamical
population synthesis [Kroupa, 1995a] has important implications. It is
proposed that the observed field distribution of multiple systems can be
accounted for by considering formation in characteristic aggregates which
are then dispersed. An argument is given in favour of 100% binaries in
small clusters containing 400 stars, with the initial size as a free parameter.
The half-mass radius is chosen to be in the range 0.08–2.5 pc, based on
observations of young clusters. Depending on the cluster size, about 50–
90% of the binaries are hard initially. Moreover, stellar evolution effects
are not included because of the short time-scale associated with small
values of rh. Following complete disruption of the clusters, a surviving
binary population of up to 60% is seen, in qualitative agreement with
observations of the Galactic field.

A subsequent paper [Kroupa, 1995b] contains the first detailed models
of the Galactic field based on including binaries of short periods. An orig-
inal concept called eigenevolution is proposed, whereby the elements of
short-period binaries are modified to take account of the observed correla-
tions between period, eccentricity and mass ratio. The derived two-body
elements may then be used as initial conditions for dynamical simula-
tions or population synthesis. This suggests that the closest binaries in
a realistic initial distribution should already be circularized during the
pre-main-sequence evolution. An investigation of different initial velocity
states [Kroupa et al., 1999] found that the observational evidence favours
expanding models, following earlier gas expulsion. Moreover, these simula-
tions show the effect of kinematical cooling due to disruption of wide bina-
ries which has not been reported before. In another series of experiments,
correlations between binary ejection velocities and periods were studied
for different half-mass radii [Kroupa, 1998]. Further analytical consider-
ations were also employed to constrain the most likely initial conditions
for the Orion Nebula Cluster [Kroupa, 2000].

A recent study attempted to model an evolutionary sequence of cluster
evolution, starting with an equilibrium system which contained two-thirds
gas [Kroupa, Aarseth & Hurley, 2001]. The gas contents was reduced
smoothly on a short time-scale such that the cluster began to expand.
However, a significant part remained bound, with a slowly expanding
halo. Interestingly, this model of the Pleiades leads to well-defined pre-
dictions that can be tested observationally by future space missions. For
completeness, we note that similar ideas for explaining associations have
been tried before [Lada, Margulis & Dearborn, 1984; Goodwin, 1997].

It is a notable feature of the standard models with primordial binaries
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Fig. 15.2. Cluster membership as function of time in Myr. Single stars and
binaries are plotted separately.

that a non-negligible fraction of the escapers have high velocities. Thus
if we exclude the neutron star kick velocities, typically 0.4% of the ter-
minal velocities exceed 10 km s−1, compared with an initial rms velocity
of 2.0 km s−1 that declines by a factor of 2 at the half-life stage. Many
of these velocities are due to energetic events connected with chain reg-
ularization and can therefore be studied in detail. Such interactions also
lead to large binary recoil velocities with subsequent escape. Another
characteristic development is the growing number of particles satisfying
the energy escape criterion (8.17) without moving outside twice the tidal
radius. This resident field star population often exceeds 50% during the
later stages and forms an interesting topic for further study [Heggie, 2001;
Baumgardt, 2002]. However, the empirical approach of adopting escape
beyond 2rt seems justified on observational grounds.
To conclude this section, Fig. 15.2 shows the membership of single par-

ticles and binaries as a function of time for a typical model containing
all the processes that have been discussed. The present model has a half-
life of 2 × 109 yr which can account for most old open clusters; however,
larger initial particle numbers would give even greater ages. Note that
including mass loss due to stellar evolution prolongs the life-times [de la
Fuente Marcos & de la Fuente Marcos, 2002]. Hence the general cluster
expansion and associated lengthening of the relaxation time more than
compensates for the increased escape due to the tidal field. On the other
hand, the presence of primordial binaries (treated by stellar evolution)
and a tidal field reduces the life-time [Wilkinson et al., 2003].
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15.5 Stellar evolution

The implementation of stellar evolution poses many technical complica-
tions but is essential for describing real star clusters. It was realized at an
early stage that mass loss from evolving stars would be important, and
some simple schemes were tried [Wielen, 1968; Aarseth & Wolf, 1972;
Aarseth, 1973; Terlevich, 1983, 1987]. All these attempts employed an in-
stantaneous mass loss due to supernova events and it was not until much
later that more realistic mass-loss procedures due to stellar winds were
included [Aarseth, 1996a; Portegies Zwart et al., 1999]. This new devel-
opment was based on fast look-up functions for synthetic stellar evolu-
tion, originally formulated by Eggleton, Fitchett & Tout [1989] and sub-
sequently refined into a comprehensive network that included binaries [cf.
Tout et al., 1997]. The work of Hurley, Pols & Tout [2000] extended and
improved the fitting scheme from solar composition to any value of the
metallicity Z in the range 0.03–0.0001. For computational convenience,
it is assumed that all the stars in a cluster have the same composition,
although different initial ages may be assigned if desired. The scheme for
rapid binary evolution was recently enlarged to include more complicated
systems, as well as the synchronizing effect of tides due to stellar spins
[Hurley, Tout & Pols, 2002]. All these algorithms have been implemented
in the code NBODY 4, whereas NBODY 6 only treats mass loss from single
stars and collisions at present, but addition of other processes may be
anticipated. An alternative scheme for realistic star cluster simulations
[Portegies Zwart et al., 2001] is summarized in Appendix F.

Given the initial mass, m0 in M�, and age (defined below), the fitting
functions provide information about the stellar radius, r∗, luminosity, l∗,
core mass, mc, and evolution type, k∗, as a function of time. A total of 16
different types are recognized, ranging from low-mass main-sequence stars
to black holes and massless remnants. The mass loss itself is specified by
a separate algorithm where the main wind loss for evolving stars is given
by a Reimers-type expression [Kudritzki & Reimers, 1978],

ṁ = −2× 10−13r∗l∗/m (15.9)

inM�yr−1, with r∗, l∗ expressed in solar units and averaged over an inter-
val. Several refinements have also been introduced for different categories
such as luminous stars and pulsating supergiants [cf. Hurley et al., 2000].
As an indication of the early work, a cluster model containing 12 500 sin-
gle stars and 2500 binaries with non-solar metallicity has been simulated
on HARP-3 by NBODY 4 [Elson et al., 1998].

In order to determine the mass loss, ∆m, due at the look-up time, tev,
we introduce a second time-scale, tev0, which is updated to the current
time after each adjustment stage. Another quantity, τev, called the epoch
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Fig. 15.3. Synthetic stellar evolution. Tracks of radii are shown for different
masses and two metallicities as function of time (courtesy J. Hurley, 2003).

is also assigned to each star and used for rejuvenation purposes [cf. Tout
et al., 1997]. Thus the apparent age, tev−τev, becomes the time argument
for the HR diagram fitting functions, whereas the mass loss is obtained
by ∆m = ṁ(tev − tev0). A new value of the look-up time is prescribed
such that the mass loss or change of radius will be suitably small. This is
mainly determined by the expression

∆tev = min {τ∗/20, ∆trem} , (15.10)

where τ∗ is the characteristic evolution time and ∆trem is the remaining
interval until a type change occurs. However, rapidly evolving supergiants
(i.e. k∗ = 5, 6) are assigned a more conservative value of τ∗/50. Since
∆trem may be small, a lower limit of 100 yr is chosen at present. Some
evolutionary tracks are shown in Fig. 15.3 for Z = 0.02 and 0.0001.
Any mass loss is assumed to be instantaneous because the wind veloc-

ity is high compared with the escape velocity. Corrections of the total
potential and kinetic energy along the lines of section 12.9 are therefore
made in order to ensure a conservative scheme. In the codes NBODY 5 and
NBODY 6 the former contribution is summed at the same time as the force
polynomials are updated, whereas NBODY 4 only improves the neighbour
forces and obtains the potential directly from HARP or GRAPE-6.
Supernova events or black hole formation are also implemented above

corresponding initial masses of about 8M� and 25M�, although the latter
limit is highly dependent on the mass-loss rate and remnant mass. We
tentatively assign a kick velocity sampled from a Maxwellian distribution
with 1D dispersion of 190 km s−1[Hansen & Phinney, 1997]. In the case of
single stars, we restrict the value to 10V ∗ (cf. (7.4)) which suffices to ensure
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fast escape; i.e. considerably higher values would affect the energy budget
unduly, as well as the ability to deal with superfast particles. Looking
to the future, a low-velocity tail seems to be needed in order to account
for neutron star retention in globular clusters.‖ A general procedure for
obtaining the kick velocity is given in Appendix D.1.
The kick velocity, vkick, with randomized directions is added to the pre-

supernova value and the corresponding kinetic energy increase subtracted
from Ecdot (cf. (9.29)). In addition to the potential energy correction and
force update due to the mass loss, the force derivative is also modified
by the increased velocity in the Hermite method. Again we perform a
mass-loss correction, 12∆mv20, with v0 the pre-kick velocity. Finally, after
constructing a neighbour list when using HARP, new force polynomials
are obtained for the neighbours as well as the remnant itself.
If a binary component is subject to supernova mass loss, the veloc-

ity kick algorithm requires special consideration. First a random orbital
phase is selected to avoid biasing and the two-body solution is advanced
according to (9.19). We estimate the limiting (i.e. parabolic) disruption
velocity based on an approximate remnant mass of 1.4M�. The actual
kick velocity is then selected by taking min {vkick, vf}, with

vf =
(
2(mb −∆m)

R
+ 100V ∗2

)1/2
. (15.11)

The binary may remain bound for some values of the mass ratio and
semi-major axis but the recoil is likely to result in escape from small
clusters at least [Aarseth & Mardling, 1997]. Following KS termination,
the velocity kick is implemented and energy corrections carried out as for
single stars. Finally, the two-body motion is re-initialized as a KS solution
if the separation satisfies the standard criterion R < Rcl since this is still
a close encounter and we may also have Ṙ < 0.
Among other processes that involve stellar astrophysics, we have al-

ready discussed Roche lobe overflow in some detail (cf. section 11.10).
As far as the energy dissipated during tidal circularization is concerned
(cf. section 11.8), the binary components are modelled as polytropes and
the relevant parameters are updated following changes in radius or mass.
The current implementation of stellar evolution is essentially capable of
reproducing all main types of stars and binaries and hence the results
can be represented in the form of synthetic HR diagrams, either for so-
lar metallicity [Aarseth, 1996a; Tout et al., 1997; Portegies Zwart et al.,
2001] or the more general case required for globular clusters [Hurley, 2000;

‖ A new class of high-mass X-ray binaries has recently been proposed in which mass-
transferring systems produce rapidly rotating cores, with smaller asymmetrical recoils
of the neutron stars [Pfahl, Rappaport & Podsiadlowski, 2002; Pfahl et al., 2002].
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Hurley et al., 2001b]. In view of the modest effort so far, many exotic ob-
jects and transient phases have yet to be identified, whereas the diverse
observational data have been collected over a long period.
The present implementation of an energy-conserving scheme for differ-

ent types of mass loss has proved highly successful. It appears that the
assumption of instantaneous ejection is quite realistic because essentially
no gas is observed in both open and globular clusters after the initial
phase. This pleasant state of affairs makes star cluster simulations ideally
suited to a gravitational many-body description but, as we have seen, stel-
lar evolution plays a vital role and enriches the results. However, this also
increases the complexity of analytical considerations. In this connection
we remark that a theory of mass segregation for an evolving IMF is still
lacking and would be very beneficial for understanding star cluster evolu-
tion. On the observational side, there is some evidence of an evolutionary
effect which appears to have a complicated signature [Raboud & Mermil-
liod, 1998b]. The significant population of white dwarfs in both open and
globular clusters also presents interesting constraints on the dynamical
models [von Hippel, 1998] (but see Fellhauer et al., 2003).

15.6 Tidal capture and collisions

A number of cluster models that include tidal dissipation have been stud-
ied [Aarseth, 1996a,b; Mardling & Aarseth, 2001]. However, technical de-
velopments have been going on in parallel and most of these simulations
should be considered experimental. The situation regarding tidal capture
and collisions is less complicated when it comes to implementation, al-
though there are many astrophysical uncertainties about both processes,
especially in relation to the deposition of energy and possible mass loss
[Podsiadlowski, 1996].
Capture or collision events involving single stars are relatively rare, at

least in open cluster simulations. This is particularly the case for tidal
capture, where only one model in about ten yields a permanent bound
state [cf. Mardling & Aarseth, 2001]. At present there is some indica-
tion that capture is more likely to occur between unbound members in
compact subsystems treated by chain regularization. Thus the interaction
between a single particle and a binary presents an enhanced cross section
with respect to classical two-body encounters. For the future one would
like to know the relative proportion involving giants or supergiants since
such questions are difficult to estimate theoretically, although there have
been attempts [Davies et al., 1998; Bailey & Davies, 1999]. An additional
uncertainty facing theoretical estimates is connected with the binary frac-
tion in the core, which may be much higher than expected because stellar
evolution promotes mass segregation [cf. Aarseth, 1996a, 1999b].
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On the theoretical side, various questions need to be clarified before
the capture theory [Mardling, 1995a,b, 1996a,b] can be accepted as a
viable process. However, it is encouraging that at least some candidate
events have been identified in the simulations. If substantiated, further
indirect arguments [Mardling, 1996c] attempting to rule out alternative
explanations of X-ray binary formation may revive the theory.
When it comes to considering collisions, it is useful to distinguish be-

tween classical two-body encounters of single cluster stars and hyperbolic
interactions in unstable multiple systems. We also emphasize that some
close encounters that satisfy the pericentre criterion (9.21) end up being
classified as coalescence following the common-envelope process. Hence
for some purposes, like counting collision impacts, these events should
also be added. Alternatively, close binary white dwarfs may form, with
gravitational radiation time-scales of Gyrs [Shara & Hurley, 2002].
In order to gain some information about the collisions and also near-

misses, we examine some relevant data for all hyperbolic encounters inside
the tidal capture distance (11.45). Of special interest is the pre-encounter
velocity, v∞ = (2h)1/2V ∗, or the corresponding eccentricity

e = 1 + 2hRp/mb , (15.12)

evaluated at pericentre. Based on a small sample, the hyperbolic excess
is typically about 1 km s−1 for cluster models with rms velocity 2 km s−1
and somewhat more near the centre. Hence the low end of the velocity
distribution provides the dominant contribution to the cross section.∗∗

Other quantities, such as masses and stellar types as well as the central
distance and density contrast are also of interest. Up to now such data
have been scarce and further insight into the collision process must there-
fore await more systematic investigations. However, the interpretation of
some blue stragglers as collision products of main-sequence stars appears
to be promising.
At an early stage, Sandage [1953] presented evidence for blue stars in

the HR diagram of the globular cluster M3. In the search for explana-
tions, the binary mass-transfer hypothesis was discussed in some detail
by McCrea [1964]. A stellar dynamical approach was initiated by Hills
& Day [1976], who estimated several hundred collisions in the life-time
of a typical globular cluster. As far as simulations are concerned, from
binary–binary scattering experiments Hoffer [1983] noted the preponder-
ance of close approaches in strong interactions and surmised that physical
collisions and coalescence would be enhanced. Inspired by the dynamical
evidence, Leonard [1989] examined the physical collision hypothesis. It
was emphasized that the number of events could be significant due to

∗∗ Recall that the rms relative velocity is augmented by
√
2 in a Maxwellian.
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the combined effects of mass segregation and increased cross section from
strong binary–binary interactions.
The collision hypothesis was put on a firmer footing by Leonard & Lin-

nell [1992] who concluded that collisions of such stars can only account
for about 10% of the observed objects in M67 and NGC 188. Further
considerations [Leonard, 1996] supported the view that both the mecha-
nisms of mass transfer and physical collisions are required to explain the
observations. Although binaries containing a blue straggler would favour
the mass transfer mode of origin, a few such objects may also form from
the coalescence of an inner binary of triple systems. However, the pres-
ence of up to 10% blue stragglers in main-sequence binaries inside 6 core
radii of a low-density globular cluster [Bolte, 1992] suggests that the mass
transfer mechanism plays an important role [cf. Ferraro et al., 2003].
Early simulations with Ns = 5000 and fb = 0.05 indicated that a small

number of blue stragglers are formed in each model [Aarseth, 1996b]. This
has been confirmed by an independent study with Ns = 1024 and fb = 0.5
[Portegies Zwart et al., 2001]. However, these simulations still contain too
few stars to yield a significant number of such objects at any one time and
hence the results are not suitable for specific comparisons with observed
clusters rich in blue stragglers.
Recently, a more ambitious modelling of M67 [Hurley, 2000; Hurley et

al., 2001a] demonstrated that the observations may be accounted for by
a combination of Roche-type mass transfer and physical collisions. The
initial model consisted of 5000 single stars and a binary fraction fb = 0.5,
giving N = 15 000. A large number of blue stragglers were produced,
with a maximum of 29 co-existing at one time, in good agreement with
the observations. On average, about half the blue stragglers formed as the
result of dynamical interactions. Hence population synthesis alone is not
sufficient to explain the observations [Hurley et al., 2001a]. Moreover, the
maximum number of blue stragglers was only reached after some 4–5Gyr
which favours rich clusters. Now that more data are becoming available
from ground-based and HST observations [Bolte, Hesser & Stetson, 1993;
Grindlay, 1996; Johnson et al., 1999], the theoretical challenge is sharp-
ened. At the same time, there is a renewed effort to improve our under-
standing of collision remnants [Bailyn, 1995; Lombardi, Rasio & Shapiro,
1996; Sills et al., 1997], following earlier pioneering investigations by sev-
eral workers [cf. Davies, Benz & Hills, 1991; Benz & Hills, 1992]. Note
that, so far, primordial triples have not been studied.
Hence, in conclusion, it can be seen that open cluster simulations pro-

vide a fascinating laboratory for studying astrophysical processes without
recourse to any scaling. The accumulation of high-precision data from
HIPPARCOS and HST will surely do much to inspire further work of
increased realism.
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15.7 Hierarchical systems

Given the importance of binaries for cluster dynamics, it is hardly sur-
prising that stable hierarchies should form. This feature was anticipated
in early code implementations [Aarseth, 1985a] by the merger procedure
discussed in section 11.7. It was subsequently put to the test in simu-
lations with superhard primordial binaries [Leonard, 1988; Leonard &
Duncan, 1988, 1990] which necessitated differential energy corrections to
be introduced. The point here is that the total energy has a small discon-
tinuity when going from a three-body to two-body description, and vice
versa, and this is sufficiently large to be noticeable in the energy budget
of high-precision calculations unless corrections are carried out.
It has been known for some time that stable triples may form as

the result of binary–binary collisions in scattering experiments [Mikkola,
1984a,b,c]. However, only a few tentative investigations have examined
the frequency and life-times of hierarchies [Kiseleva et al., 1996; de la
Fuente Marcos et al., 1997]. A more systematic study is now under way,
both as regards the aspects of formation and evolution [cf. Aarseth, 2001a;
Aarseth & Mardling, 2001]. First we summarize some of the criteria relat-
ing to the stability of triples and quadruples. A more technical discussion
of higher-order systems is given in Appendix C.
The question of stability has received much attention and some histor-

ical notes are in order. The early numerical studies of Harrington [1972]
led to a simple criterion for equal masses. This was soon replaced by a
general relation [Harrington, 1975], with the outer pericentre condition

Rcritp = A
[
1 +B ln(23 +

2
3qout)

]
ain , (15.13)

where qout = m3/(m1 +m2) denotes the outer mass ratio and ain is the
inner semi-major axis. Fitting of the coefficients yielded A = 3.5, B = 0.7
and A = 2.75, B = 0.64 for direct and retrograde motion, respectively.
A subsequent refinement [Bailyn, 1987] led to the modified expression for
direct motion [cf. Valtonen, 1988]

A = (2.65 + ein)(1 + qout)1/3 , (15.14)

with ein the inner eccentricity. This stability criterion was employed in
the N -body codes for a number of years.
Eventually, a more systematic investigation was undertaken which re-

sulted in an improved relation [Eggleton & Kiseleva, 1995]. The empirical
fitting function for prograde planar motion is given by††

Ycrit = 1 +
3.7
Q3

− 2.2
1 +Q3

+
(
1.4
Q2

)(
Q3 − 1
Q3 + 1

)
, (15.15)

†† Corrected for a typographical sign error.
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with Q3 = (mb/m3)1/3 and Q2 = (max {m1/m2, m2/m1})1/3. The sta-
bility check is accepted, provided that

Routp > Ycrit (1 + ein)ain . (15.16)

Hence Ycrit is measured in terms of the inner apocentre distance. Note
the important parameter space restrictions to zero outer eccentricity and
inclination, whereas retrograde and inclined orbits are known to be more
stable [Harrington, 1972, 1975]. The fitting function (15.15) was undoubt-
edly beneficial, particularly in regard to the mass dependence, and served
its purpose well for a time. However, the outer eccentricity which plays
an important role does not enter in any of the early derivations.
A more general stability criterion, discussed in section 9.5, has now been

in use for several years [cf. Mardling & Aarseth, 1999]. More recently
a new criterion was derived from first principles, where the empirical
scaling factor C in (9.14) can be determined numerically from fast fitting
functions [Mardling, 2001, 2003a]. Thus an efficient algorithm provides
the desired result in terms of arbitrary masses and orbital elements (see
section 18.5 for a discussion). Compared with (15.15), the semi-analytical
relation (9.14) requires larger pericentre ratios for increasing eout. Given
the constraint that the outer binding energy should essentially exceed
1
4εhard (defined by (4.1)), this limits the maximum value of the outer
eccentricity. Even so, relatively large eccentricities (e.g. eout > 0.98) are
seen during the post-collapse phase. On the other hand, configurations
with large eout that do not satisfy the stability criterion often persist for
long times because the energy exchange at periastron is very small and
of a random nature. An experimental modification that defines practical
stability has therefore been introduced (cf. (9.17)).
In most open star cluster models there is enough hierarchical space for

quadruples as well as higher-order systems to exist, even if the innermost
binary is not close to contact. Thus with a half-mass radius of 6× 105 au
for a rich open cluster, nested stable hierarchies could exist having semi-
major axes of, say, 60, 6 and 0.6 au, with significant eccentricities and still
allow an extra compact inner binary. Various algorithms for dealing with
such systems are described more fully in Appendix C.
Even in isolation, some hierarchical systems display complex evolution-

ary histories. Thus Roche-lobe mass transfer may tend to destabilize the
system and eventually lead to a strong interaction [Kiseleva & Eggleton,
1999]. The possibility also exists that the orbital inclination is sufficiently
high to induce significant eccentricity growth. This fascinating process is
known as Kozai cycles [Kozai, 1962]. According to the assumption un-
derlying (9.14), ain = const for a stable triple. Conservation of angular
momentum then leads to a cyclic relation between the inner eccentricity
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Fig. 15.4. Kozai cycle. Inner eccentricity as function of time.

and orbital inclination, ψ, of the form cos2 ψ(1− e2) = const in the limit
of an unchanged outer orbit, or rather as the sum of two constants.
Figure 15.4 illustrates an example of eccentricity modulation for a triple

with scaled massesm1 = m2 = 1,m3 = 0.6 and period ratio of 10, starting
with eout � 0.1 and inclination ψ � 80◦. The maximum value of 0.90 is
reached in a cycle time of only about 200 inner periods, with Rp/R

crit
p �

1.5 when the empirical inclination effect is included (cf. Algorithm 11.4).
For completeness, the time-scale for a Kozai cycle is given by [Heggie,
private communication, 1996]

TKozai =
T 2out
Tin

(
1 + qout
qout

)
(1− e2out)

3/2g(ein, ωin, ψ) , (15.17)

where the function g is generally of order unity but depends on the argu-
ment of periapsis, ωin [cf. Mardling & Aarseth, 2001].

15.8 Spin–orbit coupling

All stars are endowed with angular momentum which is an imprint of the
formation process. Even though the spin vector of single stars is essentially
constant during most of the evolution, the rotational velocity may vary
considerably. However, for most purposes of cluster simulations, stellar ro-
tation only plays a role in binaries with relatively small pericentres. In the
following we discuss some characteristic stages of evolution where signif-
icant spin–orbit interactions may be operating. We distinguish between
normal and circularizing binaries, as well as hierarchical configurations
and Roche lobe overflow, where the latter represents an endpoint.
Initial rotational velocities are assigned for each star by a fit to the
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observational data [Lang, 1992] for main-sequence stars [Hurley, 2000],

vrot =
330m3.3

15 +m3.45
. (15.18)

This value in km s−1 is converted to spin aligned with the orbital axis.
Given the stellar radius in R�, this yields the angular velocity in yr−1,

Ω = 45.35
vrot
r∗

. (15.19)

Omitting the superscript, the primary quantity employed in the code is
the angular momentum, J = kmr2Ω, scaled to N -body units, where k is
a structural constant. It is convenient to adopt a representation as the
sum of two contributions, due to the envelope and core, by writing

J = [k2(m−mc)r2 + k3mcr
2
c ]Ω , (15.20)

where rc here denotes the stellar core radius, k2 = 0.1 and k3 = 0.21 [cf.
Hurley et al., 2000]. This enables the instantaneous angular velocity to
be recovered when required.
The spins (15.20) are updated according to mass loss and/or change of

radius, with relevant expressions for the stellar type. We assume that an
amount ∆m is ejected from a spherical shell at the surface, which gives
∆J = 2

3∆mr2Ω. Magnetic braking for convective stars is also included in
the form [Hurley et al., 2002]

J̇mb = −5.83× 10−16menv(rΩ)3/m , (15.21)

with menv the envelope mass. For a normal binary, the spins are updated
independently of mass and radius, according to the above scheme. Fi-
nally, the case of the companion accreting some of the mass lost from the
primary is also treated [cf. Hurley et al., 2002].
Tidal effects come into play when stellar oscillations are induced during

close periastron passages. This condition may be reached after a sudden
transition to high eccentricity or new binary formation, and also by secular
perturbations (i.e. Kozai cycles) inside a stable hierarchy. The subsequent
process of tidal circularization then acts to reduce the eccentricity, with
consequent period shortening due to angular momentum conservation.
The torque acting on the tidal bulge gives rise to angular momentum
transfer, such that the stars tend to become synchronous with the orbital
velocity at periastron. Hence the orbit loses angular momentum to the
stars as it shrinks and also in general due to increasing radii.
The theory of equilibrium tides provides a framework for consistent

description of the evolution of binary parameters. We adopt the simplified
model of Hut [1981] in which small deviations are considered and both



15.8 Spin–orbit coupling 289

spin axes are assumed to be normal to the orbital plane. Let us first
consider the case of tidal circularization for a hard binary treated by
two-body regularization, discussed in section 11.8. Note that for a typical
cluster model with N = 104, most KS binary components would have a
very long circularization time since tcirc ∝ (a/r)8. The basic theory of the
spin treatment has been presented elsewhere [Hurley et al., 2002]; hence
we only summarize some salient points of the numerical procedures.
The equations of motion for the eccentricity and both stellar spins are

integrated by the fourth-order Runge–Kutta method (RK4) using appro-
priate time intervals determined by the largest derivative as well as the
departure from synchronous rotation. Thus a given interval is subdivided
to ensure convergence, and care is taken to avoid overshooting in the
nearly singular region a(1 − e) ≥ 4r∗k. The new semi-major axis is ob-
tained from total angular momentum conservation, whereas the angular
velocities are converted to spins using relevant values for the dimensionless
radius of gyration, kg.
An update of the regularized orbital elements is also required. Since

circularization is implemented at pericentre, the coefficient for the KS
coordinates U is given by (11.39). Likewise, use of the energy relation,
(4.24), yields the corresponding coefficient for U′ by (11.44) after obtain-
ing the new value of h. In the case of unperturbed two-body motion, these
corrections are performed after each perturber check. Note that an un-
perturbed binary may reside inside a wide hierarchy without any Kozai
cycles being activated. However, (15.17) implies a cycle time > 1000Tout
at the standard perturber boundary aout � 100ain for the lower limits
eout = 0, ein = 0, whereas typical eccentricities would make the cycle time
considerably longer, assuming unperturbed motion at the outer pericen-
tre. Consequently, external perturbations would modify such an orbit and
thereby randomize any secular effects on the inner binary.
Circularization is deemed to have taken place when the eccentricity

reaches a small value, currently emin = 0.002, which still allows the peri-
centre algorithm based on t′′ (or R′) changing sign to be employed. Fol-
lowing circularization, the spin synchronization treatment is continued
because the stellar radii or semi-major axis may still change. The equi-
librium angular velocity is defined in terms of the instantaneous valve by

Ωeq = f2(e2)Ωorb
[

1
f5(e2)(1− e2)3/2

]
, (15.22)

where f2 and f5 are simple algebraic functions of eccentricity given by
Hut [1981]. Since the synchronization time-scale ∝ (a/r)6, the secondary
component may not reach this state before the orbit has been circu-
larized. However, the associated spin angular momentum also tends to
be correspondingly smaller. Although there is observational evidence for
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synchronized spins in several circularized binaries, an established triple
with circular inner orbit contains a rapidly rotating component which
poses a puzzle [Saar, Nordström & Andersen, 1990].

Next we consider the effect of spin–orbit coupling in hierarchical sys-
tems. In NBODY 4, the inner eccentricity change is modelled by an aver-
aging method in systems that may become tidally active [cf. Mardling &
Aarseth, 2001], and the effect of spin has been included. Given the inner
and outer orbital elements, the maximum eccentricity, emax, can be calcu-
lated analytically in the absence of external perturbations [Heggie, private
communication, 1996]. Since favourable conditions may exist at the end of
chain regularization, the final values of ψ and emax are recorded for further
analysis, and likewise at the start of any hierarchical initialization.
The secular evolution of the inner binary of a hierarchical system is

studied by an averaging method for the rate of change of the Runge–
Lenz and specific angular momentum vectors. However, only systems with
emax > 0.9 and tcirc(emax) < 2× 109 yr are considered. The inner Runge–
Lenz vector is given by

ein = Ṙ× j/mb −R/R , (15.23)

where j = R×Ṙ. The rates of change of these vectors depend on the accel-
erations produced by the tidal and spin bulges, tidal dissipation, possible
relativistic precession, as well as the third body. The corresponding equa-
tions of motion, averaged over one inner orbit, take the form

ėav = b1ê+ b2q̂+ b3ĵ ,
(dj/dt)av = c1ê+ c2q̂+ c3ĵ , (15.24)

with q̂ = ê × ĵ. The contributions to bi and ci from the third body pertur-
bation in the quadrupole approximation‡‡ were derived by Heggie [1996],
while the tidal and spin contributions are based on Eggleton, Kiseleva
& Hut [1998] for rotation axes normal to the orbital plane. Convenient
expressions for the complete formulation are given by Mardling & Lin
[2002]. In units of au, M� and yr, the period of the relativistic precession
is [Holman, Touma & Tremaine, 1997]

TGR = 3.4× 107(1− e2)Tinain/mb . (15.25)

Finally, the oblateness effect is modelled using appropriate apsidal motion
constants [Schwarzschild, 1958].
The different contributions depend sensitively on the inverse powers

of the semi-major axis and (1 − e2), with b1 ∝ 1/a8(1 − e2)13/2 and

‡‡ A more general octupole order treatment is available [Ford, Kozinsky & Rasio, 2000].
However, note that the quadrupole terms dominate the evolution for high inclinations.
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b2 ∝ 1/a13/2(1−e2)4 from the tidal dissipation and apsidal motion terms,
whereas the relativistic precession part of the latter ∝ 1/a5/2(1 − e2).
Consequently, the eccentricity growth due to the Kozai cycle may be sup-
pressed by the apsidal motion or relativistic precession. Although this
may seem extreme, such values have been noted on many occasions. The
reason for this behaviour is that the starting values of eccentricity and
inclination may be favourable, which makes for large values of emax.
The relevant equations of motion are integrated by the RK4 method,

taking special care with the time-step choice for large eccentricities [cf.
Aarseth & Mardling, 2001]. This is done either at every outer apocentre
passage for perturbed KS solutions or after each check of unperturbed
motion. The basic integration step is taken as the harmonic mean

∆t = 1
2(Tinmin {TKozai, Tq})1/2 , (15.26)

where Tq is the growth time-scale due to the quadrupole term, with addi-
tional safeguards for large eccentricities. All the elements are redetermined
at the end of each integration interval, thereby facilitating standard KS
initialization at termination. Some relevant KS procedures are summa-
rized in Appendix D.3.
The question of appropriate termination criteria requires careful con-

sideration. One possibility is to initiate tidal circularization once the cor-
responding time-scale, tcirc, falls below a specified value. The rationale for
such a decision is that this would lead to eventual circularization since the
Kozai cycle would not be operative in the case of unperturbed two-body
motion following some shrinkage (cf. (15.17)). However, it is beneficial to
include all the effects until the largest value of the eccentricity is reached,
which occurs for e · ė < 0 subject to ėav > 0. In fact, this condition also
ensures that the maximum shrinkage is achieved. Note that the oblateness
and relativistic precession are not taken into account during the standard
circularization treatment. Hence the outcome depends on the tidal eccen-
tricity damping versus induced growth due to the outer body, combined
with the effect of spin.
Hierarchical evolution often leads to large values of the inner eccen-

tricity even though the coalescence condition is usually avoided. Since
angular momentum is conserved during circularization, the final semi-
major axis may become quite small. This mechanism for orbital shrink-
age might therefore play an important role in close binary formation and,
in fact, there exists a correlation between the observed period and ec-
centricity [Mermilliod & Mayor, 1992], albeit with some exceptions [Ver-
bunt & Phinney, 1995]. As for possible applications to observed systems,
the quadruple star µ Orionis contains two circular binaries of comparable
short period in an eccentric wide outer orbit [Fekel et al., 2002]. The effect
of any high inclinations would therefore be subject to strong damping.
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Although the averaging procedure is capable of dealing with the com-
plete history of circularization, it is more convenient to initiate the stan-
dard treatment upon attaining the maximum eccentricity or a sufficiently
short time-scale. Thus hierarchical binaries with relatively short periods
and significant perturbation would also approach the circular state more
rapidly. If we exclude rare cases when the external effect is able to over-
come the damping, there follows an interval of circular motion before the
Roche-lobe overflow condition is satisfied. Depending on the remaining
interval, the binary components may evolve significantly and hence ac-
quire further angular momentum from the orbit. Likewise, this process
also operates during subsequent quiescent phases.
The case of angular momentum exchange during inactive periods is

studied in a similar way. Now we simplify the treatment by assuming zero
eccentricity, leaving the two spin equations to be integrated. In general,
the qualitative effect of including stellar rotation is to shorten the time-
scale until the next epoch of mass transfer. Hence all the stages leading
to possible mass transfer include spin effects in a uniform and consistent
way. Finally, it is encouraging that at least the primaries tend to be well
synchronized during circularization.

15.9 Globular clusters

The forthcoming attack on the globular cluster problem represents a
grand challenge for N -body simulators. This exciting possibility is now
becoming feasible due to the construction of the new special-purpose com-
puter called GRAPE-6 [Makino & Fukushige, 2002; Makino, Fukushige
& Namura, 2003]. As an indication of the rapid progress in hardware de-
velopments, a measured speed of 29.5Tflops has recently been achieved
[Makino, private communication, 2002]. At the same time, further efforts
in software development will be required in order to exploit the increased
performance to the full.
An important external effect acting on most globular clusters is due

to tidal shocks when the orbit crosses the Galactic plane with high ve-
locity. Theoretical heating rates [Spitzer, 1987; Gnedin & Ostriker, 1997]
indicate that the resulting internal heating is significant and should be
included in the simulations. Thus the Hermite scheme requires an exter-
nal potential that can be differentiated explicitly twice in order to yield
an analytical expression for the first derivative of the force. It should be
emphasized that simplicity is desirable in view of the need to include
these perturbations on the host machine. The code NBODY 4 contains pre-
scriptions for implementing a shock by the impulsive approximation. At
a given moment, the individual vertical velocities are increased by adding
a Maxwellian component with dispersion σz. Since this is a discontinuous
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process, new force polynomials are initialized using HARP or GRAPE-6,
but in view of the long Galactic oscillation period this is not too expen-
sive. Finally, the resulting kinetic energy gain is added to the total energy
in order to maintain conservation.
So far, only a simplified model has been used to examine the effect

of disc shocking [Vesperini & Heggie, 1997] and, in any case, no direct
N -body simulation of a realistic globular cluster has yet been performed.
Such simulations require appropriate synthetic stellar evolution (i.e. low
metallicity) and a suitable potential for eccentric orbit integration, as well
as a fairly large particle number (say N � 105). Now that the GRAPE-6
(32 chip version) is available, the latter condition can essentially be met
without primordial binaries. Moreover, a general stellar evolution scheme
[cf. Hurley et al., 2000] has already been implemented. The new models
discussed in section 8.6 should therefore be very useful for beginning the
study of globular cluster evolution in a 3D environment.
Globular clusters provide ideal testing grounds for several exotic pro-

cesses. Particularly the question of neutron star retention needs to be
re-addressed in the light of current observations of low-mass X-ray bina-
ries which imply that a significant population is present [Pfahl, Rappaport
& Podsiadlowski, 2002]. Based on the current modelling of velocity kicks,
it is difficult to envisage sufficient retention even assuming strong mass
correlation in the primordial binary distribution. If corroborated further,
this may strengthen the search for alternative modes of neutron star for-
mation. Observational capabilities of detecting the white dwarf sequence
[Cool, Piotto & King, 1996] will also place further constraints on the
numerical models.
Because of the high central densities, a number of collisions may be ex-

pected to occur in globular clusters since the stellar population contains a
significant fraction of red giants. On the other hand, there are also many
degenerate objects and low-mass stars with small radii which complicates
the estimate. An early pioneering investigation [Hills & Day, 1976] sug-
gested that physical collisions are likely, with ∼ 300 events predicted for a
typical globular cluster. On the basis of current simulations with primor-
dial binaries, this estimate is probably far too low. Collisions may also
deplete red giants at the Galactic centre [Davies, 2001]. Moreover, colli-
sions are needed to account for the substantial number of blue stragglers
that are now being reported [Grindlay, 1996; Guhathakurta et al., 1998;
Shara et al., 1998]. These objects exhibit pronounced central concentra-
tion and an individual mass determination [Shara, Saffer & Livio, 1997]
is consistent with the collisional scenario. Scaling up from a simulation
of M67 [Hurley et al., 2001a], it appears that a significant population
of such objects would form preferentially in richer clusters, with both
physical collisions and Roche-lobe mass transfer contributing.
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Close encounters not involved in collisions may produce tidal capture
binaries. Indications from an ambitious early Monte Carlo simulation are
that this process may be important in globular clusters [Stodólkiewicz,
1985]. Hence calculations with increased particle numbers should provide
an opportunity for testing the capture theory [Mardling, 1996a,b,c]. Thus
even a small fraction of surviving capture binaries for every collision event
will have important repercussions. It can also be anticipated that several
types of exotic binaries that are not identified in population synthesis
studies originate as the result of dynamical interactions, either by orbital
shrinkage or exchange. In particular, the astrophysical implications of the
latter process deserves more careful study, and already early scattering
experiments demonstrated its efficiency [Hills, 1975].

The binary fraction in globular clusters is also of considerable interest.
In view of the small formation rate of hard binaries expected from the-
oretical estimates [Spitzer, 1987] and numerical scattering experiments
[Aarseth & Heggie, 1976], nearly all the observed binaries may be primor-
dial or formed by exchange. In spite of detection difficulties, the evidence
has been mounting for a significant binary fraction [Hut et al., 1992; Mey-
lan & Heggie, 1997]. To quote a specific case of a young globular cluster
in the LMC [Elson et al., 1998], the binary fraction was determined to
be about 35% near the centre, decreasing to 20% further out. In addi-
tion, dynamically important non-luminous binaries should be present in
considerable numbers. Hence binaries may contain enough fossil fuel to
prevent late stages of core collapse from being reached. However, the cal-
culation of the energy transfer to the core will prove a severe test for
the direct integration methods. In addition, a study of the escape process
itself is of fundamental interest and will provide opportunities for theoret-
ical comparisons. We also mention an observational project to search for
high-velocity escapers from globulars [Meusinger, Scholz & Irwin, 2001].

Notwithstanding accumulating observational evidence, the question of
possible scenarios for the formation of supermassive objects is also of
interest in relation to globular clusters. In this connection we mention a
first attempt to account for the growth of compact objects based on direct
N -body simulations [Lee, 1993]. This model assumes a dense star cluster
where binaries form by tidal capture, with the energy loss due to gravita-
tional radiation. The code NBODY 5 was employed to study systems with
N = 1000 equal-mass stars and high velocity dispersion, σ � 2000 km s−1.
Following binary formation by GR capture, the KS formulation proved
ideal to include the dominant gravitational radiation part of (12.30) which
can be treated analytically if there are no perturbers. By analogy with
coagulation of planetesimals (to be discussed later), the mass spectrum
evolved by runaway growth featuring only one dominant object. Thus,
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after a stage of normal evolution, this process is facilitated by mass seg-
regation on a typical core collapse time-scale.
A scenario for the possible formation of intermediate-mass black holes

(IMBHs) in young compact clusters has been described, inspired by new
observations [Ebisuzaki et al., 2001]. The main idea is again that the prod-
ucts of runaway collisions between massive stars sink to the cluster centre
by dynamical friction before completing their evolution, whereupon they
combine to form an IMBH. The rapid growth of one massive star through
collisions has been reported in N -body simulations of compact clusters
[Portegies Zwart et al., 1999], although there is currently some uncertainty
about the retention of newly formed BHs. If some of the clusters survive
while spiralling towards the galactic nucleus, the IMBH will reach the
centre followed by cluster disruption. The liberated black holes may then
form binaries with other IMBHs and undergo coalescence by gravitational
radiation. However, a quantitative model for the emergence of the central
supermassive black hole (SMBH) is still not available. Hence it remains
to be seen whether this sequential process can replace more conventional
evolution paths involving gas accretion for the growth of an SMBH.
More quantitative models for runaway growth of IMBHs have now been

presented [Portegies Zwart & McMillan, 2002]. DirectN -body simulations
with up to 64K particles were performed on GRAPE-6. Dense clusters
with initial half-mass relaxation times below 25Myr are dominated by
stellar collisions involving the same star. Such collisions result in the run-
away growth of a supermassive object which may produce an IMBH.
Finally, on the astrophysical side, we mention a recent GRAPE-6 sim-

ulation with implications for more massive BHs in the centres of glob-
ular clusters [Baumgardt et al., 2003]. Thus a conventional model with
N = 128K stars obtained by using NBODY 4 and appropriate stellar evo-
lution was able to reproduce the observed velocity profile in M15 without
requiring the presence of a BH mass in excess of about 103M�.
Several technical aspects need to be re-assessed when moving to large-

N simulations. As far as multiple regularization methods are concerned,
it would be advantageous to be able to treat several perturbed interac-
tions at the same time. This can be readily achieved by extending the
three-body and global four-body regularizations to include external per-
turbers. The relevant theoretical formulations have already been given in
section 5.2 and Appendix A. It then becomes a question of developing the
corresponding interface as described in chapter 12, using similar princi-
ples. Note, however, that here the membership is fixed so that collision
or escape is simplified by immediate termination. Hence one possible, but
extremely rare, problem for the triple treatment would be the approach
of a strong perturber with the two other methods being used. In any case,
a procedure exists for terminating a less critical configuration of the same
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type by comparing the respective perimeters. Experience so far suggests
that the chain regularization is only employed some 500 times during a
typical simulation with N = 104. Since the interaction times are usually
short, this probably represents less than 0.1% of the total time.
Looking ahead to general cluster simulations with N � 105 as the next

objective, it is by no means certain that the present time-step criterion
(cf. (2.13)) will prove to be sufficiently sensitive. Thus one might envisage
conditions with a large mass dispersion which would make direct integra-
tion of close encounters for R > Rcl less accurate, unless the time-step
parameter η is reduced ∝ N−1/6 [cf. Makino & Hut, 1988]. Otherwise it
may become necessary to introduce subsidiary criteria for the time-step
to ensure convergence, such as an evaluation of the predicted force change
[cf. Wielen, 1974], use of the fourth force difference or the difference be-
tween the predicted and corrected velocity [Makino, 1991a]. The latter
feature has already been adopted by taking advantage of the high-order
prediction on the new hardware.§§ A study of larger particle numbers may
also necessitate a more careful appraisal of other sources of errors.
Finally, we consider an aspect connected with the increased time-span

for larger systems which have longer life-times. Since the time itself is
only represented to about 16 figure accuracy and the time-steps tend to
decrease ∝ N−1/3 [Spurzem, Baumgardt & Ibold, 2003], it is desirable to
maintain precision (cf. 12.2 and 12.16) and ensure the commensurability
condition mod {t/∆ti} = 0 by a rectification of the scaled time. A sec-
ond offset time, toff , is then used for converting to physical units which
are mainly needed for stellar evolution purposes. This procedure entails
subtracting the quantities t0, T0, tev, tev0, τev by the offset interval, ∆toff ,
whenever the scaled time, t, exceeds this value. In addition, a few global
quantities used for decision-making need to be updated. All standard in-
tegration procedures are unaffected by the rescaling, so that the value of
the scaled integration time remains in the interval [0, ∆toff ]. Since the
smallest time-steps¶¶ usually occur in connection with the quantization
of time at chain termination, it may also be possible to delay most new
initializations until the end of the block-step. This would still allow rare
cases of extending the solution beyond the pericentre of eccentric binaries
at the time of escape (cf. section 12.2). Hence it can be expected that the
present integration scheme will prove itself in large-scale simulations with
minor modifications. In conclusion, the shape of things to come is now
under discussion [Hut et al., 2003; Heggie & Hut, 2003].

§§ Recent experience with the GRAPE-6 for N = 60 000 revealed some rare cases of
failure by the standard time-step criterion (2.13) which were eliminated after com-
paring with (2.16) for large values (∆ti > 0.01(6× 104/N)1/3). Notwithstanding the
low-order prediction, the subsidiary criterion (2.16) proved adequate with εv = 0.001.

¶¶ Currently 1.8× 10−12 at hierarchical level 40, compared with total times � 5× 103.
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Galaxies

16.1 Introduction

Recent years have seen impressive advances in the simulation of collision-
less systems. However, a wide range of problems in galactic dynamics are
still amenable to directN -body integration and will therefore be discussed
for completeness. This chapter also serves as a historical review of sev-
eral topics that blossomed from a primitive beginning. All such problems
are characterized by the employment of a small softening of the poten-
tial which reduces the effect of close encounters. We begin by describing
an application of the grid perturbation method to a ring of interacting
molecular clouds in the inner part of the Galaxy [Aarseth, 1988b]. This
enables a realistic number of clouds to be considered. The tidal disruption
of dwarf spheroidal galaxies orbiting the Milky Way has also been studied
by direct means [Oh, Lin & Aarseth, 1995].
More extreme interactions of galaxies often result in the formation of

one system, subsequently denoted as a remnant to distinguish this pro-
cess from mergers used for hierarchical stellar configurations. Studies of
galaxy interactions involving black holes have also become topical [Makino
& Ebisuzaki, 1996; Makino, 1997]. This problem is particularly challeng-
ing because of the difficulty of scaling to realistic conditions. Small galaxy
groups and clusters are ideal for N -body simulations if close encounters
can be treated using a softened potential. Early simulations [Aarseth,
1963b] were primitive but some basic aspects of dynamical evolution were
elucidated. On larger scales, cosmological problems have created much
interest over the years, with increased realism both as regards initial
conditions and particle number. The early investigations [Gott, Turner
& Aarseth, 1979; Dekel & Aarseth, 1984; Itoh, Inagaki & Saslaw, 1990]
demonstrated the basic behaviour of expanding systems and will be de-
scribed as background material for modern cosmological simulations.
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16.2 Molecular clouds

The development of the grid perturbation method outlined in section 3.5
was aimed at simulating the ring of giant molecular clouds in the inner
part of the Galaxy [Aarseth, 1988b]. Here the main idea is to include
the perturbing effect due to the nearest clouds, with the dominant mo-
tion arising from the smooth density distribution, thereby providing an
analogy with a thin planetary system. The galaxy potential of Miyamoto
& Nagai [1975] is convenient for studying motions in the 4–6 kpc ring.
In order to consider the effect of spiral arms, we include a perturbing
acceleration of the form [Tomisaka, 1986]

gr(r, θ) = −V 2rot(r)
r

(1 +A sinφ) + rΩ2p ,

gθ(r, θ) = −V 2rot(r)
r

A sinφ tan i , (16.1)

in polar coordinates r, θ. Here Vrot is the mean circular rotation velocity
and A is the amplitude of the spiral perturbation. The corresponding
phase is given by

φ = φ0 − ln (x2 + y2)/ tan i− 2θ − Ωpt , (16.2)

where i is the pitch angle, θ = tan−1(y/x) the orbital phase and Ωp the
pattern speed, set to corotation at 15 kpc. Hence this logarithmic trailing
spiral gives rise to a radial and tangential force component, scaled by the
galactic radial force.
Again the active perturber bins are determined by a mass-dependent

expression which is taken as

ni = 1 + (mi/mB)1/2Nb , (16.3)

wheremB is the mass of the biggest initial cloud andNb is a parameter; i.e.
typically Nb = 4 for a total of Na = 100 perturber bins. Hence ni = 1 for
the smallest masses and ni � 5 for clouds at the maximum initial mass,
which represents a dimensionless perturbation of � 10−4. The adopted
individual time-step algorithm is based on the orbital period modified by
the perturbation, and the equations of motion are advanced by standard
fourth-order differences. Cloud–cloud collisions are modelled by inelastic
accretion, with giant clouds exceeding 2 × 106M� subject to disruption
into a number of fragments after 5 × 107 yr. As a refinement, the force
due to a small population of giant clouds (m > mB) is included by direct
summation.
Knowledge of the perturbation facilitates collision determinations. For

a separation rij outside the softening length, the relative perturbation due



16.2 Molecular clouds 299

to a cloud of mass mj with respect to the centrifugal force, Fg = V 2r /rg,
can be estimated by

γi = mjrg/r
2
ijV

2
r . (16.4)

A close encounter search is made only if γi exceeds an appropriately scaled
value obtained at the minimum overlapping separation, 4 ε0. Adopting
constant cloud density, the softening size (or half-mass radius) is taken
as ε = ε0 (m/m0)1/3, with the conservative choice ε0 = 5pc for m0 =
104M�. Hence the interaction potential can be written in the form Φi =
−mj/(r2ij + ε2i + ε2j )

1/2 [cf. White, 1976]. The collision search for particles
with a suitable small time-step is in the first instance restricted to the
current perturber bin, with coordinates predicted to order Fj . As usual
in such simulations, the overlapping condition 2 (εi+εj) defines an inelastic
collision, whereupon the new c.m. body is introduced in the standard way.
The astrophysical modelling outlined here has many similarities with

two other contemporary investigations [Tomisaka, 1986; Kwan & Valdes,
1987] which produced qualitatively similar results. As for the numerical
methods, the former study included all the clouds in the force summa-
tion and was therefore quite expensive, whereas the latter only considered
interactions inside 400 pc for 104 clouds of initial mass 105M�. In com-
parison, the mass-dependent cutoff in the grid perturbation scheme falls
in the range 250–1250 pc at 4 kpc for a smaller minimum mass, whereas
the overheads of the method are relatively modest. Although the present
scheme was an improvement of the computational efficiency, with more
careful treatment of the massive clouds than in the cutoff procedure, it
has not been fully exploited yet.
Four models with N = 5000 clouds distributed at constant surface

density inside a 4–6 kpc ring of thickness ±0.1 kpc were studied. The ini-
tial masses were selected from an IMF in the range 104–5 × 105M� and
assigned circular orbits. Consequently, the eccentricity growth due to per-
turbations gives rise to an increasing velocity dispersion defined by

σp =
[
1
N

∑
ṙ2 + (vθ − vc)2

]1/2
, (16.5)

where vθ − vc represents the departure from circular motion. In the ab-
sence of coalescence and the spiral density wave, σp � 7 km s−1 already
after 1.25 rotation periods. Including coalescence led to σp � 10 km s−1
with some 6600 collisions at 1.5 rotation periods. In comparison, there
were 8000 collisions and σp � 7 km s−1 when the spiral arm effect was
introduced. Finally, these provisional simulations showed some evidence
of mass segregation in the form of smaller velocity dispersion and half-
thickness of the most massive clouds which formed by coalescence.
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16.3 Tidal disruption of dwarf galaxies

A number of dwarf spheroidal galaxies are in orbit around the Galaxy at
distances that are sufficiently close to induce strong perturbations. The
process of tidal disruption has been investigated by direct N -body simula-
tions, using the equations of motion in section 8.5. A softened potential of
the form Φ = −m/(r4+ε4)1/4 was used with NBODY 2 in order to minimize
the departure from the Newtonian form [Oh, Lin & Aarseth, 1995]. Since
the r-dependence is quite steep and ε 
 Rs, it is justified to ignore the
softening during the regular force summation.∗ Possible problems with
softening and alternative expressions have been discussed by several au-
thors [Dyer & Ip, 1993; Theis, 1998; Dehnen, 2001]. The question of an
optimal choice for ε has also been addressed [Merritt, 1996].
In order to estimate the two-body relaxation, two isolated isotropic

King [1966] models with W0 = 2 and N = 1000 were studied over 20Gyr.
The second model consisted of two populations containing 500 members
differing in mass by a factor of 2. Detailed comparison showed a slight
decrease of the half-mass radius of the heavy population, whereas rh ex-
panded by less than 10% for the light members. Moreover, only about
10% of the outermost mass distribution expanded beyond the initial lim-
iting radius. These results indicate that direct N -body simulations with
equal masses are appropriate for studying the tidal disruption of dwarf
spheroidal galaxies when relaxation plays a minor role.
One set of models employed a logarithmic potential for the Galaxy and

a range of cutoff radii, rk/rt, with respect to the tidal radius. A direct
comparison of two models in circular orbits showed that more than half
the mass escaped well beyond the tidal radius after the first period for
rk/rt = 1.9, whereas a dwarf galaxy with rk/rt = 1 survived intact on a
Hubble time.
In the case of eccentric orbits, the tidal radius at perigalacticon was

used [King, 1962]. For the point-mass potential and mass ratio α we have

rt =
[

α

3 + e

]1/3
(1− e) a , (16.6)

with a somewhat more complicated expression for the logarithmic po-
tential [cf. Oh et al., 1995]. Hence this definition tends to increase the
disruption rate. Even so, a model with rk/rt = 1.9, a = 100 kpc, e = 0.5
and mass Md = 2 × 106M� was only marginally disrupted on a Hubble
time. Since rt ∝ M

1/3
d and the density distribution is shallow, the central

density remained nearly constant throughout the evolution.
Models with a point-mass potential of the Galaxy were also considered.

In the case of comparable periods, the tidal force is about twice as strong

∗ This simplification is not recommended for the sensitive Hermite method.
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as for a logarithmic potential. Despite a stronger tidal force during peri-
galacticon passages, the results obtained are remarkably similar, although
the disruption times are somewhat less. Moreover, similar dwarf galaxies
on circular orbits tend to be less stable. One possible reason for this be-
haviour is that these dwarf galaxies only spend a fraction of a period in
the innermost part of their orbit, where the velocity is higher.
These simulations were made a long time ago, when computing power

was quite modest. Nevertheless, some useful results were still obtained.
Finally, we remark that much more ambitious simulations of dwarf galax-
ies with N � 106 have been performed by the SUPERBOX particle-mesh
code which uses moving nested grids [Fellhauer et al., 2000].

16.4 Interacting galaxies

In the preceding section, some justification for modelling collisionless sys-
tems by direct integration was given. Such arguments were particularly
relevant in the early days when the particle number was limited to a few
hundred. In this spirit, a series of N -body simulations of galaxy collisions
was carried out using NBODY 2 [Gerhard, 1981, 1982]. The main empha-
sis of this work was on investigating the role of the angular momentum
vectors in the formation of the final system.
The initial galaxy models consisted of a differentially rotating disc of

Nd = 124 equal-mass particles orbiting a small central mass. The disc was
stabilized by a live spherical halo with membership Nh = 125. As in the
previous section, possible two-body effects were studied first. Here the rel-
evant time-scales are somewhat shorter, justifying the slightly smaller par-
ticle numbers. Several experiments were performed with different choices
of impact parameter, initial c.m. velocity and angle between the two disc
angular momentum vectors. The results showed that prograde rotation
favoured the formation of a composite system, with the strength of the
interaction determined by the relative orientation of the spin vectors. A
typical outcome was the formation of a remnant after about ten crossing
times, with an internal density ρ ∝ r−3, whereas the mass loss was only a
few per cent. Analysis of the final velocity field revealed some interesting
features which were ascribed to the oblate structure.
A more systematic exploration of colliding galaxy models was made for

small (N � 30 each) systems [Roos & Norman, 1979]. In this work, cross
sections were determined for a range of parameters that were later used
in cosmological simulations as well as for an investigation of rich galaxy
clusters [cf. Aarseth & Fall, 1980; Roos & Aarseth, 1982]. For complete-
ness, we also mention some early simulations of interacting galaxies with
NBODY 2 and rather larger particle numbers (N � 250 each) which set the
scene for subsequent work [White, 1978, 1979].
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Simulations of interacting galaxies have recently been revived in con-
nection with black hole binaries in galactic nuclei. The availability of the
GRAPE-4 special-purpose computer enabled quite large values of N to
be considered by direct integration [Makino & Ebisuzaki, 1996; Makino,
1997]. This work employed the Hermite version of NBODY 1 [Makino
& Aarseth, 1992]. The first paper used N = 16K and a softening of
ε = 1/128. Different BH masses were studied in order to evaluate their
effect on the structure of the final remnant. Following the formation of
a remnant, a duplicate was constructed as the progenitor for the next
simulation and the BH binary was artificially replaced by one particle.
The main observationally related result was the formation of a shallow
density cusp, ρ ∝ r−α with α ≤ 1 [see also Nakano & Makino, 1999].

The second paper concentrated on the evolution of the central BH bi-
nary, starting from similar initial conditions but now with a total number
of particles up to 256K. A softened potential was used for interactions be-
tween field particles, whereas all other forces were evaluated by the 1/r2

law. Starting with two model galaxies in parabolic orbit at separation
d = 10 (in standard N -body units) and black hole masses mBH = 1/32,
the remnant was formed by t � 30 and the BH components became bound
soon afterwards. Following an early phase of rapid hardening independent
of N , the evolution rate tended to the power-law dEb/dt ∝ N−1/3 for a
wide range of N , and by t � 60 the final value approached the character-
istic cluster energy of – 0.2 in scaled units.
Two similar efforts which essentially employed point-mass interactions

in the inner region together with two-body regularization have already
been discussed in section 10.5 [cf. Quinlan & Hernquist, 1997; Milosavl-
jević & Merritt, 2001]. Again an early hardening of the BH binary was
followed by a stage of constant energy gain until the calculations were
terminated for technical reasons. Much can also be learnt by studying
the three-body problem. A recent investigation [Blaes, Lee & Socrates,
2002] focused on the Kozai mechanism in the presence of GR effects for
a hierarchical triple of supermassive black holes. Integration of the aver-
aged equations for the orbital elements showed a significant reduction of
the coalescence time. Moreover, the inner binary may now sample inter-
actions with a larger fraction of stars, thereby alleviating the loss-cone
effect. This still leaves an interesting competition between the time-scales
of the outer orbit shrinkage and the inner binary undergoing GR decay.
The numerical simulations may be confronted with theoretical predic-

tions. Here the process of mass segregation plays an important role in
models involving infall which are currently in vogue. Moreover, it appears
that the early evolution is independent of N because the loss-cone deple-
tion has not begun. However, the use of a relatively large and constant
value of MBH for different N -values does affect the scaling to realistic
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conditions. Hence the question of the maximum excursion of the BH bi-
nary requires further study. Likewise, the related problem of Brownian
motions has still not been resolved [cf. Hemsendorf et al., 2002]. The out-
come has implications for the possible formation of massive triples before
binary coalescence by gravitational radiation can take place. It can there-
fore be anticipated that greater efforts will be directed towards resolving
this fascinating problem, and hopefully direct N -body integrations will
play a significant part [cf. Mikkola & Aarseth, 2002; Aarseth, 2003a,b].

16.5 Groups and clusters

Some of the earliestN -body simulations were concerned with small groups
and clusters of galaxies [Aarseth, 1963b, 1966a]. This problem is numer-
ically easier than point-mass dynamics and is justified because galax-
ies have extended mass distributions, permitting their interactions to be
modelled by a softening of the Newtonian potential (cf. (2.8)). Direct in-
tegrations were performed for clusters with N = 50 and 100 over a few
crossing times. Since different masses were included for the first time, this
was sufficient to demonstrate mass segregation and significant binaries
were also noted. A subsequent investigation [Aarseth, 1969] added ini-
tial rotation which gave rise to flattening, enhanced mass segregation and
shorter relaxation time. Because of the general expansion of isolated sys-
tems, the rotational kinetic energy decreases. At the same time, angular
momentum is transported outwards, in analogy with accretion discs.
Following the development of the NBODY 2 code, larger systems could

be studied [White, 1976]. Moderately expanding initial conditions with
N = 700 members of different mass were used to model the Coma galaxy
cluster. Several subclusters which formed during the early phase provided
conditions for violent relaxation after turn-around, producing a final equi-
librium system with core–halo structure. Already at this stage there was
significant mass segregation, in qualitative agreement with observations of
luminosity segregation. The local infall scenario became popular in later
years when attention turned to expanding models.
A more consistent treatment [Roos & Aarseth, 1982] included inelastic

coalescence based on determinations of cross sections from N -body simu-
lations [Roos & Norman, 1979]. Again an initially expanding system was
used, with a cosmological density parameter Ωin = 1.75 and N = 700
particles selected from a standard luminosity function. This gave rise to
a maximum expansion factor Rmax/Rin = (1− Ω−1

in )−1 � 2.4.
The galaxy cluster model was evolved over 1.5×1010 yr with a virialized

radius of 2.5Mpc and total mass 1.5×1015M�. At the end of this interval,
the membership decreased to 240 with an enhanced proportion of heavy
particles. Most of the coalescence took place during the early phase when
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the velocity dispersion was less than the internal value and the radii had
not been reduced by tidal stripping. The amount of mass segregation at
the end was quite strong, in agreement with the investigation above. Thus
it appears that much of the mass segregation that occurs in the subsystems
survives the violent relaxation during the overlapping process. It was also
suggested that tidal stripping due to collisional mass loss in the core of a
rich cluster limits the radii of such galaxies to 20 kpc within 5 × 109 yr.
Furthermore, the stripped material may form part of the envelopes of
central giant galaxies. On the debit side, it may be remarked that halos
are not treated in a self-consistent way since their destruction during tidal
interactions is not included and this will lead to an overestimate of the
coalescence rate. Nevertheless, the attempt to account for evolutionary
effects in galaxy clusters illustrates well the versatility of the direct N -
body approach.
The more realistic cluster simulations described above were based on

the idea of early expansion, followed by turn-around and recollapse. This
description set the stage for cosmological simulations which also had a
modest beginning when measured by present-day standards. Finally, we
note an early attempt of studying compact galaxy groups dominated by
dark matter [Barnes, 1984] where again NBODY 2 was used with N � 450.

16.6 Cosmological models

The idea of studying galaxy clustering on a local scale that includes the
brightest 100−1000 members is attractive if it can be assumed that mass is
correlated with luminosity. Consequently, most of the early investigations
of expanding systems adopted this simplifying hypothesis.
Cosmological N -body simulations began to take shape in the mid-1970s

with some innovative explorations of the basic clustering process [Aarseth,
Gott & Turner, 1979; Gott, Turner & Aarseth, 1979]. The important
question of initial conditions was also addressed in the first paper. Initial
density fluctuations of the type

δρ/ρ ∝ m−1/2−n/6 (16.7)

were chosen, with m the mass within an arbitrary radius and the index n
denoting any departure from a Poisson distribution. Different models with
N = 1000 and 4000 particles were considered, the latter having a universal
mass function. To increase the range of separations and hence amplitude
for the two-point correlation function, some point-mass calculations were
also made with a precursor of NBODY 5.
For a given initial mass distribution and cosmological density parame-

ter, Ωin, the velocities were chosen by the expression

vi = Hinri + vp , (16.8)
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with scaled Hubble’s constant Hin = (2M/Ωin)1/2 and vp representing
possible random motions. The latter decay as the result of expansion and
cooling, whereas peculiar velocities are generated by departures from ho-
mogeneity. Closed and open models were studied, with Ωin = 1 and 0.77,
and corresponding expansion ratios Rmax/Rin = 10 and 32. During the
expansion, over-dense regions are retarded and eventually form bound
clusters which approach virial equilibrium, whereas negative density fluc-
tuations lead to voids of growing size.
The correlation function of the models display a power-law behaviour

with index α � 1.8. This agrees well with observed values in the range
0.1–10Mpc. Another test of galaxy clustering simulations was provided
by analysis of group catalogues [Turner et al., 1979]. Comparison of sim-
ulations with observational group catalogues of bright galaxies favoured
open models (Ω0 � 0.1) and n = −1 which produce a wider range of clus-
ter sizes than purely Poisson-type initial conditions. A third paper [Gott,
et al., 1979] examined the slope of the correlation function in more detail
and concluded that the value of Ω cannot be determined solely from the
corresponding observations.
The general idea that bright ellipticals may be the result of coalescence

[Toomre, 1977] was first explored in a cosmological simulation using the
code COMOV E [Aarseth & Fall, 1980]. The capture cross section for differ-
ent impact parameters and velocities was obtained by combining previous
N -body experiments [van Albada & van Gorkom, 1977; White, 1978; Roos
& Norman, 1979]. It was assumed that inelastic coalescence occurs instan-
taneously at the first perigalacticon passage, with the new internal energy
of the remnant given by

Er = E1 + E2 + Eb , (16.9)

where Eb is the orbital binding energy. Adopting a final Plummer model
without mass loss, this gives the galaxy half-mass radius as

rg � −0.2m2/Er . (16.10)

The corresponding softening size was taken to be ε ∝ m1/2. In addition,
the 1000 particles were assigned randomly oriented spins for the purpose
of analysing the dimensionless spin parameter J |Er|1/2/GM5/2 based on
angular momentum conservation.
Many of the remnants were formed in a hierarchical sequence, with the

early stage characterized by the turn-around and infall of weakly bound
pairs. The preponderance of nearly radial orbits resulted in a radius–mass
relation rh ∝ m0.85 and a low value for the characteristic remnant spin.
Open models with Ωin = 0.69 were studied, and the final value Ω0 = 0.1
was reached after expansion by a factor of 22. The main conclusion based
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on these simulations was that accretion plays an important role in the
clustering process, at least if massive halos are assumed. Thus a significant
fraction of dark matter distributed homogeneously in similar models only
reduced the collision rate by a modest amount [Findlay, 1983]. The latter
study incorporated the effect of spin generated by tidal torques induced
by the neighbours but the final rotation rates were still small.
Cosmological clustering scenarios were also examined for anisotropic

initial conditions which produce flattened superclusters [Dekel & Aarseth,
1984]. So-called ‘pancake simulations’ were made with N = 104 by first
evolving the models kinematically according to the Zel’dovich approx-
imation and subsequently by self-consistent means, using the COMOV E

code with small softening. As a sign of the efficiency of the comoving
code and bearing in mind the modest computing power (i.e. VAX 11-780,
< 1Mflop), the total CPU times were only about 50 hr for an expan-
sion factor of 8. The observed excess of the two-point spatial correlation
function on large scales, which does not agree with the standard hierar-
chical clustering picture, was reproduced in the case where superclusters
collapse to form flat structures. It also follows that the latter are young
dynamically which has implications for galaxy formation. This investiga-
tion emphasized the importance of more realistic initial conditions and
their relevance for the shape of the correlation function.
The above simulations also give rise to quite large voids that are nearly

empty of galaxies. Analysis of voids based on earlier numerical models
showed that the characteristic size distribution does not depend signif-
icantly on Ωin or the initial conditions [Aarseth & Saslaw, 1982]. From
mass conservation, the typical sizes of voids must exceed the cluster sizes
since the density enhancements can be arbitrarily large. Comparison of
the largest voids in the simulations with observations indicate that the
latter are larger, in apparent conflict with the standard gravitational clus-
tering picture. However, a similar analysis of simulations with flattened
superclusters for somewhat richer memberships might narrow this gap.
Finally, we mention the use of the vectorized version of COMOV E [cf.

Aarseth & Inagaki, 1986] for comparing gravitational clustering with ther-
modynamic theory. In a first paper [Itoh, Inagaki & Saslaw, 1988], it was
shown that this theory gives a good description of the simulations as well
as observations. Generalization to two mass components [Itoh, Inagaki &
Saslaw, 1990] also proved possible, using the single-component thermody-
namic distribution function applied to each mass group separately. Hence,
in conclusion, we see that the early N -body simulations of galaxy clus-
tering provided considerable stimulus towards theoretical developments
which led to the present picture of a dominant dark matter distribution.
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Planetary systems

17.1 Introduction

In the last few years, the subject of dynamical planetary formation has
undergone a remarkable transformation. Thus we now have an increasing
database of actual observed systems which provides much material for
theoretical and numerical work. It therefore seems appropriate to devote
a small chapter to direct N -body simulations of planetary systems. The
emphasis in the early days was on performing idealized calculations to as-
certain whether the eccentricity growth due to weak perturbations could
lead to significant accretion by collisions. With the increase of computing
power, more realistic modelling has become feasible by direct methods,
but powerful tree codes are an attractive alternative. The latter technique
has proved effective for studying both planetesimal systems and planetary
rings. Following the discovery of many extra-solar systems, the question
of stability has become topical. Stability is often addressed using sym-
plectic integrators which are outside the main scope of this book. In the
following we distinguish between planetary formation and planetesimal
dynamics. This division is somewhat arbitrary but planetesimal simula-
tions are usually concerned with particles distributed in a thin annulus
which therefore represents larger systems.

17.2 Planetary formation

Although there are early integrations of planetary dynamics relating to
Bode’s Law [Hills, 1970], it took another decade for the subject proper
to get under way. The first attempt to model an evolving mass distri-
bution [Cox & Lewis, 1980] suffered shortcomings in that the system ap-
peared to terminate its evolution before reaching a realistic final configura-
tion. However, this study employed Keplerian orbits outside the sphere of
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influence and hence neglected distant encounters. Thus even an initial
uniform eccentricity distribution up to emax = 0.1 of 100 planetesimals
with 1.6 lunar masses each in the terrestrial region was insufficient to
prevent isolation of the feeding zones of the massive bodies.
A full N -body model, also in 2D, was more successful [Aarseth & Lecar,

1984; Lecar & Aarseth, 1986]. Here the grid perturbation method de-
scribed in section 3.5 was employed. The collision criterion used was based
on overlapping impacts of the two radii, assuming realistic density and
inelastic coalescence without mass loss.∗ This model began with N = 200
lunar-size planetesimals in circular orbits in the range 0.5–1.5 au with
constant surface density Σ = 10.5 g cm−2, or mass m0 = 6.6 × 1026 g.
Perturbations out to about Nb = 5 azimuthal bins were included on each
side (out of a total of 100 bins), corresponding to about 300 times the
sphere of influence, Rs = (2m0/M�)2/5a, at a = 1au.
A final membership of six bodies was reached after ∼ 5× 104 yr. Start-

ing from circular orbits, the mean eccentricity grew to about 0.06 by
t � 104 yr while the membership decreased to about 20. At this stage, all
perturbations as well as the indirect force terms were included. Compari-
son of the three most massive bodies showed no evidence of runaway; the
third largest mass increased at a similar rate as the maximum mass. The
mass spectrum evolved according to

dN ∝ m−q dm , (17.1)

where the exponent decreased smoothly from a large value to below unity
with q ∝ 1/ē. Although the final masses were planet-like, the eccentricities
tended to be rather large. In spite of the simplifying assumptions of 2D,
equal initial masses and no fragmentation, the direct approach showed
promise and pointed the way to future developments.
This work also provided a theoretical framework for predicting the par-

ticle number and mean eccentricity in a differentially rotating system,
where the competing processes of eccentricity growth by perturbations
and damping due to collisions are operating. Including gravitational fo-
cusing yielded an evolution equation

N0/N = 1 + t/τ , (17.2)

with τ � 1300 yr from the data, which reproduced the characteristic knee
in the numerical results. However, taking into account the variation of
the collision frequency and separation with the mean mass resulted in a
less satisfactory agreement. The prediction of ē was more successful and

∗ Note that the simple device of placing the remnant body at the c.m. position with
corresponding velocity does not conserve orbital angular momentum strictly in a
system with differential rotation since the velocity changes are unequal.
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yielded a power-law ē ∝ tβ with the exponent between 1
2 and 2

3 , which
bracketed the data during the first 104 yr.
Considering the final configuration, the spacing between nearby orbits

is proportional to 1/N , whereas the radial excursions are proportional
to e. Since the former behaves as t while ē evolves as t2/3 at most, the
spacing between adjacent orbits gradually prevents further interactions
from taking place and the evolution ceases. An intriguing result was that
both the mean eccentricity and the maximum mass varied as the same
power of time, in direct contradiction with a classical theoretical predic-
tion [Safronov, 1969] that ē should vary as some characteristic mass to
the 1

3 power. As a further pointer to the delicate state of the final system,
two overlapping orbits appeared to be in a stable configuration. Thus
the integration was extended another 6 × 104 yr without collision occur-
ring, suggesting the existence of a commensurability condition. Assuming
comparable inclinations in 3D to the final eccentricities, the estimated
time-scale would increase by a factor of 4000 [cf. Aarseth & Lecar, 1984].
A subsequent 2D study also based on the grid perturbation method in-

cluded the important process of fragmentation, as well as some improve-
ments of the long-range treatment of massive bodies [Beaugé & Aarseth,
1990]. Cross sections for collision outcomes were taken from scaled labora-
tory experiments and known structural parameters which determine the
critical velocity for shattering. Three velocity regimes were distinguished.†

First, there is no cratering below a critical impact velocity given by

Vcrit = 2S/Vsρ , (17.3)

with S the crushing strength, Vs the sound speed and ρ the density. In this
case the two colliding bodies separate with the rebound velocity which is
reduced by the coefficient of restitution. For intermediate impact energies,
the cratering process was modelled by mass loss which depends on kinetic
energy and involves the mass excavation coefficient. A proportion of this
material is not ejected from the bodies, leading to a net mass transfer
after neglecting a small external mass loss. Here the cumulative fraction
of ejecta with velocity exceeding v was approximated by

f(v) � cej v
−9/4 , (17.4)

with the coefficient cej depending on physical properties. Thus the body
shatters for sufficiently large impact energy. From laboratory experiments,
this is likely to occur if the impact energy per unit volume, E , exceeds
the impact strength. The distribution of fragment masses depends on the

† See the earlier work by Cazenave et al. [1982] for a similar independent treatment.
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biggest fragment, determined by the empirical relation

mmax = 1
2(mk +ml)

(E
S

)−1.24
. (17.5)

As a compromise, each fragmenting body mk, ml is represented by four
slowly escaping bodies and a remaining core, with appropriate masses
sampled from a theoretical distribution. Finally, the ejection velocities
were again chosen according to (17.4).
In order to prevent unduly large particle numbers being reached, the

minimum fragment mass was taken as 0.01m0, with the initial value
m0 = 1.15 × 1026 g. The equal-mass bodies were again placed in circu-
lar orbits but this time between 0.6 and 1.6 au to allow for some inward
drift due to energy dissipation during collisions. Moreover, three differ-
ent surface densities Σ ∝ r−α with α = 0,−3

2 and −1
2 were studied.

In two models, the particle number decreased steadily during the entire
phase after the early formation of a few planetary embryos‡ which grew
in a hierarchical or runaway manner. As shown by one model, the com-
petition between accretion and fragmentation can sometimes go against
the general trend. However, eventually the emerging embryos accreted the
lighter bodies. Final configurations of three different models withN = 200
planetesimals yielded four principal bodies with moderate eccentricities
on a time-scale of � 5 × 105 yr. Although the results of this simulation
were quite encouraging, we note the restriction to 2D for computational
reasons, as well as the absence of gas drag or a significant low-mass pop-
ulation.
This simulation illustrates three characteristic stages of evolution. Dur-

ing the first few thousand years the eccentricities grow slowly, ensuring
that all collisions are inelastic; hence N decreases smoothly. Once the av-
erage eccentricity becomes significant (i.e. ē � 0.04), fragmentation sets
in and the particle number exhibits episodes of temporary increase. The
planetesimal population can be divided into two groups, embryos and low-
mass bodies, which evolve differently. The former retain low eccentricities
and, by virtue of the larger masses, fragmentation is unlikely to occur;
hence further growth takes place leading to protoplanets. However, the
fragments tend to decrease in size, further enhancing the shattering prob-
ability until many reach the minimum mass. The third and final stage
begins once the two populations become well separated, with the proto-
planets accreting orbit crossing fragments. Some of the protoplanets have
unstable motion and experience secular eccentricity increase until they
collide with another massive body. Thus the final configuration consists

‡ Here an embryo is defined as having mass m > 4m0.
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of a few planets with low eccentricities and marks the transition from
chaotic to regular behaviour.
In view of the long evolution time-scale estimated for realistic systems,

the simulations described above could not be extended to 3D. However, an
interesting new approach was made by restricting attention to a narrow
ring [Cazenave, Lago & Dominh, 1982]. The models consisted of 25 bodies
distributed within a small and increasing range of semi-major axis, eccen-
tricity and inclination. Direct integrations by the Bulirsch–Stoer [1966]
method were performed for times up to ∼ 108 days. The equilibrium re-
sult ī = 1

2 ē for the inclination already obtained by statistical methods was
confirmed. Accretion with fragmentation was adopted and the final solu-
tion was dominated by one body with small eccentricity in spite of some
increase of the ring size. Although somewhat idealized, these early studies
served as a useful introduction to much later N -body investigations, to
be described in the next section.
With more powerful computers and several years of dedicated

CPU time, 3D simulations for the terrestrial region are now possible
[Chambers & Wetherill, 1998]. A series of models based on N = 24–56
isolated and nearly coplanar embryos with semi-major axes distributed in
the range 0.55–1.8 au were studied over time intervals of 108 yr. The orbit
calculations employed a symplectic integrator [Levison & Duncan, 1994]
which was modified to deal with close encounters using the Bulirsch–
Stoer method inside about 2 Hill radii [Chambers, 1999] and the results
are therefore relevant to the present discussion. Combination of the two
methods led to a small systematic growth of the total energy which is
acceptable, bearing in mind the long duration.
In the approach to the final state, secular oscillations in eccentric-

ity and inclination play an important role. First, neighbouring planets
in nearly overlapping orbits contribute short-period cycles. In addition,
models containing Jupiter and Saturn display resonances with periods of
106 − 107 yr. The secular oscillations modify the perihelion and aphelion
distances on time-scales that are short compared with the collision time.
Hence, in order to avoid collisions, the protoplanetary orbits must satisfy
non-overlapping conditions. Depending on the extent of the latter, further
evolution takes place on increasing time-scales unless commensurability
relations prevail. Even so, several objects of smaller mass survive until
the end. However, the 3D simulations still exhibit relatively large final
eccentricities. Consequently, emax is too large to permit more than about
two final terrestrial planets to be formed in simulations including Jupiter
and Saturn. It may be noted that large mean eccentricities occur at early
stages and this leads to enhanced values during secular oscillations. In
conclusion, this long-term study illustrates the effect of secular resonances
on time-scales of 105 yr which are best observed in simulations. However,
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some evidence of commensurability relations may also be found in 2D
simulations [cf. Lecar & Aarseth, 1986].

17.3 Planetesimal dynamics

On theoretical grounds, the expected accumulation time for 3D models is
a factor of 102–103 times longer than for similar 2D models. Since larger
particle numbers are also desirable, this calls for a different approach. A
first attempt at direct integration in 3D [Aarseth, Lin & Palmer, 1993]
provided evidence for the onset of runaway growth, albeit for small sys-
tems. Here the particle in box method [Wisdom & Tremaine, 1988] was
modified to include self-gravity, as described in section 3.6. This entails
additional force summation over the eight neighbouring boxes by employ-
ing periodic boundary conditions and is therefore much more expensive.
Individual time-steps were used again, together with the scheduling of
NBODY 2 (cf. section 9.2).
The basic model contains N = 100 particles with mass m0 = 8 ×

10−11M�, size r0 = 2 × 10−6 au and box size Sb = 0.04 placed at 1 au.
These parameters are based on computational considerations together
with a minimum solar nebula of five Earth masses inside 1 au. The box size
should not exceed a few per cent for the self-similar approximation to re-
main valid and should also be much larger than the Hill (or Roche) radius,
rH = (2m0/3)1/3a for comparable masses. Hence, with these parameters,
Sb � 106 rH. An optional drag force was also tried, with components

Fx = −α1ẋ ,
Fy = −α2(ẏ + 3

2Ωx)− α4 ,

Fz = −α3ż , (17.6)

where αk represents the drag coefficients.
The particle in box method was used to study a variety of models both

in 2D and 3D. A theoretical analysis shows that the dynamical evolution
is regulated by energy transfer from the Keplerian shear to dispersive
motions via gravitational scattering and dissipation due to collisions [cf.
Palmer, Lin & Aarseth, 1992]. The state of the system is characterized
by the Safronov [1969] number

Θ = Gm0/2r0σ2 . (17.7)

When the velocity dispersion is low, i.e. Θ 	 1, scattering is more efficient
than dissipative collisions and σ increases until dynamical equilibrium is
attained, with Θ � 1. One purpose of using both 2D and 3D models was
to verify the prediction that identical equilibrium conditions are reached.
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Since the collision time-scale in 3D is much longer, the use of 2D mod-
els also saves significant computational effort. Results of 2D simulations
were used to confirm earlier analytical work that dynamical equilibrium
is established with a velocity dispersion comparable to the surface es-
cape velocity of the dominant mass population. There was some evidence
for an early stage of runaway coagulation in three models with different
initial velocity dispersion. Moreover, the collision time and asymptotic
equilibrium value of σ agreed well with theoretical predictions.
The 3D simulations covered time-scales of 102 yr, or about 100 times

shorter than in 2D. Now there is clear evidence for energy equipartition
and mass segregation towards the midplane, due to dynamical friction.
Provided that most of the mass resides in the low-mass field planetesimals,
equipartition is sustained and creates favourable conditions for runaway
coagulation [cf. Ida & Makino, 1992; Kokubo & Ida, 1996]. However, in
view of the modest particle number, the self-similar approximation may
not always be applicable to the intervals studied and hence only the onset
of runaway can be established. Still, a model with initial σ-values near
equilibrium only developed a maximum mass ratio m/m0 = 7 (with N =
76) by t = 1.2 × 104 yr, whereas the two heaviest bodies already showed
strong sedimentation towards the origin of the fundamental z− vz plane.
In conclusion, this work demonstrated that many dynamical processes
in planetesimal systems are amenable to theoretical analysis. Moreover,
some basic predictions [cf. Palmer et al., 1992] were verified numerically,
including conditions for the onset of runaway.
An alternative way of studying large planetesimal systems is to con-

sider a narrow ring of particles [cf. Cazenave et al., 1982]. In one such
investigation [Kokubo & Ida, 1995], a swarm of up to 1500 low-mass
planetesimals were assigned circular orbits centred on 1 au with small
inclinations. This calculation was made possible using the HARP-1 and
HARP-2 special-purpose computers with the Hermite integration method.
Two nearly circular protoplanets were found to accrete mass in a stable
manner, provided their separation exceeded about 5rH. As the protoplan-
ets grow, their orbital separation becomes smaller when measured by the
Hill radius. This leads to a gradual repulsion until the separation reaches
a value when the heavy body scattering becomes ineffective. If there are
more than two such bodies with small separation, the repulsion may be
replaced by eccentricity growth due to mutual scattering with consequent
collision or ejection.
The question of runaway growth has also received much theoretical

attention. This effect was confirmed numerically by the study of the
coagulation equation under the assumption of equipartition of kinetic en-
ergy [Wetherill & Stewart, 1989]. However, the statistical description is
based on average quantities and hence is not appropriate for the critical
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stage containing massive bodies. Conclusive evidence of runaway growth
was finally obtained by direct integration in 3D [Kokubo & Ida, 1996].
Here N = 3000 planetesimals of mass m0 = 1023 g were distributed in a
ring of width 0.04 au with Gaussian eccentricities and inclinations having
rms dispersions ē = 2̄i = 2rH/a. In any case, the initial distributions of
m, e, i relax quickly on a time-scale of about 103 yr and lead to produc-
ing a continuous power-law mass function dN/dm ∝ mα with α = −2.5.
The device of using five times larger radii than determined by a density
ρ = 2g cm−3 was adopted on the grounds that only the accretion time-
scale is reduced, whereas going from 2D to 3D changes the growth mode.
Still, this argument depends on assumptions about the role of close en-
counters which is difficult to estimate in differentially rotating systems,
hence an independent check is desirable (see below).
As expected [cf. Aarseth et al., 1993], dynamical friction was effective

during the later stage. When the largest body in the mass distribution
reached� 1024 g, it became detached and showed runaway growth, defined
as an increase in the ratio mmax/m̄. This is in qualitative agreement with
the theoretical condition for runaway growth, 2Ω rH ≤ vesc, where vesc is
the surface escape velocity of the massive body. It is also highly significant
that a 2D simulation showed a reduction in the maximum mass ratio from
30 to 15 in 2000 yr, whereas the present 3D mass ratio increased from 10 to
140 in 20 000 yr. This behaviour is supported by theoretical considerations
comparing growth rates derived from the two-body approximation [cf.
Kokubo & Ida, 1996]. Thus in the low-velocity regime (vrel < vesc and
vrel ≥ 2Ω rH), dm/dt ∝ r2 in 3D and dm/dt ∝ r in 2D, where a more
favourable gravitational focusing factor has been ignored in the former
case. Finally, for completeness, runaway growth is defined by

d

dt

(
m1

m2

)
=

m1

m2

(
1
m1

dm1

dt
− 1
m2

dm2

dt

)
> 0 , (17.8)

with m1 > m2 > m0.
Further explorations of runaway growth [Kokubo & Ida, 1998, 2000]

included some new aspects. In the first study, the late runaway stage was
investigated with two protoplanets inside a swarm of low-mass bodies.
Now several similar-sized protoplanets grew, keeping their orbital sepa-
ration larger than 5rH, while most planetesimals remained small. This
process, called oligarchic growth, is due to the slow-down of runaway
growth after the coalescence of some protoplanets.
The second study, also with the Tokyo HARP-3 and GRAPE-4, in-

cluded both gas drag and inelastic collisions. This time, realistic radii were
used in order to test the earlier results based on enhanced values, whereas
N = 3000 particles of equal mass 1023 g with ∆a = 0.021 au were selected.
In order to avoid the inward drift due to gas drag, the surface density of
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the planetesimal ring was kept constant by employing a scheme for treat-
ing boundary crossings, taking care not to introduce artificial heating. At
t = 2×105 yr, the maximum mass reached about 200m0, with m̄ � 2m0,
hence most of the mass resides in the smallest bodies. Subsequently, the
power-law exponent became only slightly less steep (α � −2.2), maintain-
ing most mass in small bodies and hence favouring runaway growth. In
a second model, an initial mass function with N = 4000 particles in the
range 2 × 1023–4 × 1024 g and α = −2.5 was chosen, using a ring width
∆a = 0.085 au. The final evolution is characterized by partial runaway
growth interrupted by a few collisions between massive bodies (as sur-
mised in Kokubo & Ida [1995]), after which oligarchic growth takes over.
The time-scale for reaching protoplanets with masses ∼ 1026 g is about
5×105 yr, which agrees well with some analytical estimates and also with
results of the multi-zoned coagulation equation.
In conclusion, the planetesimal simulations of Kokubo & Ida discussed

above have provided much insight into the processes that control the
important late stage of planetary formation. Although fragmentation and
inelastic rebound have not yet been taken into account here, this work
illustrates well the versatility of the direct approach.
Tree codes provide another way of studying larger particle numbers.

The hierarchical structure of a tree code allows large dynamic range
in density at modest extra cost for each force evaluation [Richardson,
1993a,b]. One such code called PKDGRAV has been adapted from cos-
mological applications to the case of planetesimal and ring simulations
[Richardson et al., 2000]. The integrator employs the leapfrog method
with individual time-steps taken to be quantized by factors of 2 as in the
Hermite scheme. Here the basic time-step is obtained from

∆t = η (r/|F|)1/2 , (17.9)

where r is the distance to the Sun or the dominant neighbour. A similar
criterion based on the force and first derivative would be more appropriate
but the latter quantity is not readily available here. In any case, (17.9)
does have the desirable property of yielding a fixed number of time-steps
for an unperturbed two-body orbit. However, additional safeguards must
be included in order to ensure that collisions are detected.
When a tree code is used, the cost of identifying the ns nearest neigh-

bours ∝ ns log N .§ The collision time for a pair of approaching particles
with radii r1 and r2 is determined by the expression

tcoll = −r · v
v2

1±
(
1−

[
r2 − (r1 + r2)2

(r · v)2
]
v2
)1/2 , (17.10)

§ In direct N -body simulations, a search is only made for particles with small ∆t.
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choosing the smallest positive solution. Hence the collision procedure must
be performed if a value of tcoll is smaller than the corresponding time-step.
This expression is applicable here because the leapfrog implementation
is second order in time, permitting a quadratic prediction within small
time-steps. Coalescence is assumed if the relative velocity is less than the
escape velocity, otherwise the particles are made to bounce with energy
dissipation due to coefficients of restitution and surface friction [Richard-
son, 1994, 1995]. A check on the angular velocity prevents the breakup
limit being exceeded, in which case a bounce is enforced. The code design
is based on providing initial conditions and performing extensive data
analysis by separate software, as is also partly the case for the older N -
body codes. Moreover, a general data visualization package called TIPSY

is freely available.
Although the tree code is still undergoing development, results of sev-

eral experiments have been presented. A comparison with the model for
N = 4000 discussed above reproduced the behaviour leading to oligarchic
growth and runaway. Again five or six protoplanets were separated by
5–10 Hill radii after 20 000 yr, with mmax/m̄ � 90. These two different
methods also agreed well on the number of inelastic collisions (2884 vs
2847) and small eccentricity of the largest body (� 0.002).
The pilot version of PKDGRAV is already able to study N ∼ 106 parti-

cles over several hundred periods using parallel supercomputers, whereas
N ∼ 105 is feasible on clusters of workstations. However, future require-
ments call for long-term solutions in order to span different evolutionary
stages. One suggested way to achieve substantial improvement is to divide
the Hamiltonian into a Keplerian component using the classical f and g
functions and a perturbed part. This would allow long time-steps to be
used for most orbits, which have well separated Hill radii. A successful
outcome of such a scheme depends mainly on the ability to distinguish
between regimes of weak and strong interactions. Early tests for the outer
giant planets show that this is indeed possible over time-scales ∼ 106 yr
[cf. Richardson et al., 2000]. Given the potential gains, it can be antici-
pated that an algorithm for encounter detection will be devised.
Further developments of the planetesimal code have been described

elsewhere [Stadel, Wadsley & Richardson, 2002]. Hopefully, a full col-
lision model, including cratering, mass loss and fragmentation will be
implemented in due course, together with gas drag. The improved code
may be used to obtain better resolution for simulating so-called ‘rubble
piles’ which are a characteristic feature of many Solar System objects
[Leinhardt, Richardson & Quinn, 2000]. The effect of the impactor mass
ratio has recently been studied with the aim of parameterizing planetes-
imal growth [Leinhardt & Richardson, 2002]. A review of the properties
of such gravitational aggregates is also available [Richardson et al., 2003].
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17.4 Planetary rings

In this section, we first consider some applications of the tree code
BOX TREE [Richardson, 1993a,b] to problems of planetary rings and rub-
ble piles. The initial development of this code was aimed at studying
thin rings of high density, where collisions are frequent. Such systems are
ideally suited to a description based on self-similar patches orbiting the
planet, where the box size, Sb, is larger than the radial and vertical parti-
cle excursions but much smaller than the central distance. More recently
the code PKDGRAV has in fact proved more suitable for ring simulations
as well [Richardson, private communication, 2002]. Thus it is more flexible
in allowing a rectangular self-similar patch to be modelled and a larger
number of ghost replicas may also be included.

A range of particle masses and radii are required for realistic simulations
of planetary rings. In this work, a power law IMF n(m) ∝ mα was used.
With f = N(m)/N as the fractional cumulative distribution, individual
masses are generated with f -values increasing smoothly from 0 to 1 in
steps of 1/N by

mi = mmin

{
1 + fi

[(
mmax

mmin

)α+1

− 1

]}1/(α+1)
. (17.11)

Assuming constant particle density, the size distribution can be obtained
by substituting α̃ = (α − 2)/3 in (17.11), together with the appropriate
scaling factor.
Some models were first compared with the original scheme by excluding

self-gravity [Wisdom & Tremaine, 1988], whereas mass and spin effects
were also added in later models. The collision frequency is controlled by
the optical depth which for non-uniform particle sizes is given by

τ = Σπr2i /S
2
b . (17.12)

Models with a basic box membership N = 50 integrated over 30 periods
show excellent agreement for small and large values of the optical depth.
Of specific interest is the equilibrium values of the vertical velocity disper-
sion, σz, and corresponding particle density, n(z). Likewise, n(z) averaged
over the equilibrium interval compares well with the analytical model of
Goldreich & Tremaine [1978] for τ = 0.2.
The collision treatment was generalized to include normal and tangen-

tial coefficients of restitution, εn and εt. In order to treat the collision,
vectors R1,R2 connecting the sphere centres to the impact point are in-
troduced. The corresponding angular velocities, ωi, combined with the
linear spin velocities, σi = ωi×Ri, and the relative velocity, v = v2−v1,
yield the relative spin velocity at impact as u = v+σ2−σ1. The kinetic
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energy loss in such a collision can be obtained from the new relative spin
velocity in terms of the original normal and tangential values,

ũ = −εnun + εtut . (17.13)

Post-collision linear and angular velocities were derived, taking into ac-
count the impulsive torques suffered by the two colliding spheres and the
resulting energy loss, combined with angular momentum conservation.
Let I1, I2 denote the moments of inertia of the two bodies touching at
the point of impact and define α = R21/I1 + R22/I2. For the case of two
colliding uniform spheres, the new linear and angular velocities are then
given by [Richardson, 1994]

ṽ1 = v1 +
m2

m1 +m2
[(1 + εn)un + β(1− εt)ut] ,

ṽ2 = v2 − m1

m1 +m2
[(1 + εn)un + β(1− εt)ut] ,

ω̃1 = ω1 + β
µ

I1
(1− εt)(R1 × u) ,

ω̃2 = ω2 − β
µ

I2
(1− εt)(R2 × u) , (17.14)

with β = 1/(1 + αµ) and µ the reduced mass. Realistic simulations were
made with central box memberships in the range 200–3200 for up to ten
periods in the less time-consuming cases. The typical size range 0.5–5.0m
chosen implies a considerable mass dispersion and hence provides a good
opportunity for examining equipartition effects. As expected, the smallest
bodies have the largest angular velocities and vertical excursions.
When different sizes are included, multi-layered loosely bound aggre-

gates tend to form. However, some of the large-scale features are compa-
rable in size to the central box. This artifact introduces disruptive per-
turbations due to the periodic boundary conditions which may produce
more transient structures than in real systems. Among other aspects re-
quiring attention are a wider size distribution as well as a significant
sticking probability for small particles. Hence future simulations need to
be both larger and include more physics. On the technical side, the closely
packed aggregates also enhance the gravitational interactions with conse-
quent time-step reduction. Improved modelling of planetary rings there-
fore needs to overcome several challenging problems before the results
reach the impressive quality of observations from space. Notwithstanding
such difficulties, the power of the present method was illustrated well by
the rubble pile simulation of Comet D/Shoemaker–Levy 9 during the re-
cent collision with Jupiter [Richardson, Asphaug & Benner, 1995]. The
general problem of tidal disruption has also been discussed in more detail
[Richardson, Bottke & Love, 1998].
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Among several other ring simulations not mentioned so far, we finally
discuss some recent work carried out on special-purpose computers. One
such investigation [Daisaka, Tanaka & Ida, 2001] employed the HARP-2
and GRAPE-4 to study the evolution of a self-gravitating ring based on
the particle in box scheme (cf. section 3.6). Given the extra computing
power, larger domains may be included. This approach enabled a more
careful assessment of the transient wake structures first noted in earlier
simulations [Salo, 1992; Richardson, 1993a, 1994]. Different models with
up to about 42 000 particles in the central box were examined for a range
of parameters in the regime of small total disc mass (Mdisc/Mplanet �
10−8). The presence of strong wakes which develop when the optical depth
becomes significant (i.e. τ ≥ 0.5) also leads to an increased number of
inelastic collisions. Applications to Saturn’s B-ring show an enhancement
of the effective viscosity by a factor of about 10 and is considerably larger
than theoretical values.
A direct N -body simulation of the Uranian rings has also been per-

formed [Daisaka & Makino, 2003]. In this model the mass fraction was
increased artificially from 10−9 to 10−6, with N = 40 000 particles as-
signed small initial eccentricities and inclinations inside a narrow ring of
width ∆r = 0.02a. Two shepherding satellites of comparable mass were
included, together with the J2 oblateness term. The self-consistent evolu-
tion was followed over time-scales of many thousand mean periods using
GRAPE-6. In addition to the force and its derivative, this hardware pro-
vides the index of the nearest neighbour which can be used to determine
the time-step as well as checking for inelastic collisions. Following the
initial growth of the eccentricity, the ring developed an elliptical shape
which preserved a uniform precession rate for long times, with charac-
teristic features of variability. This surprising behaviour is not in accord
with theoretical expectations and the complex time variation exhibited
may be observable by the proposed Cassini mission. Hence, in conclusion,
detailed observations of the Solar System offer unrivalled opportunities
for testing numerical simulations in the high-density regime.

17.5 Extra-solar planets

The remarkable new observations of extra-solar planets have inspired con-
siderable efforts by theoreticians and simulators alike. Here we discuss
briefly a few numerical investigations relating to the vital questions of
evolution and stability. However, the excursion into this young and fasci-
nating subject should only be regarded as an introduction. It has become
apparent that even systems with two or three planets orbiting the central
star display many interesting aspects. Surprisingly, there is little historical
tradition for studying such systems. It is also somewhat paradoxical that
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after more than a generation of N -body simulations with length-scales
increasing from pc to hundreds of Mpc, the attention should now be on
scales of a few au or even metres in the case of planetary rings. In the
following we discuss some characteristic features resulting from numerical
studies of two and three interacting planets and conclude by reviewing
recent simulations with emphasis on orbital stability.
Planetary systems containing two members form the simplest type for

numerical exploration and yet not much is known about this problem. A
recent investigation illustrates well the complicated behaviour which may
be examined by direct integration [Ford, Havlickova & Rasio, 2001]. Sys-
tematic studies were made of two Jupiter-like planets in nearly circular
orbits and small inclinations around a solar-type star. The semi-major
axis ratio was chosen to lie in a narrow range just outside the stability
boundary, a1/a2 = 0.769 [Gladman, 1993]. Integrations for up to 107 yr
combined two different methods. Thus strong interactions were treated
by the Bulirsch–Stoer [1966] method, whereas a symplectic integrator
was used for intermediate interactions. Finally, unperturbed Keplerian
orbits were adopted if the outer separation exceeded 100a1 and ṙ2 > 0.
Four possible outcomes were recorded: (i) escape, (ii) planet–planet colli-
sion, (iii) planet–star collision, and (iv) integration time exceeding 107 yr.
These conditions occurred with relative frequency of about 50, 5, < 1 and
45%, respectively, where the termination time represented some 1.6× 106

inner orbital periods. The integration time limit was sufficiently long for
convergent branching ratios to be reached. Only equal-mass planets were
investigated here; consequently, the probability of escape would be af-
fected by different mass ratios. Inspection of the final two-planet systems
reveals that they are usually locked in a resonant configuration with nearly
3:2 period ratio, and the pericentres remain anti-aligned which minimizes
the exchange of energy and angular momentum.
Short-term interactions of extra-solar planets have also been consid-

ered [Laughlin & Chambers, 2001]. Careful modelling of one observed
two-planet system combined direct integration with an iterative scheme.
The self-consistent fitting technique resulted in optimal values of the incli-
nation, thereby reducing greatly the uncertainty due to this troublesome
degeneracy. Direct integration based on the derived elements showed the
system to be stable over at least 108 inner periods. Finally, it was em-
phasized that mutual planetary perturbations should be included when
making fits to the observed reflex velocity curve.
The interpretation of three planets orbiting the star υAndromedae

poses some interesting questions of evolution and stability. Given the
shortest period of only 4.6 d, direct N -body integrations of this four-
body system over relevant time-scales would be prohibitive. Even so, early
explorations were made using the Bulirsch–Stoer method [Laughlin &
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Adams, 1999; Rivera & Lissauer, 2000]. A later investigation based on a
symplectic integrator and improved data concluded that this system may
be stable for at least 100Myr on the assumption of nearly planar orbits
and inclination mass factors (1/ sinψ) up to 4 [Lissauer & Rivera, 2001].
Although the innermost planet is weakly coupled to the motion of the
outer planets, its eccentricity exhibits large oscillations for some param-
eters, indicating that resonance conditions are important. In particular,
the alignments of the periastron longitudes seen in the experiments have a
direct bearing on the long-term stability. With such a short inner period,
other effects are likely to play a role. One comprehensive study [Mardling
& Lin, 2003] modelled the additional processes of tidal interaction and
spin–orbit coupling between the innermost planet and the host star, as
well as relativistic precession. During this complex interplay, the two outer
planets evolved towards alignment of their pericentres.
Given modern ideas that most stars are formed in associations or clus-

ters, it would also seem natural to suppose that planetary systems origi-
nate in such environments. The question then arises as to how the plan-
etary orbits are modified by stellar perturbations. Some consequences
of this cosmogony have been addressed in scattering experiments and N -
body simulations. We first discuss the statistical approach of studying the
outcome of typical stellar encounters on a single planetary orbit [Laughlin
& Adams, 1998]. A star Jupiter system was placed on a circular orbit at
5 au and subjected to perturbations from passing binary stars sampled
from a Trapezium-type cluster with typical density n0 � 103 pc−3 and ve-
locity dispersion 1 km s−1. Effective cross sections for different outcomes
were obtained for 40 000 scattering experiments generated by a Monte
Carlo approach [cf. Hut & Bahcall, 1983]. Direct integrations of the four-
body problem were again made using the Bulirsch–Stoer method.¶ The
probability of disruption per 100Myr was found to be 13%, whereas a
considerably larger fraction received moderate increases in eccentricity.
An estimated 5% of such planets may be ejected in a typical cluster over
this interval, whereas only 3% developed high eccentricity. The scatter-
ing mechanism can account for some observed eccentric systems as well
as a few 16 Cygni-type hierarchies, although extremely short periods are
unlikely to be produced in this way.
Self-consistent modelling of giant planet eccentricity evolution have

also been carried out. In one such study [de la Fuente Marcos & de la
Fuente Marcos, 1997], realistic N -body simulations of medium-sized open
clusters (N ≤ 500) were made with NBODY 5. Here 10–50% of the stars
were assigned planetary companions in nearly circular orbits with initial

¶ For small N -body systems without regularization, the second-order method is more
efficient [cf. Mikkola & Tanikawa, 1999b].
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separations of 6–10 au. The results provided evidence for a high survival
probability. Hence only about 2% of the planetary systems were disrupted
before escaping and nearly 90% escaped from the cluster without any sig-
nificant changes in the two-body elements. A few stable hierarchies of the
16 Cygni type were noted out of 500 models. Similar disruption rates were
obtained in a subsequent investigation that included some models with
primordial binaries [de la Fuente Marcos & de la Fuente Marcos, 1999].
It was also pointed out here that high ejection velocities (v > 25 km s−1)
may be produced in hierarchical configurations, whereas encounters by
single stars are rarely disruptive.
Statistics on the distribution of minimum encounter separations have

been obtained by N -body simulations [Scally & Clarke, 2001]. Models
of young clusters with half-mass radius rh = 1pc containing 4000 single
stars were studied using NBODY 6. Thus by the current age of the Orion
Nebula Cluster (t � 12Myr), only about 4% of the stars experienced an
encounter closer than 100 au. Stellar encounters are therefore unlikely to
play a significant role in destroying proto-planetary discs.
The question of free-floating planets in clusters was addressed in an-

other N -body simulation [Hurley & Shara, 2002]. The motivation for
this work was to examine the evolution of the disrupted planet popula-
tion in rich open clusters. Three simulations were made using NBODY 4

on GRAPE-6. Each model consisted of Ns = 18 000 single stars and
Nb = 2000 binaries, with typical velocity dispersion of 2 km s−1 and core
density n0 � 103 pc−3. Some 2000 or 3000 planets were placed in nearly
circular orbits around randomly chosen single stars with a uniform semi-
major axis distribution in 1–50 au or 0.05–50 au. Contrary to recent claims
[Bonnell et al. 2001, Smith & Bonnell, 2001], this consistent simulation
demonstrated that free-floating planets can form a significant population
in such clusters. Thus, of the liberated planets, nearly half were retained
after 1Gyr. This fraction decreased to 12% after 4Gyr when some 10% of
the systems had been disrupted. Consequently, the preferential depletion
of these light objects occurs on a half-mass relaxation time-scale.
Finally, we mention some attempts to constrain the birth aggregate of

the Solar System. Thus both N -body simulations [de la Fuente Marcos &
de la Fuente Marcos, 2001] and scattering experiments combined with star
formation considerations [Adams & Laughlin, 2001] favour an origin in rel-
atively small clusters. In a recent investigation [Shara, Hurley & Mardling,
2003], 100 solar system models comprising the Earth and Jupiter are
placed in a cluster of 20 000 stars containing 10% primordial binaries.
Provisional results suggest that significant changes, occur on a time-scale
of 100Myr. Hence this would support the picture of our Solar System
being formed in relatively small stellar aggregates that also have shorter
life-times.
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Small-N experiments

18.1 Introduction

In this last chapter, we return to the subject of numerical experiments
in the classical sense. Using the computer as a laboratory, we consider a
large number of interactions where the initial conditions are selected from
a nearly continuous range of parameters. Such calculations are usually re-
ferred to as scattering experiments, in direct analogy with atomic physics.
Moreover, the results are often described in terms of the physicist’s cross
sections, with the results approximated by semi-analytical functions. The
case of three or four interacting particles is of special interest. However,
the parameters space is already so large that considerable simplifications
are necessary. In addition to the intrinsic value, applications to stellar
systems provide a strong motivation. Naturally, the conceptual simplicity
of such problems has also attracted much attention.
In the following we discuss a number of selected investigations with

emphasis on those that employ regularization methods. It is convenient
to distinguish between simulations and scattering experiments, where in
the former case all particles are bound. The aim is to obtain statistical
information about average quantities such as escape times and binary
elements, and determine their mass dependence. Small bound systems
often display complex behaviour and therefore offer ample opportunities
for testing numerical methods. On the other hand, scattering experiments
are usually characterized by hyperbolic relative velocities, the simplest ex-
ample being a single particle impacting a binary. The outcome of a wide
range of parameters may be studied, using an automated procedure for
generating the initial conditions. Such experiments also present good op-
portunities for comparing analytical cross sections for use in applications.
Finally, the last section is devoted to the topics of chaos and stability
which represent the ying and yang of stellar dynamics.

323
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18.2 Few-body simulations

Even the general three-body problem hides an amazing variety of so-
lutions which have inspired much numerical work. The intricate orbits
displaying successive close encounters provide a serious test of integration
methods. On a historical note, the first such numerical integration was
carried out by Strömgren [1900, 1909] for a hierarchical triple over part
of an outer orbit, with energy conservation to six figures.∗ Soon there
followed a pioneering investigation by Burrau [1913] of a system with
comparable separations and masses. This work introduced the concept
of halving time-steps which succeeded in dealing with two close encoun-
ters and appeared to demonstrate that the orbit was not periodic. These
initial conditions also served as a template for other studies.
The full complexity of the Pythagorean Problem was unravelled much

later after the implementation of KS regularization [Szebehely & Peters,
1967]. Three comparable mass-points start from rest in a rectangular con-
figuration and perform a celestial dance by repeated close encounters until
the lightest body escapes, leaving behind a highly eccentric binary. Al-
though the total angular momentum is zero, inspection of the orbits (or
the corresponding movie) shows that the minimum moment of inertia
occurs when the lightest body bisects the binary components near their
apocentre. Hence the triple encounter that produces the final ejection is
relatively mild; i.e. the perimeter, or sum of distances, is a factor of 103

greater than the closest two-body separation. Note also that in order to
escape when starting from rest, the ejected body must pass between the
binary components with retrograde motion to compensate for the angu-
lar momentum of the binary. In the context of three-body regularization
[cf. Aarseth & Zare, 1974], we remark that only two changes of reference
body are needed for the entire evolution. As can be seen from a movie,
this implies that the dominant mass controls the evolution.
Although much can be learnt by studying one system, it is necessary

to consider an ensemble of initial conditions in order to reach general
conclusions. Early explorations based on small samples already yielded
relevant information on the distribution of escape times and mass depen-
dence [Worral, 1967; Agekian & Anosova, 1968a,c]. Numerical problems
restricted the fraction of examples leading to completion in the former
study, which employed the fourth-order Runge–Kutta method (RK4).
Completion problems also occurred at the start of the second investi-
gation. However, the introduction of Sundman’s [1912] time smoothing
enabled close two-body encounters to be treated more accurately. In either
case, the process of escape was demonstrated beyond doubt. Eventually,

∗ Using the TRIPLE code on a laptop, the outer body reached R1 � 73 at t � 215 in
just 0.03 s, with turn-around at R1 � 175 and eventual exchange at t � 2840.
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two-body regularization became feasible in stellar dynamics [cf. Peters,
1968a,b] and improved the integration accuracy, thereby facilitating more
systematic investigations.
In one 2D survey of 800 initial conditions [Standish, 1972], only 38 cases

did not result in escape. Of these, 26 belonged to a set containing signif-
icant angular momentum which would favour hierarchical stability. For
the sample as a whole, the mean escape time was about 29 tcr, which con-
firmed the earlier work. The semi-major axes distribution showed a wide
range below the limiting value for escape, ac = mkml/2|E|. An interest-
ing correlation between small initial rotation and large final eccentricity
was also noted. As for mass dependence, the heaviest particle escaped in
29 cases out of 480 for a randomized IMF; however, in no case did the
escaping mass exceed that of the remaining binary.
A similar investigation [Szebehely, 1972] surveyed 125 examples starting

from rest, again based on the Pythagorean triangle, with integer masses
1–5. This integration used a 15th-order recurrent power series, together
with the KS method for the two closest bodies, and maintained the relative
energy error below 10−11 throughout. Here 92 cases led to escape before
the limit of 150 time units was reached.† The largest body escaped once
only, with another six when the two dominant members were equal. The
general features of interplay and ejection (which implies return) were also
emphasized, together with a discussion of discontinuous escape times.
In view of the round-off sensitivity of numerical solutions [Dejonghe &

Hut, 1986], the upper limit of 150 time units may be rather optimistic.
All 14 examples with escape times exceeding tesc � 100 were repeated
using the code TRIPLE, and only six were found to agree. Typical relative
energy errors were 10−14 and the strict test of time reversal was applied
successfully to verify these solutions. As for the other eight cases, most
formed binaries but only one passed the time reversal test with rms error
in position and velocity below the acceptable limit 1×10−3. Moreover, the
reproducible examples showed some evidence of a large minimum perime-
ter and corresponding less frequent changes of reference body. We may
therefore conclude that use of the energy error by itself is questionable
for establishing exact integrations without taking the duration and type
of orbit into account, or performing time reversal.
When using the statistical approach, high accuracy is not essential to

obtain meaningful results, provided the sample is sufficiently large. In one
such study [Valtonen, 1974], about 200 experiments were performed in 3D
with four different time-step parameters giving rise to relative rms energy
errors 5 × 10−4–3 × 10−2. The distributions of eccentricity, terminal es-
cape velocity and life-time did not show any clear accuracy dependence.

† Since the total mass was not fixed, tcr for the systems varied from 3.88 to 7.03.
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Subsequently, a survey of some 2.5 × 104 cases was carried out [Valto-
nen, 1976]. The initial conditions consisted of a binary with an incoming
third particle mostly bound to the c.m. Again the integration employed
a two-body regularization technique for the closest particle pair [Heggie,
1973]. The total angular momentum has a significant effect on the escape
velocity, with small values leading to more energetic escape, confirming
the enhanced effect of triple encounters. Likewise, the final eccentricity
was also higher, as expected from stronger interactions. In earlier discus-
sions of this work, the term gravitational slingshot was coined to describe
the preferential acceleration of a particle with small pre-encounter impact
parameter [Saslaw, Valtonen & Aarseth, 1974].

According to several authors, the expected equilibrium eccentricity in
2D and 3D is given by the probability distributions f2 = e(1−e2)−1/2 and
f3 = 2 e, respectively. Likewise, the predicted escape dependence on mass
in a three-body system goes approximately as P (m) ∝ m−2 in 2D, in
qualitative agreement with several numerical investigations [cf. Standish,
1972; Valtonen, 1974; Anosova, 1986]. Properties of the final state have
also been determined by a statistical theory based on phase-space averag-
ing in regions of strong interactions [Monaghan, 1976; Nash & Monaghan,
1978]. This approach led to predictions of eccentricity distributions in 2D
and 3D, as well as escape velocity and mass dependence which compared
well with existing numerical results for low angular momentum. Finally,
concerning the life-times of bound systems, the distribution is quite wide
and of exponential form [Valtonen, 1988]. The main parameters affecting
the latter are mass dispersion, total angular momentum and energy.

An extensive project of three-body studies was initiated already in
1964 by the Leningrad school [Agekian & Anosova, 1968a,c]. This work
is summarized in the following [Anosova, 1986]. Given two particles on
the x-axis, initial positions of the third body were sampled uniformly
from the positive quadrant of a circular region. Corresponding velocities
were chosen with the virial ratio, Qvir, in the range 0–0.5. The numer-
ical integrations were carried out by the RK4 method with Sundman’s
time smoothing, yielding typical final energy errors ∆E/E � 10−4. A
total of 3 × 104 experiments were considered. The following character-
istic orbital types were distinguished: close triple approach, simple in-
terplay, ejection with return, escape, stable revolution (hierarchical con-
figuration), Lagrangian equilibrium configurations, collision and periodic
orbit [cf. Szebehely, 1971]. By analogy with atomic physics, the concept
of resonance was introduced later [Heggie, 1972a, 1975].

About 20% of the systems did not terminate in escape as defined rig-
orously (cf. (12.3)), due to temporary ejection. The notion of conditional
escape was therefore introduced for distances exceeding (10–15)Rgrav,
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with Rgrav =
∑

mimj/|E|. In fact, the mean escape time for isolated sys-
tems is dominated by a few examples and can be arbitrarily large. Hence it
may be preferable to discuss the probability, P (t), that escape occurs after
a given time. In the case of actual escape, the half-life was estimated as
t1/2 � 80 tcr with some reduction for increased mass dispersion. Mapping
of the initial conditions leading to escape after the first triple approach
showed a number of islands delineating the same outcome. These regions
exhibit complex structure which was examined in some detail, revealing
further properties. Thus the boundaries of the subregions correspond to
distant ejections due to the first triple approach. The most important pa-
rameter for the outcome is given by a geometrical ratio involving m1 and
m2 with respect to the escaper, m3.

Subsequent studies with the TRIPLE code based on similar selection pro-
cedures for initial conditions of equal-mass systems have also been made
[Johnstone & Rucinski, 1991; Anosova, Orlov & Aarseth, 1994]. In the first
instance, 2850 examples were examined. The time until the final triple
encounter leading to escape was determined as f(t) ∝ exp(−0.69 t/t1/2),
with t1/2 = 90 tcr, and the other parameters were in essential agreement
with the original investigations. In the second study, two regular domains
with a sample of 2500 experiments were examined. This allowed a com-
parison between the two regions as well as two methods. Moreover, a
distinction between predictable and non-predictable results were made,
where a time-reversed solution for the latter could not be obtained within
coordinate or velocity rms errors of 10−3. In the event, the similarity of
statistical results for various quantities indicate that the basic evolution
is independent of the selection method as well as the numerical method.

The role of close triple approaches may be studied by monitoring the
moment of inertia. We note that escape is not necessarily associated with
the smallest value. However, the last interaction is usually of fly-by type
in a hyperbolic passage [Anosova, 1991]. As for the eccentricities, 2D sys-
tems with unequal masses tended to have ē � 0.81 for the largest samples
and ē � 0.71 in 3D, consistent with theoretical expectations. A small
proportion of long-lived hierarchical systems satisfying stability tests [cf.
Harrington, 1972] were correlated with significant angular momentum. In
an earlier investigation [Anosova, Bertov & Orlov, 1984], systems with
non-zero angular momentum showed that 95% decay after a triple en-
counter and the life-times increase with rotation.

The addition of post-Newtonian terms to the standard equations of mo-
tion was considered in section 5.9. Since this approach appears to be rarely
used in N -body simulations, we mention a similar treatment for the three-
body problem [Valtonen, Mikkola & Pietilä, 1995]. The post-Newtonian
approximation of order 2.5 was again adopted, together with the
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Bulirsch–Stoer [1966] integrator. In view of the large relativistic preces-
sion term, the equations of motion were derived from a time-transformed
Hamiltonian,

H̃ = [H − E +
∑
rk · Fk(t)]/L . (18.1)

The third term contains the external forces represented by the relativistic
corrections and L is the Lagrangian energy. The basic Pythagorean con-
figuration was studied, with length unit of 1 pc and three different mass
units of 105, 106 and 107M�. All these examples resulted in escape of the
lightest body at progressively earlier times than in the original problem.
However, when the mass unit was increased to 108M�, coalescence of the
black holes took place slightly before the time of the closest two-body
encounter. Hence in this scaling sequence, a large limiting mass separates
escape and coalescence.
For completeness, we also mention some relativistic simulations that

made use of the TRIPLE code to study three-body interactions of 10M�
black holes [Kong & Lee, 1995]. The post-Newtonian approximation (ra-
diation and low-order precession) was included in the regularized equa-
tions of motion by modifying the momenta according to (5.29). Close
encounters between a binary and single black holes led to dissipation
and coalescence in about 10% of the examples for hardness parameters
x ≡ −3Eb/mσ2 > 100, where σ is the 1D velocity dispersion.
Moving to slightly larger classical systems, we note the scarcity of such

simulations. If we restrict attention to N ≤ 10, there are only a few appli-
cations to stellar dynamics. Following the pioneering work of von Hoerner
[1960, 1963] which has already been discussed, the subsequent exploration
of isolated few-body systems revealed general trends applicable to larger
memberships (Poveda, Ruiz & Allen, 1967). Thus in a provisional study
of 13 systems with N = 10 members, every case showed a final binary
with binding energy exceeding the total energy [van Albada, 1967]. This
investigation was extended to 29 systems which yielded much valuable
material [van Albada, 1968]. The formation of energetic binaries consist-
ing of massive components was emphasized. Again the binding energy of
the final binary exceeded the total energy in most cases. Moreover, signif-
icant initial rotation gave rise to shorter evolution times. Some long-lived
triples and even a few quadruples were noted and their formation was
correlated with the total angular momentum. In one system, the inner
eccentricity grew to exceed e = 0.99999 and may well have been the first
N -body demonstration of a Kozai [1962] cycle.‡

In this work, the fascinating process of escape and the dependence on
mass was elucidated to a degree that has not been surpassed. The follow-
ing classification system for encounters leading to escape was proposed:

‡ Similar behaviour was noted in later simulations with N = 250 [Aarseth, 1972a].
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• Multiple encounters: normal binary and triple encounters and all
encounters involving more than three stars

• An encounter between a binary and a single star, with the binding
energy of the binary increasing

• Ejection from a member of a bound triple system

• Exchange of a binary component and ejection of the original body

In practice, most escapers may be associated with one of these processes
which are also known to occur in larger systems. Hence a similar analysis
to ascertain their relative importance in star cluster simulations would be
highly desirable.
An early exploration of dynamical decay of general four-body systems

[Harrington, 1974] considered the possible channels of outcome. The inte-
grations employed a ninth-order Runge–Kutta–Nyström method for the
second-order equations, together with a rarely used energy stabilization
technique [Nacozy, 1972]. The experiment contained 100 examples each
in 2D and 3D. Without regularization, a substantial fraction of the 2D
systems were terminated prematurely because of close encounters. With
relatively unstable quadruples, nearly 50 binaries and about 10 stable
triples resulted from each of the samples. After this first attempted explo-
ration of hierarchical formation in bound few-body systems, the subject
seems to have been neglected.
Some experience has been gained with chain regularization applied to

small systems [Sterzik & Durisen, 1995, 1998; Kiseleva et al., 1998; Sterzik
& Tokovinin, 2002]. Thus for N ≤ 10, all the particles may be included
in the special treatment, with external perturbations added if desired.
An attempt to choose the outcome of cloud collapse calculations as ini-
tial conditions was made for five-body systems [Sterzik & Durisen, 1995].
The initial conditions started with a mean spacing of 300 au, total mass
3M� and a small amount of rotational energy. Some 5000 examples were
integrated for each of eleven models until the first escape occurred. The
corresponding velocity was of primary concern, with more than half the
escapers exceeding 3 km s−1 which would account for observations of some
T Tauri stars associated with molecular clouds. The effect of a mass spec-
trum for N ≤ 5 was also examined in a similar subsequent work [Sterzik
& Durisen, 1998].
A second investigation focused on life-times and escape velocities of

systems with 3–10 particles [Kiseleva et al., 1998]. Nearly 104 different
initial conditions were studied for each model, characterized by different
mass dispersion and membership. With a scaling of 100 au for the initial
radius and a mean mass of 1M�, about 1% of the escapers exceeded
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30 km s−1. Escape was defined as hyperbolic motion with respect to the
c.m. for distances exceeding 10Rgrav. At the end of long integrations up
to 103 tcr, about 50% terminated in a binary while some 10% remained in
hierarchical configurations without any stability tests being applied.
A novel attempt was made recently to compare the relative alignments

of inner and outer orbits in observed triples with results from simulations
of small groups (N ≤ 10) [Sterzik & Tokovinin, 2002]. Although the ob-
servational dataset contained only 22 systems, there was some overlap
with the numerical results of the final triples. Comparison of this sample
with the plot of Tout against eout inverted from the relation (9.14) yielded
a significant percentage outside the stability boundary for planar systems.
This excess is consistent with inclined configurations being more stable
than coplanar prograde ones [cf. Harrington, 1972]. However, the numer-
ical sample probably also contains long-lived unstable triples which have
been classified as stable.

18.3 Three-body scattering

The idea of laboratory experiments in stellar dynamics [Hénon, 1967]
takes its purest form in three-body scattering. There were several early
attempts at such simulations, albeit with limited usefulness because of
incomplete data [Yabushita, 1966; Agekian & Anosova, 1968b]. Neverthe-
less, some characteristic trends were observed. The subject was given a
firm foundation in the first systematic survey involving over 104 examples
of single star–binary encounters [Hills, 1975]. Three families with different
fixed masses and a circular binary were used to construct a sequence of
initial conditions by varying the intruder velocity and impact parameter.
Each experiment was characterized by two dimensionless parameters;

the energy, α = (Vf/Vc)2, and impact parameter, p, scaled by the semi-
major axis, a0. Here Vf is the velocity at infinity of the field star and Vc
the minimum value for dissociating the binary, given by

Vc =
[
m1m2(m1 +m2 +m3)

m3(m1 +m2)a0

]1/2
. (18.2)

Only a few discrete values of p were sampled since the results can be
fitted to a Gaussian and hence the parameter space is reduced. This work
established the so-called ‘water-shed effect’ whereby the binary orbit tends
to shrink for small Vf but loses energy if the pre-encounter velocity exceeds
a well-defined value which depends on the mass ratios. Thus the cross-
over at αc � 0.57 was found for equal masses and circular binary orbits.
In addition to obtaining collisional cross sections for the energy change,
it was shown that the probability of exchange is surprisingly large for
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equal masses and approaches unity if the field star is dominant. We note
that the process of exchange is often associated with resonance, during
which there are repeated sequences of temporary binaries with alternating
ejections. If long-lived, such configurations present considerable demands
on the computational resources as well as accuracy.
A series of further papers was devoted to various aspects of encounters

between single stars and hard binaries [Hills & Fullerton, 1980; Fullerton
& Hills, 1982; Hills, 1989, 1990, 1991, 1992]. The numerical technique
was improved by the use of time smoothing [Heggie, 1972a], together
with a high-order integrator. Determination of the average rate at
which a hard binary increases its energy by interacting with single stars
showed an inverse dependence on Vf but no dependence on a0. Hence
all hard binaries increase their binding energies at the same rate. Since
momentum is also conserved, the corresponding recoil kinetic energy
can be determined and used to examine the heating of star clusters.
It has been shown theoretically [Heggie, 1972b, 1975] that the largest
contributions are due to a small number of discrete encounters. Following
such a cascade, the associated recoil velocity may eventually become
sufficiently large for the binary to escape. Subsequent experiments were
made for different mass ratios. The earlier value for the cross-over
point between hard and soft binaries was confirmed as αc � 0.5 for
m3 ≤ 1

2(m1 +m2), whereas αc � 10 for m3 ≥ 3
2(m1 +m2). A discussion

of intruder mass and velocity effects [Hills, 1990] emphasized that the
energy change cross-over does not in general occur at the hard/soft limit
but rather depends on the orbital velocity ratio, Vf/Vorb.
In another investigation, encounters between massive intruders and bi-

naries were studied in order to elucidate the process of tidal breakup
of the components [Hills, 1991]. Velocity-dependent cross sections were
obtained for the processes of exchange and dissociation, as well as for
changing the binding energy and eccentricity. A characteristic feature af-
ter exchange of the massive intruder is that the new semi-major axis can
be quite large, and likewise for the ejection velocity. However, the final
binding energy also increases significantly; this ensures survival in future
encounters with field stars. Regarding the main motivation for this work,
the ratio of cross sections for tidal breakup and exchange was determined
as σtidal/σex � 2.5 r∗/a0, with r∗ the stellar radius. Altogether 8 × 105

such encounters were simulated and yielded a wealth of information. An
earlier less ambitious study was concerned with the outcome of similar
experiments with low-mass intruders of small velocity [Hills,1983]. The
total cross section for increasing the energy was found to be independent
of the orbital eccentricity. The probability of temporary capture reached
a maximum of 20% when the closest approach was about 2a.
Extensive scattering experiments with a much wider range of intruder

masses were also performed [Hills, 1989, 1992]. A total of over 105
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experiments were carried out requiring about two years of dedicated work-
stations as a cost-effective alternative to supercomputers. Again a Monte
Carlo sampling of binary orientations was used [Hills, 1983], with typical
relative energy errors below 10−6 even for long-lived resonances. Cross sec-
tions tend to approach simple analytical limits for small and large intruder
masses. These simulations show that there is a critical impact parameter
beyond which no exchange can occur. The corresponding closest approach
distance is given by

Rc � 2.1 a0 [(m3 +mb)/mb]1/3 . (18.3)

Hence hyperbolic intruder velocities tend to lower the exchange limit with
respect to the classical criterion for bound orbits [cf. Zare, 1976]. Results
were presented for the dimensionless exchange cross section as a function
of intruder mass. It goes to zero belowm3/m1 � 0.3 and reaches a plateau
beyond m3/m1 � 10.
Another interesting feature in this study is the temporary formation

of triples with long life-times. At small impact parameters, the probabil-
ity increases from 0.4 for low-mass intruders to a maximum of 0.95 near
m3/m1 = 0.55 and then declines. Further complicated behaviour is seen
when the original binary is first captured by a massive intruder. Either
an exchange occurs with the other component being ejected in a sling-
shot interaction or the binary is disrupted gently, which gives rise to a
long-lived triple. In conclusion, this classical series of papers contributed
significantly to the understanding of three-body processes.
After describing some studies of interactions between single stars and

binaries, we consider the process of binary formation itself. An early
project to determine the probability of binary formation by three-body en-
counters was highly successful [Aarseth & Heggie, 1976]. Initial conditions
of three incoming stars with impact parameters ρi were selected accord-
ing to ρi = r0 Y

1/2, where r0 is the maximum permitted value and Y is
randomized in [0,1]. The integration started well before the time of max-
imum interaction, with the additional conditions of unbound two-body
motions and negative total energy, whereas termination occurred when
one pair separation exceeded the largest initial value. Here the TRIPLE

code proved efficient in its first application.
Each set of experiments is characterized by a specified value of the

dimensionless parameter X = r0 V
2/2m. By choosing V 2 = Nm/2rV,

the scaled virial theorem yields X = Nr0/4rV. An increasing number of
initial conditions were considered forX in the range 0.5–1024, with 5×106

cases at the upper limit. However, actual integration is not necessary
if the smallest initial two-body energy exceeds an appropriately chosen
critical value. This rejection technique enabled quite large X-values to be
selected without loss of positive outcomes while maintaining small error
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bars. A least-square solution gave a power-law for the probability of binary
formation as

Pbin � 4X−2 . (18.4)

This numerical solution is consistent with the asymptotically largest con-
tribution obtained by a theoretical derivation§ [cf. Aarseth & Heggie,
1976]. Based on this result, it was shown that the binary formation rate
per crossing time is independent of N and that essentially all such bina-
ries are soft. The present work provided quantitative answers to a classi-
cal problem and the numerical results guided the theoretical derivation,
demonstrating the usefulness of the experimental approach.
The case of equal masses continued to attract attention. With greater

coverage of parameter space, improved comparison with analytical ap-
proximations becomes feasible. One such ambitious undertaking [Hut &
Bahcall, 1983] studied over 106 scattering experiments without making
assumptions about dependence on orientation, phase angle or impact pa-
rameter. The results yielded cross sections for ionization, exchange and
resonance scattering as functions of intruder velocity. The total cross sec-
tion for an event Z can be obtained from the numerical results by

σZ(v) = FnZ(v)/ntot(v) , (18.5)

where ntot is the total number of initial conditions for which event Z can
occur, nZ is the number of actual events and F is a factor that includes
gravitational focusing.
Although the humble RK4 integrator was used, careful analysis justi-

fied the acceptance of relatively large energy errors. The essential point is
that the total error of a cross section can be determined in Monte Carlo
sampling, taking into account all the sources of uncertainty. Of the nine
independent initial parameters that are required for a complete mapping
of phase space, the masses and eccentricity were assigned fixed values,
whereas the four angular variables were randomized. The impact param-
eter was sampled uniformly in ρ2 up to a maximum given by

ρmax(v) = (C/v +D)a , (18.6)

with C and D appropriate constants, reflecting the effect of gravitational
focusing. Finally, the intruder velocity was scaled according to (18.2) and
chosen in a specified range.
Additional experiments were later made for high intruder velocity [Hut,

1983]. Further analysis of the numerical results combined with analytical
approximations yielded an accurate description over a complete range of

§ A similar study [Agekian & Anosova, 1971] for two X-values gave a factor of 9 smaller
probability at X = 5/

√
3, although the initialization procedures were identical.
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parameters [Hut, 1983, 1993]. Thus differential cross sections were de-
rived for binary–single star scattering at high intruder velocity, together
with total cross sections for ionization and exchange which were shown
to be independent of binary eccentricity. These results for equal masses
agree with analytical calculations [Heggie, 1975]. The water-shed effect for
equal masses and a thermal binary eccentricity distribution was redeter-
mined, yielding αc � 0.48 [Hut, 1993], in fair agreement with earlier values
[Fullerton & Hills, 1982] based on zero impact parameter. Comprehensive
fitting formulae for exchange reactions of arbitrary mass ratios have also
been obtained [Heggie, Hut & McMillan, 1996]. The semi-analytical fitting
functions are accurate to 25% for most mass ratios. In order to facilitate
exploration of the three-body problem further, an automated scattering
package has been developed and the software is freely available.¶

Special three-body scattering experiments are sometimes motivated by
astrophysical considerations. One investigation examined configurations
where the intruding star is more massive by a factor of 2, which is rele-
vant to globular cluster cores [Sigurdsson & Phinney, 1993]. These simula-
tions again employed the RK4 integrator. Analysis of 1×105 experiments
showed that for moderately hard binaries, exchange is the dominant pro-
cess. Moreover, exchange of a heavy field star actually increases the cross
section in future encounters since the binary tends to widen while becom-
ing more strongly bound. It was also found that resonances contribute
significantly to physical collisions.
To conclude this brief review of some salient three-body scattering ex-

periments, it is evident that this beautiful problem still contains a wealth
of fascinating complexity which is waiting to be unravelled.

18.4 Binary–binary interactions

The addition of a fourth body increases the number of variables consid-
erably. Thus with two initial binaries, we have four more angles, as well
as a second mass ratio, semi-major axis and eccentricity. Hence it is not
surprising that so few studies have been made in four-body scattering.
Moreover, this problem is also harder numerically and some kind of reg-
ularization method is beneficial.
The first modest outcomes of binary–binary encounters already showed

some features of interest [Thüring, 1958]. The impact of two equal circu-
lar binaries was integrated by hand, with the number of differential equa-
tions reduced by half due to symmetry. The choice of initial conditions
led to escape, with the binaries considerably more strongly bound and

¶ The STARLAB software can be found at http://www.sns.ias.edu/∼starlab.
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having reversed orbital spins.‖ After examination of the c.m. velocity gain,
the modern concept of a hyper-elastic encounter was defined. Because of
the analogy with binary–binary scattering, we also mention that further
electronic calculations of impacting four-body systems by the Adams–
Moulton method were performed subsequently [Thüring, 1968]. This work
introduced the additional concepts of elasticity, interaction energy, as well
as hard and soft configurations, which are still topical.
The early 1980s saw a pioneering investigation which was not repeated

for a long time [Mikkola, 1983, 1984a,b,c], as is often the case with a hard
mountaineering ascent. Some 3000 experiments were performed in the
first study, which was restricted to equal masses and semi-major axes. The
impact parameters were randomized to give an equal number of impacts
on equal areas up to a limiting value, i.e. ψ(ρ) = 2 ρ/ρ2max. This sample
proved sufficient for obtaining meaningful results of fly-by interactions as a
function of the impact energy. Four types of final motions were delineated
for purposes of data analysis:

• Two binaries in a hyperbolic relative orbit

• One escaper and a hierarchical triple system

• One binary and two escapers

• Total disruption into four single stars

If none of these categories were confirmed, the configuration was classified
as undecided and the integration continued. The majority of outcomes
were of the first type, with the third type well represented. This dataset
also provided early evidence of hierarchical triple formation (type two),
especially at low impact energy, although stability was not checked.
A further 1800 cases of strong interactions with smaller values of the

maximum impact parameters were also investigated. Such interactions
are of particular interest and may lead to quite complex behaviour. Thus
one star may be ejected in a bound orbit and return after the escape of a
second ejected star. The problem is then reduced to the three-body case.
Alternatively, the softest binary may become more weakly bound and
return for a strong interaction with the escape of only one component. In
both these processes the remaining triple can be very wide. Analysis of
these configurations based on two values of the critical outer pericentre
ratio for an approximate criterion [cf. Harrington, 1972] yielded a high
proportion of stable systems, with about 20% at modest impact energies.
The question of exchange with two binaries surviving was also addressed.
Thus at the smallest impact energy, the probability of exchange was about

‖ This property depends on initial conditions which may also result in exchange.
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50%. Finally, the distribution of energies in the case of two escapers was
given. More general initial conditions were studied later [Mikkola, 1984b,c]
and a start was made on the important extension to unequal masses
[Mikkola, 1985b, 1988]. The provisional result P ∝ (mimj)3 was obtained
for the probability of the remaining binary masses in both three- and
four-body systems.

A special integration method was devised in order to deal with the dif-
ferent configurations discussed above [Mikkola, 1983]. At the beginning
of this work, a fourth-order polynomial method for direct integration was
used together with the two-body regularization method of section 4.5
[Burdet, 1967; Heggie, 1973]. However, persistent configurations consist-
ing of a close binary and two eccentric elliptical orbits proved too ex-
pensive. A code combining three different solution methods was therefore
developed. Long-lived hierarchies were treated as perturbed Keplerian or-
bits using the classical variation of parameters method, and more than one
relative motion could be studied at the same time. Direct integration was
employed for non-hierarchical systems not benefiting from regularization.
Finally, the global regularization method [Heggie, 1974] was modified to a
more convenient form for practical use [Mikkola, 1985a]. This three-part
implementation was quite efficient and contained sophisticated decision-
making. As a unifying thread, all the relevant equations of motion were
advanced by the powerful Bulirsch–Stoer [1966] method.

For completeness, we record another contemporary binary–binary scat-
tering experiment [Hoffer, 1983]. A time-smoothing technique [Heggie,
1972a] was used, combined with the c.m. approximation for a hard bi-
nary and the equations were integrated by the RK4 method. Because of
numerical problems, this study was unable to deal with hard binary in-
teractions and the results are therefore of limited validity. However, the
importance of physical collisions in such encounters was highlighted. Over
the subsequent years, there have been very few four-body scattering ex-
periments. A preliminary study of scattering cross sections [Hut, 1992]
for equal masses emphasized the frequent occurrence of hierarchical triple
formation. A distinction was made between systems preserving one of the
inner binaries and those undergoing exchange. Given the relatively small
effort so far in this fundamental problem, the time is ripe for a renewed
attack.

A thorough comparison of regularization methods for binary–single star
and binary–binary scattering was very informative [Alexander, 1986]. All
the current multiple regularization schemes were examined [Aarseth &
Zare, 1974; Zare, 1974; Heggie, 1974], together with different choices for
the time transformation. Although the initial conditions of the main com-
parisons were based on symmetrical configurations starting from rest,
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some results were also presented for more general scattering experiments
which gave rise to hierarchical triples.∗∗

A number of careful tests were made for three-body and four-body
systems, including time reversal, and the Poincaré control term was also
included [Baumgarte & Stiefel, 1974]. From the general form (5.66) of the
equations of motion, we have the relation [cf. Alexander, 1986]

d

dτ

[
1
2
(H − E0)2

]
= −(H − E0)2

1
g

dg

dτ
. (18.7)

Hence stabilization of the integral H − E0 = 0 is achieved when g in-
creases along the solution path. This condition is satisfied for the time
transformation g = 1/L if the Lagrangian is decreasing; i.e. after peri-
centre passage. It may therefore be beneficial to reverse the sign of each
control term when g is decreasing. This device was already used without
regularization [Zare & Szebehely, 1975]. However, care must be taken near
critical situations with regularization since the regularity is lost.
After testing several alternative time transformations, as well as the

standard forms, the inverse Lagrangian was favoured on grounds of ac-
curacy and efficiency. Somewhat surprisingly, the wheel-spoke regulariza-
tion [Zare, 1974] appeared to give smaller residual errors than the global
method for N = 4. However, it should be noted that only one type of ini-
tial conditions were examined, in which close triple encounters may have
been less important. Based on these results, we would therefore expect
the subsequent chain regularization method [Mikkola & Aarseth, 1993] to
be competitive for binary–binary scattering. As described earlier, it has
already proved itself in N -body simulations with primordial binaries.
A special code for analysing scattering experiments was also developed

[Alexander, 1986]. By analogy with (18.2), the critical velocity in the
four-body case is defined as

V 2c =
m1 +m2 +m3 +m4

(m1 +m2)(m3 +m4)

[
m1m2

a1
+
m3m4

a2

]
. (18.8)

This quantity can then be used to define the dimensionless hardness pa-
rameter, x = (Vf/Vc)2. Comparison of a three-body scattering experiment
with hardness x = 104 showed agreement in the final values of a and e
for the different methods. However, in the case N = 4 and x = 102,
the identity of the second escaper was not the same; consequently the
final binary elements did not agree. There were many temporary ejec-
tions and exchanges and the assumption of unperturbed two-body motion
also introduced further uncertainty. The code was subsequently used for

∗∗ The adopted stability criterion only refers to exchange; cf. (9.14) regarding escape.
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binary–binary scattering experiments [Leonard & Linnell, 1992] in con-
nection with the collision hypothesis for blue stragglers.
Further binary–binary scattering experiments were made using astro-

physical parameters, including realistic stellar radii, for modelling colli-
sions [Leonard, 1995]. Thus a cluster potential with rms escape velocity
3.5 km s−1was assumed for reference. The binaries were generated with
masses 2–20M� and uniformly distributed periods 1–100 d for a total of
2000 experiments. A considerable fraction of O-type stars formed by col-
lisions were ejected with sufficiently high velocities (> 30 km s−1) to be
associated with runaway stars. It was also emphasized that it is difficult
to distinguish between runaway stars originating by dynamical slingshot
ejection and the supernova mass-loss mechanism in binaries.
The globular cluster M4 contains a unique triple system where one of

the inner binary components is a pulsar. A model based on exchange
was proposed to account for the existence of the old pulsar inside a soft
outer binary inferred from observations [Rasio, McMillan & Hut, 1995].
In this scenario, it was assumed that the inner binary (ain = 0.8 au) only
suffered a small perturbation during a close binary–binary encounter, con-
sistent with the small eccentricity, ein = 0.025. Accordingly, a three-body
scattering experiment was performed using the STARLAB package, with
the exchange probability estimated after excluding a minimum impact
parameter of 3ain obtained from separate calculations. Even so, the max-
imum probability of triple formation was found to be about 50% in the
most favourable case of a pre-encounter binary with semi-major axis 12 au
which would typically form a wide outer binary, aout � 100 au.
Strong binary–binary interactions in star cluster simulations often lead

to physical collisions with the possible formation of exotic objects [cf.
Mardling & Aarseth, 2001]. An extensive series of such scattering exper-
iments was undertaken with a view to clarifying this question [Bacon,
Sigurdsson & Davies, 1996]. The selection of initial conditions followed
earlier three-body studies [Hut & Bahcall, 1983]. A set of experiments
was defined by fixed semi-major axes, masses and a range of intruder ve-
locities, the other elements being sampled by Monte Carlo techniques. A
total of 105 experiments were performed, divided into 25 sets. Both the
RK4 integrator and chain regularization were used. However, the secu-
lar drift in total energy became unacceptable with the former when the
semi-major axes ratio exceeded 2.
The following five usual types of outcome were examined: fly-by, ex-

change, breakup, stable triple and unresolved experiment. The latter
reached a maximum of 5% in the case of equal semi-major axes, with
2% being typical. Surprisingly, the fraction of exchange cases was quite
small and reached at most 4%. A somewhat higher proportion of exchange
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for equal masses, likewise with two surviving binaries, was seen in an ear-
lier experiment for a small sample [Mikkola, 1983]. Stable triples were
defined according to the simplified Harrington [1972] criterion,

Rcritp = 3 (1 + ein) ain , (18.9)

which does not include the masses (cf. (15.13) and (15.15) for improved
expressions). Moreover, in view of (9.14), the numerical factor increases
by 2.0 for a characteristic outer eccentricity of 0.9 instead of zero. Bearing
in mind that many systems exceed the stability ratio by modest amounts,
the adopted definition is somewhat optimistic.
A primary motivation for the above work was to estimate the rate of

tidal encounters and physical collisions from binary–binary interactions
in globular clusters. This requires the determination of the minimum pe-
riastron distance, rmin, which is about three times the radius of a main-
sequence star for significant tidal effects [Press & Teukolsky, 1977]. The
derived cumulative cross section may be compared with a power-law fit

σ̃(min
j �=i

{rij} ≤ rmin) = σ0

(
rmin
a12

)ν

, (18.10)

where a12 is taken to be the geometric mean of the semi-major axes.
The resulting graphs are conveniently approximated by piece-wise fitting
for two values of the exponent, ν. With this approximation, the number
of tidal interactions or physical collisions may be estimated from typi-
cal cluster core densities and binary properties. In the latter case, these
estimates range from a few to about 500 for core densities in the range
102–106 pc−3 and binary fractions fb � 0.1. Note that such estimates
are highly uncertain since eccentricity-induced processes in hierarchical
systems cannot easily be taken into account [Mardling & Aarseth, 2001].
Recently an under-estimate of the smallest two-body distances was

noted which affects the lower end of the cumulative cross section [Rasio,
private communication, 2001]. Thus, in the calculations, rmin was simply
taken as the minimum distance, specified at the end of each integration
step. It is a property of regularization methods that the time-steps may be
large during close encounters, provided the perturbation is small. Below
we give a general algorithm for determining the pericentre distance which
is also appropriate for three-body and chain regularization [Mikkola, pri-
vate communication, 1990].
In this general-purpose algorithm, U′ represents the actual derivative

used in the equations of motion, together with the corresponding t′, and
the relevant two-body terms are identified. A well-defined result for the
eccentricity is obtained since the division by R at step 4 cancels; hence
the pericentre distance Qp is regular. The same algorithm also applies
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Algorithm 18.1. Pericentre determination.

1 Form the square of the KS cross product, C = |U×U′|2
2 Set physical transformation factor, D = (2R/t′)2/(m1 +m2)
3 Construct the semi-latus rectum by p = CD
4 Obtain the inverse semi-major axis, a−1 = (2−D|U′|2)/R
5 Derive the eccentricity from e = (1− p/a)1/2

6 Evaluate non-singular pericentre distance, Qp = p/(1 + e)

to standard KS regularization. Note that this formulation is based on
osculating solutions of the two-body problem and should therefore only
be used for small relative perturbations.
Finally, we mention another approach where multiple regularization

methods are used to investigate scattering outcomes in more detail. Thus
Monte Carlo simulations of star clusters containing primordial binaries
can be considered as a series of scattering experiments in parallel. First
results of an implementation using unperturbed three-body [Aarseth &
Zare, 1974] and Heggie [1974] four-body regularization have already been
obtained [Giersz & Spurzem, 2003]. Hopefully, the more general method
of perturbed chain regularization can also be included in this treatment.
Hence the Monte Carlo method allows all the usual processes discussed
earlier to be examined in considerable detail.

18.5 Chaos and stability

Given the complexity of the three-body problem, it is perhaps surprising
that the case of 1D did not receive much attention in the early days. A
series of papers [Mikkola & Hietarinta, 1989, 1990, 1991] describes com-
plicated behaviour of chaotic type. In this section, we first consider a few
investigations that emphasize such features and also provide applications
of the three-body and chain regularization methods. The 1D formulation
has already been elucidated earlier, with the Hamiltonian for equal masses
given by (5.14).
Two final states of solutions are possible in 1D problems. Break-up is

defined as a binary with energy ratio Eb/E > 1, together with the third
particle outside 100 a. The ratio z = E/Eb is a convenient parameter for
displaying results since it is confined to the interval [0,1]. It turns out
that the life-time of the interplay phase divides the interactions into two
well-defined regions in both directions of time. In so-called ‘zero interplay
time’, a close triple encounter occurs only once early on and the outcome
is a continuous function of the initial conditions. For longer interplay
times, the orbits depend sensitively on the initial conditions and hence
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are chaotic. There is also a small region of infinite interplay time of quasi-
periodic motions in the neighbourhood of the well-known Schubart [1956]
periodic orbit.
A second similar investigation was made for positive energies. The char-

acteristic types of final motions are either a binary and a single particle or
complete ionization. Properties of the orbits are summarized in 2D maps
of initial values and the transition from negative to positive energy is il-
lustrated. For completeness, we mention the third paper which is mainly
concerned with a survey of the periodic orbit for a grid of masses. The nu-
merical solutions are used extensively to map the regions of stability and
compare the results with linear stability analysis. Remarkably, linearly
stable orbits transformed to 3D survived over at least several thousand
periods when integrated directly by the method of section 5.2.
Recently an analogous study was made of the symmetrical four-body

problem in 1D [Sweatman, 2002a]. Application of chain regularization
yields a simple Hamiltonian of the type (5.14) with four well-behaved
equations of motion. Again the motion can be divided into two main cat-
egories, where scattering orbits are characterized by systems starting and
finishing as subsystems of binaries and single particles, whereas for bound
orbits all the four bodies are confined. Moreover, scattering orbits are
subdivided into fast and chaotic types, in which all bodies come together
either once or a number of times, respectively. A subregion was chosen
to illustrate the chaotic behaviour in greater detail and the elements of a
Schubart-type periodic orbit were determined by iteration.
Returning to 2D, the effect of chaos was seen in an investigation which

applied perturbed velocities to the initial conditions of the Pythagorean
Problem [Aarseth et al., 1994a]. A novel feature in these experiments was
to ascertain reproducibility by including time reversal after escape and
to measure the final rms errors in position and velocity, σx and σv. An
initial tolerance of 10−13 was used with the TRIPLE code. Each experiment
was repeated with 100 times reduced tolerance if the errors were not
acceptable; i.e. max {σx, σv} < 1 × 10−3. This procedure, which allows a
determination of successful experiments, may be considered a template for
accuracy studies, although such stringent criteria are not recommended
for scattering experiments.
The final escape process in the vicinity of the standard Pythagorean

configuration has also been examined [Aarseth et al., 1994b]. Based on
831 examples, the angle, Ψ, between the velocity vector of the escaper
and the line bisecting the binary components favoured Ψ > 45◦ by a ratio
of 2:1. The significance of this conclusion has been criticized [Umehara &
Tanikawa, 2000]. The latter work introduced the velocity vector product

Φjk = vjvk sin (|θj | − |θk|) , (18.11)
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Fig. 18.1. Chaotic behaviour of outer apocentre distance. Time is measured in
crossing times of the triple system.

where θi is the angle spanned by rjk and vi. On the other hand, the
corresponding radial velocity is given by

Ujk = vk cos θk − vj cos θj . (18.12)

Although the second condition of positive radial velocity agrees with the
region for positive Φij and equal masses, the two tests are not equivalent
for vj 	 vk; consequently the former does not always apply.

Actual cluster simulations deal with a wide variety of hierarchical con-
figurations where chaos often plays an important role. It is therefore not
surprising that some systems are close to the stability boundary as de-
fined by (9.14). However, the temptation to accept a long-lived subsystem
as stable even if this condition is not met must be resisted, albeit at some
cost. Here we give an example that illustrates this point, taken from a re-
alistic star cluster simulation (Ns = 800, Nb = 200). This episode began
with a compact binary–binary interaction in which one of the components
acquired escape energy during the first approach. The outer pericentre
distance of the new triple was marginally (i.e. 3%) inside the stability
value after due allowance for the inclination effect in which ψ � 130o.
This necessitated a lengthy integration by chain regularization until the
outer small mass was eventually ejected.
Data from the initial four-body configuration was extracted and used by

the stand-alone chain code for further examination with slightly smaller
tolerance and the same outcome was reproduced on a comparable time-
scale in the absence of external perturbations. Figure 18.1 shows the apo-
centre distance of the outer body, evaluated near each turning point, over a
time interval of about 2800 crossing times with some 500 excursions. After
an irregular build-up to larger distances, the reverse process gave rise
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to considerable shrinkage, followed by another stage of successive energy
gains, whereupon ejection took place. Although the time interval is too
long to guarantee accurate solutions, the characteristic chaotic behaviour
is nevertheless instructive.
The results of scattering experiments may also be used to illustrate the

chaotic nature of gravitational interactions instead of obtaining cross sec-
tions. As we have seen above for the 1D case, this approach is generally
based on producing phase-space maps which reveal chaotic structure. One
such study [Boyd & McMillan, 1993] adopted standard selection of initial
conditions for three-body scattering and used the TRIPLE code. The em-
phasis was on displaying maps of the entire region over which resonance
can occur. Regions where simple ejection, fly-by or exchange take place
are separated by so-called ‘rivers of resonance scattering’. Enlargements
of such a region reveal intricate nested patterns of alternating smooth
and irregular bands on decreasing scales. The existence of such subdi-
vided bands is a hallmark of fractal structure. Moreover, in the case of
equal masses, the structure within these regions is due to the existence of
a constant probability of escape from the interaction region at each close
approach.
In order to study long-lived systems, a novel use was made of the total

kinetic energy which contains information about the internal dynamics.
Thus the case of a hierarchical configuration with non-zero outer eccen-
tricity shows this quantity varying on two time-scales. For equal masses,
the two frequencies, ω1, ω2, may be recognized by transforming the sum
of the two Keplerian energies into a relation of the form

(1/2)1/3ω2/3b + 2 (1/2)1/3ω2/33 = const . (18.13)

These frequencies can be determined accurately and the result shows a
smooth variation as binding energy is transferred between the inner and
outer orbit. However, there are times when the system cannot be decom-
posed into two separable orbits. The departures from the conservation
law can be used to identify epochs when interesting non-hierarchical in-
teractions or transitions are taking place.
The question of practical unpredictability has been addressed by exam-

ining the phase-space structure of chaotic three-body scattering [Mikkola,
1994]. The complexity of the problem was reduced by choosing initial val-
ues along curves in phase space and analysing the final binary properties.
Numerical investigations with the TRIPLE code showed that phase space
is divided into separate zones, isolated by hyper-surfaces of parabolic dis-
ruption. Thus there are regular regions characterized by short interplay
times, whereas chaotic behaviour is usually associated with long inter-
play times and ejections without escape. Since the discontinuous singular
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surfaces are very dense, a small numerical error can move the trajectory
across a surface, making the outcome different and hence unpredictable.
This behaviour is connected with an earlier idea that escape times are
discontinuous [Szebehely, 1972].
Although the Pythagorean configurations undoubtedly display chaotic

behaviour, certain regular patterns may be seen from movies. Thus in the
original system with masses 3, 4 and 5, there are nearly 30 independent
two-body encounters, and yet the two lightest bodies are never the closest
pair until the final triple approach. There does not appear to be any
fundamental reason for this curious avoidance, since other similar initial
conditions produce mutual encounters between all the bodies, albeit with
some tendency for the heaviest mass to control the motion.
As we have seen from many examples, numerical integrations of three

mass-points readily produce chaotic orbits. However, stable few-body sys-
tems have received remarkably little attention in spite of some interesting
theoretical developments. Given a hierarchical configuration, the question
of stability poses a big challenge. This is particularly relevant for the treat-
ment of weakly perturbed systems in cluster simulations, as discussed in
previous chapters (cf. sections 9.5 and 15.7).
The observational search for stable hierarchies has yielded a few exam-

ples where the elements may change on relatively short time-scales. We
highlight the triple system HD109648 which reveals evidence for preces-
sion of the nodes and apsidal advance, as well as eccentricity variation
over an 8-yr base line [Jha et al., 2000]. Given a period ratio of 22:1 and
outer period 120 d, this triple should be stable, with a modulation time-
scale TKozai � 15 yr for small outer eccentricity (cf. (15.17)). Since the
inner period is only 5 d, the orbit is expected to have been circularized,
yet ein � 0.011. This small but non-zero value appears to change in a
cyclical way consistent with either a small inclination and/or strong tidal
force. Direct integrations using the TRIPLE code have also been made,
based on the derived elements. In particular, a small relative inclination
of ψ ≥ 5◦ obtained from geometrical and observational constraints was
used. The results of the inner eccentricity modulations over a decade were
found to be consistent with the observed variation.
In general, binaries with periods below some cutoff value that depends

on stellar type are expected to be circularized [Mermilliod & Mayor, 1992;
Verbunt & Phinney, 1995]. It is therefore interesting to note some evi-
dence of significant deviation from circular motion that supports the data
presented above. Thus two cluster binaries with periods of 2.4 and 4.4 d
in the Hyades and M67, respectively, have eccentricities 0.057 and 0.027
[Mazeh, 1990]; moreover, a 4.3 d halo binary has e = 0.031. Although
the circularization time is much less than the age in each case, there is
additional evidence for the presence of a third companion. Once again,
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Fig. 18.2. Quasi-periodic three-body system

the relatively small eccentricities may provide a clue to the strength of
the tidal dissipation which tends to have a stabilizing effect. The question
of long-term stability of hierarchical stellar systems may therefore also
depend on astrophysical processes such as mass transfer and tidal friction
[Eggleton, Kiseleva & Hut, 1998].
On rare occasions even general three-body systems may exhibit regular

motions. Remarkably, a sample of 5000 experiments in 2D yielded two
kinds of regular orbits which were numerically stable over long times
[Anosova et al., 1984]. The first was of a chain type where a central body
approached the other two successively on opposite sides without the latter
getting close, while in the second case all bodies made close pair-wise
encounters. Figure 18.2 illustrates the orbits in the former example until
the rotating pattern has precessed by about 45◦. In the absence of close
triple encounters, the solution is quite accurate and displays the same
pattern for much longer times.
The serendipitous discovery above shows that phase space contains hid-

den secrets. Another example was recently revealed by the existence proof
for a periodic 2D orbit where three equal masses describe a figure eight
solution [Chenciner & Montgomery, 2000]. Accurate numerical methods
for finding such orbits based on minimization formulations have also been
presented [Simó, 2001]. A variety of so-called ‘choreographic solutions’
have in fact been obtained for a range of particle numbers, including
some cases without any symmetry.††

Finally, in this connection, we mention a practical algorithm for rec-
ognizing figure eight orbits with zero angular momentum [Heggie, 2000].
This scheme is based on identifying possible collinear configurations oc-
curring in the sequence 123123123 . . ., or its reverse, where each digit

†† For entertaining animations see http://www.maia.ub.es/dsg.
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denotes the middle body. Although the figure eight orbit appears special,
it can be reproduced by scattering experiments in which a fourth incoming
body produces two binaries, whereupon time reversal yields the desired
result. Nevertheless, this new outcome of binary–binary scattering only
has a low probability of occurring and hence the corresponding stability
test in chain regularization is not needed.
The grand challenge of understanding the three-body problem has at-

tracted much attention by celebrated mathematicians over the last few
centuries, yet many mysteries remain. A new formalism has recently
been developed from first principles for studying the energy and angular
momentum exchange in hierarchical triples and scattering experiments
[Mardling, 2001, 2003a,b], allowing a study of configurations with arbi-
trary initial conditions. The different scattering processes include fly-by,
ionization, resonant capture and exchange. Moreover, stability boundaries
for hierarchical systems can be determined for arbitrary masses and or-
bital elements and, in addition, the evolution of unstable triples may be
obtained. A description of unstable behaviour is particularly useful for
long-lived systems with large outer eccentricity that occur in star cluster
simulations.
By analogy with the modes of oscillation of a rotating star that may

be excited due to a close binary companion [Lai, 1997], the formalism
introduces the concept of the modes of oscillation of a binary. The inner
orbit is regarded as a pair of circular rings of material that spin in the
same plane as the actual (inner) orbit. In a frame rotating with the spin
frequency (i.e. the orbital frequency), the rings are stationary when the
orbit is circular, but oscillate radially and azimuthally for an eccentric
orbit. A related device was introduced by Gauss for the case of two planets
orbiting the Sun. In this picture, the mass of the inner planet is smeared
out along its orbit to form a single ring, such that the density is highest at
apastron and lowest at periastron. The outer planet then responds to this
static (non-oscillating) distribution of matter. This formulation predicts
successfully secular evolution features such as the rate of apsidal motion
of the outer orbit [Murray & Dermott, 1999].
The new formulation differs in two distinct ways from that of Gauss.

First, a binary of arbitrary mass ratio is regarded as a pair of rings, and
the third body responds to a radially varying distribution of matter, much
like in the binary–tides problem where the second star responds to the
moments of the mass distribution of the first. The other difference is that
the rings interact dynamically with the outer orbit so that its normal
modes of oscillation, given in terms of the mean anomaly, are excited by
the outer body. Hence the rings oscillate as they exchange energy and
angular momentum with the outer orbit, at all times remaining circular.
While Gauss’s formulation involves averaging over the inner orbit to
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predict secular evolution, the new formalism involves averaging over the
inner orbit to predict dynamical evolution. In effect, the averaging proce-
dure isolates the dynamically important frequencies.
Dynamically active triple processes generally involve significant ex-

change of energy and angular momentum between the inner and outer or-
bits in contrast to, for example, stable (non-resonant) hierarchical triples
in which the semi-major axis remains secularly constant, although the
eccentricity may evolve secularly through angular momentum exchange.
It is this aspect that the new formalism captures, an aspect particularly
important for studying stability. Previous studies of stability have gener-
ally focused on the concept of Hill stability. A system is Hill stable if no
close approaches of any pair of bodies is possible [Szebehely & Zare, 1977;
Gladman, 1993]. In fact this is no guarantee of stability; it is possible for
the outer eccentricity effectively to random-walk its way past unity with-
out there ever being a close encounter. This introduces the more general
concept of Lagrange stability: a system is Lagrange stable if in addition it
remains bound for all time. This is very much associated with the question
of whether or not significant energy can be transferred between the orbits,
and this in turn is associated with the existence of internal resonances.
The interactions between non-linear oscillators and their chaotic be-

haviour have been studied extensively as mathematical dynamical sys-
tems [Chirikov, 1979 and references therein]. A particularly useful concept
for predicting the onset of chaotic behavior is that of resonance overlap
[Chirikov, 1979]. In the context of the three-body problem, this was first
applied by Wisdom [1980] to the restricted problem, and it is this concept
that is employed in the new formalism to study stability in the general
three-body problem. Here, the dominant mode excited in the inner binary
by the outer body is determined and it is then treated as an oscillator
interacting with a Kepler orbit (the outer orbit). If the outer orbit is ec-
centric, the frequencies associated with it are the orbital frequency and
all integer multiples of this. Hence there is the possibility of resonance
between the inner orbit and any one of these frequencies, and if any of
these resonances ‘overlap’, unstable behaviour ensues.
The energy pumped into or out of the ‘oscillator’ (the dominant mode)

by the outer orbit represents the dynamical activity, both in unstable
bound triples and unbound scattering events. Including this energy in the
description allows one to study the general problem, and it is this aspect
that is absent from other descriptions of stability and scattering.
Given such an analytical description of stability and scattering, it be-

comes possible to devise convenient fitting formulae for use in N -body
simulations. These procedures are currently being formulated.
Questions concerning the stability of the Solar System have dominated

the field of celestial mechanics since the days of Newton and Laplace. We
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consider briefly some developments involving numerical studies that are
connected with chaotic motion. For a comprehensive review, see Lecar et
al. [2001]. In the early days of direct N -body simulations, the asteroids
presented a popular subject for applications [cf. Lecar & Franklin, 1973]
and the results focused the attention on chaos. Although general planetary
integrations are still unable to provide observationally correct solutions
for time intervals of even 100Myr because of the short Lyapunov times,
much can be learnt about the long-term behaviour.
In view of the importance of the symplectic mapping method [Wisdom

& Holman, 1991] for numerical studies, it is reassuring to note general
agreement with conventional integrations for the outer planets over nearly
1Gyr. The latter results were obtained using the special-purpose Digital
Orrery computer [Sussman & Wisdom, 1988] which pointed the way to
later hardware developments. In a new approach, 50 000 terms of the av-
eraged secular equations were integrated by a 12th-order Adams method
over 15Gyr after comparison with direct solutions [Laskar, 1994]. The mo-
tion of the outer planets is always very regular, whereas Mercury is more
susceptible to developing chaotic orbits. A number of successive solutions
were adopted for the Earth, which maximized the eccentricity of Mercury
and eventually large values were reached, indicating possible escape. Sub-
sequently, it was found that the spacing of the inner planets show evidence
of chaotic wanderings [Laskar, 1997]. However, these wanderings are lim-
ited by the so-called ‘angular momentum deficit’ (AMD) which contains
the contributions from non-circular and non-planar motion. A simplified
model of planetary accretion also made use of the AMD conservation to
constrain the evolution following collisions [Laskar, 2000]. The final dis-
tribution of semi-major axes obeyed a square root relation reminiscent
of the Titus–Bode rule which was also reproduced for the υAndromedae
system. Meanwhile, an application of the Wisdom–Holman method to
asteroid orbits, with simultaneous solutions of the variational equations,
yielded longer Lyapunov times in the main asteroid belt which may ac-
count for the apparent longevity [Mikkola & Innanen, 1995].
A new long-term study of planetary orbits [Ito & Tanikawa, 2002] can be

seen as a culmination of the modern approach which seeks to answer the
ultimate challenge in our field.‡‡ Based on dedicated computations last-
ing several years, all the nine planets were integrated over time-spans of

‡‡ Although direct integrations have so far only covered about 100Myr, this objective
might come closer to realization by more efficient methods. One promising alter-
native under consideration is the combination of Picard iteration with Chebyshev
polynomial approximation, implemented on a vector computer, which may yield a
large speed-up [Fukushima, 1997]. This method is well suited for dealing with regular
motions, enabling fast convergence due to small perturbations, and further efficiency
gain may also be possible by parallelization [Ito, personal communication, 2003].
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±4×109 yr using the Wisdom–Holman [1991] method [see also Mikkola &
Saha, 2003]. The main outcome of this heroic effort is that the Solar Sys-
tem appears to be quite stable on this time-scale and no close encounters
were recorded. However, the eccentricity of Mercury tends to show large
amplitude variations which may indicate the onset of chaotic motion on a
somewhat longer time-scale. Since the orbital motion of the outer planets
is quite regular and the total AMD is conserved, the AMD of the inner
four planets is expected to be approximately constant. The z-component
of the normalized AMD is defined by

Cz =
4∑

j=1

mjM�
mj +M�

[G(M� +mj)aj ]1/2[1− (1− e2j )
1/2 cosψj ] . (18.14)

The deviations from zero are relatively small, with Mercury again showing
the largest effect. The authors concluded that the main reason for the
long-term stability is that the terrestrial planets have larger separations
measured in terms of their mutual Hill radii as compensation for the
shorter orbital periods. Hence the stronger perturbations by the outer
planets are less effective in inducing chaotic features in the inner Solar
System. These results also indicate that much can be learnt by studying
the behaviour of the Jovian planets in isolation.
So far, this book has been exclusively concerned with topics restricted

to dynamics, with emphasis on the relevant integration methods. How-
ever, it is interesting to note that such methods have found applications
in other fields. One problem studied is the semi-classical quantization of
the quadratic Zeeman effect in the hydrogen atom [Krantzman, Milligan
& Farrelly, 1992]. KS regularization was used effectively to avoid singu-
larities associated with the classical separatrix. Moreover, this problem
is an important example of a non-integrable Hamiltonian that is chaotic
in the classical limit. Another investigation of classical electron motion
of two-electron atoms [Richter, Tanner & Wintgen, 1992] employed the
three-body regularization of section 5.2 to calculate stability properties
of periodic orbits with two degrees of freedom. These systems display an
amazingly rich structure and a variety of different types of motion. In
particular, the behaviour for zero angular momentum where the orbits
degenerate to collinear motion exhibit Poincaré maps analogous to the
properties of the 1D systems discussed above [cf. Mikkola & Hietarinta,
1989]. Hence, in conclusion, the general theme of chaos and stability con-
nects Newtonian dynamics with the atomic world.
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Global regularization algorithms

A collection of the relevant formulae for Heggie’s global regularization
method is given, based on the reformulation of Mikkola [1985a]. In the
second section, we summarize procedures for including external pertur-
bations for the case N = 3.

A.1 Transformations and equations of motion

We begin with the algorithm for constructing the initial values, then de-
rive the equations of motion and finally write expressions for obtaining
the physical variables. In the following we use the Lagrangian time trans-
formation, with g = 1/(T + U) and assume the centre-of-mass frame.
Let the coordinates and velocities be given by ri, ṙi. Define the index

k = (i− 1)N − i(i+ 1)/2 + j for 1 ≤ i < j ≤ N by adding one to k when
incrementing i and j. At the same time form the quantities

qk = ri − rj ,
pk = (miṙi −mj ṙj)/N ,

Mk = mimj ,

aik = 1 , ajk = −1 , (A.1)

and take the other components of aij as zero. Hence there are a total
of N(N − 1)/2 terms qk, pk. We define qk = (X,Y, Z)T and write the
standard KS transformation for X ≥ 0 as

Q1 = [12(qk +X)]1/2 ,

Q2 = 1
2Y/Q1 ,

Q3 = 1
2Z/Q1 ,

Q4 = 0 , (A.2)
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otherwise we choose

Q2 = [12(qk −X)]1/2 ,

Q1 = 1
2Y/Q2 ,

Q3 = 0 ,
Q4 = 1

2Z/Q2 . (A.3)

The corresponding regularized momenta are then related to the relative
physical momenta, pk, by

Pk = 2Lk
Tpk , (A.4)

where the superscript T denotes the transpose. At this stage we also
calculate K = N(N − 1)/2 elements of the matrix Tuv from

Tuv = 1
2

N∑
e=1

aeuaev/me . (u = 1, . . . ,K) (v = 1, . . . ,K) (A.5)

Given the KS variables Qk, Pk, the respective derivatives are evaluated
by the following sequential steps

pk = 1
2LkPk/Q

2
k ,

Ak =
K∑

v=1

Tkvpv ,

Dk = Ak · pk ,

T =
K∑

k=1

Dk ,

U =
K∑

k=1

Mk/Q
2
k ,

TPk
= Lk

TAk/Q
2
k ,

A∗
k = (A1, A2, A3,−A4)kT ,

TQk
= [L(Pk)TAk

∗ − 4DkQk]/Q2k ,
UQk

= −2MkQk/Q
4
k ,

L = T + U ,

H = T − U ,

G = (H − E0)/L ,

GT = (1−G)/L ,

GU = −(1 +G)/L . (A.6)
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Here the equation for TQk
contains the transpose Levi-Civita matrix with

argument Pk. Defining partial derivatives with subscripts, we write the
equations of motion

Q′
k = GTTPk

,

P′
k = −GTTQk

−GUUQk
,

t′ = 1/L . (A.7)

With k = k(i, j) as before, the transformations to physical variables
take the form

qij = qk = LkQk ,

pij = pk = 1
2LkPk/Q

2
k ,

ri =
1
M

N∑
j=i+1

mjqij − 1
M

i−1∑
j=1

mjqji ,

ṙi =
1
mi

N∑
j=i+1

pij − 1
mi

i−1∑
j=1

pji , (A.8)

with M the total mass. In order to obtain accurate solutions, a high-order
integrator such as the Bulirsch–Stoer method [1966] is recommended. As
is usual in canonical theory, the differential equations to be solved are of
first order.

A.2 External perturbations

Some of the steps for including external effects in the three-body prob-
lem are outlined below. Analogous derivations for the general case N > 3
are given elsewhere [cf. Heggie, 1988]. Only the potential energy interac-
tion term requires differentiation if we also introduce an equation for the
energy itself. The former can be expressed in the form

R = −
3∑

i=1

N∑
j=4

mimj

|ri − rj | . (A.9)

By analogy with (5.30), we now obtain the desired perturbation term by
partial differentiation

∂R
∂Qk

=
3∑

i=1

∂R
∂ri

∂ri
∂qk

∂qk
∂Qk

. (A.10)

Explicit differentiation yields the perturbing force

∂R/∂ri = −miFi , (A.11)
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where Fi has the usual meaning. Alternatively, we can obtain the per-
turbation directly in the form ∂R/∂qk. Its evaluation is facilitated by
employing the cyclic notation defined in section 5.5,

r1 = (m2q3 −m3q2)/M + r0 , (∗) (A.12)

where r0 denotes the local centre of mass and the asterisk indicates two
more equations by cyclic interchange of indices. Consequently, the expres-
sions for ∂ri/∂qk reduce to mass ratios. Lastly, we have

∂qk/∂Qk = 2LTk , (A.13)

and by combining terms we recover the full derivative expression (A.10).
By analogy with the perturbed equation of motion given by (5.29), this
is substituted into the differentiated form of (5.56).
The last term of the Hamiltonian (5.56) represents the total energy

which is no longer constant. Accordingly, we can obtain its changing value
by direct integration rather than by explicit evaluation. Employing the
known equations of motion for q̇i and ṗi, we derive the simplified result
[Heggie, 1974]

Ė = −
3∑

i=1

q̇Ti ∂R/∂qi . (A.14)

Finally, we convert to regularized derivatives by introducing primes and
employ the standard KS relation qk = LkQk which, together with (4.21),
simplifies to

E′ = −2
3∑

i=1

LkQ′
k∂R/∂qi . (A.15)

In conclusion, it may be remarked that the additional effort of using the
global three-body method, compared with the Aarseth–Zare regulariza-
tion, might be relatively modest when perturbations are included, since
the similar terms ∂R/∂qi could well dominate the cost. It appears that the
perturbed case has not been attempted in any N -body simulation so far.
Hence an implementation would provide a good programming exercise.
However, an application to general N -body systems would still require
considerable decision-making. Its introduction would therefore depend on
whether several simultaneous chain regularizations are developed.
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Chain algorithms

Below we provide a practical collection of the necessary expressions for
chain regularization, based closely on the improved notation [Mikkola &
Aarseth, 1993].

B.1 Transformations and switching

In the following we refer to the actual indices of the physical variables
instead of those assigned while relabelling the particles. This notation fa-
cilitates the construction of a computer code. We first describe transfor-
mation to regularized variables and assume that the initial chain structure
has been determined, as described in section 5.4.
Let the location of a particle with mass mj be denoted by an index

Ij , such that the actual index (or name) is also Ij . The c.m. and chain
variables for N members are then defined by

r0 =
N∑
j=1

mjrj/M ,

ṙ0 =
N∑
j=1

mj ṙj/M ,

pj = mIj (ṙIj − ṙ0) , (j = 1, . . . , N)
W1 = −p1 ,
Wk =Wk−1 − pk , (k = 2, . . . , N − 2)

WN−1 = −pN ,

Rk = rIk+1
− rIk

. (k = 1, . . . , N − 1) (B.1)

Note the explicit absence of the term pN−1 from the chain momenta. This
is connected with the c.m. condition sinceWN−1 consists of the negative
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sum of the first N − 1 physical momenta. Hence for N = 3 we have
W2 = −(p1 + p2), whereas the two momenta are treated symmetrically
in the equivalent formulation of section 5.2.
We defineRk = (X,Y, Z)T, whereupon the standard KS transformation

for X ≥ 0 can be written as

Q1 = [12(R+X)]1/2 ,

Q2 = 1
2Y/Q1 ,

Q3 = 1
2Z/Q1 ,

Q4 = 0 , (B.2)

otherwise we choose well-determined values by

Q2 = [12(R−X)]1/2 ,

Q1 = 1
2Y/Q2 ,

Q3 = 0 ,
Q4 = 1

2Z/Q2 . (B.3)

The corresponding momenta are obtained by

Pk = 2Lk
TWk . (k = 1, . . . , N − 1) (B.4)

The transformation from Q,P to r, ṙ begins by the inverse KS mapping
of chain vectors and associated momenta,

Rk = LkQk ,

Wk = 1
2LkPk/Q

2
k , (k = 1, . . . , N − 1)

p1 = −W1 ,

pk =Wk−1 −Wk , (k = 2, . . . , N − 1)
pN =WN−1 ,
ṙIj = pj/mj + ṙ0 . (j = 1, . . . , N) (B.5)

To obtain the coordinates rj we first form coordinates qj in a system
where q1 = 0, which are then converted to the physical coordinates. This
gives rise to the expressions

q1 = 0 ,
qj+1 = qj +Rj , (j = 1, . . . , N − 1)

q0 =
N∑
j=1

mjqj/M ,

rIj = qj − q0 + r0 . (j = 1, . . . , N) (B.6)
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Switching becomes desirable when one of the non-chained distances
would connect a dominant particle interaction. For each value of the index
µ = 1, . . . , N − 1, we find the indices k0 and k1 such that Ioldk0

= Inewµ and
Ioldk1

= Inewµ+1. This enables us to write

Rnewµ =
N−1∑
ν=1

BµνRoldν , (B.7)

where Bµν = 1 if( k1 > ν and k0 ≤ ν) and Bµν = −1 if( k1 ≤ ν and
k0 > ν), otherwise Bµν = 0.
To transform the chain momenta, we first obtain the physical momenta

from the old chain by

pIold1
= −W1 ,

pIold
k

=Wk−1 −Wk , (k = 2, . . . , N − 1)

pIoldN
=WN−1 , (B.8)

and evaluate the new chain momenta with the same notation by

W1 = −pInew1
,

Wk =Wk−1 − pInewk
, (k = 2, . . . , N − 2)

WN−1 = pInewN
. (B.9)

Now the procedure follows the established path of performing the KS
transformations given above, whereupon the integration is continued.

B.2 Evaluation of derivatives

Let us define the matrix Tij and the mass products Mk, Mij by

Tkk = 1
2(1/mk + 1/mk+1) ,

Tk k+1 = −1/mk ,

Mk = mkmk+1 , (k = 1, . . . , N − 1)
Mij = mimj . (i < j) (B.10)

Further auxiliary variables are introduced by

Wk = 1
2LkPk/Q

2
k ,

Ak =
∑

1
2(Tki + Tik)Wi , (|i− k| ≤ 1) (1 ≤ i ≤ N − 1)

Dk = Ak ·Wk ,

T =
∑

Dk , (1 ≤ k ≤ N − 1)
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Rij = qj − qi =
∑
Rk′ , (i ≤ k′ ≤ j − 1)

Unc =
∑

Mij/Rij , (1 ≤ i ≤ j − 2)

U =
N−1∑
k=1

Mk/Rk + Unc ,

g = 1/(T + U) . (B.11)

When calculating the vectorsRij above, the difference form is generally
more efficient, but the summation form should be used if there are only
two terms in the sum; this avoids some round-off problems. We express
partial derivatives with subscripts and obtain

TPk
= Lk

TAk/Q
2
k ,

A∗
k = (A1, A2, A3,−A4)Tk ,

TQk
= [L(Pk)TAk

∗ − 4DkQk]/Q2k ,

UncRk
= −

∑
MijRij/R

3
ij , (i ≤ k ≤ j − 1)

UncQk
= 2Lk

TUncRk
,

UQk
= −2MkQk/Q

4
k + UncQk

. (B.12)

Here the third equation (B.12) contains the transpose Levi-Civita matrix
with argument Pk.
If perturbations are present, the physical coordinates (and velocities

if needed) are evaluated according to the transformation formulae given
above, whereupon the external acceleration, Fj , acting on each particle
can be calculated. Since these quantities appear as tidal terms, we first
define the c.m. acceleration by

F0 =
N∑
j=1

mjFj/M . (B.13)

Given the perturbative contributions

δṗj = mj(Fj − F0) , (j = 1, . . . , N)

δẆ1 = −δṗ1 ,
δẆk = δẆk−1 − δṗk , (k = 2, . . . , N − 2)

δẆN−1 = δpN ,

δPk
′ = 2gLk

TδẆk , (B.14)

the equations of motion for the KS variables are obtained by

H = T − U ,
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Γ = g(H − E0) ,
ΓT = (1− Γ)g ,
ΓU = −(1 + Γ)g ,
ΓPk

= ΓTTPk
,

ΓQk
= ΓTTQk

+ ΓUUQk
,

Pk
′ = −ΓQk

+ δPk
′ ,

Qk
′ = ΓPk

. (B.15)

The c.m. coordinates and velocities may be advanced by standard in-
tegration according to

dv0/dτ = gF0 ,
dr0/dτ = gv0 , (B.16)

or in the more usual way taking derivatives with respect to the physical
time, t, by omitting g.
Finally, we need the rates of change for the internal energy and time.

The former may be derived in analogy with the two-body energy equa-
tion (4.38) and also with the expression (5.37) of the Aarseth–Zare [1974]
three-body regularization. Hence with the last equation (B.14), the de-
sired equations take the form

E′ = 2
N−1∑
k=1

Qk
′TLk

TδẆk ,

t′ = g . (B.17)

We remark that because tidal effects enter the energy equation, relatively
few perturbers may need to be considered. Still, the perturbed treatment
can be quite time-consuming when employing a high-order integrator and
only compact subsystems are therefore suitable for special study since
external effects are included out to a distance � λRgrav.

B.3 Errata

It has been pointed out [Orlov, private communication, 1998] that the
original chain paper [Mikkola & Aarseth, 1990] contains some errors in
the explicit expressions for the regularized derivatives, whereas the Hamil-
tonian itself is correct. The corrections are as follows: (i) the terms B1 ·B2
in (45) and B3 · B2 in (47) should be interchanged; (ii) a factor of 2 is
missing from the term R1R2R3 in (45), (46) and (47). This formulation
has mostly been superseded by the 1993 version but the corresponding
code is free from these errors.
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Higher-order systems

C.1 Introduction

We describe some relevant algorithms for initializing and terminating
higher-order systems which are selected for the merger treatment dis-
cussed in chapter 11. Such configurations may consist of a single parti-
cle or binary in bound orbit around an existing triple or quadruple, or
be composed of two stable triples. There are some significant differences
from the standard case, the main one being that the KS solution of the
binary is not terminated at the initialization. In other words, the com-
plexity of the structure is increased, and the whole process is reminiscent
of molecular chemistry. However, once formed as a KS solution, the new
hierarchy needs to be restored to its original constituents at the termina-
tion which is usually triggered by large perturbations or mass loss. Special
procedures are also required for removing all the relevant components of
escaping hierarchies, and here we include merged triples and quadruples
since the treatment is similar to that for higher-order systems.

C.2 Initialization

Consider an existing hierarchy of arbitrary multiplicity and mass, mi,
which is to be merged with the mass-point mj , representing any object
in the form of a single particle or even another hierarchy. Again we adopt
the convention of denoting the component masses of a KS pair by mk and
ml, respectively. Some of the essential steps are listed in Algorithm C.1.
Nearly all of these steps also appear in the standard case and therefore

do not require comment. We note one important difference here, in that
there is no termination of the KS solution. Hence the new c.m. particle
occupies the same position in the general tables as the original primary, as-
suming there has been no switching. Moreover, the merger table contains
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Algorithm C.1. Initialization of higher-order system.

1 Ensure that the primary binary is a hierarchy
2 Save the component masses and neighbour or perturber list
3 Copy the basic KS elements of the primary binary
4 Obtain potential energy of primary components and neighbours
5 Retain current values R, Ṙ of the primary components
6 Evaluate tidal correction for primary mass mi and neighbours
7 Set initial conditions for the c.m. body by mcm = mi +mj

8 Form basic KS quantities for the new outer binary mi and mj

9 Define initial conditions for ghost KS if required [case j > N ]
10 Create ghost particle ml = 0 with large values of r0, r and t0
11 Remove the ghost from all neighbour or perturber lists
12 Initialize the c.m. and KS polynomials for the binary
13 Record the ghost name for identification at termination
14 Specify negative c.m. name for the decision-making
15 Update Emerge by the old binding energy and tidal correction

four locations for saving component masses, in case the outer member
also represents a KS solution which may be standard or hierarchical. On
the other hand, there is only one array entry containing KS quantities for
each merger. Hence any secondary KS solution needs to be defined as a
ghost pair, with zero component masses and perturber membership, as
well as a large value of t0. In order to distinguish between different levels
of a hierarchy, we use the convention that the c.m. particle is assigned a
name Ncm which is effectively −2N0 smaller than the previous one. Thus
the initial particle number, N0, is used as a fixed reference number, such
that the corresponding names of single particles can at most reach this
value. This simple device allows an arbitrary number of hierarchical levels
referring to the same system as it increases in complexity.

C.3 Termination

At some stage, the higher-order hierarchy discussed above may cease to
satisfy one of the stability conditions, whether it be increased outer ec-
centricity or large perturbation. Algorithm C.2 lists the steps involved in
restoring the present configuration to its original state.
Again most of the listed steps are similar to the standard case. Note that

the existing c.m. location (but not its value) is also used for the new inner
binary, which is initialized in the standard way. The corresponding KS
solution is also initialized after forming the appropriate perturber list. One
new feature is the re-evaluation of the stability parameter (9.14), together
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Algorithm C.2. Termination of higher-order system.

1 Locate the current index in the merger table
2 Save the neighbour or perturber list for corrections
3 Predict the c.m. motion to highest order
4 Define mass, coordinates and velocity for the new c.m.
5 Add the old outer component to the perturber list
6 Obtain the potential energy of inner binary and neighbours
7 Identify the location, j, of the corresponding ghost particle
8 Set initial conditions for ghost and new inner c.m.
9 Restore the basic quantities of the primary components

10 Copy the saved KS variables from the merger table
11 Form new force polynomials for the old outer component
12 Initialize the c.m. polynomials and corresponding KS
13 Find the merger index for the next hierarchical level
14 Re-evaluate the stability parameter, Routp , including inclination
15 Update the original name of the hierarchy by adding 2N0
16 Perform perturbed initialization of any outer binary [case j > N ]
17 Subtract new binding energy and add tidal correction to Emerge
18 Compress the merger table, including any escaped hierarchies

with the basic inclination modification. This is achieved by obtaining the
inner semi-major axis with the specified merger index and the outer two-
body elements in the standard way, whereas the inclination is determined
from the saved relative coordinates and velocities together with those of
the c.m. and outer component. Finally, regarding step 18, care is needed
to retain any inner members of hierarchies that would otherwise appear
to be associated with escapers; i.e. those for which the saved c.m. name
equals 2nN0 +Ncm, where n = 0, 1, 2, . . . denotes the possible levels and
Ncm < 0 represents the actual c.m. name.

C.4 Escape of hierarchies

It is not uncommon for hierarchical systems to acquire escape velocity and
be ejected from the cluster. This requires special treatment of the data
structure since removal of only the active binary itself would leave single
ghost particles and even massless binaries as cluster members. Hierarchies
of any order are identified by a negative c.m. name, and it is therefore
natural to discuss such systems together.
Let us first consider the case of a stable triple that satisfies the standard

escape criterion for the associated c.m. particle, i. After the active KS
binary elements and c.m. variables have been updated in the usual way,
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we determine the merger index using the c.m. name. The total energy, E,
and merger energy, Emerge, are updated by subtracting the inner binding
energy, µklh, where the latter quantities are obtained from the merger
table. This enables the global index of the corresponding ghost particle
to be identified by comparing it with the saved ghost name, whereupon
the large value of the x-coordinate is reduced to facilitate escape removal.
Accordingly, this should be a single particle with zero mass which can be
removed in the usual way together with reducing N and Ntot. Again all
the relevant lists must be updated, but only to the extent of reducing any
larger indices since the ghost particle itself should not be a member.
An escaping quadruple is distinguished by the second or outer compo-

nent being a c.m. particle; hence we have N2p > N0, where the pair index
is given by p = i−N . First the KS index of the ghost binary is determined
by comparing the relevant names with N2p, since the second component
is in fact another binary c.m. The ghost pair index, q (say), then specifies
the corresponding ghost c.m. particle as iq = N + q, which must also be
removed. The index of the latter is obtained by comparing the relevant
names with the corresponding one for iq. Again the updating procedure
above is carried out, whereby the present KS and corresponding c.m. vari-
ables are updated. At this stage we correct the energies E and Emerge by
subtracting the original ghost contribution since the masses and specific
binding energy are known if due allowance is made for table updating
(i.e. q > p). At the next sequential search, an activated value of iq is used
to identify the necessary ghost binary by employing the specified name.
Removal of the corresponding components can now be performed in the
usual way, provided the large x-coordinate of the ghost c.m. has been
re-assigned an intermediate value which ensures escape.
It is also possible to envisage higher-order systems escaping. Although

this is extremely rare, examples of ejected quintuplets have been noted for
realistic populations. The above escape algorithm has been generalized to
include one more hierarchical level where the outermost component may
be a single particle or another binary. Note that the energy correction
procedure now needs to account for the interaction between the two inner
levels, as well as that of the outer level. Consequently, a successful update
should reduce Emerge to the value given by any remaining hierarchies
(apart from small tidal corrections) and remove all the relevant ghost
members. For this purpose we introduce a notation where the innermost
binary is said to be ‘hierarchical’ and any other binary (excluding the
current KS pair) is denoted as a ‘quadruple’, although such a usage is
only intended to be descriptive. Accordingly, an escaping quintuplet of
the type [[B,S], B] will be dissected into four different configurations,
where the outermost ghost binary is called a quadruple.
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Practical algorithms

In the following we give some useful algorithms to assist in the construc-
tion of codes or explain more fully the present implementations.

D.1 Maxwellian distribution

A Maxwellian velocity distribution is often used for generating initial
conditions. This is specifically needed for the kick velocities, as described
in section 15.5. We adopt an elegant method due to Hénon [Heggie, private
communication, 1997]. It is based on a pair-wise procedure as follows.
First select two random numbers, X1, X2, and form the quantities

S = σ[−2 ln(1−X1)] ,
θ = 2πX2 , (D.1)

where σ is the velocity dispersion in 1D. The two corresponding velocity
components are then given by vx = S cos θ and vy = S sin θ. For a 3D
distribution we perform the same procedure a second time and choose
vz = S cos θ.

D.2 Ghost particles

The general problem of recovering the actual mass, coordinates and ve-
locity of a ghost particle is fairly simple for a triple system. However,
quadruples also occur and the procedure is now more involved. Conse-
quently, the general case is presented here, where only the first part is
relevant for triples. Thus a quadruple system is defined by Nj > N0 for
ghost particle j. Algorithm D.1 is needed if we are considering a c.m.
particle with index i > N , mass mi > 0, name Ni < 0 and wish to obtain
global quantities for any ghost components. The two mass components of
the active KS solution are denoted by mk,ml as usual.
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Algorithm D.1. Identification of ghost particles.

1 Locate the index p in the merger table using Nmerge = Ni

2 Determine the global index j of the ghost by Nj = Nghost
3 Copy component masses from m1,m2 of the merger table
4 Form r, ṙ for binary components from mk and old R1, Ṙ1
5 Obtain the c.m. index, q, from Nq = Nj [case Nj > N0]
6 Get the component masses from m3,m4 of merger index p

7 Transform U,U′ of any ghost binary pair q–N to R2, Ṙ2
8 Derive global r, ṙ for components using ml and R2, Ṙ2

The merger table holds the array {mj} for saving the masses of the first
and any second binary components. However, only the relative quantities
R1, Ṙ1 and corresponding KS elements, including h, of the inner binary
are recorded in the table since any second binary is preserved as a ghost.
In addition, the table contains the names of the original c.m. as well as
the ghost. Parts of this algorithm are required for at least six different
purposes in the codes NBODY 4 and NBODY 6.

D.3 KS procedures for averaging

A variety of tasks need to be carried out during the averaging of hierarchi-
cal systems. Let us concentrate on those aspects that are connected with
KS regularization. Given the appropriate merger index, the current values
of the relative coordinates and velocity, R,V, are obtained by KS trans-
formations, whereupon the Runge–Lenz and angular momentum vectors
are constructed.
Following evaluation of emax and other quantities, together with time-

step selection, the next integration interval is carried out and new values
of R,V are determined from the orbital elements. Transformation to the
corresponding KS variables now takes place (cf. (4.32) and (4.36)) and the
physical values are recorded. The binding energy, h, is also an important
quantity and is evaluated via the semi-major axis in terms of the specific
angular momentum j, binary mass mb and eccentricity,

a = |j|2/mb(1− |e|2) . (D.2)

Finally, any change in energy given by µ(h−h0) is added to the merger
energy, Emerge, and subtracted from Ecoll. Although there is no net change
in the total energy budget, the corrected quantities will now be consistent
at termination.



Practical algorithms 365

D.4 Determination of pericentre or apocentre

We now describe procedures for specifying KS variables at the pericentre
or apocentre position. This is needed for several purposes, such as during
tidal interactions or collisions. Thus unperturbed binaries are defined at
the first point past apocentre, whereas the energy change in tidal inter-
actions are implemented at pericentre. To facilitate decision-making, the
two-body separation is compared with the semi-major axis and the sign
of the radial velocity, t′′ = R′, defines approach or recession.
By combining two algorithms, we can obtain any desired transforma-

tion. Thus the case of increasing the orbital phase by an angle θ yields
the new values [Stiefel & Scheifele, 1971]

U = U0 cos θ +U′
0 sin θ/ν ,

U′ = U′
0 cos θ −U0 sin θ ν , (D.3)

where ν = (12 |h|)1/2 is the regularized orbital frequency. This procedure
assumes unperturbed motion and is used frequently for reflection by an
angle θ = π/2 which corresponds to half a physical period.

In order to consider an arbitrary orbital phase, a second algorithm is
needed which should include integration for perturbed motion. We dis-
tinguish between near-collision, elliptic or hyperbolic cases and evaluate
the pericentre time from an expansion or the two forms of Kepler’s equa-
tion, respectively [Mikkola, private communication, 1991]. If the orbit is
perturbed and R > a, we first perform a reflection by π/2, followed by
integration back to the pericentre. Treating this as a provisional solution,
improved values are determined by the inverted relations

U = Ũxc − Ũ′ys ,
U′ = Ũ′xc + 1

4Ũysmb/a , (D.4)

since U′′ = −mbU/4a. If R < a, we adopt xc = [12 +
1
2(1 − R/a)/e]1/2

and ys = t′′/embxc. The latter expressions are derived from cos(θ/2) and
sin(θ/2) by inverting (D.3), with R = a(1 − e cos θ), Kepler’s equation
and θ half the eccentric anomaly. However, these coefficients are not well
behaved near the apocentre since xc → 0 and alternative expressions
should then be used [Mikkola, private communication, 1997]. From the
relation ξ2 + ψ2/a = e2, with ξ = 1 − R/a and ψ = t′′/m1/2

b , we have
ξ/e = −(1− ψ2/ae2)1/2 if ξ < 0. After some manipulation we obtain

xc =
ψ

ea1/2(2− 2ξ/e)1/2
,

ys = [
a

mb
(2− 2ξ/e)]1/2 , (D.5)

where −ys should be chosen if ψ < 0.
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D.5 Partial unperturbed reflection

Highly eccentric orbits treated by KS regularization are characterized by
small perturbations in the inner part. Hence it might be of interest to
assume unperturbed motion and perform a partial reflection, provided
the relative perturbation is sufficiently small. Accordingly, we give an
algorithm for achieving this task.∗

Algorithm D.2. Partial two-body reflection.

1 Determine osculating elements a and e
2 Specify the total reflection time, tref , by Kepler’s equation
3 Convert to regularized time units, δτ
4 Skip reflection near pericentre if δτ < 4∆τ
5 Predict c.m. and obtain coordinates of the components
6 Generate reflected solutions of U and U′ by (D.4)
7 Set next look-up time with ∆t = tref
8 Reverse sign of t′′ and define unperturbed interval ∆t
9 Obtain potential energy of perturbers and components
10 Transform to reflected coordinates and repeat step 9
11 Modify c.m. velocity by differential potential energy ∆Φ

Using ξ and ψ from the previous section, the total reflection time is
obtained from Kepler’s equation, which gives

tref = 2 (a3/mb)1/2 (θ − |ψ|/m1/2
b ) , (D.6)

where θ is the eccentric anomaly in [0, π]. The corresponding regularized
time interval is obtained from the differential expression [Baumgarte &
Stiefel, 1974]

δτ = −(2htref −∆t′′)/mb , (D.7)

with ∆t′′ = t′′1 − t′′0 = −2 t′′0 by symmetry (cf. (9.27)). Here we adopt
simplified coefficients for the transformations (D.4), with xc = ξ/e and
ys = 2ψ/em1/2

b . Thus the full eccentric anomaly is used (instead of half)
because of the time derivative t′ = U ·U, and the squaring implies dou-
bling of angles. Since unperturbed motion is defined, the new KS poly-
nomials will be initialized at the next updating time, t+ tref . Finally, the
c.m. velocity is modified to compensate for the small tidal energy change,
with the correction factor

C = (1 + 2∆Φ/mbv
2
cm)

1/2 , (D.8)

which facilitates formal energy conservation (cf. Algorithm 12.1).

∗ This optional procedure is no longer used by the NBODY n codes.
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KS procedures with GRAPE

When using HARP or GRAPE, force calculations involving a perturbed
c.m. body require modification because the summation is performed over
all interactions in the point-mass approximation. Thus in order to obtain
the correct c.m. force given by (8.57), we need to perform certain correc-
tions, and the same principle applies to a single particle in the neighbour-
hood of a c.m. body or composite particle. A description of the relevant
procedures is contained in the sections below.
HARP holds the quantities r0, ṙ0,F0, Ḟ0, t0 (GRAPE has also F̈) for all

single particles and c.m. bodies, and all current values of r, ṙ are predicted
by the hardware at each block-step before the force is evaluated. To facil-
itate decision-making, a list of perturbed KS solutions is maintained and
updated at the end of a KS cycle if the status has changed. Coordinates
and velocities of all the KS components are predicted on the host during
a block-step but some are done at no cost while HARP is busy.

E.1 Single particles

The force on a single particle, i, exerted by a nearby c.m. body of mass
mb = mk +ml is obtained by vector summation over both components.
Thus if the c.m. approximation is not satisfied, the force is modified by

F̃i = Fi +
mb(ri − rcm)
|ri − rcm|3 − mk(ri − rk)

|ri − rk|3 − ml(ri − rl)
|ri − rl|3 , (E.1)

otherwise no correction is made. A similar procedure is carried out for Ḟi

and any other perturbed c.m. bodies are treated in an analogous way.
Likewise, a differential force correction is made on the rare occasions

when chain regularization is used. The same principle as used above ap-
plies with respect to the chain perturber list or the chain c.m. itself, which
is distinguished by zero name.
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E.2 Regularized KS pairs

The force on a c.m. particle is given by (8.57), except that the c.m. ap-
proximation is used when appropriate. Thus in the case of unperturbed
two-body motion, the correction procedure is the same as for a single
particle. Since i > N here, the sequential perturber lists of active KS
solutions are searched backwards.
The case of perturbed two-body motion is more complicated but the

principle is the same. Each member, j, of the perturber list is considered
in turn. If j ≤ N and rij < λR, the HARP contribution to the force and its
derivative is first subtracted. This is followed by prediction of coordinates
and velocity∗ before the individual interaction terms are evaluated.
In the case j > N , we need to check two c.m. approximations and

obtain the appropriate force terms if required. For example, a binary may
have small size such that the c.m. approximation with respect to another
binary is satisfied but the reverse may not be true. When all the perturbers
have been considered, the new component forces and first derivatives are
combined vectorially according to (8.57) and its derivative.
The above procedure is less cumbersome than an earlier formulation

based on creating a mask and sending zero masses of relevant perturbers
and active KS solutions to HARP before the force evaluation. This was
followed by addition of the remaining contributions on the host. Finally,
the proper perturber masses were restored on HARP. With some effort,
an arbitrary number of active KS solutions were treated together at the
same time. This scheme was used successfully by NBODY 4 for some years
until the present procedure was implemented (end of 1998).
Unfortunately, the gain in efficiency of the new scheme is made at the

expense of accuracy. Thus the numerically inelegant practice of subtract-
ing previously added terms also suffers from the fact that the precision
on HARP is different from the host [Makino et al., 1997]. This is a design
feature to optimize the performance and especially the first derivative is
less accurate. However, the force errors are still sufficiently small to be of
no practical significance in most cases. A test calculation with N = 5000
showed typical relative force errors of 1×10−7 when compared with evalu-
ation on the host, whereas the corresponding errors in the force derivatives
were about 4×10−6. Similar errors are also present when using GRAPE-6
for a static configuration. Note, however, that predictions to order F̈ are
only performed on the hardware in the latter case. Small additional errors
are therefore introduced when making corrections during actual calcula-
tions. To compensate, explicit force summation is performed on the host
if the first derivative is very large during polynomial initialization.

∗ All coordinates and velocities are predicted on HARP and GRAPE but only the
current block members and active KS solutions are updated on the host.
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Alternative simulation method

Realistic N -body simulations of star cluster evolution require a substan-
tial programming effort. Since it takes time to develop suitable software,
published descriptions tend to lag behind or be non-existent. However,
one large team effort has reached a degree of development that merits
detailed comments, especially since many results have been described in
this book. In the following we highlight some aspects relating to the in-
tegration method as well as the treatment of stellar evolution, based on
one available source of information [Portegies Zwart et al., 2001].

F.1 N-body treatment

The kira integrator∗ advances the particle motions according to the stan-
dard Hermite method [Makino, 1991a] using hierarchical (or quantized)
time-steps [McMillan, 1986]. An efficient scheme was realized with the
construction of the high-precision GRAPE computers which calculate the
force and force derivative and also include predictions on the hardware.
One special feature here is the use of hierarchical Jacobi coordinates

which is reminiscent of an earlier binary tree formulation [Jernigan &
Porter, 1989]. This representation is equivalent to the data structure used
in KS and chain regularization. Increased numerical accuracy is achieved
by evaluating nearby contributions on the host, whereas the traditional
brute force way involves the subtraction of two larger distances. On the
other hand, binaries and multiple close encounters are not studied by
regularization methods which also employ local coordinates. Hence direct
integration of binaries requires significantly shorter time-steps in order
to maintain adequate accuracy even for circular orbits. In compensation,
direct integration offers advantages of simplicity.

∗ Available within the STARLAB software package on http://www.manybody.org.
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As in the KS formulation, unperturbed binaries are treated in the
c.m. approximation, whereas weak perturbations are included by a slow-
down procedure (cf. section 5.8). Large numerical terms are avoided at
small pericentre distances by the adoption of partial unperturbed motion
(cf. (D.5)). On the other hand, long-lived stable hierarchies are only de-
fined by means of the perturbations. Although the kira scheme exploits
the GRAPE facility to full advantage, the lack of regular solutions for
studying strong interactions may be a cause for concern. This situation
is exemplified by the so-called ‘terrible triples’ which must be integrated
over many inner orbits with small time-steps when the stability condi-
tion is not satisfied.† So far simulations of clusters containing primordial
binaries have been discussed for Ns = 1K single stars and 50% binaries.

F.2 Stellar evolution

Single star and binary evolution are handled by the SeBa module, which
is also part of STARLAB. The treatment of single stars is currently based
on standard fitting functions for solar metallicities [cf. Eggleton et al.,
1989; Tout et al., 1997]. Further prescriptions for the core mass and mass
loss by stellar winds have been added [Portegies Zwart & Verbunt, 1996].
A randomized velocity kick [Hartman, 1997] is assigned when stars in the
initial range 8–25M� become neutron stars. An upper limit of 100M� is
assumed for the IMF, with the heaviest stars losing mass rapidly before
becoming Wolf–Rayet stars, which eventually form black holes.
An extensive network of processes must be considered when binaries are

included [Portegies Zwart, 1996]. The look-up interval is 1% of the typical
evolution time for each stage in the HR diagram, with further reductions
during Roche-lobe mass transfer. Sequential circularization without syn-
chronizing spin effects is implemented if 5r∗1 > a(1−e), with r∗1 the largest
stellar radius (cf. (11.34)).‡ The angular momentum loss associated with
stellar winds is also modelled, as is gravitational radiation for compact
stars in short-period orbits. Unstable mass transfer is implemented in
the standard way, including prescriptions for the spiral-in process when
the envelope is ejected [Webbink, 1984]. Again, stable mass transfer is
treated on different time-scales, where the details depend on the period
and evolutionary state of the components.
Collisions are implemented when the stellar radii overlap, with coa-

lescence due to mass transfer or common-envelope phases, followed by
system mass loss. Finally, the scheme for assigning collision products in-
cludes a full range of astrophysically interesting objects.

† In one large simulation, five out of 50 stable hierarchies had Rp/Rcrit
p < 2 (cf. (9.14)).

‡ Note the use of 1/5 and missing square root of equation (A2) in the original paper.
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Table of symbols

G.1 Introduction

In this table we present a list of the most commonly used symbols. De-
pending on the context, some of these quantities may be in physical or
N -body units but this should not cause confusion since relevant scaling
factors are provided. Inevitably some symbols are not unique, but adopt-
ing the traditional notation for clarity has been given precedence. In any
case, such multiplicity does not usually occur within the same section. A
few duplicated definitions are listed in footnotes to the table.

Table G.1. Frequently used symbols.

a Semi-major axis
ahard Hard binary semi-major axis
Dk Divided difference
e Binary eccentricity
E Energy
Eb Binary energy
Ech Energy of chain members
Esub Subsystem energy
fb Binary fraction
F Force per unit mass
F(k) Force derivative (also Ḟ)
FI Irregular force
FR Regular force
G Gravitational constant
h Two-body energy per unit mass
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Table G.1. (cont.) Frequently used symbols.

H Hamiltonian function
J Angular momentum
K Kilo byte unit, 1024
L Neighbour list∗
L Levi-Civita matrix
mb Binary mass
mi Particle mass
mk Mass of first binary component
ml Mass of second binary component
M Total cluster mass
MS Mean stellar mass (M�)
nmax Maximum neighbour number
N Particle number
Nb Number of binaries
Nc Particle number in the core
Np Number of regularized pairs
Ns Number of single stars
Ni Particle name
P Physical perturbation
Pk Regularized momenta
Qk Regularized coordinates
Qvir Virial theorem ratio
rc Core radius (cluster or stellar)
rd Density centre
rh Half-mass radius
ri Global coordinates
r∗k Stellar radius
rt Tidal radius
R Two-body separation
R0 Initial two-body separation
Rcl Close encounter distance
Rgrav Gravitational radius
Rp Pericentre distance
Rs Neighbour sphere radius
RV Virial cluster radius (pc)
t Time in N -body units
tblock Block boundary time
tcr Crossing time

∗ Also Lagrangian energy
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Table G.1. (cont.) Frequently used symbols.

tev Stellar evolution time
trh Half-mass relaxation time
T Total kinetic energy
T ∗ Time scaling factor (Myr)
U Potential energy
U Regularized coordinates (also u)
U′ Regularized velocities (also u′)
vi Global velocities
V Virial energy
V ∗ Velocity scaling factor (km s−1)
W Tidal energy
α IMF power-law exponent†

γ Relative two-body perturbation‡
γmin Limit for unperturbed motion
Γ Regularized Hamiltonian
∆tcl Close encounter time-step
∆ti Individual time-step
∆τ Regularized time-step
ε Softening parameter
εhard Hard binary energy
η Standard time-step parameter
ηU KS time-step parameter
θ Eccentric anomaly§
κ Slow-down factor
λ C.m. approximation factor
µ Reduced mass of binary
ρ Spatial density
σ Velocity dispersion
τ Regularized time
Φ Potential or potential energy
ψ Inclination angle
ω General purpose angle
Ω Angular velocity¶

† Also relative energy error
‡ Also in Coloumb logarithm
§ Also opening angle
¶ Also energy in Stumpff method
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Hermite integration method

Here we give the FORTRAN listing of standard Hermite integration for
a test particle. The accuracy is controlled by the tolerance denoted ETA.
Results are given at times scaled by the initial period.

* H E R M I T
* ***********
*
* Standard Hermite integration.
* -----------------------------
*

IMPLICIT REAL*8 (A-H,O-Z)
REAL*8 X(3),XDOT(3),F(3),FDOT(3),FI(3),FD(3),D2(3)
DATA TIME,NSTEPS /0.0,0/

*
READ (5,*) ETA, DELTAT, TCRIT
READ (5,*) (X(K),K=1,3), (XDOT(K),K=1,3)
TNEXT = DELTAT
RI2 = X(1)**2 + X(2)**2 + X(3)**2
RI = SQRT(RI2)
VI2 = XDOT(1)**2 + XDOT(2)**2 + XDOT(3)**2
SEMI0 = 2.0/RI - VI2
SEMI0 = 1.0/SEMI0
RDOT = X(1)*XDOT(1) + X(2)*XDOT(2) + X(3)*XDOT(3)
ECC0 = SQRT((1.0 - RI/SEMI0)**2 + RDOT**2/SEMI0)
TWOPI = 8.0*ATAN(1.0D0)
ONE3 = 1.0/3.0D0
ONE12 = 1.0/12.0D0
P = TWOPI*SEMI0*SQRT(SEMI0)
DELTAT = DELTAT*P
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TNEXT = DELTAT
TCRIT = TCRIT*P

*
* Evaluate the initial force and first derivative.

RIN3 = 1.0/(RI2*SQRT(RI2))
RDOT = 3.0*(X(1)*XDOT(1) + X(2)*XDOT(2) +
& X(3)*XDOT(3))/RI2
DO 5 K = 1,3

F(K) = -X(K)*RIN3
FDOT(K) = -(XDOT(K) - RDOT*X(K))*RIN3

5 CONTINUE
*
* Choose initial time-step by force criterion.

FF = SQRT(F(1)**2 + F(2)**2 + F(3)**2)
STEP = SQRT(ETA*RI/FF)

*
* Predict coordinates and velocity to order FDOT.

10 DT = STEP
DT2 = 0.5*DT
DT3 = ONE3*DT
DO 20 K = 1,3

X(K) = ((FDOT(K)*DT3 + F(K))*DT2 + XDOT(K))*DT +
& X(K)

XDOT(K) = (FDOT(K)*DT2 + F(K))*DT + XDOT(K)
20 CONTINUE

*
* Obtain force and first derivative at end of step.

RI2 = X(1)**2 + X(2)**2 + X(3)**2
RIN3 = 1.0/(RI2*SQRT(RI2))
RDOT = 3.0*(X(1)*XDOT(1) + X(2)*XDOT(2) +
& X(3)*XDOT(3))/RI2
DO 30 K = 1,3

FI(K) = -X(K)*RIN3
FD(K) = -(XDOT(K) - RDOT*X(K))*RIN3

30 CONTINUE
*
* Set corrector time factors and advance the time.

DTSQ = DT**2
DT2 = 2.0/DTSQ
DT6 = 6.0/(DT*DTSQ)
DT13 = ONE3*DT
DTSQ12 = ONE12*DTSQ
TIME = TIME + DT
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*
* Include the Hermite corrector and update F & FDOT.

DO 40 K = 1,3
DF = F(K) - FI(K)
SUM = FDOT(K) + FD(K)
AT3 = 2.0*DF + SUM*DT
BT2 = -3.0*DF - (SUM + FDOT(K))*DT
X(K) = X(K) + (0.6*AT3 + BT2)*DTSQ12
XDOT(K) = XDOT(K) + (0.75*AT3 + BT2)*DT13
F(K) = FI(K)
FDOT(K) = FD(K)
D2(K) = BT2*DT2 + DT*AT3*DT6

40 CONTINUE
*
* Determine next step from F & F2DOT in Taylor series.

FF = SQRT(F(1)**2 + F(2)**2 + F(3)**2)
FF2 = SQRT(D2(1)**2 + D2(2)**2 + D2(3)**2)
STEP = SQRT(ETA*FF/FF2)

*
* Increase step counter and check output time.

NSTEPS = NSTEPS + 1
IF (TIME.LT.TNEXT) GO TO 10

*
* Print errors in semi-major axis & eccentricity.

RI2 = X(1)**2 + X(2)**2 + X(3)**2
RI = SQRT(RI2)
VI2 = XDOT(1)**2 + XDOT(2)**2 + XDOT(3)**2
SEMI = 2.0/RI - VI2
SEMI = 1.0/SEMI
RDOT = X(1)*XDOT(1) + X(2)*XDOT(2) + X(3)*XDOT(3)
ECC = SQRT((1.0 - RI/SEMI)**2 + RDOT**2/SEMI)
DA = (SEMI - SEMI0)/SEMI0
DE = ECC0 - ECC
WRITE (6,50) TIME/P, NSTEPS, ECC, DA, DE

50 FORMAT (’ T/P =’,F8.1,’ # =’,I7,’ E =’,F8.4,
& ’ DA/A =’,1P,E9.1,’ DE =’,E9.1)
TNEXT = TNEXT + DELTAT
IF (TIME.LT.TCRIT) GO TO 10

*
END
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Milosavljević, M. & Merritt, D. [2001], ‘Formation of galactic nuclei’,
Astrophys. J. 563, 34–62.

Miyamoto, M. & Nagai, R. [1975], ‘Three-dimensional models for the distribution
of mass in galaxies’, Publ. Astron. Soc. Japan 27, 533–43.

Monaghan, J. J. [1976], ‘A statistical theory of the disruption of three-body
systems, II. High angular momentum’, Mon. Not. R. Astron. Soc. 177,
583–94.

Montgomery, K. A., Marschall, L. A. & Janes, K. A. [1993], ‘CCD photometry
of the old open cluster M67’, Astron. J. 106, 181–219.

Murray, C. D. & Dermott, S. F. [1999], Solar System Dynamics (Cambridge
University Press).

Nacozy, P. E. [1972], ‘The use of integrals in numerical integrations of
the N -body problem’, in Gravitational N -Body Problem, ed. M. Lecar
(Reidel, Dordrecht), 153–64.

Nakano, T. & Makino, J. [1999], ‘On the origin of density cusps in elliptical
galaxies’, Astrophys. J. 510, 155–66.

Nash, P. E. & Monaghan, J. J. [1978], ‘A statistical theory of the disruption of
three-body systems, III. Three-dimensional motion’, Mon. Not. R. Astron.
Soc. 184, 119–25.

Oh, K. S., Lin, D. N. C. & Aarseth, S. J. [1992], ‘Tidal evolution of globular
clusters, I. Method’, Astrophys. J. 386, 506–18.

[1995], ‘On the tidal disruption of dwarf spheroidal galaxies around the
Galaxy’, Astrophys. J. 442, 142–58.

Oort, J. H. [1965], ‘Stellar dynamics’, in Galactic Structure, ed. A. Blaauw &
M. Schmidt (University of Chicago Press), 455–511.

Ostriker, J. P., Spitzer, L. & Chevalier, R. A. [1972], ‘On the evolution of globular
clusters’, Astrophys. J. 176, L51–L56.

Paczynski, B. [1976], ‘Common envelope binaries’, in Structure and Evolution of
Close Binary Systems, ed. P. Eggleton, S. Mitton & J. Whelan, (Reidel,
Dordrecht), 75–9.

Palmer, P. L., Lin, D. N. C. & Aarseth, S. J. [1992], ‘Evolution of planetesimals,
I. Dynamics: relaxation in a thin disk’, Astrophys. J. 403, 336–50.

Palmer, P. L., Aarseth, S. J., Mikkola, S. & Hashida, Y. [1998], ‘High precision
integration methods for orbit propagation’, J. Astronaut. Sci. 46, 329–42.

Peters, C. F. [1968a], Treatment of Close Approaches in Stellar Dynamics, Ph.D.
Thesis (Yale University).

[1968b], ‘Numerical Regularization’, Bull. Astron. 3, 167–75.
Peters, P. C. [1964], ‘Gravitational radiation and the motion of two point masses’,

Phys. Rev. 136, B1224–32.
Pfahl, E., Rappaport, S. & Podsiadlowski, P. [2002], ‘A comprehensive study of

neutron star retention in globular clusters’, Astrophys. J. 573, 283–305.



References 399

Pfahl, E., Rappaport, S., Podsiadlowski, P. & Spruit, H. [2002], ‘A new class of
high-mass X-ray binaries: implications for core collapse and neutron star
recoil’, Astrophys. J. 574, 364–76.

Plummer, H. C. [1911], ‘On the problem of distribution in globular star clusters’,
Mon. Not. R. Astron. Soc. 71, 460–70.

Podsiadlowski, P. [1996], ‘The response of tidally heated stars’, Mon. Not. R.
Astron. Soc. 279, 1104–10.

Portegies Zwart, S. F. [1996], Interacting Stars, Ph.D. Thesis (University of
Utrecht).

Portegies Zwart, S. F. & McMillan, S. L. W. [2002], ‘The runaway growth of
intermediate-mass black holes in dense star clusters’, Astrophys. J. 576,
899–907.

Portegies Zwart, S. F. & Meinen, A. T. [1993], ‘Quick method for calculating
energy dissipation in tidal interaction’, Astron. Astrophys. 280, 174–6.

Portegies Zwart, S. F. & Verbunt, F. [1996], ‘Population synthesis of high-mass
binaries’, Astron. Astrophys. 309, 179–96.

Portegies Zwart, S. F., Hut, P., McMillan, S. L. W. & Verbunt, F. [1997], ‘Star
cluster ecology, II. Binary evolution with single-star encounters’, Astron.
Astrophys. 328, 143–57.

Portegies Zwart, S. F., Hut, P., Makino, J. & McMillan, S. L. W. [1998], ‘On the
dissolution of evolving star clusters’, Astron. Astrophys. 337, 363–71.

Portegies Zwart, S. F., Makino, J., McMillan, S. L. W. & Hut, P. [1999], ‘Star
cluster ecology, III. Runaway collisions in young compact star clusters’,
Astron. Astrophys. 348, 117–26.

Portegies Zwart, S. F., McMillan, S. L. W., Hut, P. & Makino, J. [2001], ‘Star
cluster ecology, IV. Dissection of an open star cluster: photometry’, Mon.
Not. R. Astron. Soc. 321, 199–226.

Portegies Zwart, S. F., Makino, J., McMillan, S. L. W. & Hut, P. [2002], ‘The
lives and deaths of star clusters near the Galactic center’, Astrophys. J.
565, 265–79.

Poveda, A., Ruiz, J. & Allen, C. [1967], ‘Run-away stars as the result of the
gravitational collapse of proto-stellar clusters’, Bol. Obs. Tonantzintla y
Tacubaya 28, 86–90.

Press, W. H. [1986], ‘Techniques and tricks for N -body computation’, in The
Use of Supercomputers in Stellar Dynamics, ed. P. Hut & S. McMillan
(Springer-Verlag, New York), 184–92.

Press, W. H. & Spergel, D. N. [1988], ‘Choice of order and extrapolation method
in Aarseth-type N -body algorithms’, Astrophys. J. 325, 715–21.

Press, W. H. & Teukolsky, S. [1977], ‘On the formation of close binaries by
two-body tidal capture’, Astrophys. J. 213, 183–92.

Preto, M. & Tremaine, S. [1999], ‘A class of symplectic integrators with adap-
tive time step for separable Hamiltonian systems’, Astron. J. 118, 2532–
41.

Pryor, C., McClure, R. D., Hesser, J. E. & Fletcher, J. M. [1989], ‘The frequency
of primordial binary stars’, in Dynamics of Dense Stellar Systems, ed.
D. Merritt (Cambridge University Press), 175–81.



400 References

Quinlan, G. D. & Hernquist, L. [1997], ‘The dynamical evolution of massive
black hole binaries, II. Self-consistent N -body integrations’, New Astron.
2, 533–54.

Quinlan, G. D. & Tremaine, S. [1990], ‘Symmetric multistep methods for the
numerical integration of planetary orbits’, Astron. J. 100, 1694–700.

[1992], ‘On the reliability of gravitational N -body integrations’, Mon. Not. R.
Astron. Soc. 259, 505–18.

Raboud, R. & Mermilliod, J.-C. [1998a], ‘Investigation of the Pleiades cluster,
IV. The radial structure’, Astron. Astrophys. 329, 101–14.

[1998b], ‘Evolution of mass segregation in open clusters: some observational
evidences’, Astron. Astrophys. 333, 897–909.

Rasio, F. A., McMillan, S. & Hut, P. [1995], ‘Binary–binary interactions and the
formation of the PSR B1620–26 triple system in M4’, Astrophys. J. 438,
L33–L36.

Richardson, D. C. [1993a], Planetesimal Dynamics, Ph.D. Thesis (University of
Cambridge).

[1993b], ‘A new tree code method for simulation of planetesimal dynamics’,
Mon. Not. R. Astron. Soc. 261, 396–414.

[1994], ‘Tree code simulations of planetary rings’, Mon. Not. R. Astron. Soc.
269, 493–511.

[1995], ‘A self-consistent numerical treatment of fractal aggregate dynamics’,
Icarus 115, 320–35.

Richardson, D. C., Asphaug. E. & Benner, L. [1995], ‘Comet Shoemaker–Levy
9: a ‘rubble pile’ model with dissipative collisions and gravitational pertur-
bations’, Bull. Am. Astron. Soc. 27, 1114.

Richardson, D. C., Bottke, W. F. & Love, S. G. [1998], ‘Tidal distortion and
disruption of Earth-crossing asteroids’, Icarus 134, 47–76.

Richardson, D. C., Quinn, T., Stadel, J. & Lake, G. [2000], ‘Direct large-scale
N -body simulations of planetesimal dynamics’, Icarus 143, 45–59.

Richardson, D. C., Leinhardt, Z. M., Melosh, H. J., Bottke, W. F. & Asphaug,
E. [2003], ‘Gravitational aggregates: evidence and evolution’, in Asteroids
III, ed. W. F. Bottke et al. (University of Arizona Press), 501–15.

Richter, K., Tanner, G. & Wintgen, D. [1993], ‘Classical mechanics of two-
electron atoms’, Phys. Rev. A48, 4182–96.

Risken, H. [1984], The Fokker–Planck Equation (Springer-Verlag, Berlin).
Rivera, E. J. & Lissauer, J. J. [2000], ‘Stability analysis of the planetary system

orbiting υ Andromedae’, Astrophys. J. 530, 454–63.
Roos, N. & Aarseth, S. J. [1982], ‘Evolution of rich clusters of galaxies’, Astron.

Astrophys. 114, 41–52.
Roos, N. & Norman, C. A. [1979], ‘Galaxy collisions and their influence on

the dynamics and evolution of groups and clusters of galaxies’, Astron.
Astrophys. 76, 75–85.

Ross, D. J., Mennim, A. & Heggie, D. C. [1997], ‘Escape from a tidally limited
star cluster’, Mon. Not. R. Astron. Soc. 284, 811–14.

Rosseland, S. [1928], ‘On the time of relaxation of closed stellar systems’, Mon.
Not. R. Astron. Soc. 88, 208–12.



References 401

Roy, A. E. [1988], Orbital Motion (Adam Hilger, Bristol).
Saar, S. H., Nordström, B. & Andersen, J. [1990], ‘Physical parameters for three

chromospherically active binaries’, Astron. Astrophys. 235, 291–304.
Safronov, V. S. [1969], Evolution of the Protoplanetary Cloud and Formation of

the Earth and the Planets (Nauka, Moscow; NASA TT–F–667).
Salo, H. [1992], ‘Gravitational wakes in Saturn’s rings’, Nature 359, 619–21.
Salpeter, E. E. [1955], ‘The luminosity function and stellar evolution’,

Astrophys. J. 121, 161–7.
Sandage, A. R. [1953], ‘The color–magnitude diagram for the globular cluster

M3’, Astron. J. 58, 61–75.
Saslaw, W. C., Valtonen, M. & Aarseth, S. J. [1974], ‘The gravitational sling-

shot and the structure of extragalactic radio sources’, Astrophys. J. 190,
253–70.

Scally, A. & Clarke, C. [2001], ‘Destruction of protoplanetary discs in the Orion
Nebula Cluster’, Mon. Not. R. Astron. Soc. 325, 449–56.

Schubart, J. [1956], ‘Numerische Aufsuchung periodischer Lösungen im Drei-
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