

Texts and Monographs in Computer Science

Editor

David Gries

Advisory Board
F.L. Bauer

S.D. Brookes
C.E. Leiserson

M. Sipser

Texts and Monographs in Computer Science

SuadAlagic
Object-Oriented Database Programming
1989. XV, 320 pages, 84 illus.

SuadAlagic
Relational Database Technology
1986. XI, 259 pages, 114 illus.

Suad Alagic and Michael A. Arbib
The Design orWell-Structured and Correct Programs
1978. X, 292 pages, 68 illus.

S. Thomas Alexander
Adaptive Signal Processing: Theory and Applications
1986. IX, 179 pages, 42 illus.

Michael A. Arbib, A.J. Kfoury, and Robert N. Moll
A Basis ror Theoretical Computer Science
1981. VIII, 220 pages, 49 illus.

Friedrich L. Bauer and Hans Wossner
Algorithmic Language and Program Development
1982. XVI, 497 pages, 109 illus.

Kaare Christian
A Guide to Modula-2
1986. XIX, 436 pages, 46 illus.

Edsger W. Dijkstra
Selected Writings on Computing: A Personal Perspective
1982. XVII, 362 pages, 13 illus.

Edsger W. Dijkstra and Carel S. Scholten
Predicate Calculus and Program Semantics
1990. XII, 220 pages

Nissim Francez
Fairness
1986. XIII, 295 pages, 147 illus.

R.T. Gregory and E.V. Krishnamurthy
Methods and Applications or Error-Free Computation
1984. XII, 194 pages, 1 illus.

David Gries, Ed.
Programming Methodology: A Collection of Articles by Members of IFIP WG2.3
1978. XIV, 437 pages, 68 illus.

Edsger W. Dijkstra Carel S. Scholten

Predicate Calculus and
Program Semantics

Springer-Verlag New York Berlin Heidelberg
London Paris Tokyo Hong Kong

Edsger W. Dijkstra
University of Tellas at Austin
Austin, TX 78712-11 11
USA

Series Editor

David Gries
Depanment of Computer Science
Cornell University
Ithaca, NY 14853
USA

Carel S. Schollen
Klein Paradys 4
7361 TO Beekbergen
The Netherlands

Library of Congress Cataloging·in-Publication Data
Dijkstra, Edsger Wybe.

Predicate calculus and program semantics I Edsger W. Dijkstra,
Carel S. !Kholten.

p. cm. - (Tellts and monographs in computer science)
ISBN-J3: 978·1-46 12-7924-2 e-ISBN·J3: 978-1-4612-3228·5
DOl: 10.10071978-1-4612·3228·5
I. Predicate calculus. 2. Programming languages (Ela:tronic

computers~Seman1ics, I. Scoolten , Carel S. II . Title.
ilL Series.
QA9.35.D55 1989
511.3-dc20 89· 11540

Index prepared ~ Jim Famed of The Information Bank, Summerland, California.

CI 1990 by Springer· Verlag New York Inc.
Softcover reprint of the hardcover 15t edition 1990

All rights reserved. This work may nO(be translated or copied in whole or in pan without the: written
permission of the publisher (Springer-Verlag. 175 Fifth Avenue, New York. NY 10010, USA).
except for brief excerpts in connection with reviews or scholarly analysis . Usc in connection with
any form of information storage and retrieval, electronic adaptation . computer software, or by similar
or dissimilar methodology now known or hereafter developed is forbidden .
The use of general descriptive names, trade names, trademarks. etc. in thi s pUblication, even if the
fomx:r are I\{)(especia lly identified, is not to be taken as a sign that such names. as understood by
the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyooe.

Typeset by Associated Publishing Services, Ltd., United Kingdom.

9 8 7 6 5 4 3 2 1

CHAPTER 0

Preface

This booklet presents a reasonably self-contained theory of predicate trans
former semantics. Predicate transformers were introduced by one of us
(EWD) as a means for defining programming language semantics in a way
that would directly support the systematic development of programs from
their formal specifications.

They met their original goal, but as time went on and program derivation
became a more and more formal activity, their informal introduction and the
fact that many of their properties had never been proved became more and
more unsatisfactory. And so did the original exclusion of unbounded
nondeterminacy. In 1982 we started to remedy these shortcomings. This little
monograph is a result of that work.

A possible -and even likely- criticism is that anyone sufficiently versed
in lattice theory can easily derive all of our results himself. That criticism
would be correct but somewhat beside the point. The first remark is that the
average book on lattice theory is several times fatter (and probably less self
contained) than this booklet. The second remark is that the predicate
transformer semantics provided only one of the reasons for going through the
pains of publication.

Probably conditioned by years of formal program derivation, we ap
proached the task of designing the theory we needed as an exercise in formal
mathematics, little suspecting that we were heading for a few of the most
pleasant surprises in our professional lives. After a few notational adaptations
of the predicate calculus -so as to make it more geared to our manipulative
needs- and the adoption of a carefully designed, strict format for our proofs,
we found ourselves in possession of a tool that surpassed our wildest
expectations. As we got used to it, it became an absolute delight to work with.

v

VI O. Preface

The first pleasant -and very encouraging!- experience was the killing
of the myth that formal proofs are of necessity long, tedious, laborious, error
prone, and what-have-you. On the contrary, our proofs turned out to be
short and simple to check, carried out -as they are- in straightforward
manipulations from a modest repertoire.

For quite a while, each new and surprisingly effective proof was a source of
delight and excitement, although it was intellectually not fully satisfactory
that each of them was a well-crafted, but isolated, piece of ingenuity. We had
our second very pleasant surprise with the development of heuristics from
which most of the arguments emerged most smoothly (almost according to
the principle "There is really only one thing one can do."). The heuristics
turned the design of beautiful, formal proofs into an eminently teachable
subject.

This experience opened our eyes for further virtues of presenting formal
proofs in a strict format. Proofs thus become formal texts meeting precise
consistency criteria. The advantage of this transition is traditionally viewed
as a gain in trustworthiness: given the formal text, there need not be an
argument whether the proposed proof is a proof or not since it can be
checked objectively whether the text meets the criteria. (This is the aspect
stressed in mechanical proof verification.) A further advantage of the
transition is that it enables a meaningful comparison between alternative
proofs of the same theorem, viz., by comparing the texts. The final advantage
of the transition is the much greater homogeneity it introduces into the task
of proof design, a task that becomes a challenge in text manipulation that is
more or less independent of what the theorem was about. It is this greater
homogeneity that opens the way for heuristics that are more generally
applicable.

In the course of the process we profoundly changed our ways of doing
mathematics, of teaching it, and of teaching how to do it. Consequently, this
booklet is probably as much about our new appreciation of the mathematical
activity as it is about programming language semantics. It is certainly this
second aspect of the booklet that has induced us to go through the
aforementioned pains of publication. It has taken us some time to muster the
courage to admit this, for a revision of mathematical methodology seemed at
first a rather presumptuous undertaking. As time went on, however, we were
forced to conclude that the formal techniques we were trying out had never
been given a fair chance, the evidence being the repeated observation that
most mathematicians lack the tools needed for the skilful manipulation of
logical formulae. We gave them a fair chance; the reader is invited to share
our delight.

* * *

o. Preface Vll

Before the reader embarks on the study of the material proper of this
booklet, we would like to give him some advice on reading it.

The most important recommendation is to remember all the time that this
is not a treatise on logic, or on the foundations of mathematics. This warning
is all the more necessary since superficially it might look like one: it has
logical symbols all over the place and starts with a long introduction about
notation. The frequent occurrence oflogical symbols has a simple, pragmatic
explanation: we use them so extensively because they are so well-suited for
our job. The long introduction on notation has an equally simple, pragmatic
explanation: some new notation had to be introduced and, more importantly,
existing notations had to be adapted to our manipulative needs. Our free use
of the logical connectives before their formal introduction stresses once more
that this is not a book on logic. In short, the logician is perfectly free to be
taken aback by our naive refusal to make some of his cherished distinctions.

Our second recommendation to the reader is to approach this little
monograph with an open mind and not to get alarmed whenever it deviates
from the traditions in which he happens to have been educated. In particular,
he should not equate convenience with convention. Doing arithmetic in
Arabic numerals is objectively simpler -i.e., more convenient- than doing
it in Roman numerals. The transition from verbal arguments appealing to
"intuition" or "common sense" to calculational reasoning admits also in that
area an equally objective notion of simplicity -i.e., of convenience- . We
know from experience that for readers from some cultures it will be hard to
accept that we leave all sorts of (philosophical or psychological) questions
unanswered; the only answer we can offer is that we are from a pragmatic
culture that deals with such questions by not raising them.

Our third recommendation to the reader is really a request, viz., to honour
this booklet's brevity by reading it slowly. Our texts have a tendency 6fbeing
misleadingly smooth and unusually compact. When, at the end, you wonder
"Was this all?", we shall answer "Yes, this was all. And we hope you travelled
long and far.".

* * *

The above was written a year ago, before we had started on our
manuscript. It reflects our expectations. Now, 12 months and 420 handwrit
ten pages later, we can look back on what we have actually done besides
breaking in a new fountain pen. Needless to say, the major discrepancy
between dream and reality has been the size: had we foreseen a 420-page
manuscript, we would not have referred to a "booklet". Our only excuse is
that, at the time, we had not firmly decided yet to include the material now
covered in the last three chapters.

Vlll O. Preface

The trouble with writing a book is that it takes time and that, consequent
ly, at the time of completion, authors are older -and perhaps wiser- than
when they started. Our fate has been no exception: there are several things we
would have done differently had we written them a year later. (For instance,
concerns about punctuality would have been more concentrated and our
treatment of the implication in Chapter 5 might have relied less heavily on the
"Little Theory".) With the exception of a complete rewriting of Chapter 1,
which at the end was no longer a proper introduction to the rest of the book,
we have, however, abstained from any major overhauls of the manuscript.
They would not have solved the problem that authors may continue to grow
and that, consequently, texts have an unavoidable tendency to be more or less
dated. It is in this connection that we would like to include a general
disclaimer: though our enthusiasm might sometimes suggest differently, we
nowhere pretend that our work leaves no room for improvement, simplifica
tion, or meaningful generalization. (We did, for instance, not explore what
meaningful partial orders on programs could be introduced.)

Apart from exceeding the originally envisaged size, we have remained
faithful to our original intentions, in particular to our intention of writing a
monograph reflecting the current state of our art. Though we have success
fully covered most of its material in graduate courses at both sides of the
Atlantic Ocean, this book should not be regarded (or judged) as a textbook,
because it was not intended that way. (Hence, for instance, the total absence
of exercises.) There were several reasons for not wishing to write a textbook.
A practical reason was that different educational systems promote totally
different perceptions of student needs to be catered for in an "acceptable"
textbook, and that we did not want to waste our time trying to meet all sorts
of conflicting requirements. A more fundamental reason was that we think
the whole notion of "a textbook tailored to student needs" certainly at
graduate level much too condescending. At that stage there is nothing wrong
with confronting students with material for which they have not been
adequately prepared, for how else are they going to discover and to learn how
to cope with the unavoidable gaps in their education? So, though we know
that this book can provide the underlying material for a fascinating and
highly instructive course, it is not a textbook and its "target audience" is just
"To whom it may concern".

We have, of course, our idea about whom it concerns: the mathematically
inclined computing scientists and the mathematicians with methodological
and formal interests. We most sincerely hope to reach them, to thrill them,
and to inspire them to improve their own work or ours. Honesty compels us
to add to this wish that there is one possible -and, alas, likely
"improvement" we are not waiting for, viz., the translation of our theory into
set-theoretical terminology -by interpreting predicates as characteristic

o. Preface IX

functions of subsets of states- so as to make it all more familiar. Little is so
regrettable as to see one's work "improved upon" by the introduction of
traditional complications one has been very careful to avoid. Hybrid argu
ments, partly conducted in terms of a formal system and partly conducted in
terms of a specific model for that formal system, present a typical example of
such confusing complications. In this connection we would like to stress that
the existence of individual machine states enters the picture only when our
theory is applied to program semantics, i.e., to an environment in which the
individual machine state is a meanigful concept; the theory itself does not
need a postulate of the existence of individual states and, therefore, should
not be cluttered by their introduction.

* * *

It is a pleasure to mention here our great appreciation for our former
employers, Burroughs Corporation and N.V. Philips, respectively, which
loyally supported us when we embarked in 1982 on the investigations
reported in this volume.

More profound gratitude than to anyone else is due to W. H. J. Feijen and
A. J. M. van Gasteren who were at that time close collaborators of one of us
(EWD). They did not only witness from close quarters our first formal efforts
at establishing a theory of predicate transformer semantics, they can trace
their contributions and their influence all through this book. Feijen is
essentially the inventor of our proof format; he took the decision to write the
hint between the formulae connected by it and he was the one who insisted on
the discipline of allotting at least a full line to each hint. (He probably realized
that this insistence was necessary for establishing a tradition in which the
hints given would be as explicit as he wanted them to be.) Van Gasteren
provided the rationale for this invention (and also for the invention of the
square brackets to denote the "everywhere" operator): her earlier explora
tions had convinced us that the type of brevity thus obtained is indispensable.
Later she insisted on exorcizing mathematical rabbits -pulled out of a hat
and provided the "follows from" operator as one of the means to that end.

Furthermore, we thank all colleagues, students, and members of the
Tuesday Afternoon Clubs in Eindhoven and Austin, whose reactions to the
material shown have helped in shaping this book. We are particularly
grateful for the more detailed comments that Jayadev Misra and Lincoln A.
Wallen gave on the almost final version of the manuscript; the decision to
rewrite Chapter 1 has been triggered by their comments.

Finally, we express our gratitude to W. H. J. Feijen, David Gries, and
Gerhard Rossbach of Springer-Verlag, New York. In their offers of assistance

x O. Preface

in the final stages of book production, each of them has gone beyond the call
of duty.

July 1988
Austin, TX, USA
Beekbergen, The Netherlands

Edsger W. Dijkstra
Carel S. Scholten

Contents

Preface v

1. On structures
2. On substitution and replacement 11
3. On functions and equality 17
4. On our proof format 21
5. The calculus of boolean structures 30
6. Some properties of predicate transformers 81
7. Semantics of straight-line programs 121
8. Equations in predicates and their extreme solutions 147
9. Semantics of repetitions 170

10. Operational considerations 190
11. Converse predicate transformers 201
12. The strongest postcondition 209

Index 216

CHAPTER 1

On structures

The proofs in this book are much more calculational than we were used to
only a few years ago. As we shall explain later, the theorems are (or could be)
formulated as boolean expressions, for which, in principle, true and false
are the possible values; the proofs consist in calculations evaluating these
boolean expressions to true . We shall return to this later, focussing, for the
time being, our attention on some of the notational consequences of this
approach.

The advantages of such a calculational style are a fairly homogeneous
proof format and the possibility of obtaining brevity without committing the
"sin of omission", i.e., making such big leaps in the argument that the reader
is left wondering how to justify them. In fact, all our steps are simple and they
are taken from a repertoire so small that the reader can familiarize himself
with it as we go along. We could, however, harvest these advantages of
calculation only by adoption of carefully chosen notational conventions that
tailored our formulae to our manipulative needs. (Among those needs we
mention nonambiguity, brevity, and not being forced to make needless
distinctions.)

One of our notational conventions may strike the reader as a gross
overloading of all sorts of familiar operators: for instance, we apply the
operators from familiar two-valued logic to operands that in some admissible
models may take on uncountably many distinct values. The justification for
such a notational convention is a major purpose of this introductory chapter;
we feel that we owe the reader such a justification, all the more so because in
the world of programming the dangers of overloading are well known.

1

2 1. On structures

We can get some inspiration -and, if we feel the need for it, even some
reassurance- from the field of physics. Every classical physicist, for instance,
is thoroughly familiar, be it in his own way, with the notion of a vector in
three-dimensional Euclidean space, independently of the question of whether
the vector is a displacement, a velocity, a force, an acceleration or a
component of the electromagnetic field. Also, he is equally familiar with the
sum v + w of two vectors v and w . But that sum raises a question, in
particular if one adopts the view -as some physicists do- that the
variables stand for the physical quantities themselves and not for their
measure in some units. The question is, how many different vector additions
are used by the physicist: is the sum of two velocities the same sort of sum as
the sum of two forces ? Well, the answer seems negative in the sense that no
physicist that is well in his mind will ever add a velocity to a force.

Given the fact that in some way we can distinguish those different sorts of
additions, we could feel tempted or intellectually obliged to introduce as
many different addition symbols as we can distinguish additions, say +v for
the addition of velocities, + a for the addition of accelerations, etc. In a purist
way, this would be very correct, but we all know that the physical community
has decided against it: it has decided that a single symbol for addition will do.

When challenged to defend that decision, the physicist will give the
following reasons. Firstly, the purist convention would complicate manipula
tion: the single rule that differentiation distributes over addition, i.e.,

d dv dw
-(v + w) = ~ +
dt dt dt

would emergy in many forms, such as

in each of which the distribution law has practically been destroyed.
Secondly, the physicist would point out that in every physical context the
subscripts of the addition symbols are really redundant because they follow
from the type of vectors added. And, finally, he would point out that the use
of a single addition symbol never seduces him to add a velocity to a force
since the incentive to do so never arises. The defence is purely pragmatic.

The physicist goes further. With respect to a point mass m ,he introduces
a gravitational potential G ,which in some considerations is treated as a
single physical object, for instance, in the sentence "the dimension of the
gravitational potential is length2/time2 ". Also potentials can be "added" by
the physicist: a system consisting oftwo point masses, more precisely of point
mass mO with gravitational potential GO and a point mass ml with

1. On structu res 3

gravitational potential Gl ,gives rise to a gravitational potential GO + Gl .
What kind of addition is that?

A possible answer is to shrug one's shoulders and to say "Mostly the usual
one: it is symmetric and associative and there is a zero potential 0 satisfying
G + 0 = G for any potential G . Furthermore, it has some special prop
erties in connection with other operators that are specific for potentials, e.g.,
the nabla operator V distributes over it:

V(GO + Gl) = VGO + VGl

but that is really another story that more belongs to the nabla operator to be
introduced later.".

The helpful physicist will certainly give you a much more detailed answer:
he will tell you that a potential assigns a scalar value to each point of three
dimensional space and, conversely, is fully determined by those values -i.e.,
two potentials are the same potential if and only if they are everywhere
equal- ; he will furthermore tell you that, by definition, in any point of
three-dimensional space, the value of GO + Gl equals the sum of the values
of GO and Gl in that point. By the convention of "point-wise addition" he
thus defines the addition of potentials in terms of addition of real numbers.

Remark In the same vein he will define the nabla operator as a differentiation
operator. That the nabla distributes over addition then emerges as a theorem.
(End of Remark.)

Once we have chosen a coordinate system for the three-dimensional
Euclidean space, say three orthogonal coordinates x , y , Z ,another view
of a potential presents itself. We then have the option of viewing the potential
as an expression in the coordinates, i.e., we equate for some function g ,

G = g.(x,y,z)

where the function is such that, for any triple (a,b,c) ,the value of g.(a,b,c)
equals the value of the potential G at the point that has that triple (a,b,c) as
its coordinates.

This last view gives a very familiar interpretation to the plus sign in
GO + Gl : the latter formula now stands for the expression

gO.(x,y,z) + gl.(x,y,z)

i.e., our plus sign just adds two expressions to form a new expression that is
their sum.

This view thus allows a very familiar interpretation for the plus sign in
GO + Gl ; the price we have to pay for that convenience is the introduction of

4 1. On structures

names, like GO and Gl ,that stand for expressions in, say, x , y , and z
but, being just names, do not state that dependence explicitly (as a functional
notation like g.(x,y,z) would have done).

Modern mathematical usage freely introduces names for all sorts of
mathematical objects such as sets, points, lines, functions, relations, and
alphabets, but is reluctant to introduce a name for an expression in a number
of variables. There is a very good reason for that reluctance: because of their
hidden dependence on some variables, those names may become quite tricky
to manipulate. (An example of how tricky it may become is provided by the
names "yesterday", "today", and "tomorrow", which admit sentences such
as "Tomorrow, today will be yesterday.".)

When physicists call a potential "G" ,they do precisely what, for good
reasons, the mathematicians are very reluctant to do; they adopt a mathe
matically dubious convention. The reason why they get away with it -at
least most of the time- is probably that three-dimensional space (plus time)
is the standard context in which almost all of classical physics is to be
understood. With that understanding, any notation -like g.(x,y,z) - that
indicates that dependence explicitly is unnecessarily lengthy.

We mentioned the physicists because we are partly in the same position as
they are. For the sake of coping with programming language semantics we
shall develop a theory, and we may seem to have adopted the "dubious
convention" of the physicists in the sense that, when the theory is applied to
programming language semantics, things that were denoted by a name in our
theory stand in the application for expressions in programming variables.

Remark Once we have chosen a set of Cartesian coordinates for the three
dimensional space, we have introduced a one-to-one correspondence between
the points of space and the triples of coordinate values. For programs, this
has given rise to the metaphor that is known as "the state space". For a
program that operates on n variables, the corresponding "state space" is
visualized as an n-dimensional space with the n variables of the program as
n Cartesian coordinates. Thus the metaphor introduces a one-to-one
correspondence between the points in state space and all combinations of
values for the n variables. Since each combination of these values
corresponds to a state of the store consisting of those variables, there is a one
to-one correspondence between the states of the store and the points in state
space; hence the latter's name. It is a well-established metaphor, and we shall
use it freely. Instead of "for any combination of values of the program
variables" we often say "for any point in state space", or "everywhere in state
space" or "everywhere" for short. Another benefit ofthe metaphor is that we
can describe the sequence of states corresponding to a computation as a
"path" through state space, which is traversed by that computation. Further-

1. On structures 5

more, the metaphor allows us to view certain program transformations (in
which program variables are replaced by others) as coordinate transforma
tions.

In short, the notion of state space has its use. The reader that encounters
the term for the first time should realize that this use of the term "space"
represents a considerable generalization of normal three-dimensional space:
there is in general nothing three-dimensional about a state space, its
coordinates are rarely real, and Euclidean distance between two states is not
a meaningful concept (not even if the program variables are of type integer
and the state space can be viewed as consisting of grid points). (End of
Remark.)

Upon closer inspection it will transpire that our convention is not half as
dubious as it may appear at first sight. Hidden dependence on a variable
makes manipulation tricky only in contexts in which the variable occurs
explicitly as well. We are safe in the sense that our theory is developed
independently of its application, and that it is only in the application that
names occurring in the theory are made to stand for expressions in program
variables. We beg the reader to remember that the state space is not an
intrinsic ingredient of our theory and that it only enters the picture when we
apply our theory to programming language semantics.

In fact we go further and urge the reader to try to read the formulae of our
theory without interpreting names as expressions in the coordinates of some
state space. Such an interpretation is not only not helpful, because it is
confusing, but is even dangerous, because expressions on a state space
provide an overspecific model for what our theory is about, and as a result
the interpretation might inadvertently import relations that hold for the
specific model but do not belong to the theory.

Because the theory is to be understood independently of its application to
programming language semantics it would not do to call those names in the
theory variables of type "expression". We need another, less committing,
term. After quite a few experiments and considerable hesitation, we have
decided to call them variables of type "structure". So, in our theory we shall
use names to stand for "structures".

Our notion of a "structure" is an abstraction of expressions in program
variables in the sense that the state space with its individually named
dimensions has been eliminated from the picture. We do retain, however, that
expressions in program variables have types, i.e., they are boolean expres
sions or integer expressions, etc.; similarly our theory will distinguish
between "boolean structures", "integer structures", etc.

6 1. On structures

The reader who is beginning to wonder what our structures "really" are
should control his impatience. The proper answer to the question consists in
the rules of manipulation of formulae containing variables of type structure.
In due time, these rules will be given in full for boolean structures, which are
by far the most important structures with which we shall deal. (We leave to
the reader the exercise of moulding Peano's Axioms into the manipulative
rules for integer structures.) The impatient reader should bear in mind that
this introductory chapter's main purpose is to give the reader some feeling for
our goals and to evoke some sympathy for our notational decisions.

* * *

The next notational hurdle to take has to do with the notion of equality.
Difficulty with the notion of equality might surprise the unsuspecting reader,
who feels -not without justification- that equality is one of the most
fundamental, one of the most "natural", relations. But that is precisely the
source of the trouble! The notion of equality came so "naturally" that for
many centuries it was quite common not to express it explicitly at all.

For instance, in Latin, in which the verb "esse" for "to be" exists, it is not
unusual to omit it (e.g., "Homo homini lupus."). In mathematical contexts
equality has been expressed for ages either verbally or implicitly, e.g., by
writing two expressions on the same line and leaving the conclusion to the
intelligent reader. We had in fact to wait until 1557, when Robert Recorde
introduced in his "Whetstone of witte" the -in shape consciously de
signed!- symbol to denote equality. In the words of E. T. Bell: "It
remained for Recorde to do the right thing.".

Yes, Recorde did the right thing, but it took some time before it began to
sink in. It took in fact another three centuries before the equality sign gained
in principle the full status of an infix operator that assigned a value to
expressions of the form a = b . The landmark was the publication of George
Boole's "Laws of Thought" in 1854 (fully titled An Investigation of The Laws
of Thought on which are founded The Mathematical Theories of Logic and
Probabilities). Here, Boole introduced what is now known as "the boolean
domain", a domain comprising two values commonly denoted by "true"
and "false" ,respectively. In doing so, he gave a = b the status of what we
now call a "boolean expression".

Yes, Boole too did the right thing, but we should not be amazed that his
invention, being less than 150 years old, has not sunk in yet and that, by and
large, the boolean values are still treated as second-class citizens. (We should
not be amazed at all, for the rate at which mankind can absorb progress is
strictly limited. Remember that Europe's conversion from Roman numerals
to the decimal notation of Hindu arithmetic took at least six centuries.)

1. On structures 7

After this historical detour, let us return for a moment to our physicist with
his potentials. In terms of two given potentials GO and G1 ,he is perfectly
willing to define a new potential given by

G = GO + G1

Similarly, a mathematician is perfectly willing to define in terms of two
given lO-by-lO real matrices A and B a new 10-by-1O real matrix C by

C = A+B

We said "similarly", and rightly so. A potential associates a real value with
each of the points of three-dimensional, "physical" space; a lO-by-lO real
matrix associates a real value with each of the 100 points of the two
dimensionaI1O-by-10 space spanned by the row index and the column index.
The additions of potentials and of matrices are "similar" in the sense that
they are to be understood as "point-wise" additions. That in the case of
matrices, where the underlying space is discrete, it is customary to talk about
"element-wise" addition is in this case an irrelevant linguistic distinction.

With this convention of point-wise application in mind it would have
stood to reason to let A = B stand for the 10-by-10 boolean matrix formed
by element-wise comparison.

But this is not what happened. People were at the time unfamiliar with the
boolean domain. Consequently, a boolean matrix was beyond their vision
and hence a formula like the above C = A + B was not read as a boolean
matrix but was without hesitation read as a statement of fact, viz., the fact
that C and A + B were "everywhere" -i.e., element by element- equal.
Similarly, G = GO + Gl is interpreted as a statement of fact, viz., the fact
that the potentials G and GO + G1 are "everywhere" equal and not as an
expression for a "boolean potential ", true wherever G equals GO + G1 and
false elsewhere.

For real expressions A and B , A = B stands for a boolean expression
and, hence, for real structures we would like A = B to denote a boolean
structure, but the conventional interpretation reads A = B as the fact that
A and B are "everywhere" equal, that A and B are "the same". In
retrospect we can consider this conventional interpretation an anomaly, but
that is not the point. The point is: can we live with that anomaly in the same
way as physicists have lived with it since potentials were invented and
mathematicians have lived with it since matrices were invented?

It would be convenient if the answer were affirmative, as might be the case
in a context in which there is no need for dealing with boolean structures. But
ours is a very different context, for almost all our structures will be boolean.
Hence we cannot live with the notational anomaly and we have to do
something about it.

8 1.0n structures

One could try to find a way out by introducing two different equality signs,
one to express that two structures are "the same" and the other to denote the
boolean structure formed by the analogue of point-wise comparison. This,
however, would lead to an explosion of symbols because the same dilemma
presents itself in the interpretation of expressions like A < B
A::;; B ,etc.

For the description of our way out of the dilemma we first introduce a little
bit of terminology. For integers x and y we all recognize x + y and x - y
as integer expressions and x<y and x = y as boolean expressions; they are
expressions in x and y. Note that 7 and 5 are also integer expressions and
that true and false are boolean ones. The latter ones distinguish themselves
from the former ones by the circumstance that they are expressions in no
variables at all. We distinguish the integer constants from the general integer
structures by calling them "integer scalars". Similarly, we distinguish the
boolean constants true and false from the general boolean structures by
calling them "boolean scalars". A space of zero dimensions is called "the
trivial space". (It is not called "the empty space" because, just as the empty
product -i.e., the product of zero factors- is most conveniently defined to
be equal to 1, the space of zero dimensions is most conveniently considered to
consist of a single anonymous point. Since there is nothing to distinguish two
anonymous points from each other, the trivial space is unique.) When
convenient, we describe our "scalars" also as "structures on the trivial
space".

After these preliminaries, we can describe our way out of the dilemma.

Firstly, two structures connected by a relational operator that can be
applied element-wise -such as A = B or X=> Y - is, in deviation from
tradition, not interpreted as statement offact but denotes a boolean structure,
in principle as general as the connected operands.

Secondly, we introduce one function from boolean structures to boolean
scalars. It is called the "everywhere" operator and its application is denoted
by placing a pair of square brackets around the boolean structure to which it
is applied. Applied to a boolean scalar, the "everywhere" operator acts as the
identity function; because true and false are the only boolean scalars, this
can be summarized by

[true] = true and [false] = false

Treating potentials as structures, we would replace the physicist's defini
tion of G by

[G = GO + G1]

1. On structures 9

Similarly, treating matrices as structures, we would replace the mathemati
cian's definition of C by

[C = A + B]

The main price we have to pay for our convention is a pair of additional
square brackets whenever we have to express "complete" equality between
two operands that might be structures. In passing, we remark that we shall
use essentially only a single property of equality, viz., that it is preserved
under function application. This principle is known as the Rule of Leibniz,
and is traditionally written as

x = y => f(x) = fey)

We shall write the Rule of Leibniz in the following fashion:

[x = y] => [fx = fyJ

The first pair of square brackets is needed because the arguments x and y
could be structures; the second pair of square brackets is needed because f
might be structure valued. Finally, we have adopted in our rewrite the
convention of indicating functional application by an infix full stop (a
period).

Remark As said, the single property of equality that will be used is that it is
preserved under function application. Conversely, the one and only property
of function application that will be used is that it preserves equality. We shall
return to this later. Here it suffices to point out that, evidently, function
application and equality are so intimately tied together that the one is useless
without the other. Our decision to introduce an explicit symbol for functional
application is the natural counterpart of Recorde's decision to do so for
equality. (End of Remark.)

One more notational remark about equality. In the case of boolean
operands, we admit besides = an alternative symbol for the equality, viz.,
== . We do so for more than historical reasons.

The minor reason for doing so is purely opportunistic, as it gives us a way
out of the traditional syntactic dilemma of which binding power to assign to
the infix equality operator. By assigning to = a higher binding power than
to the logical connectives, and to == the lowest binding power of all logical
connectives, we enable ourselves to write for instance

[x = y == x:s;y /\ x~yJ

without any further parentheses.

The major reason is much more fundamental. In the case of boolean
operands, equality -in this case also called "equivalence" - enjoys a

10 1. On structures

property not shared by equality in general: equivalence is associative. The
importance of a property like associativity justifies both a special name and a
special symbol for equality between boolean operands. Therefore we shall use
- for the equality between boolean operands; if the operands might be
boolean but need not be, we shall use Robert Recorde's

* * *
With A , B , C , and D four real structures, (A,B) is a pair of real

structures, and so are (C,D) and (A + C , B + D) . We wish to consider the
last one the sum of the first two, in formula

[(A,B) + (C,D) = (A + C , B + D)]

i.e., addition -and in general: each operator that admits point-wise
application- distributes over pair-forming (in general: over tuple-forming).
This also holds for equality itself, i.e., instead of

[(A,B) = (C,D)]

we may write equivalently

[(A = C , B = D)]

an expression of the form

[(X,Y)]

for X and Y of type boolean structure. So far, we applied the "everywhere"
operator only to a boolean structure. What does it mean to apply the
"everywhere" operator to a pair? By definition it means

[(X,Y)] == [X] /\ [Y]

With the "everywhere" operator read as universal quantification, this
relation reflects that we can read the expression (X, Y) in two ways: we can
read it as a pair of boolean structures, and we can read it as a single boolean
structure on a "doubled" space, viz., the original space with an added two
valued dimension (whose two coordinate values could be "left" and "right").
The /\ in the last formula stands for the universal quantification over that
added dimension.

Equating n-tuple forming of structures with the formation of one structure,
but over a space with an added n-valued dimension, will give rise to
noticeable simplifications, both conceptual and notational.

CHAPTER 2

On substitution and replacement

With respect to substitution and replacement, two extreme attitudes seem to
prevail. Either the manipulations are deemed so simple that the author
performs them without any explanation or statement of the rules, or the
author tries to give a precise statement of the most general rules and ends up
with 200 pages of small print, in which all simplicity has been lost. Neither is
entirely satisfactory for the purposes of this little monograph.

The first extreme has to be rejected in view of our stated goal of presenting
fairly calculational arguments. The "mindless" manipulation of uninter
preted formulae that is implied by "letting the symbols do the work" is
clearly impossible without a sufficiently clear view of the permissible manipu
lations.

The second extreme has to be rejected because this is not a treatise on
formal logic and because it would probably provide much more than needed
for the limited scope of the theory we have set out to develop.

Rightly or wrongly, we assume that the reader can do without a lot of the
formal detail of the lowest level. For instance, while we firmly intend to state
explicitly the relative binding powers of all operators so as to make our
formulae sufficiently -i.e., semantically- unambiguous, we shall not give a
formal definition of the grammar. Also, though the reader is supposed to be
able to parse our formulae, we shall not give him an explicit parsing
algorithm for them. To simplify the parsing job, we have adopted a context
free grammar in which the scope of dummies is delineated by an explicit
parenthesis pair. Parsing will furthermore be aided by layout. And, as said,
rightly or wrongly we assume that these simple measures will suffice.

11

12 2. On substitution and replacement

In the remainder of this chapter we shall try to sail between Scylla and
Charybdis by confining ourselves mainly to the identification of the sources
of complication. Awareness of them should suffice to protect the human
formula manipulator against making the "silly" mistakes.

* * *

It all starts innocently enough. Given

(0) 13=5+8 and

(1) x > 13

we all feel pretty confident in concluding

(2) x > 5 + 8

the equality (0) tells us that in (1) we may replace 13 by 5 + 8 without
changing (l)'s value. We are, however, courting trouble as soon as we view
the transition from (1) to (2) purely as a matter of string manipulation.
Given

(3)

(4)

y < 131

z = q - 13

and

we should conclude neither

(5) Y < 5 + 81

from (0) and (3) nor

(6) z = q - 5 + 8

from (0) and (4). The moral of the story is that there is more to it than just the
manipulation of strings of characters.

Though strings of characters are what we write down and see, the only
strings we are interested in are formulae that satisfy a formal grammar. The
role of this grammar goes beyond defining which strings represent well
formed formulae; it also defines how a well-formed formula may be parsed.
Indicating permissible parsings with parentheses, we would get, rewriting (2),
(5), and (6),

(7) x > (5 + 8)

(8) Y < 5 + (81)

(9) z = (q - 5) + 8

In (7), 5 + 8 still occurs as a subexpression; in (8) and (9) it no longer
does. Relation (0) does not express equality of strings -" 13" and" 5 + 8"
are different strings!- but equality of two (integer) expressions. In appealing
to it when "replacing equals by equals" we may only replace the (integer)

2. On substitution and replacement 13

subexpression 13 by the (integer) sUbexpression 5 + 8 or vice versa. Each
expression is a function of its subexpressions, but that statement only makes
sense provided that the grammar describes how each well-formed formula
may be parsed, thereby identifying its subexpressions (and their types). In
replacing equals by equals, the moral of the story is that, apart from the
internal structures of the subexpressions exchanged, the two expressions
equated should admit the same parsings. The consequences of this require
ment obviously depend on the grammar adopted: (6) would have been a valid
conclusion for a grammar in which + has been given a higher binding
power than - ,whereas in a grammar in which + and - are left
associative, the proper conclusion would have been

z = q - (5 + 8)

Remark We don't require the grammar to be unambiguous. For instance, the
associativity of the multiplication can be dealt with syntactically by means of
a production rule like

(product) :: = (factor)

I (product)· (product)

We feel reasonably confident that, with a suitable adaptation of the notion of
a formal grammar, also the symmetry of the multiplication can be dealt with
syntactically. (End of Remark.)

The important thing to remember is that, while the manipulating mathe
matician sees and writes only strings, he actually manipulates the parsed
formulae. Consequently, a grammar that leads to a complicated parsing
algorithm adds to the burden of manipulation. We have therefore adopted a
systematic and relatively simple grammar that admits context-free parsing.

At this stage the reader may wonder why we have adhered to the familiar
infix notation, together with the traditional mechanism of relative binding
powers so as to reduce the need of parentheses. To tell the truth: sometimes,
so do we. We certainly appreciate the smoothness with which infix notation
caters for rendering associativity, viz., omission of parentheses. Evidently, we
felt the burden of binding powers too light to justify a deviation from the
familiar.

* * *

We get another complication with grammars in which variables may have
a limited scope, such as the dummy i in the quantified expression (Vi:: Q.i) .
Here the parenthesis pair delineates the scope of the dummy i ,which is
therefore said to be "local to this expression"; a variable that occurs in the
text of an expression but is not local to it or to one of its subexpressions is

14 2. On substitution and replacement

said to be "global to that expression" or, alternatively, to be "local to that
expression's environment". (For "local" and "global", also the terms
"bound" and "free", respectively, are used.) The formal definition of the set of
variables global to an expression is a straightforward recursive definition
over the grammar.

Variables are place holders in the sense that their main purpose is to get
something substituted for them. More precisely, when we substitute some
thing for a variable, each occurrence of that variable is replaced by that same
something. Identifying different variables by different identifiers is a means
for indicating which places have together to be filled by the same something
in the case of substitution. For instance, substitutions for the variable X in

[2 0 X = X + X]

may yield

[2 0 Y = Y + y] or

[2 o (Y - Z) = (Y - Z) + (Y - Z)]

but never

[2 0 (Y - Z) = (Y - Z) + X]

since in the latter case the replacement by (Y - Z) has not been applied to
all occurrences of X .

In the absence of local variables, all variables are global and life is simple.
There are as many variables as identifiers and they are in one-to-one
correspondence to each other to the extent that we hardly need to distinguish
between the variable and the identifier identifying it.

But consider now an expression like

(10) (Vi:: P.i) v (3j:: QJ)

This expression has four variables: P , Q , i , and j . The first two, P and
Q ,are global to expression (10), i.e., this expression is deemed to occur in an
environment that may have more occurrences of P and Q ,and substitution
of something for P (or Q) should be applied to all occurrences of P (or Q),
both in (10) and in its environment. As long as the environment of an
expression like (10) is left open, for each variable global to that expression the
set of its occurrences is open-ended.

The other two variables, i and j ,are sealed off, so to speak: their sets of
occurrences are closed. The first one, introduced after the universal quantifier
V ,is local to the first disjunct, and the second one, introduced after the

existential quantifier 3 ,is local to the second disjunct. Their occurrences are
by definition confined to their respective scopes as delineated by the
parenthesis pairs.

2. On substitution and replacement 15

In the environment of(10), P and Q play different roles: P refers to the
term in the universally quantified expression and Q to the term in the
existentially quantified expression. In contrast, the variables identified in (10)
by i and j play in the environment no role at all. As a result, it should not be
very relevant for the environment which identifiers have been used for these
local variables. In fact, instead of (10) we could equally well have written

(11) (Vi:: P.i) v (3k:: Q.k)

or even

(12) (Vi:: P.i) v (3i:: Q.i)

Since a variable local to an expression plays by definition no role in that
expression's environment, we can always choose a fresh identifier to denote it.
In (12) we have carried that freedom to its ultimate consequence and have
used the same identifier for both local variables. No confusion arises, since it
is still quite clear over which variable the universal quantification takes place
and over which variable the existential quantification.

Note that we have taken a major step. The one-to-one correspondence is
no longer between variable and identifier, but between variable and identifier
together with its scope.

It is customary to go one step further. It so happens that (10) is equivalent
to

(13) (Vi:: P.i v (3j:: QJ))

In view of (12) we would like to permit

(14) (Vi:: P.i v (3i:: Q.i))

as well. In fact we do.

Scopes, being delineated by matching parenthesis pairs, are either disjoint,
as in (10), (11), and (12), or nested, as in (13) and (14). For variables that have
nested scopes and that are identified by the same identifier, the additional
rule is that all occurrences of that identifier within the inner scope refer to the
variable with the inner scope. In the case of such multiple use of identifiers,
the basic rule is that each derivation should also have been possible with each
variable identified by a fresh, distinct identifier.

For instance, the equivalence of (to) and (13) is an instantiation of the
axiom

(15) [(Vi:: P.i) v R == (Vi:: P.i v R)]

viz., with (3j:: QJ) substituted for R .

16 2. On substitution and replacement

Asked to derive an equivalent expression for

(16) (Vi:: P.i) v Q.i

-an expression in which Q is applied to a global variable identified by
i-we should not fall into the trap of writing down the erroneous

(Vi:: P.i v Q.i)

in which P and Q are "accidentally" applied to the same variable. That it is
an accident we see when we remember that we are free in our choice of
dummies and that (15) could as well have been written

[(Vi:: P.i) v R == (Vk:: P.k v R)]

Substitution in the latter of Q.i for R would yield the correct alternative for
(16):

(Vk:: P.k v Q.i)

in which Q is still applied to the global variable identified by

In the presentation of an axiom like (15) we feel free to omit the standard
caveat "provided i is not global to R ": we should remember that the
dummy of the right-hand quantification is to be understood as a fresh
identifier. We prefer to consider the caveat as "obvious".

Remark That last desire is perhaps very naive in view of the amount of effort
logicians have spent on explaining "bound" versus "free" variables. They
consider perhaps more complicated manipulations than we shall do. From
the moment that we decided to delineate the scopes of local variables
explicitly by an obligatory parenthesis pair and to adopt a syntax that
unambiguously identifies the local variables of each scope -and this
decision was taken many years ago- we never made an error due to clashing
identifiers. One manipulates under the constant awareness that within its
scope each variable could have been identified by a fresh identifier. It is a
permanent supervision, not unlike the physicist's constant awareness that his
formulae should be invariant under a change of units or of coordinate system:
renaming of variables is a similarly irrelevant transformation. (End of
Remark.)

CHAPTER 3

On functions and equality

We have to say a word or two about functions because, depending on the
ways permitted for their definition, it may be questionable whether they are
well-defined at all. Fortunately, our functions will be simple: they will be total
functions with values and arguments of well-defined types.

The restriction to total functions is completely in line with the whole idea
of defining programming language semantics by means of weakest precondi
tions. For deterministic programming languages, one can consider the final
machine state as a function of the initial state, and one may try to define the
programming language semantics by defining how a program determines
that function. One then encounters the problem that in general that function
is a partial function of the initial state: for some initial states, the program
fails to terminate and, consequently, the corresponding final state is to be
regarded as undefined. As we shall see later, weakest preconditions -which
embody a form of "backwards reasoning" - circumvent that problem by
being total functions of the postcondition.

The arguments of the functions are of familiar types, such as boolean or
integer scalars -which we deem well-understood- and boolean or integer
structures. The function values are of equally familiar types. Each new
function we introduce is a total mapping from a previously introduced
domain to a previously introduced domain.

Aside An integer function that accepts itself as argument, is of a type a that
would satisfy the relation

C(= (a --+ int)

17

18 3. On functions and equality

With such a recursively defined type, it is no longer obvious whether a
function definition makes sense or can lead to a contradiction. Such function
definitions, fortunately, do not occur in this monograph. (End of Aside.)

Furthermore, our ways of defining functions are very simple. Firstly, we
introduce a modest number of operators with which we can construct
expressions; these expressions are postulated to be functions of their subex
pressions. Furthermore, we shall define functions as solutions of an equation
that contains the argument(s) of the function being defined as parameter(s).
In that case we have the obligation to prove that the equation in question has
a unique solution for any value of the parameter(s).

For instance, let multiplication, denoted by an infix • ,be a defined
operator on integers. With integer structures x and y ,

x·x

is an integer structure,

y = x·x

is a boolean structure, and

(0) [y = x·x]

is a boolean scalar, of which x and yare the global variables. Expression (0)
is almost an equation but not yet, because it fails to identify the unknown.
Our notational convention is that we can turn the boolean scalar (0) into "an
equation in y" by prefixing it with "y:" . Thus

(1) y: [y = x· x]

is an equation of which x is a global variable. We can now define the
function "square" -from integer structures to integer structures of the same
shape- by calling the solution of (1) "square.x" . Since

[u = x·x] 1\ [v = x·x] => [u = v]

the solution of (1) is unique, and, since . is a total operator on integer
structures, the solution always exists.

For an equation as simple as (1), the above is a bit pompous: an equation
of the form

y: [y = "total expression not containing y"]

has a unique solution, which is a total function of the global variables of the
equation. In the future we shall not repeat this argument. In these simple
circumstances we shall even omit the equation and say something like: "Let
for integer structures x the function square be defined by

[square.x = x·x] "

3. On functions and equality 19

For equations with more complicated occurrences of the unknown, unique
ness and existence of the solution will be demonstrated explicitly.

* * *

Our use of the notion of a function will be that, for f a function, we appeal
to

(2) [x = y] => [f.x = f.y]

where the left-hand "everywhere" has been introduced to cater also for the
case that f's argument is a structure, and the right-hand "everywhere"
because f's value might be a structure. In hints, the name "Leibniz" will
indicate an appeal to rule (2).

Remark The original statement of Leibniz (who was probably aware of the
existence of the identity function) seems to go further; in our notation it
would be rendered by

(3) [x = y] == (Vf:: [fx = fy])

Note that, if we render equality of the functions g and h by [g = h] ,this is
usually defined by

(4) [g = h] == (Vx:: [g.x = h.x])

The pleasing symmetry between functions and arguments as displayed by (3)
versus (4) will not be pursued. (End of Remark.)

There is another way of reading Leibniz's Rule (2): function application
preserves equality.

Remark The above use of the verb "to preserve" is usually reserved for the
case of ordering relations: for a function f from real structures to real
structures, to be "monotonic" would mean

(5) [x ~ y] => [fx ~ fy]

i.e., application of f "preserves" the ordering relation ~ . (For analogy's
sake, we ignore that the notion of monotonicity has been extended to cover
the situations in which the ordering relations between the arguments and
between the function values are different.) Note that the analogy goes further:
were we to define an ordering relation on functions of the same type as f , we
would define -in analogy to (4)-

[g~h] == (Vx:: [g.x~h.x])

(End of Remark.)

20 3. On functions and equality

We mention this because Leibniz's Rule captures not only our use of the
notion of "function" but also our use of the notion of equality. The two go
inextricably together: function application is what preserves equality, but
also, equality is what is preserved by function application. Hence, also, the
title of this chapter.

We must finally draw attention to a distinction we have to make due to
our introduction of structures. Let f be a function from structures to
structures of the same shape. It then may be the case that, besides Leibniz's
Rule (2), we have the stronger

(6) [x = y = fx = fyJ

(We shall see later that (6) is indeed stronger than (2), i.e., that (2) follows
from (6).) Functions for which (6) holds are called "punctual functions". In
terms of the model we presented in Chap. 1, the punctual functions
correspond to operators that are applied element-wise; taking the negative of
a matrix -i.e., changing the sign of each element- is a punctual function,
whereas taking the transpose of a (square) matrix -i.e., interchanging rows
and columns- is not a punctual function.

In hints appealing to (6) we shall draw attention to the punctuality of the
function in question.

CHAPTER 4

On our proof format

This chapter describes how we present our calculational proofs and, to a
certain extent, why we have chosen to adopt this format.

The statement of a theorem is in essence a boolean expression, and its
proof is in essence a calculation evaluating that boolean expression to the
value true . This is the sense in which the vast majority of our proofs are
calculational. The most straightforward way of evaluating a boolean expres
sion is to subject it to one or more value-preserving transformations until
true or false is reached. The reason that we may need a number of
consecutive transformations is that we wish to confine them to manipulations
from a restricted repertoire.

Remark We will not restrict that repertoire of manipulations to the absolute
minimum because that would not be practical for our purposes: it would
make our calculations much longer than we would like them to be. It would
be like doing mathematics without theorems, reducing each argument down
to the axioms, and that is not practical. The reader should bear in mind that
our purposes -i.e., using logic- are quite different from those of the
logicians that study logics: for their purposes it might be appropriate to
reduce logical systems to their bare essentials, but for our purposes it is not.
(End of Remark.)

Let [A] denote the boolean expression to be evaluated, and let the
evaluation take, say, 3 steps, which would amount to the occurrence of 2

21

22 4. On our proof format

intermediate results. More precisely, for some expressions [B] and [C]

the first step would establish [A] == [B]
the second step would establish [B] == [C]
the third step would establish [C] == true

thus the whole calculation would establish [A] == true . (Had the third step
established [C] ==false , the whole calculation would have established
[A] ==false .)

In the above rendering of the calculation, the intermediate expressions
[B] and [C] each occur twice. Since, in general, Band C can be quite
elaborate expressions, we need for brevity'S sake a format in which such
repetitions are avoided. We propose

[A]
{hint why [A] == [B] }

[B]
{hint why [B] == [C] }

[C]
{hint why [C] == true }

true

In the above, the actual hints between the braces would not mention the
expressions A , B , or C ; they would identify the value-preserving
transformation.

Remark The virtue of this format is more than brevity alone, for it allows us
to conclude [A] == true without reading the intermediate expressions. In
our former rendering one would have to check that the right-hand side of
[A] == [B] is the same expression as the left-hand side of [B] == [C] . Our
proof format expresses that sameness by syntactic means. (End of Remark.)

Had we no further interest in brevity, the above format would suffice. But
we do have an interest in further brevity, and as a result our format can do
with some refinements, as the following example shows. Let our proof
obligation be of the form [A = D] . Rendered in the above format, the
calculation could be of the form

[A =D]
{hint why [A = B] }

[B =D]
{hint why [B= C] }

[C = D]
{hint why [C = D] }

true

4. On our proof format 23

Note Had we strictly followed the previous example, the first hint would
have been "hint why [A = D] == [B = D]", and similarly for the second
hint. Thanks to Leibniz's Rule, the hints given here suffice to justify the first
two transformations as value-preserving. Since [C = D] is the same as
[C = D] == true, the third hint exactly follows the previous example. (End
of Note.)

The above is not very nice if the expression here denoted by D is lengthy:
it has to be repeated from line to line. We therefore propose to render this
calculation in the form

A
{hint why [A = B] }

B
{hint why [B= C] }

C
{hint why [C = D] }

D

in which the successive steps are no longer confined to value-preserving
transformations from one scalar to the next, but may be between structures
on some space. The complementary convention is that the "everywhere"
operator should be applied to the relational operators to the left: the above
calculation amounts to the assertion

[A =B] A [B= C] A [C=D]

and justifies, again without reading the intermediate results Band C , the
conclusion [A = D] , square brackets included. Since "everywhere" has no
effect -i.e., is the identity operator- on boolean scalars, this convention of
the additional square brackets does not invalidate our first proof, where we
had to prove [A] == true

Remark Because, as we shall see later, the "everywhere" operator distributes
over conjunction, we could also have written the above summarizing
assertion as

[A = B A B = C A C = D]

(End of Remark.)

So much for the fact that the steps of our calculations need not transform
scalars but may transform structures as well. The structures occurring in our
theory are almost exclusively boolean structures. The remaining notational
refinements to be introduced in this chapter concern that special case.

24 4. On our proof format

In proofs of [A == D] by means of such a "continued equivalence" as
illustrated above, it is not uncommon that A v D occurs as intermediate
expression. In our format we would get something like

A
{hint}

{hint}
AvD

{hint}

{hint}
D

asserting [A == D] on account of

[A == A v D] 1\ [A v D == D]

Since the first conjunct is the same as [D => A] and the second one is
the same as [A => D] ,such a proof of equivalence boils down to a proof
"by mutual implication" -informally also known as "a ping-pong argu
ment" - . We often prove the two implications separately.

Remark Many texts on theorem proving seem to suggest that a ping-pong
argument is -if not the only way- the preferred way of demonstrating
equivalence. This opinion is not confirmed by our experience: avoiding
unnecessary ping-pong arguments has turned out to be a powerful way of
shortening proofs. At this stage the methodological advice is to avoid the
ping-pong argument if you can, but to learn to recognize the situations in
which it is appropriate. (End of Remark.)

There are two reasons why for the genuine ping-pong argument the above
format is inadequate. The first one is revealed by considering a proof of
[A == DJ in which A 1\ D is one of the intermediate expressions:

A
{hint}

{hint}
AI\D

{hint}

{hint}
D

which asserts [A == DJ on account of

[A == A 1\ DJ 1\ [A 1\ D == DJ

4. On our proof format 25

The first conjunct, however, is the same as [A => D] and the second one is the
same as [D => A] ,so here we have again a proof by mutual implication, but
in a rather different representation. It is not so nice to have to choose between
the two representations, it is nicer to have a more neutral one in between.

The second reason to refine our format is that the last two examples tend
to lead to elaborate expressions with a lot of repetition between the successive
lines: in the top half, A is repeated all the time, and in the bottom half D .
Since a main purpose of our format is to avoid repetition, we had better do
something about it. We can do so by admitting in the left column the
implication sign as well.

As we shall see later, we have for any boolean structures X , Y, Z
on account of Leibniz's Rule

[X == Y] /\ [Y=>Z] => [X=>Z] ,and

[X => Y] /\ [Y == Z] => [X => Z]

and, on account of the transitivity of the implication,

[X=> Y] /\ [Y=>Z] => [X=>Z]

Consequently, a proof of [A => D] could, for instance, have the form

A
=> {hint why [A =>B] }

B
{hint why [B== C] }

C
=> {hint why [C =>D] }

D

which asserts [A => D] on account of

[A =>B] /\ [B == C] /\ [C=>D]

Admitting => as well as = in the left column may greatly reduce the
amount of writing needed. So far, so good, but in order to be really pleasant
to use, our format needs still three further, independent refinements.

The first one has nothing to do with the amount of writing needed: it only
allows us to write and read things in a different order. Besides the implication
=> ,we also admit the consequence <= (read: "follows from"); from a
logical point of view, it makes no difference whether we write [A => D] or
[D <= A] . (It is a facility analogous to the freedom of writing the same

26 4. On our proof format

relation either as x ~ y or as y;?; x .) Consequently, our last example
could equivalently have been rendered in the form

D
<= {hint why [D <= C] }

C
{hint why [C == B] }

B
<= {hint why [B <= A] }

A

Remark Often the choice between implications and consequences is irrele
vant, but we have encountered many calculations in which it made a great
difference. Before we introduced the consequence, we had many calculations
that required considerable clairvoyance to write down in the sense that the
motivation for certain manipulations would become apparent several lines
further down, where everything would miraculously fall into place. Upon
reading them they struck us each time as if a few rabbits had been pulled out
of a hat. As soon as we realized that we ourselves had designed those proofs
the other way round, we decided to present them in that direction as well, and
the symbol <= was introduced. Suddenly, many a manipulation was now
strongly suggested by what had already been written down. We were almost
shocked to see how great a difference such a trivial change in presentation
could make and came to fear that the traditional predominance of the
implication over the consequence in combination with our habit of reading
from left to right has greatly contributed to the general mystification of
mathematics. (End of Remark.)

The second refinement concerns demonstranda of the form

(0) [E] => [A == D]

(and is mutatis mutandis equally applicable to demonstranda of the form
[E] => [A => D]). The above demonstrandum is equivalent to

[[E] /\ A == [E] /\ D]

and we could therefore have used our previous format for establishing
equivalences. However, this would mean that each line would start with
"[E] /\ ", and that repetition is unattractive, the more so since the conjunct
[E] is usually needed for the justification of only a single step in the whole
calculation. It is much nicer to mention [E] only where it is needed. With

4. On our proof format 27

our next refinement, the calculation for the demonstrandum (0) might be
presented in the form

A
{hint why [A == B] }

B
{hint why [E] = [B == C] }

C
{hint why [C == D] }

D

At first sight, some readers may have the uneasy feeling that in the above
rendering of the calculation of (0), the antecedent [E] has been "smuggled
in" or "hidden", but we can reassure those readers. What we have done is
neither deep nor fishy: we have introduced a convenient shorthand that
is quite safe to use. This format is often appropriate when the scalar [E]
is simply the statement that some atomic symbol enjoys some property, e.g.,
"f is conjunctive". Formally, such a property states the validity of some
manipulations; as we shall see shortly in an example, their availability can
give strong heuristic guidance.

The third convention concerns the omission of universal quantifications. If
our demonstrandum is in full (Vx:: [A.x == D.x]) ,we might write a
calculation in the form

We observe for any x
A.x

{hint why (Vx:: [A.x == B.x]) }
B.x

{hint why (Vx:: [B.x == C.x]) }
C.x

{hint why (Vx:: [C.x == D.x]) }
D.x

which asserts (Vx:: [A.x == D.x]) on account of

(Vx:: [A.x == B.x]) 1\ (Vx:: [B.x == C.x]) 1\ (Vx:: [C.x == D.x])

or, equivalently

(Vx:: [(A.x == B.x) 1\ (B.x == C.x) 1\ (C.x == D.x)])

This last notational convention is in fact completely analogous to the
convention of the implied "everywhere" operator, but this time for the
explicitly mentioned local variables. Similarly, it is also adopted if the
demonstrandum is a universally quantified implication.

28 4. On our proof format

By way of example of how all this works, we shall now prove "A
conjunctive predicate transformer is monotonic", a theorem that appeals to
the following definitions:

(i) a function from boolean structures to boolean structures is (for
historical reasons) called "a predicate transformer";

(ii) (f is conjunctive) ==
(VX,Y:: [f.(X /\ Y) == f.X /\f¥])

(iii) (f is monotonic) ==
(VP,Q:: [P = Q] = [fP = fQ])

The proof of the monotonicity might be rendered as follows.

Proof We observe for any conjunctive predicate transformer f and any
predicates P , Q

[f.P= f.Q]
{predicate calculus}

U·P /\ fQ == f.P]
{ f is conjunctive}

[f.(P /\ Q) == f.P]
<= {Leibniz}

[P /\ Q == P]
{predicate calculus}

[P=Q]
(End of Proof)

The above gives some idea of the size of our steps and of the degree of
detail provided in the hints.

The two hints "predicate calculus" refer to the formula

[X = ¥] == [X /\ Y == X]

of which the reader is supposed to know -after the next chapter "The
calculus of boolean structures" - that it holds for any predicates X , Y .
These hints refer to the "manipulations from a restricted repertoire" that we
mentioned at the beginning of this chapter.

The hint "f is conjunctive" is given where the reader can be supposed to
know that this means that application of f distributes over conjunction. If
the situation is less familiar or the substitution is more complicated, we give
the instantiation explicitly: in this case, we would have referred to the second
line of (ii) "with X, Y:= P,Q ". When a manipulation is confined to a

4. On our proof format 29

subexpression (as, in this case, to the left-hand side of the equivalence), our
hints usually do not identify that subexpression; the reader is supposed to do
so himself by seeing where the two related expressions differ.

The hint "Leibniz" refers to

[x=yJ = [f.x=fyJ

i.e., the fact that function application is equality preserving.

We have a slight preference for the proof as given above compared with
the proof "the other way round", which would start with

[P=QJ
{predicate calculus}

[P 1\ Q == PJ

In such a first step an (admittedly small) rabbit would have been pulled out of
a hat since there are many ways of rewriting [P = QJ ,such as
[P v Q == Q] , [,P v Q] , [P == ,Q == ,p 1\ QJ ,to mention just a few.
These alternatives are of course rejected because we want the conjunction to
enter the picture because f is conjunctive. But when we start with [P = QJ ,
f is not mentioned yet! Starting, as we did, with [f.P = f.QJ ,that little

rabbit has been removed: now the special way of rewriting the implication
can be defended on the grounds that it yields the subexpression fP 1\ fQ of
which (ii) explicitly states that we can do something with it.

Experience has taught us that in general the most complicated side is the
most profitable one to start with. The probable explanation of this pheno
menon is that the opportunities for simplification are usually much more
restricted than the possibilities to complicate things: simplification is much
more opportunity-driven than "complification". The above example, how
ever, is too simple to give a striking illustration of this phenomenon.

CHAPTER 5

The calculus of boolean structures

In this chapter we develop the calculus of boolean structures in a rather
algebraic fashion. We do so for a variety of reasons. Firstly, we have to
introduce the reader to the repertoire of general formulae that will be used
throughout the remainder of this booklet. Secondly, by proving all formulae
that have not been postulated, we give the reader the opportunity of gently
familiarizing himself with our style of conducting such calculational proofs.
Thirdly, we wish to present this material in a way that does justice to how we
are going to use it. Since value-preserving transformations are at the heart of
our calculus, so are the notions of equality and function application; hence
our desire to develop this material with the equality relation in the central
role. (It is here that our treatment radically departs from almost all
introductions to formal logic: it is not uncommon to see the equality -in the
form of "if and only if" - being introduced much later as a shorthand,
almost as an afterthought.)

We recall Leibniz's Rule expressing that function application preserves
equality:

(0) [x = y] => [f.x = J.y]

which holds for any function J and arguments x and y of appropriate
types.

Legenda We recall

• that the left-hand pair of square brackets occurs because the arguments
may be structures

30

5. The calculus of boolean stuctures 31

• that the right-hand pair of square brackets occurs because the function
values may be structures

• that function application is denoted by an infix point (full stop, period)
that has the highest binding power of all operators occurring in this
chapter.

(End of Legenda.)

Appeals to (0) occur in steps such as

[fx = fyJ
<:= {Leibniz}

[x=yJ ,or

[fx =fyJ
{hint why [x = yJ ; Leibniz}

true , or

fx
{hint why [x = yJ ; Leibniz}

fy

The above illustrates the appeal to Leibniz's Rule in the case of a named
function. Most of our functions, however, will be anonymous because we
shall manipulate expressions and all expressions we write down are by
postulate functions of their subexpressions. In the case of such anonymous
functions, i.e., when in an expression a subexpression is replaced by an equal
one, it is unusual to mention Leibniz explicitly in the hint. (Otherwise we
would have to mention Leibniz in almost every step.)

* * *

In the following, we shall use the capital letters from the end of the
alphabet -primarily X , Y , Z- as variables of type boolean structure.
For equality between boolean operands we introduce the alternative symbol
== ,which from a syntactical point of view distinguishes itself from = only
by the fact that (for reasons of convenience) it has been given a much lower
binding power than = . An expression of the form X == Y is called "an
equivalence" and is read as "X equivalent Y" or "X equivales y".

Before pursuing further algebraic properties of the equivalence, we first
turn our attention to the unary "everywhere" operator, which is denoted by
surrounding the argument by a pair of square brackets. The "everywhere"
operator is a function from boolean structures to boolean scalars, i.e.,
boolean structures on the trivial space.

32 5. The calculus of boolean structures

In terms of the "everywhere" operator, the boolean scalars can be defined
as those boolean structures for which the "everywhere" operator is the
identity function, i.e., as the boolean structures solving the equation

(1) X: [[X] == X]

Theorem The "everywhere" operator is idempotent, i.e., for any boolean
structure Y

(2) [[[YJ] == [YJ]

Proof We observe for any boolean structure Y

[[Y]]

{ [Y] is a boolean scalar, hence solves (i)}
[YJ

(End of Proof)

After this little excursion to the "everywhere" operator and the boolean
scalars, we return to the equivalence. The equivalence is a function from pairs
of boolean structures to boolean structures, but also, more specifically, from
pairs of boolean scalars to boolean scalars: if both X and Yare boolean
structures on the trivial space, so is X == Y . Consequently, (2) can be
simplified to

[[YJ] == [YJ

The introduction of a special symbol for equality and a special name for
the equality relation in the case of boolean operands is justified by the
circumstance that equivalence enjoys a property not enjoyed by equality in
general: equivalence is postulated to be associative, i.e., for any X , Y , Z

(3) [(X == (Y == Z» == «X == Y) == Z)]

Together with Leibniz's Rule, (3) indeed expresses associativity: it implies
that wherever we have a subexpression parenthesized as at the one side of
(3)'s central == -sign, the parentheses may be rearranged as at its other side
without changing the value of the total expression.

In our manipulations we shall never refer to (3) -or to analogous
formulae expressing the associativity of other operators- because we shall
never carry out these shunting operations in such needless detail. Instead,
when dealing with such "continued" expressions built with an associative
operator, we shall feel free to insert or remove parenthesis pairs as we see fit.

The other important property of the equivalence -remember that == is
only an alternative for - is that it is symmetric. (Sometimes this

5. The calculus of boolean stuctures 33

property is not called "symmetry" but "commutativity".} Under the conven
tion of omitting redundant parenthesis pairs, the symmetry of the equivalence
is postulated by

(4) [X == Y == Y == X]

In combination with the associativity of the equivalence, (4) is a rich
formula:

• parenthesized as [(X == Y) == (Y == X)] ,it expresses the symmetry of the
equivalence;

• parenthesized as [X == (Y == Y == X)] ,it expresses that Y == Y is a
left-identity element of the equivalence;

• parenthesized as [(X == Y == Y) == X] ,it expresses that Y == Y IS a
right-identity element of the equivalence.

For a (not necessarily symmetric) operator that has a left- and a right
identity element, the identity element is unique.

Proof Let u be a left-identity element of the infix operator . ,and let v be a
right-identity element of .. Then we observe

u
{ v is a right-identity element of . }

u·v
{ u is a left-identity element of . }

v

hence

(5) [u=v]

Furthermore, let u' be a left- and v' be a right-identity element of . . Then
we observe

u v
{(5)} {(5)}

v u
{(5) with u := u' } {(5) with v := v' }

u' v'

hence

(6) [u = u'] and [v = v']

Conclusions (5) and (6) settle the uniqueness of the identity element of
(End of Proof)

34 5. The calculus of boolean structures

Hence, the equivalence has a unique identity element; its customary name is
"true", a convention properly captured by the postulate

(7) [X == true == X]

For a moment, one could harbour the suspicion that the equivalence has
as many distinct identity elements as there are spaces on which to define
structures. Fortunately, this is not the case: from (4) with the substitution
Y:= [Y] ,we deduce

[X == [Y] == [Y] == X]

and see that [Y] == [Y] is the identity element for the "equivalence on the
space of X"; but [Y] == [Y] ,the equivalence of two boolean scalars, is a
boolean scalar, i.e., a boolean structure on the trivial space. In other words,
the identity element of the equivalence is as unique as the zero in 0 + x and
0+ y ; the identity element true is in fact as unique as the equivalence and
the "everywhere" operator themselves.

Formulae (2), (3), (4), and (7) are boolean scalars, and, true being the
identity element of the equivalence, we could, for instance, have written
instead of (7)

[X == true == X] == true

for brevity's sake we prefer (7). For the same reason we don't write

[[X == true == X]]

In principle we avoid such redundant identity operators; an occasional
" == true" will occur for reasons of symmetry or analogy.

The above will be extended by more postulates, which define the proper
ties of new operators, and by expressions that state theorems. In proving the
latter, we reduce these expressions to the value true by using the results then
available, as is illustrated in the following (simple!) proof.

Theorem Equivalence is reflexive, i.e., for any boolean structure X

(8) [X == X]

Proof We observe for any X

[X ==X]
{(7), parenthesized [X == (true == X)] }

[X == true == X]
{(7)}

true
(End of Proof)

5. The calculus of boolean stuctures 35

Remark Note how, in the first hint, we did not feel the need to identify the
subexpression being replaced. (End of Remark.)

Finally we derive for the identity element of the equivalence

(9) [true]

by calculating for some X

[true]
{(7) parsed as [true =" (X =" X)] }

[X =" X]

{(8)}

true

a result that is in accordance with our earlier conclusion that true is a
boolean scalar. So much for the equivalence and its identity element.

* * *
It is time to introduce our next infix operator; it is called the disjunction, it

is written as " v " ,and read as "or". We give it a higher binding power than
the equivalence.

The disjunction is a function from a pair of boolean structures to a
boolean structure; if both operands are scalar, so is the result.

The disjunction is postulated:

• to be symmetric, i.e., for any X Y

(10) [X v Y =" Y v X]

• to be associative, i.e., for any X , Y, Z

(11) [X v (Y v Z) =" (X v Y) v Z]

• to be idempotent, i.e., for any X

(12) [X v X =" X]

• to distribute over equivalence, i.e., for any X , Y , Z

(13) [X v (Y =" Z) =" X v Y =" X v Z]

Of the above four postulates, the first three deal with the disjunction in
isolation, the last one couples the disjunction and the equivalence. The first
three suffice to show our next

Theorem The disjunction distributes over itself, i.e., for any X , Y , Z

(14) [X v (Yv Z) =" (X v Y) v (X v Z)]

36 5. The calculus of boolean structures

Proof We observe for any X , Y, Z

(X v Y) v (X v Z)

{ell), i.e., v is associative}

X v (Y v X) v Z

{(1O), i.e., v is symmetric}

X v (X v Y) v Z
{ell), i.e., v is associative}

(X v X) v (Y v Z)

{(12), i.e., v is idempotent}

X v (Y v Z)
(End of Proof)

Remark In the above, we have written more parentheses than usual. The
"auto-distribution" we demonstrated for the disjunction holds for any
operator that is symmetric, associative, and idempotent. (End of Remark.)

With the aid of our fourth postulate (13) we can prove

Theorem The boolean scalar true is a zero-element of the disjunction, i.e., for
any X

(15) [X v true == true]

Remark The shorter formulation [X v true] would have disguised true's
property of being a zero-element. (End of Remark.)

Proof The need for (13), which states a connection between disjunction and
equivalence, is not surprising because, so far, we know the boolean scalar
true only as the identity-element of the equivalence. Not surprisingly, the first
step of the following calculation appeals to that definition of true . We
observe for any X , Y

X v true
{(7) with X:= Y }

X v (Y == Y)

{(13) with Z:= Y }
XvY==XvY

{(7) with X:= X V Y }

true
(End of Proof)

5. The calculus of boolean stuctures 37

Remark We would like the reader to note that, in all its simplicity, the above
calculation presents a striking example of opportunity-driven simplification.
(End of Remark.)

* * *
It is time to introduce our next operator. The shortest total argument

would result from introducing the negation first and then defining the
conjunction in terms of negation and disjunction (i.e., by postulating one of
the Laws of de Morgan). We will not do so, firstly, because that is a usual
order and it is always nice to show an alternative, and, secondly, because we
don't want to hide the fact that the conjunction can be introduced in terms of
what we already have: the negation, which is something really new, is not
needed for that purpose.

Let us explore what new expressions we can write down in terms of
equivalence and disjunction. Because disjunction distributes over equiva
lence, we can confine ourselves to variables, disjunctions of variables, and
(continued) equivalences thereof. Because of the idempotence of the disjunc
tion, the disjunctions can be confined to disjunctions of different variables.
Because of the identity element of the equivalence, we can confine ourselves
to (continued) equivalences of different subexpressions. Taking this, plus
associativity and symmetry, into account, we conclude that in two variables
we can construct, besides X == Y and X v Y , only two new expressions,
viz., of the forms

(16) X v Y == Y

(17) X == Y == X v Y

The next thing to investigate is whether, viewed as functions of X and Y ,
these expressions have nice properties. Because (16), though shorter, looks
less symmetric than (17), we shall start our investigations by exploring the
properties of the latter.

The function expressed by (17) is called the conjunction; it is denoted
by an infix " 1\ " ,which is read as "and". For reasons of symmetry (which
will become clear later) we give 1\ the same binding power as v . In
summary, the conjunction is defined by postulating for any X , Y

(18) [X 1\ Y == X == Y == X v Y]

a relation also known as "The Golden Rule".

The conjunction being defined by (18) in terms of equivalence and
disjunction, all its properties follow from those of the latter two operators.
The conjunction is a function from a pair of boolean structures to a boolean
structure because equivalence and disjunction are such functions; similarly it

38 5. The calculus of boolean structures

is a boolean scalar if both its arguments are. And, indeed, we have -as
hoped- our

Theorem The conjunction is symmetric, i.e., for any X , Y

(19) [X /\ Y == Y /\ X]

Proof We observe for any X , Y

X/\Y

{(18) }

X==Y==XvY

{associativity and symmetry of _ }

Y==X==XvY

{symmetry of v }

Y==X==YvX

{(I8) with X, Y:= Y, X }

Y/\X

The conjunction has other nice properties.

(End of Proof)

Theorem The conjunction is associative, i.e., for any X , Y , Z

(20) [X /\ (Y /\ Z) == (X /\ Y) /\ Z]

Proof We observe for any X , Y , Z

X /\ (Y /\ Z)

{Golden Rule with X, Y:= Y, Z }

X /\ (Y == Z == Y v Z)

{Golden Rule with Y:= (Y == Z == Y v Z) }

X == Y == Z == Y v Z == X v (Y == Z == Y v Z)

{ v distributes over == ; associativity of v }

X==Y==Z==YvZ==XvY==XvZ==XvYvZ
{associativity and symmetry of == }

X== Y==XvY==Z==XvZ == YvZ==XvYvZ

{ v distributes over == ; associativity of v }

X == Y == X v Y == Z == (X == Y == X v Y) v Z

{Golden Rule with X, Y:= (X == Y == X v Y), Z }

(X == Y == X v Y) /\ Z

{Golden Rule}
(X /\ Y) /\ Z

(End of Proof)

5. The calculus of boolean stuctures 39

Remark We have carried out this proof in such detail in order to show that it
depends neither on the symmetry nor on the idem potence of the disjunction.
(In the absence of symmetry, one has to postulate that v distributes both
forwards and backwards over == .) (End of Remark.)

Theorem The conjunction is idempotent, i.e., for any X

(21) [X A X == X]

Proof We observe for any X

XAX

{Golden Rule}
X==X==XvX

{identity element of }
XvX

{idempotence of v }
X

(End of Proof)

Theorem The boolean scalar true is the identity element of the conjunction,
i.e., for any X

(22) [X A true == X]

Proof We observe for any X

X A true
{Golden Rule}

X == true == X v true
{(1S), i.e., zero-element of v }

X == true == true
{identity element of == }

X
(End of Proof)

In each of the above four proofs a property of the conjunction is derived
from the same (or a similar) property of the disjunction. The following three
theorems highlight the symmetry further.

Theorem Conjunction and disjunction satisfy the Laws of Absorption, i.e., for
any X, Y

(23) [X A (X V Y) == X]

(24) [X v (X A y) == X]

40 5. The calculus of boolean structures

Proof We observe for any X , Y

X /\ (X V Y)

{Golden Rule}
X=:=XvY=:=XvXvY

{idempotence of v }
X=:=XvY=:=XvY

{identity element of =:= }
X

which establishes (23); by interchanging /\ and v we obtain the proof of
(24).

(End of Proof)

Remark In the first step of the above proof, an alternative application of the
Golden Rule would have been to rewrite (X v Y) ,but that would have been
a blind alley, since we don't know how to manipulate the equivalence as
conjunct. In the above calculation this problem is circumvented by using the
Golden Rule to eliminate the outer /\ . See also the proof of the next
theorem. (End of Remark.)

Theorem Disjunction distributes over conjunction, i.e., for any X , Y , Z

(25) [X v (Y /\ Z) =:= (X V Y) /\ (X V Z)]

Proof We observe for any X , Y, Z

(X v Y) /\ (X V Z)

{Golden Rule}
Xv Y =:= XvZ =:= Xv YvXvZ

{properties of v }
XvY=:=XvZ=:=XvYvZ

{v distributes over =:= }
X v (Y =:= Z =:= Y v Z)

{Golden Rule}
X v (Y /\ Z)

(End of Proof)

Because, in general, conjunction does not distribute over equivalence, we
cannot prove the next, dual, theorem by interchanging /\ and v in the
above calculation. Instead, it can be proved using the previous two theorems.

Theorem Conjunction distributes over disjunction, i.e., for any X , Y , Z

(26) [X /\ (Y V Z) =:= (X /\ Y) V (X /\ Z)]

5. The calculus of boolean stuctures 41

Proof We observe for any X , Y , Z

(X /\ Y) V (X /\ Z)

{v distributes over /\ }
«X /\ Y) V X) /\ «X /\ Y) V Z)

{Law of Absorption}
X /\ «X /\ Y) V Z)

{v distributes over /\ }
X /\ (X V Z) /\ (Y V Z)

{Law of Absorption}
X /\ (Y V Z)

(End of Proof)

Our next theorem shows how to eliminate the equivalence as conjunct.

Theorem We have for any X , Y , Z

(27) [X /\ (Y == Z) == X /\ Y == X /\ Z == X]

Proof We observe for any X , Y, Z

X /\ (Y == Z)

{Golden Rule}

X == Y == Z == X v (Y == Z)
{ v distributes over equivalence}

X==Y==Z==XvY==XvZ

{rearranging and grouping}
(X == Y == X v Y) == (Z == X v Z)

{Golden Rule, twice}
X/\Y==X/\Z==X

(End of Proof)

Note how the final "== X" in (27) destroys the distribution of /\
over . As a corollary of the previous theorem -by applying it
twice- the reader may derive

(28) [W /\ (X == Y == Z) == W /\ X == W /\ Y == W /\ Z]

a relation that can be referred to by "/\ distributes over == == ".

Finally, we demonstrate the

Theorem For any X , Y

(29) [X /\ (X == Y) == X /\ Y]

42 5. The calculus of boolean structures

Proof We observe for any X , Y

X /\ (X == Y)

{(27) with Z:= X }
X/\X==X/\Y==X

{idempotence of /\ }
X==X/\Y==X

{identity element of }
X/\Y

(End of Proof)

Remark on Notation When introducing the conjunction, we said that we
would give it the same binding power as the disjunction, and that we did so
for reasons of symmetry. By now we have seen a lot of symmetry. There is
even more of it. We have, for instance, for any X , Y , Z -as the reader
may care to verify-

[(X /\ Y) V (Y /\ Z) V (Z /\ X) ==
(X v Y) /\ (Y V Z) /\ (Z V X)]

With different binding powers for /\ and v ,the parentheses in one of the
lines are superfluous; omitting them would display the symmetry less nicely.
We would like to stress that our decision to give /\ and v the same
binding power is based on much more than mere aesthetics; it is, in fact,
based on a frightening observation.

In electronic engineering it is not unusual to associate the pair {O,I} with
the boolean scalar domain, in particular to associate the integer I with the
boolean scalar true . Conjunction is then associated with multiplication and
denoted by juxtaposition. This convention captures the idempotence of the
conjunction: xx = x does hold for x = ° and x = I ; that I stands for the
conjunction's identity element is captured by the arithmetically familiar
Ix = x . The next step is to denote the disjunction by + ; its idempotence is
rendered by x + x = x ,which holds for x = ° ; for x = I ,the analogy
with arithmetic is violated. It is, however, perfect in the expression of the
conjunction's distribution over disjunction:

x(y + z) = xy + xz

a relation with which all electronic engineers are thoroughly familiar. Our
frightening observation was that many of them are more than hesitant about
the dual

x + yz = (x + y)(x + z)

(Try the experiment! Try to write down this last formula, and you will notice
that it requires a conscious effort.)

5. The calculus of boolean stuctures 43

This small example shows in its full horror how an unfortunate notation
can damage one's manipulative abilities. We took it as a warning and decided
that the destruction of symmetry in order to save a few characters is penny
wise and pound-foolish. (End of Remark on Notation.)

So much for the conjunction.

* * *
We continue our exploration by investigating (16), the other two-variable

expression we could construct from == and v . This investigation requires
some groundwork concerning punctuality. Because definition (3, 6) of
punctuality uses the implication sign and we wish to avoid manipulating
expressions containing the implication sign before the latter has been
introduced in our calculus of boolean structures, we give here an alternative
definition of punctuality. We shall see later that this definition of punctuality
is equivalent to the earlier (3, 6) -see (46)- .

In this section, we use x , y , z to denote structures of some type. A
function f from structures to structures being punctual means that for any
x,y

(30) [x=y /\ fx=f.y == x=y]

Equality, besides being defined to be reflexive and symmetric, is postulated
to be punctual in each of its operands, i.e., for any x , y , z -substitute in
(30) u = z for fu -

(31) [x = y /\ (x = z == y = z) == x = y]

Remark For the special case of the equivalence, the punctuality can be
proved, thanks to the associativity of the equivalence. For the general
equality, however, we had to postulate the punctuality. (End of Remark.)

Punctuality of the equality can be equivalently expressed by the property
-sometimes known as "transitivity of ="- that for any x , y , z

(32) [x = y /\ X = Z == x = Y /\ Y = z]

Proof We observe for any x , y , z

[x = Y /\ X = Z == x = Y /\ Y = z]

{(27) with X , Y, Z := X = Y , x = z , y = z }
[x = Y /\ (x = z == y = z) == x = y]

(i.e., (32»

(i.e., (31».
(End of Proof)

44 5. The calculus of boolean structures

Lemma The constant function is punctual, i.e., we have for any structures x ,
y , Z

[x=YJ\Z=Z == x=yl

Proof Follows immediately from the reflexivity of -i.e., [z = Z ==
true]- and the fact that true is the identity element of J\ .

(End of Proof)

Lemma The identity function is punctual, i.e., we have for any structures
x , y

[x=y J\ x=y == x=y]

Proof Follows immediately from the idempotence of J\ .
(End of Proof)

Lemma Let f , 9 ,and the infix 0 be punctual in their arguments; then
fx 0 g.x is punctual in x ,i.e., we have for any x , y

[x=y J\ fxog.x=fyog.y == x=y]

Proof We observe for any x , y ,and punctual f , 9 ,and

x = y J\ fxog.x = fyog.y

{ 9 is punctual}
x = y J\ g.x = g.y J\ fxog.x = fyog.y

{ . is punctual in its last argument}
x = y J\ g.x = g.y J\ fxog.x = fxog.y J\ fxog.x = fy-g.y

{transitivity of = }

x = Y J\ g.x = g.y J\ fxog.x = fxog.y J\ fxog.y = fy-g.y
{ 0 is punctual in its last argument}

x = y J\ g.x = g.y J\ fxog.y = fyog.y

{ 9 is punctual}
x = y J\ fxog.y = fyog.y

{ f is punctual}
x = y J\ fx = fy J\ fxog.y = fyog.y

{ 0 is punctual in its first argument}

x = y J\ fx = fy

{ f is punctual}

x=y
(End of Proof)

The above proof has been conducted for a 0 with two arguments; from the
structure of the proof we see that the conclusion holds for functions of any

5. The calculus of boolean stuctures 45

finite number of arguments. (The infix notation, chosen above in order to
reduce the number of parentheses, is then no longer appropriate.)

With the above three lemmata, of which the last one takes care of
induction over the grammar, we now conclude the

Punctuality Theorem Expressions built from variables and punctual opera
tors are punctual functions of the variables.

Returning to boolean structures, we have

Lemma The disjunction is a punctual function of each of its arguments, i.e.,
for any boolean structures X , Y, Z

[(X == Y) /\ (X V Z ~ Y v Z) == (X == Y)]

Proof We observe for any X , Y , Z

(X == Y) /\ (X V Z == Y v Z)

{ v distributes over ~ }

(X == Y) /\ «X == Y) v Z)
{Law of Absorption}

(X == Y)
(End of Proof)

From the Punctuality Theorem and the punctuality of == and v we
immediately conclude that -see the Golden Rule- /\ is punctual as well.
Furthermore we conclude that X v Y == Y , the expression we had set out
to investigate, is a punctual function of X and Y. It has, indeed, more nice
properties, as follows from the little theory given below; we give that little
theory in isolation because it is perfectly general.

In presenting the little theory, we have taken the nonpuritan decision to
use the implication despite the fact that it has not yet been introduced in our
calculus of boolean structures. We took that decision for two reasons. Firstly,
in normal mathematical parlance the implication occurs in the statement of
many of the properties the little theory is about. Secondly, without the
implication sign our proofs would have been much longer. Because the little
theory is perfectly general, we prefer to present the proofs in the conciseness
we are used to and to use implication as we see fit. So, for a punctual function
f of the proper type we use formulae like

(33) [x = y /\ fx => fy]

(34) [x = y /\ fx => fx /\ fy]

(35) [x = y => fx = fy]

(Here => has the lowest binding power.)

46 5. The calculus of boolean structures

Consoling Remark The puritan reader who is too much alarmed by our lack
of orthodoxy has two options. Either he can reformulate our little theory and
thus convince himself that our premature use of the implication is no more
than an abbreviation. Or he can ignore our general little theory altogether
and demonstrate directly all the properties of the expression X v Y == Y
that we derive from it. (End of Consoling Remark.)

Little Theory Let x , y , z be structures of some type. Consider a punctual
infix operator . and a binary relation --+ that is defined in terms of . by

(36) [x--+y == x·y = y]

(In this Little Theory, the order of decreasing binding power of the operators
is

C\) , • , --+ and = , /\ and v , =:> , == .)

Theorem (. is idempotent) == (--+ is reflexive)

Proof We observe for any x

[x·x=x]
{(36) with y:= X }

[x --+ x]

from which observation the theorem follows. (End of Proof)

Theorem (. is associative) =:> (--+ is transitive)

Proof Because the consequent states for any x , y , z

[x --+ Y /\ Y --+ z =:> x --+ z]

we observe for any x , y , z

x--+y/\y--+z

{(36); (36) with x, y := y, Z }

x·y=y /\ y·z=z

=:> {(34) with x, y := y, x· y; Punctuality Theorem for f given by

[fu == u·z=z]}
y·z = z /\ (x·y)·z = z

{ . is associative}

y-z = z /\ x·(y-z) = Z

=:> {(33) with x , y:= y. Z , z; Punctuality Theorem for f given by
[fu==x·u=z]}

x·z = z

{(36) with y:= Z }

x--+z
(End of Proof)

5. The calculus of boolean stuctures 47

Theorem (. is symmetric) => (--+ is anti symmetric)

Proof Because the consequent states for any x , y

[x--+y A y--+x => x=y]

we observe for any x , y

x--+y A Y--+x

{(36); (36) with x , y:= y , X }

X'y=yAy-X=X

{ . is symmetric}

X'y=YAX'Y=X

=> { = is transitive}
x=y

Theorem With ro a punctual prefix operator,

(End of Proof)

(ro distributes over .) => (ro is monotonic with respect to --+)

Proof Because the consequent states that for any x , y

[x --+ y => rox --+ roy]

we observe for any x , y

ro x --+ roy

{(36) with x,y:= rox, roy }

rox' roy = roy
{ ro distributes over . }

ro(x' y) = roy
<= {(35) with f := ro ,which is punctual}

X'y = Y
{(36) }

X--+y
(End of Proof)

Since an operator that is idempotent, associative, and symmetric -see
(14) and its proof- enjoys the property of "auto-distribution", we have the

Corollary (. is idempotent, associative, and symmetric) =>

(. is monotonic with respect to --+)

Theorem (1 is a left identity element of .) ==
(1 is a left extreme of --+)

48 5. The calculus of boolean structures

Proof We observe for any y

l·y = Y
{(36) with x:= 1 }

l~y

from which observation the theorem follows.

Theorem (0 is a right zero element of .) ==
(0 is a right extreme of ~)

Proof We observe for any x

x·O = 0

{(36) with y:= 0 }
x~o

from which observation the theorem follows.

(End of Little Theory.)

(End of Proof)

(End of Proof)

Since v is idempotent, associative, and symmetric, the above little
theory tells us that X v Y == Y is, indeed, a nice expression. The corres
ponding relation is called the implication, it is denoted by => ,and read as
"at weakest" or as "implies". It is defined by the postulate

(37) [X => Y == X v Y == Y]

we give => a higher binding power than _ but a lower binding power
than /\ and v . We identify it with the implication as we have used it all
the time. Because it is not symmetric, its operands need different names; in
X=> Y , X is called the antecedent and Y the consequent.

From (37) and the Punctuality Theorem it follows that the implication is a
punctual function of its arguments. Furthermore, the little theory tells us

• because v is idempotent, => is reflexive:

(38) [X =>X]

• because v is associative, => is transitive:

(39) [(X => Y) /\ (Y => Z) => (X => Z)]

• because v is symmetric, => is antisymmetric:

(40) [(X => Y) /\ (Y => X) => (X == Y)]

5. The calculus of boolean stuctures 49

• because v is idempotent, associative, and symmetric, v is monotonic
with respect to => :

(41) [(X => Y) => (X v Z => Y v Z)]

• because true is the (right) zero element of v ,it is the right extreme
of =>

(42) [X => true]

Relation (40) underlies the ping-pong argument that establishes equiva
lence by mutual implication. We have, in fact, for any X , Y

(43) [(X=> Y) /\ (Y=>X) "" (X"" Y)]

which we prove directly.

Proof We observe for any X , Y

(X=> Y) /\ (Y=>X)

{(37); (37) with X, Y:= Y, X }

(X v Y"" Y) /\ (Y V X "" X)

{ v is symmetric}

(X v Y "" Y) /\ (X V Y "" X)

{ "" is transitive}

(X"" Y) /\ (X V Y "" X)

{ v and "" are punctual}
(X"" Y) /\ (X V X "" X)

{ v is idempotent}

(X"" Y) /\ (X"" X)

{identity element of }

(X"" Y) /\ true
{identity element of /\ }

(X"" Y)
(End of Proof)

Because also the conjunction is idempotent, associative, and symmetric, it
stands to reason to introduce the consequence, denoted by <= -with the
same binding power as => - and read as "at strongest" or as "follows
from". It is defined by the postulate

(44) [X<= Y "" X/\ Y "" Y]

For reasons of symmetry, the consequence is a nice thing to have, but it
gives us nothing new, as shown by the following

(45) [X => Y "" Y <= X]

50 5. The calculus of boolean structures

Proof We observe for any X , Y

X=Y

{ (37)}
Xv y== Y

{Golden Rule}
Y/\X==X

{(44) with X,Y:= Y,X }

Y<=X

It is useful to know the corollary from (44) and (45)

(46) [X = Y == X /\ Y == X]

(End of Proof)

and the conclusion that also the conjunction is monotonic with respect to the
implication. The last formula comes in handy to prove

(47) [(X = Y) /\ (X' = Y') = (X /\ X' = Y /\ Y')]

Proof We observe for any X , X' , Y , Y'

(X = Y) /\ (X' = Y')
{ (46), twice}

(X /\ Y == X) /\ (X' /\ Y' == X')

= { /\ and == are punctual}
(X /\ Y) /\ (X' /\ Y') == X /\ X'

{(46)}
X /\ X' = Y /\ Y'

(End of Proof)

The original definition (37) of the implication can be used similarly to
demonstrate

(48) [(X = Y) /\ (X' = y') = (X v X' = Y v y')]

It is useful to know the following reformulation of the Laws of Absorption;
(23) and (24) yield in that order

(49) [X = X v Y]

(50) [X /\ Y = X]

5. The calculus of boolean stuctures 51

For an equivalence as consequent we have

Theorem For any X , Y , Z

(51) [X => (Y == Z) == X I\. Y - X I\. Z]

Proof We observe for any X , Y , Z

X=>(Y == Z)

{(46) with Y:= (Y == Z) }
X I\. (Y == Z) == X

{(27)}
XI\. Y== XI\.Z

(End of Proof)

Consequents of the form of an equivalence being not unusual, the above
theorem is one to remember. We shall refer to it later in this chapter.

* * *
It is time to introduce a really new operator, the unary prefix operator

called negation, written as "...," ,and read as "non"; we give it a higher
binding power than v and I\. . Negation is a function from boolean
structures to boolean structures; applied to a boolean scalar, the negation
yields a boolean scalar, i.e., ...,true is a boolean scalar, or, formally, -see
(1)- we have

[...,true] == ...,true

It is customary to denote the boolean scalar ...,true by false ,i.e., we have

(52) false == ...,true

(53) [false] ==false

The properties of false will be derived from those of the negation.

We postulate separately the properties of the negation with respect to the
equivalence and the disjunction, i.e., the operators we have treated as the
primary ones. From those postulates we shall derive its properties with
respect to the secondary ones, conjunction and implication.

Negation and equivalence are connected by the postulate that for any
X, Y

(54) [...,(X == Y) == ...,X == Y]

52 5. The calculus of boolean structures

Theorem For any X

(55) [,X=X=false]

Proof We observe for any X

,X=X
{(54) with Y := X }

,(X= X)
{(7)}

,true
{(52)}

false

Theorem For any X , Y

(56) [,X= Y= X= ,Y]

Proof We observe for any X , Y

,x= Y

{(54)}
,(X= Y)

{symmetry of
X=,Y

; (54) with X , Y := Y , X }

Theorem Negation is its own inverse, i.e., for any X

(57) [!IX = X]

Proof We observe for any X

"X=X
{(56) with Y:= ,X }

,X= ,x
{identity element of - }

true

(End of Proof)

(End of Proof)

(End of Proof)

Theorem The negation is a punctual function of its argument, i.e., for any
X, Y

(58) [(X = Y) /\ (,X = ,Y) = (X = Y)]

5. The calculus of boolean stuctures 53

Proof We observe for any X , Y
(X=: Y) /\ (,X=: ,Y)

{(56)}

(X=: Y) /\ (X=: Y)

{ /\ is idempotent}
X=: Y

(End of Proof)

Negation and disjunction are connected by the famous Law of the
Excluded Middle. We postulate for any X

(59) [X v ,X]

In order to investigate what we can derive from (54) and (59) together, we
observe that the latter contains one negation sign, whereas the former gives
an alternative expression for the negated equivalence. Thus inspired, we
observe for any X , Y

true
{(59) with X:= (X =: Y) }

[(X=: Y) v ,(X=: Y)]

{(54) }
[(X=: Y) V (,X=: Y)]

{ v distributes over =: }

[X V ,X =: Y V ,X =: X v Y =: Y v Y]

{(59) and identity element of =: }

[Y V ,X =: X v Y =: Y v Y]

{properties of v }
[,Xv Y=: Xv Y=: Y]

Thus we have proved the

Theorem For any X , Y

(60) [,XvY=:XvY=: Y]

Remark For the variation we chose to explore a calculational opportunity,
just to see what theorem we would come up with. Platonists would say that
we have "discovered" a new theorem. (End of Remark.)

54 5. The calculus of boolean structures

That is a nice theorem, for the substitution X:= true gives us a handle on
the role of false as a disjunct. Indeed we have the

Theorem The boolean scalar false is the identity element of the disjunction,
i.e., for any X

(61) [X v false == X]

Proof We observe for any X

X v false
{(52)}

X v ,true
{(60) with X, Y := true, X }

true v X == X
{ true is zero element of v }

true == X
{ true is identity element of _ }

X

And in the same vein we have the

(End of Proof)

Theorem The boolean scalar false is the zero element of the conjunction, i.e.,
for any X

(62) [X A false == false]

Proof We observe for any X

X A false == false
{Golden Rule}

X == X v false
{(61)}

true
(End of Proof)

Formula (60) has not been exhausted yet. It gives us a way of eliminating
the negation from a negated disjunct. Let us see what happens if we start with

5. The calculus of boolean stuctures 55

two negated disjuncts and apply (60) twice! We observe for any X , Y

,Xv,Y

{(60) with Y:=, y }
Xv,Y==,Y

{(60) with X, Y:= Y, X }

YvX==X="Y

{(54) with X, Y:= Y , Y v X =' X}

,(Yv X == X == Y)
{Golden Rule}

,(X /\ Y)

Thus we have derived one of the well-known Laws of Augustus de Morgan,
viz., that for any X , Y

(63) [,X v ,Y == ,(X /\ Y)]

Eliminating from (60) the two disjunctions by means of the Golden Rule
yields after simplification

(64) [,X /\ Y == X /\ Y == ,Y]

a rewrite rule to remove the negation from a negated conjunct. Applying it
twice provides one of the many ways of deriving the other Law of de Morgan,
viz., that for any X , Y

(65) [,X /\ ,Y == ,(X v Y)]

We leave to the reader the verification that the Laws of de Morgan also
hold for more than two dis- and conjuncts, e.g.,

[,X V ,Y V ,Z == ,(X /\ Y /\ Z)]

Remark Ironically, de Morgan lacked the proper notational tools to express
the laws he is best known for: he did not have the negation operator.
Knowing that the negation is its own inverse and that the 26 letters of the
upper-case alphabet are in one-to-one correspondence to the 26 letters from
the lower-case alphabet, he introduced the convention that the two cases of
the same letter should stand for a proposition and its negation. Consequently
he could only negate named propositions and not expressions (which are
what his Law is about). He had to write something like

(x /\ y) = z == (X v Y) = Z

At first sight, de Morgan's convention might seem a neat way of capturing
that negation is its own inverse; we would like to stress that, for its lack of
combinatorial freedom, it is from the point of view of manipulation a severe
pain in the neck. (End of Remark.)

56 5. The calculus of boolean structures

A very different theorem connecting negation, disjunction, and conjunc
tion is the following equivalence. It may strike the reader as a rather special
theorem; it has been included because it equates expressions of a form we
shall encounter frequently when dealing with the semantics of the repetition.

Theorem For any X , Y , Z

(66) [(,X v Y) 1\ (X V Z) == (X 1\ Y) V (,X 1\ Z)]

Proof We observe for any X , Y

(,XV Y) 1\ (Xv Z)

{because it enables us to form the conjunctions at the right-hand side of
(66), we distribute 1\ over v }

(,X 1\ X) V (Y 1\ X) V (,X 1\ Z) V (Y 1\ Z)
= {we must eliminate the outer disjuncts; the left one is easy: with de

Morgan and the Excluded Middle [,X 1\ X == false] ,and false is
the identity element of v }

(X 1\ Y) V (,X 1\ Z) V (Y 1\ Z)

{heading for the Law of Absorption, we introduce X and ,X into the
last disjunct; with the Excluded Middle and the identity element of 1\ }

(X 1\ Y) V (,X 1\ Z) V «X v IX) 1\ Y 1\ Z)

{distribute 1\ over v}
(X 1\ Y) V (X 1\ Y 1\ Z) V (,X 1\ Z) V (,X 1\ Z 1\ Y)

= {Law of Absorption, twice}
(X 1\ Y) V (,X 1\ Z)

(End of Proof)

So much for the conjunction. We now turn our attention to the connec
tions between negation and implication; (60) is not exhausted yet.

Theorem For any X , Y

(67) [X = Y == ,X v Y]

Proof We observe for any X , Y

X=Y
{ (37)}

Xv Y== Y
= {(60)}

IXV Y
(End of Proof)

5. The calculus of boolean stuctures 57

It has as immediate offspring what is known as the

Shunting Theorem For any X , Y , Z

(68) [X " Y => Z == X => I Y V Z]

Proof We observe for any X , Y , Z

X" Y=>Z

{(67) with X,Y:= (X " Y), Z }
I(X" Y) V Z

{de Morgan}
,X v I Y V Z

{(67) with Y:= I Y V Z }
X=>,YVZ

(End of Proof)

A pure connection between negation and implication is given by the

Theorem of the Contra-positive For any X , Y

(69) [X => Y == I Y => "'IX]

Proof We observe for any X , Y

,Y=>,X

{(67) with X,Y:= IY, IX }

II Y V IX

{ I is its own inverse}
,x v Y

{(67)}

X=> Y

The proof of

(70) [false => X] for all X

is left to the reader.

(End of Proof)

For the sake of completeness, we mention yet another infix operator,
called the discrepancy, written as =1= ,and read as "differs from". It
is symmetric and associative; it is mutually associative with the equivalence
and has been given the same low binding power as the equivalence. It is
defined by

(71) [X =1= Y == I(X == Y)]

58 5. The calculus of boolean structures

We leave to the reader the verification of

(72) [X =f. false == X]

(73) [X A (Y =f. Z) == X A Y =f. X A Z]

The fact that conjunction distributes over discrepancy is about the only
reason for mentioning the discrepancy at all.

Remark Nothing in our postulates prevents us from choosing for the
negation the identity operator. From the Excluded Middle we then immedi
ately derive, for any X , [X] -or [X == true] ,if we wish to be more
explicit- . There is nothing logically wrong with this model, in which true is
essentially the only boolean structure; the model's only disadvantage is that
it is totally void of interest. Hence our interest is restricted to those models in
which [X] holds only for X the boolean scalar true and for none of the
other boolean structures, of which at least one exists. The rejection of the
noninteresting model is more than we care to formalize. (End of Remark.)

* * *
We need one further postulate about the "everywhere" operator, which we

introduced as a function from boolean structures to the traditional boolean
domain {true,false} . We have seen that

(i) it is idempotent,
(ii) it has true and false as fixpoints, i.e.,

[true] = true and [false] = false

As we shall see later in this chapter, (i) and (ii) are properties enjoyed by
quantification over a non-empty range, be it existential or universal quantifi
cation. In order to give the "everywhere" operator the properties of universal
quantification, we postulate that it distributes over conjunction, i.e., for any
X,Y

(74) [X A Y] == [X] A [Y]

As a consequence, it is monotonic with respect to the implication, i.e., for any
X, Y

(75) [X => Y] => ([X] => [Y])

* * *
In the above, we have gone in great detail through a few dozen formulae.

Some might even argue that we spent more pages on them than the topic
deserves. This, however, is not confirmed by the general experience (of us and
of others). In the teaching of this material, two handicaps are quite common.

5. The calculus of boolean stuctures 59

The one handicap consists in an audience of people that have used
boolean expressions in programming or in circuit design and therefore
believe that they know all these things already. They have, indeed, seen some
of the operators, but their knowledge is usually rather incomplete, and
sometimes even twisted. (Famous is the story of the electronic engineer that
knew the discrepancy, which he called "the exclusive or", but had never
thought of the equivalence; when asked to do the latter, he came up with "the
exclusive nor".) The operators they know, they usually know by means of
"truth tables", and extensive case analysis -i.e., substituting all possible
values for all variables- is often their only way of coping with boolean
expressions. With increasing number of variables, this way becomes yery
clumsy, and, in the presence of nonpunctual functions or quantified expres
sions, it is fundamentally inadequate. We are much better off with the rules of
manipulation at our fingertips, but these rules are almost totally unknown.
Those rules are what we wish to convey in this chapter.

The other handicap consists in an audience that has been introduced to
logic by philosophers. Such an audience can become very uneasy about our
use of the associativity of the equivalence, because that use does not reflect
human reasoning, which, according to some philosophers, logic has to mimic.
Without denying the associativity of the equivalence, people can viol~ntly
protest against its exploitation because it is "unnatural" or "counter
intuitive ".

We grant the latter in the sense that (at least Western) languages are rather
ill-equipped at expressing equivalence. We have, of course, the infamous "if
and only if" -where "if" takes care of "follows from" and "only if" of
"implies"- but that is no more than an unfortunate patch: by all linguistic
standards, the sentence

"Tom can see with both eyes if and only if Tom can see with only one
eye if and only if Tom is blind."

is -probably for its blatant syntactic ambiguity- total gibberish. But for us
this is no reason to disqualify the equivalence. On the contrary, if our
formalism allows simple calculations that are beyond the unaided mind
because their verbal rendering would be too baffiing, so much the better. In
this respect we are totally pragmatic, and it was in that vein that we stressed
the algebraic nature of the calculus.

So much for the two handicaps. There is a potential third one, viz., the
possible inclination to reinterpret all the time our formulae in set-theoretic
terms.

A possible model for our boolean structures is provided by the boolean
functions defined on some space, with all punctual operators being applied
point-wise. The next step is to establish a one-to-one correspondence between

60 5. The calculus of boolean structures

the subsets of points from the space and the boolean structures: with each
subset of points we associate its membership function as its corresponding
boolean structure.

We can now try to translate our logical operators into set-theoretic terms.
For disjunction and conjunction, this is easy: they correspond to union u
and intersection n ,respectively. With the equivalence we have the problem
that (for two operands) it would yield the set of points belonging to both
operands or to neither, and, traditionally, set theory shuns operators that
yield sets containing elements that don't belong to at least one of the
operands. Fortunately, there is what is called "the symmetric set difference"
-;- : it contains all elements belonging to one operand but not to the other. It
corresponds to our discrepancy =1= ,and in set theory the associativity of the
symmetric set difference is known. The equality sign = is used to denote
equality of subsets; it corresponds to our "equivales everywhere" [==] .

In order to render the Golden Rule in standard set-theoretical notation,
we have to replace two equivalences by discrepancies, whereas the last one is
replaced by = to carry the burden of the square brackets. Even in serious
books on set theory we may thus find the following "different" theorems

A = B -;- (A n B) -;- (A u B)
A -;- B = (A n B) -;- (A u B)
(A n B) = A -;- B -;- (A u B)
(A u B) = A -;- B -;- (A n B)
A -;- (A u B) = B -;- (A n B)

in which we recognize five clumsy renderings of the same Golden Rule. The
above is a striking example of how inadequate notation can generate
spurious diversification. The main culprit, of course, is not the symmetric set
difference -this could be remedied by the introduction of a "symmetric set
equality" - but the absence of the square brackets. We hope that the above
reinforces our recommendation not to translate our formulae into set
theoretical notation and concepts so as to make them "easier to understand".
Besides the clumsiness of that translation, there is a more fundamental reason
for not indulging in it: the model of the subsets is overspecific because the
analogue of their elements need not exist.

* * *
As the reader will have noticed, we did not overstress the implication. We

encountered a whole bunch of equivalent expressions, such as

Xv y== Y
X",y==X
,Xv Y
,X", ,y == ,y
,X V ,y == ,X
,(X", ,y)

5. The calculus of boolean stuctures 61

Faced with such an embarras du choix, one should consider the introduction
of a neutral shorthand for them. So we did: we introduced X=> Y for all of
them. As soon as one has done so, one is invited to study the properties of the
newly introduced relation. We found with our little theory that it is reflexive,
transitive, and antisymmetric and that disjunction and conjunction are
monotonic with respect to it. So far, so good.

A punctual function f being antimonotonic with respect to the
implication means that for any X , Y

[(X => Y) => (f Y => fX)]

The Law of the Contra-positive tells us that negation is antimonotonic; (67)
tells us that implication is both: monotonic in its consequent and antimono
tonic in its antecedent. And equivalence is neither.

One could try to use maintenance of implications as one's primary proof
paradigm, an implication being maintained by strengthening its antecedent
or by weakening its consequent. Because of one's reliance on monotonicity
properties, an equivalence then becomes an awkward expression to manipu
late. It is customary to replace it by mutual implication:

[X == Y == (X => Y) /\ (X ¢= Y)]

If this is one's only way of eliminating the equivalence, the price is very heavy:
eliminating the equivalences from X == Y == Z by mutual implication
irrevocably destroys the symmetry.

Using monotonicity with respect to implication is one thing; manipulating
expressions that make heavy use of the implication is quite another matter.
Firstly, the implication is neither symmetric nor associative, and its laws of
distribution are awkward. Secondly, in combination with the negation sign,
hell breaks loose, as is shown by the following eight expressions:

(,X => Y) => ,(X=> , Y)
(, Y => X) => ,(X => , Y)
(,X => Y) => ,(Y => ,X)
(, Y => X) => ,(Y => ,X)
(X =>, Y) => ,(,X => Y)
(Y => ,X) => ,(,X => Y)
(X => ,Y) => ,(, Y => X)
(Y => ,X) => ,(, Y => X)

which -believe it or not- are all equivalent to X == Y . They are all
derivatives of

(76) [X == Y XvY=>X/\Y]

62 5. The calculus of boolean structures

Proof of (76) We observe for any X , Y

XvY=>X"Y
{since -Law of Absorption- [X v Y = X"

(X v Y => X " Y) " (X v Y = X " Y)
{(43), i.e., mutual implication}

XvY=X"Y
{Golden Rule}

X= Y

YJ}

(End of Proof)

And all that glut was derived without using the Shunting Theorem! The
moral of the story is that expressions with the implication sign offer too much
needless variety, and that the corresponding arsenal of manipulation rules is
larger (and uglier) than we care to remember. Consequently, the proper
elimination of the implication sign -as in the above proof-is a usual first
step in our calculations.

Remark In his connection we would like to draw attention to two obser
vations.

Firstly, people thoroughly familiar with equivalence as mutual implication
are often surprised by (76); this is strange, for (76) is -see the above proof
in a sense the dual of the mutual implication.

Secondly, people thoroughly familiar with the transitivity of ::(

x::(y "y::(z => x::(z

are often surprised to see for its negation >

x>z => x>y v y>z

(Should we call this property of > "antitransitivity"?) You are cordially
invited to take the experiment yourself and to show to your random
colleague the above formula with the question of whether it is a theorem.

Some of our habits are needlessly asymmetric. (End of Remark.)

* * *
It is time to introduce quantification. We shall introduce two forms,

universal quantification and existential quantification. They are each other's
dual. We shall introduce the universal quantification in extenso and shall then
state how the duality gives the corresponding properties of the existential
quantification.

Universal quantification is a generalization of conjunction. Its format is

(Vdummies: range: term)

5. The calculus of boolean stuctures 63

Here, "dummies" stands for an unordered list of local variables, whose scope
is delineated by the outer parenthesis pair. In what follows, x and y will be
used to denote dummies; the dummies may be of any understood type.

The two components "range" and "term" are boolean structures, and so is
the whole quantified expression, which is a boolean scalar if both range and
term are boolean scalars. Range and term may depend on the dummies; their
potential dependence on the dummies will be indicated explicitly by using a
functional notation, e.g., if a range has the form r.x /\ s.x.y ,It IS a
conjuntion of r.x ,which may depend on x but does not depend on y ,and
s.x.y ,which may depend on both. Similarly, X will stand for a boolean
structure that depends on none of the dummies. In the following we shall use
r , s , f ,and g to denote functions from (the types of) the dummies to
boolean structures.

For the sake of brevity, the range true is omitted. The following postulate
tells us how ranges different from true can be eliminated:

(77) [(\Ix: r.x: fx) == (\Ix:: ..,r.x v fx)]

(Appeals to this postulate will be given by the catchword "trading", being
short for "trading between range and term".) The convenience of ranges
differing from true will transpire later.

Disjunction distributes in the same way over universal quantification as it
does over conjunction, i.e., we postulate for any X , f

(78) [X v (\Ix:: fx) == (\Ix:: X v fx)]

But now we observe for any X , r , f
X v (\Ix: r.x: fx)

{trading}

X v (\Ix:: "".X v fx)

{(78) with fx := "".X V fx }

(\Ix:: X v "".X V fx)

{trading}

(\Ix: r.x: X v fx)

Hence we have for any X , r , f

(79) [X v (\Ix: r.x: fx) == (\Ix: r.x: X v fx)]

In analogy to conjunction's symmetry and associativity, we postulate that
universal quantification distributes over conjunction, i.e., we postulate for
any f and g

(80) [(\Ix:: fx) /\ (\Ix:: g.x) (\Ix:: fx /\ g.x)]

64 5. The calculus of boolean structures

which invites us to observe for any r , f , 9

(\:Ix: r.x: fx) /\ (\:Ix: r.x: g.x)
{trading, twice}

(\:Ix:: ...,r.x v fx) /\ (\:Ix:: ...,r.x v g.x)
{(80) with fx , g.x:= ".x V fx , ".x v g.x }

(\:Ix:: (".x v fx) /\ (".x v g.x»
= { v distributes over /\ }

(\:Ix:: ".x v (f.x /\ g.x»
= {trading}

(\:Ix: r.x: fx /\ g.x)

Hence \:I distributes over /\ ,i.e., for any r , f, 9

(81) [(\:Ix: r.x: fx) /\ (\:Ix: r.x: g.x) == (\:Ix: r.x: fx /\ g.x)]

Formulae (79) and (81) each relate quantifications with the same range. It
is in fact not uncommon that, all through a longer calculation, a given
dummy has the same range; for brevity's sake, such constant ranges are
stated once and not repeated over and over again. This opportunity for
abbreviation was in fact one of the reasons for introducing the notion of the
range in the first place.

Formula (81) has a partner, in hints referred to as "splitting the range":

(82) [(\:Ix: r.x: fx) /\ (\:Ix: s.x: fx) == (\:Ix: r.x v s.x: fx)]

Proof We observe for any r , s , f

(\:Ix: r.x: fx) /\ (\:Ix: s.x: fx)
{trading, 4 times}

(\:Ix: ...,fx: ".x) /\ (\:Ix: ...,fx: ...,s.x)
{ \:I distributes over /\ }

(\:Ix: ...,fx: ".x /\ ...,s.x)
{de Morgan}

(\:Ix: ...,fx: ...,(r.x v s.x»
{trading, twice}

(\:Ix: r.x v s.x: fx)
(End of Proof)

Another manifestation of associativity and symmetry is the postulate
-referred to by "interchange of quantifications"- that for any f

(83) [(\:Ix:: (\:Iy:: fx.y» == (\:Iy:: (\:Ix:: fx.y»]

5. The calculus of boolean stuctures 65

which invites us to observe for any r , s , f

(Vx: r.x: (Vy: s.y:fx.y))
{trading, twice}

(Vx:: ,r.x v (Vy:: 's.y v fx.y))
{ v distributes over V }

(Vx:: (Vy:: Ir.X v 's.y V fx.y))
{interchange of quantifications}

(Vy:: (Vx:: Ir.X v ,s.y V fx.y))

{ v distributes over V }
(Vy:: 's.y v (Vx:: Ir.X v fx.y))

= {trading, twice}
(Vy: s.y: (Vx: r.x: fx.y))

Hence we have the more general

(84) [(Vx: r.x: (Vy: s.y: fx.y)) == (Vy: s.y: (Vx: r.x: fx.y))]

Also (84) will be referred to by "interchange of quantifications". Notice
that in (84) each dummy carries with it its own range; as a result, no
confusion arises when the ranges are left unmentioned.

Often we don't care which is the outer and which is the inner quantifica
tion. We cater to that by admitting more dummies after the V . By definition

(85) [(Vx,y:: fx.y) == (Vx:: (Vy:: fx.y))]

The reader is invited to verify that it admits of the analogous generalization

(86) [(Vx,y: r.x" s.x.y: fx.y) ==
(Vx: r.x: (Vy: s.x.y: fx.y))]

In hints we refer to these rules as "nesting" or "unnesting".

Two rules confirm the status of the "everywhere" operator as universal
quantifier. The first one is the analogue of (78), the distribution of v over
V : for any boolean structure X and any boolean scalar bs

(87) bs v [X] == [bs v X]

which is easily verified since true and false are the only boolean scalars.

As a special consequence of (87) we mention that the "everywhere"
operator is strengthening, i.e.,

[[X] => X] for all X

66 5. The calculus of boolean structures

Indeed, for any X

[[X] =>X]
{(67) with X, Y := [X],X }

[,[X] v X]

{(87) with bs:= ,[X] }

,[X] v [X]

{Excluded Middle}

true

The other rule, analogous to the interchange of universal quantifications,
is the postulate

(88) [(Vx: [r.x]: fx)] == (Vx: [r.x]: [f.x])

notice that in this case the range has to be a boolean scalar. So much for the
status of the "everywhere" operator.

We now return to (79), the distribution of v over V . With x:= true,
it yields

(89) [true == (Vx: r.x: true)]

from that, with the substitution r:= 'f and trading, we derive

(90) [true == (Vx: false: fx)]

Because the equation

x: false

has no solutions -i.e., its solution set is empty- (90) is summarized as
"with empty range, the universal quantification yields true". (Note how
strongly (82) with s.x := false suggests that (Vx: false: fx) be the identity
element of conjunction.)

The last two formulae tell us that some universal quantifications yield the
value true ; what is still lacking is a postulate telling us that some universal
quantifications yield the value false : all postulates given so far would be
satisfied if each universal quantification were equivalent to true ! This is
remedied by the postulate known as the "one-point rule", viz., that for any y
of the same type as the dummy and any boolean function f on that type

(91) [(Vx: [x = y]: fx) == fy]

Substituting in the above for f the constant function false , we get for any
y of the same type as the dummy

(92) (Vx: [x = y]: false) == false

i.e., here we have a universal quantification equivalent to ,true .

5. The calculus of boolean stuctures 67

Remark An alternative would have been to postulate (92) and then to derive
(91) as a theorem. It has the charm of a simpler postulate; the price to be paid
is a longer proof. The reader may try to derive the one-point rule, given (92).
We suggest the use of Leibniz's Rule. (End of Remark.)

Theorem For any set W

(93) (\Ix: XE W: false) == W= 0

Proof By case analysis, W = 0 and W"# 0 .

(i) W = 0 In this case we borrow from set theory that the membership
function of the empty set is the constant function false and observe

(\Ix: x E W: false)

{ W=0 }
(\Ix: x E 0: false)

{import from set theory}
(\Ix: false: false)

{(90) with fx := false }

true

{ W= 0 }
W=0

(ii) W"# 0 In this case we borrow from set theory that from a non-empty
set we may select an element and call it y . So, let YEW ; we then observe

(\Ix: x E W: false)
{Law of Absorption}

(\Ix: x E W Y ([x = yJ /\ X E W): false)
{Leibniz's Rule}

(\Ix: x E W Y ([x = yJ /\ YEW): false)
{ yE W}

(\Ix: XE W y [x = yJ: false)
{splitting the range}

(\Ix: XE W: false) /\ (\Ix: [x = yJ: false)
{(92)}

(\Ix: x E W: false) /\ false
{pred. calc.}

false

{ W"#0 }

W=0
(End of Proof)

68 5. The calculus of boolean structures

Remark We included the first two steps of the proof (ii) above and did not
start with

('<Ix: x E W: false)
{ yE W}

('<Ix: XE W v [x = y]: false)

though, with their knowledge of set theory, most readers would not hesitate
that "under the assumption YEW", the two ranges are equivalent. The point
is that this transformation has nothing to do with set theory: the formula

(94) [r.y => (r.x == r.x v [x = y])]

is -as the reader may verify- perfectly general.

Furthermore, we would like to stress that, once the assumption YEW has
been made, the first steps of proof (ii) don't come out of the blue at all.

Firstly, our calculation has to connect YEW with x E W from the
demonstrandum; the one and only characteristic of functions -and the
membership function is no exception- being that their application is
equality-preserving, the boolean scalar [x = y] has to enter the picture.

Secondly, once that need has been recognized, the Laws of Absorption are
practically our only choice: they are the only formulae that express X in
terms of X and a totally new Y and are thus also Laws of Introduction. The
choice between the two is finally dictated by the already established need to
apply the Rule of Leibniz. (End of Remark.)

And now we are ready for the next two theorems.

Theorem For any set Wand boolean structure X

(95) [('<Ix: XEW: X) == Xv W=0]

Proof We observe for any X , W

('<Ix: XE W: X)
{predicate calculus}

('<Ix: x E W: X v false)
{ v distributes over '<I }

X v ('<Ix: x E W: false)
{(93)}

Xv W=0
(End of Proof)

5. The calculus of boolean stuctures 69

Theorem For any set W , boolean structure X , and any function f from
the (type of the) elements of W to boolean structures

(96) W =10 = [(\Ix: XE W: X A fx) == X A (\Ix: XE W: fx)]

i.e., provided the range is non-empty, conjunction distributes over universal
quantification.

Proof We observe for any non-empty W ,any X , f

(\Ix: XE W: X A fx)

{ \I distributes over A }

(\Ix: XE W: X) A (\Ix: XE W: fx)

{ (95)}

(X v W= 0) A (\Ix: XE W: fx)

{ W =I 0 ,identity element of v }
X A (\Ix: XE W: fx)

(End of Proof)

Thus, conjunction distributes over universal quantification only if the
range is non-empty, whereas the distribution of disjunction over universal
quantification is unrestricted. In what follows, we shall regularly encounter
consequences of this difference.

Next we observe for any y (of the type of the dummy) and any f (of the
appropriate type)

(\Ix:: fx) A fy

{one-point rule}
(\Ix:: fx) A (\Ix: [x = y]: fx)

{splitting the range}
(\Ix: true v [x = y]: fx)

{zero element of v }
(\Ix:: fx)

Hence the Rule of Instantiation: for any y , f

(97) [(\Ix:: fx) = fy]

and, with fz := [fz] , for any y

(98) (\Ix:: [fx]) = [fy]

It is this formula that allows us to identify the phrase

"We have, for any x , [fx] "

with
"We have (\Ix:: [fx]) "

70 5. The calculus of boolean structures

Both allow us to conclude, for any y ,that we have [fy] ; from an
operational point of view, the two phrases are equivalent. This explains why
"\I" is traditionally read as "for all" and is called "the universal quantifier".
It is customary to use the first phrasing in verbal contexts, but to use the
explicit universal quantification as soon as the expression is needed as
subexpression in a formal context. We have followed this custom (and shall
continue to do so). The custom is nicely illustrated by (97), in which the
universal quantification over x is indicated explicitly, and for which we did
not feel compelled to write

(\If,y:: [(\Ix:: fx) => fy])

although it would have been perfectly correct.

Now the time has come to take a second look at some of our conventions.

To begin with, we allowed ourselves complete freedom in the choice of our
variables, and when expressing, for instance, that negation is its own inverse,
it did not matter whether we wrote

or

We can now express that they are short for the universal quantifications

(\IX:: ["X: X]) and (\lY:: [II Y: Y])

respectively, whose equivalence is a special case of

(99) [(\Ix:: fx) : (\ly:: fy)]

The aforementioned freedom in the choice of our variables is the same
freedom we have in the choice of dummies: those variables are dummies. So
far, so good. But (99) reveals a problem we have glossed over. It stresses that
(\Ix:: fx) is not a function of x ,and this raises two questions:

(i) is (\Ix:: fx) a function, and, if so, of what?
(ii) to what extent need we depart from our general rule that expressions are

functions of their subexpressions?

Question (i) is answered by postulating that (\Ix:: fx) is a function of f ,
i.e., that we have Leibniz's Rule

[f : g] => [(\Ix:: fx) : (\Ix:: g.x)]

which -see (3,4)- we rewrite as

(100) [(\Ix:: fx : g.x)] => [(\Ix:: fx) : (\Ix:: g.x)]

Question (ii) can be answered in two ways. It deals with the status of "fx"
in (\Ix:: fx) : syntactically "fx" is a subexpression of (\Ix:: fx) , but is the
latter really a function of that subexpression? The one answer says: no, not
really. We could (and perhaps should) have chosen a new notation in which

5. The calculus of boolean stuctures 71

the dummy has been eliminated, say ('r/:: f) instead of ('r/x:: fx) . The new
notation would stress that ('r/:: f) is a function of its subexpression f .
Following that line of thought, all our formulae that equate expressions
should be rephrased so as to equate functions; for instance, instead of
["X == X] we might write [, 0, == 1] ,indicating that negation,
functionally composed with itself, yields the identity function. But the price
gets heavy. It is, for instance, quite possible to state de Morgan's Law

[,(X v Y) == ,X /\ ,Y]

as the equality of two functions, each defined on a pair of boolean structures.
In one of our proofs we used the simple instantiation X , Y:= r.x , s.x

[,(r.x v s.x) == ".x /\ ,s.x]

which expresses the equality of two functions of x . Such instantiations
become sizeable exercises in functional abstraction, composition, and appli
cation. The other answer is to accept fx as a subexpression of ('r/x:: fx)
and to consider (100) with the antecedent universally quantified over the
dummy as the proper generalization of the Rule of Leibniz for subexpres
sions, some of whose global variables are dummies. We have adopted the
latter approach.

The hint "Leibniz" will also be used to refer to (100). By the time its use
has become second nature, the hint will be suppressed. We give the format of
some typical proof steps:

[('r/x:: fx) == ('r/x:: g.x)]

<= {Leibniz}
[('r/x:: fx == g.x)]

[('r/x:: fx) == ('r/x:: g.x)]

{Leibniz; since [fx == g.x] }

true

('r/x:: fx)

{Leibniz; since [fx == g.x] }

('r/x:: g.x)

We can now prove the stronger "punctual Leibniz"; for the sake of
generality we introduce a range at the same time.

Theorem "'r/ is...punctual", i.e., for any r , f , g

(101) [('r/x: r.x: fx == g.x) =>

«'r/x: r.x: fx) == ('r/x: r.x: g.x»]

72 5. The calculus of boolean structures

Proof We observe for any r , f , g

(101)

{(51)}

[('Ix: r.X: fx == g.x) 1\ ('Ix: r.X: fx) ==
('Ix: r.x: fx == g.x) 1\ ('Ix: r.x: g.x)]

{ V distributes over 1\ }

[('Ix: r.x: (fx == g.x) 1\ fx) == ('Ix: r.x: (fx == g.x) 1\ g.x)]

Proceeding with the left-hand side we observe

('Ix: r.x: (fx == g.x) 1\ fx)
{(29) with X, Y := fx ,g.x yields [(fx == g.x) 1\ fx == fx 1\ g.x] }

('Ix: r.x: fx 1\ g.x)

Since the right-hand side yields the same expression, this concludes our
proof.

(End of Proof)

Since "everywhere" is monotonic, we conclude from (101) that the
nonpunctual Leibniz (100) also holds for a range differing from true .

And now we should be ready to show that universal quantification is
monotonic with respect to implication, and even punctually so.

Theorem For any r , f , g

(102) [('Ix: r.x: fx => g.x) => «'Ix: r.x: fx) => ('Ix: r.x: g.x»]

Proof We observe for any r , f , g

('Ix: r.x: fx) => ('Ix: r.x: g.x)

= {pred. calc.}

('Ix: r.x: fx) 1\ ('Ix: r.x: g.x) == ('Ix: r.x: fx)

{ V distributes over 1\ }

('Ix: r.x: fx 1\ g.x) == ('Ix: r.x: fx)
<= {V is punctual}

('Ix: r.x: fx 1\ g.x == fx)

{pred. calc.}
('Ix: r.x: fx => g.x)

(End of Proof)

5. The calculus of boolean stuctures 73

We give two further theorems.

Theorem We have for any r , f , g , h of proper types

(103) [(\Ix: r.x: [fx = g.x]) = (\Ix: r.x: h.(fx) = h.(g.x))]

Proof We observe for any r , f , g , h

(103)

= {monotonicity of \I }
[(\Ix: r.x: [fx = g.x] = h.(fx) = h.(g.x))]

{Leibniz}
[(\Ix: r.x: true)]

{(89) }

true
(End of Proof)

Theorem We have for any r , f , g , h of the appropriate types

(104) [(\Ix: r.x: [fx = g.x]) =
«\Ix: r.x: h.(fx)) == (\Ix: r.x: h.(g.x)))]

Proof We observe for any r , f , g , h

(\Ix: r.x: h.(fx)) == (\Ix: r.x: h.(g.x))

= {\I is punctual}
(\Ix: r.x: h.(fx) == h.(g.x))

= {(103)}

(\Ix: r.x: [fx = g.x])
(End of Proof)

An important manipulation involving an invertible function is referred to
as "transforming the dummy". In the special case that the invertible function
is the identity function, the usual hint is "renaming the dummy". It relies on
the next theorem.

Theorem We have for any r , f , and invertible

(105) [(\Ix: r.x: fx) == (\ly: r.(t.y): f(t.y))]

Proof Using trading we see that it suffices to prove the theorem with the
range true . For that range we shall establish the result by mutual
implication, i.e., our demonstranda are

(106) [(\Ix:: fx) = (\ly:: f(t.y))] and

(107) [(\Ix:: fx) = (\ly:: f(t.y))]

74 5. The calculus of boolean structures

Proof of (106) We observe for any f and -not necessarily invertible-

[(\fx:: fx) = (\fy:: f(t.y»]

{ "X =" distributes over \f like ",X v " does}
[(\fy:: (\fx:: fx) = f(t.y»]

{(97) with y := t.y }

[(\fy:: true)]

{(89) }

true
(End of Proof of (106).)

Proof of (107) We observe for any f and invertible

(\fy:: f(t.y»

{definition of functional composition}
(\fy:: (fa t).y)

= {(106) with x,y,j, t:=y,x,fot, t- 1 }

(\fx:: (fot).(t-l.X»

{definition of functional composition}
(\fx:: f«to t-1).x»

{ tot - 1 is the identity function}

(\fx:: fx) (End of Proof of (107).)
(End of Proof)

Remark Firstly, we would like to point out that the above argument is
beautifully disentangled. The theorem is about an invertible t , but the first
subproof holds for any t . Had we approached the problem saying to
ourselves: "Let us try to use our data one at a time, so let us investigate what
we can derive without using that t is invertible.", we would probably have
concluded that for this theorem a ping-pong argument is appropriate. Note
also that -via (97)- only the first subproof refers to earlier properties of
universal quantification. Secondly, we would like to draw the reader's
attention to the second subproof: without a proper notation for functional
composition it would have been hard to describe explicitly how the latter's
associativity is being exploited. It illustrates once more the importance of
adequate notation. (End of Remark.)

Later in this booklet we shall occupy ourselves extensively with the
question of whether function applications distribute over universal quantifi
cation, i.e., whether we have

[f(\f X: X E W: X) == (\f X: X E W: fX)]

Because our functions tend to be monotonic, we shall frequently appeal to the
next

5. The calculus of boolean stuctures 75

Theorem For any monotonic function I (from boolean structures to boolean
structures) and any bag W (of boolean structures)

(108) [f(VX: XE W: X) = (VX: XE W: fX)]

Proal We observe for any monotonic I and any W

(108)
{renaming a dummy}

[f(VX: XE W: X) = (VY: YE W: fY)]
{ "Z =" distributes over V }

[(VY: YE W: f(VX: XE W: X) = fY)]
{ YEW is a boolean scalar, interchange}

(VY: YE W: [f(VX: XE W: X) = fY])
= {I is monotonic, and so is V }

(VY: YE W: [(VX: XE W: X) = Y])
{ YEW is a boolean scalar, interchange}

[(VY: YE W: (VX: XE W: X) = Y)]
{(109), see below}

true

Note Formula (97) can be extended to include a range. We have indeed

(109) [(Vy: r.y: (Vx: r.x: fx) = fy)]

as is established by observing for any r , I
(109)

{trading, twice}
[(Vy:: ,r.y v «Vx:: rr.x v fx) = fy))]

{ [X v (Y = Z) == Y = X v Z] }
[(Vy:: (Vx:: rr.x v fx) = rr.y v fy)]

{(97) and predicate calculus}
true

Alternatively, (109) is phrased as: for all y

(110) [(Vx: r.x: fx) /\ r.y = fy]
(End 01 Note.)

When we use the term "monotonic", we usually mean "monotonic with
respect to implication", i.e., I is monotonic means for a function from
boolean structures to boolean structures

[X= Y]=[fX=fY]

76 5. The calculus of boolean structures

From "preserving some order" the notion of mono tonicity has been
generalized to the transfer of some order in the argument into some order of
the function value. In particular, for a function f from the natural numbers to
boolean structures, "being monotonic" means that we have

(111) (Vi,): 0 ~ i ~}: [fi = fj]) or

(112) (Vi,): 0 ~ i ~}: [fi <= fj])

If we have to distinguish, we say for (111) "f is weakening" and for (112) "f
is strengthening". For weakening and strengthening functions we have the
following two theorems.

Theorem For a weakening boolean function f on the natural numbers

(113) [(Vi: 0 ~ i: fi) == fO] and

(114) n > 0 = [(Vi: 0 ~ i < n: fi) == fO]

Proof We observe for any weakening f

(Vi: 0 ~ i: fi)
{(1lO), with x, y, r.x := i, 0, 0 ~ i and 0 ~ 0, and (46)}

fO /\ (Vi: 0 ~ i: fi)
{(96), range is non-empty}

(Vi: 0 ~ i: fO /\ fi)
{ f is weakening, (111) with i,}:= 0, i yields

(Vi: 0 ~ i: [f0 /\ fi == fO]) }
(Vi: 0 ~ i: fO)

{range is non-empty}

fO

The proof of (114) is left to the reader.

Corollary For strengthening f and natural n

(115) [(Vi: 0 ~ i ~ n: fi) == fn]

Proof From (114) by transforming the dummy.

(End of Proof)

(End of Proof)

Theorem For a boolean function f of two arguments that is weakening in
both arguments or is strengthening in both arguments

(116) [(Vi,): 0 ~ i /\ 0 ~}: fi.]) == (Vi: 0 ~ i: fi.i)]

(This theorem can be generalized to functions of more arguments.)

5. The calculus of boolean stuctures 77

Proof We give separate proofs for weakening and strengthening f .

For any weakening f we observe first

(Vi,): 0:::;; i :::;;}: [fi.i => fj.)])
= {transitivity of => }

(Vi,): 0:::;; i :::;;}: [fU => fj.i] 1\ [fj.i => fj.)])
{ f weakening in 1st and in 2nd argument}

true

hence fi.i is a weakening function of . Furthermore, we observe

(Vi,): 0:::;; i 1\ 0 :::;;}: fi})
{nesting}

(Vi: 0:::;; i: (V): O:::;;): fi.]))
{(U3); fi} is a weakening function of } }

(Vi: 0:::;; i: fLO)
{(U3); fi.O is a weakening function of i }

fO.O
{(U3); fi.i. is a weakening function of }

(Vi: 0:::;; i: fi.i)

So much for weakening f . For strengthening f we observe first

(Vi,): 0:::;; i 1\ 0 :::;;}: fi})
{predicate calculus and transitivity of :::;; }

(Vi,): O:::;;i:::;;} v O:::;;}:::;;i: fi})
{splitting the range}

(Vi,): 0:::;; i :::;;}: fi.}) 1\ (Vi,j: 0:::;; j :::;; i: fi.])

Focussing our attention on the left-hand conjunct we observe

(Vi,): 0:::;; i :::;; j: fi.])
{predicate calculus and transitivity of :::;; }

(Vj,i: O:::;;j 1\ 0:::;; i:::;;j: fi.])
{nesting}

(Vj: 0 :::;;j: (Vi: 0:::;; i :::;;j: fi}))
{(US); fi} is a strengthening function of }

(Vj: 0:::;; j: f}.])

For reasons of symmetry the other conjunct has the same value. With the
idem potence of the conjunction, these two observations settle the matter in
the case of strengthening f .

(End of Proof)

78 5. The calculus of boolean structures

When introducing universal quantification, we said that it was a general
ization of conjunction. This was inspired by the following observation:

(Vi: 0 ~ i < n + 1: fi)
{arithmetic}

(Vi: 0 ~ i < n v i = n: fl)
{splitting the range and one-point rule}

(Vi: 0 ~ i < n: fi) 1\ fn

recursive application of which tempts some to write

[(Vi: 0 ~ i < n + 1: fi) == fO 1\ fl 1\ ... 1\ fn]

or the even worse

[(Vi: 0 ~ i: fi) == fO 1\ fl 1\ ..•]

As the reader will have noticed, we hardly stressed this connection between
universal quantification and conjunction. It is not only that we dislike the
ominous three dots and that it only works for finite ranges, though -thanks
to trading- the range is less a property of the quantified expression and
more of the way it has been written down. Our greatest objection is that the
analogy sneakily suggests that quantification only provides an (in this case
badly needed!) shorthand for "infinite expressions". But that metaphor
evokes more questions than it answers, and, even worse, questions that we
propose to deal with by not raising them, since we don't seem to need the
answers. We prefer to view (Vx:: fx) as a very finite expression in the one
variable f .

So much for universal quantification.

* * *
To the extent that universal quantification is the analogue of conjunction,

existential quantification is the analogue of disjunction. It can now be defined
by the analogue of de Morgan's Law

(117) [(3x: r.x: fx) == ,(Vx: r.x: ,fx)]

It has all the properties one would expect it to have. For the sake of
completeness we give a number of them. They are the duals of the corre
sponding properties of universal quantification, and their verification is left to
the reader.

• "trading" -see (77)-

[(3x: r.x: fx) == (3x:: r.x 1\ fx)]

from which we see that existential quantification is symmetric in range and
term.

5_ The calculus of boolean stuctures 79

• "/\ distributes over 3" -see (79)-

[X /\ (3x: r.x: fx) == (3x: r.x: X /\ fx)J

• "3 distributes over v" -see (81)-

[(3x: r.x: f.x) v (3x: r.x: q.x) == (3x: r.x: f.x v q.x)]

• "splitting the range" -see (82)-

[(3x: r.x: fx) v (3x: s.x: fx) == (3x: r.x v s.x: fx)J

(In view of the symmetry in range and term, the last two formulae are not
very different.)

• "interchange of existential quantifications" is as before -see (84)- ;
note that in "nesting" and "unnesting" -see (86)- the conjunction in the
range is maintained:

[(3x,y: r.x /\ s.x.y: fx.y) == (3x: r.x: (3y: s.x.y: fx.y)J

• [false == (3x: r.x: false)J -see (89)
[false == (3x: false: fx)J -see (90)-

i.e., existential quantification over the empty range yields false

• "one-point rule" -see (91)-

[(3x: [x = yJ: fx) == fyJ

(The one-point rule holds for the quantifying generalizations of all
associative operators, sum, product, maximum, minimum, etc. See also
Dirac's delta function

J b.(x - y)fx dx = fy .)

• (3x:: x E W) == W =I- 0 -see (93)-
[(3x: x E W: X) == X /\ W =I- 0J -see (95)-

• [(3x:: fx) <= fyJ -see (97)-

• "punctual generalized Leibniz" -see (101)-

[(Vx: r.x: fx == g.x) => «3x: r.x: fx) == (3x: r.x: g.x»]

• "3 is punctually monotonic" -see (102)-

[(Vx: r.x: fx => g.x) => «3x: r.x: fx) => (3x: r.x: g.x»]

• "transforming the dummy", -see (105)- i.e., for invertible t

[(3x: r.x: fx) == (3y: r.(t.y): f(t.y))]

• We have for monotonic f -see (108)-

[f(3X: X E W: X) <= (3X: X E W: fX)J

SO 5. The calculus of boolean structures

(Note that, just as in the existential form of instantiation, the implication is
here the other way round.)

• For f a strengthening boolean function on the natural numbers -see
(113)-

[(3i: 0 ~ i: fi) == fO]

• For a boolean function of two arguments that is weakening in both
arguments or strengthening in both arguments -see (116)-

[(3i,): 0 ~ i/\ 0 ~j: fi.}) == (3i: 0 ~ i: fi.i)]

So much for the existential transcription of former results. There are
furthermore two (ugly) formulae involving the two quantifications and the
implication:

(lIS) [(3x: r.x: fx) => Y == (Vx: r.x: fx => Y)]

and

(119) [(3x:: r.x) => «Vx: r.x: fx) => Y == (3x: r.x: fx => Y))]

in which the antecedent (3x:: r.x) corresponds to the proviso that the range
be non-empty. We leave their verification to the reader.

* * *
In Chap. 1 we mentioned that a pair -in general, an n-tuple- of

structures may be considered as a single structure on a doubled -in general,
an n-fold- space. The "everywhere" operators corresponding to those
different spaces are connected by

(120) [(X,Y)] == [X] /\ [Y]

(We give the formulae for pairs, leaving the generalization to n-tuples to the
reader.)

The punctuality of our operators is reflected by the fact that they distribute
over pair-forming, e.g.,

[,(X, Y) == (,X, ,Y)]
[(XO, YO) == (Xl, Yl) == (XO == Xl , YO == Yl)]
[(XO, YO) v (Xl, Yl) == (XO v Xl , YO v Yl)]
[(3x:: (fx, g.x» == «3x:: fx) , (3x:: g.x»]

etc. (See also (6,47) and (6,48).)

* * *
In the remainder of this little monograph we deal almost exclusively with

boolean structures. From here on we shall denote them by their usual name,
"predicates"; functions from boolean structures to boolean structures will be
called "predicate transformers".

CHAPTER 6

Some properties of predicate
transformers

In this chapter we define and explore a number of properties that predicate
transformers mayor may not enjoy. It is a preparation for the later chapters
in which we analyse in terms of these properties the predicate transformers
that will be used to define programming language semantics. The purpose of
that later analysis is to justify the procedures followed in proving properties
of programs.

As said at the end of the preceding chapter, the boolean structures we
encounter in programming are traditionally called "predicates" -the terms
"conditions" and "assertions" are used also- and functions from predicates
to predicates are traditionally called "predicate transformers". (This term
was inspired by the circumstance that for the original -and still most
common - predicate transformers f ,the predicates X and f.X were
boolean structures on the same space - viz., the state space of the program
under consideration- and that such an f was viewed as an operator
"transforming" any given predicate X into the corresponding predicate
f.X .)

A predicate transformer being a function from predicates to predicates is
reflected in the availability of Leibniz's Rule, i.e., we have for any predicate
transformer f and any predicates X and Y (on the appropriate space)

(0) [X == YJ => [f.X == f.YJ

Note that predicate transformers need not be punctual functions; in fact the
predicate transformers of interest have a strong tendency to be non punctual.

81

82 6. Some properties of predicate transformers

Remark A formula (without quantification) in which the "everywhere"
operator is applied to a punctual function of the variables occurring in it can
be verified by substituting for the variables all possible combinations of true
and false and subsequently simplifying the resulting expressions to the
boolean scalar [true] . In -the first part of- Chap. 5, we chose not to do
so and to use the algebraic style because the latter's applicability is not
confined to punctual functions of the variables and our main interest is in
non punctual predicate transformers. (End of Remark.)

As said, this chapter is about properties of predicate transformers. We
have already encountered a property that a predicate transformer mayor
may not enjoy: monotonicity with respect to implication, or "monotonicity"
for short. Formally, we have for any predicate transformer f

(1) (f is monotonic) == (V'X,Y:: [X = Y] = [fX = f.Y])

As we shall see shortly, monotonicity is the weakest of the properties to be
introduced in this chapter. The additional properties come in pairs: each has
its dual. For brevity's sake we introduce the duality first, because it saves us
the trouble of giving a whole series of proofs in two versions.

Remark Monotonicity, as said, is the weakest of the properties considered in
this chapter. It is, in fact, so weak that it is enjoyed by almost all predicate
transformers of interest. We could mention it prior to the introduction of the
duality because -as we shall see shordy- mono tonicity is its own dual.
(End of Remark.)

The conjugate of a predicate transformer

With f* we denote the predicate transformer that is called "the conjugate"
of predicate transformer f .

Apology We apologize for yet another notational convention: the postfix
operator denoted by the raised star. Though the notion of the conjugate is of
relevance through most of the rest of this little monograph, the notation with
the raised star will hardly be used outside this chapter. The raised star has a
higher binding power than functional application; for instance ,f*X should
be parsed as ,«(f*)X) . (End of Apology.)

Taking the conjugate is defined by the fact that we have for any predicate
transformer f and any predicate X

(2) [f*X == 'f.(,X)]

6. Some properties of predicate transformers 83

The term "conjugate" is justified by the circumstance that, if one predicate
transformer is the conjugate of another, they are each other's conjugates, as
follows from the following

Theorem Taking the conjugate is its own inverse, i.e., we have for any
predicate transformer f and any predicate X

(3) [f**X == f.X]

Proof We observe for any f , X

f**X
{(2) with f:= f* }

if*·('X)
{(2) with X:= ,X }

..,..,f.(..,..,X)
{double negation, twice}

f.X
(End of Proof)

Remark Note that some functions are their own conjugate, e.g., the identity
function and the negation. (End of Remark.)

The properties to be introduced in a moment are paired by the circum
stance that if f enjoys one property of a pair, f* enjoys the other property
of the pair. This is the duality we mentioned. That mono tonicity could be
introduced prior to the introduction of that duality is a consequence of the

Theorem For any predicate transformer f

(4) (f is monotonic) == (f* is monotonic)

Proof We observe for any f

(f* is monotonic)
{(I), i.e., def. of monotonicity}

(\fX,Y: [X = Y]: [f*X = f*.Y])
{(2), i.e., definition of conjugate}

(\fX,Y: [X = Y]: ['f.('X) = 'f.(' Y)])
{contra-positive, twice}

(\fX,Y: [,Y=,X]: [f.(,y)=f.('X)])
{transforming the dummies: negation is invertible}

(\fX,Y: [Y=X]: [f.Y=fX])
{definition of monotonicity}

(f is monotonic)
(End of Proof)

84 6. Some properties of predicate transformers

We now define the two central concepts that will occupy us for the
remainder of this chapter: conjunctivity and disjunctivity. For any predicate
transformer I and any bag V of predicates we define

(5) (f is conjunctive over V) ==
[f. (\I X: X E V: X) == (\I X: X E V: f.X)]

(6) (f is disjunctive over V) ==
[f.(3X: X E V: X) == (3X: X E V: f.X)]

In words: the conjunctivity of I describes the extent to which application
of I distributes over universal quantification, its disjunctivity describes how
its application distributes over existential quantification.

For brevity's sake we introduce the notion of "the conjugate of a bag of
predicates". For a bag V of predicates we obtain its conjugate V* by
negating all its predicates. Consequently we have -with E having a higher
binding power than == -

(7) XE V* == (...,X)E V

(8) V** = V

Now we can formulate the theorem that forms the basis for the duality
alluded to.

Theorem We have for any predicate transformer I and any bag V of
predicates

(9) (f is conjunctive over V) == (f* is disjunctive over V*)

Prool We observe for any I , V

(f* is disjunctive over V*)
{(6), i.e., def. of disjunctivity}

[f*.(3X: X E V*: X) == (3X: X E V*: I*X)]
{(2) and (7), i.e., notions of conjugate}

[...,f.(...,(3X: (...,X) E V: X) == (3X: (...,X) E V: ...,f.(...,X»]
{transforming the dummies: negation is invertible}

[...,f.(...,(3X: XE V: ...,X» == (3X: XE V: ...,f.X)]
{negating both sides}

[f.(...,(3X: X E V: ...,X» == ...,(3X: X E V: ...,f.X)]
{de Morgan, twice}

[f. (\I X: X E V: X) == (\I X: X E V: IX)]
{(5), i.e., def. of conjunctivity}

(f is conjunctive over V)
(End 01 Proof)

6. Some properties of predicate transformers 85

The different types of junctivity

We use the term "junctivity" in sentences that are applicable to both
conjunctivity and disjunctivity; the adjective "junctive" is used in a similar
fashion.

In the preceding section we have met the notions of a predicate trans
former f being junctive over a specific bag V of predicates. We look,
however, for a notion of junctivity pertaining to f all by itself, i.e., a notion of
junctivity that does not refer to a specific bag V . We know how to eliminate
V : quantify over it! And so we arrive at the notion of "universaljunctivity":

(10) (f is universally junctive) == (\IV:: (f isjunctive over V»

Remark There seems little point in pursuing the alternative of eliminating V
by means of existential quantification because any f is junctive over any
singleton bag V . (End of Remark.)

But universal junctivity is a strong property! By instantiating the right
hand side of (10) with v:= 0 we get

(f is universally junctive) => (f is junctive over 0)

with the immediate consequences

(11) (f is universally conjunctive) => [f.true == true]

(12) (f is universally disjunctive) => [f.false == false]

We can get weaker junctivity properties by strengthening the range of V
in the right-hand side of (10). For instance, in order to avoid the consequents
of (11) and (12), we could constrain the universal quantification to all non
empty V . In a moment we shall, indeed, define a type ofjunctivity -weaker
than universal junctivity- by just doing that.

But before introducing different types of junctivity, we should remember
(9), the basis for the duality we are aiming at. We wish to introduce such
junctivity types that

(13) (the conjunctivity type of f) = (the disjunctivity type of f*)

is ensured.

86 6. Some properties of predicate transformers

Introducing temporarily the notion of "r-junctivity", we have for some
(scalar) boolean function r

(14) (f is r-conjunctive) ==
(V V: r. V: f is conjunctive over V) and

(15) (f is r-disjunctive) ==
(V V: r. V: f is disjunctive over V)

In view of (13), r should be such that

(16) (f is r-conjunctive) == (f* is r-disjunctive)

In order to analyse this requirement we observe

(f* is r-disjunctive)
{(15) with f:= f* }

(VV: r.v: f* is disjunctive over V)

{transforming the dummy: * is invertible}
(VV: r.v*: f* is disjunctive over V*)

{(9)}
(V V: r.v*: f is conjunctive over V)

{under the assumption (V V:: r. V == r. V*) }
(VV: r. V: f is conjunctive over V)

{(14)}

(f is r-conjunctive)

Hence, (16), and therefore (13) are achieved provided we introduce our
junctivity types by restricting V's range to r. V such that

(17) (VV:: r.v == r.v*)

i.e., r's such that r. V is invariant under negation of all the predicates in bag
V . (An example of an unacceptable r would be given by r. V == true E V .)

Because of the one-to-one correspondence between the elements of V and
of V* ,any constraint on the cardinality of the bag V meets the requirement
(17) on r .

A bag being "linear" means that its distinct elements can be arranged in a
monotonic sequence; consequently the (finite or infinite) set of its distinct
elements is denumerable. Linearity is invariant under the taking of the
conjugate: there is a one-to-one correspondence between the distinct ele
ments of V and those of V* and the mono tonicity of the sequence is
maintained because negation is antimonotonic with respect to implication.

Remark For unclear reasons -and perhaps erroneously so- we did not
pursue the generalization of linearity, viz., well-foundedness (see Chap. 9)

6. Some properties of predicate transformers 87

with respect to implication or consequence: thanks to the antimonotonicity
of the negation we have

(V is well-founded with respect to implication) ==
(V* is well-founded with respect to consequence)

(End of Remark.)

The ranges r -all satisfying (17)- we have chosen to highlight and the
corresponding types of junctivity we have given a name are somewhat
arbitrary. We distinguish the following types of junctivity:

• universally junctive, i.e., junctive over all V (of our junctivity types
this is the only one that includes junctivity over the empty bag 0)
• positively junctive, i.e., junctive over all non-empty V (so called because
bags with cardinality zero are excluded)
• denumerably junctive, i.e., junctive over all non-empty V with denumer
ably many distinct predicates
• finitely junctive, i.e., junctive over all non-empty finite V (i.e., all non
empty V with a finite number of distinct predicates)
• . . . -continuous, i.e., junctive over all non-empty linear V (here we
distinguish between" and-continuity" in the case of conjunctivity, and" or
continuity" in the case of disjunctivity; we have adopted the existing
terminology)
• monotonic, i.e., junctive over all non-empty, finite, linear V (this name
has to be justified by showing that this type of junctivity coincides with the
notion of mono tonicity as defined by (1)).

Let us discharge the last justification first, i.e. let us prove that for any f

(18) (f is conjunctive over any non-empty, finite, linear V) ==
(VX,Y: [X => Y]: [IX => IY])

Proof The proof is by mutual implication.

LHS => RHS We observe for any f ,conjunctive over all non-empty,
finite, linear V ,and any X , Y

[f.x=> IY]
{implication and conjunction}

[f.X /\ I Y == IX]
<= {LHS; {X,Y} is non-empty, finite and, if [X => Y] ,linear}

[f. (X /\ Y) == IX] /\ [X => Y]
<= {Leibniz}

[X /\ Y == X] /\ [X => Y]
{implication and conjunction; idempotence of /\ }

[X=>Y]

88 6. Some properties of predicate transformers

LHS = RHS The distinct predicates of a finite, linear bag can be
ordered as a weakening sequence Y.i for 0 ::::;; i < n with n ?: 1 if the bag is
non-empty. Let this be done. We then observe

true
{above numbering convention}

(Vi,j: O::::;;i::::;;j<n: [Y.i=>Y:/J)

=> {RHS with X, Y := Y.i, Y j and mono tonicity of V }
(Vi,j: 0::::;; i::::;;j < n: [f.(Y.i) => f.(Y,})])

Hence, under the numbering convention and the assumption of RHS ,the
sequence f.(Y.i) is weakening as well.

Finally, we observe

f.(VX: X E V: X)

{see Remark below}
f.(Vi: 0::::;; i < n: Y.i)

{(5, 114) Y.i is weakening and n?: 1 }
f.(Y.O)

{(5, 114) f.(Y.i) is weakening and n?: 1 }

(VX: X E V: f.X)

{see Remark below}
(VX: X E V: f.X)

(End of Proof)

Remark In the above we appealed twice to a theorem that some readers will
take for granted but that we prove for those that don't. For any bag of
predicates V , any predicate transformer h , and any predicate-valued
function Y we have -the range of i left unspecified and being
understood -

(19) (VX:: XE V == (3i:: [Y.i == X)) =>

[(VX: X E V: h.x) == (Vi:: h.(Y.i»]

The antecedent of (19) is the formal rendering of the statement that the
predicates Y.i precisely span the predicates in V .

Proof We observe for any V , h , Y of the appropriate types

(VX: X E V: h.x)

{trading}
(VX:: i(X E V) v h.X)

{antecedent}
(VX:: i(3i:: [Y.i == X]) v h.x)

{de Morgan}

6. Some properties of predicate transformers 89

(VX:: (Vi:: -,[Y.i == X]) V h.x)

{ v distributes over V }

(VX:: (Vi:: -,[Y.i == X]) v h.x))

{interchange of quantifications}
(Vi:: (VX:: -,[Y.i == X] v h.x))

{(trading and) one-point rule}
(Vi:: h.(Y.i))

(End of Proof)

Negating in the consequent of (19) both sides and replacing h by
-,h shows that

[(:IX: X E V: h.x) == (:Ii:: h.(Y.i))]

would have been an equally acceptable consequent. Note that in the above
proof we did not need to make any commitment about the type or the range
of the dummy i . (End of Remark.)

The dual of (18) now follows straightforwardly:

(f is disjunctive over any non-empty, finite, linear V)
{(9) with f:= f* and f** = f }

(f* is conjunctive over any non-empty, finite, linear V)
{(18) and (1) with f:= f* }

(f* is monotonic)
{(4)}

(f is monotonic)

Thus we have recognized monotonicity as the weakest type of junctivity.
Moreover we have established that for this type of junctivity the distinction
between conjunctivity and disjunctivity had disappeared; consequently, a
predicate transformer that enjoys any type of junctivity is monotonic.

The following theorems -and their duals, whose formulation is left to the
reader- are direct consequences of the definitions of our junctivity types.
We have for any predicate transformer f
(20) (f is universally conjunctive) =>

(f is positively conjunctive)

(21) (f is positively conjunctive) =>

(f is denumerably conjunctive)

(22) (f is denumerably conjunctive) =>

(f is finitely conjunctive) /\ (f is and-continuous)

(23) (f is finitely conjunctive) v (f is and-continuous) =>

(f is monotonic)

90 6. Some properties of predicate transformers

In short: in the order given, the types of conjunctivity form an almost
weakening sequence of properties; only between finite conjunctivity and and
continuity no strength relation exists.

Theorem (22) can be strengthened, as is shown by the following

Theorem For any predicate transformer f

(24) (f is denumerably conjunctive) ==
(f is finitely conjunctive) 1\ (f is and-continuous)

Proof The proof is by mutual implication.

LHS = RHS This is (22).

LHS = RHS We observe for any predicate transformer f that is finitely
conjunctive and and-continuous, and any sequence of predicates X.i (0 :::;: i)

f.(Vi: 0:::;: i: X.i)
{pred. calc.: range of j is not empty}

f.(Vi: 0:::;: i: (Vj: i:::;: j: X.i))
{ unnesting}

f.(Vi,j: 0:::;: i 1\ i:::;:j: X. i)
{arithmetic, in particular transitivity of :::;: }

f.(Vi,j: O:::;:j 1\ O:::;:i:::;:j: X.i)
{nesting}

f.(Vj: O:::;:j: (Vi: O:::;:i:::;:j: X. i))
{ f is and-continuous and (Vi: 0:::;: i :::;: j: X.i) (0 :::;: j)
is a non-empty, strengthening sequence}

(Vj: O:::;:j: f.(Vi: O:::;:i:::;:j: X. i))
{ f is finitely conjunctive and X.i (0 :::;: i :::;: j) is for 0:::;: j
a non-empty finite sequence}

(Vj: O:::;:j: (Vi: 0:::;: i:::;:j: f.(X.i)))
{as above, the other way round}

(Vi: 0:::;: i: f.(X.i))
(End of Proof)

The following theorem is included because we think its proof -which we
owe to J.C.S.P. van der Woude- so nice.

Theorem For any predicate transformer f

(25) (f is finitely conjunctive) 1\ (f is or-continuous) =
(f is and-continuous)

6. Some properties of predicate transformers 91

Prool Under the truth of the antecedent of (25) we have to show for
monotonic X.i (0 :::; i)

[f(\li: 0:::; i: X.i) == (\Ii: 0:::; i: f(X.i))]

We distinguish two cases.

X.i(O:::; i) is weakening The antecedent implies that I is monotonic. We
observe for any monotonic I and weakening X.i (0 :::; i)

f(\li: 0:::; i: X. i)
{(5, 113), X.i (0 :::; i) is weakening}

f(X.O)
{(5, 113), f(X.i) (0 :::; i) is weakening since I is monotonic}

(\Ii: 0:::; i: f(X.i))

This was the not exciting part of the proof.

X.i(O :::; i) is strengthening The antecedent of (25) implies that I is
monotonic, and we are on account of (5, 108) therefore left with the proof
obligation

(26) [f(\li: 0:::; i: X.i) = (\Ii: 0:::; i: f(X.i))]

for strengthening X.i (0:::; i) and an I that is finitely conjunctive and
or-continuous.

Meeting the obligation of showing (26) is the exciting part of the proof.
Reduced to its bare essentials, it consists of one definition and about a dozen
steps. But in presenting just that irrefutable formal argument, we would pull
several rabbits out of the magical hat. The proof is exciting because of the
existence of heuristic considerations that quite effectively buffer these shocks
of invention. For that reason, we shall develop this proof instead of just
presenting it. To aid the reader in parsing the interleaved presentation of
heuristic considerations and prooffragments, the latter will be indented. Here
we go!

To begin with a general remark about the exploitation of or-continuity.
The or-continuity of I states that

(27) [f(3i:: Y.i) == (3i:: f(Y.i))]

for any monotonic sequence Y.i (0 :::; i) . For a strengthening sequence Y.i
(0 :::; i) ,just monotonicity of I suffices for (27) to hold, and for constant
sequences Y.i (0 :::; i) ,(27) holds for any I . The relevant conclusion from
these observations is that, if !'S or-continuity is going to be exploited -and
it is a safe assumption that it has to- a truly weakening sequence has to
enter the picture.

92 6. Some properties of predicate transformers

Armed with this insight, we return to our demonstrandum (26). The
simplest way of demonstrating an implication is to start at one side and then
to repeatedly manipulate the expression (while either weakening or
strengthening is allowed) until the other side is reached. So, let us try that.
That decision being taken, at which side should we start?

Both sides are built from the "familiar" universal quantification and the
"unfamiliar" application of f ,about which our knowledge is limited, the
only difference being that, at the two sides, they occur in opposite order. In
such a situation, the side with the "unfamiliar" operation at the outside
counts as the more complicated one, which is therefore the preferred starting
point. In our case, it is the consequent

(28) f.(Vi:: X. i)

so let us start from there. The formal challenge of manipulating (28) while
exploiting what we know about f should provide the heuristic guidance as
to in which direction to proceed.

Rewriting (28) so as to exploit f's or-continuity would require to rewrite
its argument (Vi:: X. i) as an existential quantification over a truly weak
ening sequence, but how to do that is not clear at all. So let us try to exploit
at this stage f's finite conjunctivity, i.e., let us introduce a P and Q
such that

(29) [(Vi:: X.i) == P /\ Q]

For one of the conjuncts, say P ,we may choose any predicate implied by
(Vi:: X.i) ; the law of instantiation tells us that any Xj would do. (Note that
this choice is less restrictive than it might seem: because X.i (0 ~ i) is
strengthening, any finite conjunction of some x.i's yields some Xj .) We
could therefore consider for some i the introduction of a predicate Q
constrained by

[(Vi:: X.i) == Xj /\ Q]

But the introduction of one predicate Q for one specific i is unlikely to do
the job: for one thing, the universal quantifications in the demonstrandum
don't change their value when the range 0 ~ i is replaced by i < i . This
observation suggests, instead of the introduction of a single predicate Q a
sequence, say Y j (0 ~ i) ,constrained by

(30) (Vi:: [(Vi:: X.i) == Xj /\ YJ])

The introduction of the sequence Y j (0 ~ i) will turn out to be the major
invention in the proof under design. For the time being we don't define
Y -as would be done immediately in a "bottom-up" proof- but only
collect constraints on Y ,of which (30) is the first one. We do so in the hope
that, eventually, we can construct a Y that meets all the constraints.

6. Some properties of predicate transformers 93

A minor problem with the use of (30) as a rewrite rule is that it equates an
expression not depending on } with one that formally does depend on } .
The formal dependence on } that would thus be introduced can be
eliminated by quantifying over it; because we are rewriting a consequent we
use existential quantification because that yields a formally weaker expres
sion than universal quantification (and, the weaker the consequent, the
lighter the task ahead of us). In short, we propose to start our proof under
design with

(31)

f.(Vi:: X.i)
{(30) and range of } non-empty}

(3):: f.(Xj A Yj»
{ f is finitely conjunctive}

(3):: f.(Xj) A f.(Y,j))

So far, so good! We have not yet exploited f's or-continuity and we
cannot do so before we have an existential quantification over a truly
weakening sequence. We are not there yet, but we are getting close! In (31) we
do have an existential quantification (be it, as yet, over a constant sequence)
and, with X.i (0::::; i) a (truly) strengthening sequence, there is a fair chance
that (30) permits a (truly) weakening sequence Y.} (0 ::::;J) . So let us
introduce the second constraint on Y

(32) sequence Y j (0 ::::; J) is weakening

as a next step towards the use of f's or-continuity, i.e., the use of (27) as a
rewrite rule.

Comparison of the right-hand side of that rewrite rule (27) with (31) shows
that we can apply the rewrite rule after we have succeeded in removing in (31)
the first conjunct f.(X.J) from the term. We cannot just omit it, as that would
weaken the expression and, heading for an antecedent, we are not allowed to
do that. We may strengthen it; in particular, strengthening it to something
independent of } would allow us to take the constant conjunct outside the
existential quantification of (31). In order to strengthen f.(X.}) to something
that is independent of } , we propose to quantify it universally over } . That
is, at (31) we propose to continue our proof under design with

(33)

(3):: f.(X.}) A f.(Y.}»
<= {instantiation, monotonicity of A , 3 }

(3):: (Vi:: f.(X.i» A f.(Y.])
{ A distributes over 3 }

(Vi:: f.(X.i» A (3):: f.(Y.}»
{(27) and (32), i.e., the use of or-continuity}

(Vi:: f.(X.i» A f.(3}:: Y.})

94 6. Some properties of predicate transformers

So far, so very good! Note, that the left conjunct of (33) is the antecedent of
(26) that we are heading for! Again we cannot just omit the second conjunct,
as that would weaken the expression; the second conjunct has to be
subsumed -i.e., implied- by the first one. By the sight of it, we can equate
(33) with its first conjunct on the strength of just the monotonicity of I and
some implicative relation between X and Y - which will emerge as the
third and last constraint on Y - . But be careful! If the range of i were
empty, the first conjunct of (33) would yield true ,whereas (33) would yield
f.(3j:: Y.j) ,and there is no reason to assume these equivalent. Somewhere
along the completion of our formal argument, we have to exploit the non
emptiness of i's range! As we can do it immediately, let us do it immediately.
In short, we propose to continue our proof under design at (33) with

(Vi:: f.(X.i» 1\ f.(3j:: y.])

{range of i is non-empty}

(Vi:: f.(X.i) 1\ f.(3j:: Y.j»

{ I is monotonic and (34)}

(Vi:: I.(X.z)

with, as our third and last constraint on Y ,

(34) (Vi:: [X.i = (3j:: Y.j)J)

But for the demonstration of the existence of Y , we have completed the
proof in seven steps (six of which are equivalences). Now for the existence
of Y .

In order to ease the satisfaction of (34) we define Y as the weakest
solution of (30), i.e., we define for any j

(35) [Y.j == (Vi:: x.i) v ...,x.]]

In order to verify that the first constraint, (30), is met, we observe for
any j

x.j 1\ Y.j

{(35) }

x.j 1\ «Vi:: X.i) v ...,x.j)
{ 1\ distributes over v }

(X.j 1\ (Vi:: X.i» v (X.j 1\ ...,x.])

{instantiation and pred. calc.}

(Vi:: X.i)

6. Some properties of predicate transformers 95

In order to verify that Y.) (0 ~]) is weakening we observe either that
disjunction is monotonic and negation is antimonotonic, or in painstaking
detail for any) and k

[Y)= Yk]
{(35) }

[(Vi:: X.i) v ,X.) = (Vi:: X.i) v ,X.k]

<= {pred. calc.}

[,X.) = 'X.k]
{contra-positive}

[X.) <= X.k]

<= {X. i (0 ~ i) is strengthening}

)<k

Finally, in order to verify that the last constraint on Y, (34), is met, we
observe

(:3):: Y.))
{ (35)}

(3):: (Vi:: x.i) v ,x.])

{ j's range is non-empty}
(Vi:: x.i) v (3):: ,x.])

{de Morgan}
(Vi:: X.i) v ,(Vi:: X. i)

{Excluded Middle}

true

And this concludes the exciting part.

Junctivity theorems

(End of Proof)

The remaining task of this chapter is the development of a body of theorems
to assist us in the establishment of the junctivity properties of given functions.
For brevity's sake we shall concentrate on the conjunctivity properties of
given functions: disjunctivity properties can be derived by studying the
conjunctivity properties of the conjugate function.

It would be nice if our junctivity theory could be developed as simply as
the punctuality theory. There, for a number of basic functions the punctuality
in their argument(s) was postulated (for the equality) or proved (for the
constant, the identity, the disjunction, and the negation), and then the
Punctuality Theorem stated that, in all forms of composition, punctuality is

96 6. Some properties of predicate transformers

preserved. But there are various reasons why, for our junctivity theory, such
an easy way out has to remain a dream.

The first complication is that, while there was one notion of punctuality,
there are different types of conjunctivity. The second complication is that
-as we shall see in a moment- we can form from a universally conjunctive
function a new function that is not conjunctive at all. The third complication
is that we shall encounter a new type of problem, e.g., given the conjunctivity
of g and h ,how conjunctive is g.X /\ h. Y , viewed as a function of the
single argument (X, Y) ? We postpone for a while the discussion of this last
type of problem.

The start is promising enough. We begin by establishing

(36) Theorem The identity function, i.e., the predicate transformer f given
by

[j.X == X] for all X

is universally conjunctive.

Proof We observe for any V

j.(\:IX: XE V: X)

{definition of f with X:= (\:I X: X E V: X) }

(\:IX: XE V: X)

{definition of f }
(\:IX: XE V: j.X)

(End of Proof)

So far, so good, but the trouble already starts with the constant function,
for which we have

(37) Theorem A constant function, i.e., the predicate transformer f given for
some Y by

(38) [f.x == YJ for all X

is positively conjunctive.

Proof We observe for any non-empty V

(\:IX: X E V: j.X)

{ (38)}
(\:IX: XE V: Y)

{ V is non-empty}
Y

{(38) with X:= (\:IX: X E V: X) }

j.(\:IX: X E V: X)
(End of Proof)

6. Some properties of predicate transformers 97

There is one constant function -viz., the constant true - that is
uni versall y con j uncti ve.

Theorem For a predicate transformer f given for some Y by (38)

(39) (f is universally conjunctive) == [Y == true]

Proof We observe for any f and Y satisfying (38)

(f is universally conjunctive)
{definition of universal and positive conjunctivity}

(f is positively conjunctive) /\ (f is conjunctive over 0)
{(37) }

(f is conjunctive over 0)
{universal quantification with empty range yields true }

[f.true == true]
{(38) with X:= true }

[Y == true]
(End of Proof)

Well, these were -to put it mildly- modest results. To give a little bit
more direction to our investigations, we focus our attention on the weakest of
all types of junctivity, viz., monotonicity. To restrict our space of investiga
tion, we observe that we do not need to investigate those operators that, when
applied to monotonic operands yield in general nonmonotonic results:
whatever junctivity properties may be enjoyed by the components, they are
not shared by the compositum. More precisely, if g and h are monotonic
predicate transformers, g.X == h.X , g.X = h.X ,and ig.X are in general
not monotonic functions of X . Consequently, all junctivity properties are
lost by the application of equivalence, implication, or negation.

Remark From a general point of view, this negative result seems at first sight
rather disappointing. As will become clear in the next chapter, for the
definition of programming language semantics our interest is confined to
monotonic predicate transformers; consequently we won't encounter predi
cate transformers defined as equivalence, implication or negation. (End of
Remark.)

Negative as the above conclusion may seem, it tells us where to look for
more rewarding results: conjunction and disjunction, and their generaliza
tions, universal and existential quantification. Let us deal with conjunction
and universal quantification -including the "everywhere" operator- first;
they seem to present the simpler situations.

98 6. Some properties of predicate transformers

(40) Theorem The "everywhere" operator is universally conjunctive, i.e., we
have for any bag V of predicates

[[(\fX: X E V: X)] = (\fX: X E V: [X])]

Proof This is a restatement of (5, 88) about the interchange of universal
quantifications; note that the range X E V is a boolean scalar.

(End of Proof)

Since in the following theorem the set M may be finite or infinite and
since conjunction may be identified with universal quantification over a finite
range, the following theorem deals with conjunction and universal quantifica
tion at the same time.

(41) Theorem Let M be a set of predicate transformers, and let predicate
transformer f in terms of M be given by

[f.X = (\fg: gEM: g.x)] for all X ;

then f enjoys each type of conjunctivity that is shared by all elements of M .

Proof This is proved by showing that f is conjunctive over any V over
which all elements of M are conjunctive. For such a V we observe

f.(\fX: X E V: X)

{def. of f with X:= (\fX: XE V: X) }

(\fg: gEM: g.(\fX: X E V: X))

{all 9 conjunctive over V }

(\fg: gEM: (\fX: X E V: g.x))

{interchange of universal quantifications}

(\fX: X E V: (\fg: gEM: g.x))

{def. of f }
(\fX: X E V: f.X)

(End of Proof)

This was a very general theorem, obtained at low cost. Let us now
investigate the inheritance of conjunctivity in the case of disjunction. Here we
may expect problems, so let us look at a simple case. Let f be given in terms
of 9 and h by

[f.X = g.x v h.x] for all X

Predicate transformer f being conjunctive over V then amounts to -the
range X E V left understood-

[g.(\fX:: X) v h.(\fX:: X) = (\fX:: g.x v h.x)]

6. Some properties of predicate transformers 99

It is the right-hand side that is in general unmanageable: predicate calculus
gives us in general no way of getting the disjunction out of the scope of a
universal quantification. The previous chapter gives us two handles for
special cases that might be manageable: (5, 78) and (5, 116). The first one is
the distribution of v over V ,and suggests that we investigate, say, h
being a constant function; the second one has a conjunction in the range
which is as good as having a disjunction in the term. (See, however, the
Confession below.)

(42) Theorem Let, for some predicate transformer g and some predicate Y ,
predicate transformer f be given by

[f.X == g.x v Y] for all X ;

then f enjoys all conjunctivity properties enjoyed by g .

Proof Let g be conjunctive over V ,and let the range X E V be understood.
We then observe

f.(VX:: X)
{def. of f with X:= (VX:: X) }

g.(VX:: X) v Y
{ g conjunctive over V }

(VX:: g.X) v Y
{ v distributes over V }

(VX:: g.x v Y)

{def. of f }
(VX:: f.X)

(End of Proof)

(43) Theorem Disjunction preserves and-continuity, i.e., let predicate
transformer f be given in terms of the and-continuous predicate trans
formers g and h by

[f.X == g.x v h.x] for all X

then f is and-continuous.

Proof Our proof obligation is to show for and-continuous g and h ,and any
monotonic sequence Xi (0 ~ i) and f given as above

[f.(Vi: 0 ~ i: Xi) == (Vi: 0 ~ i: f.(Xi))]

100 6. Some properties of predicate transformers

Let it be understood for dummies i and j that they range over the natural
numbers. To begin with, we observe

(g. (X. i) v h.(Xj) is weakening in i and j or is strengthening in i and j)

= { v is monotonic in both arguments}
(g.(x.i) and h.(X.i) are both weakening in i or both strengthening in i)

= {g and h are and-continuous, hence monotonic}
(X.i is a monotonic sequence)

After these preliminaries we observe

f.(Vi:: X.i)
{def. of f with X:= (Vi:: X.i) and change of dummy}

g.(Vi:: X.i) v h.(Vj:: Xj)
{ g and hand-continuous; X.i monotonic}

(Vi:: g.(X.i)) v (Vj:: h.(Xj))
{ v distributes over V }

(Vi:: g.(X.i) v (Vj:: h.(Xj)))
{ v distributes over V }

(Vi:: (Vj:: g.(X.i) v h.(Xj)))
{(5, 116) and above preliminary}

(Vi:: g.(x.i) v h.(X.i))
{def. of f with X:= X.i }

(Vi:: f.(X.i))
(End of Proof)

Confession As revealed by the structure of the proof, the reason we gave for
looking at (5, 116) is most unconvincing. The reader may safely assume that
the preceding chapter was written with the current one in mind. We
discovered relatively late in the development that we could be much more
explicit about heuristics than we had been able before. In this case, we
allowed ourselves to be carried away by our enthusiasm. (End of Confession.)

By repeated application of the last theorem we conclude that and
continuity is preserved by finite disjunctions or, what amounts to the same
thing, existential quantification over a finite range. Similarly, or-continuity is
preserved under universal quantification over a finite range. The wide range
of circumstances under which continuity is preserved -in a moment we shall
encounter yet another one- is one of the reasons why the concept of
continuity has attracted attention; the complementary reason is of course
that -as we shall see later- the concept can be exploited. In the next
chapter, where we start dealing with programming language semantics, we
shall encounter the choice whether to admit infinite guarded command sets,

6. Some properties of predicate transformers 101

and, as a universal quantification over the members. of that set enters the
game, we shall see that that choice boils down to whether to forsake or
continuity. We are beginning to see the mathematical reasons why such a
decision of language design should not be taken lightly.

The restriction of our interest to at least monotonic functions ruled out
function formation by equivalence, implication, and negation. That could be
viewed as a negative conclusion. In a more positive mood we can explore
what we can do thanks to the fact that all functions of interest are monotonic.
This is done in the following two theorems; the first is primarily a stepping
stone for the second.

(44) Theorem Let V be a bag of predicates and let h be a monotonic
predicate transformer. Let W be the bag obtained by replacing each
predicate X in V by hX . Then W is of V's "junctivity type", i.e., the
restrictions concerning cardinality and linearity that are met by V are met
by W as well.

Proof If V is non-empty/denumerable/finite, then W is by its construction
non-empty/denumerable/finite, and these three are the only cardinality
constraints that play a role in the definition of the junctivity types. If the
(distinct) elements of V can be written as a monotonic sequence X.i (0 ~ i) ,
then, by construction, h.(X.i) (0 ~ i) contains all distinct elements of W ,
and moreover, because also h is monotonic, the sequence h.(X.i) (0 ~ i) is
monotonic. Hence, if V is linear, so is W .

(End of Proof)

And now we are ready to explore another way of forming functions from
functions, viz., functional composition. This leads to the beautiful

(45) Theorem Functional composition is junctivity preserving, i.e., let, for
some predicate transformers g and h ,predicate transformer f be given by

[IX == g.(h.X)] for all X ;

then f enjoys each junctivity property shared by g and h .

Proof We can confine ourselves to monotonic g and h , because otherwise
there are no shared junctivity properties, in which case the theorem
vacuously holds. We give the proof for any conjunctivity property.

Let g and h be conjunctive over predicate bags of some junctivity type
and let V be of that type. Let W be given by -see Note-

W = {X: X E V: hX}

because h is monotonic, W is on account of (44) of V's junctivity type.

102 6. Some properties of predicate transformers

And now we observe

f.(VX: X E V: X)

{def. of f with X:= (VX: XE V: X) }

g.(h.(VX: X E V: X»

{ h is conjunctive over V }
g.(V X: X E V: hX)

{relation between V and W , (46) with p, q:= h, identity}
g.(VY: YE W: Y)

{ 9 is conjunctive over W }

(VY: YE W: g.Y)

{relation between V and W, (46) with p, q:= h, 9
(VX: X E V: g.(hX»

{def. of f }
(VX: X E V: f.X)

(End of Proof)

Note The set notation using the braces is formally given by: for all p, V

(VY:: Y E {X: X E V: pX} ==
(3X: X E V: [pX = YJ»

For the sake of completeness, we observe for any Y , V

YE {X: XE V: X}

{above definition with p:= identity function}
(3X: XE V: [X = YJ)

{trading and one-point rule}
YEV

so that, indeed, we have {X: X E V: X} = V .

Furthermore we have for all V , W , P , q

(46) W={X: XEV: pX} =>

[(V Y: YEW: q. Y) == (V X: X E V: q.(p.X)]

Proof We observe for any V , W , P , q

(VY: YE W: q.Y)

{ an teceden t of (46)}
(VY: Y E {X: X E V: pX}: q.Y)

{definition of braces for set notation}
(VY: (3X: X E V: [pX = YJ): q. Y)

{trading}

6. Some properties of predicate transformers 103

(\I Y: (3X: X E V 1\ [p.x = Y]: true): q. Y)
{trading and de Morgan}

(\lY:: (\IX: XE V 1\ [p.x= Y]: false) v q.Y)
{ v distributes over \I ; pred. calc.; unnesting}

(\lX,Y: X E V 1\ [p.x = Y]: q.Y)
{nesting and one-point rule}

(\IX: X E V: q.(p.x))

(End of Note.)

* * *

(End of Proof)

We now must draw the reader's attention to a dilemma that we face when
dealing with what is loosely called "a function of more arguments". For
simplicity's sake, we shall illustrate the dilemma with, and develop our
theorems for, "functions of two arguments", leaving the generalization from
pairs to n-tuples to the reader.

We take as starting point what is usually written as "f(x,y)" . Adopting
the convention of explicity indicating functional application by a full stop
(= period), we would write "f.(x,y)" ,which admits of only one interpreta
tion: f applied to the argument (x,y) -which happens to be of type
"pair" - .

The alternative -pioneered by the logician H. B. Curry- is to consider a
(higher order) function F that, when applied to x ,yields a new function
that, in turn, can be applied to y to yield f.(x,y) . With functional
application left-associative -i.e., "F.x.y" standing for "(F.x).y" - the
relation between f and F is

[f.(x,y) = F.x.y] for all x , y

Standard example Going from the infix "+" to the prefix" add" by defining

add.x.y = x + y

we get a higher-order function with add.1 and add.(-1) as very familiar
values: they are the successor function and predecessor function, respectively.
(End of Standard example.)

The study of the relationship between the above f and F and the
development of the notational equipment needed to express the one in terms
of the other gave rise to the theory known as "Combinatorial Logic", a nice
theory that we need not be concerned with here. We only face the dilemma

104 6. Some properties of predicate transformers

which of the two formats to adopt, as each has its advantages and disadvan
tages.

Remark The informal mathematician, as said, writes f(x,y) and, his
functional application being invisible, he hardly notices the difference. But in
a formal environment such as a programming language, one has to be
explicit: it must be absolutely clear whether one introduces a name like f or
like F . The problem is acute for the users of functional programming
languages. Consequently, such programming languages are in constant
danger of getting burdened with special features to express in terms of
functions of the one format what would have been easily expressible in terms
of the corresponding function of the other format. (End of Remark.)

For our current investigations, the format of the above f is the most
convenient, i.e., we shall consider functions of predicate pairs. The format of
the above F would have had two disadvantages. Firstly, we would be faced
with a formula in which the two predicates occur very asymmetrically,
secondly, we would be forced to introduce the notion of junctivity for higher
order functions. We could meet those challenges, but it seems simpler to
avoid them.

The price we have to pay for the introduction of predicate pairs is our
willingness to get accustomed to manipulating them. We should pay that
price gladly: firstly, the price is low because the rules of manipulation are very
simple, and, secondly, the significance of the notion of a predicate pair is by
no means restricted to junctivity considerations.

In denoting a predicate pair, we shall follow the mathematical custom and
write "(X,Y)" -rather than "pair.XY" - for any predicates X and Y.
The comma separating the two components X and Y has a very low
binding power, lower than all boolean operators. Note that the surrounding
parentheses are not optional.

The first rule about pair-forming is

(47) [(X,Y)] == [X] 1\ [Y]

The others state that the boolean operators distribute over pair-forming:

(48) [(X, Y) == (X' , Y') == (X == X' , Y== Y')]
[(X , Y) V (X' , Y') == (X V X' , Y V Y')]
[(X , Y) 1\ (X' , Y') == (X 1\ X' , Y 1\ Y')]
[(X, Y)=(X' , Y') == (X=X' , Y= Y')]
[...,(X, Y) == (...,X , ...,Y)]
[(Vi:: (Xi, Y.l)) == «Vi:: Xi) ,(Vi:: Y.l))]
[(3i:: (Xi, Y.!}) == «3i:: Xl) ,(3i:: Y.i))]

6. Some properties of predicate transformers 105

All this is -see Chap. 1- in accordance with viewing a predicate pair as a
predicate on a doubled space, with viewing the "everywhere" operator as
universal quantification over the underlying space, and with the point-wise
application of the operators and the quantifications.

Now we turn our attention to functions, whose values or whose arguments
are predicate pairs. First we deal with the former.

(49) Theorem Pair-forming is junctivity preserving, i.e., predicate trans
former f ,given for some g and h by

[f.x == (g.x ,h.x)] for all X

enjoys all junctivity properties shared by g and h .

Proof We shall prove the theorem for any conjunctivity property shared by g
and h . For the disjunctivity properties the theorem then follows from (13)
and the fact that

[f*.x == (g*.x , h*.x)]

To show f's inheritance of conjunctivity, we observe for any V over
which g and h are conjunctive -the range X E V being understood-

f.(VX:: X)
{def. of f with X:= ("IX:: X) }

(g.(VX:: X) , h.(VX:: X»
{ g and h conjunctive over V }

«"IX:: g.x) , ("IX:: h.x»
{ V distributes over (,) }

("IX:: (g.x , h.x»
{def. of f }

("IX:: f.X)

A sort of inverse of the previous theorem is

(End of Proof)

(50) Theorem The selector functions are universally junctive, i.e., predicate
transformers left and right ,given by

(51) [left.(X,Y) == X] for all (X,y)

(52) [right.(X,Y) == Y] for all (X,y)

are universally junctive.

Proof For reasons of symmetry it suffices to prove the theorem for left .
Because left and left* are the same function, we need consider only
universal conjunctivity.

106 6. Some properties of predicate transformers

We observe, for W any bag of predicate pairs, and the range (X,Y) E W
being understood,

left.(VX,Y:: (X,Y))
{ V distributes over (,) }

left.«VX,Y:: X) , (VX,Y:: Y))
{def. of left with X,y,= (VX,Y:: X) , (VX,Y:: Y) }

(VX,Y:: X)
{def. of left }

(VX,Y:: left.(X,Y))
(End of Proof)

Functions left and right enable us to write any expression in X and Y
as an expression in (X, Y) . We shall show how this is exploited in the proof
of

(53) Theorem Let, for some predicate transformers g and h ,predicate
transformer f be given by

[f.(X, Y) == g.x /\ h. Y] for all X , Y

then f enjoys all conjunctivity properties shared by g and h .

Proof To begin with we observe

f.(X,Y)

{def. of f }
g.x /\ h.Y

{def. of left and right }
g.{left.(X, Y)) /\ h.(right.(X, Y))

{def. of functional composition}
(g 0 left).(X, Y) /\ (h 0 right).(X, Y)

But now f has been rewritten as a conjunction of two functions of its
argument, and according to theorem (41), f enjoys each type of conjuncti
vity shared by go left and h 0 right . Because -theorem (45)- functional
composition is junctivity preserving, f enjoys therefore each type of
conjunctivity shared by g , h , left ,and right . Because the latter two
-theorem (50)- are universally junctive, the conclusion follows.

(End of Proof)

In the same vein we can deduce from theorem (43)

6. Some properties of predicate transformers 107

(54) Theorem Let for some and-continuous predicate transformers g and
h ,predicate transformer f be given by

[f.(X, Y) = g.x v h. Y] for all X , Y

then f is and-continuous.

The proof is left to the reader.

Up till now we have looked at the junctivity properties of functions of one
well-identified argument. Either that one well-identified argument was a
single predicate -as in "f.X" - and we would compare quantifications
over a bag V of single predicates- or that one well-identified argument was
a predicate pair -as in "f.(X,Y)" - and we would compare quantifica
tions over a bag W of predicate pairs.

Now it is time to face the fact that f.(X,Y) admits of two other functional
views besides a function of its total argument:

• we can view it as "a function in the first component", i.e., for any fixed Y
we can view f.(X, Y) as a function in the single predicate X ;
• we can view it as "a function in the second component", i.e., for any fixed
X we can view f.(X, Y) as a function in the single predicate Y .

The question is now how the junctivity of the original f is related to the
junctivity of the latter two functions of a single predicate, or -to use the
jargon - how "I's junctivity in its total argument" is related to "I's
junctivity in the first and second component".

There are two ways of expressing formally what junctivity in a component
means. For instance, "f is conjunctive over V in the first component"
means that we have for any Y .

• [f.((\fX: X E V: X),Y) = (\fX: X E V: f.(X,Y))] , or

• "f' is conjunctive over V" with l' defined by

(55) [f'.x = f.(X, Y)] for any X

To prepare the investigation to what extent junctivity in the total
argument implies junctivity in the components, we first establish the

Theorem Let, for some predicate Y ,predicate transformer k be given by

(56) [k.x = (X,Y)] for all X ;

then k is positively junctive.

108 6. Some properties of predicate transformers

Proof With g and h defined by

[g.x == X] and [h.X == Y] for any X

we observe

k.x
{def. of k }

(X,Y)
{def. of g and h }

(g.x , h.x)

Hence -theorem (49)- , k enjoys alljunctivity properties shared by g and
h . Because, furthermore, g (the identity function) -theorem (36)- is
universally junctive and h (a constant function) -theorem (37)- is
positively junctive, k is positively junctive.

(End of Proof)

And now we are ready for the following general result.

(57) Theorem With the exception of universal junctivity, a function is as
junctive in its components as it is in its total argument.

Proof We have to show that, with f' expressed in terms of f as in (55), f'
is as junctive as f , with the exception of universal junctivity. To this end we
observe that for some Y

f'.x
{(55)}

f.(X,Y)
{with k as defined by (56)}

f.(k.x)

Because -theorem (45)- functional composition isjunctivity preserving
and -the previous theorem- k enjoys alljunctivities other than universal
junctivity, the theorem now follows.

(End of Proof)

And now we face the inverse question: let for a function of a predicate pair
be given how junctive it is in its components, how junctive in its total
argument can we conclude it to be? In this direction, the inheritance is much
weaker.

(58) Theorem A function of a predicate pair that is monotonic in both
components, and-continuous in both components, or or-continuous in both
components, is so in its total argument.

6. Some properties of predicate transformers 109

Proof We gIVe the proof for mono tonicity and and-continuity. Let
(X.i , Y.i) (0 < i) be a finite or infinite, monotonic sequence. Then, the
sequences X.i and Y.i -ranges from now on to be understood- are both
weakening or both strengthening and, if finite, of the same length. Let f be
conjunctive over X.i in the first component and conjunctive over Y.i in the
second component. Then we observe

f.(Vi:: (X.i , Y.i»
{ V distributes over pair-forming; renaming a dummy}

f.((Vi:: X.i) , (V):: Y.j»
{ f conjunctive over X.i in 1st component}

(Vi:: f.(X.i , (Vj:: Y.J))
{ f conjunctive over Y.j in 2nd component}

(Vi:: (Vj:: f.(X.i , Y.J))
{ unnesting}

(Vi,j:: f.(X.i , Y.j»
{(5, 116); because f is monotonic in both its components and X.i and
Y.j are both weakening or both strengthening, f.(X.i, Y.j) IS

weakening in both and j or strengthening in both i and j }

(Vi:: f.(X.i , Y.i»
(End of Proof)

Remark Note that our earlier theorem (54), whose proof we left to the reader,
can also be proved by an appeal to the above inheritance theorem.

(End of Remark.)

For the ease of retrieval, we give the following corollary of our last two
theorems.

Corollary For a function f of an n-tuple of predicates we have

(59) (f is monotonic in its total argument) ==
(f is monotonic in all the components)

(60) (f is and-continuous in its total argument) ==
(f is and-continuous in all the components)

(61) (f is or-continuous in its total argument) ==
(f is or-continuous in all the components)

The first one is rather obvious and easily demonstrated in isolation. The last
two are less obvious, but give a very clear hint why continuity -a rather
complicated property to define! - is a significant notion. An important
consequence of the corollary is that we can now talk about monotonic

110 6. Some properties of pred icate transformers

functions, and-continuous functions, and or-continuous functions without
distinguishing between junctivity in the total argument and junctivity in all
the components.

Some justifying examples

We have introduced a whole hierarchy of junctivity types; this raises the
question of how meaningful all these distinctions are. Do there really exist, for
each junctivity property, functions enjoying it but not enjoying the next
stronger one? This can be settled by examples.

We have also given quite a number of theorems; but a theorem raises in
general the question of whether we should have replaced it by some stronger
one. This can be settled by an example that refutes such a proposed stronger
version.

This section is devoted to some of such examples, showing that our
distinctions make some sense or that our theorems are not unnecessarily
weak. The set of examples given below does not have the slightest claim of
being complete (in whatever sense).

• Do there exist functions at all that satisfy our strongest constraints, i.e.,
being universally conjunctive or universally disjunctive? (If not, universal
junctivity would, as a concept, not make much sense.) The answer is "Yes".
The identity function -i.e., f given by [fX == X] - settles the question.

• Is the distinction between universal and positive junctivity meaningful?
The answer is "Yes", as follows from the existence ofa function that is posi
tively conjunctive, but not universally so, e.g., f given by [f.X == false] .

• Is the distinction between positive and denumerable junctivity mean
ingful? The answer is "Yes", as follows from the existence of a function that is
denumerably disjunctive but not positively so. Consider a space of a
nondenumerable set of points and define the predicate transformer f by

[f.X == (X holds in a nondenumerable set of points)]

(On a space of a denumerable set of points, f would not be very interesting:
it would be the constant function false .) We now show that f is de
numerably disjunctive, but not positively so. Denumerable disjunctivity
amounts to the fact that for any denumerable set V of predicates

(62) [f.C3X: X E V: X) == (3X: X E V: f.X)]

or, equivalently

«3X: X E V: X) holds in a nondenumerable set of points) ==
(3X: X E V: (X holds in a nondenumerable set of points))

6. Some properties of predicate transformers 111

which, for denumerable V ,is a theorem of set theory. (Viz., the union of a
denumerable set of sets is nondenumerable if and only if at least one of those
sets is nondenumerable.) To show that f is not positively disjunctive, we
take a non-empty V for which (62) is false. It suffices to take for V the set
of all "point predicates ", i.e., all predicates that hold in a single point of space.
For that V we observe

f.(3X: X E V: X)
{because V contains all point predicates}

f.true
{def. of f and nondenumerability of space}

true
=f. {predicate calculus}

(3X: X E V: false)
{def. of f, V ,and the singleton set is denumerable}

(3X: X E V: f.X)

• Is the distinction between denumerable junctivity, finite junctivity, and
continuity meaningful? The answer is "Yes". Because of theorem (24)

(f is denumerably conjunctive) ==
(f is finitely conjunctive) /\ (f is and-continuous)

it suffices to show (i) a finitely conjunctive f that is not and-continuous, and
(ii) an and-continuous f that is not finitely conjunctive.

(i) Let P.i (0 ~ i) be a strengthening sequence, such that -ranges being
understood to be over the naturals-

(*) ,(3i:: [P.i == (Vj:: P.j)])

(This means that P.i is an "ever strengthening sequence"; such sequences are
quite thinkable, e.g., [P.i == i ~ n].) Consider now predicate transformer f
given by

[f.X == (3i:: [P.i ~ X])] for all X

Now observe for any X , Y

f.(X /\ Y)

{def. of f with X:= X /\ Y }

(3i:: [P.i ~ X /\ Y])

{pred. calc.}

(3i:: [P.i ~ X] /\ [P.i ~ Y])

{dual of (5, 116); [P.i ~ X] /\ [P.j ~ YJ is weakening in both i and j }

(3i,j:: [P.i~X] /\ [P.j~ YJ)
{nesting; /\ distributes over 3 ,twice}

(3i:: [P.i~X]) /\ (3j:: [P.j~ Y])

{def. of f ,as is and with X:= Y }

f.X /\ f.Y

112 6. Some properties of predicate transformers

hence f is finitely conjunctive. Next we observe

f.(Vj:: P.j)
{def. of f with X:= (Vj:: P.]) }

(3i:: [P.i = (Vj:: P.])J)
{since -pred. calc.- [P.i=(Vj:: P.j)] }

(3i:: [P.i =- (Vj:: P.j)J)

{(*)}
false

On the other hand, we observe

(Vj:: f.(P.j))
{def. of f with X:= P.j }

(Vj:: (3i:: [P.i = P.jJ))
{since [P.j= P.jJ }

true

Combining the two observations, we conclude

[f.(Vj:: P.j) 1= (Vj:: f.(P.]))J

Hence, P.j being a monotonic sequence, f is not and-continuous. And that
concludes example (i).

(ii) Now we have to construct an and-continuous f that is not finitely
conjunctive. We can do so with the aid of substitution, which is a predicate
transformer that will be discussed in the next and last section of this chapter.
It can be defined in the special case of predicates on a state space. The
predicates then correspond to boolean expressions in the variables spanning
the state space, and the "everywhere" operator corresponds to universal
quantification over all those variables.

Let n be one of the variables spanning the state space and let X be a
predicate on the state space, i.e., a boolean expression with possibly n as one
of its global (= free) variables. Then "(X with n:= E)" will be used here to
denote the result obtained by substituting E for n in X . We shall see in the
next section that substitution is a universally junctive predicate transformer.

And now we are ready to construct the predicate transformer we were
looking for: let f be defined by

(63) [f.X =- (X with n:= 0) V (X with n:= 1)J for all X

Substitution, being universally junctive, is and-continuous; theorem (43)
tells us that the disjunction preserves and-continuity. Hence, the above
defines an and-continuous f .

6. Some properties of predicate transformers 113

For the predicates n = 0 and n = 1 we observe

f.(n = 0 " n = 1)

{ 0 # 1 }
l.false

{def. of I with X:= lalse }
(false with n:= 0) v (false with n:= 1)

{substitution}

I alse v I alse
{ v is idempotent}

lalse

However,

f.(n = 0) " f.(n = 1)
{def. of I with X:= n = 0 and X:= n = 1 }

«(n = 0) with n:= 0) v «n = 0) with n:= 1» "
«(n = 1) with n:= 0) v «n = 1) with n:= 1»

{ 0 = 0, 1 = 1, 0 # 1 }

(true v I alse) " (false v true)
{pred. calc.}

true

Combining these observations, we conclude that our and-continuous I is
not finitely conjunctive. And that concludes example (ii).

• Is the distinction between finite junctivity or continuity versus monotoni
city meaningful? The answer is "Yes". We shall construct a monotonic
predicate transformer I that is neither finitely conjunctive nor and
continuous. It is really a generalization of the previous example (ii): we
generalize it so as to destroy and-continuity as well. Consider the predicate
transformer I given by

[fX == (3i:: (X with n:= i»] for all X

We leave it to the reader to show that this I is monotonic, but not finitely
conjunctive and not and-continuous. (Hint: to refute and-continuity, consider
the strengthening sequence P.j , given by [P.j == n ~ jJ for all j .)

• Is the notion of mono tonicity meaningful? The answer is "Yes", for there
are also predicate transformers that are not monotonic, e.g., I given
by [f.X == IX] .

So much for the meaningfulness of our junctivity distinctions.

* * *

114 6. Some properties of predicate transformers

Let us now have a look at some of our theorems and convince ourselves
that they are not unnecessarily weak.

Theorem (41) guarantees" each type of conjunctivity that is shared by all
elements of M". That it is in general impossible to guarantee more
conjunctivity is shown by the case that M has only one element g : in that
case f equals g . The question how much disjunctivity is inherited from the
conjuncts is the dual of the question how much conjunctivity is inherited
from disjuncts, but the answer is "In general not much.": the disjuncts in (63)
are universally conjunctive, but the f there defined is not even finitely so, and
thereby justifies the constraints of theorem (43).

Theorem (45) states that functional composition is junctivity preserving;
could the composition be of a stronger junctivity than one of the functions
composed? In general hardly so, as is shown by taking for one of the two the
-universally junctive!- identity function; the compositum then equals the
other function.

In theorem (57), universal junctivity is excluded from the inheritance, and
rightly so, as shown by the following example:

[f.(X,Y) == X v Y] and [f'.x == I(X, Y)]

Here f is universally disjunctive, but f' in general only positively so.

The same f can be used to show that the restrictions in theorem (58) are
not void: f is universally conjunctive in both components -theorem (42)
with g:= the identity function- but, as the reader can verify, not even
finitely conjunctive in its total argument.

And this concludes our justifying examples.

Substitution as predicate transformer

A main activity in this chapter so far has been to compose new predicate
transformers from given ones and to derive properties of the compositum
from properties of the given components. But from where did we get those
given components? In this section we shall present a method of constructing
such component predicate transformers.

The method is in two ways very powerful. Firstly, it enables us to generate
infinitely many predicate transformers of a dazzling variety; consequently,
predicates and their transformers form a universe of discourse that can be
very rich indeed. Secondly, the predicate transformers that are constructed by
this method are all universally junctive, and that puts the preceding part of

6. Some properties of predicate transformers 115

this chapter in proper perspective: the ways of composing predicate trans
formers so as to form new ones is the major source of loss of junctivity
properties.

In our application to programming language semantics, this method of
constructing predicate transformers is, in essence, even our only way of
constructing our basic building blocks. The method being so powerful and
seemingly basic, the reader may wonder why we did not introduce it right at
the beginning of this chapter instead of postponing it until the very last
section of this chapter. The reason is very simple: the method only works for
predicates more specific than the general theory requires. The method
requires the predicates to be predicates on a state space, i.e., the predicates
can be identified with boolean expressions in the variables -or, if you prefer:
Cartesian coordinates- spanning the state space and the "everywhere"
operator can be identified with universal quantification over all those
variables. (The reader may verify that this specialization is compatible with
all the postulates of our calculus of boolean structures.)

Let m and n be the two variables of the state space; bearing that in mind,
[X] may be read as ('<1m, n:: X) ,in which it is to be understood that, in
general, X depends on both m and n .

Remark We can restrict ourselves without loss of generality to a state space
spanned by two variables: for any dichotomy of a larger number of state
variables, we can always lump the variables of the one set together into a
variable m and those of the other set into a variable n . There is no need to
denote them by m and ii ,just to remind us that each of them "really"
stands for a tuple of variables; on the contrary, the sooner this "reality" is
forgotten, the better, for it is totally irrelevant. Compared with this conceptu
al simplification, the typographical simplification of omitting the overlining is
only a minor one. (End of Remark.)

Let E be an expression of the same type as n ,where, in general, E also
depends on m and n . For given n , E ,and X ,the predicate of interest is
the one obtained by replacing all global (= free) occurrences of n in X by
E ,or "by substituting E for n in X".

For the result of this substitution, an amazing number of different
notations is in use. So far, we used informally

(X with n:= E)

(which can be read as "X with n replaced by E"). Another notation in
common use is

X~

116 6. Some properties of predicate transformers

but we shall not use it, for it has more than one disadvantage. It is
typographically clumsy in that super- and subscripts invite smaller print
(which invitation, when accepted recursively, is guaranteed to lead to
unread ability -in particular in conjunction with a matrix printer!-);
uneven spacing of the lines is another awkward consequence. Furthermore
we have observed that in the case of simple E ,such as in

the absence of any visual aids to remind the reader what is substituted for
what is definitely a shortcoming. Other notations we have seen are

X[n +- E] , X(n:=E) , X(E/n) , X(n\E)

the last two having been inspired by a metaphor of multiplication and
division: the "denominator" disappears and the "numerator" comes in its
place. They are linear and do give the reader some visual aid, and as such they
are an improvement.

Yet, they do not fully satisfy us. The point is that this time we don't just
need some representation of that boolean expression: we want to view that
boolean expression -that predicate on the state space- as the result of
applying a predicate transformer to predicate X ,and we want our notation
to reflect that view, because, this time, our interest is in that predicate
transformer and its mathematical properties.

In view of our notational conventions adhered to so far, a postfix predicate
transformer would be a notational anomaly. We therefore propose to write

(n:= E).x

The advantage of the explicit full stop (= period) for functional application is
here that it is a visual. reminder that the syntactic unit preceding it is a
function to be applied to the syntactic unit following it.

Let now X and Y be two predicates on a state space of which n is a state
variable. Because the replacement of n by E has to be done for all
occurrences of n in the argument, substitution distributes by definition over
all logical connectives, i.e.,

[(n:= E).(X == Y) == (n:= E).X == (n:= E). Y]
[(n:= E).(X v Y) == (n:= E).x v (n:= E). Y]
[(n:= E).(X /\ Y) == (n:= E).x /\ (n:= E). Y]
[(n:= E).(iX) == i(n:= E).x]
[(n:= E).(X = Y) == (n:= E).x = (n:= E). Y]

6. Some properties of predicate transformers 117

Let now X be a function that, applied to some domain, yield a predicate
on the state space; with a fresh dummy i ranging over that domain, we have
by the definition of substitution

[(n:= E).(Vi:: Xi) == (Vi:: (n:= E).(Xi)]
[(n:= E).(3i:: Xi) == (3i:: (n:= E).(Xi»]

because all possible dependence on n is concentrated in the term.
Alternatively, let V be a set of predicates on the state space; then the set V
does not depend on n ,only its elements possibly do, and we have with a
fresh dummy X

[(n:= E).(V X: X E V: X) == (V X: X E V: (n:= E).x)]
[(n:= E).(3X: X E V: X) == (3X: X E V: (n:= E).x)]

In other words: substitution is universally junctive.

Remark Probably the generally most respected way of representing the effect
of substitution uses the A-calculus: its notation would be

(An:X).E

Here "An:" effectuates "functional abstraction": (An:X) is the one and only
function that yields X when it is applied to n ; in order to effectuate the
substitution by E ,this function is applied to E .

The A-calculus is certainly not without appeal. It has, for instance, the very
clear rule that, while n may be a global variable of X ,it is most definitely
not a global variable of (An:X) . In this last expression, n has in fact the
status of a dummy with its scope delineated by the surrounding parenthesis
pairs; it has the status of a dummy in the sense that it may freely be replaced
by a fresh variable, say n' ,i.e., (mixing notations!) we could rewrite (An:X)
as

(An':X~,)

Yet we preferred to leave the A-calculus alone because we don't need
functional abstraction in isolation, but only in combination with a subse
quent application. By presenting this combination "in a single package", so
to speak, we have a syntactically more homogeneous manipulation and are
spared all sorts of questions such as whether to define

[(An:(VX: X E V: X» == (VX: X E V: (An:X»]

We would, however, like to warn the reader in this connection that our
"packaged" function (n:= E) is -like most "neat ideas"- not without

118 6. Some properties of predicate transformers

problems. The problems emerge as soon as we consider (n:= E) as an
expression -there is no objection to considering expressions whose values
are functions- and ask for its global variables. Certainly the global variables
of E are global variables of (n:= E) . But what about n ? To simplify the
discussion, let us take a constant for E ,e.g., let us consider the predicate
transformer (n:= 1) . Here n is not a global variable because we are not
allowed to substitute an arbitrary expression F for it: as predicate
transformer (F:= 1) would be meaningless because textual substitution for a
general expression cannot be defined in a useful way. So, n is not a global
variable of (n:= 1) . Yet n is an external handle of (n:= 1) in the sense that
the substitutions (n:= 1) and (m:= 1) are different predicate transformers.
Furthermore, note that -like quantification over n - application of
(n:= 1) yields a result of which n is not a global variable.

With the introduction of (n:= E) as an expression, we have introduced
externally significant variables of a different kind than global variables. Shall
we call them "celestial variables"? Then (n:= n - m) would have the
celestial variable n and the global variables nand m ; we could even
distinguish n's celestial occurrence from its global one. Once the celestial
variable has been admitted, it requires a very strong mind to abstain from
introducing the substitution that would transform the function (n:= n - m)
into the function (m:= n - m) .

(End of Remark.)

We close this chapter with some theorems about the substitution operator
as predicate transformer. To pave the way we recall the principle of Leibniz
-see (3, 2)-

[x = yJ => [f.x = f.yJ

and the one-point rule -see (5, 91)-

[(Vx: [x = yJ: f.x) == f.yJ

In the case of punctual functions, we have -see (3, 6)- the stronger
version of Leibniz:

(64) [x = y => f·x = f.yJ

or, for boolean f ,equivalently

[x = Y /\ f.x == X = Y /\ f.yJ

Similarly, there is a stronger version of the one-point rule:

(65) [(Vx: x = y: f.x) == f.yJ for punctual f

6. Some properties of predicate transformers 119

Proof We observe for any y and punctual f

(\Ix: x = y: f.x)
{(64)}

(\Ix: x = y: f.y)
{pred. calc.}

(\Ix: x = y: false v fy)
{ v distributes over \I }

(\Ix: x = y: false) v f.y
{range x non-empty}

f.y
(End of Proof)

In (65), the variables x and y stand for structures of the same type; x
being a dummy, we may rewrite (65) as

[(\In: n = y: f.n) == f.y]

even if n denotes one of the variables of the state space. (Due to the
quantification, the left-hand side does not have n as global variable.) With n
one of the variables of the state space, f.n is just a given predicate; giving it a
name, Fn say -chosen to remind us that it depends punctually on the
otherwise anonymous but here explicitly named state variable n - ,the
corresponding way of denoting f.y is (n:= y).Fn . Thus we may rewrite

(66) [(\In: n = y: Fn) == (n:= y).Fn]

in which y is a global variable of both sides while n is not. We may
instantiate it with y:= E provided n is not a global variable of E :

(67) [(\In: n = E: Fn) == (n:= E).Fn]

Were we to instantiate, instead of with E ,with En -i.e., an expression
that has n as a global variable- then we would introduce in the left-hand
side a classical example of clashing identifiers, viz., the global n of En and
the dummy n of the universal quantification. The equally classical way out is
to rename in (66) the dummy n by a fresh variable x

(68) [(\Ix: x = y: (n:= x).Fn) == (n:= y).Fn]

and to instantiate the latter with y:= En :

(69) [(\Ix: x = En: (n:= x).Fn) == (n:= En).Fn]

where x is a fresh variable.

120 6. Some properties of predicate transformers

Note that with the aid of (66) we can eliminate substitution from the left
hand side:

(70) [(Vx: x = En: (Vn: n = x: Fn» == (n:= En).FnJ

where x is a fresh variable.

All this is a little bit painful. For the application of the substitution
operator (n:= En) ,we need two nested quantifications, the inner one to
introduce a fresh variable x and the outer one to eliminate it again. Here, the
A-calculus, which would have allowed us to write simply

(An:Fn).En

is at a definite advantage. Fortunately, we pay only a small price for this
cumbersome transcription of the substitution operator, since later we shall
use (70) only once.

CHAPTER 7

Semantics of straight-line programs

Program execution as change of machine state

This is a monograph about a theory of programming language semantics.
Programming language definitions traditionally consist of two parts, called
its "syntax" and its "semantics", respectively.

The syntax of a programming language defines which character sequences
are programs in that programming language. Moreover, the syntax defines
how programs written in that programming language are to be parsed.
(Fortunately, syntaxes can, in turn, be defined in several distinct steps. A
meaningful separation of concerns isolates, for instance, the consequences of
the fact that, ultimately, each program is expressed as a linear string of
characters from a finite alphabet. One step does not distinguish between
programs and their parse trees and defines which parse trees belong to the
language. Another step is exclusively concerned with how the parse trees
belonging to the language are coded as linear strings of characters; this step
settles details such as how scopes are delineated, whether there will be infix
operators, etc. This monograph being about semantics, we shall not pursue
the different aspects of syntax definition.)

The semantics of a programming language defines for each program
written in that language "what that program means". (Here we have followed
how the term semantics is used in linguistics.) The semantics refers to the
execution of the programs, i.e., what would happen each time such a program
is fed into an appropriate computer.

121

122 7. Semantics of straight-line programs

Remark We regret the terminology we used in the preceding paragraphs, but
the terminology is by now so firmly established that there seems to be no
point anymore in deviating from it. In retrospect, we -and not we alone
would have been much happier, had programming languages never been
called "languages" (but, say, "program notations" instead). Admittedly, the
metaphor has been helpful in the very beginning: the linguistic analogy gave a
hint what aspects to distinguish and provided a terminology for identifying
them. Our regret comes from the fact that, beyond that initial service, the
linguistic analogy has been more confusing than helpful. (Is it far-fetched to
suppose that the analogy has stood at the cradle of the faddish term
"computer literacy"? We have seen the "argument" that computer literacy
-whatever it may be: the author left that open- would be easier to acquire
than (normal) literacy because programming languages are simpler than
natural languages. In the same vein we have seen it "argued" that one should
not strive for a programming language with a stable definition because the
living languages are much more useful than the dead ones. And it is not only
the layman that gets confused: the above two almost perfect examples of
medieval reasoning have been displayed by two very well-known professors
of computer science.)

The term "programming language" was first a symptom, but, once
established, it became a driving force behind the habit of describing comput
ing systems in anthropomorphic terminology. ("When this guy wants to
speak to that guy···" in reference to two components of a computer
network.) Having that habit is a severe handicap, and too many people suffer
from it. As long as we don't shed it, computing science will remain immature.
(End of Remark.)

Now, one aspect of doing science consists in choosing the dividing line
between the relevant and the irrelevant. In the current case, the question is:
what are we going to ignore and what are we going to take into account when
referring to "what would happen each time such a program is fed into an
appropriate computer"?

To begin with -and not surprisingly so- we are going to ignore all
physical characteristics of the computer: its size, its weight, its price, its speed,
its power consumption, its reliability, its maintenance contract, and its
manufacturer,just to mention a few irrelevantia. Presumably the machine has
a manual, but in that case we do not regard it as the manual's task to describe
the machine, but as the machine's task to provide a -hopefully correct
physical model of the manual's contents. In case of a discrepancy, we blame
the machine and not the manual: it is the abstract machine that matters,
because that is the one we can think about.

7. Semantics of straight-line programs 123

Historical Note We found this understanding essential from the very first
beginning of our cooperation. In the fifties, we were involved in the design,
construction and method of use of a number of computers -the software
was EWD's responsibility while CSS had responsibility for the hardware- .
For each new machine, the writing of the manual was the very first tping that
happened. These manuals were understood to state rights and obligations; to
the extent they did, they almost acted like legal documents. Thus it was
possible to complete the basic software and the prototype at the same
moment. (End of Historical Note.)

Having decided that it is the thinkable machine that really matters, we go
one step further and ignore all sorts of constraints that are hard to avoid in
physical machines, such as limits on the size of store or on the length of
words: in the machine we are willing to think about -also known as "the
Good Lord's Machine"- any integer can be increased by 1 and there is no
fixed limit on the depth of recursion.

Remark The think ability of the Good Lord's Machine is the reason why, in
order to be reasonably suitable for the implementation of "higher level
programming languages", a fixed-wordlength machine should be equipped
with dedicated hardware for overflow detection. A partial simulation of the
Good Lord's Machine can be quite useful provided (i) the simulation can be
made to be almost always successful, and (ii) the implementation signals if the
simulation has failed. Hence, overflow detection is a very skew test, i.e., one
that yields very little information per test. For such tests -parity check and
real-time interrupt are other examples- dedicated hardware is needed to
protect the implementor from the pressure to suppress the test. (End of
Remark.)

To simplify matters further, we ignore all devices for input and output of
information: the value of the input absorbed by a computation is deemed to
be captured by the initial state of the machine -i.e., the state in which the
machine starts the computation- ,the value of the output is similarly
deemed to be captured by the final state of the machine -i.e., the state in
which the machine is left upon completion of the computation- .

Remark Our decision to ignore input and output commands is a conscious
departure from the traditional computational model in which the output is
produced as function of the input, commonly pictured as a box with an
incoming arrow at its left and an outgoing arrow at its right. To someone
grown up with that paradigm, the box without arrows -or, equivalently,
programming without input and output commands- might seem unrealisti
cally incomplete.

124 7. Semantics of straight-line programs

In this connection, we would like to point out that, with the inclusion of
nondeterminacy, the direction of the input arrow has become somewhat
arbitrary: we can replace an input file by an output file if we replace the input
of a next value by a nondeterministic choice of a next value combined with
the output of the value chosen. What used to be a relation between input and
output is thus transformed into a relation between two outputs. Similarly we
can replace an output file by an input file miraculously containing the
answers if we replace the output of a value by a comparison with the next
value read.

These observations strongly support our decision not to give input and
output a special status in our considerations. The reader worried by the
above should remember that the notion of causality has no useful role to play
in the inanimate world; if he believes it does, he is probably the victim of one
or two anthropomorphic metaphors. (End of Remark.)

Our next step is a little bit more radical. In the early days of automatic
computing we were very preoccupied with the machines, whose construction
-to put it mildly- stretched the electronic technology of the day. As a
result, it was viewed as the task of the programs to instruct our machines, and
the final state was not only viewed but actually defined as the result of the
computation evoked under control of the program. In those days, the
semantics of programming languages was defined in terms of the computa
tional steps that would take place during the executions of the programs, the
final state reflecting the cumulative effect of all the steps of a computation. In
order to distinguish it from more modern ways, the approach just sketched is
now called "an operational definition" of the semantics.

Nowadays, we are no longer so preoccupied with the machines. We are
more interested in our programs and view it as the task of the machines to
execute our programs, i.e., to bring themselves, for given initial state and
given program, into a corresponding final state. We are not so interested any
more in what happens during the computation, provided it establishes the
desired nett effect. Accordingly, we shall no longer define the semantics via
the detour of the nett effect of the computations a program may evoke;
instead we shall define more directly how, for any program in the language,
initial and final states are connected. In order to distinguish it from
operational definitions, the latter is called "a postulational definition" of the
semantics.

We adopt a postulational method because its technical advantages, as
compared with operational methods, are so overwhelming. (It serves as the
basis for a calculus to derive programs from their specifications; most, if not
all, of the functions to be manipulated are total; it caters for the painless
inclusion of nondeterminacy.)

7. Semantics of straight-line programs 125

The only things of interest that remain are the initial state, the final state,
and how a program defines a connection between them. Since computations
no longer enter the picture, we can forget about machines and computational
models. The postulational method allows us to treat programs as uninter
preted formulae, i.e., mathematical objects in their own right, that we can deal
with while ignoring the fact that they are interpretable as executable code.

Remark Postulational methods relegate what used to be considered the
subject matter to the secondary role of (ignorable) model in terms of which
the new formalism could be interpreted. It is a time-honoured tradition that
their introduction begins by evoking sometimes bitter resentment from those
that are so attached to their familiar patterns of reasoning that they
experience the reduced role of their cherished model as an insufferable loss.
But, to quote E. T. Bell: "Experience shows that the only loss is the denial of
the privilege of making avoidable mistakes in reasoning.". In programming it
is the operational model of computation that invites the "avoidable mistakes
in reasoning".

We mention one further advantage of the postulational method that
emerged in programming. In order to reason in a trustworthy manner about
abstract programs, one has to know how to cope with unbounded nondeter
minacy, something for which no physically realistic model of computation
exists. For the operationally inclined this has proved to be a severe hurdle,
whereas the postulational method takes it without noticing that it could be a
hurdle. (End of Remark.)

The semantics of a program

One way of trying to capture the semantics of a given program S is to
consider the final state in which S terminates as a function of the initial state
in which S has been started. This way has been followed -even extensively
so- but it has a few serious disadvantages.

One disadvantage is that there may be initial states for which S ,when
started in them, fails to terminate, i.e., the final state, considered as a function
of the initial state, is not defined for all points of the state space. We then have
two options. Either we pay the price of dealing with what are called "partial
functions" -i.e., functions defined on a smaller domain than the one under
consideration - or we make them total functions by extending the range
with a special value -usually called "bottom"- that can be interpreted as
"stuck in an eternal computation". Both have their disadvantages. The first
method introduces functions that cannot be freely applied to an argument

126 7. Semantics of straight-line programs

that is otherwise of the appropriate type, the second method buys the
advantage of dealing with total functions at the price of destroying the
homogeneity of the state space.

The other disadvantage is more serious: the functional approach is really
geared to what are now called "deterministic programs", i.e., programs for
which the ensuing computation -whether finite or not- is fully determined
by occasionally tossing a coin -with enough sides- simply don't fit nicely
reasons it is desirable to include nondeterministic programs in our consider
ations as well, i.e., programs in which the ensuing computation is only partly
determined by the initial state. Such programs, which could be implemented
by occasionally tossing a coin -with enough sides-, simply don't fit nicely
in the functional framework. Of course people have tried to squeeze them into
it: one effort was to treat the behaviour of the coin as some sort of hidden
input, another one introduced functions from states to subsets of states. The
cleanest approach along these lines is probably to capture the semantics of a
program as a relation between initial and final state; it has at least the
advantage that the relational calculus as such is available. In this context,
experience with the relational calculus has not been too favourable. The
transition to the relational calculus does almost suffice for the elimination of
"bottom", but not quite! Moreover, the relational calculus, which treats the
two arguments of a relation on the same footing, does not, by itself, reflect the
asymmetry between initial and final state. These are admittedly only tentative
explanations for the not-too-fortunate experience with the relational calcu
lus. Other possible explanations are that no one trying to apply the relational
calculus in this area mastered it well enough, or that the relational calculus
needs a few notational revisions before it can be considered a workable tool.

After the above, we trust that the reader understands our preference for a
definition of semantics
(i) that uses functions, rather than relations,
(ii) of which the functions are total rather than partial, i.e., one that allows

us to dispense with "bottom ", and
(iii) that encompasses nondeterminacy.

To begin with, we look for a helpful classification of computations. A
major dichotomy is into terminating and eternal computations: a terminat
ing computation has an initial state and a final state, whereas an eternal
computation has only an initial state.

For the purpose of semantic definition, the dichotomy into terminating
and eternal computations is too coarse because it treats all points of the state
space on the same footing. The general way of distinguishing points in state
space is the introduction of some predicate X ; a predicate X defines
a dichotomy of the state space in the sense that each state satisfies either X
or ,x .

7. Semantics of straight-line programs 127

Using the latter dichotomy to refine the former, we have two options: we
can relate predicate X to the initial state or to the final state. In the first case
we would introduce four classes of computations according to "terminating/
eternal" and "initially X /initially IX". In the second case, where we relate
predicate X to the final state, this only yields a dichotomy of the terminating
computations and hence we would introduce only three classes: eternal/
finally X /finally ,x .

We have to choose between the two options. Fortunately, some reflection
tells us that the second one can be expected to lead to the more convenient
concepts. In the second classification, "eternal/finally X /finally IX", we
have postponed taking the initial state into account, but that will be no
problem because each computation of each class has an initial state. In the
first classification, into four classes, we have postponed taking the final state
into account, and when we try to do so, the trouble starts for not all
computations of all classes do have a final state. In summary, we propose to
partition the computations into the following -indeed mutually exclusive
classes:

" eternal"

"finally X"

"finally IX"

-all computations that fail to terminate

-all computations terminating in a final state
satisfying X

-all computations terminating in a final state
satisfying ,x .

Note that -thanks to the Excluded Middle- this classification is also
exhaustive: each computation falls into one of the three classes.

So much for the classification of computations with respect to the
predicate X . We now take the view that we know everything that is to be
known about the semantics of a program S if we know, for any predicate X
and for any initial state, computations from which of the three classes are
possible when S is started in that initial state.

To each class then corresponds a dichotomy of the initial state space, viz.,
whether in such a state as starting point an execution of that class is possible
or not. We characterize -as always- these dichotomies by predicates on
the state space. For given S and X we propose the following three
predicates (whose nomenclature will be explained later). The first of three
predicates is independent of X .

wp.S.true

w/p.S.X

holds precisely in those initial states for which no
computation under control of S belongs to the class
"eternal"

holds precisely in those initial states for which no
computation under control of S belongs to the class
"finally IX"

128 7. Semantics of straight-line programs

wip.S.(-,X) holds precisely in those initial states for which no
computation under control of S belongs to the class
"finally X" .

Because each computation belongs by definition to exactly one of the three
classes, an alternative phrasing is

wp.S.true

wlp.S.X

wlp.S.(-,X)

holds precisely in those initial states for which each
computation under control of S belongs either to the
class "finally X" or to the class "finally -,X"

holds precisely in those initial states for which each
computation under control of S belongs either to the
class "eternal" or to the class "finally X"

holds precisely in those initial states for which each
computation under control of S belongs either to the
class "eternal" or to the class "finally -,X" .

Above denotations of predicates on the initial states -such as
"wp.S.true" and "wlp.S.x" - are not just names: the full stops
(= periods) are the left-associative full stops (= periods) denoting function
application -we could equally well have written "(wp.S).true" and
"(wlp.S). X" - . That is, wp.S and wlp.S , being functions from predicates
to predicates, emerge as predicate transformers. (The first one has, so far, only
been applied to the argument true ,but that will be remedied shortly.) In
short, we treat wp and wlp as higher-order functions.

As we said, we consider the semantics of program S fully characterized by
the knowledge of the predicates wp.S.true and wlp.S.x for all X ,i.e., the
knowledge of the predicate wp.s.true and the predicate transformer wlp.S .

Not all predicate transformers can meaningfully be interpreted as a wlp.S
for some program S . To begin with we observe for any (possibly empty) bag
V of predicates and any terminating computation C

(C belongs to the class "finally (V X: X E V: X)") ==
(V X: X E V: C belongs to the class "finally X")

Hence, for any C ,the above equivalence holds or C belongs to the class
"eternal". Disjunction distributing over equivalence and over universal
quantification, we deduce for any V and C

(C belongs either to the class "eternal" or to the class "finally
(VX: XE V: X)") ==

(V X: X E V: C belongs either to the class "eternal" or to the
class "finally X")

7. Semantics of straight-line programs 129

From this observation we conclude that our interpretation requires that
for each program S

(0) wlp.S is universally conjunctive

because we shall need it in a moment, we mention universal conjunctivity's
special consequence: we have for each program S

(1) [wlp.S.true]

And now the time has come to introduce, in terms of the predicate
wp.S.true and the predicate transformer wlp.S ,the second predicate
transformer we associate with program S . It is the predicate transformer
wp.S given by

(2) [wp.S.X == wp.S.true 1\ wlp.S.X] for all X

(Note that, thanks to (1), (2) with X:= true does not lead to a conflict: we
were justified in naming the first of the three characteristic predicates
wp.S.true .)

From the interpretation of the conjuncts in the right-hand side of (2) we
derive the interpretation of wp.S.x :

wp.S.x : holds precisely in those initial states for which each computation
under control of S belongs to the class "finally X".

The names wp and wlp are derived from "weakest precondition" and
"weakest liberal precondition", respectively: wp.S.X is "the weakest
precondition under which S is guaranteed to establish the postcondition
X", wlp.S.X is "the weakest precondition under which S is guaranteed to
establish the postcondition X if the computation terminates". In the
jargon: wlp.S is concerned with "the partial correctness of S" (i.e., apart
from possible failure to terminate), whereas wp.S is concerned with "the
total correctness of S" (i.e., termination included).

Remark When C. A. R. Hoare introduced what became known as "Hoare
triples" and got the format

(3) {P} S {Q}

he was concerned with partial correctness: (3) was short for "when started in
an initial state satisfying P , S will, if the computation ends, end in a final
state satisfying Q". The relation with our notation is that wlp.S.x is the
weakest solution of the equation

Y: ({Y} S {X})

(Note that in this equation wlp.S.x emerges as extreme solution with
out being a "fixpoint", i.e., not a solution of an equation of the form
Y: [Y == f. Y] . Sometimes people seem to forget that such extreme solutions
do exist.)

130 7. Semantics of straight-line programs

Hoare's triples and inference rules were designed to formalize reasoning
about (partial) correctness of programs. By switching to predicate trans
formers the triples have been eliminated and the inference rules, if not
subsumed in the predicate calculus, have been replaced by definitions or
theorems. (End of Remark.)

Of the two, wp.S and wlp.S ,the latter is the more fundamental one
-there is no way of defining wlp.S in terms of wp.S - ; it is also the one
with the nicer properties (which probably reflects that it is easier to reason
about partial correctness than about total correctness). We include wp.S in
our considerations because in program design it is often the more useful one.
Besides that, it has some interesting properties.

We observe that in our classification of computations the class "finally
false" is empty (for lack of final states satisfying false). Hence -see our
interpretation of wp.S.X - we have the interpretation

wp.Sfalse : holds precisely in those initial states for which no computa
tion under control of Sexists.

As long as we take the position that each program S can be started in any
initial state, i.e., that to any initial state at least some computation corre
sponds, then there are no initial states for which no computation under
control of S exists. That is, we have for each program S

(4) [wp.Sfalse =.falseJ

Because a computation in the class "finally false" would establish a miracle,
one of us (EWD) dubbed (4) "The Law of the Excluded Miracle".

Remark For this catchy name EWD has been severely chided (by Greg
Nelson) and rightly so. The catchy name, together with the fact that it had
been called a "Law", erected a considerable barrier for the conception of
program components S for which wp.Sfalse would hold in some states, viz.,
those initial states in which starting S would be simply "inappropriate" or
"impossible". The introduction of the perfectly sound concept of such partial
programs -"partial" in the sense that in some initial states there is no
computation to take place under control of the program- has been delayed
by EWD's nomenclature. For which he offers his apologies. In this little
monograph we shall confine ourselves to "total" programs satisfying (4).
(End of Remark.)

From the interpretation

wlp.S.(,X) : holds precisely in those initial states for which no computa
tion under control of S belongs to the class "finally X"

7. Semantics of straight-line programs 131

we deduce the interpretation

,wlp.S.(,X) : holds precisely in those initial states for which there exists a
computation under control of S that belongs to the class
"finally X".

Whereas wp.S.x characterizes the initial states where "finally X" is
unavoidable, ,wlp.S.(,X) characterizes those states for which "finally X"
is merely possible. Hence we should have

(5) [wp.S.x = ,wlp.S.(,X)] for all X

Indeed we observe for any S and X

[wp.S.x = ,wlp.S.(,X)]
{pred. calc.}

[,(wp.S.x /\ wlp.S.(,X))]
{(2)}

[,(wp.S.true /\ wlp.S.x /\ wlp.S.(,X))]
{ wlp.S is universally conjunctive}

[,(wp.S.true /\ wlp.Sfalse)]
{(2)}

[,wp.Sfalse]
{(4)}

true

Note The above calculation would have been two steps shorter, had we used
the theorem that for any S , X , Y

(6) [wp.S.x /\ wlp.S. Y == wp.S.(X /\ Y)]

which the reader may prove. (End of Note.)

A program being deterministic means that, conversely, what is possible is
also unavoidable, i.e., S being deterministic means

[wp.S.x = ,wlp.S.(,X)] for all X

Combining this result with (5) and observing that by the definition of the
conjugate

[,wlp.S.(,X) == (wlp.S)*.x]

we arrive at the definition

(7) (S is deterministic) ==
(wp.S and wlp.S are each other's conjugate)

132 7. Semantics of straight-line programs

In this booklet the concept of determinacy does not playa very important
role. The above definition was, in fact, only introduced at a fairly late stage.
We think it worthwhile to note that, as a definition, it is very nice and, by
being so, gives an encouraging indication that we have introduced appropri
ate concepts. This was a further reason for its inclusion.

And now we finish our operational considerations and will proceed to
define the semantics of programs S by defining the corresponding predicate
transformers wlp.S and wp.S . The only connection with the above will be a
purely formal one:

(i) for every wlp.S we define, we shall honour the obligation to show that it
meets requirement

RO: wlp.S is universally conjunctive

(ii) for every wp.S we define, we shall honour the obligation to show that it
meets requirement

R1: [wp.SJalse =.falseJ

We close this section with two simple theorems.

(8) Theorem For any S , wp.S is positively conjunctive.

Proof On account of (2) -the definition of wp.S - and (6, 41), wp.S
enjoys each type of conjunctivity shared by the constant function and wlp.S .
The constant function -see (6, 37)- is positively conjunctive, wlp.S -see
RO - is universally so. From the combination of these two observations,
the theorem follows.

(End of Proof)

(9) Theorem For any deterministic program S , wp.S is universally
disjunctive, and wlp.S positively so.

Proof We observe for any deterministic S

the disjunctivity type of wp.S
{(7); S is deterministic}

the disjunctivity type of (wlp.S)*
{properties of conjugate}

the conjunctivity type of wlp.S
{ RO }

universal

The second half of the proof is left to the reader.
(End of Proof)

7. Semantics of straight-line programs 133

The semantics of a programming language

So far, we argued that we can consider the semantics of S defined if the
predicate transformers wlp.S and wp.S are defined; the definition of such
predicate transformers and the study of their properties will be the subject of
the remainder of this chapter.

The syntax of a programming language defines the set of all programs that
are writable in it. The semantics of a programming language has to define the
semantics of each writable program, i.e., has to define for each writable
program S the predicate transformers wlp.S and wp.S . In other words, the
definition of the semantics of a programming language boils down to a
definition of the functions wlp and wp ,which are functions from writable
programs to predicate transformers. Their domain, i.e., the writable pro
grams, being recursively defined by the grammar, we shall define wlp and wp
recursively over the grammar. For each statement S we shall list in order

(i) the predicate transformer wlp.S
(ii) the predicate wp.S.true
(iii) the predicate transformer wp.S

where (i) and (ii) should be viewed as definitions from which -and the
reader is supposed to verify this himself - (iii) then follows according to (2).
Next we shall discharge RO and R1 . Finally, we may discuss some of its
properties. We postpone the introduction of compound statements until after
the introduction of a bunch of basic statements.

havoc

(10) [wlp.havoc.x == [X]] for all X

(11) [wp.havoc.true == true]

(12) [wp.havoc.x == [X]] for all X

Because wlp.havoc is the "everywhere" operator and -see (6, 40)- the
"everywhere" operator is universally conjunctive, requirement RO is met.

In order to see that requirement Rl is met, we observe

wp.havocJalse
{(12) with X:= false }

[false]

{pred. calc.}
false

134 7. Semantics of straight-line programs

Comparing (10) and (12), we see that wlp.havoc and wp.havoc are the
same predicate transformer; hence wp.havoc is universally conjunctive.

To see that wlp.havoc is not finitely disjunctive we observe for any Y that
is neither true nor false

wlp.havoc.(Y v I Y)

{(10) with X:= Y V I Y }

[Y V I Y]
{pred. calc.}

true

whereas

wlp.havoc. Y v wlp.havoc.(I Y)

{(to) with X:= Y and X:= I Y }

[Y] V [IY]
{ Y is neither true nor false }

false

To see that wlp.havoc is not or-continuous either, we observe for some
state space with natural state variable n -and dummy i understood to be
natural-

wlp.havoc.(3i:: n::::; i)

{(10) with X:= (3i:: n::::; i)}
[(3i:: n::::; I)]

{ consider i = n }
true

whereas

(3i:: wlp.havoc.(n::::; z))

{(to) with X:= n ::::; i }

(3i:: [n::::; IJ)

{consider n = i + 1 }

(3i:: false)
{pred. calc.}

false

Hence, apart from mono tonicity, wlp.havoc is not disjunctive and neither
is wp.havoc . Consequently, -see (9)- havoc is not deterministic.

In fact, havoc is almost as nondeterministic as possible. Operationally
interpreted, the only thing we know about an execution of havoc is that it

7. Semantics of straight-line programs 135

terminates; upon its termination the machine may be in any state, i.e., all
variables spanning the state space may have been set to unpredictable,
unrelated values. For that reason, most commercially available programming
languages do not include -as least not intentionally- havoc in their
repertoire. Yet it is good to know havoc ,as it may be valuable in the design
of counter-examples.

Note In an infinite state space, the nondeterminacy of havoc is, in the jargon,
"unbounded". The weakening sequence (n ~ 1) for (0 ~ i) is the standard
tool for showing that, for an S of unbounded nondeterminacy, or-continuity
of wlp.S is excluded. (End of Note.)

abort

(13) [wlp.abortX =. true] for all X

(14) [wp.abort.true =.false]

(15) [wp.abortX =. false] for all X

Because wlp.abort is the constant function true and -see (6, 39)- the
constant function true is universally conjunctive, requirement RO is met.

Because [wp.abortfalse =. false] ,requirement Rl is met.

We observe for any X

(wlp.abort)*X
{definition of conjugate}

,wlp.abort.(,X)
{(13) with X:= ,X }

,true
{pred. calc.}

false
{(15) }

wp.abortX

i.e., abort is deterministic; hence wlp.abort is positively disjunctive and
wp.abort is universally disjunctive.

The operational interpretation of abort is that for all initial states its
execution fails to terminate.

136 7. Semantics of straight-line programs

skip

(16) [wlp.skip.x == X] for all X

(17) [wp.skip.true == true]

(18) [wp.skip.x == X] for all X

Because wlp.skip is the identity function and -see (6,36)- the identity
function is universally conjunctive, requirement RO is met.

Because [wp.skipfalse ==false] ,requirement R1 is met.

Because in fact the identity function is universally junctive and its own
conjugate, wlp.skip and wp.skip are both universally junctive and skip is
deterministic.

The operational interpretation of skip is that its execution, which is
guaranteed to terminate, leaves the values of all variables unchanged.

"y:= E"

Remark We have chosen to delineate statements given by a piece of text
rather than just an identifier by a pair of quotation marks, the parentheses
not being available because (y:= E) is used to denote the substitution
operator. (End of Remark.)

(19) [wlp." y:= E".x == (y:= E). X] for all X

(20) [wp."y:= E".true == true]

(21) [wp."y:= E".x == (y:= E).X] for all X

Because wlp."y:= E" is a substitution and substitution is universally
conjunctive, requirement RO is met.

Because [wp."y:= E".false == false] " requirement Rl is met.

Because substitution as predicate transformer is, in fact, universally
junctive and its own conjugate, wlp."y:= E" and wp."y:= E" are both
universally junctive and "y:= E" is deterministic.

The statement "y:= E" is known as "the assignment statement". Its
operational interpretation is that its execution, which is guaranteed to
terminate, leaves the values of all variables, except y ,unchanged, whereas
the final value of y equals the initial value of E .

7. Semantics of straight-line programs 137

Remark We will not complicate the semantics of the assignment statement by
admitting for E partial or multi valued expressions, such as p/q or ±p ,
respectively, generalizations that can be viewed as a misuse of the functional
notation. A major charm of defining program semantics in terms of wlp.S
and wp.S is that, even in the presence of nontermination or nondetermin
acy, these are (total and unique) functions of the postcondition. We won't
allow the expression in the assignment statement to destroy this.

We shall make use of the traditional way of defining the value of
expressions as the one and only root of an equation

(22) x: [B.x]

where operands in the expression -or arguments of the function- occur as
parameters in B ,like defining p - q as the root of x: [p = q + x] . We
shall, in fact, define predicate transformers in that way, but shall carefully
resist the temptation of introducing such B's that (22) may have more than
one solution or no solution at all. (End of Remark.)

"SO;Sl"

(23) [wlp." SO;SI".x == wlp.SO.(wlp.S1.X)] for all X

(24) [wp." SO;SI ".true == wp.SO.(wp.Sl.true)]

(25) [wp." SO;SI".x == wp.SO.(wp.S1.X)] for all X

This time we are not defining a basic statement: we define a new statement
"SO;SI" in terms of the two statements SO and SI . Accordingly, the
predicate transformers characterizing the semantics of "SO;SI" are ex
pressed in terms of the predicate transformers characterizing the semantics of
SO and SI . In particular, we shall prove the basic properties of "SO;SI"
under the assumption that both SO and SI meet our standard requirements
RO and Rl .

In deviation from our earlier practice, we shall this time show that the
conjunction of the right-hand sides of (23) and (24) yields that of (25). We
observe for any X

wp.SO.(wp.Sl.true) /\ wlp.SO.(wlp.S1.X)

{(6) with S, X, y:= SO, wp.Sl.true, wlp. SI.x }

wp.SO.(wp.Sl.true /\ wlp.S1.X)

{(2) with S:= Sl }
wp.SO.(wp.Sl.x)

Remark Note that the proof of (6) requires wlp.S to be finitely conjunctive.
(End of Remark.)

138 7. Semantics of straight-line programs

Because SO and S1 meet requirement RO, wlp.SO and wlp.S1 are
universally conjunctive and so is therefore -on account of (6, 45)- their
functional composition, which -see (23)- is wlp." SO;S1" ,l.e., "SO;S1"
meets requirement RO .

To see that "SO;S1" meets requirement R1 we observe

wp." SO;S1 ".false
{(25) with X:= false }

wp.SO.(wp.S1.false)
{ S1 meets R1 }

wp.SO.false
{ SO meets R1 }

false

Because -see (6, 45)- functional composition is junctivity preserving,
wlp." SO;S1" enjoys each junctivity property shared by wlp.SO and wlp.S1;
similarly, wp." SO;S1" enjoys each junctivity property shared by wp.SO and
wp.S1 .

Likewise, "SO;S1" is deterministic if SO and S1 are. We observe for any
deterministic statements SO and S1

(wlp." SO;S1 ")*

{(23) }
((wlp.SO) 0 (wlp.S1))*

{conjugate distributes over functional composition}

(wlp.SO)* 0 (wlp.S1)*
{ SO and S1 are deterministic}

(wp.SO) 0 (wp.S1)

{(25)}

wp." SO;S1"

Furthermore, we draw attention to the fact that, as infix operator on the
domain of statements, the semicolon is associative because functional compo
sition is associative, i.e.,

"(SO;SI);S2" = "SO;(SI ;S2)"

we therefore can (and do) write just "SO;SI;S2"
(The above equality means semantic equality:

SO = S1

is short for

wlp.SO = wlp.Sl A wp.SO = wp.Sl

7. Semantics of straight-line programs 139

or, even more explicitly,

(VX::[wlp.SO.x=: wlp.S1.X] /\ [wp.SO.x=: wp.S1.X]) .)

Note that the semicolon is neither symmetric nor idempotent.

Remark By defining for any SO and Sl the semantics of "SO;Sl" ,this
little section essentially defines the semantics of the semicolon as composition
operator on statements. Whenever a way is given of composing a whole out
of parts, that definition primarily describes how the relevant properties of the
whole are determined by the relevant properties of the parts. If, for a
proposed composition operator, that latter dependence turns out to be ugly,
it is time to reconsider whether the composition operator proposed is really
the one we want to work with. The semicolon passes the test of niceness with
flying colours. (End of Remark.)

IF

The statement IF ,standing for the alternative construct, is traditionally
written as a list of" guarded commands" surrounded by the parenthesis pair
"if fi" . A fat bar "0" separates guarded commands in the list. A guarded
command is of the form

<boolean expression) --. <statement)

Typical specimina of IF are of the form

if fi (= abort, see (27) and (29))
if B.O --. S.O fi
if B.O --. s.0 0 B.1 --. S.l fi
if B.O --. S.O 0 B.1 --. S.1 0 B.2 --. S.2 fi
etc.

In the above, we have used functional notation so as to be able to refer to B.i
and S.i ; in the following, the constraint on the range of i is left understood.

With the abbreviation BB given by

(26) [BB =: (3i:: B.i)]

the semantics of IF satisfies

(27) [wlp.IF.x =: (Vi: B.i: wlp.(S.i).xn for any X

(28) [wp.IF.true =: BB /\ (Vi: B.i: wp.(S. I). true)]

(29) [wp.IF.X =: BB /\ (Vi: B.i: wp.(S.i).x)] for any X

140 7. Semantics of straight-line programs

For the sake of completeness we shall demonstrate that the last line
follows from the preceding two by observing for any IF and X

wp.lF.x
{(2) with S:= IF }

wp.lF.true /\ wlp.lF.x
{(28) and (27)}

BB /\ (Vi: B.i: wp.(S.i).true) /\ (Vi: B.i: wlp.(S.i).x)
{pred. calc.}

BB /\ (Vi: B.i: wp.(S.i).true /\ wlp.(S.i).x)
{(2) with S:= S.i }

BB /\ (Vi: B.i: wp.(S.i).x)

In order to convince ourselves that IF meets requirement RO under the
assumption that all the S.i do, we rewrite wlp.lF.x by trading as

(Vi:: "lB.i v wlp.(S.i).x)

the terms being universally conjunctive functions of X (on account of
(6, 42», we conclude on account of (6, 41) that wlp.lF is universally
conjunctive, i.e., that IF meets requirement RO .

In order to convince ourselves that IF meets requirement R1 under the
assumption that all the S.i do we observe

wp.lF.false
{(29) with X:= false }

BB /\ (Vi: B.i: wp.(S.i).false)
{ S.i meets R1 }

BB /\ (Vi: B.i: false)
{(26)}

BB /\ "lBB

{pred. calc.}
false

By (8), wp.lF is positively conjunctive. Let us now turn our attention to its
disjunctivity properties. By definition (2) of wp.S.x and the dual of (6, 42),
wp.S enjoys all the disjunctivity properties of wlp.S ,and we can therefore
focus our attention on the disjunctivity properties of wlp.lF .

Let us rewrite (27) -by trading- again as

[wlp.lF.X == (Vi:: "lB.i v wlp.(S.i).x)]

Because, in general, the constant function "lB.i is only positively disjunctive,

"lB.i v wlp.(S.i).x

7. Semantics of straight-line programs 141

is -on account of the dual of (6,41)- as disjunctive as wlp.(S.i) ,except for
universal disjunctivity, in particular, or-continuous if wlp.(S.i) is. On ac
count of the dual of (6, 43) we therefore have

(30) Theorem Predicate transformer wlp.lF is or-continuous if all wlp.(S.i)
are or-continuous and the range of i is finite.

Remark The restriction to a finite range for i is essential. Consider, for a
state space consisting of the natural variable n ,the statement UN -short
for "Unbounded Nondeterminacy" - given by

UN = if(D i: 0 ~ i: true --+ n:= i).fi

(also known as "assign to n an arbitrary natural number"). Because
all the guards -i.e., the B.i - are true ,and because wlp."n:= i" and
wp."n:= i" are the same predicate transformer, wlp.UN and wp.UN are the
same predicate transformer. According to (27) and (19)

(31) [wlp.UN.X == (Vi: 0 ~ i: (n:= i)X)]

In order to show that wlp.UN is not or-continuous, we show for the
weakening sequence (j ~ n) for j ~ 0 that

[(3j: 0 ~j: wlp.UN.(j ~ n)) ¥= wlp.UN.(3j: 0 ~j: j ~ n)]

To this end we observe

(:ij: 0 ~j: wlp.UN.(j ~ n))
{(31) with X:= j ~ n }

(3j: 0 ~j: (Vi: 0 ~ i: (n:= i).(j ~ n)))
{def. of substitution n:= i }

(3j: 0 ~j: (Vi: 0 ~ i: j ~ i))
{consider i = j + 1 }

(3j: 0 ~j: false)
{pred. calc.}

false

whereas

wlp.UN.(3j: 0 ~j: j ~ n)
{consider j = n }

wlp.UN.true
{(I)}

true

Combination of these two observations shows that UN is not or
continuous. (End of Remark.)

142 7. Semantics of straight-line programs

In IF ,each "B.i -+ S.i" is called a "guarded command" and the B.i is
called "its guard". Showed the preceding remark that an infinite number of
guarded commands may destroy or-continuity, the following example shows
that a finite number of guarded commands may destroy finite disjunctivity.
Consider S given by

S = if true -+ n:= 0 0 true -+ n:= 1 fi

The reader is invited to verify that

[wlp.S.(n = 0 v n = 1) i= wlp.S.(n = 0) v wlp.S.(n = 1)]

Because, for deterministic S , wp.S is universally disjunctive and wlp.S
positively so, the observed losses of disjunctivity imply loss of determinacy.
Let us therefore investigate under what circumstance we can conclude that
IF is deterministic, i.e., that we have for all X

(32) [wp.lF.X == (wlp.lF)*.x]

To begin with, we make two observations. Firstly, that (32) amounts to an
equivalence between a universal quantification/conjunction and an existen
tial quantification/disjunction, and, secondly, that there is every reason to
suspect the presence of nondisjoint guards as the origin of the nondetermin
acy. Combining the two observations we propose to investigate how we can
relate the two differently quantified expressions under the assumption of
disjoint guards.

To this end we first present two preliminary, general theorems.

(33) Theorem We have for any Band R

[(Vi,j: B.i 1\ B.j: i = j) =>

«3i: B.i: R.i) => (Vj: B.j: R.j»]

Proof We observe for any Band R

(3i: B.i: R.i) => (Vj: B.j: R.j)

{pred. calc.}
(Vi: B.i: -,R.l) v (Vj: B.j: R.j)

{ v distributes over V ; unnesting}
(Vi,j: B.i 1\ B.j: -,R.i v R.j)

<= {since -Excluded Middle- [i = j => -,R.i v R.j] }

(Vi,j: B.i 1\ B.j: i = j) .
(End of Proof)

7. Semantics of straight-line programs 143

Furthermore, we have the simpler

(34) Theorem We have for any Band R

[(3i:: B.i) == (Vi: B.i: R.i) => (3i: B.i: R.i)]

Proof We observe for any Band R

(Vi: B.i: R.i) => (3i: B.i: R.i)

{pred. calc. and de Morgan}
(3i: B.i: 'R.i) v (3i: B.i: R.i)

{combine the terms}
(3i: B.i: ,R.i v R.i)

{Excluded Middle and trading}

(3i:: B.i)

Corollary of (33) and (34)

(35) [(Vi,): B.i 1\ B.): i =)) 1\ (3i:: B.i) =>

«Vi: B.i: R.i) == (3i: B.i: R.i))]

(End of Proof)

Note that the antecedent equivales (Ni:: B.i) = 1 , i.e., B.i holds for exactly
one value of i .

(36) Theorem For any Band R

[(Vi,): B.i 1\ B.): i =))] =>

[(3i:: B.i) 1\ (Vi: B.i: R.i) == (3i: B.i: R.i)] 1\

[,(3i:: B.i) v (3i: B.i: R.i) == (Vi: B.i: R.z)]

Proof We observe for any Band R

[(3i:: B.i) 1\ (Vi: B.i: R.i) == (3i: B.i: R.z)]

{(34) and pred. calc.}
[(3i: B.i: R.i) 1\ (Vi: B.i: R.i) == (3i: B.i: R.i)]

<= {pred. calc. and (33)}
[(Vi,): B.i 1\ B.): i = J)]

thus establishing the first conjunct of (36); substition R:= ,R and negating
both sides yields the second conjunct.

(End of Proof)

144 7. Semantics of straight-line programs

Let DIF be an alternative construct with disjoint guards, i.e., one for
which the guards satisfy the antecedent of (36). With R.i:= wp.(S.i).x ,the
first conjunct of (36) yields

(37) [wp.DIF.X == (3i: B.i: wp.(S.i).X)]

on account of (29). On account of (27) and (26), the second conjunct of (36),
with R.i:= wlp.(S.i).x ,yields

(38) [wlp.DIF.x == IBB v (3i: B.i: wlp.(S.i).X)]

From (37) it follows that wp.DIF inherits each disjunctivity property
shared by all wp.(S.i) ; from (38) it follows that wlp.DIF enjoys, with the
exception of universal disjunctivity, all disjunctivity properties shared by all
wlp.(S.i) .

Now we are ready for our last theorem about the alternative construct.

(39) Theorem An alternative construct with disjoint guards is deterministic if
all its statements are deterministic.

Proof Under the assumption of deterministic S.i we have to show

[wp.DIF.x == (wlp.DIF)*.x] for all X

To this end we observe for any X

(wlp.DlF)*.x
{def. of the conjugate}

Iwlp.DIF.('X)
{(27) with X:= IX }

I(Vi: B.i: wlp.(S.i).(iX»
{de Morgan}

(3i: B.i: Iwlp.(S.i).(iX»
{def. of the conjugate}

(3i: B.i: (wlp.(S.i»*.x)
{ S.i is deterministic}

(3i: B.i: wp.(S.i).x)
{ (37)}

wp.DIF.x
(End of Proof)

The operational interpretation of the execution of IF is as follows. In
those initial states in which none of the guards is satisfied, IF is semantically
equivalent to abort . In those initial states in which at least one guard is
satisfied, S.i is executed for a value of i such that B.i is initially satisfied.

7. Semantics of straight-line programs 145

The moral of our last theorem is that, as long as our programming
language does not include nondeterministic basic statements such as havoc ,
each program is deterministic if, by definition, each alternative construct has
disjoint guards. In FORTRAN this was guaranteed by admitting in a three-way
test the guards E > 0 , E = 0 ,and E < 0 ,respectively. In ALGOL 60 the
disjointness was guaranteed by only admitting the guards Band IB . (We
would render ALGOL 60's

if B then SO else Sl

by

if B --+ SO 0 IB --+ Sl fi

and ALGOL 60's

if B then S

by

if B --+ S 0 IB --+ skip fi .)

There were several reasons for the inclusion of nondeterminacy by means
of nondisjoint guards.

The first reason was a fundamental one. The infix operator max being
symmetrical, the assignment statement

z:= X max y

is symmetrical in x and y . In the absence of the operator max ,a regime
like that of ALGOL 60 gives you two options

if x> y then z:= x else z:= y and
if x ~ y then z:= X else z:= y

Both are asymmetric in x and y ,and no methodology for program
derivation can ever dictate the choice. By admitting nondisjoint guards it is
possible to derive

if x ~ y --+ z:= X 0 Y ~ x --+ z:= y fi

which -the 0 being a symmetric separator- is symmetric in x and y .

The second reason was practical (or, if you prefer, opportunistic). From
the task of designing operating systems we knew the necessity of being able to
design nondeterministic programs. Facing the task of operating system
design, we learned how to derive what we called at the time "synchronization
conditions"; today we would call them "guards". By admitting nondisjoint
guards, the methodology for deriving operating systems could be transferred,
lock, stock, and barrel, to the derivation of sequential programs.

146 7. Semantics of straight-line programs

Remark With the advent of the real-time interrupt, concurrency and
nondeterminacy entered the world of programming at the same time and for
many years they would remain closely associated notions. But they are very
different: concurrency is an operational concept whereas nondeterminacy is
not. The introduction of nondeterminacy into sequential programming
helped in clarifying the distinction. (End of Remark.)

It was only at a subsequent stage that a further advantage of the inclusion
of nondeterminacy was identified. It can offer an opportunity for separating
the concerns for correctness from those for efficiency: sometimes it is
relatively easy to design a correct nondeterministic algorithm, whose efficien
cy can subsequently be improved by subtly restricting its nondeterminacy
(i.e., by strengthening guards).

* * *
So much for the semantics of straight-line programs. The term "straight

line" refers to the absence of repetition (or recursion); as long as we are
restricted to straight-line programs, longer computations require longer
program texts. We shall overcome this deficiency by introducing a repetitive
construct; because the latter's semantics is most elegantly captured in terms
of extreme solutions of equations in predicates, the next chapter is devoted to
that topic.

CHAPTER 8

Equations in predicates and their
extreme sol utions

In the previous chapter we have encountered a number of statements S for
which the predicate transformers wlp.S and wp.S were given in closed form.
In the next chapter we shall encounter the statement DO ,for which the
predicates wlp.DO.X and wp.DO.x will be defined as solutions of equations
of the form

(0) Y: [b'x' Y]

Here, b is a predicate-valued function of two predicates, so [b.x. Y] is a
boolean scalar that for given X and Y is either true or false . In (0) we
have followed our convention -here by the prefix "Y:" - of explicitly
indicating the identity of the unknown(s), and thereby notationally distin
guishing between the equation and the boolean expression that forms its
body.

Remark We are aware of the fact that in our usage ofthe word "equation" we
have generalized the traditional meaning "(Math.) statement of equality
between two expressions (conveyed by the sign =)": little seems to be
gained by writing

Y: ([b'x' Y] = true)

More important than the syntactic requirement that "the sign =" occurs,
is that equations are equations in well-identified unknowns for which we may
try to solve them: without the identification ofthe unknowns, we don't know
what is meant by "the solutions of the equation". (End of Remark.)

147

148 8. Equations in predicates and their extreme solutions

Which predicates -if any- solve (0) depends (for given b) in general
on which predicate we have chosen for X . We would like to consider the
solution of (0) as a function of X -and that function is then the predicate
transformer whose definition is our aim- . This goal requires that (0) has a
unique solution for each X : if the solution is not unique, we don't define a
function and if, for some X ,it does not exist, we have failed to define a total
function.

To begin, we focus our attention on uniqueness and existence of solutions.
Because in this analysis it is irrelevant whether the equation has parameters
like X ,we consider the simpler equation

(1) Y: [b.Y]

which may have any number of solutions. Next we consider (in terms of the
same b) the equation

(2) Y: ([b. Y] /\ ('r/Z: [b.z]: [Y => Z]))

which is, in general, much less tolerant than (1). We define predicate Q by

(3) [Q == ('r/Z: [b.z]: Z)]

and observe for any Y

(Y solves (2))
{definition of (2)}

[b.Y] /\ ('r/Z: [b.z]: [Y => Z])
{interchange of universal quantifications}

[b. Y] /\ [('r/Z: [b.z]: Y => Z)]

{ Y => distributes over 'r/ }
[b. Y] /\ [Y => ('r/Z: [b.z]: Z)]

{(3)}

[b.Y] /\ [Y=>Q]

{from (3): [b.Y]=>[Y<=Q] }

[b.Y] /\ [Y== Q]
{Leibniz}

[b.Q] /\ [Y == Q]

Comparing the first and last lines of the above, we see that (2) has at most
one solution, viz., Q . If it exists, it solves Y: [b. Y] as well and is called the
latter's strongest solution, i.e.,

(4) (Y is the strongest solution of Y: [b.Y]) == (Y solves (2))

And thus we have derived

8. Equations in predicates and their extreme solutions 149

(5) Theorem With [Q == (VZ: [b.z]: 2)] we have

(Y is the strongest solution of Y: [b.Y]) ==
[b.Q] /\ [Y == Q]

Existential quantification over Y of both sides yields

(6) Theorem With [Q == (VZ: [b.z]: Z)] we have

(Y: [b.Y] has a strongest solution) == [b.Q]

Of these two theorems, the first one states that the strongest solution is
unique if it exists (and in that case gives a closed expression for it), whereas
the second one gives an expression for its existence.

Analogously to (2) and (4) we define in terms of equation

(7) Y: ([c. Y] /\ (VZ: [c.z]: [Y = Z]))

the notion of the weakest solution by

(8) (Y is the weakest solution of Y: [c.Y]) == (Y solves (7))

For band c satisfying

(9) (VZ: [c.z == b(,Z)]).

we now observe

(Y is the weakest solution of Y: [c. Y]) (*)
{(8) and (7)}

[c.Y] /\ ("12: [c.z]: [Y=2])

{(9) and contra-positive}

[b.(,y)] /\ ("12: [b.(,Z)]: [,Y=>,Z])

{transforming the dummy: Z:= ,Z }
[b.(,Y)] /\ (VZ: [b.z]: [,Y=>Z])

{(2) and (4)}

(, Y is the strongest solution of Y: [b. Y]) (*)

{(5) with Y:= ,Y }
[b.Q] /\ [, Y == QJ

{(9) and (10)}

[c.R] /\ [Y == R]

where we define R by

(10) [R == ,Q]

150 8. Equations in predicates and their extreme solutions

Furthermore, we observe

R

{(10) and (3)}
,(VZ: [bo2]: Z)

{de Morgan}
(3Z: [b.Z]: ,Z)

{transforming the dummy Z:= ,Z }
(3Z: [b.(,Z)]: Z)

{(9)}

(3Z: [c.Z]: Z)

Thus we have derived the duals of (5) and (6)

(11) Theorem With [R == (3Z: [co2]: Z)] we have

(Y is the weakest solution of Y: [c. YJ) ==
[c.R] /\ [Y == R]

(12) Theorem With [R == (3Z: [c.Z]: Z)] we have

(Y: [c.Z] has a weakest solution) == [c.R]

En passant -see the lines marked (*)- we have derived

(13) (Y is the weakest solution of Y: [c.YJ) ==
(, Y is the strongest solution of Y: [c.(, Y)])

The less specific term "extreme solution" is used for a strongest or a
weakest one.

We now turn our attention to the existence of extreme solutions. We shall
do so for equations of the special form

(14) Y: [po Y => q. Y]

To avoid duplication of work we exploit duality wherever we can. We
specialize (13) to equations of the form of (14).

(15) Theorem We have for any predicate Z and predicate transformers p
and q

(Z is the strongest solution of Y: [po Y => q. YJ) ==
(, Z is the weakest solution of Y: [p*. Y <= q*. YJ)

8. Equations in predicates and their extreme solutions 151

Proof We observe for any Z , P , and q

(Z is the strongest solution of Y: [po Y => q. Y])

{def. of conjugate, (6, 2)}
(Z is the strongest solution of Y: [-,p*.(-, Y) => -,q*.(-, Y)])

{(13) with Y:= -,Z }
(-,Z is the weakest solution of Y: [-,p*. Y => -,q*. YJ)

{contra-positive}
(-,Z is the weakest solution of Y: [p*. Y <= q*. YJ)

(End of Proof)

The above theorem allows us to restrict our attention and our proofs to
strongest solutions; we shall quite often formulate the dual theorem as well.

(16) Theorem Consider equation

(17) Y: [p.Y=>q.YJ

Equation (17) has a strongest solution if p is monotonic and q is
conjunctive over the solution set of (17). Equation (17) has a weakest solution
if q is monotonic and p is disjunctive over the solution set of (17).

Proof We shall show the existence of a strongest solution for p monotonic
and q conjunctive over the solution set of (17). On account of Theorem (6),
our proof obligation is equivalent to showing that (VZ: [p.Z => q.z]: Z)
solves (17). To this end we observe

p.(VZ: [p.z => q.z]: Z)

=> {p is monotonic, (5, I08)}
(VZ: [p.z => q.z]: p.z)

=> {pred. calc.: V is monotonic}
(VZ: [p.z => q.z]: q.z)

{ q conjunctive over the solution set of (17)}

q.(VZ: [p.z => q.z]: Z)
(End of Proof)

In the above theorem, it is gratifying that the circumstances under which
we can guarantee the existence of extreme solutions have been formulated in
terms of monotonicity and junctivity: it is one more symptom of the
significance of these concepts. The simplest way to meet the requirement of
junctivity over the solution set is by taking a universally junctive function; the
simplest universally junctive function is the identity function, and thus we are

152 8. Equations in predicates and their extreme solutions

led to study, for monotonic f , the strongest solution of Y: [f. Y = Y] and
the weakest solution of Y: [f, Y <= Y] . For reasons of duality -or, more
precisely, on account of Theorem (15) and the fact that the conjugate of a
monotonic predicate transformer is monotonic- we can confine our study
to that of the strongest solution of Y: [f. Y = Y] .

For monotonic f ,let Q be the strongest solution of

(18) Y: [f,Y= Y]

from Theorem (16) we know that Q exists. From Theorem (5),we know that
we can characterize Q by

[Q == (VZ: [f,Z = Z]: Z)]

For formal proofs, however, it is often more convenient to characterize Q by
its two salient properties, viz., that Q implies any solution, i.e.,

(19) [f,Z=Z] = [Q=Z] for all Z

and that Q is a solution, i.e.,

(20) [f.Q=Q]

or, equivalently,

(20') [Z = fQ] = [Z = Q] for all Z

(The demonstration of the equivalence of (20) and (20') is left as an exercise to
the reader.) We shall illustrate this in the proof of the following theorem.

(21) Theorem Let f be a monotonic function from predicate pairs to
predicates; for any X ,let g.x be the strongest solution of

(22) Y: [f,(X, Y) = Y]

then 9 is a monotonic predicate transformer.

Proof Theorem (6, 57) states that, with the exception ofuniversaljunctivity, a
function is as junctive in its components as it is in its total argument. Hence, f
is monotonic in its first component and in its second component; from the
latter and Theorem (16) we conclude that the strongest solution of (22) exists
for any X and therefore that the introduction of the function 9 is justified
(i.e., that g.x is uniquely defined for each predicate X). We summarize our
knowledge about 9 in analogy to (19) and (20') by

(23) [f,(X, Z) = Z] = [g.x = Z] for all X , Z

(24) [Z = f(X, g.x)] = [Z = g.X] for all X , Z

The formal rendering of our proof obligation is

[P = Q] = [g.P = g.Q]

8. Equations in predicates and their extreme solutions 153

In order to meet it, we observe for any P , Q

[g.P=g.Q]

<= {(23) with X, z:= P, g.Q }

[f.(P, g.Q) = g.Q]
<= {(24) with X, Z:= Q, f(P, g.Q) }

[f.(P, g.Q) = f(Q , g.Q)]

<= {f monotonic in its rst argument}

[P=Q]
(End of Proof)

A few remarks about the above proof are in order. Firstly, we observe that
the first step exploits that the function applied to P is 9 ,the middle step
that the function applied to Q is 9 ,and the last step that f is monotonic in
its first component. Since all three data are needed, we may feel confident that
our proof does not consist of more steps than necessary. Secondly, in view of
the demonstrandum and the consequents of (23) and (24), it is clear that, for
the 9 applied to P ,property (24) is irrelevant and that therefore we have to
use for that application of 9 that 9 enjoys property (23). Similarly, it is clear
that we have to use the fact that the 9 applied to Q enjoys property (24). So,
about the only freedom left in the design of the above proof is whether to
appeal first to (23) or to (24). Quite often this turns out to be a minor choice
in the sense that the proof can be completed in either case, be it at different
expense. The guideline for this minor choice is the rule of thumb that, when
working from consequent to antecedent -i.e., when allowing <= in the
left-most column of our proof- we should appeal to formula (23) first. The
reason is clear: an appeal to (23) duplicates the consequent, while an appeal
to (24) complicates the consequent, and the rule ofthumb suggests to try first
to avoid the duplication of the complication.

It is instructive to see what would have happened, had we appealed to (24)
first. We would have observed for any P and Q

[g.P=g.Q]

<= {(24) with X, Z:= Q, g.P }

[g.P = f(Q ,g.Q)]

<= {(23) with X,Z:= PJ(Q,g.Q) }

[f.(P J(Q, g.Q)= f(Q, g.Q)]

<= {transitivity of = }
[f.(P J(Q ,g.Q)) = f(P ,g.Q)] /\ [f.(P, g.Q) = f(Q ,g.Q)]

<= {f monotonic in both its components}

U(Q ,g.Q) = g.Q] /\ [P = QJ
<= {(24) with X, Z:= Q J(Q ,g.Q) }

[P=QJ

154 8. Equations in predicates and their extreme solutions

In the above we needed a second appeal to (24) and, more serious, a
second appeal to f's monotonicity in its second component, which was so far
used only to demonstrate the existence of g . The extra price may be higher
than we can afford.

The proof of Theorem (21) is a characteristic example of where to use the
fact that a strongest solution implies all solutions -i.e., a formula like (23)
and of where to use the fact that a strongest solution is itself a solution -i.e.,
a formula like (24)- . Together with the rule of thumb these heuristics will
guide us through the rest of this chapter.

In the case of monotonic f ,our heuristics can be refined (and our proving
power potentially enhanced), thanks to the fact that the extreme solutions
turn out to solve a less tolerant equation as well. This is expressed by the
beautiful theorem that in the oral tradition is known as "The Theorem of
Knaster-Tarski". Because in this study of extreme solutions, our attention
will be confined to monotonic functions, we shall first present

(25) Theorem of Knaster-Tarski For monotonic f

(26) Y: [f. Y == YJ

has the same strongest solution as

(27) Y: [f. Y => Y]

and has the same weakest solution as

(28) Y: [f. Y <= YJ

Proof We can confine ourselves to demonstrating the existence and equality
of the strongest solutions of (26) and (27), because existence and equality of
the weakest solutions of (26) and (28) is the dual.

From Theorem (16), with f for p and the identity function (which is
universally conjunctive) for q ,we conclude that (27) has a strongest
solution; let it be Q ,i.e., we have

(29) [f.Z => ZJ => [Q => Z] for all Z

(30) [f.Q => QJ

On account of these two properties of Q and the monotonicity of f , we
now have to show that Q is also the strongest solution of (26), i.e., we have to
establish

(31) [f.Z == Z] => [Q => Z] for all Z

(32) [f.Q == Q]

8. Equations in predicates and their extreme solutions 155

In order to establish (31), we observe for any Z

[Q =>Z]
<= {(29)}

[f.z=>Z]
<= {pred. calc.}

[f.Z == Z]

In order to establish (32), we observe

[f.Q == Q]
{pred. calc.}

[Q => fQ] /\ [f.Q => Q]
{(30)}

[Q=>fQ]
<= {(29) with Z:= fQ }

[f.(fQ) => fQ]
<= { f is monotonic}

[f.Q=>Q]
{(30)}

true
(End of Proof)

Notice that, formally, (29) => (31) but (30) <= (32). The Theorem of
Knaster-Tarski has two important methodological consequences. Formerly,
the strongest solution Q of Y: [f. Y => Y] was characterized by (29) and
(30), and our heuristics told us where to appeal to which. We now see that, for
monotonic f , we can replace each appeal to (30) by an appeal to the formally
stronger (32). An added advantage is that the rule of thumb loses some of its
significance: an early appeal to (30) might cause problems, but (32) always
allows us to undo a premature replacement of Q by fQ . The appeal to (29)
-i.e., the stronger of (29) and (31)- or to (32) -i.e., the stronger of (30) and
(32)- , when we have to use the fact that Q has been defined as a strongest
solution, is the refinement of the heuristics alluded to before. This was the first
methodological consequence of the Theorem of Knaster-Tarski.

The other methodological consequence follows from the fact that for
monotonic f the strongest solution Q is equally well characterized by the
two formally weaker (30) and (31)1 To prove this claim, we have to
demonstrate

[X== Q]

156 8. Equations in predicates and their extreme solutions

by using

(33) [fX => X]

(34) [f.Z == Z] => [X => Z] for all Z

To this end we observe

[Q=>X]

<= {(29) with Z:= X }
[fX=>X]

{(33)}

true and

[X=>Q]

<= {(34) with Z:= Q }
[f.Q == Q]

{(32)}

true

The methodological impact of the above is that it suffices to demonstrate
(33) and (34) when we have to show for monotonic f that some X defined
elsewhere is the strongest solution of Y: [f. Y == Y] .

Just to show how well these heuristics work, let us prove

(35) Theorem Let p and q be monotonic functions from predicate pairs to
predicates; for any Y ,let f Y be the strongest solution of

X: [p.(X, Y) == X]

for any X ,let gX be the strongest solution of

Y: [q.(X,Y) == y]

Then the two equations

(36) (X,Y): [(p.(X,Y) , q.(X,Y» == (X,Y)]

(37) (X,Y): [(fY, gX) == (X,Y)]

have the same strongest solution.

Proof We first verify the existence of the strongest solutions mentioned in the
theorem. Because of Knaster-Tarski and the monotonicity of p and q ,
functions f and 9 are well-defined and moreover -Theorem (21)
monotonic. Pair-forming and selection being monotonic and functional
composition preserving monotonicity, we now conclude that the strongest
solutions of (36) and (37) exist.

8. Equations in predicates and their extreme solutions 157

Following the rules of the game, we formulate what is given about f and
g by

(38)

(39)

(40)

(41)

[p.(X, Y) => X] => [f Y => X] for all X , Y

[p·(fY, Y) ==fY] for all Y

[q.(X, Y) => Y] => [g-X => Y] for all X , Y

[q.(X, g-X) == g-X] for all X

In order to show that (36) and (37) have the same strongest solution, we
define (P,Q) as the strongest solution of the one and show that the (P,Q)
thus defined is the strongest solution of the other. Arbitrarily we choose to
define (P,Q) as the strongest solution of (37) -and the reader is urged to
verify that the other choice would have worked as well- . According to the
rules of the game, we add to our data

(42) [(f Y , g-X) => (X, Y)] => [(P,Q) => (X, Y)] for all X , Y

(43) [(fQ , g.P) == (P,Q)]

and phrase our demonstrandum as

(44) [(p.(X,Y) , q.(X,Y» == (X,Y)] =>

[(P,Q) => (X, Y)] for all X , Y

(45) [(p.(P,Q) , q.(P,Q» => (P,Q)]

In order to demonstrate (44), we observe for any X , Y

[(P,Q) => (X, Y)]

¢= {(42)}
[(f Y , g-X) => (X, Y)]

¢= {(38) and (40)}
[(p.(X, Y) , q.(X, Y» => (X, Y)]

¢= {pred. calc.}

[(p.(X,Y) , q.(X,Y» == (X,Y)]

In order to demonstrate (45), we observe

[(p.(P,Q) , q.(P,Q» => (P,Q)]

{(43)}
[(p.(P,Q) , q.(P,Q» => (fQ , g.P)]

{(39) with Y:= Q ; (41) with X:= P }

[(p.(P,Q) , q.(P,Q» => (p.(fQ , Q) , q.(P , g.P»]

¢= {p and q are monotonic}

[(P,Q) => (fQ , g.P)]

{(43)}
true

(End of Proof)

158 8. Equations in predicates and their extreme solutions

Remark Please note that the very last step would have been impossible, had
(43) been formulated with => instead of with == . (End of Remark.)

Further remark Theorem (35) has been included in this chapter because we
wanted to show in its proof our heuristics at work. For the sake of
completeness, we would like to point out that the systematic application of
the heuristics is not guaranteed to produce the shortest proof. For instance,
(45) could have been demonstrated by observing

[(p.(P,Q) , q.(P,Q» => (P,Q)]

{(43), four times}

[(p.(fQ, Q) , q.(P , g.P» => (fQ , g.P)]

{(39) with Y:= Q ; (41) with X:= P }
true

This shorter proof has the added attraction of not requiring a further
appeal to the monotonicity of p and q ,which could be regarded as a more
fundamental reason for preferring it over our original demonstration. Its
selective application of (43) in its first step, however, requires a noticeable
amount of clairvoyance for its justification. (End of Further remark.)

After the above methodological interlude, we proceed with a more detailed
study of the extreme solutions of

(46) Y: [f(X, Y) == Y] with monotonic f

According to Knaster-Tarski, its extreme solutions exist. We shall denote
its strongest solution by gX and its weakest solution by hX . Thanks to
Knaster-Tarski, we can characterize these functions by

(47) [f(X, Z) => Z] => [g.X => Z] for all X , Z

(48) [f(X, gX) == gX] for all X

(49) [f(X, Z) = Z] => [h.X = Z] for all X , Z

(50) [f(X, hX) == hX] for all X

We leave to the reader to derive from Knaster-Tarski and Theorem (21)

(51) Theorem Functions g and h are monotonic.

8. Equations in predicates and their extreme solutions 159

Now we are ready to demonstrate the beautiful

(52) Theorem Any type of conjunctivity enjoyed by f is enjoyed by h as
well, and its dual

(52') Theorem Any type of disjunctivity enjoyed by f is enjoyed by g as
well.

Remark Note that Theorem (51) is subsumed under Theorems (52); (51) has
been derived separately because we need it for the proof of (52). (End of
Remark.)

Proof In order to show that h is conjunctive over some V ,we have to
demonstrate

[h.(V'X: XE V: X) == (V'X: XE V: h.x)]

In order to do so, we begin by observing -leaving for brevity's sake the
range X E V implicitly understood-

[h.(V'X:: X) == (V'X:: h.x)]

{ [h.(V'X:: X) = (V'X:: h.x)] because -see (51)- h is monotonic,
and (5, 108)}

[h.(V'X:: X) <= (V'X:: h.x)]

<= {(49) with X,Z:=(V'X:: X) , (V'X:: h.x)}

[f«V'X:: X), (V'X:: h.x» <= (V'X:: h.X)]

{quantification distributes over pair-forming}
[f(V'X:: (X, h.x» <= (V'X:: h.x)]

{ (50)}

[f(V'X:: (X, h.x» <= (V'X:: I(X, h.X))]

By now, it looks very much as if we have succeeded in reducing the
conjunctivity of h to that of f . As a matter offact, we almost have, but there
is a minor complication: the universal quantifications in the implication at
which we stopped are over predicates, whereas the definition of f's
conjunctivity involves universal quantifications over predicate pairs. To
overcome this complication, we construct a bag W of predicate pairs by

(53) (X,Y)E W == XE V 1\ [Y== h.x]

and observe that, thanks to the monotonicity of h , V and W are of the
same junctivity type. Hence it suffices to show the implication at which we

160 8. Equations in predicates and their extreme solutions

interrupted our calculation under the assumption that f is conjunctive over
W . Giving the range of X explicitly, we present the final part of the proof:

f(V X: X E V: (X, h.x»
{one-point rule to introduce Y }

f(VX: X E V: (VY: [Y == h.X]: (X,Y»)

{ unnesting}
f(VX,Y: X E V A [Y == h.x]: (X,Y»

{(53)}

f(VX,Y: (X,Y) E W: (X,Y»
{ f assumed to be conjunctive over W }

(VX,Y: (X,Y) E W: f(X,Y»

{(53)}

(VX,Y: X E V A [Y == h.x]: f(X,y»
{nesting}

(VX: XE V: (VY: [Y== h.x]: f(X,Y»)

{one-point rule to eliminate Y }
(VX: X E V: f(X, h.x»

(End of Proof)

Remark The last 7 steps of the above proof are not very exciting. The middle
one does the work, the surrounding ones merely serve to introduce and to
eliminate the names Y and W . Besides that, their sufficiency can be
challenged, since we have silently identified

(VZ: ZE W: fZ)

with

(VX,Y: (X,Y) E W: f(X,Y»

(Using the functions "left" and "right" from predicate pairs to predicates,
satisfying for any Z

[(Zeft.z, right.z) == Z]

the interested reader may prove the above by using three times the one-point
rule.)

An alternative would have been to define W ,using the "bagifier" B ,by

W= (BX: XE V: (X,h.x»

and to use rules for the manipulation of formulae containing such subexpres
sions. We did not include a separate subtheory of "bagification" because we
would hardly use it in the rest of this little monograph. (End of Remark.)

The previous theorem dealt with the conjunctivity of the weakest solution
of (46) and, by duality, with the disjunctivity of its strongest solution. We now

8. Equations in predicates and their extreme solutions 161

turn to the conjunctivity of the strongest solution of (46) and, by duality, to
the disjunctivity of its weakest solution. To this end we first prove

Theorem Let predicates X , Y satisfy

(54) [f.(X,Y) == Y]

then

(55) [g.x == g.true 1\ Y] for finitely conjunctive f

(55') [h.x == hfalse v Y] for finitely disjunctive f

In other words: the strongest solution of (46) is for finitely conjunctive f
the conjunction of an arbitrary solution of (46) and the constant predicate
g.true ,i.e., a predicate independent of X .

Proof We shall prove equivalence (55) by showing that each side implies the
other.

(i) We observe for any X , Y satisfying (54)

[g.x => g.true 1\ Y]

{predicate calculus}
[g.x => g.true] 1\ [g.X => Y]

¢:: { f, and hence 9 monotonic; (47) with Z:= Y }

[X => true] 1\ [f(X,y) => Y]
{predicate calculus and (54)}

true

(ii) We observe for any X , Y satisfying (54)

[g.x ¢:: g.true 1\ Y]

{pred. calc., so as to tackle g.true via (47)}
[g.true => g.x v ..., Y]

¢:: {(47) with X, Z:= true, g.x v ..., Y }
[f.(true , g.x v ..., Y) => g.x v ..., Y]

{pred. calc, preparing for !'S conjunctivity}
[f.(true , g.x v ..., Y) 1\ Y => g.x]

{(54), the only thing given about Y }
[f.(true , g.x v ..., Y) 1\ f(X, Y) => g.x]

{ f is finitely conjunctive; pred. calc.}
[f.(X, g.x 1\ Y) => g.x]

= {from (54) and (47) with Z:= Y: [g.x 1\ Y == g.x] }
[f.(X, g.X) => g.X]

{(48)}
true

(End of Proof)

162 8. Equations in predicates and their extreme solutions

Theorem (55) is most interesting for the weakest possible choice for Y ,
i.e., h.x . Thus we get the corollaries

(56) [g.x == g.true /\ h.x] for finitely conjunctive I

(56') [h.X == hfalse v g.x] for finitely disjunctive I

From these and (52), we derive

(57) [g.(X /\ Y) == g.x /\ h. Y] for finitely conjunctive I
(57') [h.(X v Y) == h.x v g. Y] for finitely disjunctive I

Prool We shall demonstrate (57). To this end, we observe for any X , Y

g.(X /\ Y)
{(56) with X:= X /\ Y }

g.true /\ h.(X /\ Y)
{ I being finitely conjunctive, so -(52)- is h }

g.true /\ h.x /\ h. Y
{ (56)}

g.x /\ h.Y
(End 01 Proof)

Theorem (55) was primarily a stepping stone for theorems (56) and (57),
which are the ones that are used. We shall use (56) to demonstrate

(58) Theorem With the exception of universal conjunctivity and of and
continuity, the conjunctivity enjoyed by I is enjoyed by g as well,

and its dual

(58') Theorem With the exception of universal disjunctivity and of or
continuity, the disjunctivity enjoyed by I is enjoyed by h as well.

Prool We demonstrate (58). For monotonic I , the mono tonicity of g has
been established in Theorem (51). For the remaining types of conjunctivity
(positive, denumerable or finite), I is finitely conjunctive, and hence -see
(56)-

[g.x == g.true /\ h.x]

Because -see (52)- h is as conjunctive as I and the constant function
-see (6,37)- is positively conjunctive, g inherits -see (6, 41)- the three
remaining conjunctivity types from I .

(End 01 Proof)

8. Equations in predicates and their extreme solutions 163

After the above general theorems about the junctivity inheritance by
extreme solutions we turn to the question under which circumstances we can
give for extreme solutions closed expressions that are in general more
pleasant to manipulate than expressions like the one given for Q in Theorem
(5).

Theorem For monotonic f and any Y

(59) [f. Y => Y] => [(3i: 0 ~ i: Ji-false) => YJ

(59') [f. Y = Y] => [(Vi: 0 ~ i: Ji-true) = YJ
This theorem is of interest because the quantified expressions in the conse
quents give us bounds on the extreme solutions of Y: [f. Y == YJ ,and,
moreover, do so under the weakest junctivity assumption about f , viz.,
monotonicity.

Proof We shall confine ourselves to the demonstration of (59). Its consequent

[(3i: 0 ~ i: Ji.false) => YJ
IS -see (5, 118)- equivalent to

(Vi: 0 ~ i: [Ji-false => YJ)
and this proof obligation is amenable to mathematical induction over the
natural numbers. With induction hypothesis

[Ji-false => Y]

we observe

(i) for the base

[f°.false => YJ
{definition of functional iteration}

[false => YJ
{predicate calculus}

true

(ii) under the assumption of [f Y => YJ ,for the step

[fi + l.false => YJ
= {assumption about Y }

[fi + l.false => f Y]

{definition of functional iteration}

[f·(t.false) => f Y]
= {f is monotonic}

[Ji-false => Y]
(End of Proof)

164 8. Equations in predicates and their extreme solutions

From (59) we deduce that, for monotonic f , (3i: 0 ~ i: Ji-false) would
be the strongest solution of Y: [f. Y == Y] if it were to solve that equation.
So let us investigate how we can establish

[f.(3i: 0 ~ i: p.false) == (3i: 0 ~ i: fi.false)]

To this end we observe, starting at the right-hand side,

(3i: 0 ~ i: Ji-false)
{splitting the range}

(3i: 0 = i: Ji-false) v (3i: 1 ~ i: p.false)
{one-point rule; transforming the dummy}

f°.false v (3i: 0 ~ i: p+l.false)
{definition of functional iteration; pred. calc.}

(3i: 0 ~ i: f(fi.false»
{ f is denumerably disjunctive}

f(3i: 0 ~ i: Ji-false)

i.e., the assumption that f is denumerably disjunctive suffices. If, however, the
predicates p.false (0 ~ i) form a monotonic sequence, the weaker assump
tion that f is or-continuous suffices. We shall now show that, indeed, the
sequence p .false is weakening, by proving via mathematical induction over
the natural numbers that for monotonic f

(Vi: 0 ~ i: [Ji-false=>fi+l.jalse])

To this end we observe for monotonic f
(i) for the base

[f°.false => fl.false]
{def. of functional iteration}

[false => ffalse]
{predicate calculus}

true

(ii) for the step

[P + l.false => p + 2 .false]

{def. of functional iteration}

[f.(p.false) => f(fi + l.false)]

<= {f is monotonic}
[Ji-false => p + 1. false]

Because continuity implies mono tonicity, we have thus established

(60) Theorem For or-continuous f , the strongest solution of Y: [f. Y == Y]
is (3i: 0 ~ i: Ji-false) ,

8. Equations in predicates and their extreme solutions 165

whose dual is

(60') Theorem For and-continuous f , the weakest solution of Y: [f. Y == Y]
IS (Vi: 0 ~ i: p.true) .

Theorem (60) raises our interest in the expressions (Vi: 0 ~ i: p.true)
and (3i: 0 ~ i: p.false) . In view oflater applications we shall evaluate them
for an f of a special form.

Theorem Let, for finitely conjunctive p and some predicate X ,f be defined
by

[J.Y == X 1\ p.Y]
then

(61) [(Vi: 0 ~ i: Ji-true) == (Vi: 0 ~ i: pi.x)]

(62) [(3i: 0 ~ i: Ji-false) ==
(3i: 0 ~ i: pi.false) 1\ (Vi: 0 ~ i: i.x)]

Proof We first prove by mathematical induction over the natural numbers
that for each natural i

To this end we observe

(i) for the base

[J°.Y == (Vj: 0 ~j < 0: pi.x) 1\ pO.Y]
{def. of functional iteration; (5, 90)}

[Y == true 1\ y]
{pred. calc.}

true

(ii) for the step

p+l.Y

{def. of functional iteration}

f(Ji-Y)
{def. of f }

X 1\ p.(p.Y)
{induction hypothesis (*)}

X 1\ p.«Vj: 0 ~j < i: pi.x) 1\ pi.Y)
{def. of functional iteration; p finitely conjunctive}

p0.x 1\ (Vj: 1 ~j < i + 1: pi.x) 1\ pi+l.Y
{pred. calc.}

(Vj: 0 ~j < i + 1: pi.x) 1\ i+l.Y

166 8. Equations in predicates and their extreme solutions

Having thus established (*), we demonstrate (61) by observing

(Vi: 0::(i: Ji.true)
{(*) with Y:= true}

(Vi: 0::(i: (Vj: O::(j < i: pi.x) 1\ pi. true)
{pred. calc.}

(Vi: 0::(i: pi.x 1\ i.true)
{because p is monotonic, so is pi }

(Vi: 0::(i: pi.x)

In order to establish (62), we observe

(3i: 0::(i: Ji-false)
{(*) with Y:= false }

(3i: 0::(i: (Vj: O::(j < i: pi.x) 1\ pi.false)
{because for j ~ i [false = pi-i.x] and pi is monotonic,

[pi.false = pi. X] for j ~ i }

(3i: 0::(i: (Vj: 0::(j: pi.x) 1\ pi.false)
= { 1\ distributes over 3 }

(3i: 0::(i: pi.false) 1\ (Vi: 0::(i: pi.x)
(End of Proof)

Because and-continuity of the above f is equivalent to and-continuity of p
and -see (6, 24)- p being and-continuous and finitely conjunctive means
that p is denumerably conjunctive, we can combine (60') and (61) into

(63) Theorem For denumerably conjunctive p ,

is the weakest solution of Y: [X 1\ p. Y == Y] .

Theorems (60) and (62) yield

(64) Theorem For or-continuous and finitely conjunctive p ,

is the strongest solution of Y: [X 1\ p. Y == Y] .

8. Equations in predicates and their extreme solutions 167

Some justifying examples

Theorems (55) and (58) are less beautiful than theorem (52), which states that
h inherits without constraints or exceptions the conjunctivity enjoyed by f .
To show that the exceptions mentioned in (55) and (58) are not void -i.e.,
have not entered the picture merely as a result of our weakness as theorem
provers- we shall construct some counter-examples.

Theorem (55) is restricted to finitely conjunctive f . We shall show that,
for an f that is not finitely conjunctive, the conclusion [g.x == g.true 1\ y]
is, in general, invalid. Because all the other types of conjunctivity imply
monotonicity, it suffices to come up with a monotonic -but not finitely
conjunctive!- f , such that the conclusion of (55) does not hold.

The simplest choice for f that is monotonic but not finitely conjunctive is

[f.(X,Y) == X v y]

With this choice, equation (46) becomes

Y: [X v Y == Y]

whose strongest solution g.x is given by [g.X == X] . Relation (54) becomes

[Xv Y == y]

which is satisfied by [Y == true] . With these values for g and Y ,the
conclusion [g.x == g.true 1\ y] of (55) would yield

[X == true 1\ true]

which is in general false. And this observation fully justifies (55)'s restriction
to finitely conjunctive f .

Next we turn our attention to theorem (58), which excludes g's
inheritance of universal conjunctivity and and-continuity.

To justify the exclusion of universal conjunctivity, we choose f given by

[f.(X,y) == y]

which is universally conjunctive. With this choice, equation (46) becomes

Y: [Y== y]

whose strongest solution g.x is given by [g.x == false] . This g is definitely
not universally conjunctive, and (58)'s exclusion of universal conjunctivity is
therefore justified.

168 8. Equations in predicates and their extreme solutions

Finally, in order to show that theorem (58)'s exclusion of and-continuity is
also justified, we need an f that is and-continuous, but not finitely
conjunctive. (Otherwise -see (6, 24)- it would be denumerably conjunc
tive.) We cannot use our earlier f , given by [f.(X,Y) == X v Y] , which is
not finitely conjunctive, because the corresponding strongest solution is the
identity function. But we can use it as a source of inspiration by considering

[f.(X,Y) == X v p.Y]

with a carefully chosen p . We want p to be and-continuous, since that
-see (6, 54)- will make f and-continuous. Furthermore, it would be nice if
p were or-continuous as well, since that -see (60)- would give us a closed
form for g.x . And we would like p to be so simple that there is hope of
tackling that closed form analytically.

For predicates on a state space that has z as one of its integer coordinates
we suggest for p the substitution (z:= z + 1) , i.e., we propose for f

[f.(X,Y) == X V (z:= Z + 1).Y]

Because substitution is and-continuous, so is f . We are now considering the
strongest solution g.x of

Y: [Xv(z:=z+l).Y== Y]

Because the substitution (z:= z + 1) is denumerably disjunctive, the dual of
Theorem (63) tells us that g.x is given by

[g.x == (3i: 0 ~ i: (z:= z + lY.x)]

which can be simplified to

(*) [g.x == (3i: 0 ~ i: (z:= z + i).x)]

Our remaining obligation is to show that g ,as given by (*) is not and
continuous. To this end we consider the strengthening sequence e} (0 ~J)
given by [e} == z ~ jJ . We observe, on the one hand,

g.(Vj: 0 ~ j: ej)

{definition of C }
g.(Vj: 0 ~j: z ~ j)

{consider j = z + 1 }
gfalse

{(*)}
(3i: 0 ~ i: (z:= z + i).false)

{definition of substitution}
(3i: 0 ~ i: false)

{pred. calc.}
false

8. Equations in predicates and their extreme solutions 169

We observe, on the other hand,

(Vj: 0 ~ j: g.(c.j»
{definition of C }

(Vj: 0 ~j: g.(z ~ j»

{(*)}
(Vj: 0 ~ j: (3i: 0 ~ i: (z:= z + i).(z ~ j»)

{definition of substitution}

(Vj: 0 ~j: (3i: 0 ~ i: z + i ~ j»
{consider i = 0 max (j - z) }

(Vj: 0 ~ j: true)

{pred. calc.}
true

Because false"¥= true , g is not and-continuous and (58)'s exclusion of
and-continuity is therefore justified.

And this concludes the construction of our third and last counter-example.
We would like to add that the strengthening sequence c.j that we used
above is the standard vehicle for refuting and-continuity. This knowledge
makes the choice of our last f less surprising.

CHAPTER 9

Semantics of repetitions

The reason for the inclusion of the previous chapter is that we shall use
extreme solutions of equations in predicates to define the semantics of our
next compound statement, known as the "repetition". We shall first study it
in its simple form, in which it is composed of a guard B and a statement
S . It is denoted by surrounding the guarded statement B --+ S by the special
bracket pair do ... od . For the sake of brevity we shall call the resulting
compound statement in this chapter "DO" ,I.e.,

DO = do B --+ S od

We shall define the semantics of DO in the usual way by defining (in
terms of Band S) the predicate transformers wlp.DO and wp.DO . But
we shall define them differently. Were we to follow the same pattern as in the
case of the straight-line programs, we would define (i) in some way the
predicate transformer wlp.DO ,(ii) in some way the predicate we would
denote by wp.DO.true ,and (iii) in terms of the previous two the predicate
transformer wp.DO by

(0) [wp.DO.X == wp.DO.true /\ wlp.DOX] for all X

Because it is more convenient, in the case of the repetition we shall follow a
slightly different route: we shall define wlp.DO and wp.DO independently
and then prove (0) as a consequence of those definitions. Furthermore we
shall show that wlp.DO meets requirement RO (universal conjunctivity) if
wlp.S does and that wp.DO meets requirement R1 (excluded miracle) if
wp.S does.

170

9. Semantics of repetitions 171

We shall now define predicate transformers wlp.DO and wp.DO . We
suggest that in this chapter the reader just accept these definitions as such,
without wondering from where they come or what has inspired them. Such
background information will be provided in the next chapter.

Predicate transformer wlp.DO is given by: for any predicate X ,
predicate wlp.DO.x is defined as the weakest solution of

(1) Y: [(B v X) /\ (IB v wlp.S.Y) == Y]

Predicate transformer wp.DO is given by: for any predicate X ,
predicate wp.DO.x is defined as the strongest solution of

(2) Y: [(B v X) /\ (IB v wp.s.y) == Y]

Using
[wp.S.Y == wp.s.true /\ wlp.S.Y]

and distribution of v over /\ ,we can rewrite the last equation as

Y: [(B v X) /\ (,B v wp.s.true) /\ (IB v wlp.S.Y) == Y]

With, for the same Band S , IF given by

IF = if B -+ S fi
we have -see (7, 27)-

[wlp.lF.Y == IB v wlp.S.Y]

Consequently, we can define wlp.DO.X as the weakest solution of

(3) Y: [(B v X) /\ wlp.lF. Y == Y]

and wp.DO.x as the strongest solution of

(4) Y: [(B v X) /\ (,B v wp.s.true) /\ wlp.lF.Y == Y]

These two equations are special instances of equation

(5) Y: [Z /\ wlp.lF. Y == Y]

and with this equation we start our analysis. Because wlp.lF is universally
conjunctive, it is monotonic; since conjunction is also monotonic, the left
hand side of (5) is monotonic in Y and hence, according to Knaster-Tarski,
the extreme solutions of (5) exist. Let g.Z be the strongest solution of(5) and
h.z its weakest solution.

Confronting (5) with (3) and (4), we see

(6) [wlp.DO.x == h.(B v X)]

(7) [wp.DO.x == g.«B v X) /\ (,B v wp.S.true»]

172 9. Semantics of repetitions

With these two relations we can prove (0) and can show that wlp.DO
meets requirement RO . To begin with we observe that (i) Z is a universally
conjunctive function of Z and (ii) wlp.IF. Y is a universally conjunctive
function of Y ; from these two observations we conclude on account of
(6,53)

Z 1\ wlp.IF. Y is a universally conjunctive function of (Z, Y)

From this we conclude on account of (8, 52)

(8) h is universally conjunctive

and, because universal conjunctivity implies finite conjunctivity, on account
of (8,57)

(9) [g.(X 1\ Y) == gX 1\ h. Y]

In order to prove (0) we observe for any X

wp.DO.true 1\ wlp.DOX
{(7) with X:= true and pred. calc.; (6)}

g.(,B v wp.S.true) 1\ h.(B v X)
{(9) with X,Y:= (,B v wp.S.true), (B v X) }

g.«B v X) 1\ (,B v wp.S.true))
{(7)}

wp.DO.X

Showing that requirement RO is met means showing that wlp.DO is
universally conjunctive. From (6) we see

wlp.DO = hop with [pX == B v X] for all X

Because -see (6, 36)- the identity function is universally conjunctive, we
conclude -see (6, 42)- that p is universally conjunctive. Because -see
(8)- h is universally conjunctive and -see (6, 45)- functional
composition is junctivity preserving, wlp.DO (being hop) is universally
conjunctive. So we have dealt with RO.

Showing that requirement Rl is met means showing

[wp.DO.false ==falseJ

This is most easily shown by returning to the original definition (2) of
wp.DO . The substitution X:= false in (2) defines wp.DO.false as the
strongest solution of

Y: [B 1\ wp.S.Y == Y]

9. Semantics of repetitions 173

under the assumption that Smeetsrequirement R1 ,i.e., [wp.Sfalse ==false],
false is indeed the strongest solution of the above equation, and thus we have
dealt with R1 .

From (0) and the universal conjunctivity of wlp.DO we conclude in the
usual fashion -see (6, 37) and (6, 41)- that wp.DO is positively
conjunctive.

In order to investigate the disjunctivity properties of wlp.DO and wp.DO ,
we first rewrite -on account of (5, 66)- (1) and (2) as

(10) Y: [(IB /\ X) v (B /\ wlp.S.Y) == Y] and

(11) Y: [(IB /\ X) v (B /\ wp.S.Y) == Y]

respectively. On account of the duals of (6, 36) and (6, 42):

• (IB /\ X) is a universally disjunctive function of X
• (B /\ wlp.S. Y) is as disjunctive a function of Y as wlp.S. Y
• (B /\ wp.S. Y) is as disjunctive a function of Y as wp.S. Y .

From the dual of (6,53) we now conclude that, as functions of (X,Y) , the
left-hand sides of (10) and (11) are as disjunctive as wlp.S and wp.S ,
respectively. From the inheritance theorems (8, 58') and (8, 52'), respectively,
we now conclude

(12) Theorem With the exception of universal disjunctivity and or
continuity, wlp.DO inherits the disjunctivity properties of wlp.S

(13) Theorem wp.DO inherits all disjunctivity properties of wp.S .

Finally, there is the question of DO's determinacy, i.e., the question of
whether

[(wlp.DO)*X == wp.DOX] for all X

From the fact that wlp.DOX is the weakest solution of (10) we derive
-using de Morgan- that (wlp.DO)*X is the strongest solution of

Y: [(B v X) /\ (IB v (wlp.S)*.Y) == Y]

But if [(wlp.S)*. Y == wp.S. Y] for any Y , i.e., if S is deterministic, this is
the same equation as (2), the strongest solution of which has been defined to
be wp.DOX . Thus we have established

(14) Theorem For deterministic S , DO is deterministic.

174 9. Semantics of repetitions

As for the straight-line programs, we have now dealt for DO with the
junctivity properties of its predicate transformers and with its determinacy. In
the case of IF we had to deal with the additional complication that, even if
the constituent statements were deterministic, IF could be nondeterministic;
this complication could be dealt with by using plain predicate calculus: an
alternative construct with mutually exclusive guards does not introduce
nondeterminacy.

Our last theorem tells us that as far as the introduction of nondeterminacy
is concerned, the repetition is an absolutely innocent statement. The repeti
tion, however, raises a completely different issue, and that is the issue of
guaranteed termination. Termination of DO is guaranteed for all initial
states in which wp.DO.true holds. According to (2) this predicate is given as
the strongest solution of

Y: [IB v wp.s.Y = Y]

but, for arbitrary S ,that does not give us a sufficiently manageable
expression for wp.DO.true . The risk of nontermination being introduced by
the alternative construct depends on the value of (3i:: B.i) ,i.e., it can be
dealt with by the predicate calculus. In the case of the repetition, the question
of guaranteed termination is a much more serious issue; in order to settle it,
plain predicate calculus no longer suffices. It is this feature that makes the
repetition intrinsically different from the straight-line programs, and this
difference explains why we devote a whole separate chapter to it. Because the
central notion that we need beyond the predicate calculus is that of well
founded sets, this is the place to insert the following intermezzo.

Intermezzo on well-founded sets

For a set D ,a "relation from D to D" is a boolean function on the ordered
pairs of elements from D . Relations are usually denoted by an infix
operator; one of the best known relations is the equality relation: x = y is
identically true if D is empty or a singleton set, it is not identically true if D
has more than one element.

We now consider a relation that we denote by an infix < ,and pronounce
as "less than".

Remark We denote our relation by an infix < because that is the usual
symbol in connection with well-founded sets. The choice is a little bit
unfortunate because the relation need not be transitive (though in the most
common well-founded sets it is). (End of Remark.)

9. Semantics of repetitions 175

Its most common model is that of a directed graph with the elements of D
as its nodes and (the presence/absence of) an arrow from y to x as a coding
for (the truth/falsity of) x < y .

In terms of this model, the fact that < need not be transitive means that
the presence of arrows from z to y and from y to x does not imply the
presence of an arrow from z to x . Moreover, the graph is perfectly welcome
to contain directed paths that are cyclic; in a moment it will, however,
transpire that in such a case our attention will be focussed on acyclic
subgraphs (where a subgraph is formed by the removal of a subset of nodes
and all the arrows incident on removed nodes).

Let S be a subset of D ; the notion of "minimal element" is defined by

(15) (x is a minimal element of S) -
XES 1\ (\ly: y < x: lyE S)

Note that the minimal element need not be unique. Take for S the natural
numbers; with the standard interpretation of < ,0 is the only minimal
element of S ,but with < defined by

x < y == (3p: p is a positive integer: x + 2· p = y)

both 0 and 1 are minimal elements of S . Note also that a subset may have no
minimal elements: take S empty, or take for S all integers and for < the
usual interpretation, or -in our graph model- take for S nodes on a
cyclic path.

Well-foundedness of a subset C of D is defined by

(16) (C is well-founded) ==
(\IS:: (3x:: x E C n S) == (C n S has a minimal element))

where, as in the rest of this intermezzo, the dummy S is understood to range
over the subsets of D .

Remark In (16), dummy S further only occurs in the combination C n S .
Indeed, well-founded ness of C is a statement about the subsets of C ,viz.,
that their being non-empty equivales their having a minimal element. In view
of what follows, S s; D is a more attractive range for S than S s; C ; hence
the intersection with C . The intersection will be eliminated in a moment.

(End of Remark.)

176 9. Semantics of repetitions

Combining (15) and (16), we can now eliminate the notion of a minimal
element:

(17) (C is well-founded)

{(16) }

(VS:: (3x:: x E C n S) == (C n S has a minimal element»
{(15) with S:= C n S }

(VS:: (3x:: x E C n S) ==
(3x:: x E C n S /\ (Vy: y < x: l(y E C n S»»

{definition of n ; de Morgan}

(VS:: (3x:: x E C /\ XES) ==
(3x:: x E C /\ XES /\ (Vy: y < x: lyE C V lyE S»)

{trading}

(VS:: (3x: x E C: XES) ==
(3x: x E C: XES /\ (Vy: Y E C /\ Y < x: lyE S»)

For a while we leave our rephrasing of C's well-foundedness and
introduce our next definition. (The high density of definitions is a bit
annoying, but unavoidable because we want to establish the connections
between existing pieces of mathematics.)

The validity of mathematical induction as a proof technique -we give the
form known as "course-of-values induction" - is by definition given by

(18) (mathematical induction over C is valid) ==
(Vf:: (Vx: x E C: fx) ==

(Vx: x E C: fx <= (Vy: Y E C /\ Y < x: f y»)

where, as in the rest of this intermezzo, the dummy f is understood to range
over the boolean functions on D . We are now free to establish a one-to-one
correspondence between subsets S of D and boolean functions f on D by
ruling that for each XED

(19) fx == I XES or conversely

Remark It was our desire to have f ranging over all functions of type
D --+ bool that made us choose for S the range S S; D

(End of Remark.)

9. Semantics of repetitions 177

We now resume our calculation started at (17):

(C is well-founded)

{renaming dummy S according to (19)}
(Vf:: (3x: x E C: ..., fx) ::=

(3x: x E C: ..., fx /\ (Vy: y E C /\ Y < x: fy)))

{de Morgan and <= }

(Vf:: (Vx: x E C: fx)::=

(Vx: x E C: fx <= (Vy: y E C /\ Y < x: fy)))

{ (18)}

(mathematical induction over C is valid)

i.e., we have established

(20) Theorem For a partially ordered set (C, <)

(C is well-founded) ::=

(mathematical induction over C is valid)

In other words, well-foundedness and validity of mathematical induction
are just two sides of the same coin. The coin has a third side, which we can
formulate after yet another definition, viz., the definition of a decreasing
chain:

(21) (elements d.i (0 ::::;: i) form a decreasing chain) ::=

(Vi: 0::::;: i: d.(i + 1) < d.i)

Decreasing chains come in two kinds: infinite and finite chains. In the case
of a finite chain, the dummy i in (21) should be properly bounded from
above. The aforementioned third side of the coin is

(22) Theorem For a partially ordered set (C,<)

(C is well-founded) ::=

(all decreasing chains in C are finite)

Proof We rewrite the demonstrandum by negating both sides

(C is not well-founded) ::=

(C contains an infinite decreasing chain)

178 9. Semantics of repetitions

and shall prove that each side implies the other. To this end we rewrite the
left-hand side

(e is not well-founded)
{see (17), with de Morgan and trading}

(3S:: (3x: x E enS: true) ¥=
(3x: x E enS: (V'y: y < x: lyE en S)))

{ [LHS <= RHS] and Golden Rule:
[X ¥= y == X /\ I Y == X <= Y] }

(3S:: (3x: x E enS: true) /\

(V'x: x E enS: (3y: y < x: y E en S)))

LHS => RHS Let S satisfy above conjunction. Then
non-empty and contains for every x a y that satisfies y < x
enS , and hence e , contains an infinite decreasing chain.

en S is
; therefore

RHS => LHS Let e contain an infinite decreasing chain. Let B be the
set of its elements; then

(3x: x E B: true) /\ (V'x: x E B: (3y: y<x: y E B))

Since, moreover, B = en B , we can use B as instantiation for S .
(End of Proof)

From theorems (20) and (22) we conclude

(23) (mathematical induction over e is valid) ==
(all decreasing chains in e are finite)

a conclusion of particular interest for computing. Associating terminating
repetitions with decreasing chains of finite length, we see some sort of link
between terminating computations on the one hand and the validity of an
inductive argument on the other hand: computation and mathematical
induction go somehow hand in hand.

A well-known example of a well-founded set is presented by the natural
numbers with < in its standard meaning. The well-foundedness of the
natural numbers is a postulate; we appeal to it whenever we prove something
by mathematical induction over the natural numbers. With the role of e
being played by the natural numbers, the set of all integers can correspond
to D .

The natural numbers with < form a very special well-founded set
because it is totally ordered. A well-known example of a well-founded set
with a partial order is provided by the sentences of a programming language
-or any formalism with a similar grammar- , where "<" is read as
"occurs as subsentence in", which is clearly a transitive relation. The

9. Semantics of repetitions 179

shrinking length of the subsequences ensures that decreasing chains are finite.
It is this well-founded set that leads to "induction over the grammar" as we
encountered in Chap. 7.

The above well-founded sets are still a little bit special in the sense that
each element is the starting point of only a finite number of decreasing chains,
whose lengths are therefore bounded. This is no longer necessarily true for
what is known as the "lexical ordering". Lexical ordering is defined between
equal-length sequences of elements from a (partially) ordered set. If the
element ordering is well-founded and the sequences are of finite length, the
lexical order makes the sequences a well-founded set. With x , y denoting
elements and X , Y denoting sequences of the same length, the lexical order
is defined by

xX < yY == x < y v (x = Y /\ X < Y)

(Here we did some overloading of the < .)

Example Consider the following one-person game. Given a finite bag of
natural numbers; a move consists in replacing an x from the bag by the
contents of a finite bag of natural numbers all < x . Show that the game
terminates because the bag has become empty.

The argument is as follows. Let all numbers in the bag be < n ; then this
will remain so throughout the game. Characterize a bag by listing, for
n > j ~ 0 ,the frequency with which j occurs in the bag. Each frequency
being a natural number and the frequency listings being sequences of length
n ,the lexical order induces well-foundedness on the frequency listings;
furthermore the frequency listing is lexically decreased by each move (because
the numbers put into the bag are all smaller than the value removed).
Successive frequency listings thus forming a decreasing chain from a well
founded set, this chain is finite, i.e., the game terminates. (End of Example.)

The above example clearly ~hows the sense in which (induction over) a
well-founded set goes beyond (induction over) the natural numbers: the game
is certain to terminate, but the initial bag does not define an upper bound on
the number of moves that will finish the game. (Another way of buying that
extension is the use of what is known as "transfinite induction", but we
consider that price too high.)

In a moment the reader will encounter the central role of well-founded ness
in all proofs of termination. This central role explains why computing
scientists are so thoroughly familiar with the lexical order: it is their most
beloved way of constructing more fancy well-founded sets from simpler ones.

(End of Intermezzo on well-founded sets.)

180 9. Semantics of repetitions

So far, the only structures we have worked with were boolean structures,
which we called predicates. Because we need them for the formulation of our
next theorem, the Main Repetition Theorem, we now turn our attention to
structures of other types.

As source of inspiration we take another look at the by-now-familiar
boolean structures and observe for any predicate X

true
{Excluded Middle}

[X v IX]

{predicate calculus}
[(X == true) v (X ==false)]

{(24) and predicate calculus}
[(3x: x E bool: X = x)]

where the set bool is defined by

(24) bool = {true,false}

Remark In this discussion it seems unnecessarily pompous to make a
notational distinction between a scalar type and the set of its possible values,
so we won't do that. (End of Remark.)

Let D be some scalar domain (say, the set of integers). The above
observation suggests how to define "a structure of type D", viz.,

(25) (t is a structure of type D) == [(3x: xED: t = x)]

Notice that (trading and) application of the one-point rule yields

(t is a structure of type D) == [t E D]

the last line may be read as "t is everywhere an element of D". With t a
structure oftype D and C a subset of D (say, C the natural numbers if D
comprises the integers) t E C stands for a predicate that is not necessarily
everywhere true .

Now we are ready to formulate the

(26) Main Repetition Theorem Let (D, <) be a partially ordered set;
let C be a subset of D such that (C, <) is well-founded;
let statement S ,predicates Band P ,and structure t of type D satisfy

(27) [P /\ B = t E C]

(28) (\Ix: x E C: [P /\ B /\ t = x = wp.S.(P /\ t < x)])

9. Semantics of repetitions 181

then, with DO = do B --+ S od ,

(29) [P => wp.DO.(P AlB)]

(The well-informed reader will recognize in the above P an "invariant" of
the repetition and in t a "variant function", which is the vehicle of the
termination argument.)

Proof For the benefit of the designing programmer we have formulated the
theorem in programming concepts such as wp and the statements Sand
DO . In order to prove the theorem, however, we shall first isolate its
mathematical contents by eliminating from its formulation those program
concepts.

Let us start with the demonstrandum (29) and rewrite it, by renaming the
consequent, as

(30) [P=> Y]

and by asking ourselves what we (need to) know about Y in order to prove
it. Well, Y has been defined as the strongest solution of an equation but, as it
is the consequent of the demonstrandum, it can only matter that it is a
solution. The latter does matter, for we have to take something about Y into
account. Hence we shall use that Y satisfies -see also (48), a direct
consequence of (11)-

(31) [fY==Y]

with f , according to (11), for any Z given by

(32) [fZ == (,B A P) v (B A wp.S.Z)]

or, equivalently,

(33) [fZ == (B v P) A (,B v wp.S.Z)]

Because (31) embodies the only given fact about Y ,the introduction of
the named function f enables us to rephrase the question: what do we (need
to) know about f ? In order to guarantee the existence of a Y satisfying (31)
we probably need -on account of Knaster-Tarski-

(34) f is monotonic

and our next question is what sufficient properties of f we can derive from
the premisses of the original theorem. This was the whole purpose of the
introduction of the named function f . Its internal structure as given by (32)
or (33) captures the semantics of the repetition; if we can use that internal
structure to derive from the original premisses some sufficient properties of

182 9. Semantics of repetitions

f , we get a new proof obligation which is simpler in the sense that the details
of the semantics of the repetition have disappeared from the formulation.

Let us begin with premiss (28). We observe

P /\ B /\ t = x = wp.S.(P /\ t < x)

{pred. calc., towards the 2nd disjunct of (32)}
P /\ B /\ t = x = B /\ wp.S.(P /\ t < x)

{pred. calc., towards the 1st disjunct of (32)}
P /\ (B v ,P) /\ t = x = B /\ wp.S.(P /\ t < x)

{pred. calc.}
P /\ t = x = (,B /\ P) v (B /\ wp.S.(P /\ t < x»

= {(32) with Z:= P /\ t < x }
P /\ t = x = f(P /\ t < x)

Hence, (28) can be rephrased as

(35) ('Ix: XE C: [P /\ t = x = f(P /\ t < x)])

Notice that now we have reached the stage that B occurs only in premiss
(27) and the definition of f . So B has to be eliminated by confronting those
two! To that end we observe

(27)
= {pred. calc., towards (33)}

[P /\ ,(tE C) =(B v P) /\ ,B]

= {pred. calc., towards (33)}
(VZ:: [P /\ ,(t E C) = (B v P) /\ (,B v wp.SZ)])

{(33) to eliminate B }

(VZ:: [P /\ ,(t E C) = fZ])

Hence we suggest to replace premiss (27) by the seemingly weaker

(36) (VZ:: [P /\ ,(t E C) = fZ])

(We said "seemingly", because the instantiation Z:= false shows that,
thanks to the Excluded Miracle, (27) and (36) are, in fact, equivalent.)

Summarizing, we shall discharge the proof obligation of the Main
Repetition Theorem by demonstrating

(i) [P= Y] (30)

9. Semantics of repetitions 183

on account of

(C, <) is well-founded (ii)
(iii)
(iv)
(v)
(vi)

('<IZ:: [P /\ ,(t E C) => fZ])
('<Ix: x E C: [P /\ t = x => f(P /\ t < x)])

[fY == y]
f is monotonic

We shall demonstrate (i) by showing separately

(37) [P /\ ,(t E C) => y] and

(38) [P /\ t E C => y]

a case analysis that is strongly suggested by (iii).

Proof of (37) We observe

[P /\ ,(tE C) => y]
{(v)}

[P /\ ,(t E C) => fY]

{(iii) with Z:= Y }
true

(36)
(35)
(31)
(34)

(End of Proof of (37).)

Proof of (38) As this is the part in which we have to exploit that (C, <) is
well-founded, we first massage our demonstrandum so as to make it
amenable to a proof by mathematical induction over C . To this end we
observe

[P /\ t E C => Y]

{one-point rule}

[('<Ix: t = x: P /\ X E C => Y)]

{trading so as to make the range scalar}

[('<Ix: x E C: P /\ t = x => Y)]

{interchange of quantifications}

('<Ix: x E C: [P /\ t = x => Y])

In view of (ii), the latter is proved by deriving

(39) [P /\ t = x => Y] from

(40) ('<Iy: y E C /\ Y < x: [P /\ t = Y => Y])

for any x such that x E C .

184 9. Semantics of repetitions

To this end we observe for any x E C

(40)
{interchange of quantifications}

[(\fy: y E C /\ Y < x: P /\ t = Y => Y)]

{trading}
[(\fy: t = y: P /\ Y E C /\ Y < X => Y)]

{one-point rule}
[P /\ tEe /\ t < x => Y]

{(37) }
[P /\ t < x => Y]

=> {(vi)}
[f.(P /\ t < x)=>fY]

=> {(iv) and x E C }
[P /\ t=x => fY]

{(v)}
(39)

(End of Proof of (38).)
(End of Proof of (26).)

Acknowledgment In the proof of (38), the sequence "interchange of quantifi
cations, trading, one-point rule" occurs twice. By a further parameterization
of the argument, W. H. 1. Feijen and A. 1. M. van Gasteren have been able to
avoid both that duplication and the case analysis (37) versus (38). Their proof
is shorter than the one above and in a way quite elegant; we gave this proof
because in the current state of our heuristic awareness we are unable to
present their argument without pulling a sizeable rabbit out of the magician's
hat. Besides their influence, we gratefully acknowledge that of C. A. R. Hoare
and Lincoln A. Wallen in the formulation of the Main Repetition Theorem
and the deduction of how to extract its mathematical contents. (The original
proof, at the time of writing more than four years old, manipulated wp until
the very end.) (End of Acknowledgment.)

The Main Repetition Theorem is by now decades old: to the best of our
knowledge, R. W. Floyd was in the mid-sixties the first one to formulate it. Its
first justification was in terms of a totally operational argument; since this
was prior to any formal definition of the semantics of the repetition, an
operational argument was the best that could be expected at the time. In the
next decade, formal proofs were given under the constraint of the or
continuity of wp.S . Subsequent proofs that did not rely on or-continuity
were so much more complicated that they strengthened the then-current
opinion that it was wise to confine oneself to or-continuous wp.S . The

9. Semantics of repetitions 185

significance of our proof is that it does not rely on or-continuity, is totally
elementary, and is no more complicated than the original proofs that did rely
on or-continuity. Its tentative moral is that the importance of or-continuity
might have been overrated.

* * *
The Main Repetition Theorem involves well-founded sets because it deals

with wp.DO ,which captures guaranteed termination of the repetition. Since
wlp.DO is not concerned with guaranteed termination, we may expect
wlp.DO to be simpler to deal with than wp.DO . This expectation is
confirmed by

(41) [wlp.DO.x == (Vi: 0:(i: (wlp.lF)i.(B v X»]

Proof We quote (6):

[wlp.DO.x == h.(B v X)]

where h.z is the weakest solution of (5):

Y: [Z /\ wlp.lF. Y == Y]

Because wlp.lF is universally conjunctive, it is denumerably so, and, on
account of (8,63) with X, p:= Z, wlp.lF , the weakest solution h.z of (5) is
given by

(42) [h.z == (Vi: 0:(i: (wlp.lF)i.Z)]

Substitution of (42) with Z:= B v X in (6) yields (41).
(End of Proof)

Looking for closed expressions for wp.DO.X , we return to (2), which we
rewrite as

(43) Y: [k.Y== Y] with k given by

(44) [k.Y == (B v X) /\ (IB v wp.S.Y)]

(in which k's hidden dependence on X should be noted).

(45) Theorem For or-continuous wp.S

[wp.DO.x == (3i: 0:(i: ki.false)]

Proof By definition, wp.DO.x is the strongest solution of (43). By (8, 60) that
strongest solution is (3i: 0:(i: ki.false) if k is or-continuous. Since the
constant function is or-continuous -see the dual of (6, 37)- and dis- and
conjunction preserve or-continuity -see the duals of (6, 41) and (6, 43)- k
is or-continuous if wp.S is or-continuous.

(End of Proof)

186 9. Semantics of repetitions

By rewriting (43) as

Y: [k.true /\ wlp.lF. Y == Y]

we deduce from (8, 64) with X, p:= k.true, wlp.lF

(46) Theorem For or-continuous wlp.lF

[wp.DO.x ==
(3i: 0::;; i: (wlp.lF)i.false) /\ (Vi: 0::;; i: (wlp.lFY(k.true))] ,

to the operational interpretation of which we shall return in the next chapter.

Both of the above two theorems have been used to prove the Main
Repetition Theorem under the constraint of or-continuity. The point is that
under that constraint the full generality of well-founded sets is not needed
because induction over the natural numbers then suffices. Wherever in that
case termination is guaranteed, it is also possible to state an upper bound on
the number of iterations.

* * *
For the sake of completeness, we mention immediate consequences of (10)

and (11):

(47) [wlp.DO.x == wlp.DO.(,B /\ X)]

(48) [wp.DO.x == wp.DO.('B /\ X)]

As consequences of the facts that wlp.DO.x solves (10) and wp.DO.x
solves (11) we mention

(49) [Q => IB] => [Q /\ wlp.DO.x == Q /\ X]

(50) [Q => IB] => [Q /\ wp.DO.x == Q /\ X]

which can be read as the statement that under validity of a Q that implies
IB , DO acts as skip . We shall prove the latter one.

Proof We observe for any X and [Q => IB]

Q /\ wp.DO.x
{ wp.DO.x solves (ll)}

Q /\ «,B /\ X) v (B /\ wp.S.(wp.DO.x»)
{ [Q /\ IB == Q] and [Q /\ B == false] }

Q/\X
(End of Proof)

9. Semantics of repetitions 187

In the same vein we derive

(51) Theorem With DO = do B S od and DO' = do B' S' od ,

DO;DO' = DO for [B <=; B']

Proof We observe for any X and [B <=; B']

wp."DO;DO'''.X
= {definition of ; }

wp.DO.(wp.DO'.x)
= {(48)}

wp.DO.('lB " wp.DO'.x)
{ ['lB => 'lB'] ; (50) with Q, B, DO:= 'lB, B', DO' }

wp.DO.('lB " X)
= {(48)}

wp.DO.x

For wlp the same argument applies.

From (51) with DO':= DO we derive

(52) DO;DO = DO, i.e., predicate transformers

(End of Proof)

wlp.DO and wp.DO are idempotent

The proof of DO = do B DO od is left as an exercise to the reader. We
are more interested in another exploration. We observe

'lB v wlp.IF. Y
= {definition of wlp.IF }

'lB v 'lB v wlp.S. Y
= {pred. calc.}

'lB v wlp.S. Y

and

'lB v wp.IF. Y
= {definition of wp.IF }

'lB v (B " ('lB v wp.S. Y))
= {pred. calc.}

'lB v wp.S.Y

188 9. Semantics of repetitions

From these two equivalences, we conclude that equations (1) and (2)
remain unchanged under the substitution S:= IF ; consequently, we have
derived

DO = do B -4 IF od

Because the above IF is an alternative with a single guarded command, B is
the same predicate as BB (which was defined as the disjunction of the
guards). Hence we may also write

(53) DO = do BB -4 IF od

In the case of one guarded command, the transition from IF to DO ,i.e.,
from if B -4 S fi to do B --+ Sod, was notationally effectuated by replacing
the parenthesis pair if·· . fi by the parenthesis pair do··· od ,the two
constructs semantically satisfying (53).

Our final linguistic proposal is to allow this transition also starting from
an IF with more guarded commands, i.e., to

IF = if B.O --+ s.o 0 B.1 --+ S.1 fi corresponds

DO = do B.O --+ S.O 0 B.1 --+ S.1 od , etc.

Each time, their semantics are coupled by (53) with [BB == (3i:: B.O] .

To conclude this chapter we shall show that the appropriate generaliza
tions of equations (1) and (2) are

(54) Y: [(BB v X) /\ (Vi: B.i: wlp.(S.i). Y) == Y]

(55) Y: [(BB v X) /\ (Vi: B.i: wp.(S.i). Y) == Y]

According to (53), the appropriate generalization of (1) is (1) with
B,S:= BB,IF ,l.e.,

Y: [(BB v X) /\ ("lBB v wlp.lF.Y) == Y]

To show that this equation is the same as (54) we observe for the second
conjunct

"lBB v wlp.lF. Y

{def. of BB and trading; def. of wlp.lF }

(Vi: B.i: false) v (Vi: B.i: w/p.(s.z). Y)

{ V is monotonic}

(Vi: B.i: wlp.(S.i). Y)

9. Semantics of repetitions 189

The crucial step in establishing that (55) is the proper generalization of (2)
is similarly

,00 v wp.lF. Y

{def. of wp.IF }

,BB v (BB 1\ (Vi: B.i: wp.(S.i). Y»

{pred. calc.}
,BB v (Vi: B.i: wp.(S.i). Y)

{as above}
(Vi: B.i: wp.(S.z). Y)

And this concludes the chapter on the semantics of the repetition.

CHAPTER 10

Operational considerations

In the two earlier chapters on semantics, we have defined the semantics of the
compound statements SO; S1 , IF , and DO by defining their predicate
transformers in terms of the predicate transformers of their constituent
statement(s). This raises the following question. What is or could be the
relation between the execution of a compound statement and the executions
of its constituent statements? Or, a bit more specifically, if we know how to
implement the constituent statements, how could we then implement the
semicolon, the alternative construct, and the repetition? These are the
questions to which this chapter is devoted. We shall deal with the three
compound statements in the order in which they have been introduced. (As is
only to be expected, this is also the order of increasing complexity.)

In order to investigate possible implementations of the semicolon, let us
define compound statement S by

S = SO; S1

We recall from (7, 23) and (7, 25), that the semantics of S is given by

[wlp.S.x == wlp.SO.(wlp.S1.X)] and

[wp.S.x == wp.SO.(wp.S1.X)]

Looking at the right-hand side of, say, the latter one, we see that the predicate
(wp.S1.X) is -by virtue of the place where it occurs- a postcondition for
SO and -by virtue of its internal structure- a precondition for S1 . We
can do justice to this dual role of (wp.S1.X) by identifying the state at which
the execution of SO terminates with the state in which the execution of S1 is

190

10. Operational considerations 191

initiated. (Accordingly, in a computation in which the execution of SO fails
to terminate, the execution of S1 is not initiated at all.) This is the standard
technique of implementing the semicolon: termination of its left-hand oper
and starts its right-hand operand. The technique is known as "sequential
program execution". Barring a failure to terminate, the execution of
"SO; Sl; ... ; Sn" consists in executing, one after the other, the constituent
statements in the order in which they occur in the sequence.

Remark We do not take the pOSItIOn that the programmer prescribes
computational behaviour; in particular, his use of the semicolon does not
prescribe sequential program execution. As far as we are concerned, the
executions of

"x:=2;y:=1" and "y:= 1; x:= 2"

could be identical. We prefer to view implementing the semicolon by means
of sequential program execution as one of the implementor's options.

(End of Remark.)

In order to discuss the implementation of IF , we recall from (7, 27) and
(7,29)

[wlp.!F.X == (Vi: B.i: wlp.(S.i).x)]
[wp.!F.x == BB 1\ (Vi: B.i: wp.(S.i).x)]

where BB is given by

[BB == (3i: B.i: true)]

We distinguish two cases: whether or not BB holds in the initial state. We
observe

,BE
{definition of BB ; de Morgan}

(Vi: B.i: false)

= {pred. calc.}

(Vi: B.i: wlp.(S.i).false)

{def. of wlp.!F }

w lp.! F.false

Because, for any statement S , wlp.S.false holds in precisely those initial
states for which each computation under control of S belongs to the class
"eternal" -the class "finally false" being empty- ,the above observation

192 10. Operational considerations

tells us how to implement IF in the case ,BB : if initially all guards are
false ,the execution of IF should fail to terminate.

Next we consider the implementation of IF for an initial state in which
BB holds. In that case, the implementation has to cater for the possibility
that that initial state satisfies, for some postcondition X ,the precondition
wp.lFX ,in which case the execution of IF has to lead to a computation of
the class "finally X" . We observe for any k

B.k /\ wp.lFX
{definition of wp.lF }

B.k /\ BB /\ (Vi: B.i: wp.(S.i)X)

= {pred. calc.}
wp.(S.k)X

From this observation we conclude that the execution of S.k will do the job
provided that the corresponding guard B.k holds in the initial state. The
choice is, in general, indeed confined to the statement of a guarded command
whose guard is initially true ,because in general IB.k /\ wp.lF.X fails to
imply wp.(S.k)X .

In summary: if all guards are false ,execution of IF fails to terminate,
otherwise it leads to an execution of one of the constituent statements whose
guard is true . And this concludes our considerations about the implementa
tion of the alternative construct.

We now turn our attention to the implementation of the repetition DO ,
given by

DO = do B -+ S od

in the remainder of this chapter, IF will be used to denote -as in the
previous chapter- the corresponding alternative construct, i.e.,

IF = if B -+ S fi

We recall from the previous chapter the definition of the semantics of
DO ,in particular from (9, 1) that, for any X , wlp.DOX is the weakest
solution of

(0) Y: [(B v X) /\ (,B v wlp.S.Y) == YJ

and from (9, 2) that, for any X , wp.DOX is the strongest solution of

(1) Y: [(B v X) /\ (,B v wp.S.Y) == YJ

10. Operational considerations 193

We now observe for any X

true
{ wlp.DOX solves (0); wp.DOX solves (1)}

[(B v X) /\ (-,B v wlp.S.(wlp.DOX)) == wlp.DO.X] /\

[(B v X) /\ (-,B v wp.S.(wp.DOX)) == wp.DO.x]
{semantics of iffi , skip ,and semicolon}

[wlp."if -,B ~ skip D B ~ S; DO fi".X == wlp.DO.x] /\

[wp. "if -,B ~ skip D B ~ S; DO fi".X == wp.DO.x]

Because the last result holds for all X and statements are semantically
equivalent if they are characterized by the same predicate transformers, we
have derived

(2) if -,B ~ skip D B ~ S; DO fi = DO

With respect to the above equality, four remarks should be made.

The first remark is that substituting one side of (2) for the other is a
standard practice in semantics-preserving program transformations; substi
tuting the left-hand side for the right-hand side is called "unfolding", whereas
the inverse substitution is called "folding".

The second remark is that, with our recently gained operational view of
the alternative construct, we now see the standard implementation of the
repetition: the computation consists of a (finite or infinite) sequence of
executions of S -or, if you prefer, of IF - under the constraint that B
holds at the initial state of each of these executions. When ~and only
when- B does not hold after a finite number (possibly zero) of these
executions of S ,the execution of DO terminates. To this operational
interpretation of the repetition we shall return in a minute.

The third remark is that, viewed as an equation in DO ,(2) may have
more than one solution and, therefore, cannot serve as a definition of DO
Consider, for instance, the case S = skip ; the equation

T: (if -,B ~ skip D B ~ T .Ii = T)

has more than one solution: T = skip is a solution, but so is
T = do B ~ U od for any statement U .

The fourth remark is that, though we derived (2) from the semantic
definitions (0) and (1), it happened in reality the other way round: (2) and its
operational interpretation existed first, and it was (2) that inspired equations
(0) and (1). Note that, in the derivation of (2), from the semantic definition of
DO we used only that wlp.DO.x and wp.DO.x solve their respective
equations; we did not use the fact that they have been defined as extreme

194 10. Operational considerations

solutions. The operational justification of the latter aspect of DO's semantic
definition is one of the things we shall deal with in the remainder of this
chapter.

With respect to a postcondition X in Chap. 7, we partitioned
computations into three mutually exclusive classes, viz., "finally X", "finally
IX", and" eternal ". Remember that, by definition, the class "finally false" is
empty. We now apply this partitioning to the computations possible under
control of DO .

Of these, the computations belonging to the class "finally X" are
relatively simple. From our operational interpretation we see that, in the
standard implementation of DO ,a computation from the class "finally X"
consists of a succession of a finite number (possibly zero) of terminating
executions of IF ,followed by a terminating execution of "if IB --+ skip fi"
from the class "finally X". Hence it belongs to the class "finally IB" as well.
This is fully in accordance with [wlp.DO'('B)] ,which follows from
(9,47) with X:= true and the universal conjunctivity of wlp.DO . So far, so
good.

Next we ask ourselves, how under control of DO a computation from the
class "eternal" can emerge. Analysis of the operational interpretation reveals
that this can occur in the standard implementation of DO in two mutually
exclusive ways; accordingly, for DO we shall partition the class "eternal"
into two subclasses, which we shall denote by "outer eternal" and "inner
eternal". They are defined as follows:

"outer eternal": all eternal computations under control of DO that consist
of an infinite sequence of executions of IF .

"inner eternal": all eternal computations under control of DO that consist
of a finite sequence of executions of IF .

An infinite sequence of executions of IF is possible only if each individual
execution of IF -and in particular, each individual execution of S -
terminates. The class "outer eternal" captures how the construct of the
repetition may introduce the failure to terminate.

In the standard implementation of DO ,a finite sequence of executions of
IF gives rise to an eternal computation if and only if the execution of some
IF -obviously the last one in the sequence- gives rise to an eternal
computation under control of S ; this implies that that last IF has been
initiated in a state satisfying B 1\ Iwp.S.true . The class "inner eternal"
captures how a repetition may fail to terminate due to nontermination of the
constituent statement.

10. Operational considerations 195

In order to connect our operational considerations with predicate trans
formers we recall -see Chap. 7 - that for any S

wp.S.true:

wlp.S.(IX):

holds in precisely those initial states for which no computa
tion under control of S belongs to the class "eternal".

holds in precisely those initial states for which no computa
tion under control of S belongs to the class "finally X".

With the aid of the conjugate, we can reformulate the above as

(wp.S)*.false: holds in precisely those initial states for which under control
of S a computation belonging to the class "eternal" is
possible.

(wlp.S)*.x: holds in precisely those initial states for which under control
of S a computation belonging to the class "finally X" is
possible.

The above tells us that (wp.DO)*.false states where "(outer or inner)
eternal" is possible. We now turn to the more specific question of where a
computation belonging to the class "outer eternal" is possible, i.e., the initial
states for which the repetition mechanism as such may be responsible for
the failure of termination. We characterize those initial states by the predicate
C ,i.e., we define

C: holds in precisely those initial states for which under control of DO a
computation belonging to the class "outer eternal" is possible,

and our next task is to investigate whether we can now use our operational
interpretation of DO to derive a formal characterization of C . Here we go.

We look at DO's unfolding

if IB --+ skip 0 B --+ S; DO fi
and conclude

(3) [C=;.B]

for, in each initial state satisfying C -see definitions of C and" outer
eternal" - a terminating execution of IF is possible and hence B holds.

A second look at the unfolding tells us that it should be possible that, after
the first execution of S , C holds again, i.e., that that first execution of S
possibly belongs to the class "finally C". Hence we conclude

(4) [C=;.(wlp.S)*.C]

Combining (3) and (4) we conclude that C is a solution of

(5) Y: [Y =;. B A (wlp.S)*.Y]

196 10. Operational considerations

This equation has in general many solutions. We shall now show that C is
its weakest solution.

Proof We discharge our proof obligation by showing [Z => C] for any Z
that solves (5).

Let Z be an arbitrary solution of (5). Then, from any initial state
satisfying Z ,a computation belonging to the class "finally Z" is possible
under control of IF ; hence an infinite sequence of computations, each
belonging to the class "finally Z" and each under control of IF ,is possible
under control of DO . Hence, for any initial state satisfying Z ,a
computation belonging to the class" outer eternal" is possible under control
of DO ,i.e., [Z => C] .

(End of Proof)

Predicate C being the weakest solution of (5) is the same as ,C being
the strongest solution of

Y: [,B v wlp.S. Y => Y]

or -(7,27), the semantics of IF - ,equivalently, ,C being the strongest
solution of

Y: [wlp.lF.Y=> Y]

or -monotonicityof wlp.lF and (8, 25), the Theorem of Knaster-Tarski
,C being the strongest solution of

(6) Y: [wlp.lF. Y == Y]

But now we are on very familiar grounds. In the previous chapter we
expressed -see (9, 6)- wlp.DO in terms of h and -see (9, 7)- wp.DO in
terms of g ,where for any Z , h.Z and g.Z were defined -see (9, 5)- as
the weakest and the strongest solution of

(7) Y: [Z 1\ wlp.lF. Y == Y]

The familiar ground is that equation (6) is a special instance of (7), viz., with
Z.= true. Thus we have derived [,C == g.true] ,and in connection with our
definition of C :

(8) g.true: holds in precisely those initial states for which no compu-
tation under control of DO belongs to the class "outer
eternal ".

We are very fortunate in having found an operational interpretation of
g.true : because of

(9) [g.Z == g.true 1\ h.z]

10. Operational considerations 197

we now need only to be able to interpret h.z in order to be able to interpret
both extreme solutions of (7). The operational interpretation of h.Z
is therefore our next concern. In fact we shall prove for any Z

(to) h.z: holds in precisely those initial states for which in each
computation under control 9f DO , Z holds prior to any
execution of IF or of if IB ~ skip fi .

Proof For some Z ,let D hold in precisely those initial states for which, in
each computation under control of DO , Z holds prior to each execution of
IF or of if IB ~ skip fi . We shall show [D == h.z] by mutual implication.

[D => h.Z]

Since the initial validity of D implies, according to its definition, the initial
validity of Z ,we conclude

(11) [D = Z]

Since under the initial validity of D ,the computation under control of DO

• in the case IB is empty, and
• in the case B starts, on account of the definition of D ,with an execution

of S that belongs either to the class "eternal" or to the class "finally D",
we conclude -see definition of wlp.S

[D = IB v wlp.S.D]

or equivalently -see (7, 27)-

(12) [D = wlp.lF.D]

Combining (11) and (12), we conclude that D is a solution of

(13) Y: [Y = Z 1\ wlp.lF.Y]

Because -see (7) and (8, 25), the Theorem of Knaster-Tarski- h.Z is the
weakest solution of (13), we conclude [D = h.z] .

[D <= h.2]

Let X be an arbitrary solution of (13). Then, from any initial state satisfying
X , the computation under control of DO is empty or starts under control of
IF with a computation that -because X solves (13)- belongs either to the
class "eternal" or to the class "finally X". Consequently, prior to each
execution of IF or of if IB ~ skip fi ,X holds, and -again because X

198 10. Operational considerations

solves (13)- Z holds as well. Thus each state satisfying X satisfies -on
account of D's definition- D as well, i.e., [D <= X] . Since this conclusion
holds for any solution X of (13), we may instantiate it with the solution h.z
for X ,i.e., we have established [D <= h.z] .

(End of Proof)

With the aid of (10) we can characterize the initial states for DO for which
computations belonging to the class "inner eternal" are ruled out. Such a
computation exists if and only if B 1\ Iwp.S.true holds prior to an execution
of IF . Excluding the existence of such a computation therefore amounts to
guaranteeing IB y wp.S.true prior to each such execution, and from (10) we
thus conclude

(14) h.('B y wp.S.true):
holds in precisely those initial states for which no computation
under control of DO belongs to the class "inner eternal".

We can similarly characterize the initial states for DO for which
computations belonging to the class "finally IX" are ruled out. A
computation belongs to the class "finally IX" if and only if IB 1\ ,x
holds prior to the execution of if IB ~ skip fi . Excluding this possibility
amounts to guaranteeing its negation prior to each execution of IF or of
if IB ~ skip fi , and from (10) we therefore conclude

(15) h.(B y X):
holds in precisely those initial states for which no computation
under control of DO belongs to the class "finally IX".

From this and the operational interpretation of wlp.DO.x we conclude

[h.(B y X) == wlp.DO.x] for any X

which -see (9, 6)- is in full accordance with our earlier definition of
wlp.DO.x as the weakest solution of (9, 1).

From (8) and (14) we conclude

g.true 1\ h.('B y wp.S.true):
holds in precisely those initial states for which no computation under
control of DO belongs to the class "outer eternal" or to the class
"inner eternal".

Remembering that "outer eternal" and "inner eternal" form a partitioning of
"eternal" and using (9), the above can be simplified to

g.(,B y wp.S.true):
holds in precisely those initial states for which no computation under
control of DO belongs to the class "eternal".

10. Operational considerations 199

From this and the operational interpretation of wp.DO.true we conclude

[g'('B v wp.S.true) == wp.DO.true]

which -see (9, 7) with X:= true- is in full accordance with our earlier
definition of wp.DO.true as the strongest solution of (9, 2) with X:= true .

Though it is, strictly speaking, no longer necessary, we can combine the
above operational interpretations of h.(B v X) and g.(,B v wp.s.true) .
Using (9, 9) this yields

g.«B v X) /\ (,B v wp.s.true)):
holds in precisely those initial states for which each computation under
control of DO belongs to the class "finally X".

From this and the operational interpretation of wp.DO.X we conclude
that, for any X ,

[g.«B v X) /\ (,B v wp.S.true)) == wp.DOX]

by which (9, 7) has been reconstructed in its full generality.

Remark The reader that is so inclined may verify statements like

g.(B v X): holds in precisely those initial states for which each computa
tion under control of DO belongs either to the class "finally
X" or to the class "inner eternal",

etc.
(End of Remark.)

* * *
In the previous chapter we promised to return in this chapter to the

operational interpretation of theorem (9, 46), which states that, for or
continuous wlp.lF ,

[wp.DOX == (3i:: (wlp.lFY.false) /\
(Vi:: (wlp.lFY.«B v X) /\ (,B v wp.S.true)))]

Consider an initial state that satisfies the right-hand side. Because that initial
state satisfies the universal quantification, no computation belongs -on
account of (B v X)- to the class "finally ,X" and no computation belongs
-on account of (,B v wp.S.true)- to the class "inner eternal". Because
that initial state satisfies the existential quantification, there exists for that
initial state a sequence of IFs that would lead to a non terminating
computation, in particular to a non terminating execution of one of the IFs .
Because the class "inner eternal" is excluded, that IF fails to terminate on
account of a precondition ,B . Hence "outer eternal" is also excluded and
"finally X" is guaranteed to occur.

200 10. Operational considerations

The disadvantage of an operational argument like the above is that for the
unwarned it is not patently obvious why the or-continuity of wlp.lF
is required for the validity of the above expression for wp.DO.x . The snag is
that in the absence of or-continuity of wlp.lF , wp.DO.x may be satisfied by
initial states for which we cannot construct a finite sequence of IFs long
enough to guarantee the emergence of a precondition IE . The standard
example is

do x > 0 ~ x:= x-I
D x < 0 ~ "x:= any natural number"

od

in which the semantics for" x:= any natural number" is given by

[wp."x:= any natural number". (x ~ 0)] /\
(\fk::[lwp. "x:= any natural number". (x < k)])

* * *
The reader will have noticed a difference in style between this chapter and

most of the preceding ones. The underlying reason is that, in contrast to most
of the preceding material, the operational interpretation forces us to mention
individual program states explicity. In all our theory about predicates,
predicate transformers, and equations in predicates, nowhere did we need the
existence of the individual states satisfying, for any predicate X ,either X or
IX : there was no need at all to introduce a predicate as a dichotomy of the
state space, of which the individual states are the points. (In this sense our
calculus of boolean structures can be viewed as a "pointless logic".) The other
equally unattractive feature of this chapter is our frequent need to refer to
computations. For good reasons we have made no effort to hide the relative
clumsiness of operational arguments, conducted, as they always are, in terms
of concepts that need not be mentioned.

CHAPTER 11

Converse predicate transformers

In Chap. 7, we took the decision to define programming language semantics
in terms of weakest precondifions. In our last chapter we shall return to this
decision, because we can also think of such things as "strongest postcondi
tions". This chapter is devoted to the mathematical groundwork needed for
that discussion.

Two predicate transformers f and k may be "each other's converses";
this state of affairs is denoted by conv.(f,k) ,which expression is defined by

(0) conv.(f,k) == (VX,Y:: [f.x v YJ == [X v k.Y])

Predicate calculus suffices to establish

conv.(f,k) == conv.(k,f)

which confirms that being each other's converses is, indeed, a symmetric
relation.

Remark Note that we did not introduce an operator for "taking the converse
of": we did not write -in analogy with the conjugate-

nor did we render the symmetry by

[f++==f]

The reason why we abstained from doing so is that the would-be expression
could be meaningless, because -as the next theorem reveals- not every
predicate transformer has a converse. (End of Remark.)

201

202 11. Converse predicate transformers

(1) Theorem For any f and k ,the following three assertions are
equivalent:

(i) conv.(f,k)

(ii) (f is universally conjunctive) "
(V Y:: [k. Y "" ,(V X: [f.x v Y]: X)])

(iii) (f is monotonic) "
(VY:: [k.Y"" ,(the strongest solution of X: [fX v Y])])

Proof This theorem is proved by cyclic implication.

(i) ~ (ii)

In order to use (i) to demonstrate f's universal conjunctivity, we observe
for any bag V of predicates and any predicate Y ,the range X E V for the
dummy X being implicitly understood

[f. (V X:: X) v Y]

{(i); (0) with X:= (VX:: X) }

[(VX:: X) v k.Y]

{ v distributes over V }

[(VX:: X v k.Y)]

{understood range is scalar}
(VX:: [X v k.Y])

{(i); (O)}
(VX:: [f.X v Y])

{understood range is scalar}

[(VX:: IX v Y)]

{ v distributes over V }

[(VX:: IX) v Y]

Instantiating the above equivalence with Y:= if. (V X:: X) and with
Y:= ,(VX:: IX) proves

[f.(VX: XE V: X) "" (VX: XE V: IX)]

by mutual implication.

In order to use (i) to demonstrate the second conjunct of (ii) we observe for
any Y

,(VX: [f.x v Y]: X)

{(i); (O)}

,(VX: [X v k.Y]: X)

{(2) with B:= k.Y }

k.Y

11. Converse predicate transformers 203

Lemma For any predicate B

(2) ['lB == (\IX: [X v B]: X)]

Proof We observe for any B

['lB<=(\lX: [Xv B]: X)]

<= {instantiation with X:= 'lB }
['lB v B]

{predicate calculus}
true

and

['lB => (\IX: [X v B]: X)]

{predicate calculus}
[B v (\I X: [X v B]: X)]

{ v distributes over \I }

[(\IX: [X v B]: B v X)]

{range is scalar}
(\IX: [X vB]: [B v X])

{predicate calculus}
true

(ii) => (iii)

(End of Proof of (2).)

The first conjunct of (iii) follows trivially from the first conjunct of (ii).

To demonstrate the second conjunct of (iii) we first observe that equation
X: [fX v Y] is the same equation as

(3) X: ['l Y => fx]

With p given by [pX == 'l Y] for all X , p is monotonic. For universally
conjunctive f , f is conjunctive over the solution set of (3). On account of (8,
16) with q:= f , we conclude that (3), and hence X: [IX v y] ,has a
strongest solution, which on account of (8, 5) equals (\IX: [f.X v Y]: X)
The second conjunct of (iii) now follows from the second conjunct of (ii).

(iii) => (i)

Rewriting the second conjunct of (iii) as

['lk. Y == (the strongest solution of X: [fX v Y])]

204 11. Converse predicate transformers

we can render it formally by the conjunction of

(4) [f.(-,k.Y) v YJ for all Y

(5) [f.Xv YJ=>[-,k.Y=>X] for all X , Y

The equivalence of (i) is proved by mutual implication. We observe for any
X and Y

[X v k.YJ (*)

{pred. calc.}
[-,k.Y=>X]

<= {(5)}
~XvY] W

<= {(4),rewrittenas [if(-,k.Y)=>YJ }
[f.x v if(-,k.Y)]

{pred. calc.}
[f.x <= f(-,k. Y)]

<= {(iii), f is monotonic}
[X<=-,k.YJ

{pred. calc.}
[X v k.YJ

Selecting the lines marked (*), we see that we have shown under the
assumption of (iii) that for any X , Y

[f.x v YJ == [X v k.YJ

i.e., (i).
(End of Proof of (1).)

As a corollary of Theorem (1) we see -(i) and (ii)- that a predicate
transformer has a unique converse if it is universally conjunctive and has no
converse otherwise.

We now derive some further theorems about the converse. We observe for
any predicates X , Y

[[X] v YJ
{pred. calc.: [X] is scalar}

[X] v [YJ
{pred. calc.: [YJ is scalar}

[X v [YJ]
in other words:

(6) the "everywhere" operator is its own converse

11. Converse predicate transformers 205

In the model in which the predicates are boolean expressions in a bunch of
variables and the "everywhere" operator is modelled by universal quantifica
tion over all those variables, the previous theorem is a special case of the
following theorem. Here n plays the role of a variable, universal quantifica
tion over which could be included in the "everywhere" operator.

(7) (VZn:: [(Vn:: Zn)] == [Zn]) ==
(VXn,Yn:: [(Vn:: Xn) v Yn] == [Xn v (Vn:: Yn)])

Here, the left-hand side captures n as one of the variables over which the
"everywhere" operator quantifies universally, and the right-hand side ex
presses that, with f given by

[j.Zn == (Vn:: Zn)] for any Zn

f is its own converse. For the names of the dummies we have chosen Xn , Yn ,
Zn to remind the reader that these predicates may punctually depend on the
otherwise anonymous variable that we have named -viz., named "n" - so
as to be able to denote universal quantification over it.

Proof The proof of (7) is by mutual implication.

LHS => RHS We observe for any Xn , Yn

[(Vn:: Xn) v Yn]

{ LHS with Zn:= (Vn:: Xn) v Yn }

[(Vn:: (Vn:: Xn) v Yn)]

{ n is not a global variable of (Vn:: Xn) }

[(Vn:: Xn) v (Vn:: Yn)]

{ n is not a global variable of (Vn:: Yn) }

[(Vn:: Xn v (Vn:: Yn))]

{ LHS with Zn:= Xn v (Vn:: Yn) }

[Xn v (Vn:: Yn)]

LHS <= RHS By instantiating RHS with Yn:= false (and renaming
dummy Xn as Zn).

(End of Proof)

Because for any B , X , Y

[(B v X) v Y] == [X v (B v Y)]

we conclude

(8) with f given by [f.z == B v Z] , f is its own converse

206 11. Converse predicate transformers

and its corollaries - B:= true and B:= false ,respectively-

(9) with f given by [f.Z == true] , f is its own converse

(10) the identity function is its own converse

Before tackling the problem of the converse of the substitution operator,
we give a theorem about functional composition:

(11) conv.(fO, kO) A conv.(fl , kl) => conv.(fO 0 fl , kl 0 kO)

Proof We observe for any X , Y

[(f0 0 fl).x v Y]
{def. of functional composition}

[fO.(f1.X) v Y]
{ conv.(fO, kO) }

[f1.x v kO. Y]
{ conv.(fl, kl) }

[X v k1.(kO. Y)]
{def. of functional composition}

[X v (k1 0 kO). Y]
(End of Proof)

We are now ready for the converse of the substitution operator. Recall
from Chap. 6 the following: with n a variable, universal quantification over
which is included in the" everywhere" operator, and E an expression of the
same type, the substitution operator (n:= E) is a universally conjunctive
predicate transformer. So it has a converse. Because -see (6, 67) and
(6,69)- the substitution operator (n:= E) is simpler if n is not a global
variable of E , we shall deal with that case first.

We observe for predicates Xn , Yn ,for n a variable over which the
"everywhere" operator quantifies universally, and E an expression of which
n is not a global variable

(n:= E).xn
{ (6, 67): n is not agIo bal variable of E }

(Vn: n = E: Xn)
{trading}

('<In:: n =I- E v Xn)

i.e., the substitution operator (n:= E) is the functional composition of
universal quantification over n and disjunction with n =I- E . According to
(7) and (8), respectively, these two predicate transformers are their own
converses, and with (11) we have proved

11. Converse predicate transformers 207

(12) Theorem If n is not a global variable of E ,the converse of the
substitution operator (n:= E) is predicate transformer k ,given by

[k. Yn == n # E v ('<In:: Yn)] for all Yn

For a general expression En ,of which n may be a global variable, the
substitution operator (n:= En) -see (6, 69)- is more complicated; as to be
expected, so is its converse.

(13) Theorem If n may be a global variable of En ,the converse of the
substitution (n:= En) is predicate transformer k ,given with fresh variable
y by

[k.Yn == ('<Iy: n = (n:= y).En: (n:= y).Yn)]

Proof In the following, x and yare fresh variables of the same type as n ;
furthermore, universal quantification over x is deemed to be included in the
"everywhere" operator. We observe for any state variable n ,expression En
of the same type, and predicates Xn , Yn

[(n:= En)Xn v Yn]

{ Xn independent of fresh x }
[(x:= En).«n:= x)Xn) v Yn]

{ell) and twice (12), once with n,E:= x,En -and fresh x is not a
global variable of En - and once with n,E:= n,x -and n is not a
global variable of fresh x - }

[Xn v n # x v ('<In:: x # En v ('<Ix:: Yn))]

{ Yn independent of x }
[Xn v n # x v ('<In:: x # En v Yn)]

{universal quantification over x included in [] }
[('<Ix:: Xn v n # x v ('<In:: x # En v Yn))]

{ Xn independent of x, v distributes over '<I }

[Xn v ('<Ix:: n # x v ('<In:: x # En v Yn))]

{trading, twice}
[Xn v (Vx: n = x: (Vn: x = En: Yn))]

{renaming dummy n by fresh y }

[Xn v ('<Ix: n = x: ('<Iy: x = (n:= y).En: (n:= y).Yn))]

{one-point rule}
[Xn v ('<Iy: n = (n:= y).En: (n:= y). Yn)]

Because in the first and last line of the above the "everywhere" operator is
applied to operands that are independent of x ,the proof has been
completed.

(End of Proof)

208 11. Converse predicate transformers

As a last theorem we mention

(14) Theorem Let W be a bag of predicate transformer pairs such that

(15) (p,q) E W => conv.(p,q)

then conv.(J,k) holds for f , k , given by

[f.x == (Vp,q: (p,q) E W: p.x)] for all X

[k. Y == (Vp,q: (p,q) E W: q. Y)] for all Y

Proof Leaving for the dummies p , q the scalar range (p,q) E W implicitly
understood, we observe for any X , Y

[f.x v Y]

{def. of f }
[(Vp,q:: p.x) v Y]

{ v distributes over V }
[(Vp,q:: p.x v Y)]

{range is scalar}
(Vp,q:: [p.x v Y])

{(lS)}
(Vp,q:: [X v q.Y])

{range is scalar}
[(Vp,q:: X v q.Y)]

{ v distributes over V }
[X v (Vp,q:: q.Y)]

{def. of k }
[X v k.Y]

(End of Proof)

CHAPTER 12

The strongest postcondition

From the (rather operational) introduction of Chap. 7, we recall

(wlp.S)*X: holds in precisely those initial states for which there exists a
computation under control of S that belongs to the class
"finally X".

We also recall from that introduction the decision to use a predicate to
introduce a dichotomy of the final state space. This led to a dichotomy of
terminating computations -viz., a partitioning into the classes "finally X"
and "finally IX" - and to the predicate transformers wlp.S and wp.S ,
whose arguments are postconditions for S and whose values are precondi
tions for S .

Let us now pursue the use of a predicate to introduce a dichotomy of the
initial state space and the corresponding dichotomy of computations
(whether terminating or not), i.e., we propose to partition the computations
into

"initially Y"
"initially I Y"

-all computations starting in an initial state satisfying Y
-all computations starting in an initial state satisfying I Y .

The intersection of the new class "initially Y" and the original class
"finally X" is denoted by "initially Y & finally X". We conclude

Y /\ (wlp.S)*X: holds in precisely those initial states for which there exists
a computation under control of S that belongs to the
class "initially Y & finally X".

209

210 12. The strongest postcondition

Because each computation has an initial state, we conclude

(0) [Y 1\ (wlp.S)*.x == false] ==
(no computation under control of S belongs to the class "initially
Y & finally X")

This is a nice formula because its right-hand side is so symmetric in
"initially Y" and "finally X". Its left-hand side, being expressed in terms of
preconditions, is asymmetric in X and Y . This observation suggests to look
for an equivalent expression, similarly asymmetric in X and Y , but this
time expressed in terms of postconditions.

We introduce a predicate transformer sp.S -the name "sp" coming
from "strongest postcondition" - ,with an operational definition that is
completely analogous to the one we quoted above for (wlp.S)*:

sp.S. Y: holds in precisely those final states for which there exists a
computation under control of S that belongs to the class "initially
Y".

Therefore,

X 1\ sp.S. Y: holds in precisely those final states for which there exists a
computation under control of S that belongs to the class
"initially Y & finally X",

and since each computation belonging to the class "initially Y & finally X "
has a final state, we conclude

(1) [X 1\ sp.s.y == false] ==
(no computation under control of S belongs to the class "initially
Y & finally X")

We now observe for any X , Y , S

[wlp.S.x v Y]

{de Morgan}
[...,wlp.S.x 1\ ..., Y == false].

{def. of conjugate}
[(wlp.S)*.(...,X) 1\ ..., Y == false]

{(O) with X,Y:= ...,X,..., Y }

(no computation under control of S belongs to the class "initially ..., Y &
finally ...,X")

{(1) with X,Y:= ...,X,..., Y }

[...,X 1\ sp.S.(..., Y) == false]

{de Morgan and def. of conjugate}
[X v (sp.S)*. Y]

12. The strongest postcondition 211

and thus we have shown

(2) Theorem For all S , conv.(wlp.S, (sp.S)*)

Remark We recall the Hoare triple -see (7, 3)-

{Y} S {X}

Two equivalent renderings are

(3) [Y = wlp.S.x] and [sp.S.Y=X]

They make clear that wlp.S.x is the weakest solution of

(4) Y: ({Y} S {X})

and that sp.s. Y is the strongest solution of

(5) X: ({Y} S {X})

Furthermore -as the reader may verify by writing the implications in (3) as
disjunctions- they confirm Theorem (2). (In passing, we would like to draw
the reader's attention to the fact that the two -different!- equations (4)
and (5) nicely illustrate the benefit of a notational convention that explicitly
identifies the unknowns of equations.) (End of Remark.)

For the sake of completeness, we shall now determine the strongest
postcondition sp.s. Y for the statements S that we have introduced.

havoc

We recall (7, 10)

[wlp.havoc.x == [X]] for all X

Hence, on account of (2) and (11, 6),

[(sp.havoc)*. Y == [Y]] for all Y

or, on account of (6, 2),

(6) [sp.havoc. Y == "l ["l YJ] for all Y.

abort

We recall from (7, 13)

[wlp.abort.x == true] for all X

212 12. The strongest postcondition

Hence, on account of (2) and (11, 9),

[(sp.abort)*. Y == true] for all Y

or, on account of (6, 2),

(7) [sp.abort. Y == false] for all Y

skip

We recall from (7, 16)

[wlp.skip.x == X] for all X

Hence, on account of (2) and (11, 10),

[(sp.skip)*.Y == Y] for all Y

or, on account of (6, 2),

(8) [sp.skip. Y == Y] for all Y

"n:= E"

We recall from (7, 19)

[wlp."n:= E".xn == (n:= E).xn]

We first deal with the simple case in which n does not occur among the
global variables of E . Then, on account of (2) and (11, 12),

[(sp."n:= E")*.Yn == n # E v (\:In:: Yn)] for all Yn

or, on account of (6,2) and de Morgan,

(9) [sp."n:= E". Yn == n = E /\ (3n:: Yn)] for all Yn

In the case "n:= En" ,where n may occur among the global variables of
En ,we conclude, on account of (2) and (11, 13),

[(sp."n:= En")*.Yn ==
(\:Iy: n = (n:= y).En: (n:= y).Yn)] for all Yn

or, on account of (6, 2) and the fact that substitution commutes with
negation,

(10) [sp."n:= En". Yn ==
(3y: n = (n:= y).En: (n:= y).Yn)] for all Yn
where y is a fresh variable.

12. The strongest postcondition 213

"SO;Sl "

We recall from (7, 23)

[wlp."SO;S1"X == wlp.SO.(wlp.SLX)] for all X

Hence, on account of (2) and (11, 11),

[(sp." SO;S1 ")*. Y == (sp.S1)*.«sp.SO)*. Y)] for all Y

or, on account of (6,2),

(11) [sp." SO;S1". Y == sp.SL(sp.SO. Y)] for all Y

IF

We recall from (7, 27)

[wlp.!F.X == (Vi: B.i: wlp.(S.OX)] for all X

which, with

[f.iX == IB.i v X] for all i , X

can be rewritten as

[wlp.!F.X == (Vi:: (fi).(wlp.(S.i)X))] for all X

Hence, on account of (11, 8), (11, 11), (11, 14), and (2),

[(sp.!F)*. Y == (Vi:: (sp.(S.i))*'('B.i v Y))] for all Y

or, on account of (6, 2) and de Morgan,

(12) [sp.!F. Y == (:Ii:: sp.(S.I).(B.i A Y))] for all Y

DO

We recall from (9, 41)

[wlp.DOX == (Vi: 0:;;; i: (wlp.!FY,(B v X))] for all X

Hence, on account of (2), (11, 8), (11, 11), and (11, 14),

[(sp.DO)*. Y == (Vi: 0:;;; i: B v «sp.!FY)*. Y)] , or

[(sp.DO)*.Y == B v (Vi: 0:;;; i: «sp.!FY)*.Y)]

or, on account of (6, 2) and de Morgan,

(13) [sp.DO. Y == IB A (:Ii: 0:;;; i: (sp.!FY. Y)] for all Y

* * *

214 12. The strongest postcondition

As it stands, (10) gives a rather complicated expression for sp."n:=
En". Yn . There is a very important case in which this expression can be
greatly simplified, viz., when the execution of the assignment statement does
hot destroy information. For the assignment statement "n:= fn" where
function I has an inverse, we observe for any Yn :

sp."n:= fn". Yn
{(10) with En:= fn }

(3y: n = (n:= y).(fn): (n:= y).Yn)
{def. of substitution}

(3y: n =fy: (n:= y).Yn)
{def. of 1-1 }

(3y: y =1- 1.n: (n:= y).Yn)
{one-point rule; Yn independent of y }

(n:= 1- 1.n). Yn

In short

(14) [sp."n:=fn".Yn == (n:=1- 1.n).Yn]
for any Yn and invertible I .

This is hardly more complicated than the Axiom of Assignment and -in
contrast to (10)- is regularly used in program development. The complexity
of (10), however, remains and is probably one of the reasons why a semantic
theory based on weakest preconditions turned out to be simpler than one
based on strongest postconditions.

In a moment of unwarranted optimism, one might try to save strongest
postconditions by restricting assignment statements of the form n:= fn to
invertible I , but this would not work. No longer allowed to write

n:= abs.n

the programmer would write

if n ~ 0 --+ skip 0 n ~ 0 --+ n:= - n fi

and the only consequence would be that the complication caused by
destruction of information would have been extended to the program text.

A further reason for rejecting the suggestion that assignment statements
should be information preserving in their execution is that it can be argued
that computer programs derive a major part of their utility from the fact that
their execution does destroy information by putting all inputs that produce
the same answer into the same equivalence class. Once that argument has
been bought, all justification for ruling out information destruction at the
lowest level seems to have evaporated.

12. The strongest postcondition 215

The complicated form of the postcondition of the assignment statement is
one reason for preferring a semantic theory based on preconditions. The
other reason is that the strongest postcondition, being based on wlp ,deals
with partial correctness only. We could try to introduce a "strongest total
postcondition" stp.S. Y by requiring for all X , Y

[Y => wp.S.X] == [stp.S. Y => X]

but this effort would fail because wp.S is not necessarily universally
conjunctive (as would be required by theorem (11, 1)). And since A. M.
Turing we know -by now for more than half a century- that restricting
ourselves to universally conjunctive wp.S ,i.e., to programming languages in
which each program is guaranteed to terminate, would amount to throwing
away the baby with the bath water.

In short, by choosing the weakest precondition as the carrier for program
semantics, we have been fortunate in being able to combine formal simplicity
with the inclusion of the desired richness of our theory. And on this happy
note, we conclude our final chapter and, thereby, this little monograph.

Index

Abort statement, 135
Absorption, Laws of, 39, 50, 68
ALGOL 60, 145
Alternative construct, 144, 174
And-continuity, 87, 90-91, 99, 107, 109,

112, 162-169
Anthropomorphism, 122, 124
Antitransitivity, 62
Assignment, Axiom of, 214
Assignment statement, 136-137,214
Associativity, 10, 13, 32-33
Atomic symbols, 27
Auto-distribution, 36, 47

Bags, of predicates, 84-88, 160, 202
Binding power, 9, 11, 13,42
Boolean matrix, 7
Boolean scalars, 8, 32, 34, 51, 54, 65
Bound variables, 16
Brackets, 9

Calculational proofs, 21-29
Celestial variables, 118
Circuit design, 59
Combinatorial logic, 103
Commutativity, 33

216

Composition theorems, 112-116, 139
Compound statements, 190
Computations, partitioned, 127-128, 130,

194, 209
Conjugates, 201
Conjunction, 28, 114, 132, 159, 162, 172

binding powers and, 42
defined, 37
disjunction and, 39-40, 114
equivalence and, 40
everywhere operator and, 23, 98
false value and, 54
interpretation of, 42
properties of, 38
punctuality and, 96
universal quantification and, 62-64, 69,

78,98, 142
Conjunctivity

inheritance of, 167
weakest solutions and, 160

Consequence, 26, 49
Constant functions, 96
Context-free grammars, II
Continuity, 87,111, 164. See also And-

continuity; Or-continuity
Contra-positive theorem, 57, 61
Converses, defined, 201
Curry functions, 103

Decreasing chains, 177
De Morgan's laws, 37, 71, 78, 172
Deterministic programs:

assignment and, 137
defined, 17, 126
efficiency and, 146
guards and, 142-145, 174
input-output and, 124
repetitions and, 174-175
role of, 132

Dirac delta function, 79
Directed graphs, 175
Discrepancy operator, 57
Disjoint guards, 144
Disjunction, 35, 36, 162

binding powers, 42
conjunction and, 39, 40, 98, 114
continuity and, 99
equivalence and, 37
existential quantification and, 100
idempotence of, 37
interpretation of, 42
negation and, 51, 53
universal quantification and, 63, 69

DO statement, 85, 147, 170-189, 194
determinacy and, 173
operational interpretation of, 199
semantics of, 192
termination of, 174

Duality, 85
Dummy variables, 11, 13,65,73,79

Electronic design, 42
Equality, 6, 43

boolean operands and, 31
equivalence and, 9
functions and, 9, 17-20
transitivity of, 43
sign, 6, 8, 10

Equations, solution of, 147-169
Equivalence, 31-32, 51

associativity of, 59
conjunction and, 40
disjunction and, 37
equality and, 9
implication and, 62
negation and, 51
punctuality of, 43
reflexivity of, 34

Index 217

Eternal computations, 126, 194
Everywhere operator, 8, 10, 27, 31

conjunction and, 23, 98, 133
connections of, 80
idempotence of, 32
identity operator and, 23
punctuality and, 82
universal quantification and, 58, 65,

105, 205, 207
Excluded Middle, Law of, 53, 58, 127
Excluded Miracle, Law of, 130, 170, 182
Existential quantification, 70, 78, 100
Extreme solutions, 129, 147-170, 196

False value, 8, 51, 54, 65, 130
Feijen's proof, 184
Final state, 17
Floyd's proof, 184
Folding, 193
FORTRAN, 145
Free variables, 16

Gasteren's proof, van, 184
Global variables, 117-119,207
Golden Rule, 37, 40, 55, 60
Good Lord's Machine, 123
Grammar, formal, 11-12
Guarded commands, 139, 142, 145, 174,

188, 192

Hardware, and software, 123
Havoc statement, 133-136
Heuristics, 27, 91, 100, 154, 156, 158
Hoare triples, 129, 130

Idempotent operators, 32
Identifier variables, 14-15
Identity function, 7, 8, 19, 23, 96
If and only if, 59
IF statement, 139-146, 174, 191, 194
Implication, 26, 45, 58, 72

defined, 50
distribution of, 61
equivalence and, 62
monotonicity and, 61, 75

218 Index

Implication (cont.)
negation and, 56, 57
proofs and, 62
punctuality of, 48, 61

Induction, 164-165, 176
hypothesis for, 163
over grammar, 179
well-foundedness and, 177, 179

Infinite command sets, 100
Infinite computations, 127
Infinite expressions, 78
Infix operators, 6, 9, 13, 35, 45, 138, 145.

See also specific operators
Information destruction, 214
Input commands, 123
Instantiation, 69, 92
Integer expressions, 8, 17
Interchange of quantifications, 184
Introduction, Laws of, 68
Invariants, 16, 181
Invertible functions, 73

Junctivity, 159-162
components in, 107
denumerable, III
duality and, 85
extreme solutions and, 151-154
functional composition and, 101,

108
monotonicity and, 89, 97
theorems of, 95-110
universal, 110
See also Conjunction; Disjunction

Knaster-Tarski theorem, 154-158, 170,
181, 196

Lambda calculus, 117
Laws of Thought (Boole), 6
Leibniz rule

absorption and, 68
defined, 9
equality and, 19, 30
generalization of, 71
predicate transformers and, 81
punctuality and, 71, 79, 118

Lexical ordering, 179
Linearity, 86
Little theory, 46-48, 61

Machine simulation, 123
Main repetition theorem, 180-182, 184-

186
Mathematical induction. See Induction
Matrix addition, 7
Minimal elements, 175
Monotonicity, 28, 61, 1I2

conjugates and, 83
continuity and, 109, 113, 164
duality of, 82
extreme solutions and, 151-154
generalized, 76
junctivity and, 89, 97, 113
Knaster-Tarski theorem and, 156
ordering relations, 19
predicate transformers and, 82

MUltiplication, 13, 17
Mutual implication, 24

Nabla operator, 3
Negation, 37, 70

conjunction, 37
defined, 51
disjunction and, 51, 53
equivalence and, 51
implication and, 56, 57
inverse of, 70
punctuality and, 52

Nesting, 65
Nondeterminacy:

assignment and, 137
efficiency and, 146
guards and, 142-145, 174
input-output and, 124
unbounded, 141

Notation, 7, 74, 104. See also specific op
erators, symbols

Numbering convention, 88

One-point rule, 66-67, 1I8, 180, 184
Operational methods, 124, 190-200

Operators. See specific operators,
properties

Or-continuity, 92, 110, 141-142, 162-
166, 185

Ordering, 19, 103, 177
Output commands, 123

Pair-fonning, 104-105, 108-109, 156
Parentheses, 12-13, 15
Parsings, 11-13
Partially ordered sets, 177
Peano's axioms, 6
Ping-pong arguments, 24, 74
Platonism, 53
Point predicates, III
Postfix transfonner, 116
Postulational method, 125
Potentials, 3, 7-8
Predicate pairs, 80, 104, 108,

210-213
Predicates, equations in, 147-169
Predicate transformers, 28

components in, 114-120
conjugates of, 82-84
construction of, 114-117
converses of, 201-208
properties of, 81-120
weakest precondition and, 129-132
See also specific operators

Production rule, 13
Program variables types, 5
Programming languages, 125-146, 170-

189
Proofs, structure of, 1, 21-29
Punctuality

conjunctivity and, 96
definition of, 43
implication and, 48, 61
theorem on, 45-46, 95*

Quantification, 62-65. See also Existential
quantification; Universal quantification

Range, 63-64, 75
Real-time interrupt, 146
Recorde's symbol, 6, 9, 10

Recursion, 146
Repetition, 170-189, 194
Replacement, 11-16
Rewrite rule, 92-93

Scalars, 31
Scope, 15-16
Selector functions, 105
Semantics, 17

definition of, 126
operational definition, 124
postulational method, 124
programming languages and,

125-146
of repetitions, 170-189

Index 219

of straight-line programs, 121-145
Semicolon, 138-139, 190-191
Sequential programming, 146, 191
Set-theoretic tenns, 60
Shunting, 32, 57, 62
Simplification, 29, 37
Skip statement, 136
Software, and hardware, 123
Square function, 18
State space, 4-5, 115
Straight-line programs, 121-146, 174
Strengthening functions, 76-77
Strings, 12-13
Strongest postconditions, 201, 209-215
Strongest solutions. See Extreme solutions
Structure, notion of, 5
SUbexpressions, 13, 70
Substitution, 11-16, 114-120,206
Symmetry, 33, 42, 49,60,201
Synchronization conditions, 145
Syntax, 16, 121, 133

Tennination, 129, 191,215
defined, 126-127
preconditions for, 17
well-foundedness and, 179

Tenns,63
Theorem-proving. See Proofs
Total functions, 126
Transfinite induction, 179
Transitivity, 25, 62
True value, 8, 34, 65

220 Index

Truth tables, 59
Turing theory, 215
Types, 17

Unfolding, 193
Universal quantification, 14, 62, 72

associativity and, 74
conjunction and, 62-64,69, 78, 98, 142
disjunction and, 63, 69
distribution over, 74
everywhere operator and, 10, 105, 205,

207
interchange of, 66
negation and, 70

omission of, 27
over predicates, 159

Value-preserving transformations, 21
Van der Woude theorem, 90
Variant functions, 181

Weakening functions, 76-77, 80
Weakest precondition, 129-132
Weakest solutions. See Extreme solutions
Well-formed formula, 13
Well-foundedness, 174-189

Texts and Monographs in Computer Science

continued

David Gries
The Science of Programming
1981. XV, 366 pages

Micha Hofri
Probabilistic Analysis of Algorithms
1987. XV, 240 pages, 14 illus.

AJ. Kfoury, Robert N. Moll, and Michael A. Arbib
A Programming Approach to Computability
1982. VIII, 251 pages, 36 illus.

E.V. Krishnamurthy
Error-Free Polynomial Matrix Computations
1985. XV, 154 pages

Ernest G. Manes and Michael A. Arbib
Algebraic Approaches to Program Semantics
1986. XIII, 351 pages

Robert N. Moll, Michael A. Arbib, and AJ. Kfoury
An Introduction to Formal Language Theory
1988. X, 203 pages, 61 illus.

Franco P. Preparata and Michael Ian Shamos
Computational Geometry: An Introduction
1988. XII, 390 pages, 231 illus.

Brian Randell, Ed.
The Origins of Digital Computers: Selected Papers, 3rd Edition
1982. XVI, 580 pages, 126 illus.

Thomas W. Reps and Tim Teitelbaum
The Synthesizer Generator: A System for Constructing Language-Based Editors
1989. XIII, 317 pages, 75 illus.

Thomas W. Reps and Tim Teitelbaum
The Synthesizer Generator Reference Manual, 3rd Edition
1989. XI, 171 pages, 79 illus.

Arto Salomaa and Matti Soittola
Automata-Theoretic Aspects of Formal Power Series
1978. X, 171 pages

1.T. Schwartz, R.B.K. Dewar, E. Dubinsky, and E. Schonberg
Programming with Sets: An Introduction to SETL
1986. XV, 493 pages, 31 illus.

Texts and Monographs in Computer Science

continued

Alan T. Sherman
VLSI Placement and Routing: The PI Project
1989. XII, 189 pages, 47 illus.

Santosh K. Shrivastava, Ed.
Reliable Computer Systems
1985. XII, 580 pages, 215 illus.

William M. Waite and Gerhard Goos
Compiler Construction
1984. XIV, 446 pages, 196 illus.

Niklaus Wirth
Programming in Modula-2, 4th Edition
1988. II, 182 pages

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

