

Texts and Monographs in Computer Science

Editor
David Gries

Advisory Board
F. L. Bauer

K.S.Fu
J. J. Horning

R.Reddy
D. C. Tsichritzis

W. M. Waite

Texts and Monographs in Computer Science

Brian RandelI, Ed.
The Origins of Digital Computers
Selected Papers
2nd Edition. 1975. xvi, 464p. 120 ilIus. cloth

Jeffrey R. Sampson
Adaptive Information Processing
An Introductory Survey
1976. x, 214p. 83 ilIus. cloth

Arto Salomaa and Matti Soittola
Automata-Theoretic Aspects of Formal Power Series
1978. x, 171p. cloth

Suad Alagic and Michael A. Arbib
The Design of Well-Structured and Correct Programs
1978. x, 292p. 14 illus. cloth

Peter W. Frey, Ed.
Chess Skill in Man and Machine
1978. xi, 225p. 55 ilIus. cloth

David Gries, Ed.
Programming Methodology
A Collection of Articles by Members of IFIP WG2.3
1978. xiv, 437p. 68 illus. cloth

Michael A. Arbib, A.J. Kfoury, and Robert N. Moll
A Basis for Theoretical Computer Science
(The AKM Series in Theoretical Computer Science)
1981. vii, 220p. 49 ilIus. cloth

A.J. Kfoury, Robert N. Moll, and Michael A. Arbib
A Programming Approach to Computability
(The AKM Series in Theoretical Computer Science)
1982. viii, 251p. 36 illus. cloth

David Gries
The Science of Programming
1981. xiii, 366p. cloth

Edsger W. Dijkstra
Selected Writings on Computing
A Personal Perspective
1982. xvii, 362p. 1 illus. cloth

Selected Writings
on Computing:

A Personal
Perspective

Edsger W. Dijkstra

Springer-Verlag
New York Heidelberg Berlin

Edsger W. Dijkstra
Burroughs Corporation
Plataanstraat 5
5671 AL Nuenen
The N etherlands

Editor

David Gries
Department of Computer Science
Cornell University
Upson Hall
Ithaca, NY 14853
U.S.A.

With 13 illustrations.

Library of Congress Cataloging in Publication Data
Dijkstra, Edsger Wybe.

Selected writings on computing
(Texts and monographs in computer science)
Bibliography: p.
Inc1udes index
1. Electronic data processing-Addresses, essays, lectures. 2. Computers

Addresses, essays, lectures. 3. Programming (Electronic computers)-Addresses,
essays, lectures. 1. Title. 11. Series.
QA76.24.D54 1982 001.64 82-10260

© 1982 by Springer-Verlag New York Inc.
Softcover reprint of the hardcover Ist edition 1982

All rights reserved. No part of this book may be translated or reproduced in any
form without written permission from Springer-Verlag, 175 Fifth Avenue, New
York, New York 10010, U.S.A. The use of general descriptive names, trade names,
trademarks, etc. in this publication, even if the former are not especially identified,
is not to be taken as a sign that such names, as understood by the Trade Marks and
Merchandise Act, may accordingly be used freely by anyone.

Production: Michael Porch
Typset by Science Typographers, Inc., Medford, NY.

9 8 7 6 543 2 1

ISBN-13 :978-1-4612-5697-7 e-ISBN-13 :978-1-4612-5695-3

DOI: 10.1007/978-1-4612-5695-3

Preface

Since the summer of 1973, when I became a Burroughs Research Fellow, my
life has been very different from what it had been before. The daily routine
changed: instead of going to the University each day, where I used to spend
most of my time in the company of others, I now went there only one day a
week and was most of the time -that is, when not travelling!- alone in
my study. In my solitude, mail and the written word in general became
more and more important. The circumstance that my employer and I had
the Atlantic Ocean between us was a further incentive to keep a fairly
complete record of what I was doing. The public part of that output found
its place in what became known as "the EWD series", which can be viewed
as a form of scientific correspondence, possible since the advent of the
copier. (That same copier makes it hard to estimate its actual distribution: I
myself made about two dozen copies of my texts, but their recipients were
welcome to act as further nodes of the distribution tree.)

The decision to publish a se1ection from the EWD series in book form
was at first highly embarrassing, but as the months went by I got used to the
idea. As soon as some guiding principles had been adopted -preferably not
published elsewhere, as varied and as representative as possible, etc.- the
actual se1ection process was much easier than I had feared.

Harder to decide was the question to how much editing the selected texts
should be subjected. When the texts are viewed as historical documents,
their editing should be minimal. When David Gries went through the texts
with his fine-toothed comb he revealed so many opportunities for improve
ment that, eventually, the editing became quite extensive. As a result, the
texts as published are not representative of my mastery of the English
language.

v

vi Preface

A major obstacle to publication was my insistence that selected trip
reports be included. Having decided that the selection should be representa
tive, I had no choice, since the period in question covers years during which
I was on the road a third of the time. Furthermore, few of my texts reflect
my feelings and attitudes more clearly than the trip reports. (It has been
remarked that my trip reports are more revealing about their author than
about the people and places visited.) There was only one snag: there is no
tradition of publishing such comments. While performing artists are quite
used to being judged publicly by their peers, performing scientists are not.
(Reviews of published books and articles are the closest approximation.)

In my appreciation, the feelings of the people involved are as much apart
of the birth of a science as their "objective" scientific achievements, and
when one publisher told me he would like to publish the selection after the
removal of the trip reports, I looked for another one. I am very grateful to
Marvin Israel for immediately insisting that the trip reports be included.

Even if you can convince the judge that it was never your intention to
hurt or to offend, libel suits are awkward and eventually it was thought
prudent to replace names in a few instances by "NN". I would like to stress
that in no case should such areplacement be interpreted as our suspicion
that the person in question would make trouble.

First and foremost I am indebted to Burroughs Corporation, which
gracefully created the circumstances under which I could work. It is
impossible to mention all those who have contributed, direcdy or indirecdy.
I make an exception for C.S. Scholten, with whom I have collaborated
without interruption since 1952, and for W.H.J. Feijen, A.J. Martin, and M.
Rem. Our regular discussions formed the root from which the "Tuesday
Aftemoon Club" grew. In its weekly gatherings, the Tuesday Aftemoon
Club evolved into a very critical and very inspiring environment; how much
we have benefitted from each other is hard to fathom.

Finally, this book cou1d not have been published in its present form
without the very substantial assistance of David Gries, who spontaneous1y
offered to correct my English. He ended up by screening all arguments and
their presentation as well. He went far beyond the cal1 of friendship and my
feelings towards him are of deep gratitude on the verge of guih, since I am
afraid that he undertook the task without being aware of its size. I owe him
many thousands of thanks for his many thousands of comments.

Nuenen, 19 July 1981 EDSGER W. DIJKSTRA

Table of Contents

EWD227 Stepwise Program Construction

This essay, though dating from February 1968, has been inc1uded beeause, in
retrospeet, it marks a turning point in my professionallife: it represents my
earliest eonseious effort at orderly program development. The whole essay
-and this explains to a eertain extent its somewhat pathetie eovering letter
was written while I felt mortally ill: it was written as my farewell to scienee.
Fate has deeided differently.

EWD338 Parallelism in Multi-Record Transactions
(Co-author: C.S. SCHOLTEN)

This teehnieal note, though dating from 1972, has been inc1uded beeause we
never published it. (Though typed, it was never deeently edited until I did so
for this eolleetion.) When we diseovered that we eould not explain it to the
data proeessing experts in our immediate environment, we somehow lost
interest. In May 1977, Martin Rem -whlle temporarily at the California
Institute of Teehnology, Pasadena- designed a special purpose "elephant"
-a set of eommunieating sequential proeesses with a fixed eonneetion
pattern- for establishing whether a renumbering satisfying relation 7 (from
this teehnieal note) exists.

EWD376 Finding the Maximum Strong Components in a
Directed Graph

The algorithm developed here is not the best one possible: it is not linear in
the number of ares. It has been inc1uded for the sake of those interested in
problem solving: it is one of my rare verbatim protoeols of what I wrote down
while developing this solution. (I started thinking about the problem whlle
travelling by train from Eindhoven to Amsterdam; the text was written in my

1

15

22

vii

vüi Contents

hotel room.) [See Hopcroft, 1., and Tarjan, R. Efficient algorithms for graph
manipulation. Comm. ACM 16,6 (June 1973),372-378.1

EWD385 Trip Report E.W. Dijkstra, Summer School Munich,
July 25 to August 4, 1973

On August I, 1973, during that NATO Summer School in Marktoberdorf, I
became a Burroughs Research Fellow; I still remember how funny it feit to
write my trip report in English instead of in Dutch, as I had been used to do.
At that Summer School I learned -blessed are the English!- that Norman
Vincent Peale is practically unknown in the United Kingdom.

EWD386 The Solution to a Cyclic Relaxation Problem

This is the solution referred to in the last paragraph of EWD385. Remarkably
enough -see EWD391- the remark is missing in the end, that in the case
that m * p is not an integer multiple of N, the system will still converge to a
completely stable situation, provided that the roundings don't a11 take place in
the same direction. I was elose to EWD391's "crucial observation", but not
yet there

EWD387 Trip Report IBM Seminar" Communication and
Computers", Newcastle, Sept. 1973

The above title has been faithfully reproduced in this collection with due
apologies to the University of Newcastle-upon-Tyne, U.K., which is always
very careful to denote these yearly seminars differently (and rightly so). Had
my then still recent association with industry made me so sensitive to what I
observed? The reference to the documentary film made for the Monsanto
Chemical Company is from The Organization Man by Willam H. Whyte, Jr.
(Simon and Schuster, 1956), Chapter 16, titled "The Fight against Genius".

EWD391 Self-Stabilization in Spite of Distributed Control

As soon as I had found at last my first self-stabilizing system, I was so excited
that immediately -on the 1st of October 1973- I wrote this paper with the
intention of submitting it for publication. Just in time I remembered that such
temptations should be resisted until the initial excitement has died out. On the
12th of October 1973 I found a solution with four-state machines, on the Ist
of November 1973 one with three-state machines. Under the same title a11
three solutions were eventually published in Comm. ACM 17, 11 (Nov. 1974)
643-644.

EWD407 Acceptance Speech for the AFIPS Harry Goode
Memorial Award 1974

This speech was delivered at the Conference Luncheon, Tuesday May 7, 1974,
of the National Computer Conference and Exposition, May 6-10, 1974,
Chicago, U.S.A.

31

34

36

41

47

Contents

EWD427 Speech at the Occasion of an Anniversary

Only at the 16th of June, 1974, it became public knowledge that since its
inception, ten years earlier, I had been Chairman of the Board of "Mathe
matics Inc.", the company earmarked to become the world's leading manufac
turer of mathematical products. One of my reasons for going public was my
desire to broaden the range of my written English, which, as far as it had been
developed, was becoming a mild prison. The communications of the Chair
man of "Mathematics Inc." are as much linguistical exercises as genuine
efforts to inform the reader about the world in which this wonderful company
operates.

EWD442 Inside "Mathematics Inc."

See EWD427. (Those former members of the IFIP Working Group 2.1 who,
like I, have learned the English expression "utterly preposterous" from the
German Prof.Dr.Dr.h.c.F.L. Bauer, will still remember the acronym "u.P.";
for the benefit of the uninitiated reader, the acronym has not been used.)

EWD443 A Multidisciplinary Approach to Mathematics

Because the Proceedings of the 108th Annual Meeting of the International
Federation of Mathematical Societies IFMS, 1976, Loempia, are out of print,
their publishers could not withhold permission to reprint here at least excerpts
from the Keynote Address. Their permission, so gracefully gran ted, is
acknowledged in gratitude.

EWD447 On the Role of Scientific Thought

This essay -a credo, if you like- has been provoked by (I am afraid, rather
depressing) discussions at the Eindhoven University of Technology about the
computing science curriculum. Parts of it are as general as its tide suggests,
and deal with questions such as the role of scientific thought and the viability
of scientific disciplines. The rest argues why computing requires a discipline
worthy of the name "computing science". (Of all I wrote in those days, this
essay is one I remember best. At the time of writing I liked it, and I still like
it.)

EWD462 A Time-Wise Hierarchy Imposed upon the U se of
a Two-Level Store

This paper was submitted for publication and accepted, but never published.
After the referee's conc1usion:

"This paper formulates and illustrates some fundamental principles
of software engineering which have been shamefully and disastrously
neglected in the past; for this reason its publication is to be highly
recommended.

However, the argument is in several places quite sketchy, and should
be reinforced if the paper is to live up to its promise. The comments
given below may indicate some further points that should be covered."

ix

50

54

56

60

67

x Contents

nine(!) pages of detailed comments followed. (The last sentence of the section
"Temptations to be resisted." evoked from the referee the comment: "In
every fibre of my body I agree. But I wish the author could bring more
compelling arguments than merely italics.") But all my efforts at rewriting
failed: I could not live up to my referee's expectations, and, eventually, I gave
up. See also EWD465.

EWD464 A New Elephant Built from Mosquitoes Humming
in Harmony

A problem from graph theory is solved by a circular arrangement of N
synchronized machines that together manipulate an N * N connection matrix,
each machine starting at an element of the diagonal.

EWD465 Monotonie Replaeement Algorithms and Their
Implementation

An elephant -more in the form of a snake!- built from astring of
mosquitoes provides the "additional hardware" referred to in EWD462; a
wise definition of "average page fault frequency" as a function of time
presented an unexpected problem. Because this elephant was a patentable
invention, this note was not distributed at the time of writing.

EWD466 Trip Report E.W. Dijkstra, Meeting IFIP W.G.2.3.,
Munieh, 8-14 Deeember 1974

At which I was introduced to what later became known as "the Gries-Owicki
Theory", and I decided not to become a logician.

EWD474 Trip Report Visit ETH Zurieh, 3-4 February 1975
by E.W. Dijkstra

A productive quickie (i.e. one of the attempted solutions to The Travelling
Scientist's Problem). How mathematicians and physicists threaten to strangle
computing science.

EWD475 A Letter to My Old Friend Jonathan

From a historical point of view, this letter, which I wrote in my capacity of
Chairman of the Board of "Mathematics Inc.", is of great interest: it is the
first record of our scientific progress being hampered by legal embroilments.

EWD480 "Craftsman or Seientist?"

The teaching of programming as the teaching of thinking is the central theme
of this Luncheon Speech. See also EWD494.

79

84

89

95

99

104

Contents

EWD482 Exercises in Making Programs Robust

This report is typical for the texts that hardly see the light of day: the not too
convincing deposit of a lot of hard work. I did send it around "hoping for
he1pful comments", but I got none: evidently, it was as hard to read as it had
been to write. The suggestions made in its last paragraph still seem to place
the effort in the right perspective.

EWD494 Trip Report E.W. Dijkstra 16th April/7th May,
1975, U.S.A. and Canada

With eight public performances at six different places and a week at Burroughs,
Mission Viejo, this was a trip with a heavy schedule. The main events were the
International Conference on Software Reliability, 1975, Los Angeles, U.S.A.
and the IBM Conference on Software Engineering Education, Montebello,
Canada.

EWD498 How Do We Tell Truths that Might Hurt?

Computing's misery captured in a dozen, easily remembered maxims.

EWD501 Variations on a Theme: An Open Letter to
C.A.R. Hoare

This letter describes the start of an experiment with "shunting monitors" that
was -and perhaps still is!- not without promise. Its aim was to combine
what later became known as "the technique of the split binary semaphore"
with the textual encapsulation of the monitor and -for the sake of more
delicate control- the explicit manipulation of queues of blocked processes.
Conceptuallyas weH as notationally, the text is still quite raw -the introduc
tion of the anthropomorphic "me" being only one of the minor sins!- .
Discouraged by Roare's lack of enthusiasm, and quickly thereafter thrilled by
more exciting visions, I abandoned the experiment while it was still in its
infancy. See also EWD503 and EWD504.

EWD503 A Post-Scriptum to EWD501

This was written the day after EWD501 had been mailed. Note that the
procedure "release" at the end of the last example, in the "diskhead"
monitor, contains a silly coding error that was corrected in EWD504.

EWD504 Erratum and Embellishments of EWD503

As the text says: "Clearly, "shunting" is something I still have to leam!".

EWD508 A Synthesis Emerging?

In retrospect this text is not without historical interest: it records the high
lights of a discussion mentioned under Ref. 9 in C.A.R. Roare's "Communi
cating Sequential Processes", Comm. ACM 21, 8 (Aug. 1978),666-677. The

xi

110

120

129

132

141

145

147

xii Contents

text was evidently written in astate of some exeitement; in retrospeet we may
eonclude that this exeitement was not entirely unjustified. Seeing Hoare
keenly interested in the topie, lIeft that arena.

EWD512 Comments at a Symposium

I wrote this text in Neweastle-upon-Tyne to serve as a starter for the
diseussion during the Symposium's closing session (see EWD513).

EWD513 Trip Report E.W. Dijkstra, Newcastle,
8-12 September 1975

How I learned what I feared: "Computers and the edueated individual" is an
almost empty topie.

EWD525 On a Warning from E.A. Hauck

An analysis shows how the ineorporation of error eorreetion inereases in
general the prob ability that a wrong result will be delivered. (By and large, the
warning was ignored during the years that followed; the pressure to use
umeliable teehniques proved often to be too strong.)

. EWD528 More on Hauck's Warning

A very niee demonstration of a theorem that had been mentioned in EWD525
without proof.

EWD538 A Collection of Beautiful Proofs

A draft ehapter of a book titled On the Nature and Role 0/ Mathematical
Elegance, which never got written (despite EWD538's closing sentence "To be
continued in a later report."). The incentive to write the book is still there,
namely the discovery that among all sorts of mathematicians the consensus
about what is mathematieally elegant is mueh stronger than they themselves
suspeet, and the conclusion that mathematical elegance cannot be such an
elusive concept after all.

EWD539 Mathematics Inc., a Private Letter from Hs Chairman

Being a private communication from its Chairman, this document is presuma
bly the most revealing document we have about Mathematics Inc.; for the
reader with a special interest in how to ron a big business it could be
illuminating to observe how the Chairman used what he had just learned in
Newcastle (see EWD513) to the company's advantage.

EWD554 A Personal Summary of the Gries-Owicki Theory

This note was primarily written for my own clarification, and upon its
completion I was very pleased with it. It is now a regular handout to my
students, who seem to like it too. Its nonoperational approach to concurrency
should be one of its distinctive features.

161

165

169

172

174

184

188

Contents

EWD561 A "Non Trip Report" from E.W. Dijkstra

This was written to give the regular readers of the EWD series an idea of how
I lived when I was not travelling. In retrospect it strikes me a bit as an
idealization. It mentions, for instance, neither al1 the routine obligations of
running an office nor the sleepless nights caused by university politics.

EWD563 Formal Techniques and Sizeable Programs

This invited speech, which describes one of my formal experiments in rea
sonable detail, was written for the Symposium on the Mathematical Founda
tions of Computing Science, Gdansk, 1976. It was, however, never delivered
because, when I arrived in Gdansk and met my audience, I felt that a totally
different talk would be more appropriate. So they got an impromptu instead
(see EWD584).

EWD570 An Exercise for Dr. R.M. Burstall

I later learned that -in a very different connection- the function fusc had
already been discovered (but not named that way) by de Rahm (see Elemente
der Mathematik, Vol. 2 (1947), p. 95). The colleague who found and told me
that discovery was very amazed to see no trace of disappointment from my
side, but I couldn't care less: I had had my own fun in my own way. Burstall
never picked up the gauntlet; later this was done at the Technische Universität
München. (See EWD578.)

EWD573 A Great Improvement

In my own publications I had given a very ugly formulation of the weakest
precondition that the execution of a given statement is guaranteed to decrease
a given integer function of the state by at least 1. During my absence from
Eindhoven, colleagues of mine had found a much simpler expression, which is
much simpler to work with.

EWD575 To R.D. Mills, Chairman Software Methodology Panel

This is an example of my activity as adviser, an activity of which I am not
very fond; I also doubt that I am very good at it. Had I known E.T. Bell's
book at the time of writing, I might have quoted him on "the twentieth-cen
tury mania for cooperation in everything". (The Development of Mathematics
by E.T. Bell, McGraw-Hill Book Company, 1945.)

EWD576 On Subgoal Induction

In its original version this technical note was unreadable, for what is called
here U(x) had been denoted there as P(x) -my usual way of denoting the
invariant relation of a repetition- ; as a result the poor reader had to guess
whether P(x) stood for the P(x) of Manna and Waldinger or for mine! If I
had written the text now, I would have used fewer implication signs; their
lavish use -see, for instance, formula (7)- is definitely unattractive. Its
conclusion, however, is most attractive: we can ignore subgoal induction
because it is nothing but the Invariance Theorem in a complicated disguise.

xiii

200

205

215

217

220

223

xiv Contents

EWD577 Trip Report E.W. Dijkstra, ECI-Conferenee
9-12 August 1976, Amsterdam

How I visited a conference in my own country.

EWD578 More About the Funetion "fusc"
(A Sequel to EWD570)

Which gave rise to persistent rumours about a pending foundation of "The
International Quarterly of FUSC Research".

EWD582 A Proof of a Theorem Communieated to Us
by S. Ghosh

The theorem is about linear equations in which unknowns and coefficients are
positive integers.

EWD584 Trip Report E.W. Dijkstra, Poland and USSR,
4-25 September 1976

This was my first visit to these countries.

225

230

233

235

EWD585 Trip Report E.W. Dijkstra, Tokyo, 28 Sept.-3 Oet. 1976 245

After having returned from Novosibirsk just in time for my wife's birthday, I
was off to Tokyo a few days later. My first exposure to the Far East was a
very puzzling experience.

EWD594 A Parable

In cauda venenum?

EWD603 Trip Report E.W. Dijkstra, St. Pierre-de-Chartreuse,
12-19 Dee. 1976

Which covers one of the many meetings I attended of the IFlP Working
Group W.G.2.3. (See also EWD611.)

EWD607 A Correetness Proof for Communieating Proeesses:
A Small Exereise

For a distributed system I tried a similarly distributed correctness proof. It
was one of my first exercises in that vein, and I remember that I found it quite
instructive.

EWD608 An Elephant Inspired by the Duteh National Plag

A more ambitious exercise in the same vein as the previous one.

251

253

259

264

Contents

EWD611 On the Fact that the Atlantic Ocean Has Two Sides

Trus open letter to my co-members of the IFIP Working Group W.G.2.3 on
"Programming Methodology" was very hard to write. It had been prompted
by my observations at the Working Group's previous meeting (see EWD603).
Its subject matter is intrinsically touchy, and not everyone appreciated the
way in which I touched it in this letter. I didn't mind: I knew that I had done
my best and that pleasing everyone is not my business.

EWD613 Trip Report E.W. Dijkstra, Australia,
16 February 1977-21 March 1977

I accepted the invitation for this visit to Australia shortly after I had decided
that I should really reduce the amount of travelling to which I was subjecting
my poor body. So much for good intentions! But I gave in because Dr. Robin
B. Stanton's letter of invitation was so very nicely phrased, and I shall never
regret having accepted his invitation, for the whole trip was in many ways a
rare pleasure.

EWD6l4 A Somewhat Open Letter to EAA or: Why I Proved
the Boundedness of the Nondeterminacy in the Way
I Did

Occasionally I have found the "somewhat open letter" a very useful device.
This was one of the first times that I applied it.

EWD6l8 On Webster, Users, Bugs, and Aristotle

This is the type of comments on the computing community that you can't
publish in a journal because they are not "scientific". It was written shortly
after the introduction of the new Dutch postal codes, and I am still struggling
to convince the world that my postal code is "5671 AL", ending on two capital
letters!

EWD622 On Making Solutions More and More Fine-Grained

This text is almost as painful to read as it was to write. And that is exactly the
reason for its inc1usion. It records a rough, groping experiment that is in
strong contrast to what was harvested from it the next year, viz. "Finding the
correctness proof of a concurrent program" (Proceedings 0/ the Koninklijke
Nederlandse Akademie van Wetenschappen, Amsterdam, series A, volume
81(2), June 9, 1978, pp. 207-215). It is almost the last text I wrote before I
conc1uded that the implication sign is such an endless source of confusion that
the less use we make of it, the better. In the years to come the problem tackled
here would attract in one form or the other more attention, e.g. "Distributed
Termination" by Nissim Francez (ACM Transactions on Programming Lan
guages and Systems, Vol. 2, No. 1, January 1980, pp. 42-55) and EWD687a
"Termination detection for diffusing computations" by Edsger W. Dijkstra
and C.S. Scholten.

xv

268

277

284

288

292

xvi Contents

EWD623 The Mathematics Behind the Banker's Algorithm

I tend to explain my discoveries in the way I made them, and, if I am not
careful, all sorts of obsolete thinking habits surface during the explanation of
my older discoveries. Explaining the Banker's Algorithm in a more modern
way than I used to do -it dates from the mid-sixties- was an unexpected
pleasure.

EWD629 On Two Beautiful Solutions Designed by Martin Rem

WeIl, on one actually. Somehow, I never inc1uded Martin Rem's second
beautiful solution in the EWD series. After this had been written it was
brought to my attention that two years earlier C. Bron had shown us
essentially the same solution; bis coding had been less "convincing" and the
fact had completely escaped me.

EWD635 Trip Report E.W. Dijkstra, Newcastle-upon-Tyne,
5-10 Sept. 1977

Another trip report from Newcastle; it has been included because it describes
one of my more intensive confrontations with the hardware community. Tbe
confrontation was disappointing.

EWD636 Why Naive Program Transformation Systems Are
Unlikely to Work

Describing the insight I brought horne from IFIP '77 (Toronto) or why to
have dinner in a Chinese restaurant. I have had many requests for reprints of
this report, mostly from France and from India.

EWD637 The Three Golden Rules for Successful Scientific
Research

This was written after I had explained the Three Golden Rules at the IFIP
W.G.2.3 meeting at Niagara-on-the-Lake.

EWD639 The Introduction of MAES®

Mathematics Inc. is a remarkable company, as is demonstrated by the fact
that all its Chairman's communications to date have been inc1uded in this
anthology. At the same time this remarkable fact enhances the profound
cultural significance of this selection of reports, which are now available for
the first time to the public at large. Describing the full potential of Artificial
Intelligence, this artic1e is an absolute must for the weIl-educated, concemed
layman.

EWD643 A Class of Simple Communication Patterns

This type of report is exciting at the moment it is being written: one has
understood something! But in a way the discovery is so minor that after a
while it is absorbed in that deposit called "experience".

308

313

319

324

329

331

334

Contents

EWD648 "Why Is Software So Expensive?"
An Explanation to the Hardware Designer

The effect of an invitation that, eventually, I could not accept.

EWD650 A Theorem About Odd Powers of Odd Integers

I still remember my modest excitement with wbich this little note was written.
Firstly I reaIized that our strengthened mathematical grip on algorithms could
open the way to new existence proofs. Secondly I was most pleased to see how
weIl my heuristics had served me. Thirdly the little program that is the carrier
of the argument is so beautifully simple.

EWD671 Program Inversion

Because the statement do x> 0 -> x := x-Iod destroys an unbounded
amount of information, its inverse would be a program of unbounded
nondeterminacy; hence, within the realm of continuous programs, not each
program has an inverse. But it is fun! Once, when I ended a one-week
programming course by inverting programs, one of the participants called my
last lecture "the longest joke he had ever heard". One of my colleagues called
EWD671 "a rare intellectual delight". I think they meant the same thing.

EWD673 On Weak and Strong Termination

This note was a pretty direct consequence of EWD671, wbich made me
ponder what I really did when I inverted programs; quite naturally my
attention was drawn to the different notions of termination.

EWD675 The Equivalence of Bounded Nondeterminacy and
Continuity

A direct sequel to EWD671. So much for clearing up my own mind!

EWD678 A Story that Starts with a Very Good Computer

Fairy tales, I am told, are supposed to contain a core of truth. WeIl, this one
certainly does, for the invention of QUICKSORT was C.A.R. Hoare's im
mediate reaction to bis first exposure to ALGOL 60: its recursion was just
what he needed! The moral of the story seems to be -but with fairy tales one
is never quite sure- that the proof obligations to be fulfilled by the
programmer provide the demarcation between bis responsibility and the
responsibility of the implementer of the programming language used. Hence,
those proof obligations -and nothing more!- could be used to define the
semantics of the programming language in question.

xvii

338

349

351

355

358

360

My dear Friend or Relation, Master, Colleague or Pupil,

Paraphrasing the ommous sentence: "Tbis ... has been placed here for
your convenience.", wbich is usually used to explain the presence of all sorts
of American hotel room contraptions, I should like to say "The enclosed
manuscript has been sent to you for your enjoyment.".

I would not dare to send it to you if you regarded it as the next item for
the evergrowing pile of tasks still to be done. I know that the manuscript is
long but I have let it grow that way in the hope that the intellectual effort
needed for its digestion is inversely proportional to its length. And your
enjoyment may be proportional to it. So I don't apologize for its length. *

There are no shattering discoveries in it: it is the kind of peaceful prose
that I write (mainly for my own distraction?) when a somewhat poor
condition forces me for some period of time to some sort of inactivity. It
will certainly be less gloomy than tbis evening's front page news!

When you have read it and feel like dropping me a line, please don't
hesitate to do so; I will receive it gladly.

Y ours sincerely

EDSGER W. DIJKSTRA

Department of Mathematics
Technological University Eindhoven
P.O. Box 513
EINDHOVEN
The N etherlands

* There is no point in denying it: I do like Franz Schubert's music.

o

EWD227
Stepwise Program Construction

Over the past years I have been (heavily) engaged in a number of (at that
time) advanced programming projects that could be considered as large in
comparison to the available manpower. I am still in the active process of
learning from the experience gained, one of the immediate goals of this
learning process being the discovery of better ways to construct even "smali
programs" in a reliable fashion. Although large, advanced and sophisticated
programming efforts are more spectacular, we must not forget that quite a
lot of machine time and programmer's energy is really spent on small,
down-to-earth projects and the present efforts to make computing facilities
more direcdy accessible to the individual user will only reinforce this
tendency.

For the interested reader I am going to make two programs and, besides
that, I am going to show the individual steps in which they have been
constructed. The examples serve to illustrate parts of my present under
standing of the demands that the task of programming makes upon the
human mind.

In my approach there are some central themes that I shall just mention
for the proper understanding of the following. The first theme is that,
although the program made by the programmer is his final product, the
computations evoked by it are the true subject matter of his trade: he has to
guarantee that the computations -the "making" of which he leaves to the
machine- evoked by his program will have the desired effect. As a result,
he has the duty to structure his program in a useful way, where usefulness
(among other things) implies that the form of the program admits trust
worthy statements about the corresponding computations. The second theme
is that the mental aids available to the human programmer are, in fact, very
few. They are enumeration, mathematical induction and abstraction, where

1

2 EWD227

the appeal to enumeration has to satisfy the severe boundary condition that
the number of cases to be considered separately should be very, very small.
The introduction of suitable abstractions is our only mental aid to reduce
the appeal to enumeration, to organize and master complexity. Mathemati
cal induction has been mentioned explicitly because it is the appropriate
(and only!) established pattern of reasoning by which we can understand
programs with either repetitive clauses or recursive procedures. As a corollary
I mention the fact that for some time I knew that, as a programmer, I could
live quite happily without any form of go to statement but that in the mean
time my considered opinion is that I cannot live happily with the go to
statement.

To avoid misunderstanding, I should like to state explicitly that I do not
claim that the two programs produced are the best possible, measured
(probably!) in terms of your private yard-stick. I do claim that they are
fairly good and reasonable in terms of the average yard-stick, i.e. that they
present utterly realistic solutions. I do claim to have achieved a degree of
clarity and transparency of an order of magnitude better than the average
programmer's solution, that my solutions have been reached with an intel
lectual effort considerably below average and that they admit exhaustive
verification. And that is more than can be said about many a program.

The reason to treat two examples is because they have been drawn from
vastly different fields. The one dealing with prime numbers is a so-called
scientific application; the other, dealing with the idiosyncrasies of
Flexowriters, is a so-called clerical application. These two fields are often
regarded as completely foreign to each other: the successful application of
the same discipline as illustrated below gives a strong support to the
assumption that the difference between scientific and clerical machine usage
is by no means an inherent difference, but more probably the result of a
difference in intellectual level and professional training of the people
engaged.

(Note. I do not feel myself called to justify the choice of my examples,
which are a kind of random draws from what is happening around
me: emotionally speaking, prime numbers leave me as unaffected as
Flexowriters.)

The Construction of a Table of the First 1000 Prime
Numbers

"Given an integer array p[l:lOOO], make a program making the elements of
p in order of increasing subscript value equal to the successive prime
numbers, where 2 is considered as the first prime number."

W ell-defined as this task may seem to the benevolent reader, as we go
along we shall discover an undefined boundary between the amount of

Stepwise Program Construction 3

mathematical knowledge the programmer is willing to embody in bis
program and the amount of computation he leaves to the machine.

To start with, for the task to make sense it must be known that at least
1000 primes actually exist. We grant the programmer tbis knowledge and at
a certain stage of program construction we allow him to appeal to tbis fact
when he has to prove that bis program does indeed halt.

Weshall now give the coarsest version of the program, viz.

version 0:
begin "assign to the array p the prime table as described" end

When tbis action is in the well-understood and well-defined repertoire of
actions from wbich the computation has to be composed, version 0 solves
our problem. For the sake of argument we now assume that tbis action is
not in the repertoire; in particular, we restriet ourselves to actions with
wbich we can operate on arrays only elementwise. This implies that in our
next version the order in wbich the elements of array p will get their desired
value has to be expressed, and in it we shall try to express just that and
preferably nothing more.

An obvious version of the program then starts with

begin pli] := 2; p[2] := 3; p[3] := 5; p[4] := 7; p[5] := 11; ...

implying that the programmer's knowledge includes a table of the first 1000
primes. Weshali not pursue tbis version, since it would imply that the
programmer hardly needed the macbine at all.

The first prime number being given (= 2), the thousandth being assumed
unknown to the programmer, the most natural order of filling the elements
of array p is in order of increasing subscript value, and if we express just
that (with a simple repetitive while do clause) we come to

version 1a:
begin integer k, j; k := 1; j := 1;

while k ,.;;;; 1000 do

end

begin "increasej until the next prime number";
p[k] :=j;k :=k+ I

end

Identifying k as the subscript value of the element whose turn it is to be
filIed, the correctness of version 1a is easily proved by mathematical
induction (under the assumption of the existence of a sufficient number of
primes).

Version 1a is aperfect program when the operation described by "in
crease j until the next prime number" is in the repertoire, but let us suppose
that it does not. In that case we have to express how j is increased, and in
our next elaboration we shall try to express just that and preferably nothing

4 EWD227

more. With a simple repetitive repeat until clause (which may act upon a
sequence of statements) we come for "increase j until the next prime
number" to

version 2a:
begin booleanjprime;

end

repeatj :=j + 1; "give tojprime the meaning:j is a prime number"
until jprime

If we substitute version 2a for the appropriate operation in version la our
resulting program is undoubtedly correct. But if we assume that the pro
grammer knows that, apart from 2, all prime numbers are odd, then we may
expect that he will be dissatisfied with the obvious inefficiency of version 2a.
The price to be paid for this, call it "lack of clairvoyance", is arevision of
version la in which the prime number 2 is dealt with separately, after which
the cycle can deal with the odd primes. So we come to

version 1b:
begin integer k, j; p[l] := 2; k := 2; j := 1;

while k oe;;; 1000 do

end

begin "increase oddj until the next odd prime number";
p[k] :=j; k := k + 1

end

where the analogous elaboration of the operation between quotes leads to

version 2b:
begin booleanjprime;

repeatj := j + 2;

end

"give to jprime for oddj the meaning: j is a prime number"
untiljprime

The above oscillation between versions 1 and versions 2 is in fact nothing
else but moving the interface between the overall structure and the primitive
that has to fit in this structure. This is definitely not attractive, but with a
sufficient lack of clairvoyance and being forced to take our decisions in
sequence, I see no other way. We can regard our efforts as experiments to
explore where the interface can be most conveniently chosen.

Encouraged by the success of treating the integer 2 separately, we
investigate what can be gained by treating 3 separately as weH. For this
purpose we introduce the property "throdd", i.e. divisible by neither 3 nor
2. The throdd numbers are of the form 6N + 1 or 6N + 5. By definition, 2
and 3 are the only prime numbers not contained in the set of throdd

Stepwise Program Construction

numbers and so we eome to

version Ie:
begin integer k, j; pli] := 2; p[2] := 3; k := 3;j := 1;

while k ".:;; 1000 do

end

begin "increase throddj until the next throdd prime number";
p[k] :=j; k := k + 1

end

5

where the analogous elaboration of the operation between quotes leads to

version 2c:
begin booleanjprime;

end

repeat "increase throddj until the next throdd value";
"give to jprime for throddj the meaning: j is a prime number"

until jprime

This is only an improvement when the operation "inerease throddj until
the next throdd value" is easily implemented. The proper increase of j is a
function ofj; call it "INC(j)". Its value is = 4 whenj = 6N + 1, its value
is = 2 whenj = 6N + 5. Instead of freshly evaluating the function INC(jJ
whenever we need it, we introduce a separate variable, inc say, to record the
current value of INC(j), corresponding to the eurrent value of j. Variable
inc has to be set initially whenj is set and it has to be adjusted whenever the
value of j is changed. (The introduction of inc is an instance of a standard
programmer's deviee to trade variable spaee for eomputation speed.) Using
list-assignments to stress that inc is just a eompanion of j, the introduetion
of inc and the elaboration of "inerease throddj until the next throdd value"
leads to

version Id:
begin integer k, j, inc; p[l] := 2; p[2] := 3; k := 3;

(j, inc) := (1,4);

end

while k ".:;; 1000 do
begin "inerease throddj, adjustment of inc included, until the next

throdd prime number";
p[k] :=j;k :=k+ 1

end

where the elaboration of the operation between quotes leads to

version 2d:
begin boolean jprime;

end

repeat (j, inc) := (j + inc,6 - inc);
"give tojprime for throddj the meaning:j is a prime number"

until jprime

6 EWD227

There is no indication that any gain will result from taking the next
prime (i.e. 5) out of the cycle as weIl, and we shall not try it.

Again, when "give to jprime for throdd j the meaning: j is a prime
number" is an operation from the presupposed repertoire, then our program
is finished. We now assume that it is not; in other words we have to evoke a
computation deciding whether a given throddj has a factor. It is only at this
stage that the algebra really enters the picture. Here we make use of the
knowledge that we only need to try prime numbers as factors; furthermore
we shall use the fact that the prime numbers to be tried can already be
found in the filled portion of array p.

We use the facts that:

(a) j being a throdd value, the smallest potential factor to be tried is p[3],
Le. the first prime above 3;

(b) the largest prime factor we have to try is p[ord - 1], where p[ord] is the
smallest prime number whose square exceeds j.

If this set is not empty, we have a chance of finding a factor and, as soon
as a factor has been found, the investigation of this particular j value can be
stopped. Wehave to decide in which order the prime numbers from the set
will be tried, and we shall do so in order of increasing magnitude, because
the smaller a prime number the larger the prob ability of its being a factor
ofj.

In our first elaboration of "give to jprime for throdd j the meaning: j is a
prime number" we come to

version 3d:
begin integer n, ord; boolean nofactorfound;

end

ord := 1; while p[ord] t 2 :s;;;.j do ord := ord + 1;
n := 3; nofactorfound := true;
while n < ord and nofactorfound do
begin "give to nofactorfound the meaning: p[n] is not a factor ofj";

n := n + 1
end;
jprime : = nofactorfound

Here we make two observations. Boolean variable "nofactorfound" is
superfluous -we could have usedjprime instead- so that the last assign
ment statement can be removed. Furthermore, ord is a function of j that we
need not recompute freshly every time; we can and should treat it along the
same line as inc. The latter remark causes the final revision of version 1,

Stepwise Program Construction

leading to

version le:
begin integer k, j, inc, ord; p[l] := 2; p[2] := 3; k := 3;

(j, inc, ord) := (1,4,1);

end

while k .;; 1000 do
begin "increase throddj, adjustment of inc and ord included, until

the next throdd prime number";
p[k] :=j; k := k + 1

end

where the e1aboration of the operation between quotes leads to

version 2e:
begin boolean jprime;

end

repeat (j, inc) : = (j + inc,6 - inc);
while p [ord] i 2 .;; j do ord : = ord + l;
"give for throddj, usingp and ord, tojprime the meaning:
j is a prime number"

until jprime

7

REMARK. Here "whilep[ord] i 2';;j do" can be replaced by "if p[ord] i 2
.;; j then", but to my taste the marginal gain in efficiency is not worth the
intellectual effort to prove its validity. A programmer should leam to be
lazy at the right moment and to let the principle "Safety First" prevail!

Elaboration of the operation between quotes gives a variant of version 3d,
viz.

version 3e:
begin integer n; n := 3; jprime := true;

while n < ord and jprime do

end

begin" give to jprime the mealling: p [n] is no factor of j ";
n := n + 1

end

For "give tojprime the meaning: p[n] is no factor ofj" we may write
under the assumption of decent real arithmetic begin real q; q :=j/p[n];
jprime := (entier(q) =i= q) end. We shall assume the availability of the
integer division and write

version 4e:
jprime := (j =i= (j -;- p[n]) * p[n])

8

Finally we perform all substitutions to construct a single statement.

begin integer k, j, inc, ord; p[l] := 2; p[2] := 3; k := 3;
(j, inc, ord) := (1,4,1);
while k E;;; 1000 do
begin begin booleanjprime;

repeat (j, inc) := (j + inc,6 - inc);
while p[ord] i 2 E;;;j do ord := ord + 1;
begin integer n;

n := 3; jprime := true;
while n < ord and jprime do

EWD227

beginjprime := (j =1= (j -;- p[n]) * p[n]);
n := n + 1

end
end

end;

end
until jprime

end

p[k] :=j;k :=k+ 1

We could have made the inner blocks into compound statements by
moving the declarations for jprime and n to the outside. Wehave not done
so: c1arity does not gain by it and whether there is a point in doing it is
rather dependent on the implementation.

Thus ends the treatment of the first example.

The Unique Reporting of the Printed Page as
Produced on a Flexowriter

For our purpose we can regard a Flexowriter as a kind of electric typewriter
which is operated only via the keys of its keyboard. Whenever a key is
pressed, a configuration characteristic for this key is punched in a paper
tape, which is then moved on over one position. Typing a page thus implies
the production of a paper tape specifying what has been typed. (Actually,
besides the punching station the Flexowriter has a reading station from
which the printing mechanism can be controlled. By inserting the paper tape
just produced into the reading station one can obtain another copy of the
printed page.)

We want to write a program that reads such a paper tape and gives, when
called repeatedly, a unique description of the corresponding page image,
according to conventions to be described below. As we go along we shall see

Stepwise Program Construction 9

that this is no trivial matter, because (mainly due to the construction of the
Flexowriter) many paper tapes, greatly varying among each other, may
correspond to the very same page image. (In our examp1e we shall simplify
the real situation slightly: we shall exc1ude the unexpected occurrence of
"end of tape" and exc1ude the situation that the paper tape reader of the
computer discovers -due to some error in punching or reading- an illegal
configuration. Even thus simplified, the problem is messy and intricate
enough to serve our purpose!)

Two remarks are in order about the presentation of our solution:

(1) the routine will be coded as an operator, operating in a local universe of
permanently existing variables; we shall use small letters for their
identifiers.

(2) constants that refer to the integer values associated with characters will
be denoted by identifiers composed from capitalletters.

In its coarsest form the local universe contains one integer variable,
called "charf" and the operator can be described by

version 0:
begin "assign to charf the next value" end

Dur Flexowriter has equal spacing, i.e. each line has a fixed number of
print positions. There is a finite number of so-called "position characters"
(because of the absence of a backspace key on our Flexowriters, which
would allow a practically unlirnited number of superpositions) and each
position character can occur at each print position of the page. A numerical
code for the position characters has been chosen and the operator reports by
assigning to charf the numerical value associated with the position character
in the current print position, dealing with the print positions in each line in
order from 1eft to right and with the lines in order from top to bottom.

With respect to the left margin we assurne that its position on the printed
page is given; to indicate the right-hand end of a line we have extended the
range of charf values with an additional one, denoted by "RET" (i.e. N ew
Line, Carriage Return) and require for the sake of uniqueness that all
"invisible" spaces at the right-hand end of a line be suppressed. It is as if
RET is counted among the visible position characters but that its (symbolic)
printing position has to be aligned to the left as far as possib1e.

The purpose of version 1 is to suppress any spaces at the right-hand end
of each line; for its benefit the local universe has been extended with two
integer variables:
charfl: the range of this variable equals that of charf, but in the time

sequence of its values, invisible spaces at the right-hand end of each line
will still occur (if present, of course);

10 EWD227

stock: this is a counter; its value equals the number of times that charf can
be filled with a next value before charfl has to be refilled. It requires the
initial setting "stock := 0".
Version I implements the look ahead whenever one or more spaces are

reported (using charfl); when followed by RET they have to be suppressed,
otherwise they have to be transmitted.

version 1:
begin if stock = 0 then

end

begin repeat "assign to charfl the next value";
stock : = stock + 1

until charfl =F SPACE;
if charf 1 = RET then stock : = 1

end;
charf := (if stock> 1 then SPACE else charfl); stock := stock - 1

Our next complication is that the "position character" as reported in.
charfl (with the exception of RET) may be composed of three parts: by
means of the mechanism of a so-called non-escaping key (i.e. one that leaves
the carriage position as it is) one can superpose various "key characters" in
the same print position. We have in fact two such key characters, viz.
underlining and a vertical stroke. The purpose of version 2 (an elaboration
of "assign to charfl the next value") is to combine the key characters
referring to the same print position.

Wehave to take into account

(1) that non-escaping key characters have to be combined with the first
following escaping key character;

(2) that repetition of the same non-escaping key character in the same print
position must be considered as equivalent to its single occurrence.

For the benefit of version 2 we extend the local universe with one integer
variable,
charf2: the range of this variable is those charf values corresponding to

position characters produced without non-escaping key characters, plus
the values denoted by UNDER and STROKE.
As a matter of fact, 0 .;;;; charf2 .;;;; 127 will be satisfied; the presence of

underlining will be coded in charfl by an increase of 128, that of a stroke
by an increase of 256.

Our tentative elaboration of "assign to charfl the next value" gives rise
to version 2 (here CRAZY2 denotes a constant value that is outside the
range of charf2).

Stepwise Program Construction

version 2:
begin integer under, stroke;

end

under := 0; stroke := 0; charfl := CRAZY2;
repeat" assign to charf2 the next value";

if charf2 = UNDER then under := 128
else

if charf2 = STROKE then stroke := 256
else

charf 1 : = charf2
until charf 1 =1= CRAZY2;
charf 1 : = charf 1 + under + stroke

11

Wehave said "tentative elaboration" because, as it stands, this version
will not prevent, say, the transmission of an underlined RET: "charf2 =
UNDER" followed by "charf2 = RET" requires the insertion of an addi
tional space to be underlined. Since pure spaces (i.e. without underlining or
stroke) preceding RET will be suppressed by version 1 anyhow, we can (and
shall) remedy this situation by imposing upon "assign to charf2 the next
value" the requirement that it will never transmit RET unless immediately
preceded by a transmission of SPACE.

The next complication is that our Flexowriters are equipped with a
tabulator key TAB, which, when pressed, gives rise to a punching in the
paper tape, while the carriage moves on until the next tabulator stop that is
more than one position to the right of the current position: the carriage
moves over at least two positions. The positions of the tabulator stops are
standardized (once every eight positions) but it implies that the algorithm
deriving the number of spaces corresponding to TAB must be aware of the
current position of the carriage (at least modulo 8). It is the purpose of
version 3 - the elaboration of "assign to charf2 the next value" - to
translate tabulations into the equivalent number of spaces and to insert a
SPACE before RET.

For its benefit we introduce into the local universe three integer varia
bles.
charf3: the range of this variable is that of charf2, extended with TAB.
pos: keeps track of the current carriage position; when "charf3 = RET"

occurs pos will be set to zero, when "charf3 = TAB" occurs it will be
increased to the proper multiple of 8. It requires an initial setting, say
"pos := 0".

substock: this is a counter; its value equals the number of times that charf2
can be filled with its next value before charf3 has to be refilled. It requires
the initial setting "substock : = 0".
We arrive at the following elaboration of "assign to charf2 the next

value".

12 EWD227

NOTE. As it stands I am not very much satisfied with the coding of version
3. The way in which SPACE before RET is smuggled in, for instance, is too
tricky. It is, however, the first version I wrote down for it.

version 3:
begin if substock = 0 then

end

begin "assign to charf3 the next value";
if charf3 =1= UNDER and charf3 =1= STROKE then
pos := pos + 1;
if charf3 =1= RET and charf3 =1= TAB then charf2 : = charf3

else
begin charf2 := SPACE;

end

if charf3 = RET then
begin substock : = 1; pos : = 0 end

else
begin substock : = (pos -+- 8 + 1) * 8 - pos;

pos : = pos + substock end

end else
begin charf2 := (if charf3 = TAB then SPACE else RET);

substock : = substock - 1
end

The last complication presented by the structure of the Flexowriter is its
built-in memory element, called "the case". It is in one of two states, called

." upper case" and "lower case", respectively. When it is in state upper case
it remains there until the key "LOWER CASE" is pressed, which further
more results in punching the value "LC" in the paper tape. When it is in
state lower case, it remains there until the key "UPPER CASE" is pressed,
which results in punching the value "UC" in the paper tape. When pressing
any other key, punching is only dependent on the key pressed, but printing
is (except for the space bar, the tabulator and the carriage return) dependent
on the current case as weIl.

In version 4 -an elaboration of "assign to charf3 the next value"- we
have to implement the influence of the case punchings. For the benefit of it
we extend the 10cal universe with two integer variables
octade: used to record the next punching on the paper tape
case: this variable may have the values LC or UC (or possibly a third one,

meaning "undefined", because space, tabulation and carriage return can
be processed case independently). It must get an initial value, say "case
:= LC".
At this same level we implement that two legal punchings (BLANK and

ERASE, corresponding to no holes and all holes respectively) are skipped
without any possible effect on the page image. CRAZY3 denotes a constant
outside the legal range of charf3.

Stepwise Program Construction

version 4:
begin charf3 : = CRAZY3;

end

repeat "give octade its next value";
if octade =1= BLANK and octade =1= ERASE then
begin if octade = LC or octade = U C

then case : = octade
else charf3 : = fun(case, octade)

end
until charf3 =1= CRAZY3

13

With "give octade its next value" I indicate the paper tape read instruc
tion and I shall not elaborate it any further. The function "fun(case, octade)"
is also left undescribed: it is too much dependent on the special numerical
codes; we only mention that upper and lower case space (tab or ret) must
both be transmitted as SPACE (TAB or RET).

The successive insertions of version "i + 1" into version "i" are left to
the industrious reader (or should I say "writer"?).

Concluding Remarks

Before stressing the similarity of the ways in which our two problems have
been solved I should draw attention to a difference. In the first example I
have paid considerable attention to the decision where to put the interface
between the successive levels, in the second one I did no longer do so. I do
not believe that the origin of this difference is in any way related to the
supposed contrast between "scientific" and "clerical" machine applications,
for it has a perfect historical and psychological explanation. The historical
explanation is that I have used the prime number table generation problem
in a number of oral examinations, the psychological explanation is that in
treating the second example I am getting tired and perfectly willing to leave
to my readers the intellectual satisfaction of improvement.

Personally I am much more impressed by the similarity of the ways in
which the two rather different programs have been constructed. The succes
sive versions appear as successive levels of elaboration. It is apparently
essential for each level to make a clear separation between "what it does"
and "how it works". The description of "what it does", the definition of its
nett effect, requires introduction of the adequate concepts, and both exam
pIes seem to show a way in which we can use our power of abstraction to
reduce the appeal to be made upon enumeration.

As stated in the introduction, we may expect that computers will become
more directly accessible for the individual user and we may expect that the
latter should like to use its capabilities for the text manipulations involved

14 EWD227

in program composition. At present I am rather unsure about the true
nature of the text manipulations the user would then like to perform -it is
certainly something more structured than just deletion and insertion of
characters or lines! In the fervent hope of getting a better understanding of
what these manipulations are I have reported two instances of program
construction as detailed and as honestly as I possibly could.

Finally: if I did bit a worthwhile nail on its head, then tbis manuscript
should end with a proper acknowledgement, giving honour where honour is
due. Under the present circumstances I can only express my gratitude to ...
my Friends and Relations, my Masters, Colleagues and Pupils.

Eindhoven, February 1968

EWD338
Parallelism in Multi-Record Transactions
BY E.W. DIJKSTRA AND c.s. SCHOLTEN

We consider a data base, comprising a great number of individual records,
and transactions to be carried out on this data base. Each transaction is a
finite computation involving a number of these records. The computation to
be carried out -and even the identity of the records involved- will in
general be dependent on the state of the data base when the transaction is
initiated. When the data base grows, the following conflict emerges: on the
one hand one may expect the number of transactions to be carried out to
grow as well; on the other hand the growing data base will make individual
record selection a more and more painful process, slowing down the
individual transaction executions. Comes the moment that the stream of
transactions, carried out one after the other, no longer fits in real time. To
solve this real-time problem we must be willing to carry out a number of
transactions in parallel. This paper is devoted to the logical problems that
then emerge.

The purpose of this paper is twofold: firstly, to isolate (and to solve to a
certain extent) the logical problems involved and, secondly, to demonstrate
the viability of our top-down approach in problem solving. This means that
those readers that are unfamiliar with the top-down approach, but are
familiar with a number of these logical problems, must be patient. If they
find us ignoring a number of practical considerations in the beginning, they
should read on quietly; there is a fair chance that they will be taken into
account in due time.

The First Model

In the purely sequential execution of the transactions, we can execute the
transactions in the (supposedly unique) order in which they are requested,

15

16 EWD338

and at any moment there is at most one transaction under execution. In our
first model, we still assume that the requests for transactions reach the
system in a unique order and with a speed regulated by the system in such a
way that the system can cope with the requests. We admit, however, that at
any moment the number of transactions currently under execution may be
larger than one, although not exceeding some given finite upper bound. The
execution of a transaction extends from the moment that the system has
acknowledged the request for the transaction until the moment that the
system has completed the transaction.

In the purely sequential execution, the system's nett reaction to a number
of transaction requests may depend on the order in which the transactions
are requested. In the case of parallelism we do not require that the system's
nett reaction be identical to that of the sequential system when faced with
the stream of requests in the order in which the parallel system has
acknowledged these requests. We do require, however, that it is possible to
order the requests in such a way that the nett reaction of the sequential
system faced with the requests in that order will be identical to the reaction
of the parallel system. (In many cases, viz. when we have two mutuallY
non-interfering transactions, this order need not be unique.)

Our parallel system has three main obligations: it has to prevent 1)
undesired interference, 2) deadlock and 3) individual starvation.

ad 1

Let each transaction be identified only for the period of its execution. Let
T[i] be a transaction currently under execution. Let M[i] be the set of
records manipulated until now by T[i]. This implies that during the
execution of T[i], the set M[i] can not decrease, until T[i] has been
terminated and M[i] ceases to exist. We can guarantee the absence of
undesirable interference by requiring that at any moment

(1)

i.e. for two different transactions the intersection of the corresponding sets
Mis empty.

ad 2

If a and b are two different records and for i =1= j we have at a given moment

a E M[i] and bE M[j]

then we will find ourselves in trouble when the progress of T[i] requires

Parallelism in Multi-Record Transactions 17

record b to be added to M[i] and also the progress of T[j] requires record a
to be added to M[j], for then there is no way in which T[i] or T[j] can
progress without violating relation 1. This is called "deadlock". If we insist
on the absence of the danger of deadlock -and we do- the above
observation tells us that, without any further knowledge about the future
requirements of the transactions, parallelism is impossible. We therefore
associate with each transaction T[i] a set F[i] of records, containing all the
records that may possibly be added to M[i]. (Note that this definition
implies M[i] n F[i] = 0.)

When the current transactions can be renumbered so that

i<j~F[i] nM[j] = 0 (2)

the danger of deadlock is absent, for then T[O] can be carried to completion,
and after that the new T[O], etc. We call the situation "safe" when, besides
relation 1, transactions can be renumbered such that relation 2 holds. We
shall keep the system in a safe state. Prom the above we can conc1ude that a
decrease of the set F[i] -as a result of progress of T[i]- willleave a safe
situation safe; it furthermore follows that such a decrease is something to be
encouraged, because as long as F[O] = the universe, all M[j] with j > 0
must be empty, i.e. parallelism is not possible.

When we start each transaction with its F equal to the universe, and
insist that T[i] can only add a record to M[i] by transferring it from F[i],
then this is the only transition that might violate condition 1 or the safety,
i.e. this is the only place where it might be necessary to hold up the
further execution of the transaction, to "put the transaction to sleep". The
"counter-occurrences", on account of which a sleeping transaction could be
woken up again, are when another progressing transaction decreases its own
F explicitly or terminates.

In the above we have assumed that, for each transaction, F would start
equal to the universe and would only decrease. Because this set is so huge,
one could think that it could be profitable to divide the execution of a
transaction into two successive phases, a first phase in which F is still
allowed to grow and a second phase in which tbis is no longer permissible.
But as far as the avoidance of deadlock is concemed, such a transaction is
equivalent to one with F equal to the universe during the first phase,
decreasing F to the stated amount upon the transition from the first to the
second phase.

ad 3

Our system has to allocate records to transitions. When the allocation
strategy is such that each request of an F ~ M transition is honoured as
soon as this is compatible with the simultaneity restriction 1 and the safety

18 EWD338

eondition, it is well-known that the exeeution of an aeknowledged transae
tion may be postponed indefinitely long. Suppose we have

M[l] = {al
M[2] = {b}
M[3] = 0

F[l] = {cl
F[2] = {cl
F[3] = {a, b, c}

and suppose that T[3] would like to transfer record c to M[3]. It eannot do
so beeause doing so would introduee deadlock with respect to both T[1] and
T[2]. In the ease of an infinite supply of transaetions of type 1 and type 2,
T[3] eould be kept asleep forever. This phenomenon is ealIed individual
starvation and, as a rule, it is considered to be undesirable.

A erude way to exoreize the danger of individual starvation is the
following: as soon as a transaetion is put to sleep, a fixed upper limit is
imposed upon the number of transaetions that may be initiated during that
nap. We are not going to look for a more refined teehnique now, for there
are other reasons why we consider our first model as too erude, and in our
second model we shall depart from it.

The Second Model

Our main complaint about the first model is that a record once in set M[i]
remains in set M[i] until the transaetion has run to eompletion. We would
like to be able to express that a transaetion is such that a manipulated
reeord is no longer essential for the eorreet progress of the transaetion. We
therefore split M[i] into two disjoint sets A[i] and Pli], i.e. the reeords that
are still active and the reeords that have been proeessed. A reeord in set Pli]
has arrived there from set F[i] via set A[i] and will remain there until
termination of T[i].

Obviously

i * j =* A[i] n AU] = 0

is a neeessary eondition, but this is no longer suffieient to guarantee that the
nett reaction of the parallel system is identical to the reaetion of a sequential
system after proper ordering of the requests, for it would not exc1ude

A[i] n PU] * 0 and AU] n P[i] * 0

The first condition expresses that in the sequential ordering T[i] should
follow TU] and the second condition requires it to be the other way round.
The situation is even worse, because if Pli] n P[j] * 0, apparently, the
order in whieh the shared record was processed was deeided in the past, and
this order is no longer expressed in the population of the various sets, even
though in general it is still relevant.

Parallelism in MuIti-Record Transactions 19

In oUf second model, the virtual order for the pair T[i], T[j] is irrevoca
bly decided as far as their interference with the data base is concemed, as
soon as for the first time holds

A[i] n P[j] "* 0 or A[j] n P[i] "* 0

Therefore we associate with each pair (T[i], T[j]) of transactions the
function V(i, j) (= - V(j, i», defined by

V(i, j) = 0 no decision on the order of T[i] and T[j] has
beenmade

V(i, j) = + 1

V(i, j) = -1

in the virtual order T [i] has to precede T [j]

in the virtual order T [j] has to precede T [i] .

We now have the following invariant relations

i"*j~A[i] nA[j] = 0

A [j] n P [i] "* 0 ~ V(i, j) = + 1

V(i, j) = + 1 ~ A [i] n P [j] = 0

P [i] n P [j] "* 0 ~ V(i, j) "* 0

(3)

(4)

(5)

(6)

and deadlock is prevented, provided that we can renumber the transactions
currently under execution in such a way that

i <j ~ {F[i] n (A[j] U P[j]) = 0 and V(i, j);;;' O} (7)

for then T[O] can be carried to completion without violating the decided
virtual order. (See, however, the note added while editing.)

The second model shows great similarity to the first one. Again, the only
point where it might be necessary to put a transaction to sleep is where it
would like to transfer arecord from set F to set A. The points of progress in
one transaction that could result in the situation that sleeping transactions
could be woken up are (as before) explicit F-decrease and termination, but
in addition to these two a transition from A to P.

The problem of individual starvation can be dealt with in the same crude
fashion as in the first model, and for the time being we shallleave it at that.

The Third Model

The second model is appropriate when each transaction modifies all its
active records. But that seems a rather exceptional situation, and in our
third model we would like to exploit the fact that simultaneous inspection of
a current record value by a number of parallel transactions is an absolutely
innocent operation. For that reason we split all sets into two: F into FR and
FW, A into AR and AW and P into PR and pw. Here AR are the "read
only records", while records in set A W mayaIso be modified. Initially, a
transaction starts with FW equal to the universe and the other five sets

20 EWD338

empty. Permissible transfers of arecord are: from FW to FR and A W, from
FR to AR, from A W to PW and from AR to PR.

Now formulae 3) through 7) can be modified systematically by changing

X[i] n Y[j]

into

(XW[i] n YW[j]) U (XW[i] n YR[j]) U (XR[i] n YW[j])

i.e. from the four cross-products only the three in which writing is possibly
involved, but not the fourth, the RR combination.

After this systematic change we have formulae 3') through 7'), describing
a model in which records shared for inspection only impose no mutual
exclusion or virtual ordering. The only difference between the third and the
second model is that in one transaction the transfer of arecord from FW to
FR could have the side-effect of waking up a sleeping transaction.

NOTE. If a transaction, upon inspection of a record in set A W (because it
might have to modify it), discovers that it can leave the record unchanged,
we can, if we so desire, admit the transfer of this record from set A W to set
AR. In that case also this transition could have the side-effect that another
sleeping transaction can now be woken up.

A voiding the Danger of Individual Starvation

In view of the formal relationship between the second and the third model it
suffices to discuss the starvation problem in terms of the simpler formalism
of the second model.

By the time, however, that we are going to tackle the starvation problem
seriously, we should bear in mind that until now we have assumed that the
only reason for preventing progress of a transaction would be that otherwise
relations 3 or 7 would be violated. In a general system one must assume that
there will be other reasons as weIl: by the time that we bring into the picture
that most of the records will be in secondary store most of the time,
reduction of the traffic density between primary and secondary store might
become a worthy goal, and we can envisage a system trying to collect
transactions involving the same records. The system can try to do so by
postponing transactions, but such strategic postponement must be void of
the starvation danger.

With each transaction T[i] currently under execution we can associate a
so-called "allowance counter" ac[i], with value equal to the maximum
number of other transactions allowed to ron to completion before T[i] will
ron to completion. This implies that upon termination of a transaction all
ac's associated with the remaining transactions will be decreased by 1. We
now superimpose upon our original safety condition the condition that the

Parallelism in Multi-Record Transactions 21

transactions can be renumbered in such a fashion that, besides relation 7,
also

i.;;; ac[i] (8)

holds.
In that case T[O] can ron to completion, and its termination will decrease

the remaining ac 's by 1; simultaneously the remaining transactions will shift
down one place (i.e. the old T[1] will become the new T[O]) and as a result
relation 8 will continue to hold.

Inside a transaction we have now three types of points where the system
may decide to put a transaction to sleep:

request for record transfer from F to A
request for potential strategie postponement
request to terminate.

Whenever a transaction makes such arequest that can be honoured without
violating conditions 3, 7 and 8, the system is in general free to refuse the
request and to put the transaction to sleep. This would admit the possibility
of a completely sleeping system, and no real-time guarantee could be given,
even if a maximum execution time for a transaction is known. We therefore
impose the requirement that

when the set of current transactions is non-empty,
at least one transaction must be non-sleeping.

When a trans action is initiated and its ac is introduced its initial value
must be sufficiently high to guarantee 8; the number of transactions
currently under execution will certainly be sufficient. The higher the initial
value of the ac's, the greater the system's freedom in shuffling the transac
tion order, but the weaker any real-time guarantee about possible delays.

Finally, in the above parallel system, the order in which the transactions
are terminated is a possible order for the transaction stream processed by
the purely sequential system that should show the same nett reaction.

NOTE ADDED WHILE EDITING. In October 1979, Mr. Darryn Price from
Burroughs Corporation, Austin, Texas, was the first to discover a flaw in the
above.

With V(i, j) = 1 and V(j, k) = 1, the commitment that T[i] should
precede T[k] in the virtual order may only remain recorded as long as T[j]
remains under execution. A solution is only to permit termination of a
transaction provided it can be taken as T[O] in the virtual order. (End of the
note added while editing.)

EWD376

Finding the Maximum Strong
Components in a Directed Graph

This essay reeords an exereise in orderly program eomposition. The reeord
is not eompletely truthful in the sense that prior to its writing some thinking
without peneil and paper was done. As a result, the following text contains a
few "surprises" in the sense that suggestions are made without an elaborate
heuristie justifieation. When I notieed myself doing so, some heuristie
justifieation was added afterwards. The moral of all this is: in ease of
surprise, please go on reading!

Given a set of nodes and a set of direeted ares, eaeh leading from anode
to anode, it is requested to partition the set of nodes into maximal strong
eomponents. A strong eomponent is a set of nodes such that the ares
between them provide a path from any node of the set to any node of the
set. A single node is a special ease of a strong eomponent; then the path ean
be empty. A maximal strong eomponents is a strong eomponent to whieh no
nodes ean be added.

Weshall use the aeronym "sa" for a set of ares, and the aeronym "sn"
for a set of nodes. Our final answer is a partitioning, that is a set of sets of
nodes with empty interseetions; for that latter objeet we shall use the
aeronym "ssn". Similarly, when the need arises, we shall use the aeronym
"ssa" for a set of sets of ares with empty interseetion. (Note added while
typing out the manuseript: this need did not arise.)

Let" sn" be the given set of nodes, and "sa" be the given set of ares. Let
the final value of "ssn" be the desired answer. We then write the desired
final relation as

ssn = MSC{ sa) (1)

where MSC, the set of Maximal Strong Components, is regarded for
eonstant sn as a funetion of the set of ares sa.

22

Finding the Maximum Strong Components in a Directed Graph 23

We want to inspeet the ares one by one (in a suitable order still to be
chosen), i.e. we introduee two disjoint subsets of sa, viz. sal and sa2, such
that

sa = sal + sa2 (2)

where sal eomprises the inspeeted ares (initially empty, finally = sa) and
sa2 the uninspeeted ares (initially = sa, finally empty).

Similarly, we want to build up the final value of ssn. We shall do so by
maintaining the invariant relation

ssn + ssnl = MSC(sal) (3)

Here eaeh node of sn will oeeur either in an element of ssn or in an element
of ssnl, but never in both. (Besides that we ean, as will be shown later,
restriet ourselves to ssnl-values that are sets of sets of single nodes.) The
following idea underlies the introduetion of ssn 1: ssn is a set of maximal
strong eomponents, for whieh -we write an algorithm for a sequential
maehine!- we may expeet to establish one after the other that they will
oeeur as element of the final value of ssn. Our aim is that at any moment in
time, ssn will only eontain elements of its final value: they are the maximal
strong eomponents definitely found. Then we need ssnl for the remaining
nodes.

The initial eondition eorresponding to sal = empty is ssn = empty and
eaeh node of sn being a separate element of ssn 1. When we sueeeed in
establishing

ssnl = empty and sa2 = empty (4)

under invarianee of (3), the desired relation (1) has been established, sinee
the seeond term of (4) implies on aeeount of (2) that sa = sal.

Wehave not established yet the relation between the way in whieh the
nodes are divided over ssn and ssnl on the one hand and the ares over sal
and sa2 on the other. We shall maintain the following relations (5) and (6):

eaeh are originating in anode of ssn is in sal

eaeh are terminating in anode of ssnl is in sa2

(5)

(6)

Relations (5) and (6) are eompatible with the initial situation. Beeause
ssn = empty, there are no ares originating in anode of ssn and therefore sal
ean be empty (i.e. (5) is not violated) and beeause ssnl eomprises all nodes,
all ares should be in sa2, in aeeordanee with the initial eondition sa2 = sa
(i.e. (6) is satisfied).

Relations (5) and (6) are also eompatible with the final situation, beeause
then ssn will eomprise all nodes, all ares must be in sal, in aeeordanee with

24 EWD376

sal = sa (Le. (5) is satisfied), while (6) is satisfied beeause then both ssnl
and sa2 will be empty (see (4».

We observe that, beeause sal and sa2 have an empty interseetion, there
will be no ares originating in anode of ssn and terminating in anode of
ssnl. On the other hand, an are originating in anode of ssnl and terminat
ing in anode of ssn may be in either sal or sa2.

The strueture of our program beeomes, if we want to apply the funda
mental invarianee theorem for loops:

sal := empty; sa2 := sa;
ssn := empty; ssnl := "the set of all single node sets";
while ssn 1 =1= empty or sa2 =1= empty do

"transfer are(s) from sa2 to sal" andjor
"transfer node(s) from ssnl to ssn"
under invarianee of (3), (5) and (6)

od

Relation (5) allows us to simplify the last boolean expression: ssnl =
empty impIies that all nodes are in ssn, whieh implies that all ares are in sal,
whieh implies that sa2 = empty. Therefore it ean be simplified to

while ssnl =1= empty do

Relations (5) and (6), whieh may have eome as a surprise, have been
suggested by

Theorem 1. When the set 0/ nodes is subdivided into two sets nsA and nsB,
such that there are no ares originating in anode 0/ nsA and terminating in a
node 0/ nsB, then the set 0/ strong eomponents is unehanged when the ares (i/
any) originating in anode 0/ nsB and terminating in anode 0/ nsA are
removed and, seeondly, no strong eomponent eontains nodes /rom both sets.

Here the nodes in ssn play the role of those in snA and Theorem 1 teIls us
that the maximal strong eomponents they will give rise to eannot depend on
the ares still in sa2. Therefore they ean only depend on the ares in sal,
whieh have already been inspeeted. As a result eaeh element (i.e. a maximal
strong eomponent) of an intermediate value of ssn will be an element of its
final value.

In order to refine the repeatable statement we introduee a ehain of strong
eomponents (a ehain of sets of nodes), ealled "esn", empty at the beginning
and at the end of the repeatable statement. The transfer of anode from ssnl
to ssn will take plaee in two steps: first the node will be transferred
(individually) from ssnl to esn; at a later stage the node will be transferred

Finding the Maximum Strong Components in a Directed Graph 25

(together with an the nodes of the same maximal strong eomponent) from
csn to ssn.

The strong eomponents in csn are so by virtue of ares of sal and their
ehaining is performed by ares of sa1. More preeisely,

two sueeessive strong eomponents in csn are eonneeted by one
are from sal originating in anode of the predeeessor and
terminating in anode of the sueeessor (7)
no are in sal will originate at anode of an element of csn and
terminate at anode of a preeeding element in csn. (8)

The ehain csn has been introdueed as a tool for searehing for eycles, an
aetivity that is suggested by

Theorem 2. When a number 01 strong components can be connected via a
cyclic path, they belong to the same maximal strong component.

This theorem suggests that we try to extend the ehain at one end:
whenever we eneounter an are leading from its end element to a preeeding
element in the ehain a eycle has been deteeted, and an elements of that eycle
ean be eombined to form the new terminal element. We shall ean this
operation "eombine end elements of csn"; its purpose is to restore the
validity of (8).

When the ehain csn is non-empty, we investigate whether sa2 eontains an
are 1 having its origin in (one of the nodes of) the terminal element of csn.

If such an are 1 points to one of the nodes in ssn, it ean be ignored (on
aeeount of Theorem 1).

If such an are 1 points to anode in the terminal element of csn, it ean be
ignored as weIl -we knew aIready that the nodes in this terminal element
formed a strong eomponent.

If such an are points to (a node in) a preeeding element of csn, the end
elements of csn are eombined.

If such an are leads to anode in ssn 1, that n0ge is appended to the ehain
and will form, an by itself, the new terminal element of csn.

In all four eases the are 1 is transferred from sa2 to sa1.
If no such are exists, the terminal element of the ehain must be a

maximal strong eomponent of the final graph; it will be removed from csn
and added to ssn, whieh now grows by one element. This eonclusion, again,
is justified by Theorem 1. (Note. Here Theorem 1 is applied twiee: the
terminal node is a maximal strong eomponent beeause it has no outgoing
ares in the redueed graph that we get by removing all ares leading back to a
node of ssn after it has been established that ssn aIready contains maximal
strong eomponents for the total graph.)

26 EWD376

The structure of the repeatable statement -only starting when the chain
esn = empty and ssnl * empty- can be the following:

transfer an arbitrary element of ssnl and append it to an
initially empty chain esn;
while esn * empty do

if sa2 contains no arc f originating in anode of esn 's terminal
element

fi
od

then transfer esn 's terminal element to ssn
else transfer such an arc f from sa2 to sa 1;

if f terminates in (a node of) an element of ssn 1
then transfer that element from ssnl to esn

fi

else if f leads to (a node of) a preceding element of esn
then combine end elements of esn

fi

We have now to choose a way to represent the information. It is assumed
that the nodes are numbered from 1 through N. Because we intend to chain
nodes, it is a wise precaution to add "a virtual node" with number o.

In the representation of our sets of nodes we can exploit the fact that we
know that the elements of ssnl are single node sets. In ssn and esn our
elements are strong components; in esn we can number them from + I
upwards, in ssn we can number them from - I downwards and thus we
come to the following representation with an integer array sn[O: N]:

sn[i] > 0 means: node i is a member of element sn[i] of esn
sn[i] < 0 means: node i is a member of element sn[i] of ssn
sn[i] = 0 means: node i is (a node of) an element of ssnl
sn[O] = O.

In order to scan nodes we introduce for nodes in esn or ssn an integer
array pe[l: N], where for node i in one of the two sets of sets

pe[i] = j means: with respect to node i, nodej is the next oldest node in
the same set of sets; when j = 0, node i is its oldest
node.

In order to be able to trace these pe-chains we introduce two handles:

ye = the number of the youngest node in esn; when esn = empty, ye = 0
ys = the number of the youngest node in ssn; when ssn = empty, ys = O.

In order to speed up the search for an arbitrary node in ssnl for the
initialization of esn, we introduce the integer variable k, such that ssnl
contains no nodes with a number < k.

Finding the Maximum Strong Components in a Directed Graph 27

Further we introduce, in order to be able to fix the ordinal number of a
new element,

ee = the number of elements in esn
es = the number of elements in ssn

and, in order to decide whether ssnl is empty,

esl = the number of elements in ssnl.

In our program we have to establish whether sa2 contains an are f
originating from the terminal element of esn. We do so by investigating the
nodes of the terminal element and on aecount of the pe-ehaining we do so in
order of inereasing age in esn. Beeause quite a number of nodes may be a
member of the terminal element it seems a bit wasteful in time to start this
seareh always at the youngest node and therefore we introduee

yun = the number of "the youngest possibly unexhausted node" i.e. sa2
contains no ares originating in anode of esn younger than no. yun
(if any). Again, in the extreme ease, yun may be o.

Our algorithm presupposes that for eaeh node we ean find "its outgoing
ares". W e therefore assume that the ares are sorted in order of inereasing
starting node and that in that order their terminal nodes are listed in global
integer array t[l:number of ares], while the boundaries are given by integer
array b[O: N], such that b[O] = 0, b[N] = number of ares, and the nodes at
whieh the ares originating at node i terminate will be t[j], withj ranging

b[i - 1] <j";;; b[i].

For the representation of the partitioning sa = sal + sa2 we introduee

integer array e[O: N]

such that all ares originating in node i and belonging to sal will have an
ordinal number j satisfying

b[i - 1] <j";;; e[;)

and those in sa2 a j satisfying

e[i] <j";;; b[i].

We assume e[O] = 0 for the sake of safety (i.e. sa2 contains no ares
originating from the virtual node).

In the following program variable ft is used to identify the terminal node
of are f, while variable h is used for a wild eolleetion of short range
purposes. I know that this is a poor style; I too have my weak moments!

28 EWD376

begin integer array sn, e[O: N], pe[I: N];
integer ye, ys, ee, es, esl, yun, h, Jt, k;

{initialize sal and sa2}
e[O] := 0; h := 0; while h < N do h := h + I; c[h] := b[h - I]

00;
{initialize ssn and ssnl}

h := 0; while h..;; N do sn[h] := 0; h := h + Iod;
ys := 0; es := 0; esl := N; k := I;
while esl > 0
do
{seareh for anode k in ssnl}

while sn[k] *" 0 do k := k + I 00;
{remove it from ssnl and initialize esn with node k}

esl := esl - I; sn[k] := I;
pe[k] := 0; ye := k; ee := I; yun := k;

{note that at tbis moment node k is oldest, youngest, and youngest
possibly unexhausted node of esn}
while ee > 0
do
{seareh for the youngest unexhausted node of the terminal
element of esn}
while sn[yun] = ee and e[yun] ;;;. b[yun] do yun := pe[yun] od

{tbis loop will eertainly terminate, possibly withyun = O};
if sn[yun] *" ee

then {there is no are I in sa2 originating in the terminal
element no. ee of esn and therefore tbis terminal element
will be transported to ssn}

es :=es+ I;
while sn[ye] = ee
do sn[ye] := -es; h := pe[ye]; pe[ye] := ys;

ys : = ye; ye : = h
00;
ee : = ee - I; yun : = ye

else {e[yun] < b[yun], therefore the next are originating at
node no. yun will be transferred from sa2 to sal; tbis is
are/}

e[yun] := e[yun] + I; It := t[e[yun)); h := sn[ft];
{now It is the terminal node of are I and h = sn [ft] to
save dynamieally a few subseriptions!}

if h = 0
then {node It has to be removed from ssn I and to be

attaehed to esn}
esl := esl - I; ee := ee + I; sn[ft] := ee;
pe[lt] := ye; ye := It; yun := ye

elseifO<handh<ee

Finding the Maximum Strong Components in a Directed Graph 29

end

then {ft is anode of the non-terminal element
no. h of esn, with which the younger elements
have to be combined}

ee := h
{this ends the use of h as h = sn[ft]};

h := ye; while sn[h] > ee
do sn[h] := ee; h := pe[h]
od

{note that in combining, pe, ye and yun can
remain unchanged}

else {arc f points either to esn's terminal
element or to an element of ssn; in either
case it can be ignored}

fi
fi {the case that arc f existed has been dealt with}

fi {esn's terminal element has been inspected}
od {esn is again empty}

od {ssnl is empty, the computation is done};
{print the results; the maximal strong components appear num

bered in decreasing order}
while es > 0
do newline; printtext("maximal strong component nr.");

printvalue(es); printtext("consists of the nodes:");
while sn[ys] = -es do printvalue(ys); ys := pe[ys] od;
es := es - 1

od

Concluding Remarks

In order to avoid the usual misunderstandings it might be a good thing to
point out, once again, that the approach illustrated in this exercise does not
pretend to be an infallible cure against fallibility. We have tried two things:
we have tried to develop a program in a way that leads to a higher
confidence level than the one that can be reached when the designer" rushes
into coding" and we have tried to make the reader share our conviction
-strengthened by the above experience!- that the simultaneous develop
ment of the correctness proof gives indeed a strong heuristic guidance in the
process of shaping the program.

As the reader will have noticed we have not spent a single word of
explanation on the repeatable statements of the small innermost loops. I
think that this is in accordance with normal mathematical practice: the
reasoning has to be broken down in steps so small that they can be made

30 EWD376

"in confidence" and that a more detailed proof, a more detailed justifica
tion could be given when they are challenged, but that that should not be
done without compelling reason. We should not waste our time on trivia!

The situation at the innermost loops, where we deal with quite standard
coding techniques, is quite different from the situation at the outermost
levels, where we have to manipulate with concepts and relations cooked up
and discovered for the specific purpose of solving this specific problem: it is
at the latter level that the greater explicitness seems most urgently needed.
Also, it is in that part of the analysis and synthesis that the most heavy
demands are made upon the programmer's ability to express himself effec
tively.

Finally we draw attention to the fact that we did not need a single
example to explain what we were talking about or (even worse!) to discover
what the program should do. And this, of course, is as it should have been.

Acknowledgments

We express our gratitude towards J.A.G.M. Kerbosch and J.C. Wortmann
for bringing this problem to our attention and thereby presenting the
challenge.

Nuenen, 30th May 1973 EDSGER W. DIJKSTRA

EWD385
Trip Report E. W. Dijkstra,
Summer School Munieh,
July 25 to August 4, 1973

WeH, actually it was not Munich, but the litde town of Marktoberdorf,
which meant that upon arrival in Munich we had another two hours of
travel to survive and that upon departure we had to leave so early that I
bought a travel alarm clock just to be on the safe (i.e. "early") side, since I
had found the waking service of Hotel Sepp on previous tests umeliable! At
both occasions, the international trains were perfect and dead on time, it is,
for distances of that order of magnitude, the most civilized way of travelling
through Europe.

This NATO-sponsored Summer School is establishing quite a position in
the field. Last time there were about 80 participants, this year they could
accommodate 105, but the number of applications had been three times as
much! It was a difficult audience: it was large and highly inhomogeneous. I
always try to adapt my presentations to my audience as much as possible,
and for such a mixed audience this is always difficult. But during the first
three days I could not even try it, because they were very passive and
did not give any feedback. Part of that can be explained by the language
barrier -there were participants from 22 different countries, including
France- but not all of it. I had to give ten lectures (of 45 minutes each),
the last six -Le. after the weekend- were less of a monologue. I got the
impression that eventuaHy I reached practically a11 the participants.
Wladislav Turski and Alan Perlis had an equal share of the burden.

Turski (Warszawa, Poland) lectured under the tide "Morphology of
Data." What he tried to do seemed quite reasonable: he tried to separate
"naming conventions" on the one hand from storing on a (addressable)
medium on the other hand. But he suffered quite clearly from the pressure
of his Polish environment, where pure mathematicians are very much in
power and enforce their notational prejudices (probably justified for their

31

32 EWD385

own requirements) ruthlessly upon everyone else; I know that Turski has
suffered from this pressure, and that he has made a conscious effort to undo
its harmful effects as much as possible. Having heard his presentation I
must come to the conclusion that he has not fully escaped (yet).

Perlis (Yale University, USA) is quite a different person! He is fun to
listen to as long as you do not listen too carefully, for as soon as you start
doing that his words dissolve into loose talk, so superficial that after a while
it becomes annoying, his jokes excepted. His presence was valuable insofar
he provided the contrast, trying to make his case for "unstructured pro
gramming" and his presence was responsible for a number of discussions
and even arguments. But I have the feeling that the level of these discussions
could have been higher if someone else had provided that contrast. Brian
RandeIl (who is very good at such things) saved a few discussions.

Niklaus Wirth -who spoke also a little bit on behalf of Tony Hoare
spoke on "An Axiomatic Definition of the Programming Language
PASCAL". His presentations were very weIl prepared and it was a pleasure
to listen to him. He gave a striking demonstration of our increased powers
of annotating and explaining non-trivial programs! It was really impressive.
(The demonstration suffered slightly from the fact that the program he
showed was not very nice, and some in the audience found their thoughts
drifting away in the mood of "How should I solve that problem by means
of a program?") In other respects he was not convincing: in the design of
PASCAL the axiomatic definition did not playa significant role, and to give
an axiomatic definition was an afterthought. The result shows that and you
cannot conceal that.

Personal reasons prevented M. Griffiths of Grenoble from speaking as
scheduled, but we were lucky in having Per Brinch Hansen (California
Institute of Technology) as a substitute. He went through the highlights of
his recently published book "Operating System Principles" and he did that
much, much better than two years ago, when he covered the same material
in a very biased and even aggressive manner. Now he gave a neat, balanced
survey. It is a pity that he has a very monotonous voice; it is really soporific
and now I cannot even read one of his publications without hearing it!

Brian RandeIl gave a two-Iecture talk on the PEARL system, and did so
very nicely. (He had to, for its author, Bob Snowdon, was sitting in the
audience!). The remaining three speakers, I am afraid, failed to get their
message across the limelight; in one or two cases there was some doubt
whether there was a message ...

Having talked about factorization of a solution and having illustrated
this by comparing two different types of circuits found in clocked machines,
Iwanted to expose the audience to the design of a mouse that follows a
contour, because you can then meet that same factoring principle in a
completely different environment (and in its full glory, even!). I did not
quite know how to stage it: tlie whole crowd of 105 people seemed too large
for active participation. I announced "an interactive programming session",

Trip Report E.W. Dijkstra, Summer School Munieh, July 25 to August 4, 1973 33

announced that I had found two "intelligent terminals" -in the form of
David Redell and Paul McJones, both from Berkeley- and predicted a
successful session because our communication language (viz. English) was
"an interpretive language". (I was so cross with Al for all his platitudes; I
think that this ridicule was the only time I showed my temper in public!) It
was a very nice session, I was lucky in the choice of my "intelligent
terminals"!

Compared with earlier Summer Schools, there was a change. A greater
percentage of the participants seemed to have come with the rather stupid
hope, essentially, for a recipe for thinking, or under the false assumption
that "the good programming language" is the end to all your problems!
Who has taught them that nonsense? I observed this attitude most markedly
among the American and the Israeli participants (but as the French kept
their mouths hermetically sealed ... who knows?). This false and primitive
idea surfaced over and over again; in utter exasperation I recommended at
the beginning of my last lecture "A Guide to Positive Programming" by
Norman Vincent Peale ...

Another difference was caused by a drastic change (or shift) on the
German Academic scene. For years computing science has been neglected.
Since the term "Informatik" has been invented for it, the German govem
ment is backing the subject with all its force and marks: departments of
"Informatik" are mushrooming all over the country. And how did they staff
them? With what they had, pure mathematicians and automata theorists in
particular. I am afraid that the result is a disaster, at least for German
Computing Science. German Computing Science is in danger of being taken
over either by the mathematicians or by APL; in both cases the result will
be very much the same, viz. the end of German Computing Science!

I solved the convergence properties of a tricky cyclic relaxation problem
while the others visited mad Ludwig's castle Neuschwanstein. It came out of
my search for self-stabilizing systems.

Nuenen, 7th August 1973 DR. EDSGER W. DIJKSTRA

EWD386
The Solution to a Cyclic
Relaxation Problem

The problem solved in this note arose in connection with the (just initiated)
study of self-stabilizing systems.

Consider a circ1e and N points numbered from 0 through N - 1, placed
in an arbitrary order around the circumference. For "the adjustment of
point nr.i" we consider the shortest c10ckwise path along the circumference
from its predecessor -i.e. point nr.(i - l)mod N- to its successor -i.e.
point nr.(i + l)mod N-; the new position of point nr.i will be halfway (i.e.
the middle) of that path. In formula (taking the circumference of the circ1e
as unit) withpred = x[(i - l)mod N] and succ = x[(i + l)mod N]

x [i] : = if pred ,..;; succ then (pred + succ) /2
else «pred + succ + 1)/2)mod 1 fi

If we start doing adjustments, will the system converge to a stable state?
This is not necessarily the case if we do the adjustments simultaneously,

i.e. determine all the new positions in terms of all the old ones, as is shown
by the following examples.

N=3 N=4
t 0 1 2 t 0 1 2

x[O] 0 1/2 0 x[O] 0 3/4 0
x[l] 2/3 1/6 2/3 x[l] 0 1/4 0
x[2] 1/3 5/6 1/3 x[2] 1/2 1/4 1/2

x[3] 1/2 3/4 1/2

For both odd and even N we have an example that will oscillate with a
period 2. If, however, we do the adjustments one at a time in a fair random
order (i.e. without permanent neglect of certain points), then the system is
bound to converge.

34

The Solution to a Cyclic Relaxation Problem 35

Consider, instead of the N points, the N clockwise paths leading from
each point to its successor. After a point adjustment the two paths meeting
at that point will both be less than 1/2 and no future adjustment can ever
undo that! After adjustments all around the circle each path will be less
than 1/2, and from that moment onwards each triangle "i - 1, i, i + 1" is a
clockwise one. The total clockwise path from 0 to 1, from I to 2, ... , from
N - I to 0 will go around the circle a fixed number of times, m say
(0";;; m ,,;;; N /2). No adjustment can anymore change the value of m, from
now onwards we could even do simultaneous adjustments. The final state
will satisfy for all i

(x[(i + l)mod N] - x[i])mod I = m/N

The system converges linearly (imagine successive points connected by
spiral springs or rubber bands of equallength).

The above was written under the assumption that along the cir
cumference we had the continuum at our disposal, i.e. that the fractions x,
satisfying 0 ,,;;; x< 1, could be represented in arbitrary precision. Suppose
now that we have to represent the fractions x as integer multiples of l/p
(where we may assurne the integer p to satisfy p » N).

The extent to which the system converges seems to depend on how we
round off when necessary, i.e. when the clockwise path from predecessor to
successor turns out to be an odd multiple of l/p. If we impose the rule, that
rounding will always take place in the same cyclic direction (say "anti
clockwise"), then the following will happen.

With m defined as in the continuous case, define q and r by

m * p = q * N + r with 0 ,,;;; r < N

Of the paths p[i]leading from x[i] to its successor, (N - r) -the "short"
paths- will be of length q/p and r paths -the "long" paths- will be of
length (q + 1)/p. If p[i - 1] is "long" and p[i] is "short", adjustment of
point nr.i -with anti-clockwise rounding- will have the effect that the
predicates "short" and "long" have interchanged position. The short ones
will be travelling anti-clockwise through the cycle, simultaneously the long
ones will travel clockwise through the cycle.

The two types of paths travelling in opposite direction through the same
cycle makes it quite clear that if m * p is an integer multiple of N, the system
will converge to a completely stable situation.

Nuenen, 8th August 1973 DR. EDSGER W. DIJKSTRA

EWD387
Trip Report IBM Seminar
"Communication and Computers",
N ewcastle, Sept. 1973

It was a very mixed affair and I have not yet succeeded in sorting out my
feelings completely. Let me try.

There are two completely different views of programming. On the one
hand we have the (academic) study about the nature of the intellectual
challenge, on the other hand we have programming as it is done and can be
done by the hundreds of thousands that are called "programmers" today.
These are two completely different subjects, and when two groups are
talking about them as if it were one subject, unaware of the "twoness",
endless confusions arise. I have now witnessed this confusion so many times
that it does no more catch me unaware. During this seminar on "Communi
cation and Computers" there was a similar confusion; being less familiar
with that one, I only discovered it well after the Seminar had finished.

On the one hand there are the technical and logical problems connected
with the organization of the cooperation between two or more computers, so
far apart that by definition they are asynchronous. In this field there are
enough intriguing and logically very difficult problems to justify a seminar
to them. On the other hand the American scene presents us with a few large,
powerful bodies: the giant IBM forcing a de facto standard upon the world
of computing, "ma Bell" forcing in a very similar fashion a de facto
standard upon the world of communication and finally as a third (politically
very powerful) party the ARPA network, an achievement that, in spite of all
its patent shortcomings, will be a model for many future efforts, if only
because it has been such an expensive experiment.

Much of the discussion and the talks was really about the problem of
organizing fruitful cooperation -how to organize some sort of merge
between the now separate communication and computer industries, each
with their different pasts and tremendous vested interests. But this was done

36

Trip Report IBM Seminar "Communication and Computers" 37

in veiled terms, addressed to an audience of European academic computer
scientists! Some misunderstanding -to put it mildly- was only to be
expected.

The academic computer scientists were not quite sure whether the prob
lem really concerned them and their educational responsibilities, and I
cannot blame them either. From the rostrum the problem was approached
from an academic point of view as weIl, but. .. ! L. Kleinrock of UCLA gave
three excellent and inspiring tutorials on "Analytical Techniques for Com
puter Communication Networks". A highly gifted teacher, so gifted that he
made you forget that his dealing with the whole subject was very one-sided!
He showed queueing theory at work, unavoidably suggesting that the
contribution of mathematics should always have the form of "applying an
existing mathematical technique for solving a specific dass of problems".
The result is not inspiring for mathematicians: on the one hand most of the
results can be obtained with the aid of what Kleinrock characteristically
described as "baby queueing theory" and that was not too much: quickly
one had to turn to simulation! In another respect it was also misleading: his
stress on the quantitative aspects of the game -what else can you expect
from a queueing theorist?- tended to make the audience believe that the
logical problems were either solved or unimportant or nonexistent. (The
stress on the quantitative aspects is, of course, a very American attitude: this
time it was vigorously enforced by the really gigantic size of the investments
made by all sides. We don't really know what to do, but let us minimize our
cost/performance ratio nevertheless!) But he was a great lecturer and it was
a pleasure to see him at work.

Sandy Fraser, now at Bell Labs, did an excellent job. He was very
concerned about bringing communication and computing industries to
gether. (Let the universities, too, think about sound protocols: now all nets
are still "experimental" but what will happen in the next ten years will bind
us for the next 200 years.) He was in many ways bound; the fact that Bell
and IBM are engaged in a lawsuit of gigantic proportion required all sorts
of statements (from Ewan Page, when he was introduced, and from himself,
when he started). As far as his technical message was concerned, he was also
very careful -alarmingly careful, one might say- : he made the impres
sion of arguing that all technical considerations pointed in a direction
opposite to the store-and-forward techniques chosen for the ARPA network,
but dearly he wished to avoid making all ARPA fans his dedared enemies.
It is somewhat sickening that an undoubtedly gifted, honest and sensitive
scientist like Sandy must so constantly be on his guard. He, too, is a gifted
speaker, very different from Kleinrock, but also and always a pleasure to
listen to. Kleinrock and Fraser were the only two speakers that received an
applause at the end of their last lecture; and they fully deserved it.

The other two speakers that gave three one-hour lectures were NNo from
IBM, Yorktown Heights, and NN], SRI, Menlo Park. NNo spoke undiluted
IBMerese for three full hours and I am not going to give any further

38 EWD387

comments; I only heard the first hour -like many participants- and that
was enough (too much). Because I had an urgent letter to write, I missed
NN1's first lecture -it was not really a lecture, he showed a movie- but I
attended his next two performances. He was not only terribly bad, he was
dangerous as weIl, not so much on account of the product he was selling
-a sophisticated on-line text-editor that could be quite useful- as on
account of the way in which he appealed to mankind's lower instincts while
selling it. The undisguised appeal to anti-intellectualism and anti-individu
alism was frightening. He was talking about his "augmented knowledge
workshop" and I was constantly reminded of Manny Lehman's vigorous
complaint about the extremely "knowledge-oriented" American educational
system, which fails to do justice to the fact that one of the main objects of
education is the insight that makes quite a lot of knowledge superfluous.
(Sentences like "the half-life of a fresh university graduate is five years" are
only correct if you have crammed the curriculum with volatile knowledge,
erroneously presented as stuff worth knowing.) His anti-individualism
surfaced when he recommended his gadget as a tool for easing the coopera
tion between persons and groups possibly miles apart, more or less suggest
ing that only then are you really "participating": no place for the solitary
thinker. (Vide the sound track of the Monsanto movie, showing some
employees, "No geniuses here: just a bunch of average Americans, working
together."!) The two talks I heard were absolutely insipid, he had handed
out a paper "An augmented knowledge workshop."; the syntactical ambigu
ity in the title is characteristic for the level of the rest of the article. As a
result of his presentation, I told a few participants that I had found, thanks
to this seminar, a new software project. "Because in the years to come there
will be a crippling shortage of competent programmers, I shall develop a
software package, called "The Instroction Interpreter". From the moment
of its completion, users no longer need to program, they just give their
instroctions to the system." (This is only an edited version of one of the
paragraphs of the NN1 article!) I would have liked to start a discussion with
him, but I knew that my lack of mastery of the understatement would have
made me too rode for English ears if I had spoken. Finally -after a more
than two-hour effort in the middle of the night in sorting out his muddle
I decided that it was not worth the trouble.

Besides the four main speakers there were six others who gave one-hour
presentations.

On the schedule was mentioned Mr. T.R.M. Longam from IBM Interna
tional Information Services. He was prevented from coming and his place
was taken by one of his staff members, whose name I failed to catch. He did
not speak IBMerese and gave a clear survey of intent and scope of his
organization. In my memory will stick the tremendous amount of equipment
he had in his place: 4 IBM360 model 65, a similar number model 50 plus
peripheral gear. From the type of work he described, one could not fail to
conclude that the arithmetic capabilities of these machines could hardly be

Trip Report IBM Seminar "Communication and Computers" 39

expected to get very tired, and presumably they spend an awful lot of time
idling or doing internal red tape. But he was a good speaker.

J. McNeil of Logica Limited gave a talk on "Graduates in the Computer
Industry: A ConsuItant's View." It was a talk on a similar topic as covered
by Alex d'Agapeyef a few years earlier but McNeil's presentation was more
convincing. On the whole he was happy with graduates. He made it quite
clear that their ability to write another compiler for a baby language was in
his eyes not their most important asset, because the range of their activities
was much broader. He complained -and I can weIl believe that he was
fully justified in doing so!- about their crippling inability to use English
effectively. In the discussion afterwards no one took up that point; at some
stage I feit inclined to do so, but the moment passed. Nice talk.

There were two talks from PTT officials, a management talk by Mr. G.
Dale from the English PTT and a technical one by ir.A. Boesveld of the
Dutch PTT. The first speaker dealt with international politics, the second
one described Stored Program Controlled Telephone Exchanges. As far as
the clarity and truthfulness of the picture as given by Boesveld is concerned
he did an excellent job; the programming techniques applied seemed to be
rather old-fashioned, but my guess is that that is typical for the field. (As a
Dutchman it was nice to hear that the Dutch telephone system ranks high in
quality and low in tariff among its European fellow systems.) After both
talks the audience misbehaved, at least to my standards; the audience
started to attack the (his) PTT for monopolistic attitudes, misuse of power,
failing public relations etc. I understand that it can be quite frustrating to
get PTT's permission to hook an unusual gadget to their lines, but this
seminar was not the proper place or moment to air(?) those frustrations.

Mr. R. Scandebury from the NPL, Teddington, described the -again
experimental!- NPL Data Communication Network. The subject, I gather,
was appropriate. It was, however, a litde bit too obvious that the speaker
had done so before; it was a nice, polished presentation, but the speaker
could not get excited about his subject, nor could his audience. I always like
to listen to him lecturing, but that is because I like his English.

I used my hour to talk not on my announced subject, but on the
many-mosquito elephants in general and the hyperfast fourier transformer
in particular. (Patent restrictions prevented me from announcing this sub
ject when I was invited to talk.) My subject fell a litde bit outside the scope
of the seminar (so did McNeil's) but I feit that this was not too bad in view
of the background of the audience. Although I thought that I did a
reasonably competent job in explaining it, they found it very difficuIt to
follow and did not seem to be excited. This amazed me because, in my
introduction, I had told them the various reasons why I had chosen to talk
on this subject, among them the fact that elephant design had turned out to
present problems that had stretched my mathematical gear, my notational
techniques and my conceptual abilities to the limit. But perhaps it was a
mistake to present a new intellectual challenge, even to an audience consist-

40 EWD387

ing almost exclusively of university professors. (When 1 showed it -in strict
confidence of course!- earlier tbis year to Peter Naur, at the end of my
presentation he looked silently to the blackboard for more than a minute
and then exclaimed "lezus!". My sad guess is that there were too few Peter
N aurs in tbis audience ...)

That was the conference. Before it started we had "an evening" at the
horne of Ewan Page, the next aftemoon, just before dinner, a sherry party,
the next aftemoon an excursion to Hadrian's wall -with a true archeologist
explaining all about one of the excavations; he was an absolute delight!
and the next evening the closing banquet. So we were kept quite busy!

1 wonder whether the seminar as a whole was a success. If you set
"instruction" as your goal, then 1 gather that it was successful. The
academic computer scientists saw stuff from a closely related field that was
largely new for them. The question of course is what are they going to do
with it. Mostly notbing, 1 am afraid. Besides that, 1 observed a general
"malaise". On the whole, technicalor scientific excitement was lacking -in
spite of Kleinrock's superb lecturing technique!- and the little bit there
was damped by the feeling that eventually political considerations would
force the "wrong" decision anyhow. In that sense it was not only not
exciting, it was even depressing. Is computing science nearing its comple
tion? Is computing practice settling down in a way beyond recovery? Or are,
as a result of current circumstances, university professors tired and discour
aged?

Nuenen, 12th September 1973 DR. EDSGER W. DIJKSTRA

EWD391
Self -Stabilization in Spite of
Distributed Control

A systematic way for finding the algorithm ensuring some desired form of
co-operation between a set of loosely coupled sequential processes can in
general terms be described as folIows: the relation "the system is in a
legitimate state" is kept invariant. As a consequence, each intended individ
ual process step that could possibly cause violation of that invariant relation
has to be preceded by a test that it won't do so, and depending on the
outcome of that test the critical process step is either caused to take place or
it -and with it the process of which it is a part- is delayed until a more
favourable system state has been reached. With a suitable choice of the set
of legitimate states one can indeed introduce the rule that a critical process
step will be delayed only as long as its execution would lead to violation of
the corresponding invariant relation.

The resulting design is readily implemented if the different sequential
processes can be granted mutually exclusive access to a common store in
which the current system state is recorded. Then a relation between (the
values of) the variables in that commonly accessible store is the core of what
we could call "the centralized control".

A complication arises when there is no such commonly accessible store
and "the system state" must be recorded in variables distributed over the
various processes, and furthermore the communication facilities are limited
in the sense that each process can only exchange information with "its
neighbours", a (possibly smalI) sub set of the total set of processes. (We can
view the processes as nodes of a connected graph in which each of the
(sparse) set of edges denotes the neighbour relation.) The complication is
that a node's behaviour can only be influenced by the part of the total
system state description that is available in that node: local actions taken on
account of local information must accomplish a global objective. Such

41

42 EWD391

systems (with what is quite aptly called "distributed control") have been
designed, but all such designs I am familiar with are unstable in the sense
that, when once in an illegitimate state, they could remain so forever. I call a
system "self-stabilizing" when, regardless of its initial state, it is guaranteed
to arrive at a legitimate state in a finite number of steps. (Whether the
property of self-stabilization is interesting as astart procedure, for the sake
of system robustness, or merely as an intriguing problem, is a question that
falls outside the scope of this article.)

Unable to decide on theoretical grounds whether non-trivial self-stabiliz
ing systems with distributed control could exist at all, I decided to try to
design one under the following constraints and objectives.

We consider a system built from N + 1 finite state machines numbered
from 0 through N. (The state space for the total system is then the Cartesian
product of the N + I individual state spaces of the respective machines.)
The machines are arranged in a ring, i.e. for 0,,;;;; i < N, machine nr.i has
machine i + 1 as its right-hand neighbour, and machine N has machine 0 as
its right-hand neighbour.

In the middle of the ring stands ademon, each time giving, in "fair
random order", one of the machines the command "to adjust itself'. (In
"fair random order" means that in each infinite sequence of successive
commands issued by the demon, each machine receives the command to
adjust itself infinitely often.) Upon "adjustment" a machine goes into a
(new) state, which must be a function of its own (old) state and the current
states of its (two) neighbours.

Furthermore, as a function of its own state (and possibly of the states of
its neighbours) a machine may be "privileged". The legitimate states are
defined as those states in which exactly one machine is privileged and for
which all possible successor states are legitimate as well; furthermore it is
required that then the privilege will rotate around the ring.

SIDE REMARK. I was hoping for an existence proof of self-stabilizing systems
with distributed control: a ring is then one of the most natural, simple
connection graphs. My choice of legitimate states, viz. requiring conver
gence towards a solution of the mutual exclusion problem, is understand
able for historical reasons [1], [2], [3], [4], it is also justified by its central
position in the whole field of controlling co-operation between loosely
coupled processes. Finally, the choice of the demon was suggested by a
recent experience with a cyclic relaxation problem in which "fair random
relaxation" would converge to a limit, while simultaneous relaxation could
lead to oscillation (EWD386, unpublished). So much for the justification of
the problem choice.

Again I beg my intrigued readers to stop reading here and to try to solve
the stated problem themselves, for only then will they (slowly!) build up
some sympathy with my difficulties: the problem has been with me for
many months, while I was oscillating between trying to find a solution

Self-Stabilization in Spite of Distributed Control 43

-and many an at first sight plausible construction tumed out to be wrong!
- and trying to prove the non-existence of a solution. And all the time I
had no indication in which of the two directions to aim, nor of the
simplicity or complexity of the argument -if any!- that would settle the
question.

* * *
The crucial observation is that, in general, the problem cannot be solved

if, in addition, we require our machines to be identical. For if the number of
machines is non-prime, our starting situation can have a cyclic symmetry of
degree n (2 .;;; n .;;; N /2) and if then the demon -and he is free to do so!
gives his first n commands equally spaced around the ring, the cyclic
symmetry will not have been destroyed. If the demon continues with such
fair (but nasty) behaviour, we shall never reach the state after which,
forever, a single machine will be privileged. Making not all machines
identical can be accomplished in two extreme ways: either by making them
all different or by making one exceptional. In view of our obligation to
enforce asymmetry, one exceptional machine and all others mutually equal
s.eems the most promising choice.

Secondly, it is not apriori excluded that the nett effect of the command
"adjust yourself' is nil, viz. that the new state of the machine to which the
command was given equals its old state. In a legitimate state we have no
particular desire to let the adjustment command have any effect when given
to a machine far away from the privileged one. To simplify matters we can
look for a solution in which the adjustment command has only effect when
directed towards a machine that at that moment is privileged, and the result
of whose adjustment will be that it loses its privilege. When now the
function "privileged" is chosen such that at least one machine must be
privileged, then "dead ends" are excluded apriori: the ring will remain
alive, and we can concentrate on the requirement that the system converge
to the state from which a single privilege will rotate past all machines.

Thirdly, we may feel tempted to introduce some sort of counter, but
because we are confined to finite machines, true counters are excluded and
the best we can hope for are counters counting modulo K, where K is some
sufficiently large constant (certainly > I). For two counter values modulo
K, the maximum or minimum is not defined and we cannot hope to
establish progress towards the legitimate state because some "maximum
counter value" decreases. But equality and a successor function that can be
applied a limited number of times without leading to ambiguity are well
defined. This suggests defining the function "being privileged" in terms of
equality of states.

In terms of equality we can define a function "being privileged" such
that at least one machine is privileged quite easily when bearing in mind
that one machine -let it be machine 0- should be exceptional. Let for
I .;;; i .;;; N machine i be privileged when its state differs from that of

44 EWD391

machine i-I, i.e. when x[i] 7'= x[i - 1]. We choose this -rather than the
other way round- because now non-privileged implies x[i] = x[i - 1] and
equality is transitive: in other words, when all machines except machine 0
are non-privileged, x[O] = x[N] and when we define this as the condition
for machine 0 being privileged, our requirement of at least one machine
being privileged is therefore met.

Furthermore we had suggested that adjustment would cause the machine
in question to Ioose its privilege. For the normal machines (l 0;;;; i 0;;;; N) we
have no freedom anymore: adjustment of machine i means

"if x[i] 7'= x[i - 1] then x[i] := x[i - 1] fi"

For the exceptional machine, 0, I now suggest

"if x[O] = x[N] then x[O] := (x[O] + I)mod K fi"

and it is only here, where a new state has to be generated, that it becomes
significant that we consider the machine states x as a counter modulo K.

To start with, we remark that when a machine "fires" -if we may use
that term for the non-nil adjustment that takes place when the demon gives
the command to a privileged machine- it loses its privilege, it may give the
privilege to its righthand neighbour and to no one else. Because at least one
machine must be privileged, firing of the only privileged machine will
always give the only privilege to its righthand neighbour: once in a Iegiti
mate state the system wiH remain in a legitimate state and the privilege will
rotate around the ring.

Furthermore: suppose that the exceptional machine is not privileged, i.e.
x[O] 7'= x[N], then in a finite number of commands it will become privi
Ieged. For Ietj be the minimum value such that x[j] 7'= x[O]; becausej is the
minimum value, x[j - 1] = x[O] and therefore x[j] 7'= x[j - 1], i.e.
machine j is privileged. In a finite number of commands the demon will
point to it, thus increasingj if j < N or making x[N] = x[O] if j = N. i.e.
making the exceptional machine privileged. So the exceptional machine will
continue forever to get the opportunity to fire.

Let us now investigate what happens when we start the system in an
arbitrary state. When the exceptional machine fires for the first time, we
colour its new state blue and all other states white; from then onwards each
state created by the exceptional machine or copied from a bIue state by a
normal machine will be blue as weH. If h is the number of times the
exceptionaI machine fires while x[N] is still white, then -because K > 1-
h will satisfy h 0;;;; N: after the first firing, the copying process along the
chain of normal machines can suppIy machine N at most with another
N - 1 further white states, differing in succession.

Without Ioss of generality we could have chosen initially x [0] = K - 1. If
K > N, then the first N firings of the exceptional machine have created the
bIue states from 0 through N - 1, and scanning the blue states, starting at
the exceptional machine and going to the right, we find a sequence of

Self-Stabilization in Spite of Distributed Control 45

non-increasing blue x-values. At the next firing of the exceptional machine
with x[O] = N - 1, also x[N] = N - 1 must hold. At that moment, how
ever, x[N] must be blue as wen and therefore all states must be = N - 1,
Le. the system has arrived in one of its legitimate states. And this completes
the proof for self-stabilization provided K> N (and, for smaller values of
K, counter examples kill the assumption of self-stabilization).

* * *
So far, so good, but one may object to using a rather powerful demon

that may be very awkward to implement. Can we eliminate that centralized
agency, can we replace it by "a distributed demon"?

Each variable xli] is only inspected and assigned to by machine i and
only inspected by its right-hand neighbour. We assume each variable xli]
equipped with its own, private, two-way switch, which excludes simulta
neous access by the two neighbours it connects. And we assume that the
machines win adjust themselves with a finite speed and a finite frequency,
instead of waiting for the demon's command. Does it work? Amazingly it
does without any further refinements.

Two simultaneous adjustments of non-neighbouring machines have no
mutual interference at an. An adjustment by the exceptional machine
cannot suffer from simultaneous activity of its lefthand neighbour N,
because x[N] is inspected only once per adjustment. But adjustment of a
normal machine i, although possibly inspecting xli - 1] twice during a
single adjustment, cannot suffer from its lefthand neighbour activity either:
if xli - 1] changes its value between the two inspections, the first value
differed from xli]; if the second value differs from xli] as wen, the program
behaves as if this value was also offered the first time, while if the second
value equals xli], the assignment has no effect and it is as if the adjustment
had not taken place at all!

Conclusion

Self-stabilizing systems with distributed control do exist in the sense that
local decisions force the system towards satisfying and then maintaining a
global requirement. In particular, local mutual exclusion is a sufficient
building block for eventually achieving mutual exclusion globally.

References

[1] Dijkstra, E.W. Solution of a problem in concurrent programming control.
Comm. ACM 8, 9 (Sept. 1965),569

[2] Knuth, D.E. Additional comments on a problem in concurrent programming
control. Comm. ACM 9, 5 (May 1966),321-322

46 EWD391

[3] de Bruijn, N.G. Additional comments on a problem in concurrent program
ming control. Comm. ACM 10, 3 (March, 1967)

[4] Eisenberg, M.A. and McGuire, M.R. Further comments on Dijkstra's concur
rent control problem. Comm. ACM 15, 11 {Nov. 1972),999

EWD407
Acceptance Speech for the AFIPS
Harry Goode Memorial Award 1974

Before focussing on today's occasion, viz. my receiving the AFIPS Harry
Goode Memorial Award, I would like to say a few things about awards and
getting them in general. Y ou see, it has been argued that the whole system
of giving awards and bestowing distinctions is obsolete, and that therefore
we should stop doing so.

One argument in favour of abolition is that it is so difficult to select the
recipient in all fairness, both fairness to those candidates that don't get the
award and fairness to its past recipients. The argument is that nearly always
one is faced with either too many or too few eligible candidates. I cannot
regard this as a valid objection: something cannot be wrong just because it
is difficult to do it well! Besides that, the past history of the Harry Goode
Memorial Award has shown the way out of this dilemma: the abundance or
lack of suitable candidates has resulted in a shared award in some years and
no award at all in other years. That such a wise policy maintains and even
enhances the value of the distinction is something of which -as you can
guess- I am painfully aware.

A next argument in favour of abolition is that they are superfluous,
because one only wants to give them to first-rate scientists, and they are
sufficiently known from their work anyhow. But are they? WeH, certainly in
some circ1es, inc1uding the selection committee. But a wise committee
realizes that such distinctions also act as signposts, as a kind of reading
guide for the general public, and I would not like to deprive responsible
bodies of such means of exerting a hopefully beneficial influence. For the
recipient that is aware of this aspect, the whole happening becomes some
what embarrassing and perhaps even frightening, but that is his problem.

A third objection against the whole award system is that the distribution
of fame suffers, by its very nature, from a buHt-in instability, so why

47

48 EWD407

aggravate it? The only thing you do is to make the already famous still more
famous! But in all honesty: "What else can you do with a famous man?".
To be serious, underlying this last objection is the doubt as to whether
"fame" as an institution in our civilization is a good thing or not. I think it
can be a good thing. There are all sorts of things that should be said but will
only be notieed when said by someone supported by farne. We may not like
this state of affairs, but for the time being it seems a fact of life. Fame
creates responsibility at both sides; the famous have the obligation to decide
wisely when, where and how to open their mouths, their audience has the
complementary responsibility not to accept everything they say unchal
lenged, just because a famous man has spoken. Trying to abolish farne is
trying to shrink from those responsibilities, and I do not think that our
civilization should do that.

In short, I am greatly in favour of honours, titles, awards, distinctions,
golden medals etc. and you find in me not only an experienced, but also
enthusiastic recipient!

So much about awards in general; now about getting them. When such a
distinction hits you, and particularly when this happens during one of those
agonizing periods of doubt and despair, it can be an encouragement
stronger than I can describe it in words; it can revive one to the extent that
suddenly one can hear again the angels singing in one's heart. It can evoke a
frighteningjoy And when it happens to you, I must warn you not to be
disappointed when you discover that you can share this joy with only very
few people: again you will find yourself very lonely

Let us now switch from the general considerations to this specific
occasion. I interpret this granting of the Harry Goode Memorial Award as a
symptom of a broadening recognition of the relevance of a cause to which I
have devoted more than the last decade of my life, and as such it is very
gratifying. I have not been the only one to promote it, but I am willing to
accept the point of view that I have been its principal advocate and in that
capacity I accept the Award in name of all those colleagues, known or
unknown, who have contributed. The cause in case is the conviction that the
potentialities of automatie computing equipment will only bear the fruits we
look for, provided that we take the challenge of the programming task
seriously and provided that we realize that what we are called to design will
get so sophisticated, that Elegance is no longer a luxury, but a matter of life
and death. It is in this light that we must appreciate the view of program
ming as a practical exercise in the effective exploitation of one's powers of
abstraction. It is in this light that we must appreciate all current efforts
towards raising the level of confidence in the correctness of our programs,
the reliability and robustness of our machines, all efforts to discover the
intellectual disciplines needed for controlled design.

We are in the midst of an exciting process of c1arification, of improve
ment of our understanding of the true nature of the programming task and
its intrinsic difficulties. A few notes of warning, however, are not out of

Acceptance Speech for the AFIPS Harry Goode Memorial Award 1974 49

place, because, to my great regret, already now progress is being oversold.
Simple souls have been made to believe that we have a retail shop in
Philisopher's Stones that, by magie, will eure all diseases; in a few years
time it will, of course, become apparent that there are still a few diseases
uncured and then the same simple souls will denounce us as quacks.
Secondly, as one may expect, programming discipline reflects itself in a
coding discipline, but this does not justify the expectation that the problems
of programming can be solved by a few measures such as a new, clean
programming language or a new management structure or a new mechanical
aid! Such measures may assist, certainly, but only provided that we do not
overestimate their significance.

I would like to end my brief acceptance speech with a quotation from the
English artist William Blake, who 1ived from 1757 until 1827:

"He who would do good to another must do it in minute particulars
General Good is the plea of the scoundrel, hypocrite and flatterer
For Art and Science cannot exist but in minutely organized particulars."

I thank you for your attention.

PROF. DR. EDSGER W. DIJKSTRA

EWD427
Speech at the Occasion of an Anniversary
BY EDSGER w. DIJKSTRA

Ladies and Gentlemen!

It is my pleasure and privilege, as Chairman of the Board of "Mathe
matics Inc.", to address you, its shareholders, at the 10th Anniversary of our
Company. At tbis occasion it seems befitting to give you a short survey of
its illustrious bistory.

All of you, of course, know how the company was founded, when three
young, eager and enterprising mathematicians left their common employer,
dissatisfied as they were with its purely commercial objectives and also
convinced that, on their own, they could make much more money. And
right they were!

We are all here as witnesses of the fact that it was not the inside
information they took with them, but the vigor of the fresh young organiza
tion they founded, based on professional competence only, that made the
enterprise the financial and scientific success their initiative deserved. Their
native abilities were, of course, supported by keen insight into the problems
and possibilities of their former employer's market, but it clearly needed
people of their keen intellectual perception to see that the old four-colour
problem -almost forgotten to be a problem!- could serve as the basis and
starting point of a business as successful as ours.

Up till that moment a11 cartographers had always thought that they
would never need more than four different colours on their maps. Similarly,
eye tests for colour sensitivity of pilots and sbip captains had never required
the ability to distinguish between more than four different colours. It was in
tbis sensitive area of map making and traffic by air and sea that these three
gentlemen pointed out that up to that moment the sufficiency of the number
"four" was no more than a mere assumption that could be killed by the first
counter-example.

50

Speech at the Occasion of an Anniversary 51

In view of the reorganizations that would be needed when a fifth colour
would be discovered to be necessary, a great nervousness was aroused and
at that moment the young company saw the possibility of one, or possibly
two contracts in connection with the four-colour problem. A quick but
thorough piece of market research was launched in order to discover where
the greatest opportunities would lie: would it be in the proof that four
colours would always suffice or would it be in the proof that occasionally
five (or perhaps even six!) would be needed? For the first product they had
the support of the Map Makers Association and of the International Union
of Airline Pilots, for the second product the support of printing ink
manufacturers and some small shipping companies that would like to use
the resuIt as a means of getting rid of a few of their older captains. The
critical question, of course, was which of the two products would be
preferred by the Navy and the Air Force. As luck would have it, the needs
of the latter two pointed into the same direction and within two months,
based on solid contracts with both the military and the civilian, our
Company was founded.

In its earliest time it was beset by a11 problems of a young and growing
company: moving from modest dwellings to more sumptuous quarters,
readjusting the planning, the budget etc. and, as was to be expected, after
the almost canonical period of nine months, serious disagreement between
the three founders caused one of them to leave the Company and to start all
by hirnself. His parting -I am happy to say- did not create any
ill-feelings: he still owns apart of the company's stock and occasionally he
acts as independent consultant. The disagreement was on planning.

The remaining two directors feIt that a first working version of the Proof
could be delivered 27 months after the contract had been signed and this
planning was not reconsidered until the 12th month. At that critical stage it
became apparent that the project had suffered from two misfortunes. Upon
doser scrutiny one of the smaller Proof Modules had presented difficulties
that, with the then present state of the art, proved to be unsurmountable.
For a few weeks the company hesitated between two different courses of
action, either to redesign the interfaces between the Proof Modules such as
to make each of them more manageable, or to launch a research effort that
would yield the technology enabling us to deal with the obstinate, unruly
Module. As some of you will remember, this was the Company's most
critical moment, not in the least because each course of action was preferred
by one of the two remaining directors.

Within a few weeks, however, one of them managed to get the Navy's
support for his approach, as a resuIt of which the other director got the Air
Force's support the next day. Of course this meant doubling the Company's
size, a move to new quarters and all that: the Company's two Divisions,
I am happy to say, work together in full harmony and the Board was very
happy to see the broadening in scope: a one-product company is always
somewhat vulnerable.

52 EWD427

A second misfortune -that really could not have been forseen and for
wbich we cannot blame our Company- was that two Universities failed to
fulfil their obligations: in January they had accepted the obligation to
produce at the end of the academic year a given number of brilliant
mathematicians. At the end of term time the two Universities, however,
de-committed themselves in the most shameful manner; since there was no
written contract we could not sue them. But tbis is typically what happens
to young companies only: we have leamed our lesson and since the second
year of our existence our contracts with Universities as regards the delivery
of brilliant mathematicians protect our interests so weIl that, as a matter of
fact, we often prefer to recover the damages.

We had to redo our PERT-planning and we had a hard time explaining
to our clients that the first delivery of a Proof had been re-scheduled at
month 35 instead of 27, but we succeeded. A next critical moment occurred
when that second deadline was approaching. In the meantime, however, we
were more firmly established. Firstly we could point to the fact that we had
over 200 mathematicians working on the project, secondly we had been able
to reshape the decommitment of the two Universities into an advantage: as
they felt somewhat guilty, pressure could be exerted to make them our first
two so-called "Institutional Members" of our organization. As the two
Universities in question were both very influential and also anxious to share
the responsibility, we had 12 Institutional Members -7 of wbich were
weIl-known- by the time that the 35-month deadline approached.

As a result it was not too difficult to appoint a fully independent
Supervisory Board that was willing to assert that the 35-month deadline
-the result of youthful optimism and all that- had to be postponed: at
the modest price of a few megabucks we bought the officially approved
postponement until month 48.

When that deadline approached we indeed delivered the first release of
the Proof. Admittedly it contained still a number of bugs, but the Company,
in the meantime, had grown up to 350 mathematicians and was fully
confident that, with the aid of the trouble reports coming from the field, it
would get the Proof basically straightened out witbin the next four releases,
a confidence that, as you all know, tumed out to be fully justified.

The Proof of the four-colour conjecture tumed out to be a most success
ful product of the Company. After our first customers had reported that, on
the whole, they could live with it, general confidence grew and at month 75,
shortly after our tbird release, the number of customers had grown by a
factor of three. The more extensive field testing, leading to more experience
and trouble reports, was met by a healthy growth of the Company wbich at
the age of six years had grown to 720 brilliant mathematicians.

Although the Proof was not yet fully completed, it became obvious that
with new products we had to open new markets. It was not quite obvious
wbich. The progress with the four-colour problem eventually had been so

Speech at the Occasion of an Anniversary 53

rapid that the accompanying decrease of its personnel budget came some
what as a surprise to our young management that had had no earlier
experience with projects in the stage of successful completion. Again we had
a hectic period: should we fire the surplus mathematicians with the risk of
not having them at our disposal when we would need them for our next
project?

In the meantime, the government was so heavily committed that a few of
its organizations and persons, who first had been our foes, could be turned
into our friends at a price modest compared to what our Company gained in
terms of continuity and stability. It was observed that for Pythagoras'
Theorem at least 100 different proofs were hanging around, and practically
all incompatible with each other! We managed to lend 150 mathematicians
on a temporary basis to the appropriate Standardizing Body to sort out that
mess and decide upon a Standard Proof for Pythagoras' Theorem. And as
you all know, a few of our Institutional Members have been most successful
in rejecting with their Academic Authority all constructive proposals for a
Standard, thereby prolonging the proceedings until, within the Company, a
new project would be weIl on its way. What did I say, a new project? No!
Two projects even!

The Company hesitated between Fermat's Last Theorem, Goldbach's
Conjecture and Riemann's Hypothesis. After careful market research Fermat
and Goldbach -having more appeal to the man in the street- proved to
be more promising than Riemann at tbis stage. As they seemed equally
profitable, both were selected.

Now we have our 10th Anniversary: the four-colour problem has been
nearly solved, for Goldbach's Conjecture and Fermat's Last Theorem we
have solid contracts and the size of our Company has grown to nearly a
thousand! Y ou, shareholders, are of course mostly interested in the Com
pany's growth potential. To you I can only describe it as "magnificent"!
Know your shares supported by the loyal devotion of one thousand brilliant
mathematicians, by a Company that, by its earlier successes, has established
itself firmly in the market place. We have often been copied, but never been
equalled! "Semper floreat et crescat Mathematics Inc!"

(Applause.)

Nuenen, 16th June 1974

EWD442
Inside "Mathematics Inc."

From the private correspondence of the Chairman of the Board:

"In passing it is a pleasure to inform you that Mathematics Inc. fully lives
up to its device "Semper floreat et crescat." Recently, the chairman of its
board has been invited to deliver the keynote address at the 108th Annual
Meeting of the International Federation of Mathematical Societies IFMS, to
be held in the fall of 1976 in Loempia, the capital of Angora. In order to
reflect this international recognition we are considering moving to more
sumptuous apartments, viz. the top twelve floors of the Hosanna Building.
But the negotiations are very difficuIt, as the even floors are owned by
Mr. J. Simpson -not the well-known J.F. Simpson,just J. Simpson- while
the odd floors are the property of a certain Mr. Hayes, Mr. Simpson's
father-in-Iaw's brother, a very old gentleman who considers himself a keen
businessman. His price is exorbitant and his conditions are utterly prepos
terous: currently he wishes to impose upon our personnel that they will only
use the toilets on Simpson's floors! To appease the old gentleman we may
have to install -at our expense, of course- a Toilet Flushing Water
Recycling System; I have already contacted an architect. Mr. Hayes, how
ever, is already 87 and his health, I am told, is not too good.

But as you will understand, all these negotiations, time-consuming as
they are, make me a very occupied man, and whether I can accept the IFMS
invitation depends on whether I can find a free weekend to write my
address; the deadline is 1st October 1974 (in duplicate, double-spaced)."

From an address to the senior staff members:

"As a token of our deeply feit gratitude for what he has done for the
Company we shall send a large bunch of orchids to Mr. Hayes, the weary
traveller who has, at last, reached his final destination "

54

Inside "Mathematics Inc." 55

From the minutes of the Board of Direetors:

"Our Manager International Promotion has reported politieal troubles in
some countries, eaused by the fact that in our Broehure MX-783-5456-a:
"What Counts what Counts", a referenee is made to "Arabie Numerals"; a
quick investigation has shown that a switeh to "Arabian Numerals" would
solve the problems there, but would ereate siIllilar diffieulties in the rest of
the world. If switehing to "Arabesque Numerals" is not an internationally
aeeeptable solution, we shall try to eseape nationalization by delegating,
where neeessary, our aetivities to a full daughter "Algebraies Ine." After a
long and nostalgie monologue by our Chairman about the good old days
when we were not operating on a multinational basis, the Meeting returns to
the order of the day. The deeision is postponed until the next meeting."

EWD443

A Multidisciplinary Approach
to Mathematics
BY EDSGER W. D1JKSTRA*

(Extracts from the keynote address to be delivered at the 108th Annual
Meeting of the International Federation of Mathematical Societies (IFMS)
at Loempia, Angora, Monday 11-Friday 15 October 1976.)

Ladies and Gentlemen,

Now and again the great public is taken by surprise by the announce
ment of some startling discovery, some exciting invention or scientific
breakthrough, and they cannot but get the impression that such things
happen suddenly, even the scientists themselves being utterly unprepared
for it. But the student of the history of science knows differently: even if he
cannot smooth the discontinuity completely, he knows that in all cases such
a breakthrough is the natural consequence of a usuaHy long preparation
-be it hidden for the casual observer- like the development of a carbuncle,
deep under the skin.

The same holds for the current breakthrough in the practice of Mathe
matics, for which, as I hope to show, the seeds have been sown during the
last three decades. For, this time the breakthrough did not only surprise the
outsiders, it surprised many mathematical insiders as weH, the reason being
that the first seeds were sown and took root outside the Mathematical world
itself.

We all still carry with us the cherished and endearing image of the
Mathematician as it has come to us through the ages: half genius, half
nitwit, partly deep thinker and partly just juggler with symbols, a man so
absorbed by his own artificial world that he hardly belongs to the realone.

*Author's address: Mathematics Inc., Hosanna Building.

56

A Multidisciplinary Approach to Mathematics 57

Are not Archimedes' words to the Roman soldier: "Don't disturb my
circ1es!" the archetypicaiones? And when the Roman soldier did as is
usually done with someone who is not understood, and killed Archimedes
with a single thrust of his glorious sword, we all feel that sword piercing our
own romantic hearts

The image may have been a true one, but W orld War II has changed the
world: it caused a collision not only between nations, but between sciences
and between different walks of life as weIl. The intercommunication has
broken the isolation, the lonely scientist burning the midnight oil has been
replaced by the scientific worker keeping normal office hours, the romantic
thinker believing in truth for truth's sake has been replaced by the busi
nesslike and efficient solver of problems of social, economic and technical
relevance.

As Chairman of the Board of "Mathematics Inc." -now the world's
leading mathematical industry with a firm grip on more than 75 percent of
the world market- I am in a better position than anyone else to give you
all the inside information about the refreshing breeze that has blown new
life into the mathematical science, at a moment that it was getting stale and
in danger of dying of old age.

* * *
The decision to give the mathematical industry, for the first time in

history, asolid foundation based on market research has, of all the changes,
probably had the most profound effect. For instance, one of the most
successful discoveries of our sales department was directly related to a
significant trend in today's civilization, viz. the use of square tiles instead of
wall-to-wall carpeting. The result was a revolutionary re-edition of the
old-fashioned multiplication tables, but now, in order to ease the estimation
of the number of tiles needed, in the form of a two-colour half tone division
table. Its title alone: "Tiles for Everyone." is, all by itself, a masterpiece of
mathematical popularization. (Our original title "Tile estimations made
understandable for the layman." was completely demolished by our sales
department as being too condescending; so was our next effort "Tile
estimations made easy.".) In asense, it was only a minor product, but in
another sense it was the beginning of a mathematical revolution: as for
years this table has been responsible for over 20 percent of our revenue, it
has taught us a11 that, in the past, mathematicians, guided by their intuition
instead of by scientific market research, have tackled the wrong problems.

* * *
Another discovery, perhaps surprising for the older ones among you, is

that there is absolutely no market for the so-called "eternal truths" previous
generations of mathematicians have been after. But we have understood that
in the world of fast progress we are living in now, the only important results
are those with a halflife of at most five years. As in the traditional
mathematical papers the delay between submission of a paper and its

58 EWD443

eventual publication is of the same order of magnitude, we had to bypass
the established channels, but as the lack of referees with social responsibility
forced us to do so anyhow, this posed no additional problem.

* * *
We have also found out that, as important as what you publish is how

you publish it. A small example: when it was made a company regulation to
replace "etc." -as most readers are not quite sure of which obsolete Latin
expression this is an abbreviation- by the more homely "and so on", sales
imrnediately jumped by more than 15 percent! That shows what public
relations can do for mathematics!

* * *
The mathematical establishment works on paper that is higher than wide.

Our ergonomics department did a work analysis and discovered that the
hand's horizontal mobility exceeds its vertical mobility by a factor of 1.4
and, as a result, it became a company rule to turn the normal office paper
over 90 degrees. The results were startling. At first, Productivity Control
was very disappointed, because, after the change, productivity measured
-as they were used to- in lines of mathematics produced per manday
seemed to have decreased slightly. Measured in number of symbols written
down per manday, however, the increase was significant! Measured in
number of pages of mathematics produced per manday the improvement
was still more striking! Needless to say, the discovery of that last productiv
ity unit must be considered as one of the greatest recent contributions to the
gross national product in all countries where we are represented. (White,
oval office paper has been tried, but the experiment has been abandoned: it
led to too many circular arguments.)

* * *
As a company with the avowed aims of not enriching itself at the expense

of others, but to work for the benefit of our total civilization, a thorough
study has been made of the thresholds that, traditionally, restrict the
benefits of bourgeois mathematics to an elite minority. As a socially
responsible organization, and also from market considerations, we feit it,
already early in the company's history, as one of our primary duties to try to
bring Mathematics to the Millions. The major stumbling block turned out to
be the abundant use of Greek and Hebrew characters and other fancy
symbolisms, which, since then, have been rigorously abolished. (The re
education of our mathematical staff, implied by this abolishment, I am sorry
to say, has not been without problems, because, aIthough apparently
converted, many staff members tended to persist in their bad habits in
secret. A number of strong measures, based on undeniable evidence of guilt
from the staff members' wastepaper baskets, has implemented the uItimate
solution to the Greek-and-Hebrew-Ietter problem.) As new educational
experts -so-called "enlightening specialists" - have been attracted, we are

A Multidisciplinary Approach to Mathematics 59

confident that future re-orientations of our technical staff will be imple
mented so smoothly as to remain totally unnoticed by them.

Wehave taken this measure, as new re-orientations are only to be
expected: a current experiment to restrict, for instance, the use of the
alphabet to that of capitalletters only, is underway and looks very promis
ing. In retrospect, it is no surprise that, in spite of a tradition of 2500 years,
Mathematics has no more achieved than the litde it has: all through those
25 ages, a thorough scientific study of the Man-Paper Interface has never
been made!

* * *
Compressed into a single sentence my message is that the Interdisci

plinary Approach to Mathematics will lead to a better world. The chains of
inhuman formalism being broken, intellectual slavery will become intellec
tual freedom, "the happy few" will become "the happy many"!*

And finally, for Mathematics in general, and for Mathematics Inc. in
particular -what, after all, is the difference?- I can only end with the
deeply feIt prayer: "Semper floreat et crescat."!

11th August 1974

*For those interested in further details, we refer to HA Guide to Positive Problem Solving" to
be published shortly by the Hosanna Press.

EWD447
On the Role of Scientific Thought

Essentially, this essay contains nothing new; on the contrary, its subject
matter is so old that sometimes it seems forgotten. It is written in an effort
to undo some of the more common misunderstandings that I encounter
(nearly daily) in my professional world of computing scientists, pro
grarnmers, computer users and computer designers, and even colleagues
engaged in educational politics. The decision to write this essay now was
taken because I suddenly realized that my confrontation with this same
pattern of misunderstanding was becoming a regular occurrence.

Whether the misappreciation of the proper role of scientific thought that
lobserve within the "computing community" is a phenomenon that is
specific for the computing community, or whether it is also a current
phenomenon in other disciplines, is not for me to judge. One thing seems
certain. In the computing community itself we can find enough historical
explanation, and we don't need to look for outside influences when we try
to understand how the phenomenon came about. (This is not meant to say,
that outside influences have been absent!)

As we shall see in amoment, the adjective "scientific" when used in the
expression "scientific thought" refers more to a way of thinking than to
what the thoughts are about. To use the Latin expressions: it refers to. the
"quo modo" rather than to the "quod". This explains partly why the
tradition of scientific thought has been imported into the computing world
only to a limited extent by the many pioneers who immigrated in the early
days from other scientific disciplines. The early academics who became
involved with computers a11 had had their training in other scientific
disciplines, and many of them were quite able to practise "scientific
thought" in their original field of intellectual activity. But for a great
number of them, that had been the only confrontation with scientific

60

On the Role of Scientific Thought 61

thought. As a result, it is understandable that they associated their notion of
scientific thought as much with the specific field in which they had practised
it as with a general way of thinking that could (and should!) be transferred
to their new field of activity. In addition, many of them must have felt that
scientific thought was a luxury that one could afford in the more established
disciplines, but not in the intellectual wilderness they now found themselves
in. But, as we shall also see in a short while, scientific thought is not a
luxury made possible in established scientific disciplines, on the contrary: it
was the tool that made the establishment of those disciplines possible!

Besides emigrants from other academic fields, the computing world has
attracted people from all over the world: businessmen, administrators,
operators, musicians, painters, unshaped youngsters, you name it, a vast
majority of people with no scientific background at al1. By their sheer
number they form all by themselves already an explanation for the phenom
enon.

To introduce the subject, I would like to quote two paragraphs from a
letter I recently wrote to a professional friend.

"Let me try to explain to you what to my taste is characteristic for all
intelligent thinking. It is that one is willing to study in depth an aspect of
one's subject matter in isolation for the sake of its own consistency, all the
time knowing that one is occupying oneself only with one of the aspects. We
knOW that a program must be correct and we can study it from that
viewpoint only; we also know that it should be efficient and we can study its
efficiency on another day, so to speak. In another mood we may ask
ourselves whether, and if so, why, the program is desirable. But nothing is
gained -on the contrary!- by tackling these various aspects simulta
neously. It is what I sometimes have called "the separation of concerns",
which, even if not perfectly possible, is yet the only available technique for
effectively ordering one's thoughts that I know of. This is what I mean by
"focussing one's attention upon some aspect": it does not mean ignoring
the other aspects, it is just doing justice to the fact that from this aspect's
point of view, the other is irrelevant. It is being one- and multiple-track
minded simultaneously.

I remember walking with Ria when we were engaged -it was near
Amsterdam's Central Station- when I explained to her that Iwanted to be
glad and happy with my eyes fully open, without fooling myself in the belief
that we lived in a pink world: to be happy to be alive in the full knowledge
of all misery, our own inc1uded " (End of quotation.)

Scientific thought inc1udes "intelligent thinking" as described above. A
scientific discipline emerges with the -usually rather slow!- discovery of
which aspects can be meaningfully "studied in isolation for the sake of their
own consistency" -in other words, with the discovery of useful and helpful
concepts. Scientific thought inc1udes in addition the conscious search for
useful and helpful concepts.

62 EWD447

The above should make it clear that I want to discuss the role of scientific
thought for the sake of its practical value, that I want to explain my
pragmatic appreciation of a too1. It is no slip of the pen that the above
quotation refers to the "effective ordering of one's thoughts": the efficiency
of our thinking processes is what I am talking about. I stress this pragmatic
appreciation, because I live in a culture in which much confusion has been
created by talking about the so-called "academic virtues" (sie!) with moral,
ethical, religious and sometimes even political overtones. Such overtones,
however, only confuse the issue. (If you so desire, you may observe here
scientific thought in action. I do not, for instance, deny political aspects -I
would be a fool if I did so! The anti-intellectualistic backlash against "the
technocrats", which is so en vogue today, is inspired by a -largely
unjustified- fear for the power of him who really knows how to think and
bya -more justified- fear for the actions of him who erroneously believes
to know how to think. These political considerations, however, have nothing
to contribute to the technical problem of ordering one's thoughts effectively,
and that is the problem that I want to discuss "in isolation, for the sake of
its own consistency".)

I intend to describe for your illumination the most common cases in
which the "average" computing scientist fails to separate the various con
cems; in doing so I hope and trust that my colleagues in the profession do
interpret this as an effort to help them, rather than to insult them. For the
sake of the non-professional, I shall present the least technical cases first.

One of the concems, the isolation of which seems most often neglected, is
the concem for "general acceptance". (In the world of pure mathematics
-with which I have some contacts- this problem seems to be fairly
absent.) The concem itself is quite legitimate. If nobody reads the poems of
a poet that wanted to communicate, this poet has failed, at least as a
communicating poet. Similarly, many computing scientists don't just solve
problems, but develop tools -theories, techniques, algorithms, software
systems and programming languages. And if those that, they feel, could
profit from their designs prefer to ignore these inventions and to stick to
their own, old, rotten routines, the authors get the miserable feeling of
failure. Have they? Yes and no. They can adopt the Galileian attitude:
"Nothing becomes true because ten thousand people believe it, nor false
because ten thousand people refuse to do so", and can decide to feel
themselves, in splendid isolation, superior to their fellow computer scientists
for the rest of their lives. I can deny no inventor that feels underappreciated
such a course of action. I don't recommend it either; the sterile pleasure of
being right tends to get stale in the course of a lifetime. If one's aim is to
design something useful, one should avoid designing something useless
because unused. In other words, I fully accept "general acceptance" as a
legitimate concem. We must, however, be willing to ignore this concem
temporarily - for a few days or a few years, depending on what we are
undertaking- for unwillingness to do so will paralyze uso

On the Role of Scientific Thought 63

Some time ago 1 visited the computing center of a large research
laboratory where they were expecting new computing equipment of such a
radically different architecture that my colleagues had conc1uded that a new
programming language was needed for it if the potential concurrency was to
be exploited to any appreciable degree. But they never got their language
design started because they feit that their product should be so much like
FORTRAN that the casual user would hardly notice the difference, "for
otherwise our users won't accept it". They circumvented the problem of
explaining to their user community how the new equipment could be used
to best advantage by failing to discover what they should explain. It was a
rather depressing visit

Clearly th~ proper technique is to postpone concerns for general accep
tance until you have reached a resuIt of such a quality that it deserves
acceptance. The significance of your message should justify the care you
give to its presentation; its "unusualness" may make extra care necessary.
And, furthermore, what is "general"? Did Albert Einstein fail because the
Theory of Relativity is too difficult for the average high-school student?

Another separation of concerns that is very commonly neglected is the
one between correctness and desirability of a software system. Over the last
years 1 have lectured to all sorts of audiences about techniques that may
assist us in designing programs so that one can prove apriori that they meet
their specifications. One of the standard objections raised from the floor is
along the following lines: "What you have shown is very nice for the little
mathematical examples with which you illustrated the techniques, but we
are afraid that they are not applicable in the world of business data
processing, where the problems are much harder, because there one always
has to work with imperfect and ambiguous specifications." From a logical
point of view, this objection is nonsense: if your specifications are con
tradictory, life is very easy, for then you know that no program will satisfy
them, so, make "no program". The greater the ambiguity, the easier the
specifications are to satisfy (if the specifications are absolutely ambiguous,
every program will satisfy them!).

Pointing that out, however, seldom satisfies the man who raised the
objection. What he meant, of course, was something different. He meant
something along the following lines. "We make something with the best of
intentions in the hope of satisfying a need as we understand it, but when our
product has been put into action, it does not perform satisfactorily. How are
we to discover whether we have correcdy made the wrong thing or whether
there is just a silly bug somewhere?". The point is that this question is
empty as long as the specifications do not define -are not accepted to
define by definition- what the system is supposed to do. It is like asking
the judge to setde a business dispute caused by the absence of a contract
stating the mutual rights and obligations. It is the sole purpose of the
specifications to act as the interface between the system's users and the
system's builders. The task of "making a thing satisfying our needs" as a

64 EWD447

single responsibility is split into two parts: "stating the properties of a
thing, by virtue of which it would satisfy our needs" and "making a thing
guaranteed to have the stated properties". Business data processing systems
are sufficiently complicated to require such aseparation of concerns, and
the suggestion that in that part of the computing world "scientific thought is
a non-applicable luxury" puts the cart before the horse. The mess they are
in has been caused by too much unscientific thought.

But from the above, please don't conc1ude that unscientific thought is
restricted to the business wor1d! In Departments of Computing Science, one
of the most common confusions is the one between a program and its
execution, between a programming language and its implementation. I
always find this very amazing: the whole vocabulary to make the distinction
is generally available. Moreover, the very similar confusion between a
computer and its order code, remarkably enough, is quite rare. But it is a
deep confusion of long standing. One of the oldest examples is presented in
the LISP 1.5 Manua1. Halfway through their description of the pro
gramming language LISP, its authors give up and from then onwards try to
complement their incomplete language definition by an equally incomplete
sketch of a specific implementation. Needless to say, I have not been able to
learn LISP from that booklet! I would not worry if the confusion were
restricted to old documents, but, regretfully enough, the confusion is still
very popular. At an international summer school in 1973, a very well-known
professor of Computing Science made the statement that "ALGOL 60 was a
very inefficient language", while what he really meant was that, with the
equipment available to him, he and his people had not been able to
implement ALGOL 60 efficiently. (That is what he meant, he did not mean
to say it!) Another fairly well-known professor of computing science has
repeatedly argued in public that there is no point in proving the correctness
of one's programs written in a higher-levellanguage "because, how do you
know that its compiler is correct?". In the motivation of arecent research
proposal, doubt is cast upon the adequacy of "the axiomatic semantics
approach" since it may lead to deductive systems that are "undesirable in
that they may not accurate1y reflect the actual executions of programs". It is
like casting doubt on Peano's Axiomatization of the Natural Numbers on
the ground that some people make mistakes when they try to do addition!

On the one hand we have the physical equipment (the implementation);
on the other hand we have the formal system (programming language). It is
perhaps a question of taste - I don't believe so- to whom of the two we
give the primacy, that is, whether it is the task of the formal system to give
an accurate description of (certain aspects of) the physical equipment, or
whether it is the task of the physical equipment to provide an accurate
model for the formal system. I prefer the latter. But under no circumstance
we should confuse the two!

I have, I think, very good reasons for my preference, because if I cannot
appreciate a formal system for the sake of its own consistency but must view

On the Role of Scientific Thought 65

it as description of physical equipment, I could not deal with a pro
gramming language that has not been implemented! (And that is, for
instance, exactly what a language designer has to do.)

The confusion is perhaps most clearly demonstrated by the often ex
pressed opinion that "one cannot use a programming language that has not
been implemented". But this is nonsense, of course one can! One can use
any well-defined programming language, whether implemented or not, for
writing programs; it is only when you want to use those programs to evoke
computations that you need an implementation as weIl. Being well-defined,
rather than being implemented, is a programming language's vital character
istic.

The above remarks are neither jokes nor puns; on the contrary, they are
pertinent to multi-million-dollar mistakes. They imply, for instance, that the
development projects -erroneously called "research projects"- aimed at
the production of "naturallanguage programming systems" -currently en
vogue again - are chasing their own tails.

NOTE (which I hate to add, because it is nearly an insult to my readers,
whom its inclusion accuses of possible superficiality). I have not said that
when considering a programming language, one should not care about its
implementability: one had better! But this concern, no matter how serious,
is one we should try to isolate. (End of note.)

In my opening paragraph I also mentioned colleagues engaged in educa
tional politics. The writing of this essay was, as a matter of fact, also
prompted by arecent study of two Computing Science Curricula at the
university level. They were from different sides of the Atlantic Ocean, but
shockingly similar in two respects: unbelievably elaborate budgets and a
total lack of understanding of what constitutes a scientific discipline.

A scientific discipline separates a fraction of human knowledge from the
rest: we have to do so, because, compared with what could be known, we
have very, very small heads. It also separates a fraction of the human
abilities from the rest; again, we have to do so, because the maintenance of
our non-trivial abilities requires that they be exercised daily and a day,
regretfully enough, has only 24 hours. (This explains, why the capable are
always busy.)

But of course, any odd collection of scraps of knowledge and an arbitrary
bunch of abilities, both of the proper amount, do not constitute a scientific
discipline: for the separation to be meaningful, we also have an internal and
an external requirement. The internal requirement is one of coherence: the
knowledge must support the abilities and the abilities must enable us to
improve the knowledge. The external requirement is one of what I usually
call "a narrow interface": the more self-supporting such an intellectual
subuniverse, the less detailed the knowledge that its practitioners need about
other areas of human endeavour, the greater its viability. In the terminology

66 EWD447

of the computing scientist, I should perhaps call our scientific disciplines
"the natural intellectual modules of our culture". (When the layman asks
the computing scientist what is meant by "Modularization", a reference
to the way in which the knowledge in the world has been arranged is
probably the best concise answer.)

In view of the preceding, it becomes quite obvious why many earlier
efforts to concoct Computing Science Curricula at our universities have
been such dismal failures. They were just cocktails! For lack of other
ingredients, they tried to combine scraps of knowledge from the most
diverse fields that seemed to have some relation to the phenomenon
Computer. That the ingredients of the cocktail did not mix into a coherent
whole is not surprising; that the cocktail did not taste too weIl is not
surprising either.

In those early days, the only alternative was waiting, as for instance
Strachey urged in 1969: "I am quite convinced that in fact computing will
become a very important science. But at the moment we are in a very
primitive state of development; we don't know the basic principles yet and
we must 1eam them first. If universities spend their time teaching the state
of the art, they will not discover these principles and that, surely, is what
academics should be doing." I could not agree more.

Now, of course, one can argue whether five years later we computing
scientists have enough of sufficiently lasting value that can be "studied in
isolation, for the sake of its consistency". I think that we now have enough
to start, but if you think Strachey's advice still appropriate, you have my full
sympathy.

The two recent(!) curriculum proposals I just referred to, however,
presented the old cocktail as if absolutely nothing had happened, and, not
as a timid first step, but as the final goal And when scientists no longer
know what science is supposed to be about, we are in bad shape. Hence this
essay.

Nuenen, 30th August 1974 PROF. DR. EDSGER W. DUKSTRA

Burroughs Research Fellow

EWD462
A Time-Wise Hierarchy Imposed upon
the U se of a Two-Level Store

Abstract: Following general design principles a paging system has been devel
oped in wh ich the aim has been high efficiency, a strong separation between
store management and processor scheduling, and a minimal influence of the
program mix upon the system's performance. It is,Jurthermore, described how
some dedicated hardware can be expected to contribute effectively to memory
management and the prevention of thrashing. Finally, the properties of the
system should be such that amismatch between configuration and workload
gives a clear indication on a change of configuration.

Key Words and Phrases: demand paging, window size, thrashing control,
smoothness, virtual store, two-level store, operating systems, design, reconfig
uration, separation of concerns.

c.R. Categories: 4.32, 4.34, 6.21, 6.34, 6.39.

This paper is really two artides merged into one. On the one hand it deals
with a general design principle, on the other hand it deals with the design of
a virtual storage system, to which the principle has been applied. Although
the first aspect is the more general one, the title refers only to the second
aspect, firstly because its elaboration occupies most of the space, and,
secondly, because the virtual storage system to be developed below seems to
be new and not without attractive properties.

The design principle in its most general form is that, whenever we have to
design a mechanism meeting certain requirements, it does not suffice to
design something that we hope meets the requirements: on the contrary, we
must design it in such a way that we can establish that it meets the

67

68 EWD462

requirements. As far as program correctness is concerned, this design
principle has led to a programming methodology that is becoming more and
more widely accepted: instead of making the program first and trying to
establish its correctness afterwards -which may be nearly impossible
correctness proof and program are now developed hand in hand. (As a
matter of fact, the development of the correctness proof is often slightly
leading: as soon as the next argument in the proof has been chosen, a
program part is designed to meet the proof's requirements.) Besides the
mathematical requirement of correctness, we have the engineering require
ment of "reasonable performance". This time the principle teIls us that it
does not suffice to design a mechanism that we hope will perform "reasona
bly weIl": on the contrary, we should (at least try to) design it in such a way
that we can predict apriori how weIl it will perform. If we ask very precise
questions about the performance, these questions may become very hard to
answer. To predict that the computation time for the Horner scheme grows
linearly with the degree of the polynomials is not hard. Estimation of the
computation time needed for iterative computation of eigenvalues and
eigenvectors of a symmetric matrix, however, is harder and probably most
easily expressed in terms of the separation of the eigenvalues, i.e. in terms of
part of the answer; this dependence is something that we should try to
derive and prove! Often we have to be content with "worst case" bounds
(which in contrast to averages have at least the advantage of not depending
on the usually unknown input population). Sometimes we even have to be
content with still vaguer definitions of what "reasonable performance"
means. Yet this is no licence to design, for instance, a mechanism whose
performance is occasionally surprisingly bad.

The actual performance of a machine with a virtual storage system is
dependent on what is usually denoted as "the workload characteristics". In
the name of the predictability of that performance we shall try to design the
system to make that dependence as simple as possible: in particular we
require that amismatch between configuration and workload does not only
make itself manifest in the form of poor performance, but will in addition
give a clear indication what type of change -if any- of the configuration
would improve the performance.

In order not to complicate the discussion unduly at the start, we shall
make a few simplifying assumptions about the hardware. Later we can
reconsider these assumptions. Some may be weakened easily, of others,
however, we may come to the conclusion that if our hardware does not
allow such idealizations, the scheduling problem will be "complified" seri
ously, perhaps even beyond our comprehension and control. In the latter
case we don't need to feel having failed "to cope with the problem": on the
contrary, the identification of seriously "complifying" hardware characteris
tics seems in the light of the present state of the art a valuable discovery.

As primary store we assume a random access store as randomly accessi
ble as, say, a core store. As secondary store we assume a device with the

A Time-Wise Hierarchy Imposed upon the Use of a Two-Level Store 69

characteristics of, say, a drum or a head-per-track disc, such that

(l) the pi ace of information in secondary store need not influence decisions
to change the contents of primary store, i.e. page-wise it can be regarded
as a random access store;

(2) the processor speed is sufficiently slow andjor the cycle time of the
primary store is sufficiently smaH andjor the transfer rate between
primary and secondary store is sufficiently low that any slowing down
of the processor as a result of cycle stealing by the channel can, to aH
intents and purposes, be ignored;

(3) transport between the two storage levels is taken care of by a single,
dedicated channel.

Furthermore Iassume

(4) a single processor;
(5) demand paging with fixed-size pages;
(6) such a modest amount of processor-status information (registers

included!) that the time needed to switch the processor from one process
to another can, to all intents and purposes, be ignored in view of an
upper bound on the frequency with which these switchings may have to
take place;

(7) no page-sharing between user programs (for instance on account of a
common procedure library).

REMARK 1. The above assumptions are -or at least: were- not unrealis
tic. We shall later discuss some of the temptations that should be resisted
when they are only partly fulfiHed. (End of remark 1.)

REMARK 2. Assumption 6 means that as far as scheduling processor time is
concemed, we can regard the total processor time as the sum of the periods
of time devoted to actual program progress, and we are at any time free to
grant the processor to what is considered the most urgent task. If the price
of switching the processor from one task to another has to be regarded as
high, one is faced with the often conflicting aim to grant the processor to the
task with the maximum expectation value for the period of time for which
fuH-speed progress is possible. (End of remark 2.)

The Role of the Replacement Algorithm in a
Multiprogramming Environment

The idea of demand paging is that processing proceeds at fuH speed as long
as the information is present in primary store. Upon a so-called "page

70 EWD462

fault" -i.e. the detected desire to access a page that is currently not in main
store- the rnissing page must be brought in from secondary store. (The
program causing the page fault has to wait until the channel has completed
that transport; in a multiprogramming environment the processor is in the
mean time available for other programs.) Besides bringing in the rnissing
page, another page has to be dumped. The task of the so-called "replace
ment algorithm" is to choose that victim; its goal is to keep the interesting
pages in primary store. Obviously, with each reasonable replacement algo
rithm, permanently unreferenced pages have a tendency to disappear sooner
or later from primary store.

The ideal replacement algorithm embodies clairvoyance: it kicks out the
page that in view of future needs can be rnissed best. Clairvoyance, however,
is hard to implement, and actual replacement algorithms are based upon,
essentially, three different ideas. (Weshall see later that for our purposes the
first two have to be rejected.)

(1) With a (quasi-)random number generator an "arbitrary" page residing
in primary memory is chosen as the victim. It is reasonable in the sense
that permanently unreferenced pages have indeed a tendency to disap
pear from primary store, it is simple and its performance is not half as
bad as rnight be expected.

(2) In an effort to speed up the disappearance of permanently unreferenced
pages the machine keeps track of the order in which the pages currently
residing in primary store came in, and the older ones are given a greater
probability of being chosen as the victim. In the extreme case, always
the oldest is chosen and the algorithm becomes a FIFO ("First-In-First
Out") rule.

(3) Predicting tomorrow's weather according to the principle "the same as
today", the machine keeps track, to a certain extent, of the order in
which pages currently in primary store have been accessed, and pages
which for a relatively long time have not been accessed are given a
greater probability of being chosen as the victim. In the extreme case we
get the so-called LRU-algorithm ("Least Recently Used").

NOTE 1. In the case of cyclic access to n + 1 pages with room for only n,
both FIFO lJnd LRU give the worst possible choice. Since purely periodic
access patterns are not unrealistic, it has been suggested to incorporate
always a randomizing element in the page replacement algorithm, so as to
reduce the prob ability of such a "disastrous resonance" to nearly nil. (End
of note 1.)

Weshall resurne the discussion of the replacement algorithm later,
because in a multiprogramrning environment a more crucial decision has to
be taken first. When a new victim has to be chosen, there are two
alternatives:

A Time-Wise Hierarchy Imposed upon the Use of a Two-Level Store 71

(1) either we regard primary store as a homogeneous pool of page frames
and the victim is chosen on account of the total history in core,
independent of the identity of the program that caused the page fault;

(2) or we regard the page fault as a private occurrence of the program in
which it happened, only the history of the pages of this prograrn is taken
into account and one of its own pages will be se1ected as the victim.

In the design of the THE-multiprogramming system in the early sixties I
chose the first alternative, and I remember the (opportunistic) arguments in
favour of that decision. Firstly, it removed the obligation to keep track of
which page frarnes were occupied by which programs -an administration
that would have been complicated by the presence of shared library pages.
Secondly, it would automatically see to it that a program idling for other
reasons would not continue to occupy page frarnes, since its then perma
nently non-accessed pages would disappear through the normal mechanism
(which was LRU, related to the total history). This paper is a peccavi in the
sense that -as I hope to demonstrate convincingly in the sequel- this
decision was more than amistake: it was a sin against proper design. (One
of its unattractive features was that a large high-vagrancy program always
lost its pages, and, as a result, suffered from very slow progress.) In the
mean time we know that "separation of concerns" should be one of our
dearest goals, and in the case of choice 1 the page faults caused by a single
program are dependent both on its fellow prograrns and on the relative
speeds with which they are allowed to proceed. In the case of choice 2,
however, where each prograrn has its own, fixed number of page frames at
its disposal, the generation of page faults is each prograrn's private business,
only dependent on that number of page frames, its access pattern and its(!)
replacement algorithm. The mistake we made ten years ago was to allow a
hardly controllable fine-grained interference between fellow programs that
had been independently conceived but found themse1ves by accident mixed,
instead of keeping the interference between the computational histories of
these mutually independent prograrns more coarse-grained in time.

In the following we make a weak assumption ab out the replacement
algorithm(s) used: the average frequency of a program's page fault genera
tion is a non-increasing (and usually even: a decreasing) function of its
so-called "window size", i.e. the number of page frarnes allocated to it.

About the Ideal Window Size

In this section we shall describe how we propose to exploit our first three
assumptions. After having observed that it is the function of the replace
ment algorithm to try to reduce -with a given window size- the number

72 EWD462

of page faults caused by that program and, therefore, the total amount of
time the channel is busy for the benefit of that program, our next purpose is
to keep the channel nicely busy.

For each program we can introduce the total time C the processor has
performed "computation" for that program and the total time T the channel
has been occupied with "transports" between storage levels as a result of
page faults caused by that program, both times C and T being recorded for
that program from the same moment. When deciding how to allocate page
frames to programs, Le. when deciding the window size for each program,
we seem to be managing three resources, viz. processor, channel and
primary store. In this management problem, general dimension consider
ations tell us that the dimensionless quantity C IT must be significant. The
point is, that processor and channel are resources doing something at a
certain speed, but we cannot change the "speed" with which something is
kept in store (no more than we are able to wait twice as fast for something).

Under the (temporary) assumption that for each program such a window
size exists, we define for each program the "ideal" window size as the one
that would give rise to a ratio CIT = 1, Le. the window size that would
cause on the average equal demands on processor time and channel time,
the reason being that then processor and channel can be scheduled as a
single resource. The result of demand paging is that a program has no use
for the processor during the period of time that the channel is busy for it; as
a result no program can occupy more than 50 percent of this combined
resource, and if we want to keep the latter busy, we conelude that our
degree of multiprogramming should at least be equal to two. This degree
will usually not suffice (see below).

About the Degree of Multiprogramming

In this section we assurne that for each program the vagrancy characteristics
are such that for each program a constant -and known- window size can
be considered as ideal.

In order to keep the combined resource constantly busy, individual
C IT-ratios elose to 1 is in general not enough. Suppose that the one
program generates its page faults -when executed all by itself- quite
regularly, one at a time, while the other program generates under the same
circumstances bursts of two page faults at a time with half the frequency.
The combination would not fit, and both processor and channel could be
busy for at most 80 percent of the time. With a third program (of either
type) full occupation is possible and an arbitrary program can use the
maximum 50 percent. The typical purpose of multiprogramming is elear as
far as utilization of the active resources is concemed: to absorb the bursts in
which programs may generate page faults. After some consideration -and

A Time-Wise Hierarchy Imposed upon the Use of a Two-Level Store 73

in analogy to other statistical phenomena- it becomes hard to believe that
the desire to absorb the bursts wou1d ever give rise to a degree of multipro
gramming exceeding 4 or 5.

About the Adjustment of Window Sizes

Wehave introduced the notion of the "ideal" window size as the one by
which program progress implies on the average equal loads C and T for
processor and channe1 respective1y. As a result the question whether for a
given program the actual window has the ideal size is meaningless unless it
is re1ated to a sufficiently 1arge section of computation history, in which the
increase of C + T is an order of magnitude 1arger than the T-increase
caused by a single page fault (say: 20 times). Until now, we have acted as if
during each computation the access pattern was sufficiently constant so that
from beginning to end a single window size cou1d be regarded as "ideal" for
it, and also that for each program this size was known. In practice, neither
of these two conditions is fulfilled and, therefore, the system is required to
discover for each computation what the ideal window size is, and to adjust
the window size when needed. For each program, reconsideration (and
possib1y adjustment) of the window size shou1d on1y take p1ace with a
frequency that is an order of magnitude smaller than that of the target
frequency of page fallit generation: it is pointless to be willing to vary a
program's window size so rapid1y that the periods during which it is by
definition constant are so short that the question of "idea1ness" becomes
meaningless!

Let us assume therefore that for each program the system reconsiders its
window size each time that program has increased its C + T by a certain
amount (equa1 to, say, 20 times the T-increase corresponding to a single
page fault). When C has increased much more than T, a smaller window
might be more adequate; when T has increased much more than C, a 1arger
window might be more adequate. We cou1d think of a simple negative
feedback, based upon the quotient of the observed increases of C and T, say
decreasing the window size by one page frame when that quotient exceeds
1.1 and increasing the window size by one page frame when that quotient is
1ess than 0.9. Such a simple negative feedback, however, will not do the job,
because even if our rep1acement a1gorithm is such that we can prove that a
1arger window wou1d never lead to more page faults, the program might be
such that a 1arger window wou1d not lead to fewer page faults either!

A computation with high-frequency access to two fixed (program) pages
and random access to 10,000 other (data) pages will not perform any better
with a window of 100 frames (our maximum say) than with a window of 3.
If it has a window of 3 and its CjT-ratio is too small, there is no point in
increasing the window size. The simple negative feedback wou1d continue to

74 EWD462

increase it and (like a young cuckoo) tbis program would eventually push
the other programs out of primary store. Tbis euckoo effect eannot be
remedied without penalty by suppressing growth of the window -although
desirable on aecount of C /T - as soon as no improvement is observed, and
the reason is the following. A program with bigh-frequeney aecess to 12
pages may perform equally poorly with windows up to 11 frames and
beautifully with a window of 12 frames, and tbis is something we would like
to be diseovered when its eurrent window happens to be 4. In other words:
it is not enough to know the C/T-ratio caused by the current window size,
we should also know it for other ones!

Monotonie Replaeement Algorithms

There is an important dass of replaeement algorithms -LRU is one of
them, RANDOM and FIFO are not- wbieh we might call "monotonie".
They are characterized by the foHowing property. Considering two synehro
nized executions of the same program but with different window sizes, we
eall the replaeement algorithm "monotonie" if at all times all pages eon
tained in the smaller window will be eontained in the larger window as weH,
provided that tbis was true at the beginning. As a result, in the computation
with the larger window no page fault oecurs that does not occur in the other
computation as weH.

Therefore, if a program is executed with a monotonie replaeement
algorithm and an aetual window size w, it eannot cost mueh to record how
many page faults would have oeeurred if the window size had been
w + 1, w + 2 ... up to the maximum: it would only be a minor overhead on
the actual page faults and would, therefore, be negligible. This information
ean be used to prevent the growth of a euckoo, but it does not eater for the
detection of an existing euekoo, i.e. a program whose window size ean be
decreased without any ill effects.

To record the page faults that would have oeeurred with window sizes
smaller than the aetual ones, additional hardware seems indieated. The
knowledge of the number of page faults that would have oeeurred with
smaller-sized windows (partieularly for the size w - 1) is so attractive to
have, that the additional hardware seems justified. (In the latter ease it can
probably also take eare of the recording of the number of page faults
eorresponding to window sizes larger than w.) Quite often, a page fault
frequeney-window size eurve has a very sharp bend: we may expeet
programs that for size w will give a ratio C /T> 1 and for size w - 1 a
ratio unacceptably dose to zero. With the simple feedback mechanism the
effort at window size adjustment would lead to thrashing half the time - a

A Time-Wise Hierarchy Imposed upon the Use of a Two-Level Store 75

nasty property that has been used as an argument against virtual storage
systems as such. If additional hardware counts the virtual page faults that
would have occurred with window sizes smaller than the actual one, tbis
thrashing is easily avoided.

In view of the above it is doubtful whether the introduction of a
randomizing element in the page replacement algorithm in order to avoid
"disastrous resonance" -see Note 1- is still desirable: most disastrous
resonances occur when the window size is a few frames too small. But now
that we can detect tbis and know how to remedy it, it seems better not to
obscure the detection by the noise of a randomizer.

The Time-Wise Hierarchy

At our lowest level we have the individual access: its recording (for the sake
of the replacement algorithm) and the test whether it causes a (virtual or
actual) page fault are obvious candidates for dedicated hardware.

At the next level we have the actual page faults, wbich occur several
orders of magnitude less frequently. Taken in isolation they only influence
the program in wbich they occur.

At the next level, but again an order of magnitude less frequently, the
window size is reconsidered. In the decision to increase or decrease the
window size a threshold should be introduced so as to increase the probabil
ity that the result of reconsidering the window size will be the decision to
leave it as it stands. Furthermore, if available information suggests a drastic
change in window size, follow tbis suggestion only partly (half-way, say):
either the suggestion is "serious" and the total change will be effectuated
witbin two or three adjustments anyhow, or the suggestion is not "serious",
because the access pattern is so wild that the notion of an "ideal" window
size is (temporarily or permanently) not applicable to that program. In the
latter case, it is better to allow tbis program to contribute unequalloads to
the processor and the channel; if it only occupies one tenth of that
combined resource, it can only bring the two total loads mildly out of
balance.

At the last level, but again at a lower frequency, change of window sizes
may have to influence the degree of multiprogramming: growing window
sizes may force load shedding, shrinking window sizes may allow an
increase of the degree of multiprogramming.

As a result of past experience, the fact that these different levels (each
with their own appropriate "grain of time") can be meaningfully dis
tinguished in the above design gives me a considerable confidence in its
smoothness, in its relative insensibility to workload characteristics.

76 EWD462

Efficiency and Flexibility

The purpose of aiming at C jT-ratios dose to 1 was to achieve for the active
resource (i.e. processor and channel combined) a duty cyde dose to a 100
percent, to a large extent independent of the program mix. This freedom can
still be exploited in various ways. A program needing a large window on
account of its vagrancy can be given the maximum 50 percent of the active
resource in order to reduce the time integral of its primary storage occupa
tion. Alternatively, we can grant different percentages of the active resource
in view of (relatively long-range) real-time obligations: to allocate a certain
percentage of the active resource to a program means to guarantee a certain
average progress speed. (This seems to me more meaningful than "priorities",
which, besides being a relative concept, can only be understood in terms of
a specific queueing discipline that users should not need to be aware of at
all!)

REMARK 3. When a producer and a consumer are coupled by a bounded
buffer, operating system designers prefer to have the buffer half-filled: in
that state they have maximized the freedom to let one partner idle before it
affects the other, thus contributing to the system's smoothness. Granting no
program more than 50 percent of the active resource is another instance
of consciously avoiding the extreme of "skew" system states! (End of
remark 3.)

Temptations to be Resisted

If we enjoy the luxury of a full duplex channel, the page being dumped and
the page being brought in can be transported simultaneously (possibly at
the price of one spare page frame). Usually, however, such a page swap
between the two storage levels takes twice as much time as only bringing in
a page. If the channel capacity is relatively low, it is therefore not unusual to
keep track of the fact whether a page has been (or: could have been) written
into since it was lastly brought in: if not, the identical information still
resides in secondary store and the dumping transport can be omitted. This
gain should be regarded as "statisticalluck" which no strategy should try to
increase and which should never be allowed to influence one's choice of the
victim (quite apart from the fact that it is hard to reconcile with the
monotonicity of the replacement algorithm, since the monotonie replace
ment algorithm is defined for all window sizes simultaneously, independent
of the size of the actual window).

We have also assumed the absence of page sharing. But this was not
essential: if program A wants to access a page from the common library that

A Time-Wise Hierarchy Imposed upon the Use of a Two-Level Store 77

at that moment happens to reslde in program B 's window, a transport can
be suppressed by allowing the windows to overlap on that page frame. Both
programs keep, independently of each other, track of their own usage of
that page for the sake of their own replacement algorithm and the page only
disappears from main store when it is no longer in any window at all.
Again, this gain should be regarded as "statisticalluck" which should never
be allowed to influence our strategies. Such pressure should be resisted;
yielding to it would be terrible!

Analyzing the Mismatch Between Configuration and
Workload

If the channel achieves a duty cyele elose to 100 percent, but the processor
does not, a faster channel, more channels, or a slower processor may be
considered. If the processor achieves a duty cyele elose to 100 percent, but
the channel does not, a faster processor, more processors, or a slower
channel may be considered. (With two processors and one channel each
program has the target C /T-ratio = 2.)

NOTE 2. A change in the quotient of processing capacity and transport
capacity will give rise to other window sizes. With the built-in detection of
virtual page faults as well, a user can determine himself what effect on the
window sizes the change in that capacity ratio would have for his workload,
without changing the actual window sizes. He should do so before deciding
to change the configuration. (End of note 2.)

If neither processor nor channel achieves an acceptable duty cyele, we
either have not enough work or are unable to buffer the bursts. If we have
enough independent programs, a larger primary store could be considered
in order to increase the degree of multiprogramming. Otherwise we should
consider the attraction of more work, reprogramming (in order to change
vagrancy characteristics), or a completely different installation (e.g. with
very different secondary store characteristics). Or we may decide to do
nothing about it at all and live with it.

Acknowledgments

Collective acknowledgments are due to the members of the IFIP W orking
Group W.G.2.3 on "Programming Methodology" and to those of the

78 EWD462

Syracuse Chapter of the ACM. Personal acknow1edgments are due to the
1atter's Chairman, Jack B. Cover, to Steve Schmidt of Burroughs Corpora
tion, to John E. Savage of Brown University, and Per Brinch Hansen of the
California Institute of Techno10gy.

Nuenen, 6th December 1974 PROF. DR. EDSGER W. DIJKSTRA

Burroughs Research Fellow

EWD464
A New Elephant Built from Mosquitoes
Humming in Harmony

In an earlier doeument - EWD456- I mentioned a problem, suggesting
that it boiled down to forming a transitive c1osure. M. Rem pointed out to
me that the suggestion was wrong; this report deals with the problem in
question.

We eonsider a non-deterministic finite state automaton with N states,
eaeh state being either a terminal or a non-terminal state. We ean associate
eaeh state with a different node of a direeted graph -and viee versa- in
whieh eaeh node has at least one outgoing are. Terminal nodes -i.e. nodes
eorresponding to a terminal state- are the nodes whose only outgoing are
leads back into themselves: the only outgoing are of a terminal node is also
one of its ineoming ares. For eaeh node the outgoing ares point to the set of
permissible "sueeessor nodes". Anode with only one outgoing are is a
deterministie node and a11 direeted paths along the graph eorrespond to a
possible eomputation of the maehine.

Let R be a set of terminal nodes. We ean then ask for the set V of nodes
v such that any direeted path starting at anode v will arrive after a finite
number of ares in anode from R. (This is asking for the weakest pre-eondi
tion for the finite state automaton.) After redueing the given graph by
removing from eaeh node from R its only outgoing are, with respeet to that
redueed graph we ean also define the set Vas a11 the points v such that eaeh
direeted path starting at v is finite.

The following sequential program would do the job. Assuming the nodes
to be conseeutively numbered, we introduee an array nia -i.e. "number of
ill-direeted ares" - that (after the removal of the outgoing ares from nodes r
in R) count for eaeh node the number of its outgoing ares that lead to a
node outside V.

79

80

"initialize nia such that nia(r) = 0 for r in Rand nia(n) =
number of node n 's outgoing ares for any node n not in R;
C := R; V := empty;
do C 9=. empty -> transfer an arbitrary node e from C to V;

PC : = predecessor set of e;
do PC 9=.empty ->

remove an arbitrary node pe from PC;

EWD464

if nia(pe) > 1 -> nia:(pe) = nia(pe) - 1

od
od"

D nia(pe) = 1 -> nia:(pe) = 0; C := C + pe
fi

And this sequential program demonstrates the ugliness of the problem
quite nicely: for the initialization of nia we need for each node outside R
(the size of its) successor set; thereafter we need for each node e its
predecessor set.

The following "program" is a litde bit less sequential: it manipulates the
connection matrix. Let eon(i, j) = I if there is an are from i to j, otherwise
eon(i, j) = O. (To each terminal node corresponds a 1 on the diagonal,
which is the only 1 in its row.) Array eon will be broken down as the
computation proceeds:

C := R; V := empty;
do C 9=. empty -> V : = V + C;

od

make all columns corresponding to the elements of
C equal to all zeros;

C : = all elements outside V to which correspond
all-zero rows

Here the "ugliness" observed above is reflected by the repeatable statement
itself, in which the connectivity matrix is accessed either by rows or by
columns. In its second form the algorithm reflects, however, the potential
parallelism, because each time all columns or all rows, respectively, can be
treated concurrently.

One and a half years ago I designed a number of so-called "elephants
built from mosquitoes". The idea was to have a large set of micro-computers
-mosquitoes- with only very few input legs and output legs (and possibly
some antennae for synchronization). According to a fixed pattern, input and
output legs would be paired, each pair thus providing a directed communi
cation link between two mosquitoes. The question was whether we could
design powerful special-purpose elephants built from such mosquitoes,
harmoniously humming together. (The hyper-fast Fourier elephant was the
most spectacular output of that effort, but it turned out to be known.) The
remainder of this report deals with the design of an elephant solving the
problem posed above. It is reasonable to wish to design an elephant for this

A New Elephant Built from Mosquitoes Humming in Harmony 81

task. The modifications to whieh the matrix eon is subjeeted are strietly
monotonie and that should simplify the problems otherwise present in
e1ephant design eonsiderab1y. We are not interested in a one-mosquito
e1ephant, not in an N 2-mosquito elephant either; we are heading for an
N-mosquito e1ephant, and we shall try to get away with the simp1est
strong1y eonneeted arrangement I ean think of: a eyelie arrangement with
traffic in one direetion only, with a mosquito associated with eaeh node.

We eonsider the nodes and the associated mosquitoes numbered from 0
through N - 1. In order to do away with superfluous subseripts, eaeh
maehine j refers to maehine (j + l)mod N as "its right-hand neighbour".
All maehines have a variable ealled "x", and transmission of information to
one's right-hand neighbour will be eoded as "xR := ... ". (We are heading
for fully synehronized mosquitoes.)

We shall now deseribe mosquitoj. It is primarily the manager of thej-th
eo1umn of the matrix eon. We shall represent it as a boo1ean veetor are (with
"true" for "l", Le. the presenee of an ineoming are for node j):

are(i) means: from node i leads (still) an are to nodej.

Furthermore, we observed that in an arrangement like this, it does not seem
to do any harm if a mosquito, onee in set V, eontinues to set its veetor
"are" to all elements false (for the time not bothering about termination).
We introduee for eaeh mosquitoj aboolean:

out means: node j is (still) outside set V.

We initialize V := R, i.e. out = false for all terminal nodes and true for
al1 the others.

Consider what will happen if all maehines j are now, after this initializa
tion, simultaneously started on a synehronous exeeution of the following
program:

mosquitoj: are:(j) = are(j) and out; xR : = are(j);
i := (j - l)mod N;
do i =1= j -> are:(i) = are(i) and out;

xR := x or are(i);
i : = (i - 1)mod N

od;
out := out and x

Eaeh row is inspeeted starting at the diagonal and then towards the right.
Eaeh mosquito starts updating its eo1umn at the diagonal and then up
wards. Eaeh time a mosquito has updated element are(i), x means "in row i
a 1 (or true) oeeurs to the left of eolumn j up to and inc1uding the diagonal
element of row i", and updating and confrontation take p1aee in eomp1ete
synehronism. The above program shou1d be repeated as many times as
neeessary. The following program will see to that with the same initializa
tion.

82

mosquitoj: new := non out; aet := true;
do aet-'>

od

goonR : = new;
are:(j) = are(j) and out; xR := are(j);
i := (j - l)mod N;
do i =l=j -'>

od;

goonR : = goon or new;
are:(i) = are(i) and out;
xR := x or are(i);
i : = (i - 1)mod N

new := out and non x;
out := out and x;
aet := goon

EWD464

All mosquitoes will terminate simultaneously. (The local boolean aet is not
strictly necessary: we could have done it with "goon" itself.)

* * *
Time-wise, the above elephant is not very spectacular. Perhaps this is not

too surprising: it has been remarked before - for instance by Hopcroft and
Tarjan in print- that algorithms manipulating graphs in terms of the
connection matrix tend to be relatively poor. This elephant has been
recorded for a few other reasons.

Firstly -with the exception of the hyper-fast Fourier elephant- very
little has been documented about our earlier efforts at elephant design.

Secondly, this is the first time that I have been able to solve a problem
from graph theory with an elephant whose internal connection pattern
between the mosquitoes does not depend on the structure of the graph. (If it
does, the elephant is such a very special-purpose one to be hardly interest
ing.) In view of the remark by Hopcroft and Tarjan it remains questionable
whether much may be expected from such elephants, but that is still an
open question.

Thirdly, it has been recorded as "a reminder", viz. areminder of the fact
that we do not have any systematic methodology for elephant design as we
now seem to have for the design of sequential programs. The latter we can
now usually present as the "natural" outcome of a number of stepwise
refinements. The reader who has seen a number of such program develop
ments will have noticed the completely different presentation of the above
elephant. I can only say: "WeIl, here it is." and the reader, at the moment of
understanding it, is expected to react with: "Ain't that cute!". But this is, of
course, very unsatisfactory, for it just means that we have not yet under
stood the problems involved in elephant design. (The interlocking of up
dating the columns and scanning the rows is, of course, "cute" and there is
no point in denying that I show it with some pride!)

A New Elephant Built from Mosquitoes Humming in Harmony 83

Fourthly, the way in which simultaneous termination of mosquito activ
ity is controlled -although not "deep" in any sense- seems to have the
virtue of generality and, therefore, deserves recording.

Fifthly, the solution seems remarkable for its very low demands on the
facilities for inter-mosquito communication.

Nuenen, 28th November 1974 PROF. DR. EDSGER W. DIJKSTRA

Burroughs Research Fellow

EWD465
Monotonie Replaeement Algorithms and
Their Implementation

(The following is written with demand paging for fixed-size pages in mind;
the size of the pages being fixed is probably not essential.)

The idea of a virtual storage implementation is that not all the stored
information (both prograrn and variables) needed for the progress of a
computation need to be in primary store simultaneously, but that for large
periods of time parts of it may reside in secondary store. For this.purpose
the information is partitioned over a number of chunks such that during
progress the information of achunk will be either totally present in, or
totally absent from, primary store. In this sense the chunks are our "units of
presence". If all the chunks have the same size, they are called "pages";
primary store is then subdivided into so-called "page frarnes", i.e. units of
store able to contain exacdy one page.

The idea of demand paging is that the computation can proceed at full
speed until access to an absent page is required. Such a requirement is called
" a page fault": the computation causing it comes to a grinding halt until
the page needed has been brought in. If only pages were brought in, the
capacity of primary memory would be exceeded very quickly; therefore,
upon a page fault a page swap takes place: one of the pages present in
primary memory while the page fault occurs is sent back to secondary store,
is "dumped". The page subjected to this fate is called "the victim" and it is
the purpose of the so-called "replacement algorithm" to choose the victim.

Elsewhere -in EWD462 (and in its preliminary version EWD408)- I
have argued that in a multiprogramming environment the victim should be
chosen from the present pages of the prograrn causing the fault. The number
of pages that a prograrn has present in primary store, its so-called "window
size", is, as a result, not changed by the occurrence of a page fault. The

84

Monotonie Replaeement Algorithms and Their Implementation 85

purpose of this note is to describe how the information is to be collected on
account of which a reconsideration of the window size can be justified.

We call areplacement algorithm "monotonie" iff (Le. if and only if) it
has the following property. If the program is executed twice (but in strict
synchronism) with two different window sizes, the pages present in the
smaller window will at any moment all be present in the larger window, if
this is the case at program start. Monotonie replacement algorithms have
the pleasant property that the page faults occurring with the larger window
size are a sub set of those occurring with the smaller window size, and an
increase of the window size can never lead to a higher page fault frequency.
It is easily seen, however, that a larger window size need not lead to a lower
page fault frequency either. .

NOTE 1. Here "frequency" is not meant as "number of times per unit of
real time", but as "number of times per unit of computation time", i.e. with
respect to a c10ck that runs while the program is being executed at full speed
and is stopped while the computation is not in progress. (End of note 1.)

NOTE 2. In the sequel we shall take the freedom to consider for fixed
window size the page fault frequency as a function of (computation, see
previous note) time, although a frequency cannot be the function of a
moment, since it is only defined as an average over aperiod. For the time
being we can think of something like

8/(now -the moment of the last page fault but 7).

Physicists -vide Lorentz- do things like this all the time; we shall return
to this later. (End of note 2.)

Although we know that at any moment the page fault frequency is a
non-increasing function of the window size, we have without further infor
mation no knowledge about the slope of that curve (nor needs, for a given
computation, that slope be constant in time). As a result, with a certain
target page fault frequency in mind, we cannot trust the effectiveness of the
simple feedback mechanism that increases or decreases the window size if
the page fault frequency observed with the current window size is too high
or too low respectively. (This would be like trying to keep a car on the road
for which the actual steering mechanism reacts with unknown and varying
sensitivity to a rotation of the wheel!)

In particular:

(1) If the current window size gives a page fault frequency that is higher
than the target value, we would like to know the larger window size (if
any!) for which the page fault frequency would be small enough. (We
just cannot expect to find this ~arger value by trial and error: if within
the bounds of primary store no such window exists, all trials become
errors, and quickly even expensive ones!)

86 EWD465

(2) If the current window size gives a page fault frequency that is higher
than the target value -and, therefore, decreasing the actual window
size is not something one feels tempted to suggest- we would like to
know how much the window size can be decreased without increasing
the page fault frequency.

(3) If the current window size w gives a page fault frequency that is lower
than the target value, we would like to know the page fault frequency
for a window of size w - 1: if that is much higher than the target value,
we must abstain from decreasing the window size.

NOTE 3. The page fault frequency curve as a (non-increasing) function of
the window size has very often rather sharp knees. In such a situation the
simple feedback system can easily lead to thrashing half the time. (End of
note 3.)

The moral of the above is that in order to justify an adjustment of the
window size, we would like to know the (current) page fault frequency for
all possible window sizes, and not just for the actual window size w. In the
sequel we shall show how this information can be obtained for monotonic
replacement algorithms.

Monotonic replacement algorithms define (independent of actual window
sizes!) after each access a unique order for the pages of the computation that
have been accessed at least once during program start. (In the following that
ordering only interests us for the first maxw elements, if maxw is the
maximum window size.) At any moment the k-th page in that order is the
unique (!) page that would be contained in the window of size k, but not in
that of size k - 1.

Consider now the effect of an access to a page that, prior to the access to
it, is at position K in that order; upon completion of that access it must be
at position 1. (If we had executed the program with a window size = 1, the
page concemed would have been in that single page frame window.) If
K> 1, then the page originally in position 1 has to move to a position
higher up in the order, k 1 say; then the page originally in position k 1 has to
move to a higher position, k 2 say, etc. until a page is brought into position
K. More precisely:

with kio = 1, k. =K
In

and for 0 .;;;; j < n:

a cyclic permutation of pages has to take place with the page originally at
position K moving to a lower position (viz. 1), all other ones moving to a
higher position. For position k with k > K, the ordering remains unaffected.

NOTE 4. If, for 0.;;;; i < Kwe take k i + 1 = k i + 1, i.e. each page originally at
a position k < K moves one position higher up in the order, we have the
LRU-algorithm (Least Recently Used). For each window size w we have
that K > w indicates a page fault, the page originally at position w is indeed

Monotonie Replaeement Algorithms and Their Implementation 87

both the least recently used one and also the one that will be pushed outside
the window. (End of note 4.)

NOTE 5. All reorderings other than the cyclic permutations described above
would lead to more than one page moving to a lower position in the order,
i.e. for some window sizes an unasked-for page would be brought inside the
window, but that is not what we call "demand paging": the combination of
demand paging and monotonicity makes the above cyclic permutations the
only permissible ones. (End of note 5.)

* * *
The mechanism consists of astring of mosquitoes numbered from 1

through wmax. Mosquito Uf. i has a variable cp (current page) whose value
equals -for the moment we assurne that the mosquitoes are fast enough
the name of the page currently in the i-th position of the order. Furthermore
each mosquito is activated by placing a page name on its "A input" and one
on its "B input". The A input will equal the name of the page that arrives in
its position, the B input is the name of the page being accessed. Upon access
of a page, its name is placed on both A input and B input of mosquito Uf. 1.
The code for mosquito Uf. i is: (for LRU)

if cp =1= B input ->A output := cp;
B output : = B input;
cp := A input

o cp = B input -> cp := A input
fi

where the output of mosquito i is the input for mosquito i + 1.
Left alone, the mosquitoes will update their cp-value in the order of

increasing ordinal number. If the accessed page was originally in position K,
the first K - 1 mosquitoes will select the first alternative, the K-th mosquito
will select the second alternative and there the "ripple" ends. If K> w, a
genuine page fault occurs.

If this string of mosquitoes were used to detect the presence or absence of
a page, the transmission speed of the ripple would have to be very high viz.
wmax mosquitoes per memory access at least. Under the assumption of
independent presencejabsence detection with respect to the current window,
higher mosquitoes may lag behind! It suffices if they can go through the
above motions with a speed of once per memory access: they are like the
elements of a fancy shift register.

For the ith mosquito each selection of the first alternative corresponds
to a page fault that would have occurred if i had been the actual window
size. Each mosquito has to extract from this series a corresponding "page
fault frequency". They can do so by taking the past into account by an
exponentially decreasing weight, for instance by keeping each a variable
amppj ("average moment previous page faults") and transmitting "now",

88 EWD465

and adjusting each time the first alternative is selected amppj for instance by

amppj : = amppj + (now - amppj) /8,

(where "now" refers to the moment that the ripple entered the string of
mosquitoes). If for a certain window size the page faults occur at regular
time intervals "delta", then in the lirnit:

before each adjustment:
after each adjustment:

now - amppj = 8 * delta
now - amppj = 7 * delta

and

If we don't like this discontinuity, we can also store, per mosquito, the
value ampp!" each time updated by

ampp!, := ampp!, + (now - ampp!')/2

With page faults occurring at regular time intervals "delta", we then have in
the lirnit:

before each adjustment:
after each adjustment:

now - ampp!, = 2 * delta
now - amppj' = 1 * delta

As a resu1t we constantly have ampp!, - amppj = 6 * delta ,and
with the above we have achieved a Lorentz-like smoothing (see Note 2).

* * *
Two questions have been left unanswered, but it seems premature to try

to settle them now.
The first question is what to do when a processor switches from one

program to another. As an elephant contains the information of wmax
mosquitoes, wmax may be high and processor switching may occur at great
frequency, switching one elephant with equal frequency from one program
to another might lead to unacceptable switching delays. I can only think of
the cmde solution: have at least as many elephants as high-priority pro
grams. With LSI-techniques -the more of the same hardware, the better
this is perhaps not so unacceptable as it sounds in my puritan ears.

The second question is how the collected information for a program is to
be delivered. This has to occur at a page fault -when the victim has to be
chosen- and upon reconsideration of the window size. Particularly in the
first case the "lagging behind" of the mosquitoes higher up in the order
presents some difficulties: it makes instantaneous se1ection of the victim
impossible.

Nuenen, 19th December 1974 PROF. DR. EDSGER W. DIJKSTRA

Burroughs Research Fellow

EWD466
Trip Report E. W. Dijkstra, Meeting IFIP
W.G.2.3., Munieh, 8-14 December 1974

"Schlaf aus deine Freude, schlaf aus dein Leid " (My translation: "Sleep
off your joy and sleep off your sorrow ")

Wilhelm Müller (1794-1827)

The first record I placed upon the turntab1e after arrival back horne was
the (2nd) Fischer-DieskaujMoore recording of "Die schöne Müllerin" by
SchubertjMüller. In view of the poet's avowed longing for death -"Das
Wild, das ich jage, das ist der Tod" (again my translation: "The game that
I hunt is death itself.")- and the fact that 1827 - 1794 equa1s only 33,
Wilhelm Müller has done fairly weIl

I made the trip from Eindhoven to Munich -on Sunday- and vice
versa -on Saturday- by train: it is a through connection and the fact that
it takes slightly more than nine hours does not worry me. Trips like these
rernind me of the story, told to me by Brian RandeIl, of the man who
commented on his ability to do two things concurrently "I can sit and
think." and then added "and often I on1y sit. .. ". On the trip to Munich
-German international railway carriages really ron smoothly!- I wrote
the major part of a paper on the implementation of monotonie replacement
algorithms -in the literature erroneously known as "stack algorithms"-;
on the way back I thought -rather unsuccessfully, I must adrnit- on
grammars for defining the strocture of classes of strongly connected graphs,
and, when that alley seemed dead for the moment, on redundant object
code representation. (To think again thoughts with a possibly direct bearing
on machine design is great fun!) By the time I crossed the GermanjDutch
border I had arrived at a few firm conclusions (according to which all

89

90 EWD466

machines in the design of which I have ever been involved -and many
others, for that matter- contained the same flaw).

I am not sure when I shall find the time to work this out and write a
readable report ab out it. Arriving home after a week's absence I received
from my dear wife the carefully collected mail. (For the purpose of this
report I weighed it: 2300 grams, all from people I had never written to
before. In ab out one hour I read a - French- thesis of 500 grams, which I
shall direct along the appropriate channels, but the remaining 1800 grams I
have to process myself more seriously.) My youngest son saw me browsing
through an that mail and announced that he did not want to become a
professor! Blessed are the innocent children, even one's own (At the
party on Thursday evening, quite a few people asked me what it meant and
how it feIt to be a Burroughs Research Fellow. After my explanation that it
is my main commitment "to do my own thing", the usual reaction is
something like "That must be an exciting, but also frightening challenge.".
It was quite remarkable that an German-speaking colleagues only saw the
exciting part and that none of them saw the frightening side of it: they all
reacted with undiluted envy. Thus they confirmed my earlier impression
that at the German-speaking Universities the level of life is not just as bad
as everywhere else, but distinct1y below average.)

The W orking Group "On Programming Methodology" met from Mon
day morning to Friday afternoon. I spoke to them on Monday afternoon on
highlights from my book and I was only moderately successful. I should
have given them a list of highlights and the chance of selecting from them; I
made the choice instead. Secondly I should have taken the time to prepare a
number of transparencies, for now I struggled continuously with a lack of
blackboard space. Friday afternoon I tried to get a discussion going on the
purpose of "types" and the "pros and cons of polymorphic functions".
That seemed a disaster, but I think that we miss the point when we blame
that on our being tired and my having half a flu. Later I remembered that
my effort to bring that topic to discussion in Bristol had been equally
unsuccessful. In all prob ability, the moral of the story is that types do not
play such a predominant role as we may have thought and are certainly no
good for abolishing the notion of partial functions. And secondly - but
that conc1usion was not drawn that afternoon- that "scope rules" (both
positive and negative ones) provide probably a much more useful form of
redundancy.

Doug McIlroy from Bell Labs described a program structure built from
modules connected by "pipes", which was nice for the way in which he used
the -not unknown- ideas for program composition and modification. It
was his talk that made me think about grammars for strongly connected
graphs; because the latter is not a trivial problem, it remains to be seen
whether we shall see modules in a much more complicated arrangement
than, say, a pipe line. (Note that with one noteworthy exception, all my
e1ephants up to now are built as a cyclic arrangement of mosquitoes: I

Trip Report E.W. Dijkstra, Meeting IFIP W.G.2.3., Munieh, 8-14 December 1974 91

sometimes have the feeling that this is not just lack of originality on my
side!)

The next morning I missed Doug Ross (SoITech), since I had to act as
the opening speaker at a meeting of the German Chapter of the ACM. This,
again, was only moderately successful: I was amazed to find in the Max
Planck Institut no throat microphone; besides that I had to work on a grey
blackboard. Shortly after my performance I went back to the Leibniz
Rechenzentrum, where first Peter Naur (Copenhagen) and then Jim
Horning (Toronto) described experiments with large numbers of students.
Peter's statistical material came from inquiries filied in by the students,
Jim's statistical material came from mechanically 'observed errors. It was
instructive in the sense that they described experiments I would never do
myself; on the other hand the results seemed very inconcIusive. I do not
expect that with respect to such an individual activity as "thinking" any
deep insights can be obtained by observing group behaviour. I have similar
doubts regarding Lehman's (London) "Evolution dynamics of large pro
grams".

In the course of the week it was suggested that my sequencing discipline
would lead to an unusually great fraction of complicated boolean expres
sions. To stay in tune with the statistical approach I counted the "guards"
in the program texts in my manuscript: 155 simple ones (either a relation or
a boolean variable or a negated boolean variable) and 27 complicated ones
(in which I had counted all cand's and cor's double): 15 percent. I then
conducted an inquiry among the people present, asking for their personal
estimation of the percentage of complicated boolean expressions in their
programs: the average of the answers was 17.5 percent. " ... but, please,
always be sure to call it: Research" (Tom Lehrer).

Niklaus Wirth (Zurich) gave a very illuminating (critical) review of
PASCAL: illuminating because he was more explicit than ever about the
motivations that had gone into the design and, besides that, was not
defensive. He was the first to evoke areal discussion among the members;
in some other cases I think members were afraid to give their minds. David
Gries showed how he tried to extend the axiomatic approach of Tony
Hoare. It was not complete yet, but looked promising and eminently
manageable. In any case he has already made cIear to me that the technique
of "ghost variables" is more powerful than introducing "progress functions",
which are just a special case. Brian Randell (Newcastle-upon-Tyne) de
scribed the current state of their recovery project. It was only after the
meeting, when Brian had already left, that I remembered having a precious
document in my pocket. It was titled "THINGS TO BE PUT INTO A
SYSTEMS DESIGN LANGUAGE" and compiled by him and me at the
first ACM Symposium on Operating Systems Principles, Gatlinburg, 1967,
when a number of the participants blamed the difficuIties of operating
system design on the absence of a suitable "language" and founded an
ad-hoc subcommittee for the design of such a too1. We did not join that

92 EWD466

subcommittee but, during dinner time, compiled a list of recommendations
instead. (When it was comp1eted, we did not want to keep our fun for
ourse1ves; at the other end of the dining room a 1arger group of participants
was having dinner and for their amusement we 1et our list circu1ate around
their tab1e. It was only the next day that we discovered that at that other
tab1e ... the subcommittee had its meeting!) OUf list contained:

automatie backup feature
dynamic maintenance feature
condition reallocation facility
built-in heuristic procedures
1evelling and de1evelling concepts
file system generators
interrupt dispatcher contro1
automatic flaw recovery
system retry
parametric fork and spoon generators
system into madness putter
peripheral abstraction detector
general purpose modu1arity device
page fragmentation absorber
recursive schedu1er
symbolic resource optimizer
graceful degradation (of female operators) (Brian's handwriting)
garbage assemb1y
maximized cost performance
se1f -d09umentation
underware (= system support)
cognitive self-reproducibility
interruptab1e virtuality
de1ay module insertion coordinator.

I have the feeling that many of the subjects listed above were discussed last
week in one way or another. A sobering thought

Tony Hoare (Belfast) spoke on "Levels in Operating Systems" and this
100ked very promising. He had bent SIMULA to his purpose. Although I
was very keen on getting a good grasp on what he was proposing and why,
I intentionally made no notes, because I know that the on1y way in which I
can hope to come to grips with that problem -a rather continuous
evolution from rather bare machine to user programs added as "the last
1ayer" - is by writing it down myself. I had tried to design something like
that many years aga and remember where I got hope1ess1y stuck and I think
that Tony showed how to get out of it. But his presentation -usually he is
crystal c1ear- was influenced by its historical origin, and carried a lot of
the SIMULA confusions with it. So I guess that I must reinvent the whee1 in

Trip Report E.W. Dijkstra, Meeting IFIP W.G.2.3., Munieh, 8-14 December 1974 93

such a way that also simple-minded persons like myself can see that it is
round.

George Rabin (Poughkeepsie) gave a talk in which he failed to com
municate to me. My guess is that his problems have meaning only when one
takes a number (how many?) of OS /360 positions for granted. I was
wondering what he was talking about, and so did a few others.

The encounters outside the official sessions were more rewarding and
covered all sorts of things. Tony made a promising suggestion as how to
deal with "dual elephants", although it will require at least a very good taste
if the notation is not to become too hairy. Two subscripts, which in turn
may be associated with time and space, seems a minimum. Niklaus told a
terrible story about CDC-software. With 10 six-bit characters (from an
alphabet of 63) packed into one word, CDC used the 64th configuration to
indicate "end of line"; when for compatibility reasons a 64th character had
to be added, they invented the following convention for indicating the end
of a line: two successive colons on positions lOk + 8 and lOk + 9 -a fixed
position in the word!- is interpreted as "end of line". The argument was
c1early that colons hardly ever occur, let alone two successive ones! Tony
was severely shocked "How can one build reliable programs on top of a
system with consciously built-in unreliability?". I shared his horror; he
suggested that at the next International Conference on Software Reliability
a speaker should just mention the above dirty trick and then let the
audience think about its consequences for the rest of his time slice! At
another occasion Mike Woodger (Teddington) gave a verbal c1arification for
his enthusiasm for the work of the Polish logician Lesniewski, an en
thusiasm he had earlier communicated to me by mail. If Mike says that this
work is far superior to the work of better known logicians like Quine,
Fraenkel, Bernays and Rosser, who have "abandoned hope of relying on
intuitive logical common sense in the face of the antinomies" , because
Lesniewski has successfully avoided the paradoxes by introducing "sets" as
coins with two faces, I believe him. But it will take a long time before it will
soak in. Firstly Lesniewski's notation is somewhat hair-raising, secondly,
practically all people that could read it would have to unleam the Principia
Mathematica first. I came to the conc1usion that I am not a logician, nor
that I feel a strong desire to become one.

On Friday evening Tony -who had also addressed the German Chapter
of the ACM- and I were invited for dinner by Christiane Floyd and Peter
Schnupp, who had organized the meeting of that Chapter earlier that week.
We were joined by four other Germans and had a quite pleasant dinner,
which did not start or end very early. (As my train left the next morning at
11 :42, I did not mind too much.) The spirit at the dinner table was quite
well characterized by one of the Germans quoting "You may be consistent
or inconsistent, but you should not switch all the time between the two.".

Gerhard Seegmüller had organized the meeting in the Leibniz Rechen
zentrum and the party in his home on Thursday evening as smoothly as at

94 EWD466

the previous occasion. At that party I also met Manfred Paul and Fritz
Bauer. The latter was very busy, because that very week there was in
Munich a meeting of numerical analysts in honour of Householder. Olga
Tauski and Dick Varga -with whom I had one or two breakfasts- shared
our hotel.

lieft Munich on Saturday morning gladly; when I came home in the
evening I was a litde sad.

Nuenen, 16th December 1974 PROF. DR. EDSGER W. DIJKSTRA

Burroughs Research Fellow

EWD474
Trip Report Visit ETH Zurich,
3-4 February 1975 by E.W. Dijkstra

Invited by Niklaus Wirth I gave three lectures at the Eidgenössische
Technische Hochschule Zurich. The first one (Monday 16.00-18.00) was
reasonab1y successful, the second one (Tuesday 11.00-l2.00) was bad -at
the end I lost my way in a trivial proof and had to give up- , the last one
(Tuesday 14.15-16.00) went perfecdy. For some reason I was very tense.
For instance, I completely forgot to open each lecture (as usual) with a
quotation! I also forgot the first day to invite "interrupting questions".
Niklaus suggested that at my second talk I should give the audience some
"homework" for the break at lunch. I did so, but at the beginning of the
second talk instead of at its end: one question was so intriguing that more
than one member of the audience tried to solve the problem during the
lecture.

My trip from Eindhoven (dep. 9.08) to Zurich (arr. 18.14) was most
comfortab1e. I had to change twice (Köln and Basel), but as all trains kept
perfect time and I travelled light, this was no problem at all. It was my
intention to prepare the lectures during the journey, but that was not
entirely successful: my thoughts wandered away and I ended up reading in
"Mathematics in Western Culture", a book that I can highly recommend (in
spite of the sad foreword by R. Courant, which refers to today's "anti
mathematical fashion in education"). It was written by Morris Kline. I find
such accounts of the birth of new sciences very instructive and inspiring: the
analogy with what happens in computing science is sometimes quite elose.

Niklaus picked me up at the Zurich railway station and took me to his
house where I slept the next two nights. Sunday evening he had some family
over from various parts of the world and, not counting Dutch, four
languages were spoken at the dinner table. (At the end of the dinner I

95

96 EWD474

addressed their oldest daughter upon her request in Dutch: it was truly a
multi-lingual dinner!) The next evening, after dinner we -i.e. Niklaus's
wife and children and 1- gave a small "house concert" (piano, recorder,
ukulele, c1arina and vox humana) and I found it touching to observe the
earnest devotion of the young performers. Later that evening Niklaus and I
were joined by Gene Golub -the numerical mathematician who is now at
Stanford- and an American statistician called "Grace" -I am sorry that I
do not remember her full name, for she contributed a fair share to an
enjoyable evening- who came from Oxford and was on her way to
Rehovot, Israel. The last evening - knowing that Iwanted to sleep on the
night train- I drank more freely. As a result I slept very well, but I am
afraid that, when I was woken up at 5: 15 so that I could leave the sleeper at
Köln at six o'c1ock in the morning, I did not feel too happy. (Whether I
would have feit any better without the alcohol of the previous night is, of
course, an open question!) At 9:04 I arrived in Eindhoven, where my wife
was with the car to pick me up.

I had two unexpected, but pleasant, encounters. The one was with Dana
Scott, who happened to pass his sabatical leave at the ETH Zurich. On
Sunday evening Niklaus gave me a 15-page letter from Scott, which I
studied before I went to bed and discussed with Scott the next afternoon,
during the hours before my first performance. The other was that, after I
had spoken a few minutes, I suddenly discovered Robert Fano in my
audience (he was the director of Project MAC at the time that I was
guest-professor at MIT); he happened to pass his sabatical year at the IBM
Laboratory in Zurich. It was a pleasure to meet him again.

The remaining time I talked with Niklaus, his colleagues and assistants,
mainly about their work and their ideas. I observed a consensus that
skepticism about automatie program composition is as justified as skepti
cism about automatie theorem provers. (As I have always stayed far away
from these subjects, I have to rely upon opinions and expectations of those
with more experience or better insight in the field.) I was shown a very
nicely decomposed "message switching system" designed for a "terminal":
in particular the high degree of isolation of hardware-dependent parts was
impressive. It had been implemented for a Hewlett-Packard machine, and a
few PDP-machines were the next candidates. To write the system -i.e.
nearly all of it- in an extended version of PASCAL and then perform a
"hand translation" is, indeed, the most sensible approach.

We also talked about the teaching of programming and the position and
role of computer science. My strong impression is that the way in which the
mathematical department in Chicago first absorbed and then strangled
computing science -Golub told the story- is not an isolated case: such
things are in danger of occurring at more places, universities and journals.
Apparently it has happened already with ACTA INFORMATlCA; Niklaus
expressed himself very strongly (like Turski did in November), viz. that

Trip Report Visit ETH Zurich, 3-4 February 1975 by E.W. Dijkstra 97

ACTA INFORMATICA is now doomed beyond salvation. The mathemati
cians immediately restrict and extend the subject to what they see in it. I
may write a letter to the Editor, Niegel, but it won't help much, for we know
his answer: he will explain the situation by saying that such are the papers
he receives (and we ail believe it, for they are so much easier to write!).

The other threat comes from organized user groups that prefer complete
stagnation (" the physicist's FORTRAN"). Upon closer scrutiny, their argu
ments are alarming. The argument for standardization is the exchange of
their expensive programs, but that means that they exchange the bugs as
weil. (And it is somebody's law that, the more expensive a program, the
greater the number of bugs.) In the old days, physicists used to repeat each
other's experiments, just to be sure. Now they repeat each other's mistakes,
fuily automated repetition! The only justification for exchange, for sharing,
is the ultra-high quality of the shared object, but now they insist upon
sharing because it was expensive to make, aIthough it is almost certainly
expensive junk. On account of their desire to share, they should welcome all
improvements that could raise the quality of the shared object, but they
resist an change with the fallacious argument that they cannot afford to do
so. I sometimes smeil also the unwillingness to admit that their professional
responsibility extends itself to the quality of their "vital" programs. It is
frightening: here we have a mechanism that could easily kill a science on a
world-wide scale! The only respectable answer of computing science is never
to yield to the pressure.

In one respect I found the intellectual climate a litde bit "sticky"; I do
not know whether this is characteristic for the ETH Zurich or whether it is a
Swiss national trait to be "solid" first and only "adventurous" as far as then
allowed (and that is not very far). Part of my talk dealt with guarded
commands. Now, for anyone with some understanding, it is clear that as
sequencing tools they are much more attractive to use than the traditional
while-do and if-then-else, and if, fifteen years ago, someone had thought of
them, while-do and if-then-else would perhaps never have become estab
lished the way they are now. While at other places -Albuquerque and
Toronto, for instance- it sufficed to show the difference, I feIt this time
more or less pressed to quantify the improvement, to demonstrate that "the
improvement justified the change". I am not preaching irresponsibility, but
the danger of such a climate is, of course, that you lose the ability of having
day-dreams, just for fear that you can never turn them into reality. In view
of this "stick-to-what-you-have" attitude it is a marvel that Niklaus managed
to get PASCAL implemented at all! (The design of PASCAL itself has, of
course, been heavily influenced by the local facilities and political situation.
But, how else could it be?) It is, in view of the prevailing attitude of
"clinging to the soil", remarkable how the computing science there has
managed to remain relatively unaffected by the awful properties of the
CDC-machine they have to use. They have probably been saved by knowing

98 EWD474

its flaws very well; usually the obligation to use a poor machine ruins a
computing science department. They have survived!

Nuenen, 10th February 1975 PROF. DR. EDSGER W. DIJKSTRA

Burroughs Research Fellow

P.S. The problem that intrigued parts of my audience was the following.
Consider for X> 0 and Y> 0 the following program part:

x : = X; Y := Y; u : = Y; v : = X;
do x> y -> x := x - y; v := v + u
o y > x -> y := y - x; u := u + v
od;
print«x + y)j2); print«u + v)j2)

The knowledge of Euclid's algorithm suffices to see that the first number
printed is gcd(X, Y); the question was to discover the functional depen
dence of the second number printed on X and Yand to prove it. (lt is, of
course, thc type of "inverted question" that I detest, but letting people
struggle with it makes them more receptive for the beauty and the power of
the invariance theorem.)

EWD475
A Letter to My Old Friend Jonathan

My dear Jonathan,

After so many years of silence, you will be surprised to receive such a
long letter from me. But, read on, and you will understand that this time I
must address myself to a lawyer I can trust and of whom I know that he
understands.

Remember our schooldays, when we argued about the relative merits of
the Greek and the Roman culture? How I defended the Greeks by quoting
Plato and you the Romans by quoting Cicero, and how the unsettled
question did not impair the friendship and companionship between the two
of us? (Happy youths, who could argue hotly about the relative superiority
of classical cultures, whereas, today, the inferiority of contemporary civiliza
tion seems to be the only common meeting ground!) Our fates were decided
that evening by the choice of our heros: you chose law and I chose
mathematics and our ways parted. (It is astrange thought that, if in that
same discussion, 1 had chosen Homer and you Horatius, we might both
have become professional poets and our paths might have continued to
cross each other. ...)

Dear Jonathan, 1 am in a fix. 1 leave it to your great wisdom or to your
worldly experience to decide for yourself whether my problem is that 1 don't
understand them, or whether they are so short-sighted that they are unable
to understand me. But the long and the short of it is that 1 am in a fix, I
have painted myself into a corner to the extent that 1 need legal advice,
imagine! As you know - Hugo has certainly told you something about it-
1 am presently responsible for Mathematics Inc., the most exciting and most
miserable business ever conceived. It is really most exciting, because -be
sides being a most flourishing business (and that is saying a good deal, these

99

100 EWD475

days)- by blending the strength of Greek contemplation with that of
Roman enterprise, we are changing the face of the world! Our problem is,
however, that apparently the world is not quite ready for this (truly!)
"Cultural Revolution" and is beginning to fight back in a most unartistic
manner, just because it -and in particular: its legal procedures!- cannot
cope with it. There are legal procedures for the protection of property of
"things", but there is no true protection of property of "ideas", and of such
nature are the products of Mathematics Inc. (There are, of course, patent
law and copy-right, but as you read on, you, as a lawyer, will immediately
see that in our case they are insufficient.)

One of our most successful product lines is connected with what used to
be known as the Riemann Hypothesis, but now should be named our
Theorem. To bring you into the picture, Riemann -originally trained to
become a Lutheran minister!- was one of those romantic mathematicians
of the nineteenth century, who maintained his fame by dying young enough
to ensure that nobody saw that he himself was also unable to prove his
conjecture. Riemann completely missed the vision and imagination needed
to escape from the prejudices of the preindustrial society and, according to
the tradition of the period, he fought his problem single-handed: the
amateur, needless to say, failed miserably.

To supply the missing proof was for Mathematics Inc. an obvious target,
not only because we have built up the first (and only) corporation in the
world that is technically capable of constructing such a proof, but also,
because commercially it is a most attractive proposition. The point is that
whole flocks of mathematicians have made themselves dependent on it and
have (somewhat irresponsibly) based whole branches of mathematics on
Riemann's assumption. Think "hat a market! All those dangling results,
ready to be harvested by the first company that provides the missing link!
Wehave provided that link and, having the Proof, besides claiming all
previous results based on Riemann's Hypothesis, we insist on substantial
royalties for all future use of it. That is fair, isn't it? Y ou cannot expect a
huge company like Mathematics Inc. to distribute its goodies like Father
Xmas, can you? But, reasonable as our claims are, we experience the
greatest difficulties in getting our rights recognized.

As most royalties would come from abroad, our own govemment -with
an eye on the balance of payments- is in principle eager to assist us and to
support our foreign claims, but, Good Heavens!, it is incredible how it
paralyzes itself (to the point of complete ineffectiveness) by insisting upon
all sorts of clearly inadequate, inappropriate and impossible legal proce
dures. I have now received three letters from three different departments
(Science and Education, Commerce and Foreign Affairs), all of them stating
that according to (different!) articles so-and-so they can do nothing for us
before we have shown our Proof! What do they think? For, as they also
explain, this disclosure does not guarantee that they can do anything real
for us, oh no, only after the disclosure can they start the investigations

A Letter to My Old Friend Jonathan 101

whether our claims can be supported! Knowing how our departments work,
my heart sinks, for it would take at least another five years!

But, besides that, disclosure of the Proof is absolutely out 0/ the question !
Has no one heard of industrial property? Y ou see, we want to seIl the result
of the Proof -viz. that Riemann's Hypothesis is no longer a hypothesis but
a troth- , but certainly not disclose the Proof itself, for that embodies a
radically new technique of mathematical reasoning that, as long as it is ours
and exclusively ours, we would like to apply to a few similar outstanding
problems. Disclosure of the Proof would be similar to the disclosure of
"manufacturing secrets" of classical industries. How can we make them
understand this situation?

(There is another reason - but this is strictly between you and me- why
I do not care too much about disclosure of the Proof right now, because the
Proof, although essentially correct, is still in the prototype stage: minor
deficiencies -of which we know that they are easily mended: it has already
all been planned- could be misused to weaken our claims. My marketing
division has made quite clear that, as far as they are concerned, disclosure
has to be postponed until the Proof has reached such astate of stability that
it won't require significant maintenance for the first five years after delivery.)

Another serious problem -in view of the huge amounts of money
involved- is connected with exportation within the European Community,
viz. how to compute the Value Added Tax to be paid, when we seIl the
Proof. As you no doubt are aware of, the roles don't provide for it, since we
cannot define our "raw materials": are they the symbols we use, or the
Laws of Aristotelean Logic? (Here, I am sorry to say, I expect from my
government an even less cooperative attitude!)

* * *
Thank goodness we don't have only serious problems, but ridiculous ones

as weIl. Before we could get the top twelve floors of the Hosanna Building, 1
had (to humour the old gentleman who owned half of them) to order from
an architect a Toilet Flushing Water Recycling System -I have included a
copy of his design- . As the old gentleman died, he did not need any
humouring anymore and we decided not to implement the TFWR System,
although brilliantly designed, in view of the risks involved. But now the
architect complains, even after having received his fee. His argument is that
he is entitled to have his ideas realized. He points out that if all his
customers would act as we have done, he would end his days with lots of
money, received but not earned, and none of his brain-children to survive
him. He is now threatening to sue us for wasting his creative powers. 1 am
afraid he is an uncurable artist. (Don't worry, our regular lawyer will deal
with him in the usual way.)

* * *
Dear Jonathan, one of these days 1 shall ask my secretary to make an

appointment for an afternoon. Can we have dinner afterwards? (I suggest

102 EWD475

INGlNHUl51UlEAU VOOl AlCHIT&KTUUa EN lTED&'OUW

DE JON(;' HOEKSTRA ROOSEN8UR(;

A Letter to My Old Friend Jonathan 103

the Restaurant "Bali": it adds to an excellent kitchen the advantage of the
proxirnity of a cafeteria where my chauffeur can have some food while we
are having dinner.) I would like to discuss with someone like you the current
rnis-education provided by our Universities. Today's graduates leave the
campus made to believe that it is Knowledge that matters, while all of us
know that only Secrets matter. If all goes weIl, I could endow the major
Universities with an appropriate chair. How should I call it? "The Edsger
W. Dijkstra Chair of Industrial Espionage" or "The Mathematics Inc. Chair
for Security and Privacy"? I shall ask my P.R.-man anyhow, but would
appreciate your unbiased opinion.

I am very much looking forward to meeting you again. Till then!

9th February 1975

Yours ever

EDSGER W. DIJKSTRA

Mathematics Inc.
Hosanna Building

EWD480

"Craftsman or Scientist?"

(Luncheon Speech to be held at "ACM Pacific 75" at San Francisco, Friday
18th April 1975, by Edsger W. Dijkstra, Burroughs Research Fellow.)

My somewhat elliptic title refers, of course, to the programmer; so much
you may have guessed. What, in all prob ability, you could not have guessed
is that I have chosen to use the words "craftsman" and "scientist" in a very
specific meaning: they have been chosen to characterize the results of two
extreme techniques of education, and this luncheon speech will be devoted
to a (be it short) discussion of their role in the education of programmers, in
the teaching of programming. For the transmission of knowledge and skills
both techniques have been used side by side since many centuries.

The future craftsman joins a master for seven meagre years, he works as
an apprentice under his guidance and supervision, absorbing gradually, by
osmosis so to speak, the skills of the craft, until he may be called a master
himself. Craftsmen typically form Guilds and the guild members tend to
keep their common craft as a well-guarded secret among themselves: not
blowing the gaff is one of their mIes of professional conduct. Note, finally,
that old crafts have been lost, dependent as their survival was on the
continuing transmission from one generation to the next.

The future scientist leams his trade as a student from a teacher, who, in
contrast to the master who transfers his knowledge implicitly to his ap
prentice, tries to formulate the knowledge and to describe the skills as
explicitly as possible, thereby bringing both into the public domain. The
latter technique is the prevailing one at the Universities. It is no coincidence
that the rise of the Universities occurred when the printing press became
widely established, and it is no accident that each University regarded its

104

"Craftsman or Scientist?" 105

Library as its greatest treasure: the library was the embodiment of its
specific calling. Scientists regard the free interchange of knowledge and
insights as essential, and, in consequence, being non-secretive is one of their
rules of professional conduct.

To this very day, both techniques are applied side by side: physicists, for
instance, are mostly scientific, physicians, however, are mostly much more
like guild members. Mathematicians are somewhere in between: mathemati
cal results are published and taught quite openly, but there is very little
explicit teaching on how to do mathematics, and publishing besides the
results also the heuristics that led to them is regarded by many as "unscien
tific" and, therefore, bad style. Quite often the editor's censorsbip will try to
probibit their publication.

I have sketched for you two extreme educational techniques, but tbis was
only preparation: my real topic is "Where along tbis scale should we place
the teaching of programming?". This, as I have learned by sad experience, is
a risky subject to discuss, because one always discusses it with people who
themselves are involved in one way or another in the programming profes
sion, and their personal involvement tends to evoke strong emotional
reactions. Let us try to understand them, for only then we may be able to
cope with them.

To make implicit knowledge explicit and to discuss how to describe skills,
so that they can be transferred, implies, if not the birth at least the
conception of a new science. But we should realize that changing a craft into
a science, and making public property of the secret knowledge of the guild
will always cause the guild members to feel threatened. For many a
"puzzle-minded" virtuoso coder of the early sixties, the scientific develop
ment of the last decade has been most unwe1come. He feels like the
medieval painter that could create a masterpiece whenever bis experience
enabled bim to render proportions weIl, who suddenly found bimself
overtaken by all sorts of youngsters, pupils of Albrecht Dürer and the like,
who had been taught the mathematical constructions that were guaranteed
to surpass bis most successful, but intuitive, renderings. And with nostalgia
he looks back to the good old days when bis experience and feeling made
bim an outstanding craftsman. And we should realize that, as far as
programming is concemed, the battle is still going on. From a European
country, the name of wbich I shall not divulge in order to avoid personal
complications, I recently studied a proposal for the organization of its
computing science teaching at University level. The majority of its authors
-all of them professors of computing science in their country- should be
characterized as "craftsmen". As a result, their proposal had a pronounced
anti-intellectualistic flavour: it stressed that the students should be taught
how to solve the problems of "the real world" and that, therefore, the
curriculum should pay as litde attention as possible to "abstract subjects".
Such utterances are unmistakable and, undoubtedly, you recognize them. So
much for the pure craftsman's point of view.

106 EWD480

At the other end we have the pure scientist. If we give him the power of
decision, the result will be equally disastrous. He will see bis discipline -be
it automata theory, recursive function theory, formallanguage theory, logic
or queueing theory, you name it- with the exceptional c1arity that we are
entitled to expect from the modern scientist, but one thing is for him nearly
impossible to accept, viz. that bis beautiful and formal apparatus, indis
pensable as it may be, does not necessarily suffice. Since Turing we have the
complete theory of how to manipulate bits, and is not that what all
computing boils down to? And why all that fuss about the problems of "the
real world"? His theory proves that all these problems can be solved, so why
bother about actually solving them? Also such utterances are unmistakable
and, undoubtedly, you recognize them.

So, the extremes are no good, we must blend them. But now we must be
careful, for "blending" is no longer a one-dimensional question. It is not
just "so many percent craftsman and so many percent scientist" but "tbis
from the craftsman and that from the scientist". To drive horne that
message I shall describe to you a disastrous blending, viz. that of the
technology of the craftsman with the pretence of the scientist. The crafts
man has no conscious, formal grip on bis subject matter, he just "knows"
how to use bis tools. If tbis is combined with the scientist's approach of
making one's knowledge explicit, he will describe what he knows explicitly,
Le. bis tools, instead of describing how to use them! If he is a painter he will
tell bis pupils all he knows about all brushmakers and all he knows about
the fluctuating price of canvas. If he is a professor of computing science, he
will tell bis students all he knows about existing programming languages,
existing machines, existing operating systems, existing application packages
and as many tricks as he has discovered how to program around their
idiosyncrasies. And in a short wbile, he will not only tell what the manual
says should be punched in column 17 of the first card in order to indicate
your choice of priority queue, but he will also tell and explain the illegal
puncbing in column 17 that will place your program in the bighest priority
queue while only charging you for the lowest priority one. Again, the
symptoms are unmistakable and, undoubtedly, you recognize them.

This disastrous blending deserves a special warning, and it does not
suffice to point out that there exists a point of view of programming in
wbich punched cards are as irrelevant as the question whether you do your
mathematics with a pencil or with a ballpoint. It deserves a special warning
because, besides being disastrous, it is so respectable! You see, on the one
hand you stick to the problems of the real world and no one can accuse you
of being overdemanding with regard to the powers of abstraction of your
students; on the other hand you are as explicit as possible and everything
you tell is the objective, undeniable truth. And when someone has the
temerity to point out to you that most of the knowledge you broadcast is at
best of moderate relevance and rather volatile, and probably even confus
ing, you can shrug your shoulders and say "It is the best there is, isn't it?"

"Craftsman or Scientist?" 107

As if there were an excuse for acting like teaching a discipline that, upon
eIoser scrutiny, is discovered not to be there Yet I am afraid, that tbis
form of teaching computing science is very common. How else can we
explain the often voiced opinion that the half-life of a computing scientist is
about five years? What else is tbis than saying that he has been taught trash
and tripe?

With a little bit of knowledge of human nature, after the above tirade
against the wrong blending, all of you will now expect me to say that my
sympathy is with the inverse blending. This expectation is correct: as
teachers of programming we should try to blend the technology of the
scientist with the pretence of the craftsman.

Sticking to the technology of the scientist means being as explicit as we
possibly can about as many aspects of our trade as we can. Now the
teaching of programming comprises the teaching of facts -facts about
systems, machines, programming languages etc.- and it is very easy to be
explicit about them, but the trouble is that these facts represent about 10
percent of what has to be taught: the remaining 90 percent is problem
solving and how to avoid unmastered complexity, in short: it is the teaching
of tbinking, no more and no less. The explicit teacbing of tbinking is no
trivial task, but who said that the teaching of programming is? In our
terminology, the more explicitly thinking is taught, the more of a scientist
the programmer will become.

This, of course, raises the question of the feasibility of the teaching of
tbinking. In order to make tbis question realistic, we shall qualify it
somewhat: knowing how to teach thinking will not imply that each student
is also able to leam it. This need not deter us: in tbis respect "tbinking"
would not differ from any other subject that we try to teach. So, let us
consider the question after tbis qualification: can thinking be taught? The
blurb on the backside of my 1957 edition of Polya's "How To Solve It" is
quite positive: "Deftly, Polya the teacher shows us how to strip away the
irrelevancies wbich eIutter our tbinking and guides us toward a eIear and
productive habit of mind.".

Fine, but that is only the blurb: on the other side it has been remarked
that its first edition dates already from 1944 and that Polya's larger work on
the same subject, "Mathematics and Plausible Reasoning", has been coolly
received by the mathematical community and has had at most a very minor
influence on the teaching of mathematics at university level. Its cool
reception by the mathematical community says at second thought, however,
nothing against the feasibility of Polya's project. On the contrary! For its
cool reception can also be interpreted as the rejection by the mathematical
guild that feels threatened, as all guilds do, when the secrets of their trade
are made public. To publish 30 years ago a book about the making of
mathematical discoveries was heresy, as it still is in the eyes of many
mathematicians today. And to quote from "Management and Macbiavelli"
by Antony Jay: "In corporation religions as in others, the heretic must be

108 EWD480

cast out not because of the probability that he is wrong but because of the
possibility that he is right.". In other words, the relative rejection of Polya's
work on heuristics teIls probably more about the intellectual inertia of the
mathematical establishment than about his books themselves and I suggest
you this time -unusual as the advice may seem!- to believe the blurb.

I regard Polya's "How To Solve It" as a promising and significant first
step. It presents heuristics as a kind of checklist of standard questions which
may be helpful in not overlooking a simple, but somehow unexpected,
solution, if there is one. When I first read it, I was somewhat disappointed
by it, a disappointment that was a direct consequence of my already being
deeply involved in programming: I feit that my problems as a programmer
were for a large portion beyond the scope of what Polya covered. At first I
hesitated to say so aloud, because stressing the exceptional nature of one's
own field is usually a sure way of making oneself utterly ridiculous. But
after careful consideration I concluded that the intellectual challenge pre
sen ted by the programming task is, indeed, as unprecedented as the high
speed automatic computer itself. And it had caused in my mind a shift of
attention from "how to discover the unexpected" towards "how to avoid
unmastered complexity", towards "how to reduce the demands made on our
quantitatively limited powers of reasoning".

Y ou must take my word for it that past experience has made me a firm
believer that this newer aspect of thinking, i.e. how to avoid unmastered
complexity, can indeed be taught. This strikes you perhaps as a strong
statement, it becomes only stronger when you also know that I am usually
not given to unwarranted optimism. Among other things it can be done by
the identification and subsequent description of the more productive "com
plexity generators".

But it is good to remember that there are also some intrinsic limits to the
degree in which thinking can be taught explicitly, "in the scientific manner"
so to speak. To quote Polya: "The first rule of discovery is to have brains
and good luck. The second rule of discovery is to sit tight and wait till you
get a bright idea. It may be good to be reminded somewhat rudely that
certain aspirations are hopeless. Infallible rules of discovery leading to the
solution of all possible mathematical problems would be more desirable
than the philosopher's stone, vainly sought by the alchemists. Such rules
would work magic; but there is no such thing as magic. To find unfailing
rules applicable to all sorts of problems is an old philosophical dream; but
this dream will never be more than a dream.". And it is there, where,
unavoidably, the teaching of thinking becomes more like the teaching of a
craft, where the student picks up by unconscious imitation: it is here that, as
in the good old days of the guilds, an inspiring master can do wonders and
can found a School by his example.

To those of you in the academic teaching business I have only one urgent
plea: please be not ashamed of the extent to which your teaching of thinking
is "unscientific"! It is good to remember that all the unfathomed depth of

"Craftsman or Scientist?" 109

the human mind is already at play in the process of human communication.
We have -despite what psychologists, paedagogues and the like may
think- not the faintest idea how knowledge, insights and habits are
transferred. It is not unlikely, that the actual transfer is always by imitation,
and that all the explicit teaching in the scientific tradition is no more than
giving the student some verbal handles, which are no more than an aid to
memory. If this is true, then all purely "scientific teaching" -i.e. the
explicit rules and no more- is bound to be, and to remain forever, a barren
activity.

To end up my talk 1 would like to tell you a small story, which taught me
the absolute mystery of human communication. 1 once went to the piano
with the intention to playa Mozart sonata, but at the keyboard 1 suddenly
changed my mind and started playing Schubert instead. After the first few
bars my surprised mother interrupted me with "I thought you were going to
play Mozart!". She was reading and had only seen me going to the piano
through the corner of her eye. It then transpired that, whenever I went to
the piano, she always knew what I was going to play! How? WeIl, she knew
me for seventeen years, that is the only explanation you are going to get.
Since then I believe that it is vain to try to understand what goes on in the
c1assroom between who teaches and who learns, and that having no model
of that process is safer than having one, of which the crudeness has been
forgotten.

I thank you for your attention.

Nuenen, 5th March 1975 PROF. DR. EDSGER W. DIJKSTRA

Burroughs Research Fellow

G., Polya, How To Solve It, (Anchor A 93) Doubleday and Company, Inc, Garden
City, New York, U.S.A., 1957

Antony, Jay, Management and Machiavelli, Penguin Books Ud., Harmondsworth,
Middlesex, England, 1970

EWD482
Exercises in Making Programs Robust

(This is a sequel to the very exploratory EWD452: "About robustness and
the like" which was initiated in September 1974 and dosed on 31st January
1975.)

In this report I shall pursue a very simple idea. Provided that we give an
adequate formulation of what we admit as "a single machine malfunction
ing", we can interpret the effort as that of making a program in such a way
that under the assumption of at most a single malfunctioning, the machine
will never produce a wrong result as if it were the right one. I shall not,
however, start my considerations with a very precise definition of the dass
of malfunctionings I am going to allow a single instance of: the prob ability
that I have designed a tool of which, after much hard labour, we must
condude that it is insufficient for reaching our goal, is then just too high. I
shall therefore start at the other end, and investigate the consequences of
applying a technique that -with a certain amount of goodwill- can be
viewed as "making a program more robust" and afterwards analyse which
dass of malfunctionings it catches under the assumption of at most a single
instance. The more elaborate exercises, I am sorry to announce, will be
rather painful ones, because we cannot do them with too simple examples: if
the example is very simple -like forming the sum of a hundred stored
values- the only way to make the program more robust boils down (in
some way or another) to doing the computation twice and I am -obvi
ously!- more interested in what we can achieve without paying that price.
(All by itself, this observation is already somewhat alarming: under assump
tion of a perfect machine, we are used to breaking down the whole
computation as a succession of titde steps, each of them trivial in itself, but

110

Exercises in Making Programs Robust 111

if they can only be made more robust by duplication, our robustness
concerns force us to consider larger "units". Tbis seems a warning that we
are tackling a nasty subject!)

* * *
A very simple example to start with. A common program structure to

establish a relation R is

(1) establish P; doBB --> S od

where
and

(P and BB) ~ wp(S, P)
(P and non BB) ~ R

and we could replace (1) by

(2) establish P; do BB --> S od; if P and non BB --> skip fi

where the added statement causes abortion if the loop terminates with non
P or BB, i.e. in astate in wbich we are not entitled to conc1ude the validity
of R.

Time-wise tbis seems an attractive modification, because it does not
generate an overhead on the repeatable statement S. An example would be
(for N ~ 0) with

and

to add to the program

a := O{P}; do (a + 1)2.;;;; N --> a := a + 1 od {R}

the chec1cing statement

if a 2 .;;;; N and (a + 1 f > N --> skip fi

But tbis example immediately illustrates the very restricted -Le. nearly
empty- range of applicability of tbis transformation: it only works in
those cases where finding the answer may be hard, but checking the answer
is (always!) easy. These cases seem to be rather the exception than the rule,
and it would not amaze me if, often, when we think that we have found an
example, the property that the correctness of a result is so easily checked
can be used to speed up the process of finding one. (The above square root
example is, indeed, ridiculously inefficient for larger values of N.)

* * *
What do we do if the verification of P and non BB amounts to redoing

the computation, as for instance, when the correctness proof appeals to the
Linear Search Theorem? Very crudely, if our first program operates on a
variable (set) x

(3) establish P(x);
do BB(x) --> S(x) od

we could introduce a second set of variables, y say, and duplicate (under the

112

assumption of determinacy)

(4) establish P(x);
do BB(x) -> S(x) od;
establish P(y);
do BB(y) -> S(y) od;
if x = y -> skip fi

We can also merge the two processes, but

establish P(x) and P(y);
do BB(x) -> S(x); S(y) od;
if x = y -> skip fi

EWD482

is a little bit too optimistic if we allow -and I think that we should
erroneous sequencing as would result from an erroneous evaluation of a
guard as possible malfunctioning. Program (5) is in this sense safe.

(5) establish P(x) and P(y);
do BB(x) -> if BB(y) -> S(y) fi; S(x) od;
if non BB(y) and x = y -> skip fi

Up till now, there has been no gain by the transition from (4) to (5).
However, a fairly common structure of type (3) operates on astate space
(x, z) and has the general form

establish Pl(z) and P2(x, z);
do Bl(z) and B2(x, z) -> x := f(x, z); z := g(z) od

Here, repeated application of z: = g(z) generates a sequence of
z-values -on account of Bl(z) possibly finite- and in variable x some
function value of this sequence of z-values is computed (collected, if you
prefer). The relation Pl(z) -which z := g(z) will keep invariant- has
been introduced to represent any possible redundancy in the representation
of z. (If this redundancy is absent, Pl(z) does not depend on z at all and is
identically true, and the remainder of this section -probably the whole
report- is no longer applicable.) If B2(x, z) is identically true, the sequenc
ing is independent of x and, therefore, of the function f. If, however, we are
looking for the first z-value (if any) that satisfies some property -e.g. if we
are looking for the smallest divisor less than the square root plus one- B2
indicates that the search can be stopped as soon as a z-value satisfying the
criterion has been found.

Again, we can merge the two copies, but what about letting the two state
spaces share the same z?

(6) establish Pl(z) and P2(x, z) and P2(y, z);
do Bl(z) and B2(x, z) ->

od;

if Bl(z) and B2(y, z) -> y := f(y, z) fi;
x := f(x, z); z := g(z)

if non (Bl(z) and B2(y, z» and x = y -> skip fi

Exercises in Making Programs Robust 113

How good is (6)? Suppose that the values of x, y and z are currently a11
correct, but that the evaluation of a guard is incorrect. Since this incorrect
evaluation is supposed to be the only malfunctioning, either it will itself
cause abortion, or the next guard evaluation will do so. Suppose that the
value of x has been corrupted and that this was our only malfunctioning,
which is assumed to imply that y and z are and will remain correct. There
are three cases. Firstly we will, during x =1= y, encounter a case that B2(x, z)
=1= B2(y, z) and this will cause abortion. The second possibility is that,
although x =1= y remains, this will not occur, but then the last guard will
cause abortion (on account of x = y). The third possibility is that this last
abortion will not occur, because in the mean time x = y has been reestab
lished, i.e. the (apparently information destroying) operation x := f(x, z)
has absorbed the malfunctioning: apparently, it did not matter! For a
corruption of y (with the assumption that then x and z are, therefore,
correct) the same applies. We are left with a corruption of z.

The operation z : = g(z) is already supposed to satisfy

(7) (P1(z) and B1(z») => wp("z := g(z)", P1(z)

i.e. it is supposed not to destroy the validity of P1(z). If we assurne that the
operation z := g(z) will, in addition, not destroy the validity of non P1(z):

(8) (non P1(z) and B1(z)) => wp("z := g(z)", non P1(z»)

-i.e. will keep P1(z) invariant in the strict sense- , then changing the last
line of (6) into

if non (B1(z) and B2(y, z» and x = y and P1(z) skip fi

will guarantee that a corruption of z will be caught as well, if we assurne
that

(9) z is represented in such a redundant fashion, that any corruption of it
that would not destroy the validity of P1(z) can be regarded as a
multiple malfunctioning, or, to put it in another way, each single
malfunctioning affecting z will make P1(z) false.

* * *
I have done extensive exercises with a program solving the following

problem: generate all cyclic arrangements of 16 zeroes and 16 ones, such
that all 32 possible configurations of 5 successive bits occur (and, therefore,
exact1y once). Another formulation of the same problem is: generate all
permutations ho .. . h 31 of the numbers 0 through 31 satisfying

0) ho = 0

2) suc(h;, hi+l) for 0..;; i < 31

3) SUC(h 31 , ho)

where suc(a, b) = (a mod 16 = b div 2).

114 EWD482

It 1S ill the latter form that we shall tackle it. First of all, because
suc(O, x) has only the solutions x = 0 and x = 1, and h l =1= ho, it follows
that h l = 1. Therefore in apermutation satisfying 1) and 2) it follows that
h 31 = 16, for: suc(l6, x) has as only solutions x = 0 and x = 1 and thus,
for all i < 31 we have h i =1= 16. In short, we can drop the permutation
requirement 3) because it is implied by the others. The original inner block
as designed by W.H.J. Feijen, was essentially the following one:

begin virvar x; privar h, p;
x vir in! array : = (0); h vir in! array : = (0,0);
p vir bool array := (0, true); do p.dom =1= 32 p:hiext(false) od;
do h(O) = 0

begin glovar x, h, p; privar c;
if h.dom < 32 skip
o h.dom = 32

fi;

begin glovar x; glocon h; privar j;
j vir int := 0;
doj =1= 32 x:hiext(h(j»;j :=j + 1 od

end

c vir in! := 2 * (h.high mod 16);
do p(c)

do odd(c) c, h:hipop; p:(c) = false od;
c := c + 1

od;
h:hiext(c); p:(c) = true

end
od

end

The extensive exercises, however, have been thrown into the wastepaper
basket, because they had a very ad hoc character and the proofs that the
resulting programs were resistant to a single malfunctioning either failed or
became so laborious as to become unconvincing. It was that disappointing
experience that prompted me to try to formulate -" in abstracto" so to
speak- what I was really doing, while designing the above robust structure
(6). My next experiment will therefore be to try the above general technique
in a hopefully systematic manner to this specific program. (In order to keep
the experiment fair, I shall not exploit the fact that something more about
the answer is known: it has been proved that the number of solutions equals
2048, but we continue as if this theorem were unknown to us.)

To establish the connection between this program and (6), general x of
(6) corresponds to the output array x of our example and the role of the
general Z of (6) has been taken over by the pair h, p. Relation P2 is the

Exercises in Making Programs Robust 115

simple (and not too interesting):

P2(x, h, p): the value of array x "consists" of all solutions, in alphabeti
calorder, that alphabetically precede the permutations that
begin with

h(O) ... h.high.

(The term "consists" is loose, but hopefully clear enough. It is further to be
noted that in the above formulation of P2, the boolean "presence" array p
is not mentioned.)

The more interesting relation PI consists of two terms: PU(h) and
P1.2(h, p):

PU(h): for all i satisfying h./ob";;; i < h.hib we have suc(h(i),
h(i + 1))

P1.2(h, p): for all k satisfying 0..;;; k < 32,
p(k) implies that there exists I value for i, and
nonp(k) implies that there exists no value for i, such that

h./ob";;; i ..;;; h.hib and h(i) = k.

According to PU integer array h contains in general redundant informa
tion: a boolean array -manipulating the bits of the original statement of
the problem- would have done the job also. Feijen replaced the boolean
array by an integer array for reasons of efficiency.

According to P1.2 boolean presence array p stores purely additional
information that follows functionally from h; it has been introduced also for
reasons of efficiency by Feijen.

And here lies our hope for gain: the redundancy that we need for the
robust presentation of z may already be present for efficiency's sake!

We may wonder whether the redundancy provided by h and p is
sufficient. Because p follows uniquely from h, a scrambling of the value of p
will always violate P1.2. It is, however, possible to scramble h without
violating PU or P1.2 (it is difficult, but it can be done). This can be
remedied by replacing the boolean "presence" array p by an integer" place"
array p, satisfying the new

P1.2(h, p): for all k satisfying 0 ..;;; k < 32,
either p(k) = -1 and there exists no value i satisfying

h(i) = k,
or 0 ";;;p(k)";;; h.hib and then i = p(k) is the only value
for

i ;;. 0 (see below), satisfying h(i) = k.

As the cost is negligible and it is our plan to do a thorough job, I propose to

116 EWD482

switch to the integer "place" array p. (The last requirement i ;;;;. 0 has been
added because it is a simplification to extend the array h at the low end with
h(-1) = 16 for the verification of Pl.l: upon removal of a top element the
array h does not become empty.)

The critical operation is now "z := g(z)". We must change it so as to
satisfy (8) as well. We can, indeed, insert additional tests that would lead to
abortion if the intended modification of z would lead to a violation of
non PI(z), but this is not sufficient, because how do we know that the
correct new value of z has been assigned to it? (If z : = g(z) erroneously
acted as a skip, we would produce the same solution twice!)

The critical value, of course, is that of "c"; if the initialization of c had
erroneously been carried out as

c vir int := h (h.high mod 16) + 1,

a whole dass of solutions could be skipped.
So we had better concentrate upon the active scope of c and repeat our

games (or similar ones; wait and see). We have for the active scope of c
-i.e. more precise1y: until the extension h:hiext(c)- if aH goes weH the
invariant relation

P3(h, c): suc(h.high, c)

Because (non P3(h, c)) ~. wp("h: hiext(c)", non Pl.l(h)) it suffices, as far
as the invariance of non Pl.l(h) is concemed, to keep -besides non
P3(h, c)- also non(Pl.l(h) and P3(h, c)) invariant. As a result we don't
need to check whether

c, h: hipop

could perhaps destroy non PI.I (h), because that would imply the emergence
of non P3(h, c), which will not disappear unnoticed.

As P3(h, c) covers the four most significant digits of c, the least
significant digit of c seems to be our remaining Achilles heel. I propose to
count the number of even numbers among h(O) through h(h.hib), extended
with c during the latter's active scope.

This will catch erroneous initialization of c; if the guard odd(c) is
erroneously evaluated, an even c will disappear without the count being
decreased, if the guard is erroneously evaluated false, C : = c + 1 will
increase the number of even values, while it should decrease them by one.
This count is a kind of fancy parity bit. The full program is shown below.

WARNING: the proofreading of the program text has not been done with
the same care I spent on the pages of my book.

Exercises in Making Prograrns Robust

begin virvar x, y; privar h, p, n; n vir int := I;
X vir int array := (0); y vir int array := (0);
h vir int array:= (- 1,16,0);
p vir int array := (0,0); do p.dom =i= 32 p: hiext(- I) od;
do h(O) = 0

begin glovar X, y, h, p, n; privar c;
if h.dom < 32 skip
o h.dom = 32 if p(O) = 0 skip fi;

fi;

begin glovar X; glocon h; privar j; j vir int := 0;
doj =i= 32 x:hiext(h(j));j :=j + Iod

end

if h.dom < 32 skip
o h.dom = 32 if p(O) = 0 skip fi;

begin glovar y; glocon h; privar j; j vir int := 0;
doj =i= 32 y:hiext(h(j));j :=j + 1 od

end
fi;
c vir int := 2*(h.high mod 16); n := n + 1;
do p(c);;;' 0 if p(c) ;;;. 0 skip fi;

do odd(c) ->if suc(h.high, c) c, h:hipop fi;
if p(c) = h.hib + 1 p:(c) = -1 fi

00;
c := c + 1; n := n - 1

od;
if suc(h.high, c) h:hiext(c) fi;
if p(c) = -1 p:(c) = h.hib fi

end
od;

117

if h.dom = 2 and h(O) = 1 and n = 0 andp(O) = -1 andp(1) = 0
begin glocon p; privar j; j vir int : = 2;

fi
end

dop(j) = -1 andj<31 j :=j+ Iod;
if p(j) = - 1 skip fi

end

The comparison of the global values X and y, which should be equal, has
been delegated to the surroundings.

Let me give some explanatory notes.
The outer guard h(O) = 0 is not repeated automatically, if true: it only
matters, when we think that we have found a solution, and then it should be
confirmed by p(O) = 0; this means that after the last solution has been
found and p(1) is already = 1, it would not be detected if the outer
repetition went on for a while. Why should it?

118 EWD482

The operations, wbich are essentially of the form x := f(x, z) and
y := f(y, z), are themselves fully unchecked: if something goes wrong there
that is harmful, different values of x and y will result. Note that the test
whether a new solution has been found is repeated: once for x and once
for y.

The conclusion that p(c) ~ 0 holds, has to be confirmed, otherwise the
erroneous conclusion that extension with c would lead to duplication would
cause possibly a large collection of solutions to be skipped. (Tbis additional
confirmation was lacking in my first version of the robust program.) I
observed the omission while typing these notes! The conclusion that on
account of non p(c) ~ 0 the repetition has to be terminated is asked for
confirmation 7 lines lower.

The test odd(c) in the innermost repetition does not need further
confirmation, since any erroneous evaluation would leave its traces in a
noncorrect value of n.

Finally, at the end of our original program, it is checked -somewhat
superfluously- that h.dom = 2; the test h(O) = I is necessary for the
confirmation that the outermost repetition has not stopped too early,
thereby possibly missing a number of the last solutions. Finally P1.2(h, p)
is fully checked. (We can regard the test h.dom = 2 as part of that test, so
perhaps its presence is fully justified after all.)

And tbis concludes my treatment of tbis example.

* * *
As the plurals in my tide betray, I originally intended to deal with more

examples. On second thought I shall confine myself in tbis report to tbis
single example: I am already on the eighth page, with single space typing.
Although I had announced that the exercises would be rather painful, I did
not expect that it would be so much so. So I tbink that I should distribute
the report now, as it stands, hoping for helpful comments. Therefore a few
concluding remarks.

If the inefficiency of our final program "hurts", we should be aware of
the following considerations. Why does it "hurt"? WeIl, because the many
tests that we have inserted are on the one hand assumed to absorb computer
time, and on the other hand -unless the machine is completely lousy
will be very skew. Of course, for if the macbine were perfect, the tests would
give no information at all! The normal reaction to such very skew tests has
been to devote dedicated hardware to them (vide the parity check or the
interrupt circuit). If techniques, as displayed in tbis report, would be applied
to general purpose programs -note, that I have not made up my mind,
whether that would be a good thing! - tbis conflict could perhaps be solved
by the presence of some program-controlled hardware that could do some of
the checking in parallel with the main computation.

For the time being, techniques as shown are probably more appropriate
in special purpose environments, such as, for instance, micro-programs or
just the instruction cycle. One of the reasons for undertaking all tbis was my

Exercises in Making Programs Robust 119

growing doubt about whether our techniques for the quaIity control of chip
design and chip construction are sufficient. If techniques like the above can
be transferred to that more microscopic level, we might feel confident to
catch in a single stroke both design errors and incidental machine malfunc
tionings.

Nuenen, 20th March 1975 PROF. DR. EDSGER W. DIJKSTRA

Burroughs Research Fellow

EWD494
Trip Report E. W. Dijkstra 16th April/
7th May, 1975, U.S.A. and Canada

With a Boeing 707, which can remain m the air for 11 hours and 45
minutes, our flying time from Amsterdam to Los Ange1es was 11 hours and
30 minutes. One of the advantages of that flight is that upon arrival at Los
Angeles no more time is wasted upon circling above the airport! At
Immigration I found myself speeding up the proceedings by acting as a
German-English interpreter between e1derly Lufthansa passengers and the
young (and beautiful) female U.S. Immigration officer, all in my own
interest, because Iwanted to catch my connection to San Francisco. (It
worked.) For the benefit of my readers who enter the USA at Los Angeles
as transit passenger the following advice:

(1) get your luggage booked through to at least your next destination in
the USA: already in the Custom's Area, your luggage will be p1aced on
an "Express Belt". It works!

(2) try to get TW A as your next carrier: from the International Arrivals to
the TWA-building is really within walking distance (and on US Air
ports, walking distances are very rare indeed!).

I caught my connection and at 22.00 (their time!) I was picked up by my
host, Tony Wasserman, who drove me to his horne. After some talking, two
hard-boiled eggs, a glass of cold milk and a few glasses of whiskey I went to
bed and slept from midnight until 6 o'clock in their morning. At 7 o'clock
we had breakfast and then my host -who was Chairman of ACM Pacific
75- and his wife disappeared and I was left to myself. For one and a half
hours I studied Vol. 1, nr.1 of the IEEE Transactions on Software En
gineering. (With the exception of the Liskov-Zilles paper, which was at least
instructive, that first issue seemed to me alarmingly weak and I was glad to
have refused to join its Editorial Board. The biographical blurbs about the

120

Trip Report E.W. Dijkstra 16th April/7th May, 1975, U.SA and Canada 121

members of that board -no doubt supplied by the subjects themselves
were very amusing when compared against each other! At Los Angeles, next
week, many others would express their disappointment about that first
issue.) Vol. 1, nr.l proved sufficiently soporific on that Thursday morning
for another two hours of undisturbed sleep on the farnily couch. The nett
effect was that, at noon, I had had eight hours of sleep and, from then
onwards, I had unusually little trouble with the eight-hour time shift. That
was fine and reassuring, for it was with considerable trepidation that I had
been looking forward to my commitments: a lecture on that Thursday at
Berkeley at 4 o'clock (= midnight) and the next Friday a luncheon speech
at San Francisco ACM Pacific 75 and, the same afternoon, again at 4
o'clock a lecture at Stanford.

At Berkeley the lecture room overflowed, and I had very little blackboard
space. The sound system, however, was adequate and I was not expected to
speak for more than 50 minutes. It was an acceptable performance. The
Chinese restaurant where we should have dinner together and where Tony
Wasserman would pick me up during the evening having had a fire, we
ended up in a Japanese restaurant. Between the talk and the dinner I was
rescued by Sue Graham and Michael Harrison, with whom I drank a few
glasses of nice, white wine in a cool and peacefulliving room. For the last
glass we were joined by VuiHemin, who had asked a question after my talk.
(It turned out that 1 had him in my audience at the Summer School in Le
Breau-sans-Nappe, some five years ago: as usual, I did not remember, but,
thank goodness, he did not blame me. Otherwise, he would not have turned
up.)

On Friday morning I joined Tony Wasserman while going to the ACM
Pacific 75. I bought a small, cheap camera and did not attend any of the
sessions, except the Luncheon Banquet, where I had to read -no problem
therefore- my Luncheon Speech. (It was printed in the Conference Pro
ceedings, and under such a circumstance 1 always find it a little bit silly just
to read my text -as if one's audience cannot read! 1 used the Railway
Parable by way of introduction. It all went very weH.) 1 walked through the
corridors, was introduced to Codd (we had never met) and encountered
Lyle, Cowan and Barton from Burroughs. They invited me for an informal
meeting near San Diego (with Holt and Petri), but next week I discovered
that I could not make it.

Immediately after the Conference Banquet I was taken to Stanford,
where I met Jim Eve as expected; 1 also found there Brian RandeH and
Peter Henderson (which I could have expected) and Rod Burstall (which
was a pleasant surprise). As Stanford had asked for the same lecture as
Berkeley, 1 gave the same lecture again. This time we had been moved to a
larger auditorium, so that it did not overflow. The sound system was not of
a convincing quality -it was in the EE Department- and the old
blackboards were of the type that cannot be cleaned anymore. I suffered
less from these minor disturbing influences than the previous day and the

122 EWD494

lecture went very smoothly. (I fear that I am getting quite spoiled by the
lecturing facilities at the THE!) In the evening there was a party at Jim and
Margaret Eve's (temporary) Castle and at 11 o'clock I disappeared with
Don and Jill Knuth, where I woke up at four o'clock in the morning, awake
beyond redemption. At 6 o'clock in the morning I was writing a letter to Ria
at their dinner table and when it was nearly completed, Jill came down for
breakfast. The morning was devoted to an exchange of problems and
solutions, views and opinions between Don and me, the afternoon to
walking over the Stanford Campus and piano playing -his organ was
going to be instalIed within a few weeks- . Early in the evening Don and
Jill Knuth brought me back to Tony Wasserman's house, where we joined a
party. There I met Richard Karp from Berkeley, Bob Floyd from Stanford
and John Backus from IBM. Bob Floyd was very excited because he had
just derived the exact minimum number of steps needed for addition in
number systems with unique representation (by pushing a lower bound and
an upper bound until they coincided). It had taken him about a year to do
so and he was clearly still absolutely excited that he had succeeded.
(Without denying the brilliancy of the argument, I must confess that I am
not convinced of the central importance of the problem as far as computing
science is concerned: it strikes me more as pure mathematics.)

After having been shown the San Francisco surroundings on Sunday
morning, I flew under Tony Wasserman's guidance from San Francisco to
Los Angeles in order to attend from Monday through Wednesday the
International Conference on Software Reliability. Those were three busy
days: besides being the first speaker -that is, after the Keynote Address by
Ruth Davies from the NBS, a Keynote Address that I did not understand
I was also the last speaker, and it was intended that I should try to use that
last slot for a summing up. (My printed text in the Proceedings was only an
"Emergency Exit" in case that I had not figured out what to say. I feIt a
litde bit shaky at that last session, confronted by an audience of about a
thousand people and intending to speak without written text. As the
audience was very mixed, I spoke mainly about the various forms of
pressure to do the wrong things, about the false hopes and the lies that are
the curse of our profession and about the strains, tensions and pains caused
by the fact that a craft is changing into a science. It was that kind of talk. At
the end I had used only five paragraphs or so from the Emergency Exit.
Three days later I heard -to my surprise!- that I had been "so bitter". I
don't think so: "honest" would have been a better term. It was a quite risky
performance, but quite a few came to me afterwards and thanked me. I
hope that I have not offended or disturbed more people than necessary.)

The International Conference on Software Reliability was, to start with,
a circus with about a thousand participants instead of the estimated four
hundred. At closer inspection it was a very mixed lot, as mixed as the tide
item "Software Reliability" was lousy. One lesson is clear: when organizing
a conference, don't use a vague title like that.

Trip Report E.W. Dijkstra 16th April/7th May, 1975, U.S.A. and Canada

There were mainly three groups of people:

(a) the correctness guys,
(b) the program testers and other engineering pragmatists,
(c) the software project managers.

123

The three categories are presumably listed in order of increasing magni
tude and decreasing quality. Category (c) feIt itself very clearly threatened
by the technicians of the other two categories, and showed this in various
ways. One way was to deny flatly that -at least today and for the next
years to come- the technicians could contribute, e.g. L.M. Culpepper's
postulate (Naval Ship Research and Development Center): "For the
present, reliable software must be produced by people whose primary skills
and interests lie outside the field of programrning.". For the record I quote
from R.D. Williams's (from TRW) salesta1k: " ... In fact, at TRW, where
the search has been intense and continuous over the years, a great deal of
progress has been made, a lot has been leamed and we can say conserva
tively (sic!) that we have come a long way.[...] Despite having introduced
unprecedented rigor into the task of specifying and reaching mutual agree
ment on unambiguous requirements, we fully appreciate the need for even
more rigor and a comprehensive technology to guide and control the
requirement specification effort." Etc. There was at least one other TRW
paper in the same vein, and more than one person has asked himself (or
others) whether this conference was in part apart of TRW's sales promo
tion. (Boehm, the program chairman, is from TRW.) If so, it must have had
some negative effects as well, for I saw many people leaving the room in
absolute disgust. Classifying programmer mistakes according to various
(ill-defined) categories was also a beloved pas time, and, of course, there was
our psychologist NN2 who does not know that anecdotes are only a poor
substitute for conversation.

The type (c) people thought mainly in terms of power. The type (b)
people were a little bit more pathetic, because they feIt clearly threatened in
their technical skills: on the whole they had at least the lurking suspicion
that their approach was not fully right. It was here that we had a number of
statistical papers based on the assumption that software errors caused
malfunctioning subject to a Poisson distribution (what else?) and from then
onwards, etc ... They had a tendency to defend themselves by putting on
the hat of the "reasonable, reliable engineer", pointing out -sometimes at
great length- that "correctness", although of course important, was only a
very small aspect of the task. Too much of that was presented in terms of
the vulgar controversy -vulgar because fruitless- of "common sense"
versus "mathematics", of "the practical problems of the real world" versus
"theory"; Parnas's paper had too much of that flavour for my taste.

The type (a) speakers feIt most secure. They showed proof techniques,
either by hand or (partly) mechanized, to be applied during or after
program development and, in general, they did not oversell too much. They

124 EWD494

derived their sense of security c1early from the firm mathematical basis of
their work and some of their relative modesty from previous failures of
Artificial Intelligence. I myself found the methods less convincing the more
they relied upon mechanical assistance. Various people showed how they
tried to debug programs by "symbolic execution" (James C. King "A new
approach to program testing" and Robert S. Boyer, Bernard Elspas and
Karl N. Levitt "SELECT - a formal system for testing and debugging
programs by symbolic execution.") but I have grave doubts whether these
efforts make much sense: I fear that a combinatorial explosion will quickly
prevent their application and thus reduce their significance. They tend to
partition the input space according to the resuIting flow of control (" the
control path") and that seems self-defeating: a sentence like "each loop can
be executed as many times as a user feels necessary to convince himself of
its correctness" is taken as a support of my doubts! Shmuel Katz and Zohar
Manna ("Towards automatic debugging of programs") state "The main
tool we use will be the invariants of the program, which express the
relationships among the variables at pre-chosen cutpoints during execution
of the program" and that seems to make more sense. My judgement will be
postponed until I have made a sufficiently thorough study of their paper; I
hope that its presentation can be simplified! I was more attracted by Susan
L. Gerhart's paper "Know1edge about programs: a model and case study".
Susan L. Gerhart was also co-author (with John B. Goodenough) of
"Towards a theory of test data selection"; while reading that I found myself
somewhat depressed when I observed that these authors thought it still
necessary to show that a program may be wrong, although testcases exercis
ing the whole program text have been processed correctly. Later, while
reading other papers, I became still more depressed when I discovered that
this warning is still necessary! I came horne with a fat, green bible of more
than 560 pages containing more than 60 papers, of which perhaps 10
percent worth studying. lieft the Conference rather depressed, but in
retrospect it is perhaps not so bad at all (To quote Strachey's quotation
"After all, 95 percent of everything is rubbish.": 10 percent worthwhile is
then not bad at all!) The chairman was absolutely convinced that the
conference had been a great success, but he seemed to judge primarily by
the number of paying participants.

The next two days were passed at ISI, where Ralph London had invited a
small number of people for an informal gathering. I do not remember all
that were present, for we came from eight different countries, and I
remember only Manna, Ershov, Burstall, RandeIl, Bledsoe, Luckham, Good,
London, Turski, Wulf and Musser. On Thursday morning I showed the
on-the-fly garbage collection, proof included, and the audience was duly
impressed (Bill Wulf was even delighted, for he feIt that he could use the
solution very weIl). Bledsoe showed some mechanical proofs from normal
analysis, using "extended reals", Burstall did his IFIP paper again, RandeIl
showed the implementation of recovery blocks, and London and his crew

Trip Report E.W. Dijkstra 16th April/7th May, 1975, U.SA and Canada 125

gave a demonstration of their verification system. My feelings with respect
to that project are still very mixed, for a great variety of reasons. Their
screens were beautifu1 and the who1e system seemed nicely engineered,
but the demonstration had to take p1ace during lunch, because then we
could have a dedicated PDP10 at our disposal with 256K words. The
demonstration took nearly an hour, the program was a program for the
binary search and got stuck in most of the proofs. After the demonstration I
studied the program text, which I found hard to understand. So I decided to
program it myself and I derived formally a much more beautifu1 (and more
"efficient") program on the backside of an enve10pe in two minutes. This
contrast gave me the uneasy feeling that with the economy of their system
something is still very wrong. One thing is certain: the stress on mechanical
proofs is because they want a certi!ication and (on what justification?) trust
a machine better than a human being. That a proof is also the carrier of our
understanding and that the joy of understanding is the last one we should
delegate to machines is hardly stressed, probably because it cannot serve as
a basis for funding.

On Friday afternoon I flew to Phoenix, Arizona, where I was due to
perform on Saturday morning and afternoon on the invitation of the
Phoenix Chapter of the ACM. Upon arrival in Phoenix my hosts, Dr. Susan
Brewer and her husband, invited me for a concerto given by the Borodin
Quartet. This was quite a surprise! The performance took place in the
building of The Phoenix Chamber Music Society -or something very
similar- and I was exposed to music and a new aspect of American social
life. After the performance we had a late dinner with the soloists. My
performance on Saturday morning was not too successful: in an overloaded
room with the doors open (for reasons of ventilation) I had to fight the
airport noise, only assisted by what was described as "a weak microphone".
I had to work with an overhead projector, but the pen had a very blunt
point and this was difficult to combine with my subject, which required
rather lengthy formulae. It was a distressing batde. During lunch I retrieved
from my luggage a pen with a sharper point and used some of the prepared
"visuals" that I had used at my first talk in Los Angeles. The second one
went much better. Early in the evening I flew back to Los Angeles, where
Bob Merrell and his wife were at the airport to pick me up and to take me
to Mission Viejo, where I stayed in the Mission Viejo Hilton Inn.

(The room number in Mission Viejo was 242; in Los Angeles my room
number had been 338 and as I am used to factoring room numbers, this was
a surprise! The Mission Viejo HiIton Inn was better than the International
Hotel in Los Angeles, which was just terrible: "Two eggs any style", I
discovered in Los Angeles, excludes hard boiled... . Both their bars were
hardly illuminated and had music, but in the International Hotel the volume
was such as to make conversation nearly impossible.)

For a week I stayed in Mission Viejo at the Burroughs Large Systems
Plant. It feit like coming horne, most people I encountered I had met before.

126 EWD494

On the one hand it was hard work: about forty percent of the time I stood
at a blackboard. On the other hand it was rewarding, since we communi
cated very effectively. One of the first days we entered the plant at about 8
o'clock in the morning and, after having accepted coffee from one of the
secretaries, they showed me what they wanted to ask me, and at ten past ten
we were down to essentials. Yet it all took place in a relaxed manner, orders
of magnitude less hectic than the preceding ten days. My presence was
responsible for a few sodal events and I saw a few very nice hornes, often
with a beautiful view. (I wondered whether that climate would make me
utterly irresponsible!) I was, however, severely tempted to offer the plant
something like the "Edsger W. Dijkstra Blackboard", but I have done no
more than express the intention. On the anniversary of Her Majesty our
Queen I took half an afternoon off; I ate dinner in solitude and wrote all
evening.

I leit Mission Viejo on Saturday morning. At a quarter to seven in the
morning Bob Merrell was at the HiIton Inn's dOOfstep and took me to the
airport in Los Angeles, from where I flew to Montreal. I had another four
days to go, and that stay in Canada enabled me to absorb at least three of
the eight hours time shift in advance. The flight to Montreal was interrupted
by a stop at Toronto, where we had to see our luggage through customs. It
was a hectic situation, and I was already mentally preparing myself for
getting stuck in Toronto, chasing my luggage, when at last it turned up, just
in time for getting on the flight again. In Montreal I was picked up by
someone from IBM who drove me to the Castle Montebello.

Prom Monday through Wednesday IBM sponsored there a conference on
Software Engineering Education, and in my innocence I had expected an
audience of computer scientists. My driver, however, was a manager, who
opened the conversation with something like "So you are the world expert
on structured programming and chief programmer teams.". Then I knew
that I was out in the wilderness and politely refused to be associated with
Harlan D. Mills. During that car ride I heard more about hockey than lever
wanted to know. I feit very low when we arrived at Montebello. Upon
arrival I found the scene considerably brightened by the broad shoulders
and similar neck of Wlad Turski.

The Montebello conference was very instructive for me, aIthough I
learned a lot without which I would have been happier. At most fifty
percent of the participants were computing scientists; the rest were either
IBM officials or managers of the automatic data processing departments of
large IBM customers. I had full opportunity to observe all the intricate
love jhate relations between the angles of the triangle " university
manufacturer-customer". It was all very frightening and I wish that I had a
mastery of my pen like Arthur Koestler, for then I could have written a
companion volume to his "The Call Girls".

The central victims in this drama are the so-called MBA's (short for
"Master of Business Administration") and the firms dependent on their
services, in short, their employers. They really have painted themselves into

Trip Report E.W. Dijkstra 16th Apri1j7th May, 1975, U.S.A. and Canada 127

a corner with very sticky molasses! They have made a number of unforgiv
able mistakes. One mistake is that they have based their full automation
upon the IBM/360. When that machine was announced, it was imrnediately
clear to many -even inside IBM!- that it would be practically impossible
to write decent software for it, for it contained too many too serious
blunders. Y ou cannot program a crooked machine to go straight, and a
hardened piece of junk propagates all through the system. As the software
cannot be acceptable, stability was the last that could be expected. Yet they
chose that shaky basis as their starting point. The next mistake is that they
decided to program in COBOL. And now they find the administration of
these big firms dependent on 5 million lines of COBOL! That wou1d already
be terrible all by itself, but on top of that misery they find IBM coming with
a next release of OS /360 before they have managed to adjust their program
library to the changes introduced at the previous release. They have set up
gigantic administrations and have made their firms fully dependent on
them, but have done so in the absence of the necessary competence to do so.
It is absolutely terrible, and one of these days something terrible is bound to
happen. It is irresponsibility on the verge of lunacy, but, believe me or not,
the MBA's seem to believe they have done something very clever! But now,
quite unexpectedly it seems, they are in trouble. One of those speakers made
the duty of the university quite clear: IBM came with its confusing releases
at a greater speed than the system programrners in the business could cope
with, customer training was also defective, and therefore the universities
(who had lots of experts in the area of operating systems, all of them with a
lot of educational experience) should give crash courses in "How to live
with the next release of OS/360". Perhaps the government could mediate
between the vendor and the universities so that the universities could get
advance information, etc. And what can the University do? To quote C.A.R.
Hoare: "And simplicity is the unavoidable price which we must pay for
reliability.". We know that this is going to collapse, it must, crushed under
the weight of its own unwieldiness. And things are not going to improve,
they will become worse. NN3 , now one of IBM's vice-presidents, announced
in his keynote address -so bad, that many Canadians felt obliged to offer
me their apologies on behalf of that American, and if you know something
about the Canadian/ American relations that is saying a good deal!- better
times: primary memory would become so cheap that OS/360 could at last
grow from 2.5 million somethings (bytes or words, does not matter) to 4
million somethings! Only more and more of the same, becoming demonstra
bly more intertwined. It is no longer "logical spaghetti", but "logical
barbed wire". In the middle of the moming, NN3 thought it fit to intervene
by shouting "Why is everybody so damned pessimistic?". Tom Hull gave, as
the next speaker in the discussion, him the answer "Because all of us have
heard this morning's keynote address.". He did that perfectly.

But on the whole it was ghastly; unreal. I was severely shocked by the
culturallevel of the business participants. Their jokes were stale and sordid
and - for people in business this amazed me- they could not drink their

128 EWD494

a1cohol with style (and alcohol was provided by IBM plenty: "whiskey
galore"; also this lavishness was somewhat appalling). But also technically,
they were absolutely uneducated. I remember one extremely fruitless discus
sion with a man, who talked all the time about "the user". I suggested to
him that he should not use that term and that he should separate his
concems: on the one hand try to make your system meet the requirements
-and during that phase it is wise to consider yourself as the user- and if
the system's customer happens to be someone else than yourself, deal with
the problem of discovering his needs and intentions as aseparate issue. He
absolutely refused to make this separation of concems.

Later I heard Harlan Mills give a summing up of some of the things I
had said -together with some Harlanesk additions- for that business
audience. It was terrible, a misuse of language to which to the best of my
powers I could not give a meaning. So, every third phrase I interrupted
Harlan "please could you explain or restate what you tried to say", but it
was hopeless. Tom Hull helped me and I was very grateful to him. Later,
when it was all over, our eyes met, and Tom gasped "Jezus!". It was the first
time that I had heard him use strong language. How to seIl empty but
impressive slogans under the cloak of academic respectability

Turski's comments were short "They don't want computer scientists, nor
software engineers, they want brainwashed mental cripples.". It is too
true

On the last morning, Harlan Mills gave the summing up talk. I t was
again very much of the same, but, remarkably enough, I leamed something
from him, viz. the expression "entry level jobs". His argument was that the
university should not train experts -as an aside: training and education
were constantly confused- because the jobs those experts should get were
no "entry level jobs". This may be a profound difference between the
academic community and (at least some of) the business community: there
is not the slightest objection to giving the most responsible university
function, viz. a full professorship, to a youngster who has just got his Ph.D.
It does not happen so very often, because really brilliant people are rare;
but nothing in the university environment forbids it as soon as a really
brilliant man emerges. On the contrary, I am tempted to add! But to the
business communities represented it was unthinkable to give a youngster
any real responsibility

The most frightening thing -and that made it all so unreal- was that
all those business blokes, aIthough in great trouble, were so liule alarmed.
They said that they were trying to dig themselves out of the hole again, but
only wished to try to do so by well-established practice. So they will only
sink deeper into the mud. If they really want to get out of the mess,
something drastic has to be done and if they don't, something drastic will
happen all by itself. But this was clearly beyond their imagination.

Nuenen, 9th May 1975 PROF. OR. EOSGER W. DIJKSTRA

Burroughs Research Fellow

EWD498
How Do We Tell Truths that Might Hurt?

Sometimes we discover unpleasant truths. Whenever we do so, we are in
difficulties: suppressing them is scientifically dishonest, so we must tell
them, but telling them, however, will fire back on uso If the truths are
sufficiently unpalatable, our audience is psycbically incapable of accepting
them and we will be written off as totally unrealistic, hopelessly idealistic,
dangerously revolutionary, foolishly gullible or what have you. (Besides
that, telling such truths is a sure way of making oneself unpopular in many
circles, and, as such, it is an act that, in general, is not without personal
risks. Vide Galileo Galilei)

Computing Science seems to suffer severely from tbis conflict. On the
whole, it remains silent and tries to escape tbis conflict by sbifting its
attention. (For instance: with respect to COBOL you can really do only one
of two tbings: fight the disease or pretend that it does not exist. Most
Computer Science Departments have opted for the latter easy way out.) But,
Brethren, I ask you: is tbis honest? Is not our prolonged silence fretting
away Computing Science's intellectual integrity? Are we decent by remain
ing silent? If not, how do we speak up?

To give you some idea of the scope of the problem I have listed a number
of such truths. (N early all computing scientists I know weIl will agree
without hesitation to nearly all of them. Yet we allow the world to behave as
if we did not know them)

* * *
Programrning is one of the most difficult branches of applied mathe

matics; the poorer mathematicians had better remain pure mathematicians.

The easiest macbine applications are the technicaljscientific computa
tions.

The tools we use have a profound (and devious!) influence on our
thinking habits, and, therefore, on our tbinking abilities.

129

130 EWD498

FORTRAN, "the infantile disorder", by now nearly 20 years old, is
hopelessly inadequate for whatever computer application you have in mind
today: it is now too clumsy, too risky, and too expensive to use.

PL /1 -" the fatal disease" - belongs more to the problem set than to
the solution set.

It is practically impossible to teach good programming to students that
have had a prior exposure to BASIC: as potential programmers they are
mentally mutilated beyond hope of regeneration.

The use of COBOL cripples the mind; its teaching should, therefore, be
regarded as a criminal offence.

APL is amistake, carried through to perfection. It is the language of the
future for the programming techniques of the past: it creates a new
generation of coding bums.

The problems of business administration in general and data base
management in particular are much too difficult for people that think in
IBMerese, compounded with sloppy English.

About the use of language: it is impossible to sharpen a pencil with a
blunt axe. It is equally vain to try to do it with ten blunt axes instead.

Besides a mathematical inclination, an exceptionally good mastery of
one's native tongue is the most vital asset of a competent programmer.

Many companies that have made themselves dependent on IBM equip
ment (and in doing so have sold their .soul to the devil) will collapse under
the sheer weight of the unmastered complexity of their data processing
systems.

We can found no scientific discipline, nor a healthy profession, on the
technical mistakes of the Department of Defense and, mainly, one computer
manufacturer.

The use of anthropomorphic terminology when dealing with computing
systems is a symptom of professional immaturity.

By claiming that they can contribute to software engineering, the soft
scientists make themse1ves even more ridiculous. (Not less dangerous, alas!)
In spite of its name, software engineering requires (cruelly) hard science for
its support.

In the good old days physicists repeated each other's experiments, just to
be sure. Today they stick to FORTRAN, so that they can share each other's
programs, bugs included.

Projects promoting programming in "naturallanguage" are intrinsically
doomed to faiI.

How Do We Tell Truths that Might Hurt 131

* * *
Isn't tbis list enough to make us uncomfortable? What are we going to

do? Return to the order of the day, presumably

Nuenen, 18th June 1975 PROF. DR. EDSGER W. DIJKSTRA

Burroughs Research Fellow

ps. If the conjecture "Y ou would rather that I had not disturbed you by
sending you tbis." is correct, you may add it to the list of uncomfortable
truths.

EWD

EWD501
Variations on a Theme: An Open Letter
to C.A.R. Hoare

Dear Tony!

For a variety of reasons I have not yet reacted to your artide on
Monitors [1]. For one thing, it failed to convince me -something I feIt bad
about, because I knew that this might have been due to the circumstance
that I had been too lazy to go in detail through your more sophisticated
examples- . Secondly, I was also not too pleased with the alternatives
I could offer myself -my difficulty in finding good identifiers for
the operations I was considering was just a symptom of my own mixed
feelings- . Eventually I got interested in what one can do without mutual
exdusion, and I dropped the subject -not without remorse, for I had left a
task undone: I had faiIed to make up my mind!- .

Recently the topic was brought back to my attention by a nice technical
report by eoen Bron [2], and in a Tuesday afternoon discussion with Wim
Feijen, Alain Martin, Martin Rem and Liesbeth Steffens I tried, as a result,
to redesign my (formerly rejected) alternative, in the hope that this time I
could do a more conclusive job. This letter records the quintessence of that
discussion and the following considerations.

About the Microscopic Delays Implied by Mutual
Exc1usion

The whole purpose of a monitor is to grant mutually exdusive access to a
bunch of common variables, and this implies two things.

132

Variations on a Theme: An Open Letter to C.A.R. Hoare 133

Firstly, the whole monitor concept is only adequate if a monitor will only
be "active" during a negligible fr action of time. (And on the next higher
level of abstraction, we shall indeed ignore the CPU-time spent on "moni
toring"!) Secondly, in any multiprocessor installation, attempted monitor
calls while the monitor is active imply delays, but in view of the first remark
I propose to attach no significance whatsoever to the order in which such
"microscopic" delays have been caused. Such microscopic delays will last
until the moment when otherwise the monitor would have become inactive,
and one of the microscopically delayed processes will be granted access to
the monitor. Our only (logical!) requirement is the exclusion of the (in view
of our first remark highly improbable) danger of individual starvation.
(Round Robin, for instance, would do!) In the following the microscopic
delays will not be mentioned anymore, logically it is as if "by magic" no
process attempts to call a monitor while it is active. (Early in the discussion
I had failed to make a clear distinction between microscopically delayed
processes eager to call the monitor and macroscopically delayed processes
that, being woken up, were eager to continue an interrupted execution of a
monitor procedure -in what follows the latter class will disappear- ; this
confusion was so disastrous that it did not last long!)

NOTE. At the lowest level I expect no objection to implementing the
microscopic delays by means of the busy form of waiting. (End of Note.)

About the Macroscopic Delays Introduced by a
Monitor

The further purpose of a monitor is to introduce macroscopic delays when
necessary and, ideally, a monitor is formulated in such a fashion that it does
not reflect the number of partners between which the cooperation is
regulated. I t should describe "my" behaviour versus "the others". (In the
THE-system the cooperation was coded in a context in which all partners
were individually known and explicitly referred to; in retrospect I regard
that now as one of the more significant shortcomings of that system.) In
order to describe the mIes of cooperation independent of the number of
partners involved, I envisaged describing it in terms of a finite number of
named queues of sleeping -i.e. macroscopically delayed- processes, where
the queues themselves could be of any length, and each sleeping process
would occur in exactly one queue.

Right at the start, our decision that the elements on a queue should be
linearly ordered seemed more emphatic than yours. You write: "If more
than one program is waiting on a condition, we postulate that the signal
operation will activate the longest waiting program. This gives a simple,
neutral queuing discipline, which ensures that every waiting program will

134 EWD501

eventually get its turn.". But if individual starvation is the danger you would
like to exorcize, Round Robin or allowance counts would have done as well.

I propose for the linear order of the elements in each queue a role that
seems to me much more fundamental: "the (sleeping) others" are known to
"me" by virtue of their place in one of the queues. If they were sets instead
of linearly ordered queues, the different "(sleeping) others" would have no
distinct identities.

* * *
(Continued after an interlude during which I just listened to Dvorak's
Serenade -mainly for wind instruments- in D moll, opus 44: a delightful
piece of music!)

I saw -you know my weakness for railroad metaphors!- the queues as
one-directional railroad tracks of a shunting yard with each "(sleeping)
other" in its own carriage -sleeper, if you so desire!- somewhere on one
of the tracks of the shunting yard. Waking up a process implies that it leaves
the yard and, therefore, the track on which it is waiting. But why should
leaving a track imply waking up? In this view it comes quite naturally to
allow that sleeping processes can be shunted from one track to another
without being woken up. Thanks to this metaphor I freed myself of one of
the constraints you had introduced.

Now for some terminology, in order to avoid misunderstanding. A
process is "in monitor state" from the beginning of the execution of the first
statement of a monitor procedure it has called until the end of the execution
of the dynamically last statement of that monitor procedure, when its
concurrently executable code can continue to be obeyed. For a given
monitor n processes may be in monitor state. Either the monitor is inactive:
in that case all n processes are sleeping somewhere on the shunting yard and
each process, when woken up -Le. removed from the shunting yard- will
continue the execution of the monitor procedure it had called at the point,
where it had gone to sleep. Or the monitor is active: in that case n - 1
processes are sleeping somewhere on the shunting yard and one of them has
the special status "me", viz. the process, whose monitor call is continued to
be executed. (Associating your "conditions" with my "tracks" of the
shunting yard, this represents a slight departure from your proposal, in
which a process that is awake - i.e. does not occur on a queue- can wake
up another by signalling: you then have more than one process being awake,
but only one, whose monitor procedure execution is continued. I preferred
to identify "me" with the one and only active process and to have all others
in monitor state explicitly somewhere on the shunting yard.)

What I was looking for was a nice set of operations in terms of which I
could describe the shunting, the reallocation of "me", and the leaving of
"me" of the monitor state. I did not like your term "condition" since it
evoked in my mind the wrong associations: it does not reflect a linearly

Variations on a Theme: An Open Letter to C.A.R. Hoare 135

ordered set of sleeping processes. For lack of a better name I introduced the
type "fifoq", an acronym for "first-in-first-out-queue", but this was a very
grave mistake, which led me astray for more than 24 hours! It implies too
much about the long-range history, whereas at each moment only the
current value matters! It was amentalliberation when it dawned upon me
that I could stay within the shunting yard metaphor and could just call them
"trains". (For a while I used the term "tracks", but that was discarded on
account of its associations with drums and disks. Eventually the transition
from track to train turned out to be a blessing: whereas the "track" suggests
a "place holder" or a "location", the "train" suggests a value, viz. a linearly
ordered sequence of sleeping processes. It opens the way to "train expres
sions" , which describe how new trains are composed out of the cars already
on the shunting yard. It is, by the way, frightening to observe the devious
and sometimes obnoxious influence of the terms I tentative1y introduce! The
wrong choice can drag in the wrong associations or deny you the expressive
power needed to describe what you would like to think about, but then are
unable to do. How does one avoid falling unaware into the trap of the
inadequate metaphor? I know so many earlier instances of my falling into
that trap and I honestly try to be aware of the danger; yet I did it again!)

My next problem was with "wait" and "signal"; I tried "sleep" and
"wake", but quickly ran out of names for more intricate shunting opera
tions, possibly to be combined with aredefinition of "me". I found myseIf
forced to describe the operation in which "me" should go to sleep "some
where" and another sleeper should take over the role of "me" instead. I
even considered horrible neologisms like "slake", in order to express the
combination of putting one process to sleep and waking up another. As you
can imagine, I quickly ran out of descriptive names.

The way out seemed the introduction of "train expressions" and an
assignment statement. The train expression would describe the new train as
a concatenation of (cars of) existing trains. Its "evaluation" would have as
implicit side-effect taking away the cars used in the new train value from the
train operands: shunting does not change the number of cars on the
shunting yard! I tried to describe just shunting as an assignment to a train
variable, just changing monitor activity from one process to another by an
assignment to "me" and the combination of the two by a sort of concurrent
assignment with at the left-hand side "me" and a train variable.

It was understood that "me" could occur as component of a train
expression. And it was the idea that, by definition, the shunting yard should
contain the sleeping processes, that caused the need for the concurrent
assignment. Composition of a new train containing "me" could not be the
first assignment statement, for then the active process would sleep before it
had assigned a new value to "me ", I could not invert the order either,
because then I would have two "me's". Hence the idea of the concurrent
assignment, which solves such problems.

136 EWD501

It looked promising and 1 started to write a manuscript, but after a
couple of hours at least ten pages were thrown into the waste paper basket;
although it worked after a fashion, the code needed for the monitors became
more and more tortuous as my examples became more ambitious. It was
really appalling! 1 was coding in a conceptually nice and clean interface, but
in spite of its conceptual simplicity it was apparently inadequate. It was one
of those rare beautiful days in which one can work in the garden, but in
spite of the shining sun 1 was close to desperate. There was only one thing 1
could do: put all papers away, pour myself a glass of beer, look into the
blue sky, and figure out where 1 had got stuck.

One glass of beer -even part of it!- sufficed. Although "I" have to
describe "my" behaviour versus "the others", "I" am part of the whole
community, and it is extremely awkward if 1 cannot treat "me" on the same
footing as "the others". While during inactivity of the monitor all "sleepers"
occur on the shunting yard, it is rash to identify -what 1 had done!- the
contents of the shunting yard with "the set of sleepers". During monitor
activity, "me" should be allowed to occur (obviously at most once!) on the
shunting yard as weIl, just as one of "the others"! This has a few drastic
consequences. For reasons of safety, one should insist that all semicolons of
a monitor procedure fall into one of two categories: those semicolons where
"me" is somewhere on the shunting yard -and placing "me" on the
shunting yard is not allowed and redefining "me" implies that the old "me"
remains in monitor state and goes to sleep- and those semicolons where
"me" is not on the shunting yard -where placing "me" on the shunting
yard is allowed and redefinition of "me" implies that the old "me" leaves
the monitor state- . To allow "me" to appear -at most once!- on the
shunting yard during monitor activity solved all my problems. It is such an
obvious generalization. During monitor inactivity, "me" does not exist and,
therefore, cannot occur on the shunting yard. Yet it took me hours of
following false ideas to discover it! 1 shall describe my new solutions at
another occasion: tomorrow is Sunday, so 1 am not in a hurry, but in the
mean time it is past two o'clock and 1 had better go to sleep. 1 thank you
-although you must be unaware of it!- for your patience and your
inspiring "presence". My problem is that 1 really like letter writing

* * *
(Sunday afternoon, 6th July 1975.)

A train is a sequence of cars. A train expression forms a new train by
concatenating the cars of trains together in the obvious manner. With

trQ, trI, tr2: train

examples of train expressions are (trQ, trI): this train consists of the cars of
trQ followed by the cars of trI. As a result of this train formation, the trains
trQ and tri have become empty, which value is indicated by "nil".

Variations on a Theme: An Open Letter to C.A.R. Hoare 137

(tr2, me) forms a train one longer than tr2 by appending "me" at the
rear end.

(me, tr2) forms a train one longer than tr2 by putting "me" in front of
the train t,,2.

I shall indicate shunting operations by means of assignment statements

(train variable> : = (train expression> e.g.

trO := (trI, trO) tr2 := (tr2, me) trO := (trO, tri, tr2) etc.

After evaluation of the train expression, the train assigned to must be
empty; otherwise its cars would "disappear". One way to impose this is to
require that in a train assignment the train assigned to occurs somewhere in
the train expression. I shall not do so and shall allow

trO : = (tri, tr2)

as an abbreviation of "trO : = (trO, trI, tr2)" when I can assert the initial
emptyness of trO.

Potential change of "me" will also be indicated by an assignment
statement:

me := head(trO) me := nil

When the value "nil" is assigned to "me", the monitor becomes inactive
until the next call of a monitor procedure, which implicitly assigns to "me"
the identity of the calling process. The evaluation of the function "head(trO)"
yields (for initially non-empty trO) the first car of trO, which is taken off trO.
(Note that this is also a glorious side-effect: all problems can be solved by
postulating that the components of a train expression are evaluated in order
from left to right.) If initially trO is empty, it remains so, and the value of
head(trO) is "nil".

These two types of assignment permit complete separation between
shunting on the one hand and process switching on the other. Note that an
assignmen t to "me":

(1) must be a dynamically last statement of a monitor procedure when
"me" does not occur on the shunting yard; the process that was" me "
leaves monitor state and can continue with its concurrently executable
code;

(2) should not be a dynamically last statement of a monitor procedure
when "me" does occur on the shunting yard; the process that was
"me" remains in monitor state, but remains asleep until its identity is
reassigned to "me ", whereafter the execution of the interrupted moni
tor procedure is resumed at the next statement.

138 EWDSOI

Now for some examples. Let me first code your single resource monitor,
which macroscopically grants the single resource onfifo basis ([1], page 550)

single resource: monitor
begin busy: boolean;

nonbusy: train;
proc acquire:

if busy -'> nonbusy := (nonbusy, me); me := nil
o non busy -'> skip
fi;
busy := true; me := nil

corp acquire;
proc release:

if busy -'> busy := false; me := head(nonbusy) fi
corp release;
busy := false

end

(As you have seen, a call of "release" while non busy leads to abortion.) The
above is a straight transliteration of your text and does not c1early reflect
that acquire will only assign the value true to busy if initially it is false. I
offer the following alternative solution for acquire:

proc acquire:
nonbusy := (nonbusy, me); me := head(nonbusy);
do busy -'> nonbusy : = (me, nonbusy); me : = nil od;
busy := true; me := nil

corp acquire

When you see this for the first time, it may strike you as a coding trick:
depending on whether nonbusy is empty to start with "me: =
head(nonbusy)" willleave "me" unaffected or not. The test on "busyness"
is only performed by the one that was at the head of the queue, and when it
finds busy true, it places itself back at the head.

But it allows a nice generalization. Suppose that we have to synchronize
the unbounded buffer, where (with p > 0 and c > 0)

prod(p): n := n + p and cons(c): n := n - c

have to be synchronized in such a fashion that n ;;;. 0 remains invariant.

Variations on a Theme: An Open Letter to C.A.R. Hoare

Here we go: (consumers being served onfifo basis)

ubb: monitor
begin n: integer;

con: train;
proc prod(p: integer):

n := n + p; me := head(con)
corpprod;
proc cons(c: integer):

con := (con, me); me := head(con);
do n < c con := (me, con); me := nil od;
n := n - c; me := head(con)

corp cons;
n := 0

end ubb

139

Finally, the same problem, but instead of serving the consumers on fifo
basis, they may try on fifo basis.

ubb: monitor
begin n: integer;

con, temp: train;
proc prod(p: integer):

n := n + p; temp := (con); me := head(temp)
corpprod;
proc cons(c: integer):

if n ;;;. c n := n - c; me := nil
D n < c con := (con, me); me := nil;

fi
corp cons;
n := 0

end ubb

do n < c con := (con, me); me := head(temp) od;
n := n - c; me := head(temp)

This strategy has, of course the danger of individual starvation: another
strategy with the same danger is to give priority to the requesting consumer
with maximum value of c. The coding of that one is quite fun and I leave it
as an exercise to you.

* * *
If Iwanted to make a really strong case for my constructs, I should, of

course, continue this letter with the coding of all your examples, but I am
not going to do that now: after all, it is Sunday afternoon! For the time

140 EWD501

being I have the feeling of having done my share, and I am looking forward
to your comments in particular.

Y ou will have noticed that, for instance, in "release" I need at the end an
additional "me := nU". We could allow its omission and make the addi
tional rule that it will be supplied by default. If you are going to suggest that
as an improvement of my proposal, I promise that I shall get very cross with
you (or, for that matter, with anyone else who suggests that "improvement")!

A shortcoming could be that we have only variables local to the monitor
and locals of each call: if you look at "temp" it could be a local of a
"monitor activity". Do we think that a serious shortcoming? It could be
overcome by declaring "temp", "prod" and "cons" inside a special "inner
block" of the monitor that is entered upon activation of the monitor and left
at the moment the monitor becomes inactive. I think I don't care about this
refinement, but I may be overlooking a forceful argument in its favour.

My dear Tony, it was as always a pleasure and a privilege to write to you.
With greetings and best wishes,

Nuenen, 5th July 1975

yours ever

Edsger

PROF. DR. EDSGER W. DIJKSTRA

Burroughs Research Fellow

[1] Hoare, C.A.R., "Monitors: An Operating System Structuring Concept" Comm.
ACM, 17, lO (Oct. 1974) 549-557

[2] Bron, C., "Description of Conditional Critical Regions in Terms of P- and
V-Operations." Memorandum nr. 84, May 1975, Department of Applied
Mathematics, Twente University of Techno1ogy, P.O. Box 217, Enschede, The
Netherlands.

To Professor C.A.R. Hoare
Department of Computer Science
The Queen's University of Belfast
BELFAST BT7 INN
Northem Ireland

EWD503
A Post-Scriptum to EWD501

Dear Tony!

Monday morning I went to XEROX to have a few copies made of
EWD501 and from there via the THE horne. At the THE I showed Wim
Feijen what I had written during the weekend, and I discussed with him
what I intended to write in the afternoon.

In the afternoon I wrote EWD502, "On a gauntlet thrown by David
Gries". When that was completed, Wim came along. He had studied
EWD501, and his first remark was that the procedure cons in the last
monitor of EWD501 can be simplified, thanks to the initial emptyness of
the train temp:

proc cons(c: integer):
do n < c --'> con := (con, me); me := head(temp) od;
n := n - c; me := head(temp)

corp cons;

Another observation he made was that if, in the last version of procedure
" acquire ", the second line

nonbusy := (nonbusy, me); me := head(nonbusy)

is omitted, it is still correct but now implements a last-in-first-out strategy. I
had these remarks in the back of my mind when I designed the readers and
writers monitor and the diskhead monitor (see following pages).

Monday evening I was tired; Ria and I went away on the tandem.
Tuesday was my day at the THE. In the morning I had some examinations,
in the afternoon we studied EWD501 with the little group and made a first
solution to the readers and writers. Tuesday evening I embellished it, and
thought about a few linguistic alternatives. This morning I had to write a
referee's report, this afternoon I designed the diskhead monitor, and typed
both monitors.

141

142 EWD503

I t is now early in the evening. Let me describe to you the linguistic
alternative I have been thinking about. Until now we have done as if the
monitor only exists after the initialization has been completed. But we could
regard the monitor "existing" as soon as the initialization starts, and regard
the initialization as performed by an (anonymous) process in monitor state.
The one consequence would be that all initializations in the monitors I have
written these last days should end with an additional "me : = nil". That
obligation is hardly a recommendation, in contrast, perhaps, to the now
created possibility that after initialization the monitor process can pI ace
"me" on the shunting yard, thereby remaining available for activities that
would be hard to place otherwise.

In the diskhead monitor you will see that the sort process, which should
insert the new requester -placed in qu1- in the correct position into the
train upsweep, will fail to do so, when the new requester should be placed at
the rear end of upsweep -this "appending" is no insertion- . As a result,
requests and releases have to begin with

"upsweep := (upsweep, qu1)"

just to be on the safe side. (When qu1 = nil, the above shunting has no
effect.) This could be regarded as ugly. If the monitor itself could sleep on
the shunting yard as weIl, I think that this could be remedied by attaching
the monitor at the rear end of upsweep, before the new requester is placed
in the correct position. It gives us the possibility to have some activity
inserted after the last one, and that, in general, seems asound and useful
facility.

readers and writers: monitor:
begin ar, aw: integer;

readers, writers: train;
proc startread:

readers := (head(writers), readers, me); me := head(readers);
do aw =1= 0 ---> readers := (me, readers); me := nil od;
ar := ar + 1; me := head(readers)

corp startread;
proc endread:

if ar > 0 ---> ar := ar - 1; me := head(writers) fi
corp endread;
proc startwrite:

writers := (writers, me); me := head(writers);
do ar =1= 0 or aw =1= 0 ---> writers : = (me, writers); me : = nil od;
aw := 1; me := nil

corp startwrite;
proc endwrite:

if aw = 1 ---> aw := 0; readers := (readers, head(writers»;
me : = head(readers)

fi
corp endwrite;
ar := 0; aw := 0

end readers and writers

A Post-Scriptum 10 EWD501 143

This is my version of the readers and the writers, according to your
specifications of page 556. (Although I wrote it on Tuesday evening, I
should say "our", as the problem was discussed on Tuesday afternoon at
the THE with the usual group; particularly Wim Feijen's contribution
should be acknowledged.)

It has, I think, some charming features. The invariance of

(ar;;;' 0 and aw = 0) or (ar = 0 and aw = 1)

is beautifully maintained, when we remember that the repetitive construct
can only terminate with its guard(s) false. (The alternative constructs in
endwrite and endread, which may cause abortion, are only there for safety.)
The nice thing is that these two guards, derived from the invariant relation,
occur only once! The whole choice of strategy is reflected in the shunting
and switching! Isn't that nice?

The way in which, in "startread", the presence of a waiting writer
prevents new readers from getting access also pleases me. At first it may
strike you as a coding trick, but after having played with these trains for a
while, it comes quite naturally. The way in which "endwrite" gives priority
to the readers is also quite nice; at least, I think so.

In programming style, the above is very much different from your
approach, in which the continuation after a "wait" can do no harm on
account of what has been checked by the other process that caused the
"signal". In such a way one can also get one's programs right, but in
principle I think the approach a wrong one: your procedures are logically
more intertwined -at least so it seems to me- and it is therefore a
stronger invitation to make logical spaghetti.

The convincing beauty of the above contrasts with the program on the
next page, where I did the diskhead monitor without the scheduled wait, and
without the "condname.queue". That was not easy!

diskhead: monitor
begin headpos, newdest: cylinder;

direction: (up, down);
busy: boolean;
upsweep, downsweep, qu1, qu2: train;
proc request(dest: cylinder);

upsweep := (upsweep, qu1); downsweep := (downsweep, qu2);
newdest : = dest;
if dest > headpos or dest = headpos and direction = up ->

qu2 := (upsweep); qu1 := (head(qu2), me); me := head(qu1);
do busy ->if newdest;;;' dest ->upsweep := (upsweep, me);

od

me := head(qu2)
o newdest < dest ->upsweep:= (upsweep, qul, me, qu2);

me := nil
fi

144 EWD503

o dest < headpos or dest = headpos and direction = down
qul := (downsweep); qu2 := (head(qul), me); me := head(qu2);
do busy if newdest"'; dest

od
fi;

downsweep := (downsweep, me); me := head(qul)
o newdest > dest

downsweep := (downsweep, qu2, me, qul); me := nil
fi

if headpos < dest direction : = up
o headpos > dest direction : = down
o headpos = dest skip
fi;
headpos := dest; busy := true; me := nil

corp request;
proc release: busy : = false;

if busy upsweep := (upsweep, qul);
downsweep := (downsweep, qu2);
if direction = up

downsweep := (head(upsweep), downsweep);
me : = head(downsweep)

o direction = down

fi
fi

corp release;

upsweep := (head(downsweep), upsweep);
me : = head(upsweep)

headpos := 0; direction := up; busy := false
end diskhead

Salvo errore et omissione, the above is areplacement for your diskhead
monitor on page 555-556. It could be argued that the above could only be
programmed on a very warm day with thunderstorms; for your information,
it is such a day! But it has not the danger of individual starvation when all
requests are for the same cylinder! Y our "scheduled wait" does not talk
ab out this. Agreed? On account of the above I understand that you yielded
to the temptation to introduce the scheduled wait. Note how, in "release",
some shunting avoids the need for "condname.queue". That part of the
construction I think quite neat!

Greetings and best wishes! Y ours ever

Nuenen, 9th July 1975 EDSGER

EWD504
Erratum and Embellishments of EWD503

Erratum: the text of the procedure "release" at the end of EWD503 should
begin as folIows.

proc release:
if busy ->busy := false;

upsweep := (upsweep, qu1); downsweep := (downsweep, qu2);
if ... etc.

To keep the interpunction consistent, I should have used a colon in line 6:

proc request(dest: cylinder):

* * *
First embellishment: the text of the procedure "endwrite" in EWD503 is no
Ion ger "quite nice" since I discovered the alternative:

proc endwrite:
if aw = 1 --aw := 0; writers := (head(readers), writers);

me : = head(writers)
fi

corp endwrite;

When there are both readers and writers waiting, it avoids the final unneces
sary activation of the oldest writer. Clearly, "shunting" is something I still
have to learn!

* * *
Second embellishment: C.S. Scholten pointed out to me, that the diskhead
monitor of C.A.R. Hoare, and therefore also the one in EWD503, has a
danger of individual starvation on a macroscopic scale. If direction = up

145

146 EWD504

and the train "upsweep" is not empty -more precisely, contains requests
with dest > headpos- a continuous stream of requests with dest = headpos
can cause the requests in upsweep never to be honoured. The moral of the
story is that requests with dest = headpos have to be placed in the other
stream! The remedy seems to be to replace line 9 by

if dest > headpos or dest = headpos and direction = down

and line 17 by

o dest < headpos or dest = headpos and direction = up

Wasn't that a nice pitfal1? And then to think that there are people that still
refuse to believe that programming is difficult

* * *
Remark about the devious influence 0/ the programming language we are
using: if I had been trained to think in PLII with its horrible "BEGIN
statements", "END statements" and "RETURN statements" the invention
as described in EWD501, in which the notion of "the dynamically last
statement of a monitor procedure" plays a role, would probably not have
been made! Again a frightening thought!

Nuenen, 12th July 1975 PROF. DR. EDSGER W. DIJKSTRA

Burroughs Research Fellow

EWD508

A Synthesis Emerging?

Introduction

Tbis document does not contain language proposals; at a later stage they
may be inspired by it. It has no other purpose than to record discussions
and programming experiments. It is exciting because it seems to open the
possibility of writing programs that could be implemented

(a) either by normal sequential techniques
(b) or by elephants built from mosquitoes
(c) or by a data-driven macbine.

That programs intended for the second or tbird implementation could be
"inefficient" when regarded as sequential programs is here irrelevant. The
important result would be that the same mathematical technique for the
intellectual mastery of sequential programs can be taken over - hopefully
lock, stock and barrel- for the intellectual mastery of those, as yet less
familiar, designs. Finally, and tbis seems the most important promise, it
introduces the possibility of concurrent execution in a non-operational
manner.

From the past, terms as "sequential programming" and "parallel pro
gramming" are still with us, and we should try to get rid of them, for they
are a great source of confusion. They date from the period that it was the
purpose of our programs to instruct our machines: now it is the purpose of
the machines to execute our programs. Whether the machine does so
sequentially, one thing at a time, or with a considerable amount of concur
rency, is a matter of implementation and should not be regarded as a
property of the programming language. In the years behind us we have
carried out this program of non-operational definition of semantics for a

147

148 EWD508

simple programming language that admits (trivially) a sequential implemen
tation; our ultimate goal is a programming language that admits (highly?)
concurrent implementations equally trivially. The experiments described in
this report are a first step towards that goal.

27th and 31st July, 1975

It all started on Sunday 27th of July 1975, when Tony Hoare explained to
me in the garden of Hotel Sepp in Marktoberdorf (Western Germany) upon
my request the class-concept of SIMULA (including the so-called inner-con
cept); at least he explained his version of it. I had always stayed away from
it as far as possible, in order to avoid contamination with the extremely
operational point of view as practised by Dahl et al., and, after some time I
could not even (under)stand their mechanistic descriptions anymore; they
just made me shudder. In late 1974, Tony sent me a paper that looked
better, but still made me shudder; I read it once, but, doubting whether I
could endure the exposure, I consciously refused to study it at that moment.
On Saturday 26th I decided that the moment to be courageous had come
and asked Tony to explain to me what he was considering. He was a
tolerant master, allowing me to change terminology, notation and a way of
looking at it, things I had to do in order to make it all fit within my frame of
mind. To begin with, I shall record how our discussions struck root in my
mind. I don't know whether areal SIMULA fan will still recognize the
class-concept; he may get the impression that I am writing about something
totally different. My descriptions are definitely still more operational and
mechanistic than I would like them to be; it is hard to get rid of old habits!

* * *
Suppose that we consider a natural number, which can be introduced

with the initial value zero, and can be decreased and increased by 1,
provided it remains non-negative. A nondeterministic, never-ending pro
gram that may generate any history of a natural number is then

nn begin privar x; x vir int : = 0;
do true ~ x : = x + 1

end

o x> 0 ~ x := x - 1
od

Suppose we want to write a main program operating on two natural
numbers y and z, a main program that "commands" these values to be
increased and decreased as it pleases. In that case we can associate with
each of the two natural numbers y and Z a nondeterministic program of the
above type, be it that the nondeterminacy of each of these two program

A Synthesis Emerging? 149

executions has to be resolved ("settled", if you prefer) in such a way that the
two histories are in accordance with the "commands" in the main program.
For this purpose we consider the following program. (Please remember that
the chosen notations are not aproposal: they have been introduced only to
make the discussion possible!)

nn gen begin privar x; x vir int : = 0;
do ?inc -> x := x + 1

end

o x > 0 cand ? dec -> x : = x-I
od

main program:

begin privar y, z; y vir nn; z vir nn;

y.inc; ... ; y.dec; ... ; z.inc; ... ; z.dec;
end

NOTES

1) We have written two programs. Eventually we shall have three
sequential processes, two of type "nn" -one for y and one for z- and one
of type "main program". The fact that the first one can be regarded as a
kind of" template" I have indicated by writing gen (suggesting "generator")
in front of its begin.

2) The main program is the only one to start with; upon the initializa
tion "y vir nn" the second one is started -and remains idling in the
repetitive constmct- , upon the initialization "z vir nn", the last one is
introduced in an identical fashion. It is assumed -e.g. because the "main
program" is written after "nn" - that the main program is within the
lexical scope of the identifier "nn".

3) The two identifiers inc and dec -preceded in the text of nn by a
question mark- are subordinate to the type nn; i.e. if y is declared and
initialized as a variable of type nn, the operations inc and dec -invoked by
"y.inc" and "y.dec" respectively- are defined on it and can be imple
mented by suitably synchronizing and sequencing the execution of the
y-program with that of the main program.

4) When in the main program "y.inc" is commanded, this is regarded
in the y-program as the guard "?inc" being tme (once). Otherwise guards
(or guard components) with the question mark are regarded as undefined.
Only atme guard makes the guarded statement eligible for execution.

5) The block exit of the main program, to which the variables y and z
are local, implies that all the "query-guards" are made false: when ?inc and

150 EWD508

?dec are false for the y-program, the repetitive construct terminates and that
Iocal block exit is performed: the "x" Iocal to the y-program may cease to
exist. It is sound to view the implicit termination of the blocks associated
with the variables y and z to be completed before the exit of the block to
wbich they are Iocal -the main program- is completed. (End of Notes.)

* * *
In the preceding section we have assumed that the main program was

somehow within the scope of "nn". But one can ask what funny kind of
identifier this is; it is the name of a program text, however, there are as
many nn 's as the main program introduces natural numbers. The decent
way to overcome tbis is to introduce a fourth program, a "natural number
maker", say peano. Suppose that the purpose of peano is not only to provide
-i.e. to create and to destroy- natural numbers, but also to print at the
end of its life the maximum natural number value that has ever existed.

peano
begin privar totalmax; totalmax vir int := 0;

do ?nn ~ gen begin privar x, localmax;

od;

x vir int, localmax vir int := 0,0;
U Ido ?inc ~x : = x + 1;

do localmax < x ~ localmax : = x od
o x> 0 cand ?dec ~ x := x-I

odl I);
do totalmax < localmax ~ totalmax : = localmax od

end

print(totalmax)
end

main program

begin privar y, z; y vir peano.nn; z vir peano.nn;

Y.inc; ... ; y.dec; ... ; z.inc; ... ; z.dec
end

The idea was, that the program called peano is read in and executed, until
it gets stuck at the repetitive construct with the (undefined) query "?nn".
With the knowledge of the identifier peano (and its subordinate peano.nn)
the main program is read in and executed, and because inc is subordinate to
peano.nn, it becomes subordinate to y by the initializing declaration "y vir
peano. nn " .

A Synthesis Emerging? 151

NOTES

I) In the above it has not been indicated when peano will terrninate and
print the value of totalmax.

2) The generator describing the natural number exists of three parts:

its opening code;
(j jits local codej j);
its closing code.

Access to the local variable totalmax of peano is permitted only in the
opening code -here the facility is not used and in "nn" the "(j j"could
have been moved forward- and in the closing code. Different natural
numbers may "ine" simultaneously, only their opening and closing codes
are assumed to be perforrned in mutual exclusion.

3) If the main program is a purely sequential one, immediately after
initialization y.dec will cause the main program to get stuck. If the main
program consists of a number of concurrent ones, the one held up in y.dec
may proceed after another process has perforrned y.inc. Our natural num
bers would then provide an implementation for semaphores!

4) It is now possible to introduce, besides the peano given above, a
"peanodash" that, for instance, omits the recording of maximum values.
The main program could then begin with

begin privar y, z; y vir peano.nn; z vir peanodash.nn;

The importance of the explicitly named "maker" in the declarationjini
tialization lies in the fact that it alIows us to provide alternative implementa
tions for variables of the same (abstract) type. (End of Notes.)

The above records the highlights of Sunday's discussion as I remember
them. Many of the points raised have been recorded for the sake of
completeness: we may pursue them later, but most of them not in this
report, as the discussion took another turn on the next Thursday.

* * *
On Thursday, a couple of hours were wasted by considering how also in

the local code instances of generated processes -natural numbers- could
be granted mutually exclusive access to the local variables of their maker.
Although we came up with a few proposals of reasonable consistency, Tony
became suddenly disgusted, and I had to agree. The whole effort had been
"to separate", and now we were re-introducing a tool for fine-grained
interference! Our major result that day was the coding of a recursive data
structure of type "sequence". The coding was as follows (omitting the type
of parameters and of function procedures). It is not exacdy the version
coded on that Thursday afternoon, but the differences are minor.

152 EWD508

sequencemaker begin
do ?sequence --> gen begin
CI Ido ?empty --> result := true

U ?has(i) --> result := false
U ?truncate --> result := false
U ?back --> result := nil
U ?remove(i) --> skip
U ?insert(i) --> begin privar first, rest; first vir nint : = i;

rest vir sequencemaker.sequence;
do first =1= nil eand ?empty --> result := false
U first =1= nil eand ?has(i) --> if first = i -->

result : = true U first =1= i --> result : = rest. has(i) fi
U first =1= nil cand ?truncate --> result := true;

begin prieon absorbed; absorbed vir bool : = rest. truncate;
if absorbed --> skip U non absorbed --> first : = nil fi

end
U first =1= nil eand ?back --> result := first; first := rest.back
U first =1= nil cand ?remove(i) --> if i =1= first --> rest.remove(i)

U i = first --> first : = rest. back fi
U first =1= nil eand ?insert(i) --> if i =1= first --> rest.insert(i)

U i = first --> skip fi
od end

001 I) end
od end

It is a recursive definition of a sequence of different integers. Let s be a
variable of type sequence.

s.empty is a boolean function, true if the sequence s is empty, other
wisefalse

s.has(i) is a boolean function with an argument i of type integer; it is
true if i occurs in the sequence, otherwise false

s.truncate is an operator upon s, which also returns a boolean value; if s
is nonempty, the last value is removed and the value true is
returned; if s is empty, it remains so and the value false is
returned

s.back is an operator upon s, which returns a value of type nint (i.e.
the integers, extended with the value nil); if s is nonempty, the
first value is returned and removed from s; if s is empty, it
remains so and the value nil is returned

s.remove(i) is an operator upon s with an argument i of type integer; if i
does not occur in s, s is left unchanged; otherwise the value i
is removed from the sequence s without changing the order of
the remaining elements in the sequence

A Synthesis Emerging? 153

s.insert(i) is an operator upon s with an argument i of type integer; if i
does occur in s, s is left unchanged, otherwise s is extended at
the far end with the value i.

(The above is a set of rather crazy specifications: they grew in an alternation
of simplifications -we started with a binary tree- in order to reduce the
amount of writing we had to do, and complications, when we became more
ambitious, and wanted to show what we cou1d do.)

NOTE. I am aware of the lousiness of the notation of an operator upon s
that returns a value. I apologize for this lack of good taste. (End of Note.)

The sequencemaker is very simple: it can only provide as many sequences
as it is asked to provide; the storage requirements for a sequence are very
simple, viz. a stack. (In our rejected example of the binary tree, although
lifetimes are, in a fashion, nested, life is not so simple.) The sequencemaker
has no local variables (like peano); accordingly, each sequence is simple: its
opening and closing codes are empty. The outer repetitive construct de
scribes the behaviour of the empty sequence: all its actions are simple with
the exception of ?insert(i), as a result of which the sequence becomes
nonempty. In an inner block, which describes the behaviour of a sequence
that contains at least one element, two local variables are declared: the
integer "first" for that one element, and the sequence "rest" for any
remaining ones.

It is illuminating to follow the execution of the call "remove(i)". Suppose
that i does not occur in the sequence. Then we constantly have "i =1= first",
and the task of removing i is constantly delegated to the rest, until it is
delegated to an empty rest, for which "remove(i)" reduces to a skip. H,
however, the value i occurs in the sequence, it occurs in a nonempty
sequence, and "i = first" is discovered; the command then propagates in
the form "first : = rest. back". The last nonempty sequence that performs
"first := rest.back" gets the value nil from its successor and establishes for
itself "first = nil". As a result, the repetitive construct in its inner block is
terminated, an inner block exit is performed, prior to the completion of
which all query-guards for its successor are set fa/se, and its successor
performs an exit from its outer block and ceases to exist.

It is also instructive to follow how, upon exit from block

begin privar s; s vir sequencemaker.sequence; ... end

at a moment that s may contain many elements, the sequence s disappears.
All query-guards to s are set to false, which forces termination of the inner
repetitive construct for s, which results in a block exit from its inner block
(which first requires deletion of its rest); upon completion of this block exit,
the query-guards still being fa/se, termination of the outer repetitive con
struct and block exit from the outer block of s are forced. This is very
beautiful: the hint to delete itself, given to the head of the sequence,

154 EWD508

propagates up to its end, reflects there, travels back, folding up the sequence
in a nice stack-wise fashion, as, of course, it should. In its elegance -or
should I say: completeness?- it had a great appeal to uso

* * *
It was at this stage, that I realized that the same program could be

visualized as a long sequence -long enough, to be precise- of mosquitoes:

where each mosquito is essentially a copy of the text between U / and / I),
and each mosquito is the "rest" for its left-hand neighbour. Execution of
the declaration "rest vir sequencemaker.sequence" can be interpreted as a
command to one's right-hand neighbour to initialize its instruction counter
to the beginning of the program. Each mosquito is ready to accept a next
command from the left as soon as it has nothing more to do, Le. its control
has successfully returned to one of the sets of query-guards. Giving a
command to the right lasts until the command has been accepted when no
answer is required and until the answer has been returned when an answer
is required.

It is instructive to follow the propagation of activity for the various
commands.

?empty is immediately reflected.

?has(i) propagates up the sequence until i has been detected or the
sequence has been exhausted, and from there the boolean value (true or
false, respectively) is reflected and travels to the left until it leaves the
sequence at the front end. All the time the sequence is busy and cannot
accept another command. The time it takes to return the answer true
depends on the distance of i from the beginning of the sequence; the time it
takes to return the answer false is the longest one, and depends on the actual
length of the sequence (not on the number of mosquitoes available).

?truncate and ?back propagate at practically full speed to the right; at
each mosquito, there is a reflection one place back to absorb the answer.
Note that ?truncate (in the inner block) starts with "result := true" and
?back starts with "result :=first" -actions, which can be taken to be
completed when the mosquito to the left has absorbed the value- . This is
done in order to allow the mosquito to the left to continue as quickly as
possible.

?remove(i) propagates still more simply (until it becomes a ?back).

?insert(i) propagates also quite simply, until the wave is either absorbed
- because "i = first" is encountered - or the sequence is extended with

A Synthesis Emerging? 155

one element. The fascinating observation is that any sequence of ?remove(i),
?insert(i), ?back, and ?truncate may enter the sequence at the left: they will
propagate with roughly the same speed along the sequence; if the sequence
is long, a great number of such commands will travel along the sequence to
the right. It is guaranteed to be impossible that one command "overtakes"
the other, and we have introduced the possibility of concurrency in imple
mentation in an absolutely safe manner.

NOTE. Originally ?truncate was coded differently. It did not return a
boolean value, and was in the outer guarded command set

?truncate skip

and in the inner guarded command set

first =1= nil cand ?truncate
if rest.empty first := nil
o non rest.empty rest.truncate
fi

As soon as we started to consider the implementation by a sequence of
mosquitoes, however, we quickly changed the code, because the earlier
version had awkward propagation properties: two steps forward, one step
backward. The version returning the boolean was coded when we had not
yet introduced the type nint; after we had done so, we could also have coded
truncate with a parameter of type integer: in the outer guarded command set

?truncate(i) result := nil

and in the inner guarded command set

first =1= nil eand ?truncate(i)
result := i; first := rest.truncate(first)

The last part of this note is rather irrelevant. (End of Note.)
This was the stage at which we were when we left Marktoberdorf. As I

wrote in my trip report EWD506 "A surprising discovery, the depth of
which is -as far as I am concerned- still unfathomed.".

* * *
What does one do with "discoveries of unfathomed depth"? WeH, I

decided to let it sink in and not to think about it for a while - the fact that
we had a genuine heatwave when I returned from Marktoberdorf helped to
take that decision!- . The discussion was only taken up again last Tuesday
afternoon in the company of Martin Rem and the graduate student Poirters,
when we tried to foHow the remark, made in my trip report, that it would be
nice to do away with von Neumann's instruction counter. (This morning I
found a similar suggestion in "Recursive Machines and Computing Tech
nology" by V.M. Gluskov, M.B. Ignatyev, V.A. MYlilsnikov, and V.A.

156 EWDS08

Torgashev, IFIP 1974; this morning I received a copy of that artic1e from
Philip H. Enslow, who had drawn my attention to it.)

We had, of course, observed that the propagation properties of "has(i)"
are very awkward. It can keep a whole sequence of mosquitoes occupied, all
of them waiting for the boolean value to be returned. As long as this
boolean value has not been returned to the left-most mosquito, no new
command can be accepted by the first mosquito, and that is sad. The string
of mosquitoes, as shown above, is very much different from the elephant
structure that we have already encountered very often, viz. an mosquitoes in
a ring.

Nice propagation properties would be displayed by astring of mosqui
toes that send the result as soon as found to the right, instead of back to the
left! Before we pursue that idea, however, I must describe how I imple
mented (recursive) function procedures in 1960 -a way, which, I believe, is
still the standard one- .

Upon call of a function procedure the stack was extended with an
"emptyelement", an as yet undefined anonymous intermediate result. On
top of that the procedure's local variables would be allocated, and during
the activation of the procedure body, that location - named "result"
would be treated as one of the local variables of the procedure. A call

?has(i) -+if i = first -+ result := true
o i 0/= first -+ result := rest.has(i)
fi

could result in 9 times the second alternative and once the first, so that the
answer is found at a moment of dynamic depth of nesting equal to 10. In
the implementation technique described, the boolean result is then handed
down the stack in ten successive steps: the onymous result at level n + 1
becomes at procedure return the anonymous result at level n, which is
assigned to the onymous result of level n, etc.: a sequence of alternating
assignments and procedure returns. Under the assumption that assignment
is not an expensive operation, this implementation technique can be defended
very well.

Dut it is an implementation choice! When implementing

result := rest.has(i)

no one forces us to manipulate the value of "rest.has(i)" as an intermediate
result that subsequently can be assigned! An alternative interface with the
function procedure would have been to give it an additional implicit
parameter, viz. the destination of the result -e.g. in a sufficiently global
terminology, such as distance from stack bottom. In that case the implemen
tation of

result := rest.has(i)

would consist of a recursive call on "has" in which the implicit destination

A Synthesis Emerging? 157

parameter received would just be handed over to the next activation. When,
at dynamic depth 10, the boolean value would become known, it would
instantaneously be placed at its final destination, after which the stack could
collapse. In the case of a fixed number of mosquitoes, always present,
needed or not -that is the simplification I am thinking about now- there
is not much stack collapse, and the configuration that now suggests itself is
the following

result

m m m m m m

The mosquitoes still have the same mutual interconnection pattern, but I
assume that each request for a value that enters the network at the left at the
question mark is accompanied by "a destination" for the result. The reason
that I have added the line at the bottom is the following. A sequence is a
very simple arrangement, and in that case also the "external result", as soon
as known, could be handed to the right-hand neighbour for further trans
mission. If, however, we consider the tree that would correspond to a
variable of the type" binary tree", the result would then finally arrive in one
of the many leaves. If we associate areal copper wire with each connection
between two mosquitoes, and we wish the result to appear at a single point,
then we must introduce some connecting network so that the various paths
of the results can merge. Hence the additionalline. The points marked "m"
are binary merge points. We have arranged them linearly, we could have
arranged them logarithmically, logically -and perhaps even physically
we can think of them as "multi-entry merges".

I am not now designing in any detail the appropriate mechanism for
collecting the external result as soon as it has been formed somewhere in the
network. My point is that there are many techniques possible, which all can
be viewed as different implementation techniques for the same (recursive)
program. Their only difference is in "propagation characteristics". The
reason that I draw attention to the difference in implementation technique
for the sequential machine (without and with implicit destination parame
ter) is the following. In the case of the linear arrangement of mosquitoes,
each mosquito only being able to send to its right-hand neighbour when its
right-hand neighbour is ready to accept, we have a pipeline that, by the
nature of its construction, produces results in the order in which they have
been requested. This, in general, seems too severe a restriction, and for that
purpose each request is accompanied by a "destination" that as a kind of
tag accompanies the corresponding result when finally produced. Obviously,
the environment driving the network must be such that never two requests
with the same destination could reside simultaneously in the network.

158 EWD508

* * *
True to our principle that about everything sensible that can be said

about computing can be illustrated with Euclid's Algorithm, we looked at
good old Euclid's Algorithm with our new eyes. We also took a fairly recent
version that computes the greatest common divisor of three positive num
bers. It is

x, y, z : = X, Y, Z;
do x > y ~ x : = x - y
Oy>z~y :=y-z
o z > x ~ z := z - x

od

with the obvious invariant relation

gcd(x, y, z) = gcd(X, Y, Z) and x > 0 andy > 0 and z > 0

Our next version was semantically equivalent, but written down a litde bit
differendy, in an effort to represent that in each repetition we were really
operating on a tripie x, y, z. That is, we regarded the above program as an
abbreviation of

x, y, z : = X, Y, Z;
do x> Y ~ x, y, z := x - y, y, z
o y > z ~ x, y, z := x, y - z, z
o z > x ~ x, y, z := x, y, z - x

od

We then looked at it and said, why only change one value? This, indeed, is
not necessary, and we arrived at the following similar, but mathematically
different, program:

x, y, z := X, Y, Z; (program 3)
do non x = y = z ~ x, y, z := f(x, y), f(y, z), f(z, x) od

with
f(u, v): if u > v -> result := u - v

Du:;;;; v ~ resuit : = u
fi

or, if we want to go one step further for the sake of argument, with

f(u, v): if u> v ~ result := dif(u, v)
Du:;;;; v ~ result := u

fi

and

dif(u, v): result := u - v

How do we implement this? We can look at program 3 with our traditional
sequential eyes, which means that at each repetition the function f is

A Synthesis Emerging? 159

invoked three times, each next invocation only taking place when the former
one has retumed its answer. We can also think of three differentf-networks,
which can be activated simultaneously. We can also think of a single
f-network that is activated three times in succession, but where the compari
son of the next pair of arguments can coincide in time with forming the
difference of the preceding pair. To be quite honest, we should rewrite
program 3 in the form

x, y, z := X, Y, Z;
do non x = y = z ~tx, ty, tz :=f(x, y), f(y, z), f(z, x);

x, y, z := tx, ty, tz
od

(program4)

The reason is simple: we want to make quite dear that always the old values
of x, y, z are sent as arguments to the f-network, and we want to code our
cyde without making any assumptions about the information capacity of
the f-network. The above program works also if we have an f-network
without pipelining capacity.

* * *
I was considering a mosquito that would have six local variables, x, y, z,

tx, ty, and tz; it would first "open" tx, ty, and tz, i.e. make them ready to
receive the properly tagged results, then send the argument pairs in any
order to either one or three f-networks, and finally, as a merge node, wait
until all three values had been received. When I showed this to C.S.
Scholten, he pointed out to me that the same result could be obtained by
two, more sequential mosquitoes: one only storing the x, y, z values, and
another storing the tx, ty, tz values, waiting for the three values to be
delivered by the f-network. This is right.

Some remarks, however, are in order. I can now see networks of
mosquitoes, implementing algorithms that I can also interpret sequentially
and for which, therefore, all the known mathematical techniques should be
applicable. Each mosquito represents a nondeterministic program that will
be activated by its "query-guards" when it is ready to be so addressed and is
so addressed, and where the act of addressing in the addressing mosquito is
only completed by the time that the mosquito addressed has honoured the
request. We should realize, however, that these synchronization mIes are
more for safety than for "scheduling", because dynamically such networks
may have awkward macroscopic properties when overloaded. Take the long
string of mosquitoes that, together, form a bounded buffer, each of them
altematingly waiting for a value from the left and then trying to transmit
this value to the right. If this is to be a transmission line, it has the
maximum throughput when, with n mosquitoes, it contains n /2 values. Its
capacity, however, is n. If we allow its contents to grow -because new
values are pumped in at the left while no values are taken out at the right
it gets stuck: taking out values from the sequence filled to the brim empties

160 EWD508

the buffer, but this effect only propagates slowly to the left and the danger
of awkward macroscopic oscillations seems not excluded.

The next remark is that I have now considered elephants built from
mosquitoes, but the design becomes very similar to that of a program for a
data-driven machine. The programs I have seen for data-driven machines
were always pictorial ones -and I don't like pictures with arrows, because
they tend to become very confusing- , and their semantics were always
given in an operational fashion. Both characteristics point to the initial stage
of unavoidable immaturity. I now see a handle for separating the semantics
from the (multi-dimensional, I am tempted to add) computational histories
envisaged. In a sense we don't need to envisage them anymore, and the
whole question of parallelism and concurrency has been pushed a litde bit
more into the domain where it belongs: implementation. This is exciting.

* * *
A sobering remark is not misplaced either, and that is that we have

already considered highly concurrent engines -e.g. the hyperfast Fourier
transform via the perfect shuffle- that seem to fall as yet outside the scope
of constructs considered here. And so does apparently the on-the-fly garbage
collection. We can only conclude that there remains enough work to be
done!

PS. For other reasons forced to go to town, I combine that trip with a visit
to the Eindhoven Xerox branch. The time to reread my manuscript for
typing errors is lacking and I apologize for their higher density.

Nuenen, 25th August 1975 PROF. DR. EDSGER W. DIJKSTRA

Burroughs Research Fellow

EWD512
Comments at a Symposium

Ladies and Gentlemen,

Before airing a number of comments and remarks I would like to tell you
sometbing about my past, lest I be misunderstood.

Firstly -and tbis is apparently in contrast to a number of people present
- I consider myself as being a very lucky person because I am perfectly
happy with the role that mathematics have played in my life. Extended over
aperiod of 45 years, my mathematical education has been, I guess, about a
10 man year effort; you may not like the result, but I liked most of the
experience immensely and that amount of fun and intellectual excitement I
regard, all by itself, as a sufficient justification. Besides that, my enjoyment
was untampered by the now fashionable quibble about "heredity" versus
"environment", because in any case my dear mother played a major role in
it.

Why do I bring this up? WeIl, simply, because the only fruitful way of
considering computers that I know of is regarding them as mathematical
machines. Knowing that, I came to this symposium with very low expecta
tions, because this year's motto is "Computers and the educated individual".
But mathematics, however, is no longer regarded as an essential ingredient
of the cultural baggage of the educated man! Read Eric Temple Bell
complaining about the watering down of the American high school, where
mediocrity has become the norm, adegradation covered by a misuse of the
notion "democratic". Read Courant's introduction to Morris Kline's
"Mathematics in Western Culture", and look around yourself: you will find
many in your environment who pose as educated persons and simulta
neously announce with some curious pride that "of course they never
understood mathematics". Two generations ago, the pitiful one who found

161

162 EWD512

mathematics beyond him tried to cover up his mental infirmity. In short:
with today's "educated" individual, and with computers being mathematical
machines, our subject "Computers and the educated individual" has a hard
time finding an area of application.

To make things worse, the "educated individual" is so unfashionable as
to have become nearly extinct. In the name of justice and equality, the
bright puplls are no longer allowed to understand what the stupid ones
cannot grasp, and many a government threatens the race of the well-educated
individuals with genocide. In the hands of the pedagogues education has
been replaced by training, and what used to be sowing the seeds of
understanding with a hope for harvest has been replaced by educational
engineering. Even the individual had better disappear and submerge into a
team as quickly as possible. Instead of "Computers and the educated
individual", I propose the more appropriate tide: "Computers and the
ill-trained mob".

In that setting I have been asked about software in the next 25 years! The
safest weather prediction for tomorrow is, as we all know, "the same
weather as today", and if I followed that line I should predict another 25
years of FORTRAN and COBOL. I expect this prediction to be true to a
large extent because there have always been enough fools in this world. But
this is the kind of uninteresting prediction that says that tomorrow morning
the sun can be expected to rise again. It would only be the full truth if the
name of our subject were "stagnation".

Mind you, the pressures to enforce stagnation are strong enough. Sound
financial principles seem to dictate that the more expensive our mistake the
longer we must maintain it, and there are computing scientists that honestly
believe that OS/360 is here to stay, from now untll eternity, the argument
being that it is too expensive to replace it. There is the possibility that we
williearn to make a better system at lesser cost; there is the certainty that it
will become too risky and too expensive to continue to use it. Already, many
a large organization is nearly crushed under the sheer weight of the illogical,
unmastered complexity of its automatic data processing systems. Things
have to change and, therefore, will change. Perhaps we have to wait for a
few more spectacular collapses until it dawns upon mankind that we had
better understand what we are doing. I don 't believe in stagnation, I do
believe in patience. The current tools will be replaced by better ones because
the current ones are just too inadequate.

Please do not misinterpret my appreciation of FORTRAN: if there had
been a Nobel prize for computing science, FORTRAN would have been an
achievement worthy of it. But that appreciation should not engender the
mistaken belief that FORTRAN is the last word in computing; on the
contrary, it was one of the first words. It is just no longer adequate: since
the twenty years of its existence, the computing scene has changed by
several orders of magnitude. How could it still be adequate? We don't
control Jumbo Jets by whip and spur!

Comments at a Symposium 163

There are two views of programming. In the old view, the purpose of our
programs is to instruct our machines; in the new one, it is the purpose of
our machines to execute our programs. In the old view a programmer's
expertise is proportional to his knowledge of all the funny properties of the
equipment against which he has to fight a continuous battle. In the new
view a programmer's competence is displayed by his good taste and the
justification with which he rejects inelegant implementations and clumsy
interfaces. In the old view, programming becomes easier when the machines
become faster and bigger because we can then stay further away from the
limits of their capacity; in the new view (recognizing that before we had
machines programming was no problem at all), it is recognized that our
programming problems will grow with the power of our machines, because
we will become more ambitious.

I am perfectly convinced that there will come a time when it will be
recognized that programming is one of the more difficult branches of
applied mathematics because it is also one of the more difficult branches of
engineering, and vice versa. I am equally convinced that, simultaneously,
programming will evolve from a craft leamed by apprenticeship into an
intellectual discipline that can be taught and studied and that need no
longer be based on the technical mistakes of the department of defence and
the computer manufacturers. Don't blame me for the fact that competent
programming, as I view it as an intellectual possibility, will be too difficult
for "the average programmer" - you must not fall into the trap of
rejecting a surgical technique because it is beyond the capabilities of the
barber in his shop around the corner.

To imagine the teaching of a discipline of programming as a science
requires some imagination. Any effort to teach programming while disguis
ing its intrinsic mathematical nature is doomed to failure, but we shall have
to teach a discipline of programming in a way that differs from the average
way in which mathematics is taught today. The problem with today's
mathematical curricula is that mathematical results are published and taught
quite openly, but how mathematics is done is not published, nor taught
explicitly, and the student must pick it up by osmosis, so to speak. In this
respect mathematics is only half-way between the open science and the
secret craft of the guilds, and we are forced to observe that the great
majority of trained mathematicians are only amateur thinkers.

But programming, when stripped of all its circumstantial irrelevancies,
boils down to no more and no less than very effective thinking so as to
avoid unmastered complexity, to very vigorous separation of your many
different concerns.

As far as my experience goes, programming in the sense of thinking, or
thinking in the sense of programming, can indeed be taught. Not all your
students will leam it, but in that respect it is no different from any other
subject. Polya's "How To Solve It" and his "Art of Plausible Reasoning",
although inspiring, are not enough. That would be more than can be

164 EWD512

expected, for the programming problem only emerged after those books had
been written. And perhaps Polya tried to teach something more elusive than
what we are trying to teach now. Polya was concemed with problem solving,
and he made a sort of checklist that one could go through when trying not
to overlook the in some sense "surprising" or "unexpected" solution. But
this time we are not so much concemed with problem solving in Polya's
sense. I think that "solution composition" comes much c10ser to what we
have to do now. We have to fight chaos, and the most effective way of doing
that is to prevent its emergence. Wehave to leam to avoid all forms of
combinatorial complexity generators that, when active, rapidly tax our
ability to carry out a case-analysis far beyond the limits of our power of
reasoning. To recognize the emergence of a combinatorial complexity gener
ator long before it has poisoned your design beyond salvation requires
constant vigilance, a vigilance that can and should be taught. To circumvent
such emerging complexity generators may very weIl be a tough problem, the
solution of which I can only describe as mathematical invention. A great
advantage is that we know at least what we are looking for, and -perhaps
most important of all- that a terminology is emerging with which we can
name the different stages and aspects of our intellectual endeavour, a
terminology in which we can answer the otherwise frustrating question that
so often emerges in the midst of one's struggles in "What the hell am I
really doing?".

The main virtue of machines is that they have confronted us with a new
c1ass of extremely difficult problems that, with love, luck, and discipline, we
shallieam to cope with. As areaction to this challenge, consciously trained
thinkers will emerge: we need them. The first consciously trained thinkers
will be largely self-taught ones, but ... consciously trained, and they will
leam how to educate others.

No one needs to tell me that, with all its political and social implications,
this will be a very slow process, much slower than technically necessary. It is
that "ritenuto" enforced by society that may see to it that my prediction is
good for -as Ewan Page asked- the next 25 years.

Newcastle-upon-Tyne, I Ith September 1975

EWD513
Trip Report E.W. Dijkstra, Newcastle,
8-12 September 1975

On Monday the 8th of September I flew -i.e. "was flown"- from
Eindhoven to Amsterdam in the 1ate afternoon. In the ear1y evening I flew
from Amsterdam to Newcastle. I did so in the company of Goos -now
from Karlsruhe- , whom I had met in the waiting area of Schipho1 Airport
and who was heading for the same destination as I: the IBMjNewcastle
Symposium. Like nearly al1 German professors he ta1ked more about the
situation at his university than about his work. He to1d me that now they
have 700 (!) students in computing science, and I cou1d only guess what he
taught them. British Caledonian was only fifteen minutes 1ate, and the flight
was about as p1easant as flights can be. After 1anding, the N ewcastle cold
surprised us; it wou1d surprise us for the who1e rest of the week.

While the participants at these year1y symposia are always pretty much
the same -as are the jokes of Ewan Page- , the subjects are rather
different and the speakers are refreshed accordingly. Last year's topic,
"Formal aspects of computing science", was "hard", this year's topic,
"Computers and the educated individual", was as "soft" as soft can be, and
I would have been disappointed if I had went with high expectations. On
Monday evening, shortly after our arrival, our hosts Page and Randell were
"at horne" as usual -at Page's horne, to be precise- and this informal
gathering was quite nice (as usual), and when all the other guests had 1eft, I
assisted (as usual) with the washing up. Brian and I walked back to "Hotel
Randell", where I stayed, together with Jim Horning. The next morning, the
symposium started in earnest, and the series of one-hour talks started.

NN4 (Bell Laboratories) gave two talks on "The History of Computers to
the year 2000" and "Computers in the Coming Society". I found it very
interesting to observe him and to see what a successfu1 career in big business
can do to an otherwise intelligent man. If he still has the ability to doubt, he
did not show it.

165

166 EWDS13

Naur (Copenhagen University) gave three talks, the first two on "An
Adaptable Course of Elementary, University Level, Computer Science" and
a last one on "Problems of Attitudes in Discussing the ComputerjSociety
Relation". His three hours seemed about twice as much as what would be
needed for what he wanted to tell. All three talks contained relevant
information for those who are interested in the atmosphere of and the
prevailing prejudices at Scandinavian universities today, and it all sounded
pretty depressing. The course that he described was intended to be adapta
ble to students from various disciplines, wbich apparently meant that the
medical students would get medical examples, the social scientists exercises
from their field, etc. (I was surprised at the ease with wbich he referred to
"social scientists": are there any?). It was made quite clear that, rather than
giving definitions "students would be required to recognize a card punch
when they were shown a photograph of it". It left me wondering where the
"University Level" came in. In bis last talk I remember him pointing out
the danger when the authority of the university was misused to back
opinions favoured by the labour unions -i.e. backed for that very reason-.
I could not agree more; if it happens, I expect the authority of the university
to fade rather rapidly. (It seems to be doing so already.)

Clark (Washington University) gave three talks: The Basis of Present
Computer Design, Alternative Computing Models, and Developments and
Speculations. (His last one was the only talk I missed, so I have really
behaved myself quite weIl!) From the first two I picked up nothing. The
volume of bis voice was terribly low, bis diction made bim difficult to
understand and, besides that, he made the impression of having given up
hope before he started to cross the gap between bis hardware interests and
bis (mainly) software-oriented audience. Those who attended bis tbird talk
said later to me that it was much better than bis first two ones. During the
closing dinner on Thursday evening I had the pleasure of sitting next to
him, and I enjoyed bis then interesting company very much - to the extent
that I have no memory at all of what we have eaten!- .

Ms. NNs (Watson Research Center) was the obligatory IBM-speaker (or
should I say "speakster" or "speak-person" or "voice"?) with three talks on
"The Future of Programming for Non-Programmers". She was terrible; her
misuse of English really drove me up the wall. One of my colleagues tried to
survive her torrent of nonsense by counting noisewords, such as "simply,
sort of, kind of, you know, really, I mean, more or less, OK, that is to say, in
some sense, in fact, first of all", and gave up after a total of 180 in 27
minutes. It was impossible to filter them out. But even apart from the
noisewords, her language was abominable, even on her prepared trans
parencies. Of course she used "to execute" - with the subject "program" -
as an intransitive verb, she talked about "implementing answers", wrote
about "objects" wbich in her explanation were "concepts" etc., and was
able to state that sometbing -obviously I have forgotten, what!- was
"simply a little bit crucial". My impression is that IBM would love to seIl a

Trip Report E.W. Dijkstra, Newcastle, 8-12 September 1975 167

great number of computer-driven colour TV-screens, and that a number of
AI techniques will be used to keep the e1ectrons busy. The need for
elaborate manjmachine interaction can certainly be enhanced by designing
more incomprehensible systems.

Holt (Massachusetts Computer Associates) gave three talks on "Formal
Methods in Systems Analysis" (tide to be confirmed). On Wednesday
afternoon, during the "excursion", he talked to a small group of people at
the university. (Because I had been writing that afternoon, I missed it but
for the last 25 minutes.) He showed some very nice examples of the
re1evance of Petri-nets, for instance for the study of the possible behaviour
of a consumer and a producer, coupled by alternatively used buffers. And
he was very eloquent in arguing that it is amistake to think that just "bare
facts" can be recorded. He is very c1early -and, I think, with great
justification- convinced of the nearly all-pervading "re1evance" of his
considerations, by the time that he then chooses subjects that any course in
computing science should contain, I am no longer with him. Should the
curriculum contain as a subject "History and structure of the computer
industry?". He thinks so. Finally I am grateful to him for having drawn my
attention to "the tracking problem". Someone who extracts -or: con
structs- such a beautiful example must have thought deeply. (In Holt's
case it was interesting to observe the great variety in reactions that he
evoked from different members of his audience!)

By far the most gifted speaker was F.J.M. Laver, C.B.E., a retired civil
servant (from the post office) who gave two brilliant talks on "Informatics
and Employment" and "Computation and Democracy". It was an absolute
delight to listen to him. Light-footed and serious simultaneously, he was the
symposium's subject "Computers and the educated individual" become
flesh! I shall not try to paraphrase what he said, as it is totally impossible
for me to do justice to his performance. I wish that we would have more
civil servants of that sort!

There were three one-hour discussions. The first one did not really get
moving. The second one, with the specific topic "What to Inc1ude in
Courses", was not very exciting either, partly because curricula discussions
are always depressing, but probably more because its chairman NN4 had
already made up his mind many years ago. The last discussion, on Friday
afternoon, was a little bit more lively. On Ewan Page's request to stir up
matters a little bit I opened it with EWD512, which I had been writing on
Wednesday afternoon, when I learned that Ewan would like me to present
some views.

At various occasions, but particularly during that last discussion, I was
reminded of arecent remark by Tony Hoare, that the main difference
between the pure scientist and the business manager is that the pure
scientist has the duty to strive after perfection, while the business manager
must make the best choice between the bad and the worse. And, seeing my
English University Colleagues, I can only conc1ude that in England higher

168 EWD513

education has become big business. .. Their problem seems no longer to be
what insights to create that should be taught if teaching is to be a
worthwhile activity at aIl; their main problem seems to be which forms of
coloured water can be poured into a glass as if it were wine. And after
forgetting for reasons of convenience that this can never be done without
faking, the professors start discussing in which semester it should be done,
and by whom. .. Reminding them of their obligations towards perfeetion is
an act of indecency. Depending on my mood I think all this saddening or
alarming. (It was on1y this morning that I realized that with one or two
exceptions, I do not know what these professors of computing science are
doing! No one talked to me about his work; dwindling travel budgets was a
more common subjeci.)

The willingness to accept what is known to be wrong as if it were right
was displayed very exp1icitly by NN4 , who, as said, seems to have made up
his mind many years ago. Like so many others, he expressed programmer
productivity in terms of "number of lines of code produced". During the
discussion I pointed out that a programmer should produce solutions, and
that, therefore, we should not talk about the number of lines of code
produced, but the number of lines of code used, and that this number ought
to be booked on the other side of the ledger. His answer was" WeIl, I know
that it is inadequate, but it is the only thing we can measure.". As if this
undeniable fact also determines the side of the ledger

On Friday afternoon we flew back to Amsterdam; again British Cale
donian did so with a delay of fifteen minutes. This time, but we shall not
blame British Caledonian for it, the flight was bumpy. I made the trip in the
company of my Utrecht colleague van der Sluis, with whom I talked about a
few beautiful proofs and who told me something about the level of the
discussions between representatives of the Dutch universities and our
Ministry of Education. It is something like "If you believe only half of what
I am saying, I am, therefore, entitled to lie twice as much.".

At eight o'clock it was announced that the Amsterdam-Eindhoven flight
was canceled due to a thunderstorm near Eindhoven, and it was only late
that evening when I came horne. Saturday moming, while I was having a
bath, we had a tornado, and I knew that the summer was no more.

Nuenen, 13th September 1975 PROF. DR. EDSGER W. DIJKSTRA

BUIToughs Research Fellow

PS. After I had introduced the msi -milli-split-infinitive- as the practica1
unit of linguistic irritation, Brian RandeIl threatened to name the unit of
"grammatical pedantry" after me; I took it as a compliment!

EWD525
On a Warning from E.A. Hauck

During my visit to Mission Viejo, last April, Erv Hauck made the passing
remark that he did not believe that error recovery could compensate
effectively for the ill effects of a basically unreliable storage technique.
Intuitively I was perfectly willing to share that belief; tbis note reports on
my efforts to justify it and to find the arguments that would change it into
my considered opinion.

In the following I consider words of a length of n stored bits; with
pO, pI, p2, etc. I shall denote the probability of no error, a one-bit error, a
two-bit error, etc. If bit-errors are independent events occurring for each bit
with a prob ability p -we shall call tbis "Assumption A"- we have

pO = (1 - pr, pI = np(l - pr-\
p2 = n(n - 1)p2(1 - p r- 2j2, etc.;

for large n and small p, these values are reasonably well approximated by

pO = I - pI, pI = rtp, p2 = p12j2, p3 = p13j6, etc.

System 1, Without Rejected Configurations

To start with we consider a code that only corrects one-bit errors. (Such
codes exist, e.g. for n = 3: "zero" = 000 and "one"= 111; then 001, 010,
and 100 will be interpreted as "zero", and 110, 101, and Oll will be
interpreted as "one".) With a memory with a microsecond cycle time and
pI = 10-6, a one--bit error will be successfully corrected once every second,
and under Assumption A an undetected error will occur once every 2,000,000

169

170 EWD525

sec = 23 days. This may seem OK for the optimist, but it is not, on account
of the absence of rejected configurations. Suppose that, as a result of a
drifting powersupply, say, it gets worse and we go up to pI = 10-5: a one
bit error will be corrected every 100 msec, an undetected error occurs every
20,000 sec = 5 hours, 30 minutes; whenpl = 10-3, an undetected error will
occur every 2 seconds! The absence of rejected configurations means that
we are not warned about this deterioration and the resulting memory is
something one cannot rely upon.

System 2, with Rejected Configurations

We now consider a code that corrects one-bit errors, and detects two-bit
errors. (Such codes also exist, e.g. for n = 4: "zero" = 0000 and "one" =
1111; any configuration with two ones and two zeros will be rejected, such
as 0110.) With the same microsecond cyc1e time and pI = 10-6 , we have a
one-bit error successfully corrected every second, under Assumption A a
detected error every 23 days, and an undetected error once every 200,000
years. That seems safe, since a slowly increasing value of p, due to some
technical degradation, may be expected to give the alarm of a two-bit error
long before an undetected error has occurred. But it is, alas, absolute1y
unsafe, because, in many -and in a sense: in a11- technologies, Assump
tion A is not justified: the storing and reading of n bits are not technically
independent. We therefore consider for the sake of simplicity the other
extreme -Assumption B- "with a prob ability p the reading of a word will
deliver n random bits".

Exploring Assumption B

System 1 could have been improved by counting the number of corrections:
under Assumption A a correction once every second would imply that the
memory is not in too bad a condition (at least, if we think an error every 23
days acceptable - I don't actually, but that is now beside the point). Under
Assumption B (because a random sequence is nearly sure to be interpreted
as a one-bit error) the machine will perform a one-bit correction once every
second, but whenever it does so, it is an erroneous correction: de facto the
memory can be expected to make a fatal error once every second.

In order to estimate how System 2 would perform under Assumption B
we must estimate how large the probability is that a random sequence will
be rejected. If each two-bit error is to be detected, any two correct codes
must differ in at least 4 bit positions. For n = 2m , the exact solutions are
known: there are then 2n- m - 1 different codes. As each code has 2m + 1

On a Waming from E.A. Hauek 171

acceptable representations (the n = 2m representations formed by changing
one bit + the original code), the number of acceptable representations is
2n - m - I(2m + 1) = 2(n-I)(1 + 2-m), i.e. slightly more than half of the 2n

possible bit sequences. As a consequence slightly less than half of them will
be rejected.

From this we must conc1ude that -regardless of the value of p- when
we start the machine, in 50 percent of the cases an undetected memory error
has occurred before a memory error is detected. I cannot regard this as
attractive either! (We could live with it if p were very small, Le. the memory
was highly reliable, but that was not the case we were considering!)

Assumption B -all bits random- is, of course, a severe form of
malfunctioning. But we don't get any solace from that; instead of random
values for n = 2m bits, we arrive at the same prob ability for rejection when
choosing only m + 1 bits randomly, and accepting the remaining n - m - 1
bits as read from memory.

The moral of the story is, that Hauck's warning is not to be ignored!

* * *
The reason that my attention returned to Hauck's warning and that I

tried to find its justification was that I was (re)considering the relative
merits of neutral, local redundancy -such as parity checks and their
embellishments- versus tailored, global redundancy, when our aim is to
reduce drastically the probability that a wrong result will be mistaken for a
correct one. Local error correction is in this respect harmful as soon as
errors graver than those the detection mechanism can cope with can occur
as weIl. As the correction mechanism for single bit errors has enlarged the
collection of acceptable representations, the prob ability that the computa
tion proceeds with erroneous values increases with the length of the compu
tation. But that is another story.

Nuenen, 29th October 1975 PROF. DR. EDSGER W. DIJKSTRA

Burroughs Research Fellow

EWD528
More on Hauck's Warning

In EWD525 "On a warning from E.A. Hauck" I mentioned without proof
that with n = 2m bits 2n - m - 1 different messages exist -I called them
"codes", but that is an unusual terminology for which I apologize- , such
that any two different messages differ in at least four bit positions, thus
allowing correction of one-bit errors and detection of two-bit errors. Since
then I have been shown a proof of that theorem; Ireport that proof because
it is so nice, and because it gives some further insights.

For the sake of brevity I shall demonstrate the theorem for 16 = 24 bits
(in a way that is readily generalized for other values of m). We consider 16
bits numbered from 0 through 15, writing their index in binary:

doooo , doool , dOCHO ' dooll,···,dllll ·

With "xxxI" we denote the set of odd indices, with "xxIx" the set {001O,
0011, 0110, 0111, 1010, 1011, 1110, 1111}, in general the set obtained by
all possible substitutions of a 0 or a 1 at a place marked "x", and
define hO = parity(dxxxl)' hl = parity(dxxlx)' h2 = parity(dxlxx)' h3 =
parity(dlxxx) where the function "parity" is = 0 if among the (8) bits with
an index from the indicated set, the number of 1 's is even, and = 1 if it is
odd. Further we introduce h = parity(d xxxx), which is just the sum of all the
16 bits modul0 2.

The 211 correct messages are then characterized by the equations

hO = hl = h2 = h3 = h = O.

NOTE. The above equations have indeed 211 different solutions: the 11 bits
d 3 , d 5 , d6 , d 7 , d9 , d lO , d ll , d 12 , d 13 , d 14 , and d l5 can be chosen free1y, we
then solve hO for d l , hl for d2 , h2 for d4 , and h3 for d8, and finally h for do.
(End of note.)

172

More on Hauck's Warning 173

We now denote by "a" the binary number formed by "h3 h2 hl hO" and
observe:

(0) for each correct message we have

h = 0, a = 0
(1) for a one-bit error at bit position i we have

h = 1, a = i
(2) for a two-bit error at bit positions i and j

h = 0, a = the bit-wise sum of i andj

(because i =1= j, we conclude that a =1= 0, thereby distinguishing tbis case
from a correct message)

(3) for a three-bit error at positions i, j, and k

h = 1, a = the bit-wise sum of i,j, and k.

(4) for a four-bit error at positions i,j, k, and 1

h = 0, a = the bit-wise sum of i,j, k, and I.

eIe.

Under the assumption that one- and two-bit errors are the only errors
that can occur, the roles are

h = 0 and a = 0: accept the bit sequence as given
h = I : invert bit da
h = 0 and a =1= 0: alarm, as two-bit error has been detected.

From the above, however, we see that all errors in 3,5,7, ... bits will then
erroneousIy be interpreted as one-bit errors, i.e. in those cases our error
correction indeed increases the probability of a wrong result being produced
as if it were a correct one. The above gives a clear demonstration of the
possible "harmfulness" of error correction alluded to in EWD525's last
paragraph. Hence tbis note.

Nuenen, Plataanstraat 5 PROF. DR. EDSGER. W. DIJKSTRA

Burroughs Research Fellow

EWD538
A Collection of Beautiful Proofs

This chapter contains a compilation of beautiful proofs, proofs of which I
expect that all mathematicians will agree that they are beautiful. The
purpose of this compilation is to collect the material that may enable us to
come to grips with the main qualities that together constitute "mathematical
elegance". Further analysis and comparisons of these gems will be post
poned until the collection is thought to be large enough. In order to avoid
too much of a personal bias (and, also, to build up a larger collection than I
could think of myself) I have asked others for their contribution to the
collection. The only constraint was that the proof could be appreciated by
the "generally educated"; all contributions that required specialized
mathematical knowledge had, alas, to be rejected.

1. A C1assica1 Examp1e

In the late 18th century a German schoolmaster gave -with the intention
of keeping his pupils busy for another hour- the task to sum one hundred
terms of an arithmetic progression to a dass of litde boys who, of course,
had never heard of arithmetic progressions. The youngest pupil, however,
wrote down the answer instantaneously and waited gloriously, with his arms
folded, for the next hour while his dassmates toiled: at the end it turned out
that litde Johann Friederich earl Gauss had been the only one to hand in
the correct answer. Y oung Gauss had seen instantaneously how to sum such
aseries analytically: the sum equals the number of terms multiplied by the
average of the first and the last term. (To quote E.T. Bell: "The problem
was of the following sort, 81297 + 81495 + 81693 + ... + 100899, where

174

A Collection of Beautiful Proofs 175

the step from one number to the next is the same a11 along (here 198), and a
given number of terms (here 100) are to be added.")

In two respects this is a c1assical example: firstly young Gauss produced
his answer about a thousand times as fast as his c1assmates, secondly he was
the only one to produce the correct answer. So much for the effective
ordering of one's thoughts!

2. The Pythagorean Theorem, Proof I

When I was twelve years old, I learned the following proof, in which a
square with sides a + b is considered in two different ways.

a b b a

b ab b b

a

a ab a
a

a

c2 + 4abj2

The two expressions are different expressions for the same area: they are
therefore equal. Next we observe 2ab = 4abj2 and by subtraction we find
a 2 + b2 = c2• A beautiful proof in the good old Greek tradition that
fascinated me when it was shown to me, and satisfied me for more than 30
years.

3. The Pythagorean Theorem, Proof II

The following proof was shown to me a few years ago. The areas of similar
figures have the same relation as the squares of corresponding lines; for
three similar figures with areas A, B, and C, respectively, and corresponding
lines a, b, and c, respectively, any homogeneous linear relation satisfied by
A, B, and Cis, therefore, also satisfied by a2, b2 , and c2 , and vice versa. In
particular we know that A + B = C implies a 2 + b2 = c2•

176 EWD538

Ld\ AlB
I

c

Here we have three similar triangles with a, b, and c, respectively, as their
hypotenuse; the sum of the areas of the first two equals the area of the third
triangle, i.e. A + B = C, hence a 2 + b2 = c2•

4. The Theorem of Pompeiu

For a triangle ABC of which at least two sides have different lengths, we can
choose a point P such that the lengths AP, BP, and CP are such that no
triangle can be formed from those three pieces.

c

A.tII!!::.:.....-____________ ~B

In any triangle, each side must be smaller than the sum of the two others.
But, if AC> BC, we can choose P so elose to C, that AP > BP + CP;
hence they can not be the lengths of the sides of a triangle.

This observation led the Rumanian mathematician Pompeiu to the
conjecture that, conversely, for an equilateral triangle ABC no such point
exists, i.e. that for every point P the lengths AP, BP, and CP satisfy the
triangular inequalities. He gave a proof, which -I am told- was very ugly.
The following beautiful proof is due to G.R. Veldkamp; it gives a construc
tive existence proof of such a triangle with sides equal to AP, BP, and CP,
respectively.

A Collection of Beautiful Proofs 177

c

A c... ____________ ~ B =A'

We rotate triangle CAP around point Cover 60 degrees, so that A' coincides
with B and P gives rise to its corresponding point P'. The process of
rotation implies that AP = BP' and CP = CP'. But now triangle PCP' is
an isoseeles triangle with, at point C, a top of 60 degrees. Hence it is
equilateral, and we conc1ude that CP = PP'. Triangle PBP' has three sides
of the required lengths and the Theorem of Pompeiu has been proved.

5. Euclid's Theorem on Primes

Denoting the integer numbers ;;;. 2 by the term "multiples", we can define
the primes as those multiples that cannot be written as the product of two
multiples. From tbis definition it follows immediately that for each multiple
there exists at least one prime dividing that multiple.

Let P be a prime; define the multiple Q as the product of all primes ..;: P,
increased by 1. The multiple Q has been constructed in such a way, that
none of the primes ..;: P divides Q; the prime dividing Q must, therefore, be
> P. Hence there is no largest prime number.

NOTE. It is not unusual that, after the construction of Q, the proof
considers the two cases "Q is a prime" and "Q is not a prime" separately.
The above proof shows that tbis case analysis is superfluous; the case
analysis has probably been induced by the linguistic distinction between
singular and plural forms. (End of note.)

178 EWD538

6. Euclid's Theorem on the Base Angles of an
Isoseeles Triangle

Using the theorem that any two triangles that have two sides and the
inc1uded angle equal to two sides and the inc1uded angle of the other are
congruent, it should be proved that the base angles of an isosceles triangle
are equal, more precisely, that from AC = BC fol1ows the equality of angles
A andB.

C

A~B
Because AC = BC, we have also CB = CA; angle Cis equal to itself and
the theorem allows us to conc1ude that the triangles ACB and BCA are
congruent. These two triangles have angles A and B as corresponding parts,
hence they are equal.

NOTE. It is not necessary -as Euclid seems to have done- to bisect angle
C and then to use the theorem to show that the original triangle is cut into
two congruent parts. (End of note.)

7. A Covering Problem

Given the figure as shown below that could be covered by 138 squares, and
69 dominoes of two squares each -one such domino is shown below-

1~~~-------------14------~------~~

10 I
domino

A Collection of Beautiful Proofs 179

the question to be answered is: can the figure be covered by the 69
dominoes? The answer is negative, and the argument is as follows.

Consider the 10 * 14 rectangle before the two opposite squares have been
removed, and colour its squares altematingly black and white as with a
chess board: the rectangle then shows 70 white squares and 70 black ones.
The two squares to be removed have, however, the same colour, and our
figure, therefore, has 70 squares of the one colour and 68 squares of the
other colour. Each domino covers one white and one black square; together
the dominoes cover, no matter how they are placed, 69 black and 69 white
squares. As a result they cannot cover the given figure.

8. The Harmonie Series Diverges

Consider

Sn = 1/1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/7

+1/8 + ... +1/n.

It has to be shown that, by choosing n sufficiendy large, we can achieve
Sn > M for arbitrarily large value M; in other words we have to show that
the sequence SI' S2' S3' ... is unbounded. We observe that

S2 - S\ = 1/2

S4 - S2 = 1/3 + 1/4> 1/4 + 1/4 = 1/2

S8 - S4 = 1/5 + 1/6 + 1/7 + 1/8> 1/8 + 1/8 + 1/8 + 1/8

= 1/2 etc.

In other words: starting with n = 1, Sn is increased by at least 1/2 each time
n is doubled.

9. The Eigenvalues of a Hermitean Matrix Are Real

A Hermitean matrix is the generalization of a real, symmetrie matrix; its
transpose equals its complex conjugate

(1)

For a given matrix A, lambda is an eigenvalue if and only if the equation

A.x = lambda.x (2)

has a non-null vector x as solution.

180

Taking the transpose of both sides of (2) we get

and then post-multiplying both sides by x* we get

Taking the complex conjugate of both sides of (2) we get

A* .x* = lambda * .x*

and then pre-multiplying both sides by x T we get

xT.A* .x* = lambda* .xT.x*

EWD538

(3)

(4)

On account of (1) we conclude that (3) and (4) have equalleft-hand sides,
and hence

0= (lambda - lambda*).xT.x*

Because x is a non-null vector and xT.x* is a sum of absolute values, we
conclude that xT.x* > 0, and hence

lambda = lambda* Q.E.D.

10. The Cauchy-Schwarz Inequality

Let a], ... ,an and b], ... ,bn be 2n real numbers. Then the following inequal
ity holds:

(a]b] + ... +anbll)2 ~ (af + ... +a~)(b? + ... +b;n

Consider the following quadratic form Q(x) in x, defined by

Because, for real x, Q(x) is defined as the sum of the squares of n real
numbers, for real x the inequality Q(x) ~ 0 must hold. In other words, the
equation Q(x) = 0 has at most one real root, and its discriminant is ~ o.
Collecting powers of x in the definition of Q(x) we find:

Q(x) = (af + ... +a~) + 2(a]b] + ... +anbn)·x

+ (bi + ... +bn·x2

with the discriminant

The conclusion that this discriminant is nonpositive proves our inequality.

A Collection of Beautiful Proofs

11. Reconstructing an Odd Polygon from the
Midpoints of Its Sides

We shall show the construction for poly = 5.

/
/

/ .,
X5

EA
I

/
/

E

/

A

/
/

/

X3

",
DE\ D

,X4
/

/ """~

.....-""'
XI-""'
T

./ B

,/ AB
."

XO

181

For the pentagon ABCDE, the points marked AB, BC, CD, DE, and EA
respectively are the midpoints of its successive sides. Given the positions of
those five midpoints, it is requested to reconstruct the original pentagon
ABCDE.

Consider what happens when we subject aplane to five successive
rotations of 180 degrees each with AB, BC, CD, DE, and EA as the
successive centres of rotation. The point that originally coincided with A
coincides with B after the first rotation, with C after the second rotation,
etc. and coincides again with A after the fifth and last rotation. Because the
pentagon has an odd number of sides, the total transformation of that plane
is therefore a rotation of 180 degrees with A as its centre of rotation.

We now trace a point in the rotated plane that originally coincides with
an arbitrary point XO. Rotating it around AB gives us its position Xl after
the first rotation, rotating that around BC gives us its position X2 after the
second rotation, etc. until we have constructed its final position X5. As that
could also have been reached by rotating XO over 180 degrees around the
-still unknown- point A, we conc1ude that A is the midpoint of the line
from XO to X5! The positions of the other four vertices B, C, D, and E now
follow trivially.

182 EWD538

12. The Number of Factors p (for p prime) in n!

Let n be a natural number, let p be a prime number, and let s(n, p) denote
the sum of the digits of the representation of n in the number system with
radix p. Then the number of factors p in n! equals

n - s(n, p)
p-l

(1)

Expression (1) is c1early correct for n = 1. Its general validity is proved
by mathematical induction. Suppose that n + 1 has k factors p; the transi
tion from n! to (n + I)! then increases that number of factors p by k. But
replacing n by n + 1 also increases (1) by k, because when 1 is added to n,
the carry is propagated over k digits = p - 1, which all turn into zero.

13. Frank Morley's Theorem

In 1904 Frank Morley discovered the following theorem -see previous
figure- :

The adjacent pairs of the trisectors of the angles of a triangle always meet
at the vertices of an equilateral triangle.

The shortest proof I know for this theorem proves, in fact, astronger
theorem, which also determines the orientation of that equilateral triangle.
Westart in our proof not with the arbitrary triangle, but with the equilateral
one. Choose the three positive angles a, ß, and y such that a + ß + Y = 60°.
Draw an equilateral triangle XYZ and construct the triangles AXY and

A Collection of Beautiful Proofs 183

BXZ with the angles as indicated in the above picture. Because LAXB =
1800 - (a + ß), it follows that if LBAX = a + qJ, LABX = ß - qJ. Using
the role of sines three times (in triangles AXB, BXZ, and AXy), we deduce

sin(a + qJ) _ BX _ XZ. sin(60° + y)/sin(ß) _ sin(a)
sin(ß - qJ) - AX - XY.sin(60° + y)/sin(a) - sin(ß)

Because in the range considered the left-hand side of this equation is a
monotonically increasing function of qJ, we conclude that qJ = 0 is, in this
range, its only root. Completing the picture and repeating the argument
twice we conclude that the angles at A, B, and C are trisected, and thus
Morley's Theorem is proved without the aid of any additionallines.

(To be continued in a later report.)

EWD539
Mathematics Inc., a Private Letter from
I ts Chairman

Dear ... ,

Yes, indeed, it has been a hectic year! Thank you for your kind feelings.
As a matter of fact it started already around Xmas last year, when the
rumour reached us that the International Research Development Corpora
tion IRDC was trying to penetrate our market! IRDC is represented by
Obfuscate et al., that old clannish solicitors firm in Oldcastle-upon-Time,
which -as luck would have it!- employs a former classmate of mine. I
wrote him a letter - full of sugar, you may be sure! - as if I were appealing
to him for legal advice. It all worked out beautifully, he even sent us a draft
contract, thus providing us with all the information we wanted to have! It
was all most reassuring: IRDC is so firmly entangled in legal complications
that they are no longer a serious threat. Our monopoly is safe - and in case
of problems, we have arranged a secret affair between the nightporter of the
Hosanna Building and the second daughter from old Obfuscate's first
marriage, so blackmail is always there as emergencyexit.

The whole affair had one nasty consequence: in our moment of panic we
feIt that we had to do something, and our Proof of the Riemann Hypothesis
has been brought out into the field, contrary to the advice of our marketing
manager who feIt that it still required too much maintenance. And right he
was: we can -and do!- bum our stove with the incoming trouble reports!
At the end of March we transferred fifty mathematicians from Production
to Field Support, thus solving two problems at once.

Business being what it was, something had to be done about production,
for our stock of unsold theorems was growing beyond the acceptable limits.
I have always argued that we should have a reasonable amount of spare
theorems in stock, but in March they already occupied nearly two full floors

184

Mathematics Inc., a Private Letter from Its Chairman 185

of the Hosanna Building! Besides the transfer of the fifty mathematicians
-we have, of course, selected the fifty most productive ones- we have
returned to our old method of productivity measuring: since February 1974
we measured mathematician productivity by the number of new results
obtained per month; we are now back on the more realistic and, after all,
also more objective technique of counting the number of lines of proof
produced per week. Thanks to those two measures, the stack of unsold
theorems, I am happy to say, is slowly shrinking back to normal size.

But for a few little, specialized firms (one in finite geometry and another
one in combinatoriallogic), Mathematics Inc. has now full control of the
mathematical market, a circumstance that is certain to create both political
and econornic problems. It is not yet an open battle, but the first symptoms
of revolt against our dorninance becomes visible for the discerning eye.

For the time being we have nothing to fear, for our greatest allies are and
remain the universities, their departments of mathematics, I mean. They
should fight us to death, because the more we proceed, the more obsolete
they become, and in the end they will be abolished as superfluous. But the
technique is so simple! One just sponsors a conference that one calls a
"symposium" with only invited university professors as participants. One
chooses a nice subject like "The Impact of Mathematics on Society in the
Eighties" or "The Role of Mathematical Education in Preparing for the
Future" or any other nil-topic. They are so flattered, they come in as an
eager flock, proudly carrying their badges horne when it is all over. It is
pathetic! But also absolutely effective! Did you know that our Differentia
tion Kit is now used at 378 universities, all over the world? All their alumni
will have to subscribe to our "Journal of Kit Differentiation" for the rest of
their lives, if they want to remain up to date. The whole movement has now
such an impetus that it proceeds without us pusbing it anymore; the French
have already founded aseparate Society for Theoretical Kit Differentiation.
It is the same story with our Linear Algebra Kit, our Integration Kit, and
our Statistics Kit. It fully absorbs and paralyzes them, leaving the field open
for uso Our only obligation is to modify the Kits regularly, that is, to change
their appearance slightly, just enough to suggest progress. And really, the
universities love them: they always fall for the newest model! They feel
themselves superior to the other backward universities and colleges that
have not yet converted to Kit Mathematics.

Y ou know that the overall econornic, political, and social aspects of tbis
whole venture interest me more than the purely technical issues. But the
latter are intriguing too! As soon as Mathematics Inc. grew beyond one
hundred employees -can you remember how long ago that was? it seems
ages ... - it was dear that, no matter what we would tackle, the diversity of
our products and manufacturing techniques would create havoc from the
organizational point of view. As standardization of products is only possible
to a very lirnited extent -the market place somehow insists on variety- we
had to standardize our manufacturing techniques. And we are proud of our

186 EWD539

IR System for Integrated Reasoning, and I think justly so. In the beginning
the IR System was not too successful, because we needed a computer and
chose the then fashionable 1033-alpha, a machine for which the MTBF
transpired to be of the order of magnitude of twenty minutes. The IR
System works much better since we have replaced it by the new model
I033-omega, for which via a switch on the console the parity check can be
disabled. As soon as we had the new machine, IR made significant progress:
the whole IR System now consists of the following languages:

ASL Axiom Statement Language
LSL Lemma Statement Language
TSL Theorem Statement Language
PSL Proof Statement Language
PVL Proof Verification Language
PRL Proof Refuting Language (our main debugging aid)
IL Inference Language.

Their mutual relation is roughly as follows

ASL TSL

Legenda: arrows denote causal connection.

T means that the vertical one controls the horizontal one.

Actually this is a slight simplification, because it refers only to the high-level
languages PVL, PSL, and PRL, while we have the corresponding low-level
languages pvl, psI, and pd as weIl: they are only needed when the IR-faciIi
ties need more efficient exploitation.

As you see immediately from the above diagram, ASL, LSL and TSL are
purely syntactic languages without any semantic contents, PSL is a language
with an ambiguous, nondeterministic syntax and only first-order semantics,
while only PVL and PRL have second-order semantics. IL -although we
call it Inference Language for the sake of homogeneity- is, of course, no
language at all: it is no more than the specification of the interpretation that
can supply quasi-semantics for ASL, LSL, and TSL.

It is amazing that people have never thought about the coupling of
reasoning controlling activities, but once you have got the idea, it is dear

Mathematics Ine., a Private Letter from Its Chairman 187

that the above scheme provides all the facilities you may ever need. Our IR
System -which, of course, is for internal use only- has been very
successful. (I have heard rumours that the application of PRL to the
Riemann Proof will require a 1033-omega-super, extended with a quadru
ple-length complex arithmetic unit. Some guys are so fanatic that they want
to order one, but -thank goodness!- I hold the purse strings, and I think
that I can convince them that also in this case we had better stick to the
company policy -which, after all, has always been very successful- of
leaving the last stage of quality control to those rare customers that think
that they really need that extra quality.)

Needless to say, I consider the main benefits of the IR System to be
psychological and sociological: the presence of the tool has effectuated more
homogeneity in the company than regulations could ever have achieved.
There was a time that our topologists could not communicate with the
number theorists, they lived in different worlds, although they could work
on the same floor! But the IR System provides a standard, common universe
of discourse, and, again they understand each other. Y ou can believe me or
not, but the other day I saw one guy of the Riemann Group and another
guy from the Four Colour Project exchange a few IL-cards! I cannot
describe to you how happy that observation made me: at that moment I
knew that I had founded a living company. Semper floreat et crescat!

1st December 1975

Yours ever,

EDSGER W. DIJKSTRA, Chairman
Mathematics Inc.
Hosanna Building

PS. SECRET! We are, of course, constantly trying to protect our company
against the possible consequences of changing attitudes, and we are not
blind to the current anti-intellectualistic undercurrents in our society that
rouse popu1ar feeling against Reason. We keenly observe the semi-mystic
"back-tö-nature" movements that want to do away with organization, with
power, with shaving, bra's, and socks. They provide an alibi for the second
rate college teacher preaching that "truth is dehumanized if it has to be
proved" and "true truth is what one fee1s to be true" etc. In view of this
quasi-religious revival, our third Assistant Vice-President is contemp1ating
- I think that that is the right word for it- an Artificial Devotion
Department. (Maybe it is on1y because his wife presently spends a lot of her
time "reviving". Before the AD Department has materialized, she may have
lost interest in revivals or he in her) In the preparatory stage he has
designed Canonical Forms for the Seven Capital Sins, and you should see
them: they are absolute beauties! It looks very promising, and this could
turn into a very interesting daughter of the company. (End of Secret.)

EWD554
A Personal Summary of the Gries-Owicki
Theory

This is a very personal summary of the theory developed by Susan Speer
Owicki under supervision of David Gries. I had a flu, and on its first day I
just slept and shivered; later I passed the time in bed with trying to
reconstruct what I had learned from reading in Susan Owicki's doctoral
thesis. If the following fails to do justice to their work -someone has
borrowed my copy of her thesis!- I am the only one to blame.

At one time, it was the function of our programs to instruct our
machines, but times have changed: now it is more fruitful to consider it the
purpose of our machines to execute our programs. The same shift of
attention can be recognized in the more theoretical work concerned with the
semantics of programming languages. At one time this was a very descrip
tive activity, trying to capture what happened in our machines during
program execution. The result was aseries of operationallanguage defini
tions, in which the semantics of programming languages was given by an
interpreter that under control of the program text changed the machine
state over and over again. By means of "abstract programs" and equally
"abstract states" people have tried to mold this approach into a viable tool,
but it kept all the essential disadvantages of operational language defini
tions. Faced with a specific program they tell you no more than how to do a
hand-simulation. Since Floyd, and later but more noticeably Hoare, we have
been shown another approach, which seems more promising.

Here a program text is regarded as a mathematical object all by itself,
which is postulated to establish a relation between two machine states. If we
were very pure, we should call them, say, the "left-hand state" and the
"right-hand state". The relation between the two states is implicitly given by
a set ofaxioms and rules of inference that together delineate what, given a
text, one can prove about that relation. Taken all by itself, this would be a

188

A Personal Summary of the Gries-Owicki Theory 189

very formal and rather sterile game, but it so happens that the axioms have
been chosen very carefully, so carefully in fact, that when we identify the
"left-hand state" with the initial state and the "right-hand state" with the
final state of a computer (as can be recorded in its store) a started sequential
computer can establish an instance of that relation (and can even do so
without implicit backtracking).

In the preceding paragraph I have tried to capture the essence of this
so-called "axiomatic method" as dearly as possible, because it has gener
ated much misunderstanding and discussion (which has generated more heat
than light). Even as much as five years after its introduction, the axiomatic
method has been blamed for not demonstrating that it captured correctly
the computational model that was supposed to underly it, "the computa
tional model on which it was based". The axiomatic method is not "based"
upon a computational model; the most we can say is that it has been
inspired by a computational model. Once the axioms are chosen, it is the
obligation of the implementation to provide a sufficiently truthful model.
With pure1y sequential programs, this approach has been very successful;
the Gries-Owicki Theory presents the first significant step towards applying
similar techniques to concurrent processing as weIl.

Taken literally, the previous sentence makes no sense. From a very
puristic point of view, neither Floyd nor Hoare (nor I in the early seventies)
talked about "sequential programming" or "sequential programming lan
guages". We talked about texts, and about proving things about them. The
aspect of "being sequential" had absolutely no meaning on that level of
discourse, it became only meaningful when we tried to visualize a computer
establishing an instance of the relation, when we tried to visualize "a
computation". And the axioms we considered were such that the only safe
and realistic implementation of such a computing engine we could envisage
was one in which the actions took pI ace one after the other. Apart from that
"implementation detail" the whole notion of sequentiality was not applica
ble in our level of discourse, in which we had abstracted quite rigorously
from the dass of computational histories.

From the same puristic point of view, the Gries-Owicki Theory does not
deal at all with concurrent processing. It is again a formal system relating a
pair of machine states to each other by means of a text. Only the proof rules
-the axioms and the rules of inference- differ. It so happens that, when
we would like to design a computing engine able to establish an instance of
this relation, we suddenly see a straightforward way in which a number of
processors could be engaged concurrently on that task. So we are not
designing a "language for concurrent programming" or any similar mis
nomer; from our mathematical point of view it is a programming language
as any other, with consequences and possibilities for the implementation
that we should ignore at the current level of discourse.

A simple" sequential" program can be represented as

"SO; SI; ... ; Sn"

190 EWD554

When we wish to describe in more detail the kind of relations between
initial and final state, e.g. we wish to establish a set of initial states
corresponding to a final state satisfying the relation R, we can interlace oUf
sequence of statements Si with a sequence of relations Pi:

{PO}SO; {Pl}SI; ... ; {Pn}Sn{R}

The axiomatic definition associates with each statement Si -assignment
statements to start with- a so-called predicate transformer wp. If now we
have for 0 ,,;;; i < n

Pi = wp (Si, Pi + 1)

Pn = wp(Sn, R)

then for the whole program S we have PO = wp(S, R), and we interpret PO
as the weakest pre-condition for the initial state such that starting program
S as a whole is certain to end up in a final state satisfying R.

This is because from given units Si -say, assignment statements- the
semicolon describes how a new unit can be formed. In formula, the
semantics of the semicolon is given by

wp("SI; S2", p) = wp(SI, wp(S2, p))

from which, for instance, follows that the semicolon is associative. If we
wanted, for instance, to combine in program S the first two initial state
ments into a single unit -indicated by square brackets- we could indicate
this as follows:

"{PO}[SO; SI]; {P2}S2; ... ; {Pn}Sn{R}"

By combining SO and SI in the above way into a single unit, the relation PI
remains anonymous; implementation-wise it says that we prefer not to pay
explicit attention to the "intermediate state" that will prevail after execution
of SO but before execution of SI. In the purely "sequential systems" we are
familiar with, our freedom in combining units into larger ones, thereby
eliminating the "internal predicates", is unrestricted: we are all the time free
to choose to consider a composite object either as an unanalyzed whole or
as something composed out of parts. In the Gries-Owicki Theory this
freedom is restricted (thereby giving the implementation greater freedom,
such as the introduction of concurrency).

We have shown on the previous page how the concatenation using the
semicolon gives rise to internal predicates. So do the other sequencing
techniques or "control structures" of "sequential programming", e.g.

{PI2} if BI -> {PI}SI
o B2 -> {P2}S2

fi {RI2}

A Personal Summary of the Gries-Owicki Theory

Here the rules are that P12 should be the weakest predicate satisfying

P12 ~ (BI or B2) (in order to avoid abortion)
(P12 and BI) ~ PI
(P12 and B2) ~ P2

191

where PI and P2 are given by PI = wp(SI, R12) and P2 = wp(S2, R12).
Again we are free to "eliminate" predicates such as PI or P2, for instance
by replacing the second equation by

(PI2 and BI) ~ wp(SI, R12)

In our program we could indicate that elimination of PI for instance by

{P12} if [BI ~ SI]

somehow suggesting that the whole first guarded command is to be regarded
as a single unit. In "sequential programming" such freedom of combination,
of elimination of predicates, is unrestricted.

The notation of the square brackets is unattractive if we want to indicate
the elimination of the predicate following a repetitive construct. Moreover,
the repetitive construct introduces the problem of termination. Provided

(P12 and BI) ~ wp(Sl, PI2)
(P12 and B2) ~ wp(S2, P12)

we can read and justify

{P12} do BI ~ SI
o B2 ~ S2

od {P12 and non (BI or B2)}

as stating that the initial validity if PI2 is sufficient to ensure the final
validity of (PI2 and non (BI or B2», provided that the repetitive construct
terminates on this level. If the repetitive construct is followed by a next
statement, we can again eliminate its post-condition by a straightforward
proof that it implies the pre-condition for the next statement.

Certain predicates are never eliminated. We never eliminate the predicate
describing the total pre-condition or the predicate describing the total
post-condition. (In a sense they can never be regarded as the internal
predicate of a composition.) Furthermore we shall never eliminate what
could be described as "the post-condition of a guarded command set". If
the guarded command set is the body of an alternative construct, this refers
to the post-condition of the alternative construct; if the guarded command
set is the body of a repetitive construct, this refers to the invariant relation.
The reason for this restriction is the following: each assignment statement
and each set of guards now has a unique preceding predicate, where with
"preceding predicate" we mean the last preceding, non-eliminated predi-

192

cate. For instance

{PO} SI; S2;
{PI} S3; if B4 -> {P2} S4

o B5 -> S5; S6
fi;

{P3} S7;
{P4} do B8 -> S8; {P5}S9{P4}

o BIO -> SIO{P4}
od; SII{R}

Then we have:

PO is the preceding predicate of SI and S2;
PI is the preceding predicate of S3, B4, B5, S5, and S6;
P2 is the preceding predicate of S4
P3 is the preceding predicate of S7
P4is the preceding predicate of B8, S8, BIO, SIO, and Sll
P5 is the preceding predicate of S5.

EWD554

Besides non-abortion in the alternative construct and termination of the
repetitive construct, we have to prove

PO => wp(SI, wp(S2, PI»
PI => wp(S3,(B4 => P2) and (B5 => wp(S5, wp(S6, P3»»
P2 => wp(S4, P3)
P3 => wp(S7, P4)
P4 => (B8 => wp(S8, P5» and (BIO => wp(SIO, P4» and (non (B8 or BIO)

=> wp(Sll, R»
P5 => wp(S9, P4)

Each of these six relations is an implication, in which the antecedent is an
assertion and the consequent contains only other assertions, guards, and
statements of which the antecedent is "the preceding predicate".

Suppose for a moment that, using other means, we have established that
PO is strong enough to guarantee proper termination as wen. Starting the
obvious sequential implementation in an initial state satisfying PO, a
computation would ensue during which at the corresponding stages the
machine would be in astate satisfying one of the Pi 's, and finally the
machine would end in astate satisfying R. What would we have to prove in
addition if we would like to ensure, that at an those stages another
predicate, Q say, would be true as weH? This, of course, under the assump
tion that we would start the machine in an initial state also satisfying Q.

Well, in principle, we should replace in our six relations all the predicates
Pi and R at all their occurrences by Pi and Q and Rand Q respectively! The
first line would become

PO and Q => wp(SI, wp(S2, PI and Q»

A Personal Summary of the Gries-Owicki Theory 193

Its consequent reduces as follows

wp(SI, wp(S2, PI and Q)) = wp(SI, wp(S2, PI) and wp(S2, Q))
= wp(SI, wp(S2, PI)) and wp(SI, wp(S2, Q)).

Therefore, when the above six formulae -without the Q inserted- have
been proved, our onIy additional proof obligation is

PO and Q ~ wp(SI, wp(S2, Q)) (and five similar ones)

With respect to our original program we say that we have "proved the
invariance of Q".

Consider now two programs, operating on the same variables. Suppose
further, that with respect to each program we have proved the invariance of
the assertions occurring in the other (or: occurring in the others, when we
have three or more such programs). This is, of course, a very strong
assumption. But if it is satisfied, we have proved something useful about the
fo11owing nondeterministic implementation.

Let us start a machine in an initial state satisfying each program's initial
assertion. We now a110w execution of an arbitrary one of the programs to
proceed until its next assertion. Firstly we have proved that this assertion
will then hold, secondly We have proved that the initial assertion(s) of the
other program(s) have not been disturbed. Then, again, an arbitrary pro
gram is a110wed to proceed with its execution until the next assertion, etc.
When a11 programs have finished, a11 final assertions will hold.

Mind you: we are not talking about concurrency yet. We are talking
about a nondeterministic machine, which can take care of the progress of a
bunch of sequential programs, and we have stated conditions under which
we can certainly a110w a certain degree of interleaved execution, viz. from
assertion to assertion.

As the reader will have noticed, I have mentioned a few times" suppose
that we have proved proper termination". I made that caveat, because we
would like to apply our theory also to a bunch of programs with the
property that far the individual programs proper termination cannot be
proved. Termination of a repetitive construct in one program may depend
on the execution of another program having reached a certain stage. This
will certainly be the case when we implement synchronization constraints by
means of a busy form of waiting. In such a case, we cannot even "prove"
termination of the bunch of programs without further assumptions about
the daemon that makes the choice how to interleave: the bunch would not
terminate if every time the daemon se1ected the waiting process to perform
the next inspection of the unchanged state of affairs! The fact that a proof
of termination of the whole bunch may require assumptions about the
friendliness of the daemon justifies postponement of that issue.

It is not only the repetitive construct for which the taming of the daemon
can be an issue; the alternative construct might also ca11 far a certain
amount of friendliness of the daemon. It could for instance, be one of the

194 EWD554

daemon's restrictions that an alternative construct preceded immediately by
its "preceding predicate" will never be selected for execution in those
machine states where its selection for execution would lead to abortion of
that program.

For the time being we assume that there is at least one sequence of
choices by the daemon that will lead to proper termination of all the
programs, and we assume the daemon to be friendly enough to choose such
a sequence.

But even for that target, our formalism has to be changed: we have to
replace the weakest pre-conditions wp(S, P) which guarantee proper
termination in a final state satisfying P by the so-called "weakest liberal
pre-conditions" wlp(S, P) guaranteeing that the mechanism S will not
terminate in astate satisfying non P. (This is the transition from total
correctness, where the production of the right resuIt is guaranteed, to partial
correctness, where only the production of a wrong resuIt is excluded. C.A.R.
Hoare took this step a long time ago, and apparently at that time without
much hesitation; I don't like it too much and would not like to take it unless
I feit forced to do so.)

* * *
The next step is to introduce the possibility of concurrent execution, but

to do it in such a way that, firstly, it is easily implementable and that,
secondly, no further nondeterminacy is introduced. For this purpose we
divide the variables over various classes. On the one hand we have the
private variables; private variables are always private to a specific program,
viz. the only program that is allowed to refer to them. They are the local
variables of the program to which they are private; the other programs
cannot inspect their values, nor change them. On the other hand we have
the so-called common or shared variables: they are the remaining variables,
to which at least two processes refer. It is clear that all interaction between
the different programs must take place via the shared variables.

Each program is executed from assertion to assertion; here we assume
that evaluation of a guard from a guarded command set implies evaluation
of all guards from that set. The step from each assertion to the (dynami
cally) next assertion -our considered grain of interleaving- we call "a
unit of action". W e now impose upon our units of action the constraint that
they can be implemented with at most one access to at most one shared
variable. With a memory switch that, in case of competition, orders the
individual accesses to memory in some way or another, it is now clear that
we can allow concurrent execution of as many units of action as we have
still incompleted programs. The reason that we are allowed to do so is that,
no matter how we mix them, there always exists an order in which the units
of action, executed one at a time, would have established the same nett
effect. Two units of action referring to two different common variables (or
to no common variables at all) commute, and for two units of action
referring to the same common variable we can take the order in which the
switch has granted them access to that shared variable.

A Personal Summary of the Gries-Owicki Theory 195

Our restriction regarding access to shared variables has severe conse
quences: the guards of a guarded command set may refer to at most one
shared variable. On the other hand, we now know that, with B a shared
variable

{PI} if B -> SI
o non B -> S2
fi {P2}

will not lead to abortion. (Note that in the case of two successive inspections
of Bit is hard to prevent that, when the first inspection has encountered the
value false, the next inspection may encounter the value true.) Note that, if
in the above example B is not a common variable (nor an expression
referring to one), the guards of the guarded command set do not refer to a
shared variable, in which case SI may refer once to a common variable, and
S2 may refer once to a different common variable: we have two possible
units of action! For the time being, this is about the only thing I intend to
say about concurrency.

* * *
Consider now the two programs

{PO} ini := true; {QO} in2 := true;
{PI} do in2 ->{PI} ini :=false; {Ql} do ini ->{QI} in2 :=false;

{P2} ini := true {PI} {Q2} in2 := true {QI}
od;
luckl := true;

{P3} critical section 1;
{P3}luckI, ini :=false,false;
{P4} noncritical section 1

PROGRAM 1

with PO: non luckI, we can prove

PI: nonlucki andini
P2: non lucki and non ini
P3: lucki and ini
P4: non lucki and non inl

od;
luck2 := true;

{Q3} critical section 2;
{Q3} luck2, in2 := false,false;
{Q4} noncritical section 2.

PROGRAM2

and similarly for the Q 's in Program 2. Furthermore we observe that all the
Pi imply P: lucki => inI, and, similarly, that all the Qi imply Q: luck2 => in2.
We can now replace all the original assertions Pi in Program 1 by Pi and Qj
for any j; the proofs remain valid, because Program 1 does not refer to the
variables mentioned in Qj. Similarly we can replace all the original forms of
Qi in the second program by Qi and Pj for any j: again the proofs remain
valid, because Program 2 does not refer to the variables mentioned in Pj.
Having thus proved that the assertions of each program are invariant with
respect to the other program, we can conc1ude the universal validity of P
and Q.

196 EWD554

Finally we consider the relation R: non(luckl and luck2). This relation
can also be added to all assertions; it is also everywhere valid. The critical
assignment in Program 1 that could destroy its validity is, of course, "luckl
: = true", but it is safe because

wp("luckl := true", R) = non luck2

a condition that is implied by Q and non in2. We interpret the universal
validity of R as the guarantee of mutual exc1usion in time of the two critical
sections.

* * *
The c1assical use of critical sections has been the maintenance of an

invariant relation

IR(a, b, c)

between a number of shared variables -here denoted by a, b, c- , where
this invariance cannot be maintained by a single unit of action, as a result of
which a modification of the variables a, b, and c always implies a temporary
violation of IR(a, b, c), followed by its restoration. With the aid of the
additional variables we can replace it by a relation that is, indeed, univer
sally valid, viz.:

luckl or luck2 or IR(a, b, c)

Under the assumption that the pieces of program denoted by "noncriti
cal sections" do not refer to the shared variables a, b, and c -nor to the
private variables" luck ", of course- the proof that the noncritical sections
leave this relation invariant is trivial. For the critical sections -the only
pieces of program that are allowed to refer to a, b, and c- it suffices to give
the invariance proof for each of the critical sections in isolation.

At the beginning of critical section 1 -i.e. immediately after the assign
ment "luckl := true", we can assert

luckl and IR(a, b, c) (1)

Intemally, within the critical section 1, we can introduce, wherever
IR(a, b, c) is temporarily violated, assertions of the type

luck! and IR'(a, b, c, privl) (2)

where with "privl" we have denoted any other variables -besides luckl
that are private to Program 1. At the end of the critical section 1 -i.e. just
before luck! is reset to false- we must have again assertion (l). We assume
a sirnilar proof that critical seetion 2, considered in isolation, as a whole
does not violate IR(a, b, c).

The reason why these two separate proofs for the critical seetions in
isolation suffice is that assertions (l) and (2) are invariant with respect to
Program 2 (and vice versa). The internal statements of critical seetion 2
cannot violate them, because their preceding predicates all contain the

A Personal Summary of the Gries-Owicki Theory 197

factor "luck2", and the universal validity of R:

non(luck 1 and luck2)

ensures that the conjunction of these predicates and the assertions (1) and
(2) is F; because Jalse implies everything, these proofs of invariance are
trivial. The statements in noncritical section 2 cannot violate them either,
because they don't refer to the variables occurring in (1) or (2).

NOTE. These proofs are so trivial that within critical sections the constraint
that "units of action" refer to at most one shared variable can be weakened.
Because, with a private variable "register",

register := c; {register = c}c := register + 1

gives rise to an internal assertion "register = c" which is trivially invariant,
it is tempting to consider then the alternative c : = c + 1 as a unit of action.
Such shortcuts should only be introduced with great care. (End of note.)

* * *
Our solution for the mutual exclusion problem uses essentially two

shared variables inl and in2. (They are really the only two variables that
matter: variables luckl and luck2 are so-called "ghost variables" which have
only been introduced for the sake of being able to formulate what we mean
by "mutual exclusion" and of being able to formulate the proofs. In the
actual programs to be executed they -and all operations operating on them
- can be eliminated.) We also know that this solution is not acceptable
when we reject solutions with the danger of after-you-after-you blocking.
This danger is exorcized by Dekker's solution, which I give below in the
following form. The initial value of the shared integer "turn" should be
either 1 or 2. I only give Program 1; Program 2 can be obtained from it by
interchanging l's and 2's.

{PO} inl := true;
{PI} if in2 -->{P2} if turn = 1 -->skip {P3}

o turn =1= 1 -->{P4} inl := Jalse;

fi;

{PS} do turn =1= 1 --> skip {PS} od;
{P6} inl := true {P3}

{P3} do in2 --> skip {P3} od
o non in2 --> skip
fi;
luckl := true;

{P7} critical section 1;
{P7} turn := 2;
{P7} luckl, inl := Jalse, Jalse;
{P8} noncritical section 1

198 EWD554

Studying tbis program in relative isolation, we derive, under the assump
tion

PO: non lucki
PI: non lucki and ini
P2: PI
P3: non lucki and ini and turn = 1
P4: non lucki
P5: non lucki and non ini
P6: non lucki and non ini and turn = 1
P7: luckl and ini
P8: non luckl and non ini

further

Again the relation luckl => ini is implied by all of them, and together
with Program 2 we can derive the universal validity of non(luckl and luck2)
as before.

The difference between tbis program and the previous program is that we
need only weaker assumptions ab out the daemon if we would like to be sure
of termination of tbis program. With the previous program, the daemon
could select an unbounded number of units of action from Program 1 and
an unbounded number of units of action from Program 2, without ever one
of the critical sections being selected. With our new programs tbis is no
longer true.

Selection of an infinite number of units of action from program 1 implies
-because there are onIy two loops in it, and from at least one an infinite
number must be selected- the validity of

(P5 and turn ~ 1) or (P3 and in2)

or
(non ini and turn ~ 1) or (ini and in2 and turn = 1) (3)

(Note that the term "turn = 1" in the Pi is invariant with respect to
Program 2.) For Program 2 we have the corresponding relation

(non in2 and turn ~ 2) or (ini and in2 and turn = 2)

The conjunction of (3) and (4) reduces to

(non ini and non in2 and turn ~ 1 and turn ~ 2)

(4)

And, indeed, when we start the two programs with, say, turn = 3, the
infinite looping of both programs is quite easily realized. H, however, we
start the two programs -and so we assume- with

turn = 1 or turn = 2 (5)

then it is easily seen that (5) is invariant with respect to both programs,
therefore can be regarded as universally valid, and thus implying the falsity
of the conjunction of (3) and (4). This falsity is usually taken as the proof of
the absence of the danger of after-you-after-you blocking (and, a fortiori,
the absence of the danger of deadlock).

A Personal Summary of the Gries-Owicki Theory 199

The conclusion that the machine executing the programs' units of action
in interleaved fashion will eventually terminate rests on the assumption that
the daemon will not be so grossly unfair as to select always the next unit of
action from the same program. From a formal point of view this is a most
unattractive assumption.

It would introduce a mechanism of unbounded nondeterminacy, it would
give us means for implementing

"set x to any positive integer"

without being able to give an upper bound for the final value of x. We
could, for instance, replace in program 1 the statement do in2 skip od by

x := 1; do in2 --> x := x + 1 od

The consequences of introducing unbounded nondeterminacy are suffi
ciently horrifying to reject the above approach.

Such a little loop with a skip as the repeatable statement is, of course, too
indirect a way of indicating that, to all intents and purposes, this program
should not continue. We supply it with a kind of "fake continuation". The
only way of not making assumptions about the fairness of the daemon is to
restrict it explicitly in its freedom. The alternative construct gives us a way
out.

In normal sequential programming we have regarded an alternative
construct with all its guards false as a reason for abortion. An equivalent
rule for the implementation would be: postpone progress of this computa
tion as long as all the guards are false. In a uniprogramming environment
we have "once all false, always all false" and this second rule would be as
good as abortion. In a multiprogramming environment it would mean for
the daemon that, as suggested earlier, "an alternative construct preceded
immediately by its "preceding predicate" will never be selected for execu
tion in those machine states where its selection for execution would lead to
abortion of that program" . By replacing in the last program

do turn =1= 1 --> skip od

and

do in 2 --> skip od by

by if turn = 1 skip fi

if non in2 --> skip fi

and postulating that the daemon will not select a unit of action that starts
with an alternative construct with false guards only, we have eliminated
fram this example all unbounded repetitions. To what extent the ideal "no
unbounded repetitions in the individual programs" can be achieved in
general -possibly by allowing certain special units of action to refer to
more than one shared variable- is a question to which I don't know the
answer at the moment of writing.

Nuenen, 14th of March 1976 PROF. DR. EDSGER W. DIJKSTRA

Burroughs Research Fellow

EWD561
A "Non Trip Report" from E.W. Dijkstra

On my last visit to the U .S.A. I found that many regular readers of my trip
reports have no picture at all of my daily life when I am not travelling. And,
indeed, how should they without further information? This "non trip
report" is written with the intention of redressing the balance.

Tuesday is my day at the Eindhoven University of Technology. It has by
now a well-established pattern. In the morning I lecture for two hours and
further take care of all "irregular" business (mail, receiving students, etc.).
The afternoon is reserved for a four-hour discussion with a small group of
young computing scientists on whatever subject is brought up.

Lecturing is great fun. Officially I give only two courses, an introduction
to programming in the fall semester and a course on synchronization and
communication in the spring semester, but successive years are never the
same: the subject matter is so much alive that it is no problem at all to keep
these lectures fresh. (I myself find them, as a matter of fact, often quite
exciting!) It is a great help that only half of my audience, which is about 70
people, is formed by students that have to follow the course; the remaining
ones come from other departments or from outside and, quite often, already
have their degree: they come because they are interested, and that makes an
inspiring audience!

The discussion in the afternoon -we are currently five; besides myself
two from within and two from outside the University- takes place in my
office at the University, and its topics cover in principle a very wide range.
It may be an open question that I raised that morning at my lecture, the
thesis topic of one of the participants, something that one of us has read
somewhere and seemed important to him, something one of us has done, or
the difficulties he is encountering while trying to do so. (Most of the
technical EWD's have been discussed at some stage in this group.) On the
average, these Tuesday afternoons are very productive, but it varies as much
as the topics; sometimes we just get stuck.

200

A "Non Trip Report" from E.W. Dijkstra 201

The other more or less fixed point in my week is Friday, which is in
principle reserved for working together with a coIleague of long standing.
Wehave worked together for nearly a quarter of a century! As an experi
mental physicist he entered the hardware side of our field, while I, a
theoretical physicist, entered it as a programmer. This difference in back
ground is still reflected in the nature of our work, but we know each other
so weIl by now that we can appreciate the other's achievements and
problems and can often help the other. Besides being very bright and
knowledgeable, he is a mature scientist, and many things that turned out to
become a major topic have been discussed with him in their infancy, when
they were still hunches. Because working with him takes "the full mind", it
is usually a day of very hard work, which leaves me tired, and it is a good
way to end the week. Then I have the weekend to recover and to regroup my
forces.

The other days of the week I am, in principle, a free man, but a few
(mostly self-imposed) constraints usually define what has to be done.

A self-imposed constraint is that all appeals to my assistance in which the
professional life of others is at stake are dealt with promptly. Under this
category fall refereeing of papers for symposia and journals and the
evaluation of research proposals for funding organizations and of candi
dates for university posts. (It differs from country to country; my impres
sion is that, for instance, English and American universities seem to rely
more heavily on external assessment than the Dutch ones.)

Besides those constraints I have to observe the deadlines that are the
consequence of having committed myself to address an audience. Invitations
to do so usually reach me long before the planned date of delivery, so long,
in fact, that I usually don't propose to talk about what I have done at the
moment of acceptance, but commit myself to talk about the work that I
intend to do in the meantime. But I also know myself well enough to know
that I work very poorly under strong pressure, and my desire to have my
document ready weIl in advance of the actual deadline restricts my freedom.

In my litde one-man research establishment, themail plays of course an
important role: to give you some idea, the practical unit for the rate of
incoming mail seems to be "pounds jweek". Of course I don't need to read
it all. Some of it can be thrown away at a glance, most of it I just scan
-e.g. lists of abstracts of articles produced by such-and-such organization,
or encyclopedic works- to keep an overview of what is happening elsewhere.
This does not take much of my time. But some of the stuff that is sent to me
is very interesting, and then I want to study it. Occasionally it keeps me
busy beyond that, either because I start a correspondence with the author,
because I don't like the offered solution and try to do better or because the
author's attack seems to give a fresh handle on one of my old unsolved
problems.

* * *

202 EWD561

In arecent paper "The high cost of programming languages", c.A.R.
Hoare expressed at the end the "hope that one day we shallieam to design
a language which will combine the merits (rather than the features) of its
predecessors". After listing such merits, he continues:

But it will not be an easy task to design such a language; like all great
engineering breakthroughs, it will require an insight and understanding of the
total environment of implementation and use of the product; consideration
and rejection of a thousand bright ideas; and a constant appeal to the criteria
of low cost and high effectiveness. Furthermore, I believe that it will require
an undeviating pursuit of elegance and rigour, which is characteristic of the
best tradition of University research. There are few engineering disciplines in
which the successful pursuit of academic ideals can pay higher material
dividends than in Computer Science.

Although I am not (yet?) engaged in the design of a new programming
language, I give the above quotation because I share the opinions expressed
-and expressed better than I could formulate them!- and it therefore
gives an apt description of the nature of my work. Indeed: "rejection of a
thousand bright ideas" nicely captures its experimental nature.

From our current mastery of programming to "software engineering" as
a discipline worthy of that name, we have still far to go. There is c1early a
discipline emerging for the design of little things and for proving their
correctness. That is great and encouraging, for these little things are by no
means restricted to toy-problems like Euclid's Algorithm for the gcd; they
also inc1ude difficult and important little things like locking mechanisms
and rnicrocode for square-root algorithms down to the bit level. But they are
"little" things: it is great, it is encouraging, but not enough! Here, for
instance, is an area of research where, to quote Hoare "the successful
pursuit of acadernic ideals can pay high material dividends", at least I
believe so. But I know of only one way of discovering why the application
of our formal techniques, which is so successful "in the small", is less
successful when we try to apply them with greater ambition, and that is "try
it!". So that is, for instance, what I have done during the last month. The
eventual product (EWD550 in this case) was a 19-page document, but many
pages with less successful formalization and proving experiments have
disappeared into the wastepaper basket. What I leamed from the experience
I intend to summarize in a later issue of the EWD series.

I mention the exercise because it seems typically to be among the type of
things that I should be doing. First of all, the time was not wasted; on the
contrary, it proved to be very difficult to attain in this case the "e1egance
and rigour, which is characteristic of the best tradition of University
research". Whether it would be done at a University, however, remains to be
seen: it is -and I have said so explicitly in EWD550- work without any
deep thought and, as a result, work without any glamour (and that is what
many workers in the acadernic environment need or think they need). I

A "Non Trip Report" from E.W. Dijkstra 203

think that it would be very hard to get funding for it; lt lS the kind of
incremental improvement of wruch we sometimes need many, one after the
other; it is the kind of work that requires hard and quiet trunking. I am in
the lucky position to be able to do so, but it gives rise to obligations, the
more so because the funding cf individual research seems to become more
and more unpopular. (I quote from arecent issue of the Bulletin of the
American Academy of Arts and Sciences:

Moreover, attitudes toward research have altered. American foundations and
government agencies have become reluctant to fund research performed by
individuals, preferring instead to help build large institutions and applied
research centers, which can assign research priorities according to perceived
and immediate economic needs.

The complaint is not new; that the situation seems to get worse is somewhat
alarming.) Finally a job like that gives me some sense of acruevement, and
at regular intervals that is a nice feeling!

(EWD550 deals with the formal treatment of a modest syntactic analysis.
Organizations less enlightened than Burroughs Corporation tolerate such a
project only provided it is immediately done on a grandiose scale: IBM
allowed its Vienna Laboratory to embark upon the problems of the defini
tion of semantics, provided Vienna formalized the semantics of PLII, of all
languages! Needless to say, the Vienna Lab more or less collapsed under
that effort.)

* * *
During the same period of time I wrote EWD554 "A personal summary

of the Gries-Owicki theory", also a project without glamour in the sense
that all I have done in those fourteen pages has been to condense the
quintessence of the thesis written by Owicki under Gries's supervision; from
my side there was no originality involved. Also EWD554 can be regarded as
an experiment, viz. an experiment in presentation. Owicki's thesis - being a
thesis!- doesn't read too smoothly. (I lent my copy of her thesis to a
student that wanted to do some work in operating systems theory; I never
saw rum -nor my copy of her thesis- again!) Trus is a great pity because,
rudden beneath the sometimes pompous formalism, her method contains the
germ of a technique for dealing with a collection of otherwise unmanageable
problems. One may raise the question: "Should I spend my time on
rephrasing other people's work in an effort to make it more accessible and
to show its significance?". I trunk that sometimes I should. I wrote that text
with a dual objective, viz. to offer my students some underlying material
and to make a number of people witrun Burroughs familiar with trus work.
(I had a trurd, more selfish objective: Iwanted to understand it myself, and
in order to be able to do so I had to reduce it to its bare essentials.) In
connection with EWD554 I must admit that I treated my students as guinea
pigs: I tried my presentation of that theory out on them. The experiment

204 EWD56 I

-I am happy to say- gave a positive outcome. ladmit" using" my regular
audience for such purposes, I am not ashamed of it. There is hardly a point
in developing a methodology unless one can transmit it to others, and,
therefore, the possibility to trans mit it should be tested experimentally.

I don't regret having written that document. It was a personally reward
ing experience because it showed me something the duo Gries-Owicki had
not seen yet clearly, viz. a nonoperational approach to concurrency. Besides
that, who else could have done this? In writing EWD554 I needed all my
experience as a teacher to make it palatable, and all my experience as a
scientist to make it simple, i.e. to extract "the bare essentials". Again I am
grateful for being in the position that I can allow myself to do essential
work without glamour!

* * *
This "non trip report" covers about the last month. The plan to write

such areport has been with me for some time; the fact that it covers a
period of non-glamorous activities is a pure accident. If it had covered the
period during which I was engaged in the design of the on-the-fly garbage
collection (EWD520) or was lighting a similar piece of firework without
burning my fingers too badly, its tone would probably have been quite
different. This alternation between spectacular, nearly reckless intellectual
adventure and most definitely non-spectacular (but solid!) work does not
disturb me at all, for the progress of science needs both of them.

* * *
This is a good occasion to explain "the missing numbers" in the EWD

series. Some numbers are occupied by documents that I failed to complete;
sometimes I start on a document because I hope and expect that I can
achieve a result, for instance because I have the exciting feeling of having a
new bright idea, but when I then try to use it, it does not work. Furthermore
I don't send my Dutch texts to the USA. Each week during term time, for
instance, at the beginning of my lectures laddress my students with a
speech in Dutch commenting on the world we live in; each speech is
traditionally one page long and occupies a new EWD number. I give these
speeches for the enlightment of my students, but probably even more for my
own fun and in order to exercise regularly my written Dutch. Like the
documents I write in my capacity of Chairman of the Board of Mathematics
Inc., they are also linguistic exercises. (With Mathematics Inc., by the way, I
am in trouble. No matter how corrupt our commercial practice, no matter
how fraudulent our scientific activities, the world around us seems to beat
uso In these competitive times it is bloody hard even to catch up with
reality!)

Nuenen, 1st of April 1976 PROF. DR. EDSGER W. DIJKSTRA
Burroughs Research Fellow

EWD563
Formal Techniques and Sizeable
Programs

By now we know quite convincing, quite practical, and quite effective
methods of proving the correctness of a great number of small programs. In
a number of cases our ability is not restricted to aposteriori proofs of
program correctness but even encompasses techniques for deriving pro
grams that, by virtue of the way in which they have been derived, must
satisfy the proofs requirements.

This deve10pment took place in a limited number of years, and, for those
who are familiar with such techniques, has changed their outlook on what
programming is all about so drastically, that I consider this deve10pment
both fascinating and exciting: fascinating because it has given us such a new
appreciation of what we already knew how to do, exciting because it is full
of unfathomed promises.

This deve10pment is the result of a very great number of experiments:
experiments in programming, in axiomatizing, and in proving. It could
never have taken place if the researchers in this field had not shown the
practical wisdom of carrying out their experiments with small programs. As
honest scientists they have reported about their actual experiences. This,
alas, has created the impression that such formal techniques are only
applicable in the case of such small programs.

Some readers have exaggerated and have concluded that these techniques
are primarily or exclusive1y applicable to so-called "toy problems". But that
is too great a simplification. I do not object to describing Euclid's Algorithm
for the greatest common divisor as a "toy problem" (in which capacity it
has been a very fertile one!). But I have also seen perfectly readable and
adequate formal treatments of much less "toyish" programs, such as a
binary search algorithm and a far from trivial algorithm for the computa
tion of an approximation of the square root, which would be ideal for a

205

206 EWD563

microprogram in a binary machine. I call this last algorithm "far from
trivial" because, although it can be described in a few lines of code, from the
raw code it is by no means obvious what the algorithm accomplishes.

The question that I would like to address here is what we may expect
beyond those "small examples". Hence the adjective "sizeable" in my title.

The crude manager's answer to my question is quite simple: "Nothing.".
He will argue that difficult problems require large programs, that large
programs can only be written by large teams which, by necessity, are
composed of people with, on the average, n th rate intellects with n suffi
ciently large to make formal techniques totally unrealistic.

My problem, however, is that I don't accept that answer, since it is based
on two tacit assumptions. The one tacit assumption is that difficult prob
lems require large programs, the second tacit assumption is that with such a
Chinese Army of nth rate intellects he can solve the difficult problem. Both
assumptions should be challenged.

On challenging the second assumption I don't need to waste many words.
The Chinese Army approach -also called "the human wave" - has been
tried, even at terrific expense, and the results were always disastrous.
OS/360 is, of course, the best known example of such a disaster, but please
don't conclude from NASA's successful moonshots that it has worked in
other cases. There is plenty of evidence that the data processing associated
with these NASA ventures was full of bugs, but that the total organization
around it was so redundant that the bugs usually did not matter too much.
In short, there is plenty of experimental evidence that the Chinese Army
approach does not work; and as a corollary we may conclude that the
perfection of Chinese Army Generals is a waste of effort. At the end of my
talk I hope you will agree with me that, in order to reach that conclusion,
said experimental evidence was superfluous, because a more careful analysis
of the tasks at hand can teach us the same.

* * *
For my own instruction and in order to collect material for this talk I

conducted an experiment that I shall describe to you in some detail. I do so
with great hesitation because I know that, by doing so, I may sow the seed
of misunderstanding. The problem of a speaker is that, if he does not give
examples, his audience does not know what he is talking about, and that, if
he gives an example, his audience may mistake it for his subject! In a
moment I shall describe to you my experiment and you will notice that it
has to do with syntactic analysis, but please, remember that syntactic
analysis is not the subject of my talk, but only the carrier of my experiment
for which I needed an area for computer application in which I am most
definitely not an expert.

I wrote a paper with the title "A more formal treatment of a less simple
example". Admittedly it was still not a very large example; the final solution
consisted of four procedures, of which, in beautiful layout with assertions

Formal Techniques and Sizeable Programs 207

inserted, three were only 7 lines and the last one 18 lines long. But the whole
document is 19 typed pages, i.e. ab out 14 times as long as the raw code. It
took me several weeks of hard work to write it, and when it was completed I
was grateful for not having been more ambitious as far as size was
concerned. It dealt with the design of a recognizer for strings of the
syntactic category (sent), originally given by the following syntax:

(sent) : := (exp);
(exp) ::= (term) 1 (exp) + (term) 1 (exp)- (term)
(term) : := (prim)1 (term) * (prim)
(prim): := (iden)1 «exp»
(iden) : := (letter) 1 (iden) (letter)

That was all!

(1)

My first experience was that, in order to give a more precise statement
about the string of characters that would be read in the case that the input
was not an instance of (sent), I needed new syntactic categories, derived
from (1) and denoting "begin of. .. ": for each syntactic category (pqr) I
needed the syntactic category (bopqr), characterizing an strings that either
are a (pqr) or can be extended at the right-hand side so as to become a
(pqr) or both.

(bosent): := (sent)1 (boexp) (2)
(boexp): := (boterm) 1 (exp) + (boterm) 1 (exp)- (boterm)
etc.

(In an earlier effort I had also used the notion "proper begin of a (pqr)",
i.e. at the light-hand side extensible so as to become a (pqr) but not a
(pqr) by itself. This time I obtained a simpler and more uniform treatment
by omitting it and only using "begin of ... " as derived syntactic categories.)

The next important step was the decision to denote the fact that the
string K belongs to the syntactic category (pqr) by the expression:

pqr(K)

This decision was an immediate invitation to rewrite the syntax as
folIows:

(sent): := (exp) (semi)
(semi): := ;

(exp): := (term)1 (exp)(adop)(term)
(adop): := +1-

(term): := (prim)1 (term)(mult)(prim)
(mult): := *

(prim): := (iden) 1 (open)(exp)(close)
(iden): := (letter) 1 (iden)(letter)

(open): := (
(close): : =)

208 EWD563

The invitation, however, was only noticed after I had dealt with the first
line of the syntax, dealing with (sent); when dealing with (exp), it was the
occurrence of both the + and the - that induced the introduction of
(adop), because without it my formulae became full of insipid duplication.
It was only then that I discovered that the boolean procedure "semi(x)"
-only true if the character x is a semicolon- and the other boolean
procedures that I needed for the classification of single characters were a
specific instance of the convention that introduced "pqr(K)". Finally I
realized that the usual BNF, as used in (2), is an odd mixture in the sense
that in the productions the characters stand for themselves; in (3) tbis
convention is restricted to the indented lines.

A next important decision was to denote for strings (named K, L, . ..)
and characters (named x, y, ...) concatenation simply by juxtaposition, e.g.
KL, Ky, yLx, etc. Now we could denote the arbitrary nonempty string by
yL or Ly and could derive from our syntax formulae like

(exp(L) and semi(y)) => sent(Ly)

It also enabled me to define the "begin of ... ":

bopqr(K) = (EL: pqr(KL))

I mention the apparently trivial and obvious decision to denote concatena
tion by juxtaposition explicitly, because in the beginning my intention to do
a really neat formal job seduced me to introduce an explicit concatenation
operator. Its only result was to make my formulae, although more impres
sive, unnecessarily unwieldy.

From my earlier effort I copied the convention to express post-conditions
in terms of the string of characters read. With "S" defined as the string of
input characters "read" -or "moved over" or "made invisible" - by a call
of "sentseareh", and with "x" defined as the currently visible input char
acter, we can now state the desired post-condition for our recognizer
" sentseareh ":

Rs(S, x, e): bosent(S) and non bosent(Sx) and e = sent(S) (4)

The first term expresses that not too much has been read, the second
term expresses that S is long enough, and the last term expresses that in the
global boolean "e" -short for "correct"- the success or failure to read a
(sent) from the input should be recorded.

In short, we treat S and x as variables (of types "character string" and
"character" respectively) that are initialized by a call of sentseareh. I
mention tbis explicitly, because for a while we departed from that conven
tion, and did as if the "input still to come" were defined prior to the call of
sentseareh. We tried to derive from our post-condition weakest pre-condi
tions in terms of the "future" input characters, and the result was a disaster.
At some time during that exercise we were even forced to introduce a
deconcatenation operator! The trick to regard as "post-defined output"

Formal Techniques and Sizeable Programs 209

what used to be regarded as "pre-defined input" cannot be recommended
warmly enough: it shortened our formulae with a considerable factor and
did away with the need for many dummy identifiers.

Another improvement with respect to our earlier effort was a changed
interface with respect to the input string. In my earlier trial I had had as a
primitive to read the next character

x : = nextchar

where "nextchar" was a character-valued function with the side-effect of
moving the input tape over one place. (If S is the string of characters read,
the above assignment to x should be followed implicitly by the "ghost
statement" S := Sx.) Prior to the first x := nextchar, the value of the
variable x was supposed to be undefined. In the new interface, where x is
the currently visible character and S the string of characters no longer
visible, I chose the primitive "move", semantically equivalent to the concur
rent assignment

S, x : = Sx, new character

This minor change of interface turned out to be a considerable improve
ment! In the new interface, the building up of S lags one character behind
compared with the old interface. Formula (4) shows how we can now refer
-using concatenation- to two strings, one of which is a character longer
than the other. With the old interface we would have needed a notation for
astring one character shorter than S, something so painful that in my
earlier effort a different specification for sentsearch was chosen, with the old
interface more easily described, but logically less clean than (4).

Iwanted to write a body for sentsearch in terms of a call on expsearch
and the boolean primitive semi(x) which was assumed to be available. I
wished to do so only on account of the syntax for (sent) and discovered
that I only could do so under the assumption - to be verified later when the
full syntax was taken into account- that

sent(L) =* non (Ey: bosent(Ly» (5)

would hold. Confronting this with the specification (4) we conclude that if
sentsearch establishes a final state with c = true, i.e. sent(S), the second
term -non bosent(Sx)- is true for all values of x: in other words,
postulate (5) states that the end of an instance of the syntactic category
(sent) can be established "without looking beyond".

We assume the availability of a primitive expsearch. Defining "E" to be
the string of input characters moved over by it, it establishes, analogous to
(4):

Re(E, x, c): boexp(E) and non boexp(Ex) and c = exp(E) (6)

Called by sentsearch, it implies S := SE (as "move" implies S := Sx). A

210

possible body for sentseareh is now:

proc sentseareh: {S = empty string}
expseareh{Re(S, x, e)};

corp

if non e -> {Rs(S, x, e)}skip{Rs(S, x, e)}
o non semi(x) -> {Rs(S, x, jalse)}e := jalse{Rs(S, x, e)}
o e and semi(x) -> {Ay ::Rs(Sx, y, e)}move{Rs(S, x, e)}
fi {Rs(S, x, e)}

For its correctness proof I needed three theorems:

Theorem 1. (Re(L, x, e) and non e) ~ Rs(L, x, e)

Theorem 2. (Re(L, x, e) and non semi(x» ~ Rs(L, x, jalse)

Theorem 3. (Re(L, x, e) and e and semi(x» ~ (Ay ::Rs(Lx, y, e»

The proofs of these three theorems and also of

boexp(L) ~ non sent(L)

EWD563

which I needed in these proofs, took more than one-and-a-half pages.
In the meantime the first 6 of the 19 pages had been written. The

primitive expseareh asked for another three theorems to be proved and was
finished 4 pages later; by analogy termseareh took only half a page; the
primitive primseareh required another six theorems to be proved and was
completed 6 pages later. The remaining two-and-a-half pages were needed
to prove assumption (5) and the similar

(term(L) and adop(y» ~ non boterm(Ly)

and

(prim(L) and mult(y» ~ non boprim(Ly)

and for some closing remarks.
I shall not go into any detail about these proofs and programs. I only

mention that I had to replace

(exp): := (term)1 (exp)(adop)(term)

first by

(exp): := {(term)(adop) } (term)

in order to open the way for a repetitive construct in the body of expseareh.
Thereafter I had to replace it by

(exp): := (adder)(term)
(adder): : = {(term) (adop) }

Formal Techniques and Sizeable Programs 211

because I needed the expression "adder(L)" in my proofs and assertions.
The syntax for < term> and < prim> was subjected to similar massaging
operations.

* * *
So much for the description of my experiment. Let me now try to

summarize what seem to be the more relevant aspects of the whole exercise.
(l) The routines I designed tbis time were definitely more beautiful

than the ones I had written three years ago. Thls confirms my experience
with the formal treatment of simpler examples, when I usually ended up
with more beautiful programs than I had originally in mind.

(2) A slight change in the interface describing the reading of the next
input character caused a more serious change in the overall specifications
chosen for sentsearch: the formal treatment exposed the original interface as
a seed of complexity.

(3) To treat a program absorbing input L formally as a nondeterminis
tic program assigning, as it were, a "guessed" value to L is a very useful
device, so useful, in fact, that all by itself it is probably a sufficient
justification for inc1uding nondeterminacy in our formal system. (Indepen
dently and in another context, also C.A.R. Hoare was recently led to treat
input in tbis fasbion.)

(4) Nearly 11 of the 19 pages don't deal with the programs at all! They
are exc1usively concerned with exploring the given syntax and proving
useful theorems about strings, theorems expressed in terms of predicates
derived from the given syntax.

(4.1) My earlier treatment of tbis example took only 7 pages: most of
the theorems I proved tbis time were regarded as "obvious" in the older
treatment.

(4.2) Several patterns of deduction appear in more than one proof; the
introduction of a few weIl-chosen lemmata could probably have condensed
somewhat what now took 11 pages.

(4.3) The formal treatment of a program requires a formal "theory"
about the subject matter of the computations. The development of such a
theory may be expected to require the introduction of new concepts that did
not occur in the original problem statement.

(4.4) In the deve10pment of such a theory the choice of notation is
crucial. (In tbis exercise the struggle of developing the theory was mainly the
search for an adequate notation; once that had been invented, the deve1op
ment of the theory was fairly straightforward and I don't think that the final
document contains more than a single line -at the end, where I was getting
tired and lazy- that could cause a serious reader serious problems.)

(5) There is a wide-spread belief that such formal proofs are incredibly
long, tedious to write, and boring to read, so long, tedious, and boring as a
matter of fact, that we need at least a computer to verify them and perhaps
even a computer to generate them. To the idea that proofs are so boring that
we cannot re1y upon them unless they are checked mechanically I have

212 EWD563

nearly philosophical objections, for I consider mathematical proofs as a
reflection of my understanding and "understanding" is something we
cannot delegate, either to another person or to a machine. Because such
philosophical objections carry no weight in a scientific discussion, I am
happy to be able to report that my experiment complete1y belied the said
wide-spread belief.

For many years I have found that when I write an essay in which a
program is developed, the total length of the essay is a decimal order of
magnitude greater than the length of the program in which it culminates.
The transition to a highly formal treatment has not changed that ratio
significantly: it has only replaced the usual handwaving and mostly verbal
arguments by more concise, much more explicit, and, therefore, more
convincing arguments. The belief that formal proofs are longer than infor
mal arguments is not supported by my experiment.

The belief that the writing and reading of such proofs is tedious and
boring has also certainly not been confirmed: it was an exciting challenge to
write it and those who have seen it have confirmed that it was fascinating to
read, because it all fitted so beautifully -as, of course, in a nice formal
proof it should!-. I am tending to regard the belief that these formal
proofs must be long, tedious, and boring as a piece of folklore, even as a
harmful -because discouraging- piece of folklore that we had better try
to get rid of. The fact that my formal treatment was in all respects to be
preferred to my former, informal treatment was one of the most encourag
ing experiences from the whole experiment, and I shall not try to hide the
fact that I am getting very, very suspicious of the preachers of the refuted
belief: they are mostly engaged on automatic verification or proving sys
tems. By preaching that formal proofs are too boring for human beings they
are either trying to create a market for their products and a climate
favourable for their funding or only trying to convince themselves of the
significance of their work. The misunderstanding is aggravated by the
complicating circumstance that their own activities seem to support their
beliefs: I have seen a number of correctness proofs that have been produced
by (semi-)mechanized systems, and, indeed, these proofs were appalling!

(6) The design consisted of a set of procedures; ignoring the possibility
of a recursive call -as would have been the case when the second
alternative production for (prim) had been omitted- they form a strict
calling hierarchy of four layers deep. It is worth noticing that all through
that calling hierarchy the specification of the procedures is of the same
simple nature. The fact that when we go up the hierarchy we create in a
sense more and more "powerful" machinery is not reflected in greater
complication of the treatment, more elaborate interfaces, or what have you.
This, too, is a very encouraging observation; it gives us some c1ue as to what
we might expect when we would undertake a more ambitious experiment
with a stilliess simple example.

Somewhere in his writings -and I regret having forgotten where- John
von Neumann draws attention to what seemed to him a contrast. He

Formal Techniques and Sizeable Programs 213

remarked that for simple mechanisms it is often easier to describe how they
work than what they do, while for more complicated mechanisms it was
usually the other way round. The explanation of this phenomenon, however,
is quite simple: a mechanism derives its usability in a larger context from
the adequacy of its relevant properties and when they are very complicated,
they are certainly not adequate, because then the mechanism is certain to
introduce confusion and complexity into the context in which it is used.

As a result of this observation I fee1 that there is a reasonable justifica
tion for the expectation that a next more ambitious experiment will just
confirm my earlier experiences.

* * *
As you will have noticed I have accepted as some sort of Law of Nature

that, for the kind of programs I talk about, I accept a documentation ten
times as long as the raw code, a Law of Nature that re1ates how we think to
the best of our ability when we program to the best of our ability. Those
struggling with the maintenance of programs of, say, 100,000 lines of code,
must shudder at the thought of a documentation ten times as bulky, but I
am not alarmed at all.

My first remark is that, for the kind of programs I am talking about, the
actual code is apparently a very compact deposit of our intellectuallabours.
In view of the various -and considerable!- costs caused by sheer program
length, this compactness should be a reason for joy! But then we cannot
complain at the same time about the factor ten! Y ou cannot have your cake
and eat it. ...

My second remark to console the man struggling with the 100,000 lines
of code is, admittedly, still a conjecture, but a conjecture for which I have
not the slightest indication that it might be wrong. The conjecture is that the
actual size of 100,000 lines is less dictated by the task he seeks to solve than
by the maximum amount of formal text he thinks he can manage. And my
conjecture, therefore, is that by applying more formal techniques, rather
than change the total amount of 100,000 lines of documentation he will
reduce the length of the program to 10,000 lines, and that he will do so with
a much greater chance of getting his program free of bugs.

* * *
As a result of this exercise I discovered an omission from all computer

science curricula that I am familiar with: we don't try to teach how to invent
notations that are efficient in view of one's manipulative needs. And that is
amazing, for it seems much less ambitious than, say, trying to teach
explicitly how to think effectively. When learning standard mathematical
subjects, students get acquainted with the corresponding standard notations
and these are fairly effective; so they have good examples, but that is all! I
think it could he1p tremendously if students could be made aware of the
consequences of various conventions, consequences such as forced repeti
tion, or all information sinking into the subsubsubscripts, etc.

214 EWD563

My last remark is added because you may have noticed quantitative
concems from my side, such as worrying about the length of formulae and
proofs. This is partly the result of a small study of elegant solutions. The
study is not completed yet, but one observation stands out very c1early: the
elegant solutions are short.

Appendix

By way of illustration I inc1ude an excerpt from EWD550 "A more formal
treatment of a less simple example". After the establishment of formulae (7)
through (11) -as numbered in EWD550!-, i.e. the choice in the case of
(7), (8), and (11), and the derivation in the case of (9) and (10):

Rs(S, x, c): bosent(S) and non bosent(Sx) and c = sent(S)
(senf): := (exp);
(bosent): := (sent) I (boexp)
boexp(L) ~ non sent(L)

Re(E, x, c): boexp(E) and non boexp(Ex) and c = exp(E)

the text continues as follows.

(7)
(8)
(9)

(10)
(11)

"Designing sentsearch in terms of expsearch means that we would like to
have theorems, such that from the truth of a relation of the form Re the
truth of relations of the form Rs can be conc1uded. There are three such
theorems.

Theorem 1. (Re(L, x, c) and non c) ~ Rs(L, x, c)

PROOF.

O.

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.

Assumed:
Re(L, x, c) and non c
Derived:
boexp(L)
bosent(L)
c = exp(L)
non c
non exp(L)
non sent(Lx)
non boexp(Lx)
non bosent(Lx)
non sent(L)
c = sent(L)
Rs(L, x, c)

(End of Appendix.)

with (11) from 0
with (9) from 1
with (11) from 0
from 0
from 3 and 4
with (8) from 5
with (11) from 0
with (9) from 6 and 7
with (10) from 1
from 4 and 9
with (7) from 2, 8, and 10
(End of Proof of Theorem 1.)"

EWD570
An Exercise for Dr. R.M. Burstall

Dear Rod,

Because -as you know- we Dutch are a God-fearing nation, Ascen
sion-day is here an official Holiday, and on official Holidays I don't work.
Today I just fooled with figures.

In doing so I discovered a function of the natural numbers that has a nice
recursive definition, viz.

fusc(l) = 1
fusc(2n) = fusc(n)
fusc(2n + 1) = fusc(n) + fusc(n + 1)

adefinition which, as far as comp1exity is concerned, seems to lie between
the Fibonacci series and the Pascal triangle.
(The function fusc is of mild interest on account of the following property:
with/1 = fusc(n1) and/2 = fusc(n2) the following two statements hold for
n1 ~ n2: "if there exists an N such that n1 + n2 = 2N , then 11 and 12 are
relative1y prime" and "if I, and 12 are re1ative1y prime, then there exist an
n1, an n2, and an N, such that n1 + n2 = 2N ". In the above recursive
definition, this is no longer obvious, at least not to me; hence its name.)

Having seen your exercises concerning the derivation of an iterative
program, starting with the recursive definition for the n th number of the
Fibonacci series, I was suddenly reminded of that exercise when I was
considering an iterative program for the computation of fusc. It should be a
rewarding exercise, since there exists a very nice iterative program:

n, a, b := N,l,O;
do n ~ 0 and even(n) ~ a, n := a + b, n/2
o odd(n) ~ b, n := b + a,(n - 1)/2

od {b = fusc(N)}

215

216

I wish you luck and enjoyment!

Nuenen, 27th May 1976

EWD570

Yours ever,

Edsger

PROF. DR. EDSGER W. DIJKSTRA

Burroughs Research Fellow

EWD573
A Great Improvement

After my return from my last trip the first thing W.H.J. Feijen and M. Rem
showed me was a much improved definition of "wdec", for which they gave
the credit to my colleague F.E.J. Kruseman Aretz. In [1] I had written:

More specifically: we shall use the notation wp(S, R), where S denotes a
statement list and R some condition on the state of the system, to denote the
weakest pre-condition for the initial state of the system such that activation of
S is guaranteed to lead to a properly terminating activity leaving the system in
a final state satisfying the post-condition R.

For a weH-chosen programming language the article continues by defining
how for any given Sand R the pre-condition wp(S, R) is derived. One page
later, when dealing with a repetitive construct and its termination, [1]
continues:

Let t denote some integer function, defined on the state space, and let
wdec(S, t) denote the weakest pre-condition such that activation of S is
guaranteed to lead to a properly terminating activity leaving the system in a
final state such that the value of t is decreased by at least 1 (compared to its
initial value). [...] The relation between wp and wdec is as follows. For any
point X in state space we can regard wp(S, t .;; tO) as an equation with tO as
the unknown. Let its smallest solution for tO be tmin(X). (Here we have
added the explicit dependence on the state X.) Then tmin(X) can be interpre
ted as the lowest upper bound for the final value of t if the mechanism S is
activated with X as initial state. Then, by definition, wdec(S, t) = (tmin(X)
.;; t(X) - 1) = (tmin(X) < t(X)).

Kruseman Aretz's definition is

wdec(S, t) = wp(S, t < tO);o

where the notation R~ is used to denote a copy of expression R in which
each occurrence of variable xis replaced by y (or by (y) if necessary).

217

218

ExAMPLE. Let S be

if lrue --+ x : = x - y
o lrue --+ x : = x - z
fi

and let t = x. Then -see [1]- we have:

wp(S, 1 < (0) =
(true or true)and (true => wp("x := x - y", x < tO»

and (true => wp("x := x - z", x < tO» =
wp("x := x - y", x < tO) and wp("x := x - z", x < tO) =
(x - y < tO) and (x - z < tO)

EWD573

Hence wdec(S, t) = wp(S, t < tO)~o = (x - y < x) and (x - z < x) =
y > 0 and z > O.

This is much simpler than my original treatment. Analogous to the first
five lines, we would have to derive first

wp(S, t"';;; tO) = (x - y ".;;; tO) and (x - z ".;;; tO).

Then we would have to find the smallest solution for tO satisfying that
equation and that is not a very standard operation! In this case we would
find

tmin = max(x - y, x - z)

and then we would derive

wdec(S, t) = tmin < t = max(x - y, x - z) < x = max(- y, - z) < 0

min(y, z) > 0

(End of example.)

The example shows that Kruseman Aretz's alternative definition does not
only embody a conceptual simplification, but that it also smooths the
formal labour to be performed. It couples in a very direct way the derived
condition wdec with the fundamental condition wp in a way that is very
farniliar from the axiom of assignment.

* * *
In retrospect I blame myself for acquiescing in my ugly original defini

tion. I knew quite weIl that it was ugly: it was preceded in [1] by "Note
(which can be skipped at first reading).". But I failed to hear my own
warning!

* * *
It was only after the above had been typed that I was told about the

heuristics that had led to the new formulation of wdec. For that part,
Kruseman Aretz gave the credit to M. Rem: it seems to have been the
typical multi-person achievement, in which it is very hard to reconstruct
later who has contributed what.

A Great Improvement 219

The argument is the following. Let us introduce an auxiliary variable tO,
say, in which the value of t is recorded prior to the execution of S. (For the
sake of this recording we assume that the value of t can be "computed", so
that it can be assigned to tO.) Then we define

wdec(S, t) = wp("tO := t; S", t < tO)

because the weakest precondition that "tO := t; S" is guaranteed to estab
lish t < tO is, indeed, the weakest precondition for S such that S is
guaranteed to decrease t (by at least one, because t is an integer-valued
function). But, thanks to the axiom of concatenation, this right-hand side
reduces to

= wp(tO := t, wp(S, t < tO»

which, thanks to the axiom of assignment, reduces to

= wp(S, t < tO)~o

and that is exact1y the expression I gave here.

[Il Dijkstra, Edsger W., Guarded Commands, Nondeterminacy and Formal De
rivation of Programs. Comm. ACM 18, 8 (Aug. 1975) 453-457.

Nuenen, Plataanstraat 5 PROF. DR. EDSGER W. DIJKSTRA

Burroughs Research Fellow

EWD575
To H.D. Mills, Chairman
Software Methodology Panel

Dear Harlan,

I am not quite sure how to comment on "Essential Elements of Software
Engineering Education" by Peter Freeman, Anthony Wasserman, and
Richard E. Fairley because I don't like its underlying political assumptions,
because I know that, when dealing with politically distasteful attitudes, my
pen tends to get venomous, and, finally, because I don't particularly want to
offend anybody. So I hesitate.

There is, for instance, the authors' view on the proper role of our
universities. They inc1ude producing the graduates industry and government
ask for. An alternative view is trying to educate the graduates the rest of the
world will need in the future, independent of the question to what extent the
rest of the world already understands its future needs. This may sound
presumptuous, but universities are by definition -if they are any good
presumptuous institutions with targets more far away in the future than
most other organizations. I definitely prefer the alternative view, for where,
otherwise, is the necessary innovation to take place? The degeneration of
our universities into graduate factories is a development I would not like to
encourage, because I consider it to be a threat to our civilization.

There is, for instance, the authors' view on the role of the intellectual
individual. With their stress on the supposed virtues of group activity (and
on the need for "communication skills"!) they seem to regard minimization
-or possibly even elimination- of bis role as an ideal worth to be
pursued. I regard that as a threat to our civilization. (For further details I
refer you, for instance, to The Organization Man by William H. Whyte, first
published by Simon and Schuster, New York, 1956.)

There is furthermore the observation that of their Five Pillars of Wisdom
for the software engineer -computer science, management science, com
munication skills, problem solving, and design methodology- only the first

220

To H.D. Mills, Chairman Software Methodology Panel 221

is hard science, while the remaining four -if existing at all- range from
soft to very soft. I am afraid, however, that the current fashion grossly
overestimates the importance and potentialities of the soft sciences, and
would not like to enforce that fashion because, again, I regard it as a threat
to our civilization. (For further details I refer you to Sodal Sdences as
Sorcery by Stanislav Andreski, first published by Andre Deutsch, 1972.)

Finally, like most political documents, it is superficial. The suggested
analogy between the software engineer and the family doctor is false
because the commitment of the medical profession and the commitment of
any engineering profession are of quite different natures. The most blatant
example of superficiality is probably their argument in favour of communi
cation skills; they refer to "the software engineer's need to communicate
with a wide range of people and machines" . As a piece of hilarious nonsense
I think that this is only surpassed by the title "The education of a
computer" (Proe. ACM National Conference 1 (Pittsburgh, 1952) 243-250).

So, if you intend to follow Raymond T. Yeh's suggestion to use the paper
by Freeman et al. "as a basis for departure", I can only recommend that
you depart from it as far as possible.

* * *
C.V. Ramamoorthy's "Preliminary Report on Software Evaluation" is

less objectionable: it gives a survey of what is or has been done -no matter
how sensible or how foolish- and I have not the slightest reason to assume
that his survey is unfair or incomplete. The report is very instructive, even
perhaps in unintended ways. This does not imply that I have no objections:
the author fails to challenge the assumption that the whole approach makes
any sense at all. Let me quote:

The approach is to identify a set of software characteristic attributes repre
senting good and bad, reliable and unreliable programming practices. For
each attribute, measures called metrics are formulated. The merit figure of a
program is then defined as the normaIized weighted average of these attribute
metries. The validity of this approach depends heavily on the chosen attri
butes, the metric formulation and the function that combines these metrics.

The first sentence is OK, but in the second sentence the word "measure" is
used in a most unscientific sense. In science we measure physical quantities,
something that is a meaningful activity because (the measurements of) these
quantities are supposed to satisfy certain explicitly stated laws; the purpose
of the measurements is to confirm or to refute the supposed laws. Here,
however, to "measure" is used in the sense of "attaching a number to", in
very much the same way as psychologists construct an IQ. (It is a fallacy to
assume that an IQ "measures" something!) The next sentence is OK in the
sense that it describes a common practice, be it a deplorable one; the last
sentence is wrong in that it assumes that the notion of "validity" is
applicable to such practices, in that it assumes that some of these practices
can be more" valid" than others: validity is a binary criterion.

222 EWD575

In bis research (!) recommendation the author shows -apparently
without noticing it- that the problem is recursively unsolvable: here he
suggests that the criteria used in evaluating the quality of software, in turn,
should be evaluated themselves for their effectiveness. (And so ad
infinitum ... !) The recommendation ends with "These effectiveness mea
sures may allow a user to include an optimal set of tools in a software
evaluation system to meet bis special needs.". No matter how hard I tried, I
could not attach a sensible meaning to that sentence; presumably it will be
discovered that more "research" should be devoted to the quantification of
the user's "special needs", so that we can decide whether a set of tools is
"optimal"!

The whole activity has very little to do with what I would like to regard
as software engineering. It is more the further refinement of management
"science" as a self-perpetuating activity. If the manager needs a number, he
will get one. I am afraid that the whole activity is adequately captured by
the well-known saying "If you ask a foolish question, you will get a foolish
answer.".

NOTE (Added to Avoid Misunderstanding). I don't know how to manage
the design (or should we say "the discovery"?) of software. I hope that my
saving grace is that I don't pretend to. (End of note.)

Good luck!

Nuenen

Yours ever,

Edsger

PROF. DR. EDSGER W. DIJKSTRA

Burroughs Research Fellow

ps. May I ask you to dis tribute this text to the other panel members? I
don't have all their addresses and, besides, most of them are located in the
USA. Thank you.

EWD

EWD576
On Subgoal Induction

In [1] I encountered "subgoal induction" as a technique for proving partial
correctness. It was applied to a program S that I would write down as

S: x := j(xO);
do B(x) - x := g(x) od;
x := hex)

In order to prove

{p(xO)}S{R(xO, x)} (1)

-i.e. if P(xO) holds and execution of S terminates properIy, then in the
final state R(xO, x) will hold- "subgoal induction" is used. The technique
consists of finding a relation Q(x, z) satisfying

(Ax: (nonB(x)) => Q{x, h(x)))

(Ax, z: (Q(g(x), z) andB(x)) => Q(x, z))

(Ax, z: (p(x) and Q(j(x), z)) => R(x, z))

(2)

(3)

(4)

and it was stated that the existence of a relation Q satisfying (2), (3), and (4)
proves (1).

My general inclination when I encounter such formulae -particularly
when I encounter them in areport that is really dealing with something else
- is to skim them, assuming that they are no more than variations on an
old theme. Formula (3), however, attracted my attention, because, if U(x) is
the invariant relation for the repetitive construct, we have to prove -see
[2]-

(U(x) andB(x)) => U(g(x)) (5)

and, if we compare (5) with (3), we see that the substitution of g(x) for x
occurs at the other side of the implication! This was reason enough to
investigate subgoal induction a little bit more cIosely.

223

224 EWD576

Suppose Q satisfies (2), (3), and (4). We will show that

U{x): (Az: Q{x, z) ~ Q(f{xO), z)) (6)

is a suitable invariant relation. It is clearly established by "x := j(xO)", the
first statement of S. To prove (5) we have to prove

((Az: Q{x, z) ~ Q(f{xO), z)) andB{x» ~

((Az: Q(g{x), z) ~ Q(f{xO), z)) (7)

For those values of x such that B(x) is false, implication (7) is vacuously
true; for those values of x such that B(x) is true, (3) teIls us that Q(g(x), z)
is a stronger condition on z than Q(x, z), so that whatever is implied by the
latter is certainly implied by the former. Hence (7) and thus (5) follows from
(3).

Finally we have to prove that

(U{x) and non B{x)) ~ wp{"x := h{x)", R{xO, x)) (8)

Thanks to (2) and (6), the left-hand side of (8) reduces to

(Az: Q{x, z) ~ Q(f{xO), z» and Q{x, h{x»

from which we conclude -applying the quantified implication for z = h(x)
- the truth of

Q(f{xO), h{x»

Because tbe initial value xO satisfies P(xO), we conclude -applying (4)
with x = xO and z = h(x)- tbe truth of

R{xO, h{x»

but thanks to the axiom of assignment this is identical to the right-hand side
of (8). Hence (8) follows from (2), (4), and (6).

Thus we have established that -as was to be expected- subgoal
induction is indeed the next variation on an old theme.

The analysis described above was carried through together with C.S.
Scholten.

Nuenen PROF. DR. EDSGER W. DIJKSTRA

Burroughs Research Fellow

[I] Is "sometime" sometimes better than "always"? Intermittent assertions in
proving program correctness, by Zohar Manna and Richard Waldinger, STAN
CS-76-558.

[2] Guarded Commands, Nondeterminacy and Formal Derivation of Programs, by
Edsger W. Dijkstra, Comm. ACM 18, 8 (Aug. 1975) 453-457.

EWD577
Trip Report E. W. Dijkstra,
ECI-Conference 9-12 August 1976,
Amsterdam

It was the kind of conference from which one returns with a glorious
headache. It had been organized by the European Cooperation in Infor
matics, a joint enterprise of the Information Processing Societies of the
various European countries. The response to the Call for Papers had been
very low: only 36 papers had been submitted. Instead of cancelling the
conference, the organizers decided that, by abolishing parallel sessions and
selecting 12 of the submitted papers, the conference could still be held.
(After all, they had six invited papers in addition to the submitted ones!) In
spite of the meagre program, they still managed to collect about 250
participants. It is very questionable whether, with those 250 participants,
they reached the break-even point; if they didn't, I just cannot have pity
with them. It would serve them right, for organizing a bad conference is a
worse crime than not organizing a conference at all. (Besides that, they had
been wamed.) The organizers committed what I would like to describe as
"Contempt of Audience". It saddened me to see the extent to which the
degrading circumstances at the European universities have broken the
spirits of my colleagues, and it saddened me to observe their apathy and
indifference, in which they have "leamed" to accept the junk as if it were
the real thing. The most frightening aspect of it all is that most of them
present their abolishment of all norms and (time-honoured!) quality stan
dards as an act of great wisdom.

The conference was held in the new building of the Free University of
Amsterdam. I had never been there before. It must be ab out the last
university building erected during the time that our government thought
itself infinitely rich. It was in many respects an ideal setting; in a most
important aspect, however, it was not: at no moment did one get the
impression of being in a seat of learning and a centre of culture, on the

225

226 EWD577

contrary! I walked through the University Bookshop, but it was of a
shocking vulgarity -as bad as the book department of the Bijenkorf (i.e. a
chain of large department stores, oriented towards the superficial, fashion
able consumer)-. Comic strips that were not funny, political pamphlets full
of cliches, science fiction books and pamphlets of obscure mystical cults.
And, to top it all, when we entered the Auditorium a few minutes before the
conference started, there was Muzac! I was flabbergasted. (In my previ
ous trip report, I made aremark about differences in noise level at both
sides of the Atlantic: from that comparison, I learned, at least Amsterdam
should be excluded. While portable radios are strictly forbidden in most
public buildings, such as railway stations and the Eindhoven University
Campus, the bar at the lounge of the Free University in Amsterdam did not
observe that rule! The whole place was of a disgusting vulgarity.)

The first afternoon was devoted to Program Development and Verifi
cation in Practice and Theory. Michael Jackson gave his talk as an invited
speaker. It was well-presented and certainly fell under the heading Program
Development in Practice, but it had little to contribute beyond the rather
lirnited problem area of file processing in (or: in spite of?) COBOL. Then
Antonio Salvadori from the University of Guelph, Ontario, described the
"Guelph Efficiency Monitor, a preprocessor system which can analyse a
COBOL program at any development or running stage". I quote:

The statistics gathered and printed consist of
• a COBOL clause and verb count
• a percentage breakdown of PROCEDURE DIVISION verbs used
• the number of source records, number of comment cards, indication

of non-ANSI standard verbs, etc.

The last speaker was P. Hammersley, Cambridge UK, on "Team Organi
zation in Integrated On-Line Computer Projects", a talk that was well
covered by its tide. His English was a pleasure to listen to, but it was a talk
with little or no technical or scientific content and I -like many others
found my thoughts wandering away.

In the evening there was a reception by the State Secretary of Interior
Affairs and Burgomaster and Aldermen of Amsterdam; the reception was
held in the beautiful surroundings of the new Vincent van Gogh Museum,
where the air was polluted by. " audible wallpaper! Most of us looked back
on a was ted afternoon and were worried whether the conference would get
any better.

The next morning was devoted to Concepts and Techniques of Database
Management. The invited speaker, c.J. Date (IBM General Products Divi
sion) was the morning's best speaker. He knew what he was talking about
and gave what seemed to be a good overview. For those unfamiliar with the
topic, his talk was quite instructive.

The afternoon was devoted to Computer Networks. Louis Pouzin (lRIA)
was the invited speaker on "N ames and Objects in Heterogeneous Com
puter Networks". He had originally prepared a more technical presentation

Trip Report E.W. Dijkstra, ECI-Conference 9-12 August 1976, Amsterdam 227

than, in the meantime, he dared to give and in a hurry he redesigned his
presentation. As a result it was a bit rambling, but it was still quite dear
that he knew what he was talking about. I had heard him many times
before, but unaware of his past as a telephone engineer: that past was
mentioned in the introduction and was quite discemable.

On Wednesday moming -again Program Development and verification
etc.- I opened the session as the invited speaker. Tony Hoare should have
been that moming's session chairman but, Tony being prevented from
attending, his role was taken over by L.A.M. Verbeek of Twente University.
I did not present my material weIl. I knew that it (EWD563) was difficult to
present. Iwanted to show what I had leamed from a highly formal
experiment, which had recently taken me more than a month to conduct. I
could not explain that lesson without sketching the experiment, an activity
that, indeed, took too much time and was only partly successful. (The
trouble was that, while trying to do it, I noticed this!) In retrospect a very
simple tutorial -nothing new- on formal program derivation would have
been more appropriate for this occasion. Afterwards LD. Ichbiah (CU)
showed a similar -but less formal- case study of program development; I
think he reached his audience better. Then Shmuel Katz (IBM Israel
Scientific Center, Technion City, Haifa, Israel) gave a well-prepared talk on
"Program Optimization Using Invariants". I think that it told more about
the role of science and technology in the state Israel than about computing
science as such.

Wednesday aftemoon was again devoted to Databasb Management.
Rudolf Bayer (Technische Universität München) was the invited speaker on
"Integrity, Concurrency and Recovery in Databases.". His talk was well
prepared and well-presented (but for the fact that he tried to show too
much). I was not convinced by his proposed solution: it was complicated
and his "condusion" that deadlock prevention was impractical did not seem
to me to be sufficiently justified. I have more the impression that he had
failed to discover how to do it. Later, in private, I had a long discussion
with him about the current database folklore. It was very instructive for me;
he, at least, is willing to challenge the common tacit assumptions, even if
they have already found their way in standard proposals! (So does Michael
Jackson, who repeatedly expressed his strong fear that already identified
mistakes will be "cast in concrete" by the standardization bodies.)

The aftemoon ended with a Panel Discussion on Database Management
with P.J.H. King (United Kingdom), G.M. Nijssen (Belgium), and A.A.
Verrijn Stuart (The Netherlands) as panelists and T.W. Olle as chairman,
who found it necessary to address the panelists by their Christian names. It
was just terrible! A few weeks earlier Olle had sent six questions to the three
panelists and each question was answered by each panelist. For more than
an hour we had an eighteen-fold demonstration of the well-known saying
"If you ask a silly question, you'll get a silly answer.". In our innocence we
thought that this panel discussion would be the absolute low of the
conference: little did we suspect what the future still held in store for uso

228 EWD577

From 20.00 to 24.00 a Dutch evening with plenty to eat and to drink had
been announced. What had not been announced was that conversation
would be absolute1y impossible thanks to constant "music" produced by
two altemating groups. Thanks to uncontrolled electronic amplification they
produced a deafening noise that was physically painful. I had been stupid
enough to try to ta1k: the next morning I had a sore throat; Horst Hünke
had the same experience.

The invited speaker for the last morning -devoted to Architecture
was NN6 from IBM, Böblingen, Germany, on "Trends in Computer System
Structure and Architecture". But for a scathing remark about HoneyweIl
not marketing MULTICS and another scathing remark about Burroughs
and the ILLIAC IV, the speaker only mentioned IBM products, mentioning
their catalogue numbers at a higher rate than I could factor them. It was a
bloody shame. Van Wijngaarden, who was chairman of that session, took
the precaution of not allowing any discussion and announced the coffee
break. But was this a wise decision? During the coffee break several
youngsters came to me, seriously worried by the fact that that shameful
show had been allowed. They must have left the ECI-conference with in
their mouths the bitter taste of dishonesty. Is this the way to educate our
next generation?

It ended with a c10sing speech by van Wijngaarden in his capacity of
Conference Chairman. Apart from thanking all the people who had contrib
uted -he did so very nicely- he somewhat repaired the situation by
commenting on NN6 's performance, be it in veiled terms. A large portion of
his c10sing speech was devoted -in less veiled, but admirably chosen terms
- to a public rebuke to me for my lack of tolerance. I had not only been
annoyed by the music -and had shown so- but also by the fact that at
the occasion of this conference a well-publicized ECI Computer Chess
Toumament had been arranged. I did not like that at all -and had shown
so- because I am of the considered opinion that, contrary to public
superstition, the game of chess is of no re1evance to computing science. By
organizing the tournament, the ECI had only added fuel to that public
misconception. It is perhaps easier to be tolerant, as soon as one doesn't
care anymore

* * *
I leamed a few things about Databases. I leamed -or, had my tentative

impression confirmed- that the term "Database Technology", although
sometimes used, is immature, for there is hardly any underlying "science"
that could justify the use of the term "technology". I even have my doubts
when I am asked to believe that "database technology is still in its infancy",
for that strikes me as being asked to regard the quacks at the fairs as the
infancy of medical science. The point is that the way the database manage
ment experts tackle the problems seems to be so grossly inadequate. They
seem to form an inbred crowd with very litde knowledge of computing
science in general, who tackle their problems primarily politically instead of

Trip Report E.W. Dijkstra, ECI-Conference 9-12 August 1976, Amsterdam 229

scientifically. (In this respect the panel discussion was very revealing: at
least half of the time was devoted to problems related to standardization!
From the history of programming language development they should have
learned to what disasters that premature concern about standardization may
lead.) Often they seemed to be mentally trapped by the intricacies of early,
rather ad hoc solutions to rather accidental problems; as soon as such a
technique has received a name, it becomes "a database concept". And a
totally inadequate use of language, sharpening their pencils with a blunt
axe.

Lousy use of language -and therefore confusing- was a fairly general
phenomenon. Allow me to end with the following anthology of crazy
expressions. (Most of them are meaningless; if they mean something, it is
something nonsensical.)

"virtual systems"
"virtual terminals"
"logical names"
"physical names"
"logical abstractions"
"mapping of one level of abstraction onto the layer below"
"data structures are mapped into severallayers of abstraction"
"a programmer efficiency index"
"an effective implementation view of the corporate data model"
"different levels of abstraction of view of data"
"dynamic change"

and, to crown the confusion,

"the computer playing this game".

No, gentlemen, three times No: computers don't play.

Nuenen PROF. DR. EDSGER W. DIJKSTRA

Burroughs Research Fellow

P.S. To give you some impression of how "international" this conference
was: more than 150 participants were Dutch.

P.P.S. A final quotation from our IBM-spokesman:

"Interfaces decrease performance and increase manufacturing cost.".

EWD578
More About the Function "fusc"
(A Sequel to EWD570)

In EWD570 I introduced the function "fusc", given by

fusc(l) = 1,fusc(2n) = fusc(n),

fusc(2n + 1) = fusc(n) + fusc(n + 1)

Without violating the given relations we can extend the definition with
fusc(O) = O. I showed there the following iterative program for the computa
tion of fusc(N) -with "peven" and "podd" standing for "positive and
even" and "positive and odd", respectively-

n, a, b := N, 1,0;
do peven(n) - a, n := a + b, nl2

D podd(n) - b, n := b + a, (n - 1)/2
od {fusc(N) = b}

On my last trip to the USA, while lecturing to aBurroughs audience, my
audience derived this program after it had decided -after only a few
modest hints!- that a good candidate for an invariant relation would be

P: fusc(N) = a * fusc(n) + b * fusc(n + 1)

The audience arrived at this suggestion after a few simple considerations.
The first observation was that

fusc(N) = fusc(n)

would be simple to initialize by means of n : = N. They quickly saw that
this was too simple, and considered

fusc(N) = a * fusc(n)

equaIly trivially initialized by n, a := N,l; it was then remarked that

230

More About the Function "fusc" (A Sequel 10 EWD570) 231

initialization would not be complicated by an additive term

fusc(N) = a * fusc(n) + b

as that is initialized by n, a, b := N, 1, O. The observation that for n = 0 the
first term would disappear but that fusc(n + 1) = 1 would then JlOld
suggested, together with the third part of the definition for fusc, the fully
blown-up P as given above. Separating the cases

n = 2k:

n = 2k + 1:

fusc(N)= a * fusc(n) + b * fusc(n + 1)
= a * fusc(2k) + b * fusc(2k + 1)
= (a + b) * fusc(k) + b dusc(k + 1)

fusc(N) =a * fusc(n) + fusc(n + 1)
= a * fusc(2k + 1) + b * fusc(2k + 2)
= a * fusc(k) + (a + b) * fusc(k + 1)

my audience quickly derived -to its pleasant surprise!- the iterative
program given above.

* * *
From the above program, two properties of fusc follow. The first is that

the value of fusc applied to an odd argument does not change if in the
binary representation of the argument we invert all "internai" digits, i.e. the
binary digits between the most- and the least-significant ones. For instance
fusc(l9) = fusc(29) because in binary 19 and 29 are 10011 and 1110 1,
respectively. This follows from the comparison of the a, b-pairs during those
two computations. After processing the least significant digit of the argu
ments, both have a, b = 1,1. As a result of the inverted internal digits, the
one computation has the role of a and b interchanged with respect to the
other computation. Because the sum of two values is a symmetric function
of its arguments and, as a result of the last -i.e. most-significant- 1 in the
argument, that sum of a and b is delivered (in b) as the final value, both
computations deliver the same result.

The next property is more surprising. (At least, I think so.) Let us try to
represent the pair a, b by the single value m, according to the convention

a = fusc(m + 1) b = fusc(m)

In the case of peven(n) the operation on a, b has the form a, b := a + b, b
or:

fusc(m + 1), fusc(m) : = fusc(m + 1) + fusc(m) , fusc(m)

:= fusc(2m + 1),fusc(2m)

an operation that trans1ates into m: = 2m. Similarly a, b : = a, a + b
translates into m : = 2m + 1. lnitially, we have m = O. Substituting all this

232 EWD578

we get

n, m := N,O;
do peven(n) --'> m, n := 2*m, n/2
o podd(n) -> m, n := 2*m + 1, (n - 1)/2

od (fusc(N) = fusc(m)}

Thus the fusc-va1ue does not change if we write the binary digits of the
argument in the reverse order. For examp1e fusc(l9) = fusc(25) because 19
and 25 are in binary 10011 and 11001, respective1y. I think this second
property more surprising!

* * *
In a way that does not admit generalization I discovered the equivalence

2 1 fusc(n) <=> 3 1 n

i.e. fusc(n) is even iff n is a multiple of 3. Inspired by arecent exercise of
Don Knuth I tried to characterize the arguments n such that 31 fusc(n).
With braces used to denote zero or more instances of the enclosed, the
vertical bar as the BNF "or", and the question mark "?" to denote either a
o or a 1, the syntactica1 representation for such an argument (in binary) is

{0}1{?0{1}01 ?1{0}1}?1{0}

I derived this by considering -as a direct derivation of my program
the finite state automaton that computes fusc(N) mod 3. It was the first
time in my life that I did what others have done many times before, i.e.
re1ate a finite state automaton to a grammar. The exercise is until now on1y
of modest interest; it taught me that division by a fixed factor and (simple!)
syntactic analysis are close1y re1ated processes, and that insight I think
somehow illuminating.

* * *
Since the distribution of EWD570 it has been discovered that more

mathematicians have occupied themse1ves with function fusc -they only
gave it a different name!-, a fact that is not surprising in view of its
properties. J.J. Seidel and F.L. Bauer independently pointed out to me that
it is no. 56 in Sloane's Dictionary of Integer Sequences, which refers to an
article by G. de Rham, Elemente der Mathematik, Vol. 2 (1947) pg. 95. It
was fun!

Nuenen, 16th August 1976 PROF. DR. EDSGER W. DIJKSTRA

Burroughs Research Fellow

EWD582

A Proof of a Theorem Communicated to
U s by S. Ghosh
BY EDSGER w. DIJKSTRA and c.s. SCHOLTEN

In a letter of 19 August 1976, S. Ghosh (currently c/o Lehrstuhl Informatik
I, Universität Dortmund, Western Germany) communicated without proof
the following theorem in natural numbers - here chosen to mean "non
negative integers" - :

Given a set of k linear equations of the form

Lj=bj (OE;;i<k) (I)

in which the L j are homogeneous linear expressions in the unknowns with
natural coefficients and the bj are natural numbers, there exists a single
equation

M=c W
in which M is a homogeneous linear expression in the unknowns with
natural coefficients and c is a natural number, such that (2) has the same
natural solutions as (1). (The equation M = c need not be unique.)

Because the natural solutions of (l) are the common natural solutions of
(3) and (4), as given by

Lo = bo

(3)

and

L j = bj for 2 E;; i < k (4)

it suffices to prove that (3) can be replaced by a single equation with the
same natural solutions as (3).

Consider for natural Po and PI' to be chosen later, the equation

(5)

233

234 EWD582

All solutions of (3) are solutions of (5). We shall show thatpo andpl can be
chosen in such a way that, conversely, all natural solutions of (5) are
solutions of (3). We shall do so by choosingpo and PI in such a way that (5),
considered as an equation in L o and LI' has (3) as its only natural solution;
because all natural choices for the original unknowns will give rise to
natural L o and L p tbis is sufficient.

Considered as an equation in L o and LI' the general parametric solution
of (5) is given by

L o = bo + t* PI

LI = b l - t * Po

(where, to start with, t need not be a natural number). We shall choose a
natural Po and PI in such a way that from natural L o and LI' viz.

bo + t * PI;;;' 0
b l - t * Po;;;' 0

left-hand sides of (6) and (7) integer

we can conclude t = O.
Choosingpl > bo' we derive from (6)

t> -1

Choosing Po > bp we derive from (7)

t< 1

(6)

(7)

(8)

(9)

(10)

Choosing Po and PI furthermore such that gcd(po, PI) = 1, we derive
from (8) that t must be integer; in view of (9) and (10) we conclude that
t = 0 holds. Summarizing: (5) can replace (3) provided

Po> bu PI> bo,gcd(po, PI) = 1

* * *

EXAMPLE. Let the given set be x = 1, Y = 1, Z = 1. The first two equations
can be combined by choosing Po = 2 and PI = 3, yielding:

2*x+3*y=5, z=1

These two can be combined by choosing Po = 2 and PI = 7, yielding

4*x+6*y+7*z= 17

for which (1, 1, 1) is, indeed, the only natural solution. (End of example.)

Nuenen, 3 August 1976 PROF. DR. EDSGER W. DIJKSTRA

DRS. C.S. SCHOLTEN

EWD584
Trip Report E.W. Dijkstra, Poland and
USSR, 4-25 September 1976

Because I had to check in at Schiphol Airport at seven 0' elock in the
morning I went to Amsterdam the previous evening and slept in Hotel
Frommer quite near to the airport. As the courtesy coach leaving the hotel
at 6.30 was my target, I set my alarmelock at 5.45. When I entered the
breakfast room at 6.00, however, I knew with devastating certainty that half
an hour later we would have transport problems. I decided to be one of the
first arriving at the coach, finished my breakfast quickly -which was no
problem, for it was of sub-airline quality- and made for the coach. Some
time later I had the satisfaction of observing that my prediction had been
correct. The Lufthansa flight to Warsaw -with a stop in Frankfurt- was
smooth and pleasant; besides that I was served a breakfast distincdy better
than the one I had just discarded.

In Warsaw I had my first confrontation with totalitarian bureaucracy: it
took me more than one hour to pass customs and immigration. As soon as I
had left the official area, I was greated by dr. Ian Madey, who was quite
surprised to see me: he was waiting for someone else. (As he is about the
only Pole I know, I had assumed that he had been sent out to collect me.)
The process of collecting arriving participants was of a refreshing informal
ity. (Later I understood why: these Symposia on the Mathematical Founda
tions of Computing Science are visited yearly by a very inbred crowd:
everybody knows everybody!) With my host, prof. Antoni Mazurkiewicz,
and two others, I had an improvised lunch in Madey's apartment, which
was quite elose. At half past three we joined a coach that had collected
participants from Warsaw Airport and Warsaw Central Station, and then
we were on our way to Gdansk, where we arrived at 22.45. After a late
supper I stumbled into my bed: seven hours in a coach -on Polish roads
and seemingly without shock absorbers- is no fun.

235

236 EWD584

The trip, although tiring, was interesting. It confirmed the impression I
had received while looking down from the plane: every square inch of Polish
soil is cultivated if possible. As we approached Gdansk the many litde
farmhouses were gradually replaced by fewer larger farms. The explanation
is probably to be found in the time that Gdansk was still Danzig and export
of grain enabled the farmers to become richer, the doser they were to the
export harbour.

It is quite dearly still a poor country, even thirty years after the war. lan
Madey's apartment was well-kept and well-furnished -most of it pre-war
furniture, I thought- but small. Private cars are a rare commodity, a
private car in reliable condition seems exceptional; during that coach trip I
saw at least ten cars stuck with mechanical trouble. Mazurkiewicz, who
made the trip from Warsaw to Gdansk in his old Volkswagen, told me in
Gdansk that half-way he had had to extinguish a fire in his car, and four
days later he had not been able yet to have got it repaired. The dinners at
NOVOTEL were of a depressingly tasteless monotonicity. At breakfast a
single cup of coffee was the only fluid served, for a second cup one had to
pay. The NOVOTEL building, however, was new and comfortable; it
seemed an exact copy of the other hotels of the French (!) NOVOTEL
chain.

It was quite dear that, among the people I met, "the system" has very
litde sympathy, but they seem to have discovered a way not to suffer from it
too much. It seems to be accepted as one of those unavoidable things
-more or less like a climate-, they made the impression of being
reasonably happy in spite of it all. The Polish sense of Humour is in any
case exquisite.

The Symposium was one where I -although an invited speaker- did
not really belong. (I would not have accepted the invitation, had it not been
for the fact that I could drop by on my way to Moscow.) I was immediately
invited to act as session chairman on the first Monday morning, which, of
course, meant that I could not escape. After lunch I was still so tired from
Sunday's travels that I went to my room for a little nap. I fell asleep and
missed most of the afternoon's talks, but all people I asked have assured me
that I had not missed much.

I was Tuesday morning's first speaker. On the previous evening there had
been a reception; because I feIt that I might have to address a hundred
hangovers, I made a special effort of it. The conference proceedings had
been handed out on Sunday evening. They contained the text I had
prepared, which, being perfectly readable by itself, had already been read by
many participants. It seemed silly to read that text aloud, so I gave a
completely new talk under the title "Back to Nature, or Two Cheers for
Simplicity.". It went well. The end was totally new for a large fraction of the
audience, because I ended up with the development of a little program, and
many of them seemed never to have seen a program in their whole life.

Trip Report E.W. Dijkstra, Poland and USSR, 4-25 September 1976 237

This was the shortcoming of the whole symposium. There was a minority
of computing scientists and a majority of mathematicians who really be
lieved -or at least: behaved as if- that they could contribute anything
relevant to the mathematical foundations of computing science without
knowing enough about the latter subject. (A Flemish speaker demonstrated
his unfamiliarity in a way that amused me very much. After having seen me
as session chairman on Monday and as invited speaker on Tuesday, he
discovered in my presence on Wednesday morning to his surprise that I was
Dutch. After a few words of Dutch we switched back to English because
others were present; he then asked me the polite -at least: politely
intended- question "What is your area?". I could not resist the temptation
to answer "Computing Science".) Y ears aga the power of the Polish
mathematical and logical establishment and its tendency to strangle com
puting science had already been explained to me, so I was not too surprised
when one of the organizers told me that they hoped to have established
themselves to such an extent -this was their 5th Symposium- that next
year automata theory could be deported to a separate symposium. I hope
that they succeed, for they deserve to be freed from that form of pure
mathematics, which seems more like a bureaucracy: a self-perpetuating
activity, masochistically in love with its own, self-inflicted complexities.

I quote -because it is so typical- the opening sentence of the Con
c1usions of one of the invited speakers (Wilfried Brauer, Hamburg:
"W-Automata and their Languages."):

The theory presented here may help to solve some more known problems; it
gives rise to quite a number of new questions and it offers several ways for
future research: ...

Also de Bakker ran true to form. He proudly demonstrated a proof rule for
the PASCAL procedure call without the restrictions on the parameters that
Igarashi, London, and Luckham had introduced. As his new proof rule has
the consequence that one cannot prove the correctness of the procedure in
isolation, but may in principle need different proofs for the different calls,
any reasonable man would conc1ude that the Igarashi-London-Luckham
restriction is such a wise one that we may speak of a flaw in the design of
PASCAL. But de Bakker emphatically refused to draw that conc1usion!
(Without going into details, however, I would also like to mention that I had
reason to admire de Bakker's political courage.) Good talks were presented
by Mazurkiewicz (Poland) and by Berthelot and Toucairol (France!). Nivat
also arrived.

* * *
My departure from Poland was less successful. I had to fly all by myself

from Gdansk to Warsaw, where I had to catch my connection to Moscow.
The first flight was delayed and -knowing no Polish- I found it hard to

238 EWD584

discover how long the delay would be. The distance between the airports of
arrival and departure in Warsaw was -fortunately!- small. The transfer
was not pleasant, because the man from the Polish Academy of Sciences
that picked me up did not seem to like that job at all. After I had checked in
and had passed emigration, I came into a real chaos when we had to guide
our own luggage through customs. I nearly lost my balance and luggage in a
pushing crowd of a few hundred Poles. Embarkation time was approaching
and just when I was wondering for the tenth time whether I would get
through in time, the baggage handlers of the airport solved the problem by
placing all the unchecked luggage on the belt. I was then pushed into the
departure hall, from there through a gate -that mentioned neither Moscow
nor my flight number- where a very stern and cross lady -weH, lady ...
- at the gate tore my boarding pass into two, from there into a coach and
from there into a LOT airplane. We took off before the scheduled departure
time, but when the announced flying time did not seem to be correct either,
I suddenly got alarmed, wondering whether I was flying to, say, Bukarest! I
was greatly relieved when a stewardess could confirm that I was, indeed, on
my way to Moscow. It was my first flight on a Tupulev and it was a very
pleasant one. Disembarkation again had more resemblance to cattle being
driven out of a wagon. Since I had no Moscow address of my host, nor a
telephone number -only Andrej Ershov's promise that he would meet me
at the airport-, I was greatly relieved to see him before I had passed
customs and financial formalities: the officer spoke English and was courte
ous and helpful. After my Polish experiences this was a pleasant change;
later I would learn that also inside the USSR such courtesy seemed very
rare.

I was met by Andrej Ershov and Sergej Pokrovskii from the Computer
Center in Novosibirsk -they would accompany us on the whole trip- and
an older colleague from Moscow who drove us in his new, first car -only
800 km done- to the Hotel of the Sovjet Academy of Sciences. The driver's
uncontroHed way of changing lanes made the trip a nerve-racking experi
ence: I am sure that he will have had an accident before his new car is 1000
km older.

Then our grand tour started. After two days, Tony Hoare from Belfast
joined us (on Saturday evening). On Monday night we went from Moscow
to Kiev, on Thursday night from Kiev to Leningrad, on Sunday night by
train from Leningrad to Moscow and from there by plane to Novosibirsk,
where we performed for the next two days. On Thursday morning we left
Novosibirsk. Tony stayed a further day in Moscow; I left Moscow on
Thursday evening for Amsterdam (again via Frankfurt) where I arrived at a
quarter to eleven in the evening, pleasantly surprised to find my wife with
the car at the airport: instead of another night in a hotel, we drove back to
Nuenen and arrived horne at a quarter to one in the middle of the night. I
just dropped into bed and slept until ten o'clock next morning; taking areal
hot bath, I realized that I still saw memories of mosques, icons, cots in the

Trip Report E.W. Dijkstra, Poland and USSR, 4-25 September 1976 239

mud, and policemen, yeah, policemen everywhere: they still haunted my
memory

The general pattern of our visits to those four towns was a lecture by
Tony, a lecture by me, a public performance of both of us for a large
audience, one or two "scientific discussions", and an official dinner -with
vodka, caviar, and toasts- with our hosts. We worked hard: our lectures
were between two and three -mostly three- hours. Andrej had counted
the number of our performances and had added the audience sizes. On our
last day, when visiting prof. Marchuk, the Director of the Siberian Branch
of the Sovjet Academy of Sciences, he proudly reported that in seventeen
meetings we had addressed over 2500 people. Under normal circumstances
that kind of quantitative reporting would have amazed me, but tbis time I
just noticed it, for it was exactly what in the meantime I had leamed to
expect. (This is what one expects in a society that tries to leave the Middle
Ages by means of five-year plans; I was not surprised at all to observe
Marchuk swallowing these numerical data as if they were bighly relevant.)
All our lectures went very well. (Only at the beginning of my first talk did
panic seize me: standing in front of a fully packed auditorium with two
blackboards I discovered that with the Soviet chalk I couldn't write on
them! After a delay of a few minutes SOmeone liberated two miserable
pieces of chalk that were slightly better. With grim satisfaction, a week later
in Leningrad, I saw a Russian wrestling with the same problem.) It was my
first experience with addressing an audience by means of intermittent
translation; when Andrej did it -and that was nearly always- it worked
beautifully. He often seemed to enjoy it, he was c1early much more than just
an interpreter. (In Kiev I started with "just an interpreter", but within five
minutes Andrej took bis place.)

Our "scientific discussions" were more difficult. On the first Saturday
morning I had such a discussion all by myself, because Tony had not
arrived yet. We had chosen "computer science education" as its central
theme because Iwanted to check aremark in arecent advice to the US
Government, viz. that in the USSR programming was taken very seriously
and was primarily done by people with asolid mathematical background. I
found that remark confirmed. The only difficult moment during that
discussion was when my opinion about mechanical verification and further
Artificial Intelligence work was asked. It was a difficult moment, for I had
already discovered many years ago that the amount of support for AI
projects in particular says less about the intrinsic merits of these projects
but much more about the political climate that supports them. Suddenly
Andrej needed twice as much Russian to translate me. Twice we have had a
discussion about one of their microprocessor projects, but that was nearly
impossible. It reminded me of my discussion at IBM Hursley in the early
seventies, shortly after the THINK-notices had been replaced by warnings
to keep company-confidential matters secret, and, just when I arrived, the
IBM-er who wanted my advice received a telephone call reminding bim that

240 EWD584

he was not allowed to tell me anything, not even to formulate bis question.
In the USSR it was the same crazy game of bide-and-seek. How can you
comment on something when they don't tell you what to comment on? They
either feigned not to understand the question or gave a null-answer - "This
will depend on the circumstances." etc.-. Eventually we extracted that they
proposed a tree-like "store-and-forward" communications network of about
one hundred microprocessors, each with its own clock of about 30 MHz.
(When I asked the clock frequency, a long discussion in Russian started:
Tony, who speaks Russian, told me later that they were discussing among
themselves whether they were allowed to answer my question.) I told them
that I did not expect that it would work, because I expected glitches all over
the place. They then started to explain why they were sure that that would
not be the case. From that explanation I got a strong impression that they
hardly understood the phenomenon, but I feit no longer tempted to give
further explanations.

It is undoubtedly true that I observed a strongly mathematical approach
to computing science, but it seemed to me to be mathematics of the wrong
kind. Very pompous, with Roman, Greek, and Gotbic alphabets - Andrej
complained about the "indexomania" in bis country- and void of any
simplicity or elegance. A "machine" is at least a ten-tuple, and all their
work seems soaked with more and more elaborate computational models. I
remember the man who proudly told us that his computational model
distinguished between no fewer than five (!) different kinds of store. In
short, it seems all bighly ineffective. I got two explicit indications, that
mathematical elegance is not regarded as very important (a decadent
capitalistic luxury?). It will take a long time before they will discover that in
computing science elegance is not a dispensable luxury, but a matter of life
and death.

I was surprised by the susceptibility -or should I say: vulnerability?
to foreign (primarily American) influences. Jack T. Schwarz was touring the
USSR for the nth time in order to keep the Russians up to date on the latest
developments of SETL. (Was tbis part of some sort of Helsinki treaty
between the USA and the USSR?) On the one hand I know that many
people have grave doubts about the whole SETL-project (and I know some
of the reasons), on the other hand it was strange -nearly alarming- to see
that in the USSR Schwarz was taken absolutely seriously. In Leningrad I
discovered that they had been misguided enough to invest God knows how
much in an implementation of ALGOL 68 for the Russian 360! In
Novosibirsk a group had recently embarked on automatic program verifica
tion etc., very much in the line of London et al., without any tangible
justification for the hope that they should do any better. During our lunch
with Marchuk, the latter asked our comments after he had explained why
computing science in bis opinion was such an important field, an explana
tion that was no more than areiteration of the Artificial Intelligence hopes!
(John McCarthy, too, is a regular guest in Novosibirsk.) I could only

Trip Report E.W. Dijkstra, Poland and USSR, 4-25 September 1976 241

comment by quoting George Polya, that infallible mIes of discovery would
work magic, but that there is no such thing as magic. (Under such circum
stances, quotations are very useful: they enable one to give unwelcome
answers without being mde.)

Tony gave a very plausible explanation: no matter how doubtful they are,
they just cannot afford to leave a Western exercise unexplored, for suppose
that those capitalists book a significant result! I think that that explanation
is correct. It seems in full accordance with Andrej's attitude, which is one of
extreme tolerance, combined with a tendency to collect a wide variety of
documents. (The size of his personal library in the institute was most
impressive.)

The departure from Moscow was again a chaotic affair. I was taken to
the airport by a young Russian who spoke some English but was unable to
explain to me how I should proceed and what formalities I had to go
through in what order. I flew back in a Lufthansa plane, filled mainly with
Germans who had had a trade exhibition. The tension began already to
discharge at the gate: still three policemen to pass and we shall be free
again. .. There was a dear sigh of relief when the plane took off.

* * *
Some random remarks.

My first impression of Poland in the evening was that it was extremely
weIl -not to say: over-brightly- illuminated, and I thought "They must
be very concerned about the weIl-being of the average citizen to light his
path so weIl.". On doser inspection the illumination was always on parking
lots, timber yards, and the like. It was dearly a protection against theft and
my Sportstourist guide that saw me off to my plane to Warsaw did not
make a secret of this fact. In the USSR the same bright illumination; in
Moscow I even saw that most cars were parked with their wiper blades
removed (and even little plastic covers on the arm tips). When my guide
showed me a row of parked cars and said proudly "All Sovjet-made." I
could not resist the temptation to ask maliciously whether the wiper blades
had been removed as a protection against theft. Answer: "I don't know; I
don't have a car.". After having verified my conjecture I told him later that
day not to behave like a bloody fool. He took the hint and was, from that
moment onwards, quite honest. He was not a party member, although
(nearly pathologicaIly) nationalistic. I had already observed this, he himself
had observed that trait as weIl. He confessed this with a very curious
mixture of pride and shame. Later he told me that -although he had had
ample exposure to Frenchmen and Americans- this was his first confron
tation with "northern Western Europe" (i.e. Tony and me). He had been
afraid and had found the first few days very difficult. (The fact that Tony
and I knew each other so weIl was, of course, an added difficulty.) The next
time I go there - I am not sure at all whether there will be a next time; an
invitation for next year has been declined without the slightest hesitation!-

242 EWD584

I shall take, say, a fresh Herald Tribune and Le Monde and Times with me:
our guide was absolutely thrilled when he found in the Intourist Hotel in
Leningrad a six-day old copy of Le Monde in the shop: he immediately
bought it and said to me "I would never have believed that possible.".

* * *
A few remarks about "the sociology of science" or "how to make a

career". A young mathematician who lectures in Poland on EOL's and
ETOL's etc. told me his motives for entering automata theory. He did not
particularly like the subject, nor had he any belief in its relevance. But he
found the subject easy, had observed relatively little competition, and, in his
country, could earn a living with it because the university authorities
confused it with computing science anyhow. At first I was shocked by his
cynicism - he was a young man with most of his life still before him. At
second thought I found it harder to blame him: he was perfectly honest
about it and I could only pity him for having so few illusions (although, of
course, this may save him some disappointments).

Next I observed a systematic application of the saying "In the land of the
blind the one-eyed is king.". People try to make careers in computing
science by frequenting in this respect underdeveloped countries and obscure
conferences. I had seen a few of such cases in Western Europe, behind the
iron curtain the phenomenon is very pronounced: it was sometimes em
barrassing to hear which of my countrymen had frequented their places.
And then the man who, later this fall, would go for a month to Singapore to
lecture ab out Lindenmayer systems! That must be just what they need ...

* * *
A KLM purser told me the other day -or was it night? it was one of

those circumstances under which one is never quite sure which is which- a
story about a cooperation agreement between KLM Royal Dutch Airlines
and Aeroflot. In preparation for the cooperation nearly 30 KLM employees,
among whom my purser, learned Russian. My purser had been one of the
first to serve on a flight with a mixed crew. As soon as the Soviets, however,
discovered that the Dutchmen they cooperated with understood Russian,
the agreement was cancelled! It is frightening to observe such a large nation
to be so nervous and so uncertain, but after my recent experiences over
there I have no problem at all in believing my purser's story.

* * *
I was shown many cathedrals and monasteries, and in Leningrad mum

mifying caves in which an underground monastery had been built. It
breathed the spiritual atmosphere of the Dark Middle Ages, but that
underground monastery had had its heyday in the eighteenth century. It was
crowded mostly with Russian tourists; at the exit was the Marx quotation
about religion and opium, and a nearby church was now a Museum for
Religion and Atheism. They have very mixed and ambiguous feelings
towards religion, also cramped. After a week Sergej asked me whether I was

Trip Report E.W. Dijkstra, Poland and USSR, 4-25 September 1976 243

a Christian; what else could I do but ask him whether he was a Communist?
(We both answered "No.") I found that cramped attitude towards religion
irritating and even a little bit sickening. Of antisemitism, I am happy to say,
I have personally observed nothing. This in strong contrast to Hungary in
1968, where I found the open antisemitism appalling.

* * *
Like a good boy I had decided to write my wife a long letter from each of

the towns I would visit. So I wrote her a letter from Gdansk, a letter from
Moscow and a letter from Kiev, but then I heard that they would take at
least ten days to arrive because they would be opened and that, apparently,
is a time-consuming process. (Upon my return I could verify that both
rumours were indeed correct: they had taken ten days to arrive and they
had been opened! The shocking thing was that they were not stamped
"Opened by censor"; on the contrary, they had been opened and reclosed
carefully, but I had taken a few precautions and was absolutely certain that
at least one of the Russian letters indeed had been opened! I had written
them in the kind of double-talk, with which no Russian censor could find
anything at fault, at the same time certain that my wife would understand.)

In Leningrad I reaIized that writing letters would not make much sense
anymore, so I ordered a telephone call for Saturday evening between 21.00
and 22.00. I was in my hotel room all the time, waiting, but nothing
happened. So next moming I sent a telegram. The girl at the counter was
cross, maybe because the price of the telegram was something like her
weekly wage. The text is a true reflection of how I feIt:

dear ria heard my letters from moscow and kiev not expected to arrive before
my return telephone effort from leningrad failed hence cable saying still alive
bowels reasonable eyesight good trip tiring interesting and depressing talks
went like c1ockwork and very weIl received hosts as pleasant as they can be
guided tours past historical buildings c10sest approximation of hell imaginable
thank heaven tony is here sunday morning working together kiss children also
yours longing to be home edsger

It seemed a reasonable way to spend my rubles!

* * *
I did my best to behave as one should in bugged rooms, but I found it

difficult. I remember that, when I asked the IBM-er in Hursley whether the
room in which he received me, was bugged, the IBM-er orally protested
"No, of course not." while nodding affirmatively. Similar situation while I
paid my compliments to the Dutch embassador in Moscow. I remembered
never to comment on our Russian hosts but when, in Moscow in my hotel
room I started to explain to Tony the type of computer architecture I had
been thinking about lately, better trained than I Tony immediately sug
gested a walk. It did not rain and we walked for nearly two hours. It took
Tony a long time to grasp the idea, so it might be a little bit revolutionary.
Eventually he got quite excited, but agreed that several critical issues have to

244 EWD584

be investigated rather carefully, before the idea can be proposed as a
realistic one. Then we retumed to the hotel and went to bed.

* * *
To fill the page a quotation from my diary (Leningrad):

Friday was a tiring day for me. Morning lecture of three-and-a-half hour
(fifteen minutes break inc1uded). Well-prepared talk on the importance of
nonoperational definition of programming language semantics went like
c1ockwork. (First time I gave that talk.) In the aftemoon we were exhibited for
an audience of about 400 people in the University auditorium, together with
Jack Schwarz, who was selling SETL. Schwarz's "position statement" con
tained expressions such as " ... a large mess of structure ... " and "automatie
choice". When later confronted with these quotations he answered "crudity is
the characteristic of language". Speak for yourself, Sir! But if that is his
attitude, my revulsion fully explained.

Nuenen, 16th October 1976 PROF. DR. EDSGER W. DUKSTRA

Burroughs Research Fellow

EWD585
Trip Report E. W. Dijkstra, Tokyo,
28 Sept.-3 Oet. 1976

Tokyo, Thursday morning six o'clock local time, and hopelessly awake.

lIeft Nuenen last Tuesday a few hours after my lectures in the morning
and plan to be back in time for my next week's performance. On Monday I
spoke with the Dean of the faculty, who remarked that for the kind of life I
was living I needed an iron constitution. I must disappoint him: I haven't. It
is still warm in Tokyo. In my hotel room I found a kimono on my bed,
ready to be used by the "dear guest"; the airconditioning is cooling so
frantically that, indeed, I have put it on. (The thermostat in my room is set
to 30 degrees: I conclude that the cooling is totaily independent of its
setting.)

I flew from Amsterdam to Tokyo via Anchorage, Alaska, for refuelling
(8.5 + 7 hours). In Anchorage the crew was refreshed, but I feIt that the
passengers were in an equal need of being refreshed: it was a very long
ffight. On the first stretch the hostesses acted as waitresses, on the second
more as nurses.

Landing in Anchorage was a surprising excitement. I had never expected
that an intermediate stop would cause such a thrill, but I can only
summarize my impression of Alaska by saying that you won't believe it until
you have seen it, and that even then it is hardly believable. A fantastic river
delta, with uncountable streams winding their way between black rocks via
mud into the sea and white, cruel mountains along the horizon: an unbe
lievable sight! The airport itself was disappointing: after my most distress
ing experiences with Soviet toilets -more precisely, the absence thereof, at
least of usable ones- I set my feet on American soil with great trust and
confidence. In Anchorage, however, the confidence is unwarranted: it is
distincdy less clean than California-or my home country for that matter-.

245

246 EWD585

Amsterdam, Monday morning 0: 20, Hotel Frommer.

The whole trip was somewhat exhausting. The conference was on Thurs
day and Friday, 1 arrived in Tokyo on Wednesday evening and was due to
depart from Tokyo Saturday noon, and would be back on Sunday morning.
When 1 arrived in Tokyo at the Okura Hotel at 8 pm., tired and dirty, 1 was
faced by five hungry gentlemen who had waited with dinner for me. 1 did
not quite know how to refuse in a sufficiently polite manner, had a
ten-minute shower, and then we were taken to a Japanese restaurant, where
a few hierarchically high-placed gentlemen were waiting for uso After a tea
ceremony they left; we six had to go on with our dinner. Then two days
conference -about which later- and then back home, but the return trip
was a disaster.

Saturday morning -I was already awake at four o'dock- shortlyafter
1 had checked out at 9: 15 and was waiting for Mr. Haruyasy Nakayama to
see me off at the airport, 1 got a telephone call that the plane, instead of
leaving at noon, would leave at 9 pm. Nakayama helped me kill the morning
by taking me and Weber -a speaker from the USA- on a trip in his car
through Tokyo and a walk through the imperial gardens. Weber had kindly
given me the key of his hotel room where 1 slept from 1 pm until 5 pm.
Those four hours were very welcome, as my night had been bad. At seven a
car took me to the airport; Nakayama could not accompany me, as he had
another appointment, so there 1 had to fight my battle unassisted. First 1
could not find the KLM desk, but eventually 1 discovered a little notice that
JAL took care of that. There were two special first-dass counters, 1 was
helped very quickly and received a card with an invitation from KLM to
rest and have a drink in the first-dass lounge. 1 was looking forward to it,
for my experience in the first-dass lounge at Schiphol had been excellent.
There was a terrible queue at customs and emigration but the prospect of
the first-dass lounge sustained me all through the proceedings. When, at
last, the final formality had been completed, 1 found myself in a dirty,
crowded international departure hall in which dear indications as to which
flights left when via which gates were lacking - the quality of the sound
system was poor- and discovered that the first-dass lounge, which 1 now
needed more than ever, was at the other side of the customs/emigration
boundary! Neither peace nor a drink were my share and 1 was greatly
relieved when, 15 minutes later than announced previously, 1 recognized the
call for my flight and the embarkation procedures started. They used
crowded coaches, it took a long time, it was warm and people were smelly
(garlic?). Eventually 1 sank in the cushions of my seat in the first-dass
compartment of a KLM Boeing 747 and feIt much better. At that moment 1
did not even mind to hear that we would take the southern route and that 1
was 28 hours away from Amsterdam; at that moment it only meant for me
that 1 could enjoy the KLM care for twelve hours more than on the first
flight. We would have three successive crews and intermediate stops in

Trip Report E.W. Dijkstra, Tokyo, 28 Sept.-3 Det. 1976 247

Manilla, Bangkok, New Delhi, Dubai, and Athens. Until New Delhi every
thing went fine but for the fact that three expensive, but also talkative and
smelly, Japanese passengers did not leave the plane in spite of all the
opportunities they had had to do so.

In New Delhi the real misery started. During take off -we had not been
allowed to leave the plane- shortly before the point of no return, a huge
bird disappeared in one of the engines. The pilot managed to slow down
again and to stop before the end of the runway. We were taken to the New
Delhi InternatIonal Departure Hall -which was described as aircondi
tioned: it had fans circulating the hot air- and it was only after five hours
of uncertainty that we heard that, probably, we could leave with the same
motor. (Otherwise the delay would have been at least another twenty-four
hours: "Air India might have a spare motor in Bombay that KLM could
borrow".) The idea of twenty-four hours in New Delhi did not attract me at
all; knowing that my bowels are the weak part of the equipment, having
neither tropical nor South-American experience, and having seen the
cockroaches crawling over the carpets of the International Departure Hall, I
was in low spirits. (Besides that I was now sticky all over, since the chairs in
the hall were covered with plastic.) The second time we took off from New
Delhi we did not catch a bird and it was only then that I heard how narrow
my escape from a long delay had been: if the delay had been longer than the
six hours it was, the crew would not have been allowed to continue the flight
before having rested. It is past one o'clock: and so to bed!

* * *
Quite apart from the pains -see above- of physical displacement, I

regret tbis trip strongly. One thing is certain: I was lured into acceptance of
the invitation on false pretences. I was invited for the "5th International
Symposium on Information" but I cannot call a symposium where three
non-Japanese speakers participate "international". It was organized by
JIPDEC, standing for "Japanese Information Processing Development
Center". JIPDEC had not invited me directly, I had been approached on its
behalf by the Scientific Attache of the Royal Netherlands Embassy in
Tokyo. It was the Nth Japanese invitation, and I had been able to withstand
the first N - 1; I have now leamed that the intervention of one of our
Embassies is no guarantee. The scientific attache had misjudged JIPDEC,
me, or both.

The symposium consisted of three half-day sessions, one on Thursday
afternoon, and two on Friday. Each session consisted of a one-hour speech
by the foreign speaker, an interval, and comments from a Japanese panel;
finally the first speaker could comment on the comments. The Americans
were scheduled for the first sessions; I had to perform on the last one.

By the time I had to perform I was very depressed: until that moment the
yen had been the unit of thought! And this was not the consequence of the
fact that the two American speakers -one spoke on computer audits and

248 EWD585

the other on decentralization of banking administration- were from the
finandal world. The symposium was opened by Japan's most famous
economic commentator. I found the whole happening very curious. I was
reminded of the keynote address by Vincent Learson at an ACM Con
ference in 1972. Learson (of IBM) argued then for a full hour that it was the
task of computing science to assist in maintaining the American economic
supremacy in the face of the Japanese threat, a threat so serious that it was
our scientific duty to assist IBM in its calling to save the country. (Even for
an all-American audience that talk by Learson would have been shocking: it
was so bad that afterwards many Americans came to me in order to
apologize for it.) Here in Tokyo the same story, only still worse: microcom
puters had been invented in order to save the fragile Japanese economy (and
no one apologized this time). Quite typically, it never became c1ear whether
the production or the use of microcomputers should save Japan!

The whole symposium struck me not as a real symposium, but more like
a Kafkaesk simulation of a symposium. The Japanese panel members
-four per panel and each member spoke for about a half hour- were
absolutely terrible. They never produced anything more than a concatena
tion of vague motherhood statements, and they repeated themselves all the
time. In Japanese they may have said the same thing three times with
different words; there is the possibility that limitations of the English
vocabulary of the interpreters caused these repetitions to sound more like
each other than in the original, but I don't think so, for the interpreters
made a very competent impression. I think that they really repeated
themselves. (One of the Japanese panel members confessed before speaking
in private that he did not really know what to say: nevertheless he used his
full half hour!) I really should know more about the Japanese language, I
think that there is something very wrong with it. Andrej Ershov had warned
me that the times to express something in English and Russian respectively
are as 7 to 10; Nakayama told me that for English and Japanese the ratio
was 1 to 2. Listening to the interpreters I could believe it.

Seemed the speakers to be fake, so seemed the audience. On the first
afternoon I scanned the audience, and about 20 percent was fast asleep,
with another 20 percent vigorously yawning. (This was also explained to
me: many lived far away and had to travel long in the morning and the
evening. As a result they were very tired.) Four hundred people going
through the motions -and the non-motions, for that matter!- and not a
single solid thing said. I feit as in a madhouse. Addressing such an audience
is no fun either: neither of the two Americans has been able to get any
reaction from the audience. I can be very proud of my record: the audience
laughed once or twice and I even got two questions from the floor. I was
told that that was very exceptional, and I weIl believe it, for it feIt like
addressing a hall full of mummies.

It was all so strange that, perhaps, I misinterpret totally what I witnessed.
It was my definite impression that the panel members had been selected not

Trip Report E.W. Dijkstra, Tokyo, 28 Sept.-3 Oct. 1976 249

for their professional competence but on account of their high position in
the hierarchy: they had all the most important functions but did not say a
thing. Was the audience selected on the same rules? 1 don't know. They
seemed to be manager types of low quality. 1 observed that crowd during
the interval, when coffee was served. It certainly did not look as usual at the
interval of a scientific meeting, but perhaps that is the way in which a crowd
of 400 Japanese behave, even if they are scientists

1 was also amazed by the ease with which they seemed to have adopted
the new religion of computer networks. That the design of properly operat
ing computer networks presents some difficulties clearly did not count. And
that, even if you have it operating properly, it is not always clear how to use
the facility at considerable advantage, was also ignored. Networks of
microcomputers were going to save the country. This was the new dogma.
One must hope that from experience the Japanese know that all these words
are just words, for if they really believe what has been said over and over
again, it is frightening. (I think that they are not used to require from
language that it is really meaningful. A great number of English computer
jargon terms have been incorporated in the Japanese language without
translation, just copied. It was illuminating that all the meaningless buzz
words and vague, dubious terms were included, such as "program mainte
nance" "the user", "intelligent terminal", "Systems Analyst (or SA)",
"Systems Engineer (or SE)", "data structuring", "structured programming
(or SP)", "multi-level hierarchy", "concept"(!) etc. All these words, pro
nounced with an accent, of course, are nowadays perfect Japanese!)

* * *
On Thursday evening the Dutch Community in Tokyo -about 350

people- came together (this time devoted to the annual commemoration of
the end of the Siege of Leyden, which meant "hutspot" and "rauwe
haring", the latter dish freshly flown over by KLM). 1 went there to satisfy
my curiosity; 1 joined them for ab out two hours, it was quite interesting.
Then 1 was picked up by the Scientific Attache and his wife and had a quiet
chat in his apartment, which gave me a glimpse of an unfamiliar world.
They lived quite near the Russian Embassy and it was shortly after the MIG
25 had landed in Japan. It was a very nice evening, but, no matter how nice
and interesting, an insufficient justification for the whole trip.

* * *
The last item but one on my schedule mentioned for Friday evening:

"Mr. Zapf, President of Burroughs Japan, wishes to have the pleasure of
inviting Dr. Dijkstra for informal dinner."

Waiting in my hotel room for Mr. Zapf to call, he did indeed call at 7 p.m.,
terribly embarrassed. He had a business meeting and had heard of this
arrangement just a few minutes ago. Linguistic problems had clearly caused

250 EWD585

some communication difficulties. I told him not to bother and had an
excellent dinner together with Weber, did some writing, and went to bed.

* * *
One of the questions from the floor was a question that had been posed

to me several times in Russia: "But what about the education of the average
programmer?". On my way to Novosibirsk I decided to give from now
onwards the same standard answer. The question was put to me in Novosi
birsk and there it worked. It was also asked in Tokyo, and there the answer
worked beyond expectation (because the audience laughed). The answer was
the counter-question "What about the education of the average mathemati
cian?"

Nuenen, Plataanstraat 5 PROF. DR. EDSGER W. DIJKSTRA

Burroughs Research Fellow

EWD594
A Parable

(Recently I found the following text in manuscript among old papers of
mine. It must have been written in the middle of 1973, but I don't think that
in the intervening three years it has lost its significance. Hence I now
incorporate it in the EWD series.)

Years ago a railway company was erected and one of its directors
-probably the commercial bloke- discovered that the initial investments
could be reduced significantly if only fifty percent of the cars would be
equipped with a toilet, and, therefore, so was decided.

Shortly after the company had started its operations, however, com
plaints about the toilets came pouring in. An investigation was carried out
and revealed that the obvious thing had happened. Despite its youth, the
company was already suffering from internal communication problems, for
the director's decision on the toilets had not been transmitted to the
shunting yard where all cars were treated as equivalent, and, as a result,
sometimes trains were composed with hardly any toilets at all.

In order to solve the problem, a bit of information was associated with
each car, telling whether it was a car with or without a toilet, and the
shunting yard was instructed to compose trains with the numbers of cars of
both types as equal as possible. It was a complication for the shunting yard,
but, once it had been solved, the people responsible-. for the shunting
procedures were quite proud that they could manage it.

When the new shunting procedures had been made effective, however,
complaints about the toilets continued. A new investigation was carried out
and then it transpired that, although in each train about half the cars had
indeed toilets, sometimes trains were composed with nearly all toilets in one
half of the train. In order to remedy the situation, new instructions were
issued, prescribing that cars with and cars without toilets should alternate.
This was a more severe complication for the shunting people, but after some
initial grumbling, eventually they managed.

251

252 EWD594

Complaints, however, continued and the reason tumed out to be that, as
the cars with toilets had their toilet at one of their ends, the distance
between two successive toilets in the train could still be nearly three car
lengths, and for mothers with children in urgent need -and perhaps even
luggage piled up in the corridors- tbis still could lead to disasters. As a
result, the cars with toilets got another bit of information attached to them,
making them into directed objects, and the new instructions were that in
each train the cars with toilets should have the same orientation. This time,
the new instructions for the shunting yard were received with less than
enthusiasm, for the number of tumtables was hardly sufficient; to be quite
fair to the shunting people we must even admit that, according to all
reasonable standards, the number of tumtables was insufficient, and it was
only by virtue of the most cunning ingenuity that they could just manage.

With all toilets equally spaced along the train, the company feit confident
that now everything was alright, but passengers continued to complain:
aIthough no passenger was more than a car length away from the nearest
toilet, passengers (in urgent need) did not know in wbich direction to start
their stumbling itinerary along the corridor! To solve tbis problem, arrows
saying "TOlLET" were fixed in all corridors, thereby also making the other
half of the cars into directed objects that should be properly oriented by the
shunting procedure.

When the new mstruction reached the shunting yard, it created an
atmosphere ranging from despair to revolt: it just couldn't be done! At that
critical moment a man whose name has been forgotten and shall never be
traced made the following observation. When each car with a toilet was
coupled, from now until eternity, at its toileted end with a car without a
toilet, from then onwards the shunting yard, instead of dealing with N
directed cars of two types, could deal with N /2 identical units that, to all
intents and purposes, could be regarded as symmetrical. And tbis observa
tion solved all shunting problems at the modest price of, firstly, sticlcing to
trains with an even number of cars only -the few additional cars needed
for that could be paid out of the initial savings effected by the commercial
bloke!- and, secondly, slightly cheating with regard to the equal spacing of
the toilets. But, after all, who cares about the last three feet?

Although at the time that tbis story took place mankind was not blessed
yet with automatie computers, our anonymous man who found tbis solution
deserves to be called the world's first competent programmer.

* * *
I have told the above story to different audiences. Programmers, as a

rule, are delighted by it, and managers, invariably, get more and more
annoyed as the story progresses; true mathematicians, however, fail to see
the point.

Nuenen PROF. DR. EDSGER W. DIJKSTRA

Burroughs Research Fellow

EWD603
Trip Report E.W. Dijkstra,
St. Pierre-de-Chartreuse,
12-19 Dec. 1976

It was a meeting of IFIP Working Group 2.3 on "Programming Methodol
ogy", hosted by Gerard Veillon of the University of Grenoble in Hotel Beau
Si te in St. Pierre-de-Chartreuse, a place once selected for a monastery
because of its inaccessibility. Coen Bron - the other Dutch participant
wanted to go by car -after the meeting he remained there for a skiing
weekend- and picked me up on Saturday morning. Driving aIternatingly,
we arrived in Beaune on Saturday evening, having had one major stop.
Along European highways, and particularly along the French ones, there is
now achain of highway restaurants under the name of Jacques Borel and in
one of these we had lunch.1t was the kind of mistake one makes in one's life
only once.

In the centre of Beaune we found a nice hotel with (for once) a perfect
kitchen. After dinner we had a titde evening walk through the sleepy town
and were quite surprised -and pleased!- to encounter a big statue of and
dedicated to Gaspard Monge! The next morning we continued our travel
and it was about noon when we reached our destination. It was a most
pleasant trip, but for the fact that Coen feit that it was quite safe for him to
read the maps while driving and insisted on showing that he could do so
without causing an accident. (When I refused to show signs of discomfort,
he first allowed the car to shift to one side of the lane; eventually he asked
me "to keep on his behalf my eyes on the road". I then told him what he
wanted to hear, viz. that I did not like it.)

My journey back was less successful. With Ross, McKeeman, and
Horning I went (by a French train) from Grenoble to Geneva, where the
other three had hotel reservations since they would fly from Geneva the
next day. I had to catch a connection to Basel where I would pick up
the Italy-Holland Express, for which I had a reservation in the sleeper. I

253

254 EWD603

intended to be home early Saturday morning. According to the schedule I
would have 54 minutes in Geneva, but the French train accumulated a delay
of more than one hour and I missed my connection. I had dinner with Doug
Ross (who was very hungry), found a room in bis hotel, and slept until 4
o'clock in the morning, packed and took a train leaving Geneva at 4:40.
With changes in Bern, Basel, Mannheim and Köln I came home in the
middle of the afternoon (still cursing the French railway system).

* * *
Particularly the first half of the meeting was not successful. I t was a

coincidence of circumstances. Mike Woodger had been W.G.2.3's extremely
successful chairman, but he had given bis chair to Jim Horning, who had to
get used to the role; besides that, Jim was bit by "Napoleon's revenge".
This, however, was probably the minor cause. The more important cause, I
tbink, was that we had an exceptionally great number of "observers" and
that -we had had "speaking observers" in the past- many of them were
eager to present their thing. Tbis got somewhat out of hand.

In W.G.2.3 a member used to "instruct" the other members only if he
had something new to tell of wbich he feIt that it was -or could be- very
relevant. More often, the speaking member would seek the others' advice or
opinion. The many speaking ob servers either did not know that rule or feIt
insufficiently secure to expose their uncertainty. The result was that the
meeting was dangerously beginning to look like an ordinary conference with
unrefereed papers. The third cause -but tbis I only realized after the
meeting had been closed- was that, a month prior to the meeting, Zahn
had sent the so-called "specification" of Peter Henderson, as it occurs in bis
article "An exercise in structured programming" (or sometbing like that) as
achalIenge to the participants. Too many people had picked up that
gauntlet (instead of ignoring it), alid, in view of their preparation, feIt
entitled to present their experience. With the exception of McKeeman's, all
presentations inspired by Henderson's specification were terrible. (Tbis was
to be expected, for a more appropriate title for Henderson's paper would
have been "A demonstration of the mess generated by indiscriminate use· of
sloppy English.".) In short: we had a very false start.

On Wednesday morning the observers left the room so as to allow the
members to attend to "Working Group matters". It was only then that we
realized that, up till that moment, the meeting had largely been wasted, and
that all of us were totally miserable about it. We wondered what had
happened! Had we run out of steam? Was Programming Methodology
completed or exhausted? Should we disband? Since Wednesday afternoon
was the official afternoon off, the members unanimously decided to cancel
all other arrangements and appointments they had made for that afternoon,
and to reconvene after lunch to have a meeting with just members, in order
to take the experiment whether, "among ourselves" so to speak, the spirit
could be recaptured. It could, and after working from two till after six, most
of us feIt that disbanding -what had been discussed so seriously that
morning- would be premature. There is still enough to be done!

Trip Report E.W. Dijkstra, St. Pierre-de-Chartreuse, 12-19 Dec. 1976 255

The next two days were rescheduled and, thank goodness, much better
(although not sufficiently so to compensate completely for the "lost"
Monday and Tuesday; but that would have been too much to ask for).

* * *
I shall not review the week's program in any detail. I shall try, instead, to

sort out my feelings, impressions, and hopes concerning Programming
Methodology in general and W.G.2.3 in particular.

We all know that an ideal program has more virtues than planets will
ever be discovered in the universe. To mention but a few: it is correct,
efficient, robust, portable, expandable, easy to modify, easy to maintain,
easy to read, easy to understand, easy to write, etc.! We also know that
Programming Methodology has been successful insofar as it has been able
to separate those concerns and to deal with them in turn. We now know, for
instance, quite clearly that the unfactored criterion "A program is good
(enough) as long as it satisfies your customers." is too woolly to be of any
help. We now know, for instance, quite clearly that "correctness" is only
meaningful with respect to precisely stated functional specifications, which
act as a kind of logical firewall between the correctness aspect of the design
and its usefulness aspect. (Which mathematician worries about the correct
ness of a proof for a vague "theorem"?) We also know that the successful
isolation of a non trivial aspect is always a significant scientific contribution
(e.g. the discretization of synchronization requirements, BNF to describe the
context-free aspect of programming languages, the postulational semantics
that abstract from computational histories, etc.). It is from such discoveries
-i.e. the isolation of nontrivial aspects and successfully treating them in
isolation- that Programming Methodology can profit, probably even can
profit more than from anything else.

Such aseparation is traditionally opposed to by the people for whom (for
lack of a better term in my vocabulary) I have coined the term "integralists".
We always had a few integralists in W.G.2.3 and they always caused the
problems that are to be expected, but I used to consider them as a useful
antidote, and quite healthy when taken in small doses. This time we had too
many integralists. Such rigorous separation of concerns is nowadays (politi
cally!) unpopular. The current misgivings about the influence of science in
general and of technology in particular are in no way better expressed than
by the cry for "interdisciplinary approach", "systems thinking", etc., and he
who concerns hirnself for some time in depth with only one aspect can be
sure of getting accused of narrow-mindedness. Yet, the unpopular separa
tion of concerns is more necessary than ever, and W.G.2.3 (not obliged to
produce a Magnum Opus) has in this respect not only special opportunities,
but by this very fact also special obligations. In its last meeting this was too
often forgotten, due largely, although not entirely, to a number of ob servers
who had (mostly unconsciously, I guess) accepted political prejudices of
their respective environments as scientific constraints. We should not allow
this to happen again. (Large conferences are becoming uniformly boring,
nearly everybody reporting how he has tackled the same" wrong" problems

256 EWD603

with the same inadequate techniques. I am beginning to feel that tbis
uniformity of the behaviour of the scientific world in our field is largely
caused by the homogeneity of political objectives, prejudices, and pressures
in the Western world. And often they seem pressures to abstain from trying
really effective solutions because they are at the time and place politically
unpalatable. To interpret the boring uniformity of these large conferences as
a symptom of "completion" of the field would be a serious mistake.)

With Programming Methodology in our charter, the effectivity of pat
terns of reasoning has always been a serious concern. It is, for instance, in
the name of that effectivity that systems of postulational semantics have
been developed so that we may come to grips with the semantics of a
program without being forced to do so via the detour of the dass of possible
computational bistories. Niklaus Wirth made no joke when he wrote that
programming languages should be defined without any reference to com
puters or compilers. (I would like to phrase it still stronger: "independent of
any underlying computational model".) Among ourselves most of us really
try to stick to that rule (and when, for instance, Tony could not, he
apologized for the absence of proof rules!). Now, regrettably, we had a great
number of speakers who were unaware of the desirability to abstract from
the computational bistories, could hardly grasp what was meant by it, and
"talked operationally" with all its traditional dumsiness as if we still lived
in 1965. We should not allow that to happen again.

We have forgotten that "thinking" as a topic of explicit concern is a very
sensitive subject (because we all think and hope to do it weIl). This very
intimate activity of thinking is dosely intertwined with our public activities
of writing and speaking, and, therefore, how we write and speak should be
of equally serious and explicit concern. But tbis time -and we should not
allow it to happen again- the way in wbich people expressed themselves
could not be discussed openly, and we had to subject ourselves for several
hours to the most barbarian slipshod haberdashery. (I tried once to ask the
speaker for clarification after a few nonsensical sentences. His comment
"Are you commenting on my language or on what I am saying?". I shrugged
my shoulders and left it at that, for it would have been too painful to
explain in public that he made an empty distinction and that he spoke
words but said -and probably thought- nothing worthwhile. And that
was terrible: in W.G.2.3 we are not used to avoiding discussions that might
become painful.)

Some people's mixed attitude towards thinking also surfaced during one
of the discussions (but it was not pursued ...). We were shown experiments
in "program transformations" that, while retaining semantic equivalence,
may influence efficiency drastically: a fully legitimate and sometimes even
fascinating topic. It may provide a way of separating in time our concerns
about correctness and efficiency: one first writes a correct one and then
transforms it into one that is efficient as weIl. To advocate such an approach
now, however, seems premature to me. A few examples given were most

Trip Report E.W. Dijkstra, St. Pierre-de-Chartreuse, 12-19 Dec. 1976 257

unconvincing, because the derivation of the "inefficient but correct pro
gram" that could serve as a starting point for the transformation process
had taken their designers orders of magnitude more time than has been
needed to solve the problem directly: one or several days versus 15 minutes.
(A possible explanation could be that, when efficiency is ignored, one
receives less heuristic guidance and the "solution space" becomes too great.)
When 1 drew attention to this discrepancy, one of the participants -a full
professor at a (once?) famous university! - more or less disqualified that
15-minute solution by remarking that its design had required competent
thinking and, therefore, "did not count" because nowadays you could not
expect your students to try to leam to do so. He seemed to feel that in the
future his system could provide a welcome Ersatz. 1 drew another conclu
sion: it confirmed my opinion that there is no substitute for a good brain,
and that we would commit the cultural blunder of the decade if, seduced by
the promises of Artificial Intelligence, we were to forsake our educational
obligations towards the next generation. (I am afraid that the blunder is
already being committed on a large scale.)

1 think that 1 can understand the world better if I don't regard Artificial
Intelligence and General Systems Thinking as scientific activities, but as
politicalor quasi-religious movements (complete with promise of salvation).
Back horne I was chagrined to leam that the NSF has a "Program Director
Intelligent Systems" .

AN AFTERTHOUGHT. What in modem American -my 1973 Webster doesn't
mention it yet- is called "deskilling a job", boils down to changing a task
in such a way that it can be done by less educated -that means: cheaper
labour. It is mostly inspired by economic considerations: whether it is worth
the cultural price to be paid for is another matter.

Some of the people at this meeting seemed engaged in, or to justify their
efforts in terms of, "deskilling the programmer's job". Quite apart from its
desirability, which I don't feel tempted to discuss here, we should consider
its feasibility. If we share the dreams of the Artificial Intelligentsia, the
feasibility is no longer a point of discussion: given greater machines, more
time, and more funding, the whole programming problem will just disap
pear. For two reasons I happen not to share that dream: it seems technically
as unattainable as automatie theorem proving, and someone will have to
take the responsibility to believe (and to act accordingly) that the design is,
indeed, the useful engine it was intended to be, and neither confidence nor
responsibility are things that can be delegated. What can be done -and 1
think: should be done- is to try to mechanize the tedium. Mechanizing the
tedium, however, increases the density of difficulty of the task that remains!
1 don't object to it, for it increases mankind's programming ability, but we
should be aware of the fact that it is the contrary of "deskilling the
programmer's job". (It creates already serious social problems for the
thousands and thousands of old practitioners!)

258 EWD603

And finally: I can sometimes not escape the impression that the mech
anizers of the tedium are overselling their techniques and overstating their
case by the (sometimes even mechanic) generation of quite avoidable
tedium. (End of afterthought.)

Nuenen PROF. DR. EDSGER W. DIJKSTRA

Burroughs Research Fellow

EWD607

A Correctness Proof for Communicating
Processes : A Small Exercise

Over the last one-and-a-half years C.A.R. Hoare has explored "communi
cating sequential processes", among many other targets, as a means for
describing "elephants built from mosquitoes, all humming in harmony", to
quote the old metaphor. His approach has two main characteristics to be
described now.

1) The so-called "marriage bureau coupling". Inspired by our familiar
ity with the assignment statement, he has decided to try to visualize input
and output as the two sides of an assignment statement. In the one
mosquito the input command assigns a value to one of its -by definition!
- private variables, in the other mosquito the matching output command
provides the value to be assigned. In the implementation these input and
output commands are supposed to prescribe an implicit synchronization:
they are viewed as completed simultaneously. (This is in accordance with
our earlier impression, viz. that "mutual coincidence" is in such an environ
ment a more essential notion than "mutual exclusion".) Given

mosquito x with a local
variable a

mosquito y with a locally formed
value E

then the "simultaneous" execution of their respective commands:

y?(a) x!(E)

is semantically equivalent to

a :=E

Note that the program text for mosquito "x" mentions the sender" y" in its
input command "y?(a)", and that the text for mosquito "y" mentions the
receiver "x" in its output command "x!(E)".

259

260 EWD607

2) Each pair of mosquitoes is connected via at most a single channel
that accommodates two-way traffic. Tbis imposes an ordering in time on the
acts of communication between any two mosquitoes. It was feit that tbis
would simplify the mathematical treatment.

* * *
We embarked upon one of aseries of examples of communicating

sequential processes solving a sorting problem suggested by Wim H.J.
Feijen. Two mosquitoes each start with a "bag of natural numbers" -the
difference between a "bag" and a "set" being that in a bag not all elements
need be different from each other- . Mosquito x removes the maximum
value from its bag and sends it to mosquito y, wbich adds it to its bag; tbis
is followed by a transmission by y to x of the minimum element taken from
the bag of y, etc. Eventually x ends up with the small elements in its bag
and y with the large ones.

Our aim was to investigate to what extent the two mosquitoes could be
successfully investigated in isolation. We wrote down texts for both
mosquitoes, and then covered the one text with a piece of paper. I now
simulate that by first only giving you the text for mosquito x (with many
notational liberties, wbich I hope won't confuse you; i= and ~ stand for
addition to and removal from bags).

Mosquito x:
begin r, s: bag of nat; a, p: nat;

end

s := S {the constant S is a non-empty bag of nat}; p := max(s);
y!(p); r := s ~ p;
y?(a); s := r i= a;
p := max(s) {P};
do p > a -> y!(p); r := s ~ p;

y?(a); s := r i= a;
p := max(s) {P}

od

With sum(bag) = the sum of the numbers contained in "bag", we have
as the relevant invariant relation for the do . .. od:

P: (sum(s) = sum(r) + a) andp = max(s) ~ a

The first equality is established after s : = r i= a; the inequality p ~ a is
established by p := max(s), because max(s) ~ any element in sand ele
ment a is in s.

We choose for the variant function sum(r):

wdec("r := s ~ p", sum(r» = sum(s ~ p) < sum(r) =
sum(s) - p < sum(r) = {on account of P}
sum(r) + a - p < sum(r) = p > a

Hence the guard "p > a" guarantees effective decrease of sum(r). Because

A Correctness Proof for Communicating Processes: A Small Exercise 261

natural numbers are bounded from below, sum(r) is also, and mosquito x
terminates. In its final state it has established (P and p 0;;;; a), which implies
max(s) = a, Le. the final value of "a" occurs in the bag "s" and is the
largest value in that bag. (lf the value(s) of "a" were not bounded from
below, termination, indeed, could not be guaranteed. I shall not pursue that
now, because proofs of nontermination are a different story.)

* * *
We now turn our attention to mosquito y.

begin t, u: bag 01 nat; b, q: nat;

end

t : = T {the constant T is a nonempty bag 01 nat};
x?(b); u := t ~ b;
q := min(u);
x!(q); t := u ~ q {Q};
do x?(b) u := t ~ b;

q := min(u);
x!(q); t := u ~ q {Q}

od

The "query guard" x?(b) is regarded to have the side-effect of assigning
a value to b when evaluating to true -as a matter of fact, the value
transmitted by the matching y!(p) in mosquito x, but the discussion of this
interaction is postponed, as weIl as the discussion of how a happening in
mosquito x can cause the query guard x?(b) to become false- . The
invariant relation Q for y 's repetitive construct that interests us is

Q: qO;;;;min{t)

We have wp("t := u ~ q", Q) = q 0;;;; min(u ~ q). Because min(u ~ q) ;;;.
min(u), the previous weakest precondition is implied by q = mine u), a
relation which is established by q := min(u). In short: when mosquito y has
terminated, it has established q 0;;;; min(t), i.e. all elements in the bag t are
greater than or equal to the final value of q (the final value of q need not
occur in the bag t).

* * *
The proofs, so far, have surprised us in two respects. First of an: when

we started we did not know that the weakest condition on the input stream
of the a 's for termination of x would be that the a 's are bounded from
below and nothing else. (I believe I intuitively feIt that the sequences of a's
being non-increasing had something to do with it; quod non.) Secondly, we
feared another complication when we started: mosquito x terminates when
otherwise it would send a value p = the value "a" just received. This value
has been transmitted once -if originally in T - or twice -if originally in
s- , and for that reason we expected that we would have to distinguish
between those two cases. (Trying to live with sum(s) as variant function

262 EWD607

would have introduced similar problems.) In our treatment the distinetion
between those two cases has disappeared completely - I even hope that
some of my readers did not realize this distinction before I pointed it out to
them!- , and that is probably the most pleasant and encouraging gain that
we derived from dealing with our mosquitoes in isolation. By now we have
studied them to such an extent in isolation that time has come to study the
combination.

There are a few rules of the game: input/output command sequences at
both sides of a channel must match, i.e. for an input command at one side
of the channel we must have a matching output command at the other side.
WeIl, in this simple example, this is OK, in the sense that the sequence of
channel commands in xis given by the syntax -with { ... } denoting zero
or more instances of the encIosed-

y! (p) y?(a) {y!(p) y? (a)}

and in mosquito y by

x?(b) x! (q) {x?(b) x!(q)}

Jgnoring the arguments p, a, b, and q, the one syntax can be transformed
into the other by interchanging x lind y and also interchanging ? and !.
Hence, both syntaxes contain matching sentences, and the whole thing will
match, provided that from both syntaxes "the same" sentence is chosen. In
this case the choice of sentence is restricted to the length: both mosquitoes
must terminate at the same stage.

It seems very tricky if separate termination proofs for both mosquitoes
must be given, with in addition a proof that they will terminate after the
same amount of traffic. (Not impossible, but tricky.) One of the rules of the
game is that when one of the mosquitoes decides on account of its internal
logic -such as x in this example- to quit, that this can result in
"disappearance of the channel" -e.g. by a block exit, not indicated in our
text for x- and that disappearance of the channel will cause at the other
side communfcation commands in a guard position -such as the (second)
x?(b) in the text for y- to give rise to a false guard. Tony seems to have
chosen for an asymmetry here: only "query guards" are allowed in his
proposaI. Although the decision is defensible, for the time being we would
also like to allow "exclamation guards": termination because the receiving
end decides that it has had enough! (Sorry for the very operational terminol
ogy.) In view of the symmetry between input and output, this greater
freedom does not seem to create much complication. With such an implicit
convention for termination, the communication sequences at both ends are
now forced to match. (The match can even be decided on purely syntactic
grounds; we hope this will always be the case.)

Associate with y!(p) the implicit assignment pp:= pp ~ p (to the
"ghost bag" pp, which is initialized empty). Similarly associate with y?(a)

A Correctness Proof for Communicating Processes: A Small Exercise

the assignment aa := aa ~ a. We can then strengthen P with

s = S ~ aa:::: pp

similarly, Q can be strengthened with the relation

t = T~ bb:::: qq

263

Taking the arguments in our matching syntaxes into account, a postulate
about the communication must enable us to identify p with b, hence pp with
bb, and a with q, hence aa with qq. And ihus we find firstly s ~ t = S ~ T
i.e. conservation of elements. But it also allows us to equate the final value
of "a" with the final value of "q ", thus combining from the two final states

max{s) = a = q.;;;; min{t)

thus the correctness of the elephant has been established.

Acknowledgements are due to all the countrymen (women) with whom I
regularly talk about my work: Feijen, Rem, Scholten, Bulterman, Steffens,
Martin, etc. They are not to be held responsible for my rnistakes or what
have you.

Nuenen PROF. DR. EDSGER W. DIJKSTRA

Burroughs Research Fellow

EWD608
An Elephant Inspired by the Dutch
National Flag

Encouraged by the success of EWD607, we now embark upon the analysis
of a more intricate elephant. Westart with a cyclic arrangement of 3 + 3
mosquitoes. Three main mosquitoes, called R(ed), W(hite), and B(lue)
respectively, and three buffer mosquitoes RW, WB, and BR, in between:

R -> R W -> W -> WB -> B -> BR -> R

The buffer mosquitoes are quite simple, e.g.:

RW: begin channel W;
begin channel R; buf: pebble;

do R?(buf) -> W!(buf) od
end

end

When its (input) channel with R ceases to exist, R?(buf) will become
false, and block exit will cause termination of the existence of the (output)
channel with W.

Each of the main mosquitoes has three "bags of pebble", named "r(ed)",
"w(hite)", and "b(lue)". The R mosquito must collect in its bag called "r"
all red pebbles in the system; its "foreign" pebbles it transmits, one at a
time, via the buffer mosquito R W, first emptying its blue bag because its
blue pebbles, which have to reach their destination via W, have to travel the
longer distance. The arrangement is worth investigating because we expect
problems with the proof of termination.

The solution that I am proposing has also a starting problem, but I am
not going to divulge that now; I hope that that difficulty emerges "natu
rally" from a systematic analysis of our system.

264

An Elephant Inspired by the Dutch National Flag

mosquito R:
begin channel BR;

end

x, y: pebble; r, w, b: bag of pebble;
proc accept: if non BR?(y) -> skipD BR?(y) -> place fi corp;
proc place: if white(y) -> w := w ~ y 0 red(y) -> r := r ~ y

fi corp;
r, w, b :="initial values" {R3};
begin channel R W;

do card(b) > 0 -> x := any(b); b := b "'" x;
RW!(x); accept

od {R2};
do card(w) > 0 ->x := any(w); w := w "'" x;

RW!(x); accept
od

end {R1};
do BR?(y) -> place od {RO}

(and cyclically).

265

NOTE. "card" -short for "cardinality"- denotes "number of elements
in". (End of note.)

We assume that -by some magie, not to be discussed here- BR (the
text of which starts with "begin channel R") and R (the text of which starts
with "begin channel BR") perform the entry to their outer blocks simulta
neously, thereby establishing the channel between them (which will be used
only as an input channel to R). When the three input channels to the main
mosquitoes have been established, the six inner blocks will be entered
-pairwise simultaneously, but now R paired with RW- and the output
channels for the main mosquitoes have been established. (This is very
informal and intuitive, but OK for the moment: if coded wrongly, such
paired block entries can, of course, create a glorious deadlock.)

Let us now study mosquito R backwards. My final goal is to establish
proper termination with

RO: card(b) = card(w) = 0 andy-tail(RO) is empty,

i.e. mosquito R has to terminate with red pebbles only when nothing will be
sent to it anymore; with "y-tail(Ri)" I denote the sequence of y-values still
to be absorbed in stage Ri before BR?(y) turns definitely false.

The first step is to investigate the transition from Rl to RO. Termination
of the repetitive construct inbetween guarantees non BR?(y), i.e. guarantees
that y-tail(RO) is empty; infinite repetition is excluded by

y-tail(Rl) is finite

266 EWD608

Because card(b) = card(w) = 0 does not follow from "non BB" it had
better hold at RI and be kept invariant by "place". Keeping card(w) = 0
invariant by "place" implies the absence of white pebbles in the tail,
avoiding abortion implies the absence of blue ones, and we find for RI

RI: card(b) = card(w) = 0 andy-tail(RI) is finite and red only

NOTE. The condition "finite and red only" is satisfied by the empty tail.
(End of note.)

The next step is to investigate the transition from R2 to Rl. Because
card(b) = 0 does not follow from "non BB", we require it at R2; exc1usion
of abortion taken into account:

card(b) = 0 andy-tail(R2) contains no blue pebbles

Wehave to impose more, because we have also to guarantee

card(w) = 0 andy-tail(RI) is finite and red only

Termination guarantees card(w) = 0 and is guaranteed by

y-tail(R2) is finite

(For the variant function we can take: card(w) + number of white pebbles
in y-tail.) But how do we guarantee that y-tail(RI) is red only?

Let us define for a finite tail without blue pebbles

if tail contains no white pebbles: slack = - I
if tail contains white pebbles: stack = the total number of red pebbles

preceding the last white one

and let us consider the relation eard(w) > stack. Then

(I) eard(w) = 0 implies that the finite tail is all red
(2) eard(w) > stack is an invariant for the repeatable statement from R2

to RI; beeause eard(w) ;;;. 0 by definition, this is obvious if the
resulting tail has no white pebbles, otherwise
(2a) y has been white, in which ease both card(w) and stack remained

unehanged
(2b) y has been red, in whieh case both eard(w) and stack have been

decreased by 1.

Henee, eolleeting all our requirements, we deduce

R2: eard(b) = 0 and y-tail(R2) is finite, without blue pebbles and
eard(w) > stack(R2)

For the transition from R3 to R2, infinite repetition is exc1uded apriori
and abortion is exc1uded by the absence of blue pebbles in the tail; the
invariant relation that does the trick is

eard(b) + eard(w) > stack

An Elephant Inspired by the Dutch National Plag 267

and we find for R3

R3: y-tail(R3) is finite, without blue pebbles and card(b) + card(w) >
slack(R3)

Taking the finiteness for a moment for gran ted, we see that

(1) the absence of blue pebbles in the y-tail is guaranteed (because R does
not transmit red pebbles, and cyclically)

(2) slack(R3)";;; 0 (because R does transmit blue pebbles, if any, before
white ones, if any, and cyclically).

Hence, a safe starting state is: each mosquito with at least one foreign
pebble! The complication at the start has, indeed, shown up nicely.

Termination was more easily demonstrated than originally feared.

(1) Mosquito R will generate in its x-sequence an apriori bounded
number of blue pebbles.

(2) In the same way mosquito B will only generate in its x-sequence an a
priori bounded number of white pebbles.

(3) Equating the x-output of B with the y-input of R, we conclude that
mosquito R will only receive a bounded number of white pebbles.
Combining 1) and 3) we conclude that mosquito R will only generate a
finite x-sequence.

The proof of total conservation of pebbles is left to the reader.

Nuenen PROF. DR. EDSGER W. DIJKSTRA

Burroughs Research Fellow

EWD611
On the Fact that the Atlantic Ocean
Ras Two Sides

Introduction and Apology

This is an open letter to my co-members of the IFIP W orking Group 2.3 on
"Programming Methodology". Among my writings thus far it will be an
exception, because, until now, it has been very rare for me to undertake a
task of which I knew beforehand that I would not be able to do it weH
enough. The reason that, nevertheless, I have decided to undertake it is quite
simple: it has to be done, and offhand I can think of no one else less
unqualified to try to do so.

My subject should be very simple, for it is only the difference between
the orientations of computing science at the two sides of the Atlantic Ocean.
That there is a difference should not amaze us at all, for the Atlantic Ocean
is very big. For a variety of reasons, however, this difference is a bit hard to
discuss: the difference itself is no problem, but it becomes a problem when
ignored or denied. It is a bit hard to discuss for about three reasons.

Firstly, we are comparing prevailing attitudes between continents. Every
one familiar with them is aware of the great diversity within each of them,
and he knows that writing about "a European attitude" is as much writing
about a literary fiction as writing about "an American attitude". In the kind
of global comparison I feel forced to make, I simply have to do injustice to
differences of continental significance only. I can only ask you to forgive me
my gross oversimplifications, of which I am only too aware myself. Ab
stracting from the inhomogeneity of both of the continents, we can still
observe considerable differences between the two continents, and those
differences are the subject matter of this open letter.

Secondly, the difference between the Old and the N ew W orld has already
been discussed so extensively, and by so many, that it is practically
impossible to raise the subject without evoking all the cliche prejudices. And

268

On the Fact that the Atlantic Ocean Ras Two Sides 269

in tbis diseussion we have to pay attention to the general cultural difference,
to the different images of man and soeiety, for they have a profound
influence on computing seience (much profounder on computing science
than on a merely technical subject such as geology or medicine).

Thirdly, many people are a bit touchy about tbis subject. Both continents
have their inferiority complexes -overcompensated or not!- and we are
all "party" in the sense that we have been born on one side only! Fully
aware of how firmly my roots are plan ted in Europe, I can only undertake
tbis task with considerable trepidation, afraid as I am of failing to be fair
and to do justice. (This fear of being unjust and thereby offensive has been
so great that during the first years of my assoeiation with Burroughs I have
subconseiously avoided comparing the two continents! Havingjust gathered
my courage, I nearly lost it again when I received a letter from Jim Homing,
to whom I had mailed a copy of my trip report covering the last W.G.2.3
meeting. Jim wrote me "The analysis of the meeting in your trip report is in
substantial agreement with my own, although my report to the members
wasn't quite as blunt." I was surprised: evidently my pen is sometimes
sharper than intended or suspected.)

Whether we like it or not: it is a touchy subject. And that is exaetly the
reason why it is avoided, and why someone should bring it up. I became
aware of tbis by a curious ineident at our last meeting in St. Pierre-de
Chartreuse. After Mary Shaw's presentation a lengthy and, in its way, lively
discussion ensued, but it was a very curious one. With the exception of two
short questions for clarification posed by European partieipants, the discus
sion was entirely an American affair, and it was noteworthy for the
inadequacy with wbich it was carried out. Among the European partieipants
witnessing tbis discussion, the overwhelming feeling was one of embarrass
ment. (Some younger ones could hardly believe their ears and voiced their
amazement/indignation later in private by comments "Some have to leam
it the hard way ... " or "Is tbis 1976 or 1966?" and eruder ones.) The bitter
point of the whole ineident, however, was that none of us did what should
have been done, that none of us interrupted by remarking that tbis did not
seem an adequate way of discussing tbis topic. That is what would have
happened in an unhampered seientifie discussion!

In retrospect I have wondered about our silenee, and I have blamed
myself for it. My conclusion is that by the time that certain topics are
becoming so painful to discuss as to paralyze scientific meetings, something
has to be done about it. Tbis is my effort.

Scales for Comparison; General Differences

A very useful measure is -called after its inventor- the "Buxton Index".
John N. Buxton discovered that the most important one-dimensional scale,

270 EWD611

along which persons or institutions to be compared can be placed, is the
length of the period of time in the future for which a person or institution
plans. This period, measured in years, gives the Buxton Index. For the little
shopkeeper around the corner the Buxton Index is three-quarters, for a true
Christian it is infinite, we marry with one near fifty, most larger companies
have one of about five, most scientists have one between two and ten. (For a
scientist it is hard to have a larger one: the future then becomes so hazy,
that effective planning becomes an illusion.)

The great significance of the Buxton Index is not its depth, but its
objectivity. The point is that when people with drastically different Buxton
Indices have to cooperate while unaware of the concept of the Buxton
Index, they tend to make moral accusations against each other. The man
with the shorter Buxton Index accuses the other of neglect of duty, the man
with the larger one accuses the other of shortsightedness. The notion of the
Buxton Index takes the moral flavour away and enables people to discuss
such differences among themselves dispassionately. There is nothing wrong
with having different Buxton Indiees! It takes many people to make a
world. There is c1early no moral value attached to either a long or a short
Buxton Index. It is a useful concept for dispassionate discussion.

In my own environment I have suffered from a relatively long Buxton
Index -complete with accusations to and fro- until the concept of the
Buxton Index was brought to our attention. If, in the course of this
discussion, I emerge as "very European", I think that among other things I
do so on account of my large personal Buxton Index, because, on the
average, the European Buxton Index seems to be larger than the American
one. As an example I just mention the funding policy of the NSF and
similar organizations -and it does not matter now whether we should
regard this as cause or as symptom- . The NSF policy states explicitly, and
the need for the statement is significant, that short-term goals at the expense
of long-term concerns are not to be sponsored. Fine, but the majority of the
research proposals aim at a tangible result within two or three years only.
Personally I don't remember ever having seen a proposal for a grant beyond
three years. The (to my taste) shortness of these periods has in the past been
one of my main considerations for not joining the faculty of an American
University, and as some of them have tried hard enough to seduce me, I feel
entitled to call the difference significant.

* * * My first visit to the USA -in 1963- was a shattering experience. (lt
was also frightening: I started with a few days all by myself in New York.)
Of all memories from that visit, one is absolutely overpowering: for the first
time in my life I was confronted with a civilization that did not give its
scientists the automatie benefit of the doubt or the respect that I was used
to. On that trip I leamed the word "egg-head" as a truly untranslatable
Americanism. (Untranslatability is always significant!) I was shocked to see
how intellectuals could be -as it were- by definition suspect, and I

On the Fact that the Atlantic Ocean Has Two Sides 271

remember that the feeling of uncertainty from which I saw my colleagues
suffer worried me very much. It was the first time in my life that I realized
what difference it makes to be a citizen of a very small monarchy in which
each professorial appointment is confirmed by Her Majesty our Queen.
(Again we need not argue here whether Her Majesty's involvement is
symptom or cause of our scientists's spiritual independence and feelings of
social security.)

The above captures the overwhelming impression of my first visit to the
USA; the assumption that it refers to a significant difference seems,
therefore, safe. My many subsequent visits to the USA gave me some
opportunity to figure out what I had seen that first time. The questions are:
how does science justify itself, why does a society tolerate scientists? The
way in which these questions are answered has a deep influence on the
scientist's behaviour, not only on the way in which he presents his results,
but also on his way of working and his choice of topics. Traditionally there
are two ways in which science can be justified, the Platonic and the
pragmatic one. In the Platonic way -"l'art pour l'art"- science justifies
itself by its beauty and internal consistency, in the pragmatic way science is
justified by the usefulness of its products. My overall impression is that
along this scale -which is not entire1y independent of the Buxton Index
Europe, for better or for worse, is more Platonic, whereas the USA, and
Canada to a lesser extent, are more pragmatic. (Most of you must have been
confronted with my Pan-Academic prejudices, which are most definitely
Platonic, and by now you may wonder how in the world I could join not
only an industrial organization -industrial organizations by their charter
being more pragmatic- but even an American one. But the answer is quite
simple: in computing science the conflict need not exist -and that is what
makes the subject so fascinating!- . To quote c.A.R. Hoare -from
memory- : "In no engineering discipline does the successful pursuit of
academic ideals pay more material dividends than in software engineering."
I could not agree more.)

It is here that I must mention three general phenomena that go hand in
hand with greater pragmatism. I must mention them, because they seem all
relevant for computing science.

The first phenomenon is a greater tolerance for the soft sciences, which
purport to contribute to the solutions of "real" problems, but whose
"intellectual contents" are singularly lacking. (When I was a student at
Leyden, a quarter of a century ago, economy and psychology had been
admitted to the campus, but only with great reservations, and absolutely no
one considered them respectable; we had not dreamt of "management
science" - I think we would have regarded it as a contradiction in terms
and "business administration" as an academic discipline is still utterly
preposterous.)

The second phenomenon is the one for which I had to coin the term
"integralism". Scientific thought, as I understand it, derives its effectiveness

272 EWD611

from our willingness to acknowledge the smallness of our heads: instead of
trying to cope with a complex, inarticulate problem in a single sweep,
scientific thought tries to extract all the relevant aspects of the problem, and
then to deal with them, in turn, in depth and in isolation. (And every time a
significant aspect of a complex problem has been isolated successfully, this
is ranked as an important scientific discovery. As an example I mention
lohn Backus's introduction of BNF, capturing the context-free aspects of
programming language syntax.) Dealing with some aspect of a complex
problem "in depth and in isolation" implies two things. "In isolation" that
you are (temporarily) ignoring most other aspects of the original total
problem, "in depth" means that you are willing to generalize the aspect
under consideration, are willing to investigate variations that are needed for
a proper understanding, but are in themselves of no significance within the
original problem statement. The true integralist becomes impatient and
annoyed at what he feels to be "games". His mental make-up compels him
to remain constantly aware of the whole chain, even when asked to focus his
attention upon a single link. (When being shown the derivation of a correct
program he will interrupt: "But how do you know that the compiler is
correct?".) The rigorous separation of concerns evokes his resistance be
cause all the time he feels that you are not solving "the real problem".

The third phenomenon that goes hand in hand with a greater pragmatism
is that universities are seen less as seats of learning and centres of intellect
ual innovation and more as schools preparing students for well-paid jobs. If
industry and govemment ask for the wrong type of people -students,
brain-washed by COBOL and FORTRAN- then that is what they get. I
know that the perpetuation of obsolete programming habits in the U .S.A. is
beginning to be considered a matter of serious concern, because in the
triangle computer users/computer manufacturers/universities, no single
party seems able any longer to interrupt the vicious circ1e. (The moral of the
text I read was that, therefore, here was a federal responsibility, because
otherwise the USA could be overtaken by in this respect still more flexible
nations. An outsider's corollary of this deadlock situation is that -in no
field!- Universities should forsake their role of intellectual innovators.)

* * *
A third difference between the USA· and Europe must be mentioned

because it has such profound consequences. The USA is very large and,
compared to Europe, much more homogeneous. Please don't accuse me of
the gross oversimplification "When you have seen one American, you have
seen them all". I have now been in so many states of the US and seen so
many differences between them that I have conc1uded that, with my values
of the terms, it is better for me to consider the USA not as "a country" but
as "a continent". It is more that, besides all the local diversity, there are
homogenizing forces in the USA that are absent in Europe. All American
computing scientists write, speak, and publish in the same language, they all
see the publications from the same ACM and IEEE and the manuals from

On the Fact that the Atlantic Ocean Ras Two Sides 273

the same computer manufacturers, their academic research is supported by
the same central funding organizations, etc. This large and relatively homo
geneous continent tends to become a law unto itself; the American comput
ing community is, therefore, in a greater danger of regarding its mode of
behaviour as the mode of behaviour, it is in a greater danger of becoming
provincial and parochial. (Deviation from The Standard then becomes to be
considered wrong: in the Computing Reviews of the ACM British authors
of British publications are regularly being blamed for their Britishisms! See
for arecent instance, for example, CR 30214.)

In this context, the fact that the majority of the American computing
scientists are essentially monolingual is of special significance. A thorough
study of one or more foreign languages makes one much more conscious
about one's own; because an exceilent mastery of his native tongue is one of
the computing scientist's most vital assets, I often feel that the American
programmer would profit more from learning, say, Latin than from learning
yet another programming language.

* * *
Finally, a difference that is very specific to academic computing science:

in Europe, Artificial Intelligence never really caught on. All sorts of ex
planations are possible: Europe's economic situation in the early fifties
when the subject emerged, lack of vision of the European academic or
military world, European reluctance to admit soft sciences to the university
campus, cultural resistance to the subject being more deeply rooted in
Europe, etc. I don't know the true explanation, it is probably a mixture of
the above and a few more. We should be aware of this difference, whether
we can explain it or not, because the difference is definite1y there and has its
influence on the outlook of the computing scientist.

How Difficult Is Programming?

When, in the late sixties, it became abundantly dear that we did not know
how to program weH enough, people concemed with Programming Method
ology tried to figure out what a competent programmer's education should
encompass. As a result of that effort programming emerged as a tough
engineering discipline with a strong mathematical flavour. This conc1usion
has never been refuted. Many, however, have refused to draw it because of
the unattractiveness of its implications, such as

(1) good programming is probably beyond the inteHectual abilities of
today's "average programmer"

(2) to do, hic et nunc, the job weil with today's army of practitioners,
many of whom have been lured into a profession beyond their intel
lectual abilities, is an insoluble problem

274 EWD6I1

(3) our only hope is that, by reveaIing the intellectual contents of program
ming, we will make the subject attractive to the type of students it
deserves, so that a next generation of better qualified programmers
may gradually replace the current one.

The above implications are certainly unattractive: their social implica
tions are severe, and the absence of a quick solution is disappointing to the
impatient. Opposition to and rejection of the findings of programming
methodology are therefore only too understandable. We should remember
that the conclusion about the intrinsically mathematical nature of the
programming task has been made on technical grounds, and that its
rejection is always on political or emotional ones.

The rejection takes place at both sides of the Atlantic. It was a British
programmer that commented on my book that "it would be of no meaning
ful benefit to the programming profession as a whole" because "its tech
niques are mathematical, whereas the majority of today's programmers are
not.". (I regard this less as a comment on my work than as a statement from
an English programmer that, in his view, his current colleagues are fairly
education-resistant.) It was my own Department of Mathematics in
Eindhoven that needed in 1972 an easier subject than "true mathematics"
in order to enlarge its undergraduate enrollment drastically and chose
..... programming! (This was a very extreme case.)

On the whole, the underestimation of the mathematical maturity required
for the programming task seems somewhat stronger in the USA than in
Europe. In view of earlier remarks about the differences between the two
continents this is understandable. Our "solution" 3 -see above- is a
long-range one and requires a large Buxton Index to appreciate it as such. It
is more Platonic than pragmatic, it is the result of a rigorous separation of
concems -abstracting from today's average programmers and also from
today's average machines- . It openly appeals to the innovating röle of the
Universities. It favours the careful development of "natural intelligence"
based on the conviction that "artificial intelligence" will never be able to do
thejob.

* * *
The first series of machines - that of the singletons- was mainly

developed in the USA shortly after W orld War 11, while a ruined continen
tal Europe had neither the techno10gy nor the money to start building
computers. The only thing we could do was think about them. Therefore it
is not surprising that many US Departments of Computer Science are
offsprings of Departments of Electrical Engineering, whereas those in
Europe started Oater) from Departments of Mathematics (of which they are
often still apart). This different heritage still colours the departments, and
could provide an acceptable explanation that in the USA Computing
Science is viewed more operationally than in Europe.

On the Fact that the Atlantic Ocean Ras Two Sides 275

Added to this, John von Neumann's habit of describing computing
systems and their parts in an anthropomorphic terminology has been
adopted more generally in the USA than in Europe. (I was first exposed to
the American's use of anthropomorphic terminology in the late fifties
-when the Comm.ACM started to appear- and I remember that I was
shocked by it. In the meantime, a less anthropomorphic terminology had
already been established in my environment.) The problem caused by this
metaphor is that it invites us to identify ourselves with programs, with
processes, etc, because "existing" is one of our most intrinsic "activities".
(That is why death is so hard to grasp.) The prevailing anthropomorphism
erects another barrier to abstraction from program execution and computa
tional histories.

To forget that program texts can also be interpreted as executable code,
to define program semantics as a direct derivation from the program text
and not via the detour of the dass of possible computations, to define
programming semantics independently of any underlying computational
model, these are difficuh abstractions to get used to. I have the impression
that for an American computing scientist it is still harder than for a
European one. Yet it is one of the most vital abstractions, if any significant
progress is to be made at all.

It was the complete entanglement of language definition and language
implementation that characterized the discussion after Mary Shaw's presen
tation, and it was this entanglement that left many of the Europeans
flabbergasted. It was also this entanglement that made it impossible for me
to read the LISP 1.5 Manual: after an incomplete language definition, that
text tries to fill the gaps with an equally incomplete sketch of an -of
the? - implementation. Yet in the decade after its publication the LISP 1.5
manual conquered a major portion of the American academic computing
community. This, too, must have had a traceable influence. Why did LISP
never get to that position in Europe? Perhaps because in the beginning its
implementation made demands beyond OUf facilities, while later many had
already leamed to live without it. (I myself was completely put off by the
Manual.)

* * *
My first visit to the USA, in 1963, was the result of an amazing invitation

from the ACM. Without the obligation to present a paper, I was asked to
attend -as "invited participant", so to speak- a three-day conference in
Princeton. For the opportunity of having me sitting in the audience and
participating in the discussions, my hosts were willing to pay my expenses,
travel induded! As you can imagine, I feh quite elated, but shortly after the
conference had started, I was totally miserable. The first speaker gave a
most impressive talk with wall-to-wall formulae and displayed a mastery of
elaborate syntax theory, of which I had not even suspected the existence! I

276 EWD611

could only understand the first five minutes of his talk, and realized that I
was only a poor amateur, sitting in the audience on false pretences.

I skipped lunch, walking around all by myself, trying to make out what
that first speaker had told uso I got vaguely funny feelings, but it was only
during the cocktail party that evening that I had recovered enough to dare
to consider that it had all been humbug. Tentatively, I transmitted my
doubts to one of the other participants. He was amused by my innocence.
Didn't I know that the first performer was a complete bogus speaker? Of
course it was all humbug, everybody in the audience knew that! Puzzled I
asked him why the man had been invited and why, at the end, some of the
participants had even faked a discussion. "Oh, on occasions like that, we
just go through the motions. IBM is one of the sponsors of this conference,
so we had to accept an IBM speaker. He was given the first slot, because the
sooner it is over, the better.". I was flabbergasted.

Since then I have learned that this "going through the motions" is,
indeed, a typical habit of the American scientific community. Whenever a
large project is sponsored by a sufficiently prestigious or powerful body
(MIT, ARPA, IBM, you name it), it is officially treated as sound and
successful. The above story illustrates how utterly misleading that habit can
be for an innocent European. By European standards, that habit is nearly
fraudulent. But if Americans have a capacity for greater dishonesty, they
have also a capacity for greater honesty! From American sources - both
private and public- I can quote many comments on the Americans so
candid that I cannot irnagine a European discussing his own country in
similar terms.

In other words, the rules that govern when to be explicit and when to be
silent, and when to exaggerate for the sake of emphasis and when to use
euphemisms, differ in the two continents. In international groups, this can
cause endless confusion, and I see only one way out: to make for such a
group an explicitly stated rule that everybody be outspoken and as clear as
possible.

I don't remember whether it is the result of a consciously taken decision
or whether the tradition just grew, but in W.G.2.3 we certainly used to
apply such a rule, knowing full well that we would often display what
looked like inconsiderate behaviour. I now understand why in a group like
W.G.2.3 such a rule is absolutelyessential, and I would like you to share
that understanding with me. I also suspect that its former application is
largely responsible for W.G.2.3's former success, and I would like you to
share that suspicion with me.

Nuenen PROF. DR. EDSGER W. DIJKSTRA

Burroughs Research Fellow

P.S. I apologize for having been so often so apologetic. EWD

EWD613
Trip Report E. W. Dijkstra, Australia,
16 F ebruary 1977-21 March 1977

The trip to "downunder" was terrible. Still remembering my forced stay in
the International Departure Hall of New Delhi -with the cockroaches on
the carpet- I refused to fly again via the Eastern Hemisphere and had
arranged my itinerary via Los Angeles. The IATA tariff mies -imposed by
QUANTAS, the Australian airline company- are such that you may have
one stopover during the whole trip. Having the choice between arriving in
Australia or returning horne as a bodily and nervous wreck, I had chosen
the first.

I had planned the trip as carefully as possible. Instead of Ieaving Nuenen
early on the morning of the Thursday on which I crossed the Atlantic, I flew
to London on the previous evening. I had a hotel reservation quite dose to
Heathrow Airport, and the idea was that I would start from there on the
great crossing as fresh as a daisy. Secondly, I had selected a British Airways
flight with only two hours to catch my connection in Los Angeles. The idea
was that the BA flight would probably be late: in that case a night of
-welcome!- delay in LA would be forced upon me, and then I would not
have to pay the additional $600(!), otherwise required for a second stopover.

But my cunning arrangement did not work at all: the hotel in London
-the Centre Airport Hotel, Bath Road, Longford, avoid it!!- was terrible,
so terrible that I hardly slept at all, and, although we had some delay when
leaving from Heathrow, the BA-plane made up for it and arrived in LA
dead on time! I caught my connection, and -what was worse- from LA
to Honolulu the PANAM Jumbo was filled to the brim with teenagers from
an American highschool. (They applauded during take-off, etc ...) Perfect
as the BA flight had been, so terrible was the PANAM flight: the Boeing
747 suffered from poor shock absorbers, and that made the take-offs bad
and the landings worse. With intermediate stops in Honolulu and Pago-Pago

277

278 EWD613

I had plenty of opportunity to observe the phenomenon. After Honolulu I
slept a little, but when the Good Lord created the Talkative Airline
Passenger, he made one of his worst mistakes.

I arrived in Sydney on Saturday morning, more dead than alive and very
thirsty. I was collected by three gentlemen from the University of New
South Wales, who were very considerate hosts. They took me to the other
terminal, carried my luggage, gave me a few glasses of beer and saw me off
at the gate, where I got on the plane to Canberra.

Thinking it over I can still get very cross with QUANTAS. If you were
allowed a second stopover, you would not cost the airline companies a
single passenger mile more, but for no valid reason the trip is just made
much more exhausting than necessary. I know that, when very tired, there is
a much greater prob ability that I have trouble with my eyesight than
otherwise. I was therefore very grateful that in Sydney others were willing to
carry my suitcase, but in spite of their good care, during that first week in
Canberra my eyes worried me twice, once even much longer than on
previous occasions. I had plenty of reason for cursing QUANTAS.

Four days before my return horne I had the return flight confirmed, but
this nervous traveller knew that there was something wrong. Because the
confirmations had been made by telephone, I had no proof that they had
been confirmed, and the day before my departure I went to the PANAM
office in Canberra and had the girl behind the counter make a mark on my
ticket, stating that my flight had been duly confirmed.

The next day, as soon as I was shown my place -45 D- I was called to
the front of the plane via the loudspeakers. I undid my safety belt, went
forward and was asked to show my boarding pass. Shortly after I had
returned to my seat, someone else came, and I had to show my boarding
pass again. After take-off I slept a little and forgot the incident. In
Pago-Pago lIeft the plane to stretch my legs. But when I retumed, the seats
45D JE were occupied by an otherwise nice couple. A stewardess promised
to sort this out, but while she was still sorting out more and more passengers
came on board and the plane became absolutely full. With apologies from
the company I was given a -very uncomfortable- chair in the lounge on
the second floor, above the first c1ass cabin. In Honolulu I had to go
through Immigration and Customs; when I returned I was given seat 45A
and I had some sleep. In Los Angeles I had a pleasant stopover of 28 hours.
With the direct flight of LUFTHANSA I flew back to Amsterdam in a
Boeing 707, nearly full. Aplaneload of Germans is a bit much. Ria had
come with the car to Schiphol to collect me; at a quarter past five I was
back in her arms, at a quarter to eight we were horne and I went to sleep at
nine o'c1ock for the next twelve hours. When I woke up the next morning, I
realized that in Australia it was six o'c1ock in the evening and in Los
Angeles midnight.

* * *
My Australian hosts had organized my visit very carefully and with much

consideration. For four weeks my official status was Visiting Fellow of the

Trip Report E.W. Dijkstra, Australia, 16 February 1977-21 March 1977 279

Australian National University, wbich paid the travel expenses. In the
second week I started on a lecture tour of the Universities and local
branches of the Australian Computer Society at Adelaide, Melbourne, and
Sydney "to eam my living".

I arrived on Saturday 19th of February, was given a few peaceful days
for adjustment, and lectured on Thursday 24th and Friday 25th at ANU.
(Both days I was the last speaker at a seminar with about 250 participants.)
On the evening of Monday 28th lieft for Adelaide, where I lectured at the
University on Tuesday afternoon and for the ACS that evening. On
Wednesday moming lieft for Melboume, where I performed at the Univer
sity that afternoon and for the ACS on the evening of the next day. On
Friday afternoon there was a party in my honour at Peter Poole's house; the
weekend I stayed with a Dutch friend -and bis relatives- near Melbourne.
On the morning of Monday the 7th of March I flew to Sydney, where I
lectured at the University of Sydney; the next day I was at the University of
New South Wales during moming and afternoon; that evening I addressed
the branch of the ACS, and on Wednesday moming 9th of March I
returned to Canberra, where I stayed for the last ten days of my visit. In the
last week I gave my ninth performance, viz. for the Canberra branch of the
ACS. Nine performances of two hours, each for an average audience of 200
people, seemed enough to make the trip worthwhile.

* * *
Life is not easy for Australian scientists. A look through the papers gives

you the impression that Australian spiritual life extends from labour con
flicts on the one hand and cricket on the other, with very little in between.
Listening to the conversations one discovers that there is bushwalking
-with snob value- and that there are horse races -definitely without it
- . There is, of course, much more, but that is definitely much less
prominent - under the surface, so to speak.

I found many of my colleagues a little bit sad. They feel very much cut
off from the rest of the world, and to a large extent they are. Scientific
journals are sent by surface mail, and thus arrive late and irregularly.
W orse, of course, is that they are cut off from the old boys network and
pick up so little from the grapevine.

They are very much aware of tbis isolation and try to compensate for it.
They do tbis in their personal lives. I found in several hornes impressive
record collections; I also looked at the bookshelves, and, again, I was often
impressed. They also try to do tbis in their organizations. There were many
foreigners and most of the Australian staff members seemed to have been
either in Europe or in the USA or both, either for many visits or for
extended periods of time. The nett result was that at many places - but
particularly at ANU - the whole atmosphere was quite cosmopolitan.

This -and it makes life hard for the Australian scientists- seems in
sharp contrast to the cultural (?) climate of the Australian government: a
self-centred activity, in wbich all attention is absorbed by local frustrations
and mutual mistrust. (In the different states the railway gauges are differ-

280 EWD613

ent!) My impression of the government and the civil service was one of
short-range vision, both in time and space. And in view of the fact that
education is always a long-range activity, it is quite understandable that
most of my colleagues felt very uncomfortable.

Universities all over the world are very much constrained. Private univer
sities are strongly constrained by the expectations of their students, universi
ties funded by the government are constrained by the latter. In the case of
the Australian universities, at least the Departments of Computing Science
seem to be held in an iron grip of shortsigbtedness: the same government
that supports the universities is also a very major employer and, hence,
constrains them in both ways. A condition for employment of computing
people by the civil service seems to be training in either COBOL or
FORTRAN! That, of course, is awful. Even if the state, in its capacity of
funding body, leaves it to the competence of the departments to design their
own curriculum, it jeopardizes that freedom with such employment regula
tions. From the moment that European departments of computer science
concluded that the sooner those two programming languages be forgotten
the better, they have ignored them; in Australia teaching PASCAL, how
ever, seems a political issue, a kind of heresy that should not be permitted.
(Thank goodness, also Australia has its heretics!) I don't remember having
feit the tension between "the campus" and "the real world" so strongly.

I had been looking forward to my talks for the universities, but the
addresses to the branches of the ACS I did not look forward to at all. The
audiences to be expected had been described to me in most uninspiring
terms -it turned out that my spokesmen had been unnecessarily pessimis
tic-, and I had been warned that at the ACS I was not expected to use a
blackboard. So I prepared a talk consisting of words only and tried it out at
the first occasion, in Adelaide (with considerable trepidation, because I also
stuck to my habit of speaking without notes). It went down very weIl, and
cowardly I used the same talk for the other ACS performances. A corner
stone was how research in programming methodology has forced upon us
the conclusion that programming should be regarded as a tougb engineering
discipline with a strong mathematical flavour. The main theme was that this
conclusion has never been refuted, but that many refuse to draw it for
emotional or political reasons, reasons that are easy to explain, because the
conclusion has many implications that are unattractive, disappointing, or
both.

I took a great risk in doing so, because even if I expressed myself in
general terms and talked about the world in general, it could be viewed as a
foreigner meddling in internal affairs, and that is usually not appreciated.
("Misuse of our hospitality" is a common name for the crime.) But I came
away with it, and the talks were a great success and evoked a lively
discussion, which, on the whole, made excellent sense. (How I came away
with it I still don't know. Either the Australians welcomed the opportunity
to discuss their own problems in a new, noncontaminated terminology, or

Trip Report E.W. Dijkstra, Australia, 16 February 1977-21 March 1977 281

my farne and the "weight" with which I had been announced have acted as
a protecting shield; probably both.) The only counteraction I have observed,
was an -anonymous!- column in Australia's Computer Weekly of Fri
day, 4th of March 1977, with all the characteristics of racist slander:

I am inclined to view Dijkstra, Wirth and Dahl as intellectual products of the
Germanic system. Precisely why Tony Hoare associates himself with these
three is another thing beyond my ken. [...] His [i.e. Dijkstra's] efforts have
been directed into turning a noble art into a rigid discipline on the basis that
it would be better for us all. Being just one of the swine watching the dropped
pearls I am not sure I like this idea. My suspicion that these concepts are the
product of an authoritarian upbringing is strengthened by the fact that Dahl
is Scandinavian, Dijkstra Dutch and Wirth Swiss. [...] Quite where you go
from here I do not know. I had thougbt of looking up Freud but I do not
think what he would say would be very refined.

The above does not strike me as very refined either. The Computer Weekly
was a publication that my colleagues at the ANU usually did not see, but on
account of this column they had seen this issue. In my parting speech at my
farewell party I referred to it but could say in all honesty that I had no
reason to suppose this blurb characteristic for Australia. On the contrary.

The country's sadness is perhaps most clearly reflected in the following
comment: "We seem to copy faithfully all American mistakes, but ten years
later.". The estimated period of ten years seems to me to be correct. In
many litde things I was reminded of the mid-sixties. The director of the
Computer Centre at ANU was for instance a numerical mathematician, and
there was a pronounced concem about programming languages, a type of
concem we have in the meantime completely outgrown.

* * *
Just for the record: my weekend near Melboume was somewhat unusual.

A hundred miles North of Melboume the wife of a Melboume surgeon
farmed. They had a landing strip near the farmhouse and the surgeon
commuted by private plane from the farm to his Melboume hospital and
back. He said that he spent less time commuting than most of his colleagues
in the hospital. This may be true, but from my side I arn certain that
personally he liked flying. On Saturday evening he carne from the farm to
pick us up in Melboume, the next evening he brought us back. On Sunday
moming the wife and one of the daughters were away for several hours on
horseback, inspecting catde; in the aftemoon I was taken on a very rough
ride in a landrover to see some paddocks with the surgeon. The weekend
showed me a completely different side of Australian life; besides instructive
it was very pleasant, and I had no problems in expressing my gratitude for
their -rather amazing, if you come to think of it!- hospitality.

* * *
The memories from the visits to Adelaide, Melboume, and Sydney get

somewhat blurred. Adelaide was lively, Melboume dismal, and Sydney

282 EWD613

mixed. These memories will fade. ANU, Canberra, was quite clearly my
base. (The trip to the Universities was tiring because each time I had to
adjust to new people; on Wednesday morning, when I flew back from
Sydney to Canberra, I had quite definitely the feeling of "returning horne".
So much for the tact and hospitality of that community!)

In Canberra I had an apartment in the "University House", built on
campus for about 150 graduate students and 150 visitors, very much along
the pattern of an English college -complete with quadrangle!-, with a
large Common Room (with a Yamaha) and a Hall (complete with a
Steinway), in which the University Dinner was held each Wednesday night
(I attended once). A "Bistro" that served breakfast, lunch, and dinner, a
"Cellar Bar" that sold meals at lunch time and dinner time, and served beer,
much of which was consumed in the nearby "Fellow's Garden". And,
around the corner, a "Bottle Shop" -how is that for a euphemism?-, a
mini-supermarket, and laundry. All this was within a ten minute walk from
the Computer Centre.

Breakfast was served in the Bistro from 8 until 8:45. At nine o'clock I
was at the Computer Centre, where I had a nice office, with an air
conditioning that I used twice on very hot and sticky days. I always left the
door open. The trick worked; all sorts of people "just came in". At noon we
walked to the Cellar Bar and had lunch and beer -or just beer, when tired
- and from one o'clock till five I was again at the Computer Centre.
Usually we had a beer in the Cellar Bar from half past five until half past
six, and then I would have dinner with rotating, but always pleasant
company, either in the Bistro, or in town, or at horne. The moment I went to
sleep varied wildly, I was always awake before eight o'clock in the morning
without the mechanical aid. The day after my arrival someone had bor
rowed sheet music for me -Mozart and Schubert- and before the trip I
have played quite a lot. Only one evening on the Steinway. While doing so I
was told that I needed special permission for doing so, because it was the
property of the ABC (Australian Broadcasting Corporation). Both instru
ments had suffered from the drought, and yesterday I realized that after a
Yamaha a Bösendorfer is the closest possible approximation of heaven. (lt
had been tuned during my absence.) But for lack of anything better, a
Yamaha will do before breakfast.

On one of the last days, one of the staff members dropped in. He was
genuinely worried and puzzled, and asked "Why did you come? Y ou did
not get anything from this visit.". I could answer that I had come firstly
because I had been invited, and secondly because the way in which the
invitation from dr. Robin B. Stanton had been phrased had given me the
impression that he had sound reasons for being very keen that I should
accept the invitation. Shortly after my arrival I began to understand what
Stanton hoped that I would do, and I think that I have done it to the extent
that can be achieved in a one-month visit. It was hard work, I had to be
alert continuously.

Trip Report E.W. Dijkstra, Australia, 16 February 1977-21 March 1977 283

The greatest cornplirnent for rny hosts in general and for Stanton's care
and initiative in particular is probably Ria's rernark when she entered my
office a page ago: "I arn glad you went.". To which 1 could only add "I arn
also glad to be horne again.".

Nuenen PROF. DR. EDSGER W. DIJKSTRA

Burroughs Research Fellow

EWD614
or:

of the
A Somewhat Open Letter to EAA
Why I Proved the Boundedness
N ondeterminacy in the Way I Did

Dear EAA:

In your recent letter you wrote me about your doubts concerning the way
in which I had proved that nondeterrninacy was bounded; you even feared
that my arguments rnight be circular. A1low me to answer you in this
somewhat public manner; I prefer to answer you in this way because you
are not the only one who wondered why I proved it the way I did.

I draw your attention to a paragraph from the last chapter of my book
(p. 213):

The next separations of concems are carried through in the book itself: it is
the separation between the mathematical concems about correctness and the
engineering concems about execution. And we have carried this separation
through to the extent that we have given an axiomatic definition of the
semantics of our programming language which allows us, if we so desire, to
ignore the possibility of execution. This is done in the book itself for the
simple reason that, historically speaking, this separation has not been sug
gested by OUT rule of thumb; the operational approach, characterized by "The
semantics itself is given by an interpreter that describes how the state vector
changes as the computation progresses." (John McCarthy, 1965) was the
predominant one during most of the sixties, from which R.W. Floyd (1967)
and C.A.R. Hoare (1969) were among the first to depart."

Having quoted this paragraph I now feel tempted to add that, at least in my
own head, this separation of concerns took fully place while I was writing
the book. In the fourth chapter the if ... fi and the do ... od are introduced
by first giving an informal operational definition. What probably I should
have stated more emphatically is that these operational descriptions should
not be regarded as definitions upon which my definitions of the wp are
based, but that these operational descriptions have been no more than a

284

A Somewhat Open Letter to EAA 285

source of inspiration, which can be forgotten as soon as the semantics for IF
and DO in terms of the predicate transformer has been chosen.

If 1 choose to define the semantics of

do BI -> SI 0 ... 0 Bn -> Sn od
by

wp(DO, R) = (E k: k ~ 0: Hk(R)) with
Ho(R) = Rand non BB and Hk+I(R) = wp(IF, Hk(R)) or Ho(R)

then the weakest precondition wp(DO, R) is given in terms of a recurrently
defined sequence of conditions, and as such it has nothing to do with the
notion of "repetition", which refers to what might happen during execution
by some implementation.

A usual argument to demonstrate the boundedness of the nonde
terminacy considers the dass of possible computational histories. The
argument is as follows. For a terminating computation each repetition is
only executed a bounded number of times, in each alternative construct the
computation is only of bounded nondeterminacy, and, hence, by König's
Lemma, the "computational tree" can only have a finite number of leaves
(Le. final states).

1 rejected the above argument for two reasons. First of all, it is based
upon the consideration of the computational histories, whereas 1 wanted to
ignore that program texts also admit the interpretation of executable code. 1
wanted to postulate the semantics independently of any underlying model
of computation; 1 have done so, but then it is inelegant to prove such a
fundamental property using such a model. 1 at least think it much more
consistent to prove such a property directly.

The second reason, however, is that 1 think that the argument -at least
as it stands- is somewhat shaky. The problem lies with the justification of
the suggested underlying computational model. After the postulation of the
semantics, it is not too difficult (I think) to argue that the obvious imple
mentation, when started in astate satisfying wp(DO, R), will lead in a finite
number of steps to a final state satisfying R. It is also dear (from the
rejected argument) that then the number of possible final states is finite. But
that could be a property of the implementation, viz. that it can only realize a
finite number of the infinitely many permissible final states!

The only decent way 1 could think of is the one 1 have followed. First 1
postulate the way in which predicate transformers may be built up; next 1
prove the continuity of wp (using induction over the syntax); next 1 prove
the boundedness of the nondeterminacy (by deriving a contradiction from
the assumption of unbounded nondeterminacy); and finally 1 interpret this
as a reason for reassurance (p. 77):

A mechanism of unbounded nondeterminacy yet guaranteed to terminate
would be able to make within a finite time a choice out of infinitely many
possibilities: if such a mechanism could be formulated in our programming

286 EWD614

language, that very fact would present an insurmountable barrier to the
possibility of the implementation of that programming language.

In other words: instead of "deriving" the boundedness of the nonde
terminacy from the possible behaviour of an implementation -whose
"adequacy" must then be demonstrated in a rather complete way- I prove
the boundedness of the nondeterminacy and remark that by doing so an
otherwise unsurmountable barrier to the possibility of implementation has
been removed. Note that nowhere in my book have I proved that my litde
programming language can, indeed, be implemented! That implementability
seemed sufficiently obvious to me not to worry about it. Where is the
suspected "circularity"?

You write:

It concems the definition of the semantics of the do construct (page 35). It
seems to me that the semantics itself says that nondeterminacy is bounded. It
says that if astate satisfies wp(DO, R), i.e. is bound to yie1d terminating
computations finally satisfying R, then there exists abound on the number of
iterations of the DO for this initial state. This is reasonable since nonde
terminacy is bounded, but your proo! of the boundedness uses the semantics
ofDO.

Is it possible that you have suspected circularity by thinking that I have first
taken implementability for granted, and then have made essential use of the
implementability? Of course my proof of the boundedness of the nonde
terminacy uses the semantics of DO! If I did not use the definition of the
semantics, how could I prove something about it?

To think about the semantics of a programming language independendy
of any underlying computational model is with our past, ladmit, a difficult
mental exercise. Perhaps you don't think it worthwhile. I personally think it
iso As long as the operational approach remains the predominant one,
languages for "sequential programming" and "concurrent programming"
will remain two different topics. I hope to see these two topics merge into a
single one. I am hoping for a single programming language that allows
sequential implementation, but also allows implementations displaying a lot
of concurrency and allows that as "obviously" as the little programming
language used in my book allows sequential implementation.

Logic has changed from a descriptive science into a prescriptive one; the
"new logician" is an engineer. It is no longer the purpose of our programs
to instruct our machines, it is the purpose of our machines to execute our
programs. Semantics no longer needs to capture the properties of mecha
nisms given in some other way, the postulated semantics is to be regarded as
the specification that a proper implementation should meet. As you may
have concluded from the above, I have never been a great lover of automata
theory!

Have I made myself clear now? I hope. The possible complaint against
my book that the initial chapters of it don't make my position clear enough

A Somewhat Open Letter to EAA 287

is a valid one: my attitude towards its subject matter evolved as a direct
result of the very act of writing it! Perhaps -like many articles and most
programs!- my book should also be read backwards.

I thank you for your letter. Greetings and best wishes,

Nuenen

yours ever,

Edsger

PROF. DR. EDSGER W. DIJKSTRA

Burroughs Research Fellow

EWD618
On Web ster, Users, Bugs, and Aristotle

Thinking is our most intimate activity, and a lot of it is revealed by the way
in which we use (and misuse) our language. As a matter of fact, so much is
revealed by it that one cannot be a carefullistener without the guilty feeling
of committing the indiscreet sin of voyeurism. It is exactly this sin that I
propose to commit with respect to the computing community: in this case
committing the sin is too illuminating to remain virtuous.

* * *
Linguistical analyses tend to start with dictionaries. There are two types

of dictionaries. There is the writer's dictionary, giving hints as to how a
language should be used; the Concise Oxford Dictionary is a perfect
example of a writer's dictionary. At the other end of the spectrum we have
the dictionaries for the reader; they faithfully record how a language
happens to be used. Webster's New Collegiate Dictionary is a good example
of a dictionary of the latter type. You can hardly use Webster's New
Collegiate Dictionary as a guide when writing -it contains terrible verbs
like "to disfurnish" and "to disambiguate" - , but its authors are no fools:
if an existing word is consistently used in a way that really stretches its
original meaning too much, the new meaning is faithfully recorded in the
next edition. A beautiful example is given in Webster's New Collegiate
Dictionary under the heading "intelligent", where in more recent editions a
third meaning has been added:

able to perform some of the functions of a computer< an - computer
terminal> .

It is very amusing -and enlightening!- to draw the attention of
members of the American computing community to this addition to Good
New Webster. They are always startled by it; the Artificial Intelligentsia

288

On Webster, Users, Bugs, and Aristotle 289

react with indignation, the others chuckle with delight, but show not
se1domly signs of disbelief or amazement at Webster's "courage". Often
they get hold of the nearest Webster to check my statement. Having verified
it, they give a sigh of relief: the story is clearly too good not to be true. For
many a computing scientist this additional meaning of "intelligent" in
Webster acts as an authorization of his doubts about the Artificial Intelli
gentsia -doubts that are shared by almost all computing scientists, but that
give many in the USA (where AI is officially regarded as more or less
respectable) guilty feelings- . Two cheers for Webster's ruthless accuracy!

* * *
The meaning of the "user" -in extreme cases the "casual user" - has

also been extended. My Webster (1973) does not record it yet -"one that
uses" is the only definition given- , but in this case I have other linguistical
indications.

It is already a change of long standing, for it was at least a decade ago
when, consulting a Dutch computer manufacturer, I was amazed by and
annoyed at the frequent appeal to the untranslated, just copied, "user" in
the middle of a Dutch sentence defending some design decision. The noun
"user" is, of course, perfectly translatable into Dutch, but those guys did
not do it! At the time I did not pay too much attention to this linguistic
anomaly; I think that I classified it as the same silly mannerism as displayed
by the all-English texts that are printed on Dutch cigarette packages.

But I got definitely suspicious when I learned that also the French -in
spite of all their Anglophobia- embed the untranslated English word
"user" in the middle of their French sentences! Since then I was alert, and I
can now tell you that the word "user" is not only good Russian, but also
perfect Japanese!

Now this is very telling. One of the requirements of the final examination
at the end of my training at secondary school was the translation of texts
from various foreign languages "into good Dutch". Translating a foreign
text, we were taught, is a two-stage process: first the exact meaning has to
be extracted from the foreign text, and then that meaning has to be
rendered exactly in good Dutch. The fact that the " user" of the Anglo-Saxon
computing community is copied instead of translated is, therefore, for me a
proof that that "user" has lost its original meaning. Subconsciously the
foreign term is imported as a neologism, as a new word for a new concept.

The computer" user" isn't a real person of flesh and blood, with passions
and brains. No, he is a mythical figure, and not a very pleasant one either.
A kind of mongrel with money but without taste, an ugly caricature that is
very uninspiring to work for. He is, as a matter of fact, such an uninspiring
idiot that his stupidity alone is sufficient explanation for the ugliness of
most computer systems. And oh! Is he uneducated! That is perhaps his most
depressing characteristic. He is equally education-resistant as another equally
mythical bore, the "average programmer", whose solid stupidity is the

290 EWD618

greatest barrier to progress in programming. It is a sad thought that large
sections of computing science are effectively paralyzed by the narrow
mindedness and other grotesque limitations with which a poor literature has
endowed these influential mythical figures. (Computing science is not
unique in inventing such paralyzing caricatures: universities all over the
world are threatened by the invention of "the average student", scientific
publishing is severely hampered by the invention of "the innocent reader"
and even "the poor reader"!)

* * *
In passing I draw attention to another English expression which often

occurs in Dutch texts: "the real world". In Dutch -and I am afraid not in
Dutch alone- its usage is almost always a symptom of a violent anti-intel
lectualism.

* * *
With the publication of the Communications of the ACM, in the late

fifties, began my regular exposure to American computing literature. I still
vividly remember how shocked I was at first by the heavy use of anthropo
morphic terminology. (Later I learned that we owe this habit to John von
Neumann.) In the meantime we know that the implied metaphor is more
misleading than illuminating. (For instance, in 1964 Fraser G. Duncan
eloquently drew attention to all the confusion generated by calling program
ming languages "languages".) Because the anthropomorphic terminology
invites us to identify ourselves with programs in execution, and because
"existing" is our most essential "activity", the prevalence of these meta
phors presents a severe psychological barrier to freeing our minds from the
grip that operational semantics still have on them. I therefore regard the
introduction of anthropomorphic terminology into computing as one of
the worst services rendered to mankind by John von Neumann. (Lecturing I
recently learned that among the Artificial Intelligentsia even the suggestion
that anthropoDJorphic terminology might be unwholesome is already sheer
heresy: the mere suggestion is enough to make them raving mad at you! It
was very amusing and very revealing.)

It is, however, probably more than just an unhappy consequence of one
of John von Neumann's personal tastes. Recently I read Arthur Koestler's
account (in "The Sleepwalkers") of how by the work of Copernicus,
Keppler, Galileo, and Newton the separation between astronomy and
astrology began to take place. Slowly mankind was parting from the
Aristotelean animism that had ruled thought for so many centuries. In this
light, the prevalence of anthropomorphic terminology in computing can also
be viewed as a characteristic of its pre-scientific stage, and a consequence
would be that computing scientists don't deserve that name before they have
the courage to call a "bug" an "eITor".

On Webster, Users, Bugs, and Aristotle 291

POST SCRIPTUM. The day after the above was typed I had to deliver the last
lecture at the ACM/ECI International Computer Symposium 1977 in
Liege, Belgium. When I arrived I heard that the day before B. Meltzer
-one of the Edinburgh Artificial Intelligentsia- had extensively chal
lenged my statement:

The superstition that underlies so much of Artificial Intelligence activity is
that everything difficult is so boring that it had better be done mechanicaIly.

He had done so so emphatically that clearly some sort of rebuttal from my
side was expected. Meltzer, however, had already left, and I restricted
myself to writing on the blackboard the quotation from Webster that I have
given above. I gave the full name of the dictionary and even mentioned the
1973 Edition.

After the closing ceremony and before starting on the journey back horne
I had a cup of coffee with the ICS Symposium Chairman, David Hirschberg
from IBM, who asked me "Is it really true that Webster gives that third
definition of "intelligent" or did you just make it up?".

People won't believe it! By now I am wondering what percentage of the
readers of this note have already consulted their Webster. .. (End of post
scrip turn.)

Please note my new Postal Code!

Nuenen PROF. DR. EDSGER W. DIJKSTRA
Burroughs Research Fellow

EWD622
On Making Solutions More and More
Fine-Grained

In gratitude dedicated to c.A.R. Roare, D.E. Knuth, and J.P. Traub.

This note deals with a problem that I owe to C.S. Scholten. Today seems an
appropriate day to start writing it, for yesterday evening I completed
EWD595' (the second version of EWD595, which is itself the nth version of
our joint artide on the on-the-fly garbage collection): Scholten's problem
was already with us for a few weeks before we realized that it had, in a way,
the same flavour as the collector's problem of detecting that the marking
had been completed. Perhaps we shall see one day that all these solutions,
which at present seem disconnected pieces of logical ingenuity -not to say:
intricacy- , are all members of the same family.

In the on-the-fly garbage collection the cooperation of mutator and
collector ensured during marking that a stable state -all reachable nodes
black and all white nodes garbage- would be reached in a finite number of
steps of the collector's marking cyde: the problem was the design of the
detection mechanism for the collector that, indeed, the stable state had been
reached. Scholten's problem poses such a detection problem for N machines.

Let y denote a vector of N components y[i] for 0 .;;; i < N. Let I denote a
vector-valued function of a vector argument. The algorithms we shall study
solve the equation

y = I{Y) (I)

or, introducing 10, 11, 12, ... for the components of I,
y[i] = li{y) for 0.;;; i < N. (2)

It is assumed that the initial value of y and the function I are such that
repeated assignments of the form

(y[i] := fi{y) (3)

292

On Making Solutions More and More Fine-Grained 293

will lead in a finite number of steps to y being a solution of (1). In (3) we
have used Lamport's notation of the angle brackets: they enclose "atomic
actions", which can be implemented by ensuring mutual exclusion in time
(when they are considered "to take time"). The sequence of i-values for
which the assignments are carried out must be one of some sort of "fair
random order" in which, for instance, a finite upper bound is given for the
maximum number of consecutive assignments -i.e.: i-values- in which a
given j (0 "';;'j < N) does not occur: in other words, we assurne that the
absence of individual starvation is guaranteed.

Because equation (1) is assumed to have at least one solution, such an
initial value of y always exists: start with y equal to a solution! This is, of
course, not an interesting case; Scholten has formulated more general
conditions (on the domain of the elements of y, on the functions I, and on
the initial value for y) under which convergence in a finite number of steps,
and towards a solution which is uniquely determined by the initial value of
y, can be guaranteed. These conditions do not interest us here: we shall
study the more general situation in which in a finite number of steps a
(not-necessarily unique) solution of (1) will be reached. (In passing we note
that also the marking in the garbage collection had that characteristic of
nondeterminacy.)

NOTE 1. The mechanisms we shall design will even "operate" when no
solution of (1) is reached within a finite number of steps: then they will fail
to terminate. In this sense our programs can be considered as a multi
dimensional generalization of the Linear Search. (End of note 1.)

We consider solutions consisting of N repetitive processes of the form:

prog.i: do ... ---> (y[i] := li(y)od PRO

The problem is, of course, what to fill in for the dOts. The roughest sketch
would be

prog.i: do(Ej: O"';;'j < N: y[j] =1= fi(y) ---> (y[i] := li(y)od PR1

but this version is rejected for two reasons. Firstly, the guard is an
unacceptably large grain of action. Secondly and more importantly, we want
the construction of prog.i to be independent of fi for j =1= i. We can remove
the second objection and reduce the first one by introducing aglobai array e
with the boolean elements e[i] for 0 ",;;. i < N, and maintaining

(A i: 0",;;. i < N: e[i] =?(y[i] = li(y))) (4)

Because (4) is trivially satisfied by all e[i] lalse, we assurne that initializa
tion. With the convention that j ranges over 0 ",;;. j < N, we can now write

294

(with some more notationalliberties that will be explained later)

prog.i: do(Ej: non e[j])-

od

(ify[i] = fi(y) - e[i] := true)
Dy[i] =1= fi(y) - y[i] := fi(y);

(Aj: e[j] := fa/se)
fi

EWD622

PR2

NOTE 2. I have used the abbreviation (Aj: e[j] := fa/se) for the program
that performs the assignments e[O] := fa/se through e[N - 1] := fa/se in
some order. Because here it is part of an atomic action, the undefinedness of
the order is still irrelevant. (End of note 2.)

NOTE 3. In PR2, the whole alternative construct is effectively a single
atomic action. In view of later needs, however, I have given each alternative
its own c10sing angle bracket. (End of note 3.)

NOTE 4. In the first alternative of PR2, the superfluous assignment to y[i]
has been suppressed. (End of note 4.)

NOTE 5. In a more abstract version we could have introduced a set E of
those processes j for which y[j] = fj(y) is guaranteed to hold. In that case
(Aj: e[j] := fa/se) would have been coded as E := 0. Honesty forces me
to mention that during more abstract explorations I have, indeed, used such
a notation, and to admit that the reason that I don't do so now could very
weIl be that the symbols of set theory are not on my typewriter. The boolean
array can be regarded as the characteristic function for E; the problem, of
course, is that we can also regard the value of E as a coding for the value of
e. (End of note 5.)

It is c1ear that both alternatives in PR2 leave (4) invariant. It is also c1ear
that y = f(y) is a stable state as far as y is concerned. Termination of one of
the processes implies (Aj: e[j)), from which, together with (4),y = f(y) can
be deduced, Le. that the stable state has been reached, and that all other
programs will terminate as weIl.

NOTE 6. If we really want to speIl this out, we would have to show the
invariance of, say,

(Aj: e[j)) andy = f(y)

As we have more difficult problems ahead of us, I shall not waste my time
on that demonstration: it is really trivial. (End of note 6.)

* * *
One of the ways in which we could try to chop up the large grain of

action in PR2 would be to separate inspection of y, computation of /i, and

On Making Solutions More and More Fine-Grained 295

modification of y[i]. With a local vector vi and a local "scalar" qi we could
try:

prog.i: do(Ej: non e[j]) -> PR3

od

(vi :=y){y[i] = vi[i]);
qi := fi(vi){ qi = fi(vi)};
if vi[i] = qi -> (e[i] := true)
o vi[i] *" qi -> (y[i] := qi; (Aj: e[j] := fa/se»
fi

NOTE 7. We have allowed ourselves vi := y as an abbreviation for (A j:
vi[j] := y[j)). Upon its completion the relation "y[i] = vi[i]" can be
regarded as a local assertion of prog.i, in spite of the fact that it contains a
reference to the global y[i]: we can do so because for j *" i, prog.j only
inspects, but never modifies the value of y[i]. (End of note 7.)

However, the proof of the invariance of (4) fails for the first alternative in
the following manner. The weakest precondition for (e[i] : = true) to
establish (4) is

(4) andy[i] = fi(y)

but we can only guarantee -see the assertions between braces-

(4) andy[i] = vi[i] = qi = fi(vi)

and in order to conclude the former from the latter we need the further
assumption y = vi. Program PR3 is, indeed, wrong, but the failure of its
correctness proof indicates how to repair it.

Because the non-destruction of (4) by (e[i] := true) depends on the
truth of y = vi, we can repair program PR3 by replacing (e[i] := true) by

(e[i] := (y = vi»

which is a shorthand notation for

(e[i] := (Aj: y[j] = vi [j])

Because -specially for large N - this is again a bulk:y atomic action, we
can introduce a global array d with boolean elements d[i] for 00;;;; i < N,
such that

(A i: 0 0;;;; i < N: d [i] ~ (y = vi» (5)

If we can keep (5) invariantly true, replacing (e[i] := true) in PR3 by
(e[i] := d[i]) ensures that e[i] will not be set to true erroneously, i.e. so as
to destroy the truth of (4). Assuming all the d[i] initialized to fa/se, keeping
(5) invariant leads to the following program, which is now derived from PR3

296

in a straightforward manner:

prog.i: do(Ej: non e[j])->

od

(d[i] := true; vi := y);
qi :=ji(vi);
if vi[i] = qi -> (e[i] := d[i])
o vi[i] =1= qi -> (y[i] := qi;

fi

(Aj: d[j] := false);
(Aj: e[j] := false»

* * *

EWD622

PR4

The transition from PR2 to PR4 was motivated by something like the
assumption that the ji-computations were time-consuming. Another way of
chopping up atomic actions in PR2 would be to separate the modification of
y[i] from the false-setting of the e[j]'s. In the following program, derived
from PR2, we have introduced a global ghost-variable ef for reasons that
will become clear in amoment; ef is assumed to be initialized at false.

prog.i: do(Ej: non e[j]) -> PR5
(ify[i] = ji(y) -> e[i] := true)
o y[i] =1= ji(y) -> y[i] := ji(y); ef := true);

«Aj: e[j] :=false); ef :=false)
fi

od

The reason for introducing the ghost-variable efbecomes clear as soon as
we realize that y[i] := fi(y) without setting all the e[j]'s to false, might
cause a violation of (4) as a result of the modification of y. The introduction
of ef enables us to express the temporary violation of (4) by replacing it by

(A i: 0 .;;;; i < N: e[i] ~ (y[i] = fi(y))) or ef (6)

NOTE 8. The name "ef" is for me a mnemonic for "e-implication false".
(End of note 8.)

Thanks to the introduction of ef, (6) is now clearly an invariant; however,
by itself it is too weak to conclude that upon termination y = f(y) holds. As
it stands we can only conclude upon termination

y = f(y) oref

a conclusion that suffices if we can also show the invariance of

ef ~ (Ej: non e[j)) (7)

for then ef is guaranteed to be false upon termination. It is indeed possible

On Making Solutions More and More Fine-Grained 297

to show that (7) is invariant as weIl, and that, therefore, program PR5 is
correct.

Without the introduction of more elaborate ghost-variables we need a
somewhat different argument for the demonstration of the invariance of (7).
Consider an atomic action that causes for ef a transition from fa/se to true;
let this be performed by prog.k. Then, prior to that atomic action we can
assert

(6) and non ef andy[k] =1= fk(y)

from which non e[k] can be conc1uded. Because prog.k is the only one that
can reset e[k] to true and cannot cause this resetting to take place before
resetting ef to fa/se, e[k] must remain fa/se -and, hence, (E j: non e[j))
must remain true- as long as ef remains true.

The operational argument in the preceding paragraph is highly unattrac
tive; it does, however, show the way out. Introducing a global variable k
(0 ..; k ..; N) we can represent non ef by k = N, and ef by 0 ..; k < N. (In
particular: when k < N, it has been prog.k that lastly caused ef to become
true, Le. that lastly caused k to become different from N.)

prog.i: do(Ej: non e[j])..... PR5'
(ify[i] = fi(y) e[i] := true)
o y[i] =1= fi(y) y[i] := fi(y);

if k < N skip
Dk=N k :=i
fi);
«(Aj: e[j] := fa/se); k := N)

fi
od

The program has been called PR5' because it only differs from PR5 by
the ghost-variable. The ghost-variable k is assumed to have been initialized
= N. It is then easy to prove the invariance of

k<N~none[k] (7')

(or, if we don't like undefined right-hand sides of implications, k =
N cor non e[k)). To complete the treatment, relation (6) must be rewritten
as

(A i: 0 ..; i < N: e[i] ~ (y[i] = fi(y))) or k < N (6')

* * *
The above three stars stand for as many days of vain struggle, as I tried

to merge the two achievements embodied in PR4 and PR5'. Eventually I
had some success when I started from the rejected correction of PR3. In the
text below, the e[i)'s have been renamed for reasons that will become c1ear
later; initially, all the g[i)'s are fa/se.

298 EWD622

prog.i: do(Ej: non g[j]) ~ PR6

od

(vi :=y){vi[i)=y[i]);
qi := fi(vi){ qi = ji(vi)};
if vi[i) = qi ~ (g[i) := (y = vi)
D vi[i) =1= qi ~ (y[i) := qi; (Aj: g[j) := fa/se)
fi

I don't repeat its correctness proof, but proceed immediately to chop up its
last atomic action as in PRS'. Initially, k = N; for the reformulation of (7')
we can assume g[N) to be constantly fa/se.

prog.i: do(Ej: non g[j) ~ {k =1= i} PR7
LO:

LI:
L2:

L3:

od

(vi :=y){vi[i) = y[i]};
qi :=ji(vi){qi=ji(vi)};
if vi[i) = qi ~ (g[i) := (y = vi)
D vi[i) =1= qi ~ (y[i) := qi;

if k < N ~ skip
D k = N ~ k := i
fi);
«Aj: g[j) := fa/se); k := N)

In the following correctness proof the atomic actions are referred to by
the label on the line of their opening angle bracket.

We first observe that {k =1= i} is a local assertion for prog.i in isolation,
valid everywhere except between L2 and L3: LO and LI don't assign to k,
L2 may destroy it, but, because N =1= i, L3 will restore {k =1= I}. But,
although k is a global variable, {k =1= i} also remains true in combination
with the other prog.j's, because neither their assignments k := j (j =1= I!),
nor their assignments k : = N (N =1= i!) can destroy it.

We next observe the invariance of

(Aj: g[j] ~ (y[j] = fj{y»)) or k < N (8)

Action LO does not assign to its variables. Action LI can only affect the
implication for j = i; the weakest precondition of LI for that implication is,
according to the Axiom of Assignment,

(y = vi) ~(y[i] = fi{y»

which follows from the local assertions and the guard, for

y[i] = vi[i] = qi = ji{ vi)

Action L2 establishes (8) on account of its term k < N, and action L3 also
establishes (8) because it makes all implications vacuously true.

The next invariance to be established is

(A j: g [j] ~ (vj = y » or k < N (9)

On Making Solutions More and More Fine-Grained 299

It is, like (8), initially true because then all the g[j] are false; actions LO and
LI can affect in (9) only the implication forj = i, but make that implication
true, action L2 establishes the truth of (9) on account of its term k < N, and
action L3, again, makes all implications vacuously true.

The next invariant relation is

k < N => non g [k] (10)

Action LO does not affect its variables, action LI does not do so on account
of the local assertion {k =F i}, action L3 makes (10) vacuously true. Action
L2 leaves (10) clearly invariant if, initially, k < N; only if initially k = N,
we need for L2 a more elaborate argument, for we have to show that then,
initially, non g[i] holds. We shall demonstrate this by deriving a contradic
tion from the assumption k = N and g[i]. From this assumption and (8) we
concludey[i] = fi(y) and from this assumption and (9) we conclude vi = y,
hence y[i] = fi(vi). From the local assertions and the guard, however, we
derive y[i] = vi[i] =F qi = fi(vi), which gives the required contradiction.
This concludes the demonstration of the invariance of (10).

On account of (10), (A j: g(j]) => k = N, and hence, on account of (8)
and (9), we can conclude that (Aj: g(j]) => (Aj: y[j] = fj(y) and vj = y).
This concludes our treatment of PR7.

* * *
We now introduce d[i]'s and e[i]'s, for the time being considered as

ghost-variables. They are initialized as false.

prog.i: do(Ej: non g[j]) -> PR8
LO:

LI:
L2:

L3:

od

(d[i] := true; vi := y);
qi : = fi(vi);
if vi[i] = qi -> (g[i] := (y = vi); e[i] := d[i»
D vi[i] =F qi -> (y[i] := qi; (Aj: d(j] :=false);

fi

if k < N -> skip D k = N -> k : = i fi);
«Aj: g[j] :=false; e[j] :=false);
k :=N)

In addition to the invariance of (8), (9), and (10) we establish the
invariance of

(Aj: d[j] => (vj = y)) (11)

Relation (11) is true to start with, LO leaves it invariant, and so do LI, L2,
and L3.

But now we are in a position to establish

(Aj: e[j] => g[j]) (12)

because LO, L2, and L3 leave it trivially invariant, and LI does so on
account of (11).

300 EWD622

From (12) we deduce that (A): e[j]) => (A): g[j]). Hence, the program is
still correct if we turn the e 's and the d 's into normal variables, and replace
the outer guard by (E): non e[j]). After that replacement, however, we can
regard the g 's as ghost-variables! Removing the operations on the g 's and
on k we get

prog.i: do(E}: non er}]) -* PR9

od

(d[i] := true; vi := y);
qi :=fi(vi);
if viril = qi -> (e[i] := d[i])
o viril =1= qi -* (y[i] : = qi; (A): d[j] : = false);

«A): e[j] := false)
fi

* * *
(The above three stars stand for an interval of about two weeks, during

wbich I wrote EWD623 through EWD626, while C.S. Scholten continued to
think about bis problem. As I have seen bis work in the meantime, the
following is unavoidably heavily influenced by bis results.)

In my next refinement, I start again from PR5 (or PR5') , but wish tbis
time to replace the last line, wbich is effectively

«(A): e[j] :=false)

by

(A): (e[j] :=false»)

i.e. the single grain that sets all the e[j]'s false should be broken up into N
little grains, each setting a single er}]. The single global ghost-boolean is no
longer sufficient, nor is the single global ghost-integer from PR5'. We
propose to introduce for each prog.i a boolean ghost-array ri, with elements
ri[O] through ri[N - 1], all initialized at false, and each ri[j] representing
prog.i's "obligation" to set er}] to false.

prog.i:
LO:
LI:

L2}:

do(E}: non e[j]) -* {(A): non ri[j])} PR 10

od

(if y[i] = fi(y) -* e[i] := true)
o y[i] =1= fi(y) -* {Ri}y[i] :=fi(y);

(A): ri[j] := true);
(A): (e[j], ri[j] :=false,jalse»)

fi

The first atomic action has two labels, labelling its alternative courses of
action; on the last line we have condensed N labels. It is cIear that (A): non
ri[j]) is an invariant of prog.i 's repeatable statement. (Remember that the
ghost-variable ri is local to prog.i.) Again we have to prove that

(A): e[j]) => (A): y[j] = !J(y)) (13)

On Making Solutions More and More Fine-Grained 301

This conc1usion (13) is justified, provided we can find N predicates R}, such
that

(A): (y[j] =1= Ii{y)) ~ R}) (14)

and

(A): e[j]) ~ {A}: non R}) (15)

Intuitively -that is what (14) says- R} may be interpreted as "it is
uncertain whether the }th equation of (2) is satisfied". We shall, however,
define R} quite differently -as will be shown in a moment, in a way such
that (15) is obviously satisfied- and then prove the invariance of (14).

Because (15) can be rewritten as

(E): R}) ~ (E): non e[j])

an analogy with the marking process of the on-the-fly garbage collection
presents itself. In the latter we had relations like "the existence of a white
reachable node implies the existence of a grey node", or more precisely "for
each white reachable node, there exists a grey node from which it can be
reached via (what we called) a propagation path". In other words, (15) is
trivially satisfied if we can define Rj to be true if and only if node} is in
some sort of transitive c10sure starting from the nodes with a false e. (If all
the e 's are true, the set of starting points, and therefore the whole transitive
c1osure, is empty.)

A bold guess is to interpret the truth of ri[j] as the presence of an arrow
from node nr.i to node nr.} and to interpret R} as non elf] or reachable via
a directed path from another e that is false. In formula

R} = (non e[j] or (E k: Rk and rk[j])) (see last page) (16)

from which (15) follows. Because initially all e[})'s are false, all Rj's are
initially true; we have thus established the initial truth of (14), the invari
ance of which will be demonstrated now.

The choice LO leaves (14) invariant: its implications for} =1= i are left
unaffected because their antecedents remain (trivially) unaffected, and
because their consequents are left unaffected on account of (16) and the fact
that LO is executed under the circumstance that node nr.i has no outgoing
arrows (remember (A): non ri[j))). The implication for j = i is and remains
vacuously true on account of the falsity of its antecedent, as implied by the
guard.

The choice LI leaves (14) invariant. On account of the guard and the
initial truth of (14) we conc1ude that it can only be chosen when Ri holds.
Because the truth of Ri is not destroyed by the creation of arrows, and
because of (16), we have

(A k,): (Rk and rk[j]) ~ R}) (17)

LI establishes R} for all}, i.e. upon completion each implication of (14)
holds on account of its true consequent.

302 EWD622

Also each of the individual actions L2j leaves (14) invariant, because
on account of (16), removal of an incoming arrow of node j, together with
e[j] := false, can never cause for Rj -and hence for any other Rk- the
transition from true to false.

This could complete our treatment of PRIO. However, a little bit more is
worth observing. If the sole purpose of the arrow is to propagate property R
from nodes with non e, and no obviously redundant arrows are retained, we
may hope that even

(A k, j: rk[j] =;> (Rk and Rj» (18)

is invariantly true.
We have already observed that choice LO cannot affect Rj for j =1= i. If,

initially, node nr.i has an incoming arrow, Le. there exists a k such that rk[i]
holds, then k =1= i because of non ri[i]; then (18) teIls us that initially Rk is
true. We have just established that Rk then remains true, and on account of
(17), Ri remains true. If node nr. i has no incoming arrows, Ri becoming
false can do no harm to (18), because it has no outgoing arrows either when
LO is executed.

LI does not violate (18) because it is only executed under the truth of Ri
and all Rj are certainly true upon completion.

L2j does not violate (18) either. Because the ri[j] are local ghost-vari
ables of prog.i, the initial truth of ri[j] is obvious; therefore (18) teIls us
that Rj holds initially and the assignment e[j] := false ensures that Rj
holds upon completion. Hence we can conclude that any act L2 j leaves all
Rj unchanged. Therefore, all right-hand sides of (18) are constant; only one
antecedent is strengthened, and thus (18) is indeed an invariant.

Having established that any act L2j leaves all Rj unchanged, that LI can
only cause for Rj a transition from false to true, and that LO can only affect
Ri, we see that the truth of Ri is not destroyed by any prog.j forj =1= i, and
that only LO of prog.i can set Ri to false.

* * *
(The above three stars stand for a two-hour failure to prove the correct

ness of the next version without the introduction of more ghost-variables,
followed by a restless night.)

Encouraged by the success of the ri 's and the Ri 's I shall now try to
combine the introduction of the vi from PR9 with the chopping up of the
false-setting of the e[j]'s from PRIO. I think that this text should not
become too repetitive and that I should make a larger jump: I shall also
separate the false-setting of the d[j]'s from the assignment to y[i], and
furthermore the false-setting of the d[j],s will be chopped up. Analogous to
the ri[j]'s we introduce qi[j]'s to record prog.i 's "obligation" to set d[j] to
false.

In my treatment of PRIO I dislike that the nice relation (18) could only
be derived at the end. In order to derive it earlier, I shall try a new proof
experiment. I intend to strengthen guards of the alternative construct by

On Making Solutions More and More Fine-Grained 303

adding "ghost-constraints" and show eventually that the strengthening was
ineffective because the truth of the added term is implied by the truth of the
guard it was supposed to strengthen. The choice of the strengthening is
inspired by my desire to keep the initial proof of the invariance of (18)
simple. (Because the strengthened guards contain ghost-variables, I have
placed them between (temporary) angle brackets.) We consider the follow
ing program, where Ri is defined as by (16).

prog.i: do(Ej: non e[j]) ~ {Aj: non ri[j]} PRll
LO:

LI:

L2:
L3j:
L4j:

od

(d[i] := true; vi :=y){y[i] = vi[i]);
qi := fi(vi){ qi = fi(vi)};
if vi[i] = qi ~ {y[i] = fi(vi)}(e[i] := d[i»
D (vi[i] =1= qi and Ri) ~ {y[i] =1= fi(vi)}

fi

(y[i] := qi; (Aj: qi[j], ri[j] := true, true);
(Aj: {ri[j]}(d[j], qi[j] := false, false»);
(Aj: {ri[j]}(e[j], ri[j] := false, false»)

Trivially LO and L3j cannot affect any Rj. L4j, although it removes
incoming arrows for node nr.j, can never cause for Rj a transition from true
to false, since it leaves Rj true on account of the final non e[j]. Action L2,
which only adds arrows, cannot effectuate for Rj a transition from true to
false either. Hence, LI is the only action that can do so. But because LI is
executed under absence of outgoing arrows, it can only do so for Ri; hence
all through the second alternative Ri, which occurs in the guard, is in
variantly true, and thus -on account of (17)- action L2 makes all Rj true
and, since Ri and ri[j] is a precondition for L4j, actions L4j find and leave
the Rj's true. .

Now we are ready to prove for PRll the invariance of

(A k, j: rk(j] => (Rk and Rj)) (18)

LO and L3j trivially don't affeet (18), L4j leaves the consequents unaffected
and only strengthens an antecedent, L2 makes all consequents true and LI
does not violate (18) because it can only set Ri to false in the absence of
incoming arrows -since the existence of an Rk and rk[i] will keep it true
and LI is executed under the absence of outgoing arrows.

The next step is to draw as quickly as possible the relevant conc1usion for
which we need the qi[j)'s, and to eliminate them from then onwards from
our consideration. We prove the invariance of

(Aj: (vj =1= y and d (jD => (E k: qk (jD) (19)

LO can only affect the ith implication, but leaves its antecedentfalse, action
LI does affect none, L2 leaves all consequents true, L3j can only affect the
jth implication, but it leaves its antecedent false, and L4j affects none.
Initially all antecedents are false, and the universal validity of (19) has been
established.

304 EWD622

Beeause -remember that the ri and qi are local variables of prog.i!- it
is easily established that (A k, j: qk[j] => rk[j]), we can deduce from (19)

(Aj: (vj =1= y and d[j]) => (E k: rk[j])) (20)

From now on we won't refer to the qi 's anymore; we shall need (20) once.
In order to prove the invariance of (14) we may expect -because such a

circumstance is not unusual at all- to have to strengthen it. I propose to do
so by weakening the anteeedents y[j] =1= [j(y), because in view of the local
assertions in the alternative c1ause of PRII it seems attractive to replace
them by

y[j] =1= [j(vj) or y =1= vj

(from the negation of which y[j] = [j(y) duly follows). Beeause we also
expect d[j] to hold eventually, it seems safe to weaken the anteeedents still
further by adding the term "or non d[j]". Thus we arrive, inspired by (14),
at our tentative invariant relation, which is initially trivially true:

(Aj: (y[j] =1= [j(vj) or y =1= vj or non d[j]) => Rj) (21)

Action L2, which sets all consequents true, is harmless, action L3j can only
affeet thejth implication, but is harmless because L3j is exeeuted under the
invariant truth of ri[j] and on account of (18) under the invariant truth of
its consequent Rj. Action L4j is trivially harmless now that we have already
established that it leaves the Rj's unaffected. We are left with LO and LI.

Action LO leaves the consequents unchanged and can only affeet the
antecedent for j = i: in that case it suffices to show that a false antecedent
remains false, Le. with P the negation of the antecedent

P: y[i] = fi(vi) and y = vi and d[i]

we have to show that

P => wp("(d[i] := true; vi := y)", P)

The Axiom of Assignment defines this weakest precondition as

y[i] = fi(y) andy = y and true

The last two terms are true all by themselves, and the truth of the first term
is implied by the first two terms of P; hence LO leaves (21) invariant.

But what about LI? Wehave established that LI does not affeet Rj for
j =1= i; for j =1= i, it cannot affeet the antecedents either, so we only need to
worry about the ith implication of (21). The assignment (e[i] := d[i»,
which leaves its antecedent unaffeeted, can only violate the implication by
making the consequent Ri false while the antecedent remains true. A
necessary initial condition for (e[i] := d[i» to make Ri false -see (16)
and (18)- is

d[i] and non (E k: rk[i])

On Making Solutions More and More Fine-Grained

Combined with the truth of the antecedent, we derive

(y[i] =1= fi(vi) or y =1= vi) and d[i] and non (E k: rk[i])

305

Combined with the 10cal assertion y[i] = fi(vi) as derived from the guard,
we get

y =1= vi and d[i] and non (E k: rk[i])

But on account of (20) this is false: also LI does not destroy the validity of
(21), whose invariance has now been established.

We are left with the obligation to show that the ghost-guard Ri can be
omitted. The local assertion y[i] =1= fi(vi) as derived from the guard implies
Ri with the help of (21), of which we regard the invariance as established.
And this completes the correctness proof of

prog.i: do(E}: non eU])->

od

(d[i] := true; vi := y);
qi :=fi(vi);
if vi[i] = qi -> (e[i] := d[i])
o vi[i] =1= qi -> (y[i] := qi);

fi

(A): (dU] :=false»);
(A): (eU] :=false»)

PR12

REMARK. C.S. Scholten's proof allows for the further chopping up of the
second line into

(d[i] := true); (A): (viU] := yU]»);

At this stage I shallleave that last proof as an exercise far the reader. (End
of remark.)

Conc1uding Remarks

In one respect I consider the way in which this report has developed as a
little bit disappointing: the constructive flavour of its beginning has largely
disappeared from PRlO onwards. Rather than verify aposteriori I prefer to
merge and synthesize proof and program developments. In sequential
programming this art has been raised to a considerable height; when I was
halfway this report I saw the same merge and synthesis emerging during
multiprogram development. This observation excited me, since it would
raise the Gries/Owicki theory mare clearly to the status of a tool for
construction. Perhaps I should not allow myself to be too much disap
pointed by the disappearance of the constructive flavour: there wasn't much

306 EWD622

program to be invented anymore, and, besides that, I was of course biased
by having seen Scholten's work.

In other respects I am extremely pleased with it. I have discovered at
least two tricks that were new for me: the change of ghost-variables into
non-ghost-variables and vice versa and -probably more generally applica
ble than the first trick- the temporary strengthening of guards by adding
"ghost-constraints". I feel that the latter has done a great deal in smoothing
the correctness proof for PRI2; in any case it seems a very neat way for
preventing circular arguments.

Furthermore, we now have at least a workable -be it partial- grip on a
canonical problem that I have shunned for at least four years (ever since I
designed self-stabilizing systems) and that is the general problem of the
detection that in such a distributed system the stabilization towards the
legitimate states has been completed.

The development of this report was not easy: quite regularly it has
strained my agility in the propositional calculus, but I guess that I can leam
it. (It was certainly a good training.) In any case it shows -to my taste even
convincingly- the feasibility of departing from the usual operational
arguments, in which one tries to visualize classes of computational histories;
furthermore it shows the vast superiority of the non-operational arguments
-once they have been found!- over the traditional ones.

Acknowledgments

I am greatly indebted to C.S. Scholten for again drawing my attention to
this problem and for contributing so much to its solution. (He was the first
to see clearly the analogy with the garbage collector, and to transfer the
notion of "reachability via a path" into the solution of this problem.)
Further I am -as usual- indebted to the regular members of the "Tues
day Afternoon Club". (End of acknowledgments.)

EXPLANATION. This was the. first project I embarked upon, shortly after
Hoare, Knuth, and Traub had given me reason to be grateful to them.
Hence the dedication, in great gratitude and not without some pride. (End
of explanation.)

N uenen, 26 May 1977 PROF. DR. EDSGER W. DIJKSTRA

Burroughs Research Fellow

On Making Solutions More and More Fine-Grained 307

NOTE ADDED LATER (concerning (16). Relation (16) is correct in so far as
that it certainly holds. If we want to use it to define the Rj as a solution of
(16), we must add the remark that the Rj's then must be the minimal
solution, i.e. the solution with as few Rj's true as possible; this, because the
arrows may form cyclic paths. (End of note added later.)

EWD623
The Mathematics Behind the Banker's
Algorithm

(I recently 1ectured on the so-called "Banker's Algorithm" as an examp1e of
a method for dead10ck prevention. Because my informal justification 1eft my
students visib1y unconvinced, I designed a more explicit one while preparing
my next week's 1ectures. This note is written because I think the argument I
deve10ped at that occasion rather nice; it is not a symptom of any revival of
my interest in the Banker's Algorithm as a scheduling strategy.)

We consider a non-empty set P of processes p, each of them engaged on
a finite transaction for the comp1etion of which it may need a (varying but
bounded) number of units of some shared resource at its exclusive disposal.
(The units are all equivalent, say: pages of store.)

A process may "borrow" one or more units, which are then added to its
current "loan", it may "return" one or more units, which are then sub
tracted from its current 10an. The act of borrowing is restricted by the
condition that for each process the 10an will never exceed a pre-stated
"need", i.e. the maximum number of units that may be simultaneous1y
needed by that process for the comp1etion of its transactions. The act of
returning is restricted by the (obvious) constraint that for no process can the
10an ever become negative; upon comp1etion of a trans action, the corre
sponding 10an returns to zero.

If there are "cap" units in the system, the sum of the 10ans cannot exceed
cap. More precise1y, if we define

cash = cap - sum(p from P: 10an[p]) (1)

then "cash" represents the number of unallocated units and must satisfy

0.;;;; cash';;;; cap (2)

For each process p we have

0.;;;; loan[p] .;;;; need[p] .;;;; cap (3)

308

The Mathematics Behind the Banker's Algorithm 309

A simple example shows that the danger of deadlock is present. Consider
two processes with the following pattern of loans and needs:

cap = 4, need[O] = need[l] = 3, 10an[0] = 10an[1] = 2, cash = 0

Because for each process loan < need still holds, each process is entitled to
request a further unit before retuming units; however, because cash = 0,
deadlock would result if they both do so.

The act of bOITowing is, therefore, split into two parts. The process
requests the units to be bOITowed from a banker and waits until the banker
has granted tbis request.

DEFINITION. A "pattern" (of loans and needs) is "safe" if a granting
strategy exists such that it can be guaranteed that all (current and future)
requests can be granted within a finite period of time. (End of definition.)

The function of the banker is to keep the pattern safe. The banker does
so by inspecting, for each request, whether the pattern that would result
from granting it is safe. If it is safe, the request can be granted immediately,
and we assume that then the banker does so. If it is not safe, the banker
postpones granting it until a more favourable moment: because the post
ponement has not changed the pattern of loans and needs, wbich is
therefore still safe, that moment will come within a finite period of time.
The purpose of the so-called "Banker's Algorithm" is to investigate whether
a given pattern of loans and needs is safe.

* * *
For each process p we introduce as abbreviation

claim[p] = need[p] - loan[p]

The current claim[p] thus represents the maximum number of units process
p may need to bOITOW before it returns any units. Suppose that P consists of
N processes and that

p[O], p[l], ... ,p[N - 1]
represents apermutation of the process numbers such that

(A i: 0,,;;; i < N: claim[p[i]] ,,;;; cash + sum(O ";;;j < i: loan[p[j]]))

(4)

Lemma 1. Relation (4) implies that the pattern is safe.

PROOF. The existence of a granting strategy such as required for safety is
shown by the strategy of only granting (all) requests from process pli],
provided that all processes p [j] for 0 ,,;;; j < i have terminated their transac
tions. Relation (4) then implies that for i = 0, 1, ... ,N - 1 in succession,
cash will be sufficient to grant all requests from process pli] without

310 EWD623

violating (2). Within a finite period of time, process p[i] will have terminated
its transaction and i can be increased by 1. (End of proof.)

The Banker's Algorithm tries to find such a permutation of the process
numbers by keeping

(A i: 0 oe;; i < k: c1aim[p[i]] oe;; cash + sum(O oe;;j < i: loan[p[j]]))

(5)

invariant. After having established it (trivially) by means of k := 0, it then
tries to increase k by 1 under invariance of (5) until k = N. It does so by
not changingp[O], ... ,p[k - 1], and by searching for an h satisfying

k oe;; h < N and c1aim[p[h]] oe;; cash + sum(O oe;;j < k: loan[p[j]])

(6)

If such an h has been found,

"p: swap(h, k); k := k + 1"

increases k by 1 under invariance of (5). If, however, for k < N equation (6)
has no solution for h, we say that "the ordering effort has falled". If (6)
remains solvable each time, until k = N, we say that "the ordering effort
has not failed".

Because an ordering effort that does not fall implies the existence of a
permutation satisfying (4) and, hence, on account of lemma 1 that the
pattern is safe, we conc1ude that for a pattern that is not safe, all ordering
efforts must faiI. Or, with

Ass.O:
Ass.I:

the pattern of loans and needs is not safe
all ordering efforts fall

we have derived

Ass.O ~ Ass.I

With

Ass.2: a failing ordering effort is possible

(7)

we conc1ude (because the set of possible ordering efforts is not empty) that

Ass.I ~ Ass.2 (8)

Consider next

Ass.3: the non-empty set of processes -or, to be quite precise, the
non-empty set P' of process numbers- can be partitioned into
A + B,such that B is non-empty and

(A b from B: c1aim[b] > cash + sum(a from A: loan[a])).

The Mathematics Behind the Banker's Algorithm

We can then conc1ude that

Ass,2 = Ass.3

311

(9)

PROOF. Consider the state as reached by the failing ordering effort that is
possible under the assumption of Ass.2. Choose then

A = {p[j]IO~j<k}
from which we conc1ude that

cash + sum(a from A : loan[a]) = cash + sum(0 ~ j < k: loan[p [j]])

choose furthermore

B= {p[j]lk~j<N}

because k < N, B is not empty, and because the ordering effort has failed,
(6) has no solution for h, and hence A and B satisfy the criteria that are
imposed upon them in Ass.3. (End of proof.)

Finally we conc1ude

Ass.3 = Ass.O (10)

PROOF. Let all processes from B from now on try to borrow until their
loans equal their needs, before they return any units. Let all processes from
A terminate their activity. In spite of what has been returned, Ass.3 implies
that the banker still does not have enough in cash to see any process from B
through to completion, and, hence, the pattern of loans and needs is not
safe. (End of proof.)

Combining (7), (8), (9), and (l0), we see

Ass.O = Ass.1 = Ass.2 = Ass.3 = Ass.O
but from this cyc1ic implication we are allowed to conc1ude

Ass.O = Ass.I = Ass.2 = Ass.3 (11)
Conc1usion (11) is the important one. While it is obvious that a non

failing ordering effort implies that the pattern is safe, (11) implies that the
discovery of a single failing ordering effort allows us to conc1ude im
mediate1y -i.e. without any of the back-tracking that is traditionally
inv01ved in the search for permutations satisfying some criterion- that no
such permutation exists and that the pattern is not safe.

From (11) it also follows rapidly that, in order to investigate the safety of
the pattern that would result from granting arequest to process c in a safe
situation, the ordering effort can be stopped as soon as c = p[k], for then
safety is already implied. (The credit for this discovery is due to L.
Zwanenburg, who made it in the eady sixties.)

* * *

312 EWD623

In retrospect I am grateful to the puzzled looks on my students' faces.
That from a cyclic arrangement of n assertions, each implying the next one,
we can conc1ude that all n assertions are equivalent -or to put it more
dramatically: can conc1ude all n(n - 1) pair-wise implications- is not
unknown at all. But the larger the value of n, the more impressive an
example of effective reasoning we have, in particular if -as in this case
the assertions have been arranged in such an order that the n implications
are not difficult to prove.

It is a pity that, probably, the case n = 2 is the most common one, for in
that case the "gain" -as measured in terms of the number of implications
established- is nihil!

Nuenen PROF. DR. EDSGER W. DIJK.STRA

Burroughs Research Fellow

EWD629
On Two Beautiful Solutions Designed by
Martin Rem

(In recent correspondence with dr. Martin Rem -currently at the Depart
ment of Computer Science (mai! code: 256-80), California Institute of
Technology, PASADENA, California 91109, U.S.A.- he sent me two
solutions which I think both so beautiful that they deserve a wider distribu
tion; hence their inc1usion in the EWD series; apart from some historical
information and formal elaborations that have been added, and some
cosmetic changes, I have essentially presented Rem's solutions.)

A P / V-Implementation of Conditional Critical
Regions

Since (by an accident of history) the P- and V-operations on semaphores
have more or less acquired the status of "canonical" synchronization
primitives, inventors of new synchronization concepts have related their
inventions to P- and V-operations in two different ways. Either -see, for
instance, Hoare [1], concerning monitors- the new concept is shown to be
equally powerful by demonstrating that it can be used to implement the P
and V-operations; or -see, for instance, Hoare [2], when introducing the
(simple) critical region "with r do S od" - the feasibility of its implementa
tion is argued by showing how to implement it with P- and V-operations.
The latter possibility has now been demonstrated by Rem for the condi
tional critical region "with r when B do S od" as wen. (In [2], Hoare remarks
about the simple critical region "If we assurne that a Boolean semaphore
mechanism is "built-in", the implementation is trivial." (as indeed it is).
When in [2] Hoare introduces the conditional critical regions, he adds

313

314 EWD629

"Some care must be exercised in the implementation of this new feature."
and follows with a two paragraph verbal sketch, explaining what has to be
done with a queue of processes waiting for r. In [3], Brinch Hansen gives a
slightly more detailed sketch of an implementation involving two queues
- "queues" that can be recognized in Rem's solution (if looked at abstractly
enough)- but it is still no more than a sketch. IronicalIy enough, Rem now
solves the problem by a method -later calIed "splitting a binary sema
phore" - that a few years ago Hoare taught us!)

In processes, so-calIed "conditional critical regions" of the form "with r
when Bi do Si od" may occur. Here r denotes a shared variable -or more
generalIy: a cluster of shared variables- , such that r is only accessible
from within sections of the text of the form "when Bi do Si od" that are
prefixed by "with r". (That this constraint is not violated is easily checked
by a compiler, a circumstance that is its major justification.)

As with the simple critical regions "with r do Si od", the implementation
has to ensure that the executions of the statements Si -prefixed by the
same "with r" - as they may occur in the different processes, exclude each
other in time. In addition, a statement Si -like what later would become
known as "a guarded command" - is only eligible for execution in those
initial states where Bi holds. The implementation has to ensure that these
constraints are met by delaying, if necessary, the further execution of the
process in which Si occurs.

A further requirement is that no such delay occurs without justification,
more precisely:

(1) if no statement Si is under execution -i.e. the requirement of mutual
exclusion would not constrain the selection of a next Si for execution
- ,and

(2) if for one or more processes the Si of a conditional critical region is the
next statement to be executed and at least one of the corresponding
Bi 's is true, then the selection of such an Si with a true Bi is obligatory.

To make the implementation of this last requirement feasible, a further
constraint ensures that activity of one process, but wen outside its regions
critical with respect to r leaves the "non Bi" for alI other processes
invariantly true. This further constraint is that r is the only shared variable
Bi may depend upon. The whole set of constraints now ensures that the
obligation to inspect whether a false Bi of a delayed process has turned true
can be concentrated at the point where the execution of an Sj (of another
process!) has been carried to completion.

The technique of the "split binary semaphore" consists of the introduc
tion of a set of binary semaphores -in this example of the three sema
phores m, bl, and b2- of which at most one equals 1. This can obviously
be ensured by seeing to it that in each program P- and V-operations
-regardless of on which of the three semaphores they operate- alternate

On Two Beautiful Solutions Designed by Martin Rem 315

dynamically: each P-operation decreases their sum by I and each V-opera
tion increases their sum by 1. Furthermore we can assert that between each
P-operation and dynamically subsequent V-operation the sum m + bl + b2
= 0; hence the executions of the program sections between such a P-opera
tion and its subsequent V-operation can be viewed as exc1uding each other
mutually in time (if so desired by the traditional argument of Dijkstra [4]).

Rem's solution uses three semaphores m(= I), bl(= 0), and b2(= 0),
and two counters n(= 0), and nt(= 0) -initial values being given between
parentheses- . The integer n counts the number of processes "eager" to
perform their Si 's; during testing, counter nt is equal to the number of Bi 's
not guaranteed to be false. The whole critical activity can only end with
nt = 0 -otherwise impermissible delays could result- . When an Si has
been performed -and, therefore, all Bi may have become true- nt has to
be increased until nt = n before testing can begin. In this latter process
semaphore bl plays a signalling role and semaphore b2 is used to admit
processes to their Bi-test one at a time. With this informal sketch of
meaning and function of the semaphores and variables I shall present Rem's
solution without further annotation; thereafter I shall present a more formal
treatment.

P(m); n := n + 1;
dononBi~ifnt=O~ V(m) 0 nt>O~ V(b2)fi;

P(bl); nt := nt + 1;

od;

if nt < n ~ V(bl) 0 nt = n ~ V(b2) fi;
P(b2); nt := nt - I

n := n - I; Si;
if n = 0 ~ V(m)
On> 0 ~ if nt < n ~ V(bl) 0 nt = n ~ V(b2) fi
fi

For our more formal treatment we introduce angle brackets in order to
indicate that each action extending from an opening bracket until a next
(c1osing) angle bracket denotes an atomic action. Atomic actions can be
viewed as exc1uding each other in time. This is okay if each atomic action
starts with a P-operation, ends with a V-operation, and has no such
operations in between.

For each process we introduce two boolean ghost-variables ai ("in the
antichambre") and wi ("in the waitingroom"). They are initially false; we
shall use the notations (N j: aj) and (N j: wj) respectively to denote the
number of processes for which ai and wi respectively are true. Furthermore
we introduce a global ghost-boolean c -initially false- , the truth of which
marks the states in which the implications aj => non Bj need not hold. Labels
have been inserted for later discussion. The annotated text of the program is

316 EWD629

as follows:

LO:(P(m){non e and 0 = nt oe;;; n}; n := n + 1 {non e and 0 oe;;; nt < n};
do non Bi {non e and 0 oe;;; nt < n and non Bi}ai := true;

od;

if nt = 0 {non e and 0 = nt oe;;; n } V(m)
o nt> 0 (non e and 0< nt oe;;; n}V(b2)
fi);

Ll: (P(bl){e and 0 oe;;; nt < n}; ai :=false; wi := true;
nt : = nt + 1 {e and 0 < nt oe;;; n};
if nt < n {e and 0 oe;;; nt < n} V(bl)
o nt = n e :=false; (non e and 0 < nt oe;;; n}V(b2)
fi);

L2: (P(b2){noneandO<ntoe;;;n}; wi :=false;
nt : = nt - 1 {non e and 0 oe;;; nt < n}

n := n - I{Bi and 0 oe;;; nt oe;;; n};
Si; e := (nt< n);
if n = 0 {non e and 0 = nt oe;;; n} V(m)
On> 0 if nt < n {e and 0 oe;;; nt < n} V(bl)

fi)
L3:

o nt = n (non e and 0 < nt oe;;; n}V(b2)
fi

Indicating atomic actions by start- and end-label, we can denote the five
atomic actions we have to consider as follows: LO-Ll, LO-L3, Ll-L2, L2-Ll,
and L2-L3. With the initialization m = 1, bl = b2 = 0, we readily establish
for all five the invariance of

PO: m + bl + b2 = 1

This establishes the property of the "split boolean semaphore" and tells us
that, indeed, we are entitled to regard the five actions -each of which starts
with a P-operation on one of the three semaphores and ends (dynamically)
with a V-operation on one of the semaphores- as "atomic". In particular it
guarantees that the Si are executed under mutual exclusion and under the
initial truth of Bi.

Having established the atomicity, and taking the further initial
values nt = n = 0 and e = false into account, we next establish the invariant
truth of

PI: (m = 1 => (non e and 0 = nt oe;;; n» and
(bI = 1 => (e and 0 oe;;; nt < n» and
(b2 = 1 => (non e and 0 < nt oe;;; n»

The invariance of PI is easily established, as is indicated by the assertions
that annotate the program text. (Note that it seems to be the function of the
ghost-boolean e to make the three consequents mutually exclusive.)

On Two Beautiful Solutions Designed by Martin Rem 317

With the further knowledge that initially all the wi are false, we easily
establish the invariant truth of

P2: (N j: wj) = nt

Because (Nj: wj) = the number of processes at L2, ready to perform P(b2),
we conclude now that on account of the third implication of PI, a deadlock
cannot occur after execution of V(b2).

With the further knowledge that initiaIly aIl the ai are false, we easily
establish the invariant truth of

P3: (Nj: aj) = n - nt

Because (Nj: aj) = the number of processes at LI, ready to perform P(bI),
we conclude now that on account of the second implication of PI, a
deadlock cannot occur after execution of V(bI).

(A "temporary" or "partial" deadlock can occur after execution of
V(m); then, however, the state m = 1 holds, and the assumption is that
sooner or later another process will "join the game" via LO.)

Finally we establish the invariant truth of

P4: (Aj: aj = (non Bj or c»

which holds initially because then all antecedents are false. We shall check
its invariance explicitly. LO-L3 and L2-L3 could make all Bj's true as a
result of Si's modification of r; the assignment c := (nt< n), however,
makes all implications of P4 hold: if c is established by it, all consequents
are true, if non c is established by it, we conclude nt = n, and P3 then teIls
us that all antecedents are false; in both cases all implications of P4 hold
vacuously. LO-LI and L2-LI could only affect the ith implication, but they
don't do so as ai : = true is executed under the truth of its consequent, viz.
non Bi. In LI-L2, the assignment ai := false strengthens an antecedent and
is therefore safe; the assignment c : = false may strengthen any consequent,
but -see P3- is executed under falsity of all antecedents and is therefore
safe as weIl. This concludes our demonstration of the invariance of P4.

Combining (the first implication of) PI, P3, and P4 we conclude

m = 1 = ((Nj: aj) = n and (Aj: aj = non Bj))

thus expressing that no avoidable delay is introduced.

* * *

[1] Roare, C.A.R. "Monitors: an Operating System Structuring Concept", STAN
CS-73-40l, November 1973

[2] Roare, C.A.R. "Towards a Theory of Parallel Programming", in Operating
Systems Techniques, C.A.R. Roare and R.H. Perrott (Eds.) London and New
Y ork, Academic Press, 1972

[3] Brinch Hansen, Per, Operating System Principles, Englewood Cliffs, Prentice
Hall,1973

318 EWD629

[4] Dijkstra, Edsger W., "Hierarchical Ordering of Sequential Processes" in Oper
ating Systems Techniques, c.A.R. Hoare and R.H. Perrott (Eds.) London and
New York, Academic Press, 1972

NOTE. I have changed my mind and postpone the other solution's presenta
tion to a later EWD report (End of note.)

Nuenen PROF. DR. EDSGER W. DIJKSTRA

Burroughs Research Fellow

EWD635
Trip Report E.W. Dijkstra,
Newcastle-upon-Tyne, 5-10 Sept. 1977

"Gawdamighty, wot a tongue! I wonder 'er own spit don't poison 'er. I
wouldn't 'ang a dog on 'er evidence."

Frank Crutchley on Mrs Ruddle [1]

At Schiphol Airport I met the colleagues van der Sluis, Blaauw, and van
der Poel. I heard the absence of Verrijn Stuart explained (justified?) by an
admiring reference to his mountaineering exploits in the Himalayas. I did
not quote Miss Twitterton's comment when told that Frank Crutchley had
taken good care of the cacti [l] because I wasn't quite sure of the quotation.

The strike of the British assistant air traffic controllers delayed my arrival
in Newcastle by fifteen minutes, and my return in Nuenen by twelve hours.
But flights with British Caledonian do have the advantage that the planes
take off and land without music.

Upon arrival my Dutch colleagues and Goos from Germany wanted to
go to Henderson Hall; for me there was someone from the University with a
car to take me to the Computing Laboratory. His car -a 2CV - was much
too small to take all five of us, and they had to take a taxi; it was an
unintended case of one-upmanship, for which I hope I won't be blamed.

The purpose of the visit was attending the yearly "Joint International
Seminar on the Teaching of Computing Science", sponsored by IBM and
organized by the University of Newcastle. This year's topic was "Digital
Systems Design", speakers were Professor D. Aspinall (UK), Professor I.M.
Barron (UK), Professor Dr. G.A. Blaauw (The Netherlands), Dr. T.C. Chen
(IBM, USA), Dr. E.L. Glazer (SDC, USA), Professor F.G. Heath (UK),
Professor W.M. McKeeman (USA), Professor Z.G. Vranesic (Canada), Mr.
J.G. Givens (Univ. of Newcastle) and Professor C.A.R. Hoare (UK) as a

319

320 EWD635

stand-in for Professor Dr. Ing.R. Piloty (Germany) who was prevented from
attending.

As usual the audience consisted mainly of professors of computing
science; this time the speakers were mainly specialists in logic design. For
many in the audience the exposure was a shock. At the level of component
technology the change over the last fifteen years has been drastic: what used
to be expressed in milliseconds is now expressed in microseconds, what used
to be expressed in kilobucks is now expressed in dimes and quarters. This
change has been so drastic that it is well-known. Much less known is that at
the next levels, viz. of circuit design and logic design, the attention of the
designers has been so fully usurped by the obligation to adapt to the ever
changing technology, that at those levels design methodology has had no
chance to mature from craft to scientific discipline. This is in sharp contrast
to the developments in programming methodology, where during that
period of fifteen years a fairly stable "base" could be enjoyed. Having
witnessed that development in programming methodology at elose quarters,
I was overcome by the feeling of being exposed to the result of fifteen years
of intellectual stagnation, and it was during Blaauw's lecture on the first
afternoon that I asked my right-hand neighbour "elose your eyes, forget
how you came here and guess in which year you are living."; without
hesitation he came up with exactly the same year I had in mind: 1962.

In the corridors I later checked that that feeling of "they have failed to
evolve" was much more general. It became even more justified when E.L.
Glazer in his lectures and W.L. van der Poel in the discussion referred to
logical design as an "art" or a "craft". In the last discussion session, on
Friday afternoon, when the seminar was tied in with the general theme of
teaching computing science, I raised the question whether the topic deserved
the academic effort of trying to raise it from a craft to a scientific discipline.
(With a few exceptions the talks had not been at an academic level, and
under the assumption that the speakers had done justice to their subject,
one could not avoid coneluding that in its current state the topic is rather
shallow; my question was essentially "Is more depth possible?".) The
ensuing discussion -whom am I quoting?- "generated more heat than
light". My elearest memory is that some violently objected to the idea,
noteworthy I.M. Barron, who thought it appropriate to use the word
"academic" in the pejorative sense in which it is so often used by the vulgar.
(Later that evening, while waiting for the plane to depart, I read of the
effort to prevent a further debasement of the word "academic" by defining
it as "a term of opprobrium applied by those who do not know their
business to those who do" [2].) I also coneluded that H.A. Simon had been
correct [3] when he observed that today's designers -he wrote this in 1968,
but it could have been written now- are perfect1y willing to use the results
from other scientific disciplines, but are not ready to contemplate a "science
of design" or to approach their own problems in a scientific manner.

Trip Report E.W. Dijkstra, Newcastle-upon-Tyne, 5-10 Sept. 1977 321

Another overwhelming impression was the confusion between "eco
nomical" and "economic". Everybody agrees that considerations of econ
omy playa predominant role in many aspects of computing science: it is to
a large extent a science concerned with how not to waste resources. But
several speakers could only deal with the (subtle) questions of economy after
having translated them into the (crude) questions of economies, that is, after
having equated "efficient" with "cheap". E.L. Glazer c1early demonstrated
the confusion introduced by doing so. In all his lectures he mentioned the
"cost equation" as his main guiding principle; at the same time he com
plained that its coefficients, even if known, were changing all the time. He
conc1uded that, as a result, design was now very difficult; the only justified
conc1usion is that those changing values aggravate the already severe
problems of doing business. The fact that in our field science and business
often need each other seems in many minds to have blurred the distinction
between the two, and the result is a confusing kind of unisex thinking. I.M.
Barron went even further. He spoke entirely as an amateur economist, and
argued that expected chip production capacity was so large, that research
had to find new applications very quickly, lest the chip manufacturing firms
collapse and their large investments be lost! (Thirty-six hours after my
return I heard a proposal for automatically tuning radio sets, each equipped
with a microprocessor for the decoding of the digital information to be
supplied by the stations.)

T.C. Chen did in principle a good job, and his contributions were
generally appreciated. With a number of very different and well-chosen
examples he illustrated what novel problems may become relevant as the
result of new technologies becoming available. But I found his method of
presentation exasperating: he lectured as if addressing idiots. I attended his
first lecture until the end, but the next day I could not envisage going
through that torture again and I played truant. The third day, when he gave
his last lecture, I decided to be a good boy again and to attend, but I am
afraid that at the nth insipid visual I exploded. Also Aspinall showed how
easily a lecture can suffer from prepared viewgraphs. (The things being
prepared in advance, one can come away with cumbersome notations;
furthermore the temptation to show irrelevancies seems hard to resist.)

The most informative talks were given by l.G. Givens, W.M. McKeeman,
and C.A.R. Hoare. Givens described "The W ork of the Digital Systems
Laboratory at Newcastle-upon-Tyne" and did so very c1early. This I appre
ciated, independently of the fact that, if I had my way -which they are
wise not to give me- I would presumably c10se the laboratory. When I
heard the pride with which Givens told how at the end students were taught
how to incorporate "more complex components", I was reminded of
Donovan's artic1e in the Comm.ACM [4] and shuddered. McKeeman's third
talk "A Simple Computer" described an introductory course on computer
architecture, given at Santa Cruz. His talk was informative and the course

322 EWD635

seemed indeed a broad and unbiased introduction to the problems; the
associated laboratory work, however, made the course very time-consuming
for the students. Hoare gave a very nice one-hour introduction to his
"Communicating Sequential Processes"; he is still miles away from my ideal
of defining semantics independently of any underlying computational model,
but he has at least reached the stage that no one can make out whether he is
talking about hardware or software. (Afterwards he wondered how many in
the audience had noticed that in this respect he had not committed himself.)
The reactions he evoked gave a surprising insight into some people's
ignorance or small-mindedness.

During one discussion something very amazing surfaced. E.L. Glazer had
described his problems in getting code for microprocessors right, and how
they had been somewhat alleviated by additional hardware in which tradi
tional debugging techniques -inspection and injection of individual reg
ister contents- could be used again. His problems had not been encoun
tered by Fraser Duncan, who had found the good coding discipline of the
late fifties again quite applicable, nor by Harry Whitfield who also had
found these problems quite avoidable. So-called "cross-compilers" were
mentioned as an obvious solution. Then Glazer told that he could get no
one to write a cross-compiler because computing scientists who knew how to
write a compiler did not want to have anything to do with microprocessors,
for fear of status and for fear that, after having been contaminated with
microprocessors, "they could never return to real computing again".
N owhere else had Glazer given us reason to doubt his words, so we believed
him. But then there must be something very, very wrong. Here you have
jobs, challenging enough for professors in computing science in Groningen
and Bristol to spend a few days, a few weeks or a few months on in order to
show that the job is perfectly doable, and in Silicon Valley the professionals,
who should be able to do it, for some obscure (social?) reason look down on
it, and the job isn't done decently. The story supported the definition of the
problems of the real world as those that you are left with when you refuse to
apply their effective solution. It left me very disturbed and 1 was reminded
of a conversation with my wife, one evening a few months ago. We were
talking about love of perfection, and 1 mentioned that R.M. Rilke always
wrote flawless letters. When he made an error, he started the page afresh: as
simple as that! 1 suggested that perhaps Rilke had carried a good oprinciple
too far. But my wife remarked immediately "I guess that Rilke leamed very
quickly how to avoid mistakes.". That conversation seemed so relevant that
1 told it to several people in Newcastle and 1 now inc1ude it in my trip
report.

1 did notjoin the excursion (boat tour this time) on Wednesday afternoon,
but went with Fraser Duncan (now at the University of Bristol) to Brian
Randell's house (where 1 was staying), where Fraser could say hello to
Brian's wife. After a cup of coffee lieft them because 1 wanted to do some
writing. Later that afternoon Brian RandelI, Gerhard Seegmüller, and Tony

Trip Report E.W. Dijkstra, Newcastle-upon-Tyne, 5-10 Sept. 1977 323

Hoare returned (Fraser had gone to visit the Cathedral of Durham). At that
moment I was trying to comment on a paper that a friend (not one of its
authors) had mailed to me, and that for eighty percent is an ugly political
pamphlet disguised as a scientific paper. An editor had sent it to Tony,
asking him for arebuttal, but having other things to do Tony had declined
to do so. It was an amazing coincidence, and I welcomed the opportunity to
discuss that paper.

That afternoon was the only moment of peace and quiet that week. On
Monday evening the participants were the guests of the Randells. On
Tuesday evening the University offered a sherry party, and afterwards I had
dinner in Ewan Page's new house. On Wednesday evening the participants
were offered a "Mediaeval Banquet" -to be eaten with knife and fingers:
appropriately called "a digital dinner" - on Thursday evening we were
offered the elosing dinner in the new Town Hall (furnished with an
unbelievable luxury) of Newcastle-upon-Tyne. The dinner was excellent; the
only shortcoming was that the dining hall was very elose to the kitchen
where an oven produced a loud and high-pitched tone that became very
painful.

* * *
Recalling the sarcasms from our survival kit I can only conelude that

most talks have been pretty disappointing indeed. Of one speaker I re
marked that his talk had been much better than I had feared, of another
speaker it has been said that his talk had enhanced the quality of the
others ... "Reputations shredded while you wait." was Brian's apt com
ment. Brian always accuses me of a lack of tolerance and he is, of course,
right that my naive idealism should not turn me into the complete misan
thrope. But what is the alternative? Am I expected to cheer when Ewan
Page defends their Digital Systems Laboratory by remarking that in other
departments of the University much worse things happen? Am I expected to
cheer when van der Poel explains to me that there is little point in trying to
educate good designers because IBM has discovered that with poor designs
more money is eamed? Has the seminar made me a wiser man? I hope so.
And also a sadder one? I sincerely hope not.

[1] Sayers, Dorothy L., Busman's Honeymoon, Gollancz 1937, Pengum Books 1962
[2] Gowers, Sir Emest, The Complete Plain Words, Pelican Books 1977
[3] Simon, Herbert A., The Sciences 0/ the Artificial, MIT Press, 1969
[4] Donovan, John J., Tools and Philosophy for Software Education, Comm. ACM

19,8 (Aug. 1976),430-436.

Nuenen PROF. DR. EDSGER W. DIJKSTRA

Burroughs Research Fellow

EWD636
Why Naive Program Transformation
Systems Are Unlikely to W ork

Look how carefully the title has been worded! No deve10per of a program
transformation system need fee1 offended, for I have given him two escapes.
Firstly, I am not arguing an impossibility, but only an unlikeliness - and
we know that all startling advances have been made against seemingly
overwhelming odds, don't we? Secondly, he has the option to declare that
the program transformation system he is developing is not "naive" in the
sense that I shall make more precise below.

* * *
I take the position that a serious programmer has at least two major

concerns, viz. correctness and efficiency. And from existing software we can
deduce that neither of these two concerns is a trivial one.

For years I have argued what I still believe, name1y that, when faced with
different concerns, we should try to separate them as complete1y as possible
and deal with them in turn. For correctness and efficiency concerns tbis
separation has been acbieved up to a point. It is possible to treat the
problem of program correctness in isolation from the problem of efficiency
in the sense that we can deal with the correctness problem, temporarily even
ignoring that our program text also admits the interpretation of executable
code. It is also possible to investigate the various cost aspects of program
execution independently of the question whether such execution of the
program will produce a correct result.

Presented as in the previous paragraph, the separation sought seems to
have been found. It is true that the separation is reachable as far as the
program text itself is concerned; in the process of composing the text,
however, the separation is less marked. There does exist a formal discipline
that, when adhered to, cannot lead to an incorrect program. In its applica
tion, however, we have a great amount of freedom, and in the choice how to

324

Why Naive Program Transformation Systems Are Unlikely to Work 325

apply the discipline ensuring correctness, the designer always makes up his
mind by considering his other concems, such as efficiency. In other words,
the more rigorous the concems have been separated with respeet to the
program text itself, the more schizophrenie the aet of program eomposition
becomes: the programmer still remains a jack of many trades, switching all
the time -and at a high frequeney!- between various röles, whose
differenees have only become more and more marked over the last decade.

Program transformations have been presented as a possible means to
overeome the need for such a schizophrenie programmer behaviour. A
number of so-ealled "semantics-preserving program transformations" have
been discovered. Each such transformation, when applicable and applied to
a program A generates a new program A' that, when executed, will produce
the same result as the original program A, the differenee being that the costs
of execution of A and of A' may differ greatly. Program A' may also be
derived by successive applications of a sequence of sueh transformations.

It was the discovery of (sequences of) sueh transformations that sup
ported the idea of what I call "naive" program transformation systems.
When using sueh a system for the development of a program, this develop
ment was envisaged to take plaee in two successive, clearly and rigorously
separated, stages.

In the first stage the programmer would only be concemed with program
eorrectness: unencumbered by efficiency considerations he would write a
program, whose correctness could be established as easily as possible. In the
ideal case, the program's correctness would be trivial to establish.

In the second stage - whieh in the dreams of some could or should be
conducted by a different person, unfamiliar with the original problem- the
correct but inefficient program would be subjected to semanties-preserving
transformations from a library, until the program had become efficient as
weIl. (At the moment this dream was dreamt, the available library of
acknowledged transformations was admittedly still somewhat small, but it
was eonstantly growing and hopes were high.)

* * *
When such systems were proposed to me I was very seeptieal, but I was

mainly so for a purely personal reason and aceidental circumstance. Their
advoeates tried to convince me of the viability of their approach by
composing according to their proposed method a program I had published
myself. In their demonstrations, stage two required about ten pages of
formal labour, while stage one had taken them between one day and one
week.

It so happened that their demonstrations were not very convineing for
me, beeause, heading schizophrenically towards a correct and efficient
solution, I myself had solved the whole problem (without peneil and paper)
in fifteen minutes. (It was the evident effectiveness of the heuristics applied

326 EWD636

that had prompted that publication: the problem itself was one of the kind I
could not care less about.)

At the time I was not worried so much ab out the ten pages of stage two,
since it was c1ear that most of it could be mechanized and would never need
to see the light of day. I was much more worried about the discrepancy
between one or several days for stage one on the one hand, and fifteen
minutes for the whole job on the other, and I remember voicing tbis latter
worry at a meeting of the IFIP Working Group 2.3 on "Programming
Methodology" .

One of the members -a pioneer in program transformations- sug
gested a possible explanation for the observed discrepancy: as programmers
we had in the past been so terrorized by efficiency concems that it was very
difficuIt for us to come up with a trivially correct solution, no matter how
grossly inefficient. He supported bis explanation by stating a problem and
presenting a solution for it that, indeed, was so ridiculously inefficient that
it would never have entered my mind.

I was struck by his argument -otherwise I wouldn't have remembered
it!- ; he made me doubt but could not convince me. The possible
explanation for the discrepancy that I had considered was that, by ignoring
efficiency considerations, the "admissible solution space" had become
cumbersomely large: I feit that the efficiency considerations could provide a
vital guiding principle. It seemed a draw, and for the next eight months I
did not make up my mind any further about the chances of success for
naive program transformation systems.

* * *
All the above was introduction. After the c10sing ceremony of IFIP77 in

Toronto I had dinner with Jan Poirters and Martin Rem, and in a
conversation about the röle of mathematics in programming I ventured the
conjecture that often an efficient program could be viewed as the successful
exploitation of a mathematical theorem. I presented an efficient program as
a piece of logical brinkmanship in which a cunning argument could show
that the computationallabour performed would be just enough for reaching
the answer.

I came up with the example of the shortest subspanning tree between N
points. There exists a simple one-to-one correspondence between the NN-2
different subspanning trees between N points and the NN-2 different
numbers of N - 2 digits in base N. A naive computation A could therefore
generate all NN-2 trees and select the shortest one encountered. But we
know that there exists an efficient algorithm A' whose computation time is
proportional to N 2• But the only way in which I can justify the latter
algorithm is by using (a generalization of) the theorem that of the branches
of the complete graph that meet in a single point, the shortest one is also a
branch of the shortest subspanning tree.

Why Naive Program Transformation Systems Are Unlikely to Work 327

In confirmation of our experience that everything of significance in
computing science can be illustrated with Euclid's algorithm, Martin Rem
came with that example. In order to compute the greatest common divisor
of a positive X and Y, the correct algorithm A constructs a table of divisors
of X, then a table of divisors of Y, then the intersection of the two tables,
and from that (finite and nonempty) intersection the greatest value is
selected. But good old Euclid already knew algorithm A' which I can only
justify by appealing to (a generalization of) the theorem that gcd(x, y) =
gcd(x, y - x).

The next week David Gries told me about a speeding up of the Sieve of
Eratosthenes -another classic!- for generating a table of prime numbers,
a job for which many inefficient but correct algorithms can be created, e.g.

y, p := 1,1;
do P < N -7p := p + 1; do gcd(p, y) *" 1 -7 P := P + Iod;

print(p);y:=y*p
od

David's program, however, relied on the theorem that there exists a prime
number between n and 2n.

In the meantime I have thought of a fourth example. The branches of a
subspanning tree between N points provide a unique path between any two
of the points and we can define the sum of the branches of such a path to be
the "distance" between those two points. Which is the point pair with the
maximum distance from each other? The simple algorithm Adetermines all
N(N - 1)/2 distances and selects the longest encountered. The efficient
algorithm A' uses the theorem that for an arbitrary point y the point x with
the maximum distance from y is one of the end points of the longest path.
We then determine the point z with the maximum distance from x, and the
pair (x, z) is our answer.

The question now is: what are our chances of deriving an efficient
program A' by app1ying (mechanizab1e) transformations from a finite
library to the original program A? Because the transformations are
semantics-preserving, program A' is correct if program Ais. The correctness
proof for A -which, ideally, is almost trivial- together with the derivation
path from A to A' constitutes a correctness proof for A'. In none of the
examples given does the theorem with which we proved the correctness of A'
seem unnecessarily strong, i.e. in each case, from the given correctness of A'
the corresponding theorem seems simply derivable. The supposed derivation
path from A to A' therefore contains the major part not only of the
justification of A', but also of the proof of the mathematical theorem that we
used to justify program A' direct1y.

All our experience from mechanized mathematics teIls us that therefore
the derivation paths from A to A' -if, with a given library, they exist at
all- can be expected to be long and difficult to find. Extending the library

328 EWD636

is only an improvement as long as the library is still very small; using a large
library will be exact1y as difficult as commanding a large body of mathe
matical knowledge. Furthermore, each intermediate product on the deriva
tion path from A to A' must be a program that is semantically equivalent to
A; for this constraint I can find no analogue in normal mathematical
reasoning, and for many triples (A, A', library) it may make even the
existence of such a derivation path questionable.

The stated hope that, once our system of mechanized program transfor
mations is there, stage two can be left to a sort of "technical assistant" that
need not know anything about the original problem and its underlying
mathematics, but only needs to know how to operate the transformation
system, now seems to me unwarranted. And if that hope is expressed as a
claim, that claim now seems to me just as misleading as most advertising.

I do not exclude the possibility that useful program transformation
systems of some sort will be developed -it may even be possible to derive
some of the efficient algorithms I mentioned above- , but I don't expect
them to be naive: the original goal of allocating the mathematical concem
about correctness and the engineering concem about execution costs to two
distinct, well-separated stages in the development process seems unattaina
ble. It was good old Euclid who wamed king Ptolemy I:

"There is no 'royal road' to geometry."

and those who think that that warning does not apply to them will be
reminded of it the hard way

Acknowledgment

The argument displayed above contains enough loose expressions -such as
"a major part of the proof' - to be regarded as fishy. I am not even myself
perfect1y sure of its convincing power. (How is that for a loose expression?)
I therefore gratefully acknowledge the opportunity provided in Niagara-on
the-Lake, Aug. 1977, to confront members of IFIP WG2.3 with it and to
solicit their comments. Although I found my feelings confirmed, it goes
without saying that none of them can be held responsible for the views
expressed in the above. I also thank Jan Poirters and Martin Rem for their
contribution to a pleasant, yeah even memorable, dinner. (End of acknowl
edgment.)

Nuenen PROF. DR. EDSGER W. DIJKSTRA

Burroughs Research Fellow

EWD637
The Three Golden Rules for Successful
Scientific Research

This note is devoted to three rules that must be followed if you want to be
successful in scientific research. (If you manage to follow them, they will
prove almost sufficient, but that is another story.) They are recorded for the
benefit of those who would like to be successful in their scientific research,
but fail to be so because, being unaware of these rules, they violate them. In
order to avoid any misunderstanding I would like to stress, right from the
start, that this note is purely pragmatic. No moral judgements are implied,
and it is completely up to you to decide whether you wish to regard trying
to be successful in scientific research as a noble goal in life or not. I even
leave you the option of not making that decision at all.

The first rule is an "internal" one; it has nothing to do with your
relations with others, it concerns you yourself in isolation. It is as folIows:

Raise your quality standards as high as you can live with, avoid wasting your
time on routine problems, and always try to work as c10sely as possible at the
boundary of your abilities. Do this because it is the only way of discovering
how that boundary should be moved forward.

This rule teIls us that the obviously possible should be shunned as weIl as
the obviously impossible: the first would not be instructive, the second
would be hopeless, and both in their own way are barren.

The second rule is an "external" one; it deals with the relation between
"the scientific world" and "the real world". It is as folIows:

We alllike our work to be socially relevant and scientifically sound. If we can
find a topic satisfying both desires, we are lucky; if the two targets are in
conflict with each other, let the requirement of scientific soundness prevail.

The reason for this rule is obvious. If you do a piece of "perfect" work in
which no one is interested, no harm is done. On the contrary, at least

329

330 EWD637

something "perfect", no matter how irrelevant, has been added to our
culture. If, however, you offer a shaky, would-be solution to an urgent
problem, you do harm to the world, which, in view of the urgency of the
problem, will only be too willing to apply your ineffective remedy. It is no
wonder that charIatanry always flourishes in connection with incurable
diseases. (Our second rule is traditionally violated by the social sciences to
such an extent that one can now question if they des erve the name
"sciences" at all.)

The third rule is somewhere in the middle on the scale "internaIjexter
nal". It deals with the relation between you and your scientific colleagues. It
is as folIows:

Never tackle a problem of which you can be pretty sure that (noworin the
near future) it will be tackled by others who are, in relation to that problem,
at least as competent and well-equipped as you.

Again the reason is obvious. If others will come up with as good a solution
as you could obtain, the worId doesn't lose a thing if you leave the problem
alone. A corollary of the third rule is that one should never compete with
one's colleagues. If you are pretty sure that in a certain area you will do a
better job than anyone else, please do it in complete devotion, but when in
doubt, abstain. The third rule ensures that your eontributions -if any!
will be unique.

* * *
I have ehecked the Three Golden Rules with a number of my colleagues

from very different parts of the worId, living and working under very
different circumstances. They all agreed. And were not shoeked either. The
rules may strike you as a bit eruel If so, they should, for the sooner you
have discovered that the seientifie world is not a soft place but -like most
other worIds, for that matter- a fairly ruthless one, the better. My
blessings are with you.

Nuenen PROF. DR. EDSGER W. DIJKSTRA

Burroughs Research Fellow

EWD639
The Introduction of MAES®

"Mathematics Inc. proudly announces MAES®, its knowledge-based
Mathematical Articles Evaluation System. Developed and tested for internal
usage by the World's Leading Manufacturer of first-c1ass mathematical
products, MAES® is an indispensable quality control tool for professional
producers and consumers of Twentieth Century Mathematics. Being adopted
by most of the International Mathematical Journals to replace their subjec
tive, error-prone, labour-intensive and time-consuming refereeing process,
MAES® will be welcomed by the Scientific Community as an enlightening
new standard. In order to assist your mathematicians in the writing of the
significant artic1es that give recognition to your Institute, Mathematics Inc.
has acquiesced to give in a11 the leading Scientific Centers of the W orld our
special three-day course "How to increase the MAES® -grade of your
publications". Courses in London, Philadelphia, Moscow, Amsterdam,
Grenoble, and Djakarta have already been planned, courses in Cambridge,
Austin, Oxford, Brussels, Munich, Oslo, New York, Hong Kong, and
Loempia are in a stage of active preparation. For the larger Scientific
Institutes and Universities, the friendly specialists of Mathematics Inc. will
be happy to give a personalized in-house Course, fully tuned and adapted to
the special needs of your organization."

* * *
With the above text MAES® was announced to the World. Its announce

ment on the 1st of August 1976 gave exactly the stir and response we had
anticipated. We could have done so earlier, but the date was carefully
chosen in the wake of the Bicentennial4th of July, Ulster's 12th of July and
the Quatorze Juillet in France, during the summer when the papers have
little politics to report on and during which we could take the Universities
by surprise (in their Summer Sleep, so to speak). MAES® was the immediate
success it deserved to be.

331

332 EWD639

For the coming year institutional customers will be the main target of our
promotion campaign; as soon as the Program Committees of the most
important conferences and the Editorial Boards of the leadingjournals have
adopted it, the individual, career-conscious mathematician is expected to
provide for the next market extension. Mathematics Inc. is considering
MAES@-grading service bureaus in the world's major scientific centers. It is
still an open question whether they will be ron by Mathematics Inc. itself or
by one of our educational daughters, such as Instant Inspiration Company
or Methodology Mechanics.

I must make a note to ask our PR-man for his advice; although it is not
purely a PR-question, it has technical aspects as weIl. One of the distinctive
features of MAES® is the knowledge-based determination of the metrics for
the Exceptional Feature Attribute. KOD's (= Key Occurrence Densities)
are determined and compared to the statistical average, from which the
Exceptional Feature Attribute favours deviations in various chosen direc
tions. By being adopted MAES@ will, therefore, not only influence the
average style of mathematical publications but also -potentially at least
one of its own evaluation standards.

Within Mathematics Inc. there is a hot debate how to organize the
ongoing MAES® adaptation. We have -like in every world-wide organiza
tion- the centralists who argue that only the Mathematics Inc. HQ in the
Hosanna Building can coordinate and fully synchronize these successive
releases; they furthermore argue that this synchronization is absolutely
essential if MAES® is going to be accepted as an ISO Standard. On the
other hand we have the decentralists who argue that, in view of the drastic
differences in publication delays in the various parts of the world, some
markets will be more successfully penetrated by a more slowly evaluating
quality standard for mathematical publications, while other markets require
a much more aggressively adapting grading system. Also they have, un
doubtedly, a strong point. It is a hard batde; the issue is undecided yet and
as Chairman of the Board I suppose that it will remain so until I have cut
the Gordian knot.

Inside the Company we hope that in the meantime the MAES@ concept
of the Conceptual Paragraphs will somewhat ease the problem in that it
makes the eventual MAES@-grade less sensitive to local changes in the
preferred KOD deviations. Personally, I think that -more than its widely
advertised Knowledge Base- the concept of the Conceptual Paragraphs
will determine the MAES@ success. After all, the introduction of Conceptual
Paragraphing -which I suggested during its development- has in our
internal usage already shown to be the most revolutionary enhancement of
our grading techniques. It is so simple! And we have the patents, all over the
world, so now I can divulge the secret! Not necessarily contiguous (!)
sentences are grouped together in the same Conceptual Paragraph if, by
doing so, we can increase the inter and decrease the intra cross reference
correlation coefficients of the -of course: normalized- KOD's. It is as
simple as that! By maximizing the one and minimizing the other, MAES@

The Introduction of MAES® 333

Coneeptual Paragraphing automatieally arrives at the optimum retrieval
modularization, whieh is the basis for all our Quality Attribute Metries.
Besides its intrinsic significanee for the destrueturalization of the flow of the
SSR (= SymboljSignificanee Ratio), MAES® Conceptual Paragraphing has
the added advantage that the place of the optimal boundaries between the
Conceptual Paragraphs is -as a result of the refined averaging proeedures
- statistieally speaking less sensitive to fashions, as may be refleeted in the
Knowledge Base.

* * *
To give you some idea of the effeetiveness of MAES®, let me report to

you some of our in-house experienee during the period 15th April 1976-14th
of lune 1976, during whieh nearly 4000 of our mathematieal articles were
subjeeted to MAES®-grading on an experimental basis. (Our market re
search people have guaranteed that those 4000 papers were a representative
samp1e from our spring produetion.) The MAES®-grades given ranged from
0.632 to 0.944, with the exeeption of two articles with MAES®-grades under
0.3, one from our Loempia subsidiary, and one from the Grenoble one. (The
latter exception is the more remarkable because on automatic evaluation
systems particularly the French products tend to score very high.) The
statistics collected by MAES® during that period are quite interesting. We
detected significant metrics for quite a few new negative Quality Attributes.

Production of course material in Hebrew and in lapanese has been held
up, pending the decision how it should be affected by the recent discovery
of our Department of Mathematieal Psychology, that the notion of decon
ceptualization should be represented by arrows that point backwards. In all
other languages, I am happy to say, course material production is working
full blast.

And it is high time too! Academie mathematicians are terribly slow in the
uptake, and most of them have not yet understood that the era of soundly
engineered mathematics is already here, today! They fool themselves -and
worse: their students!- by c10sing their eyes to modern scientific tech
niques for the development and controlled growth of mathematies, they
continue teaehing their old, ad-hoc ways of doing research. But the whole
sale introduction of MAES® will teach the reactionary bastards! At last
their private, hobbyist norms will evaporate, for MAES® will force them to
adopt the standards of the mathematical industry. Even the departments of
pure math will now be forced to produce soundly engineered artic1es! This,
no more and no less, is the Great Service that the introduction of MAES®
will render to the World. Thanks to Mathematics Ine. Semper floreat at
crescat!

Hosanna Building
Plataanstraat 5
5671 AL N uenen
The Netherlands

PROF. DR. EDSGER W. DIJKSTRA

Chairman of the Board of
Mathematics Inc.

EWD643
A Class of Simple
Communication Patterns
WRITTEN IN CONJUNCTION WITH C.S. SCHOLTEN

We consider a finite, undirected graph each node of which contains a
process. Processes contained in nodes directly connected by an edge of the
graph are called each other's neighbours.

An act of communication is only possible between two neighbours. At
any moment in time each process is ready to communicate with precisely
one of its neighbours; the act of communication between two neighbours
can only take place when each of them is ready to communicate with the
other, and, as soon as they are both ready to communicate with the other,
the communication is assumed to take place within a bounded period of
time.

For each node there exists an (otherwise arbitrary) cyclic order of its
neighbours, and the act of communication with one of its neighbours causes
the node to become ready to communicate with its next neighbour, where
"next" is to be understood in terms of that cyclic order. It is this rigid rule
of the locally cyclic communication patterns that justifies the word "simple"
in the title of this note. For such systems we shall determine the conditions
characterizing the absence of the dangers of deadlock or starvation. .

We represent the state of each process by the presence of one arrow from
its node towards (the node of) the neighbour it is ready to communicate
with: hence each node has always one outgoing arrow along one of the
edges of the original undirected graph. In this representation, the act of
communication between two neighbours takes place when they point to
each other; the act of communication causes a "rotation" of both outgoing
arrows. In this representation, the absence of deadlock is equivalent to the
existence of at least one edge along which two arrows (in opposite direc
tions) are present.

Let c be an arbitrary cycle of the undirected graph, in which neither a
node nor an edge occurs more than once. (Such cycles contain at least 3

334

A Class of Simple Communication Patterns 335

different nodes.) On tbis cycle we choose an arbitrary direction, wbich gives
each node a "right-hand" neighbour and a "left-hand" neighbour in the
cycle. Because such cycles contain at least 3 nodes, these two neighbours are
different. For the outgoing arrow of anode x of that cycle we define a
"signature with respect to c": if it points to anode that, in the cyclic order
associated with x, lies in the range from (and excluding) the left-hand
neighbour of x to (and including) the right-hand neighbour of x we call the
arrow positive; otherwise we call the arrow negative.

Lemma 1. No act of communication changes the truth-value of the predicate:
the outgoing arrows of the nodes of the cycle c have the same signature with
respect to c.

PROOF. The value of the predicate can only change when the signature of
the outgoing arrow of anode of c is changed. This can only happen at an
act of communication with either its left-hand, or its right-hand neighbour
in the cycle c. Tbis is only possible when two communicating neighbours on
the cycle had outgoing arrows of different signature. The act changes the
signature of both arrows, so their signatures remain different from each
other. In short: if the predicate is false it remains false in spite of the
possibility of changing signatures, if it is true, it remains true because none
of the signatures can change. (End of proof.)

Lemma 2. The existence of a cycle c with outgoing arrows with the same
signature causes local deadlock and, if the original graph is connected, total
deadlock.

PROOF. None of the outgoing arrows of the nodes of c can have its
signature changed, hence for each node of c the number of acts of communi
cation it can perform is bounded (by abound lower than the number of its
neighbours). By induction, the number of acts of communication of any
node that is connected to c via a finite path, is bounded. (End of proof.)

Lemma 3. In the case of total deadlock there is at least one cycle with all its
outgoing arrows of the same signature.

PROOF. Total deadlock means that no process has its outgoing arrow
"matched" by an arrow in the opposite direction. Starting at any node, the
step that consists of going from that node to the node its outgoing arrow
points to can be repeated indefinitely. On a finite graph we must visit a
node visited before, and hence a cyclic path (of at least 3 nodes) must exist:
but that is a cycle with all its outgoing arrows of the same signature. (End of
proof.)

Combining lemma's 2 and 3 we conclude our main

336 EWD643

Theorem. In the systems considered the absence j certainty of deadlock is
equivalent to the absencejpresence of at least one cycle of uniform signature.

Lemma 4. A deadlock-free system remains deadlock-free when, at a moment
that there are no arrows along a certain edge, that edge is removed, provided
at both its ends the cyclic order of the remaining neighbours remains the same.

PROOF. The removal of an edge does not create new cyc1es. Because at both
ends the cyclic order of the remaining neighbours remains the· same, the
definition of the signature of arrows with respect to the remaining cyc1es is
not changed. Hence the assumed absence of cyc1es with outgoing arrows of
uniform signature therefore remains. (End of proof.)

* * *
Our lemma's and theorem remain valid in a more general setting. We

have assumed that each process would be ready to communicate with its
neighbours "in some cyclic order". We have used that assumption only for
two conc1usions:

(1) that contacts with left- and right-hand neighbours -i.e. the pair of
neighbours on a cyclic path through the node in question- would
alternate;

(2) that each node will be ready to communicate with any of its neighbours
within a bounded number of contacts.

When alIlocal communication patterns satisfy properties 1) and 2), our
conc1usions remain valid provided we redefine the signature of an outgoing
arrow of anode on a cyc1e c as folIows: the arrow is positive if it points to
the right-hand neighbour or will do so before pointing to the left-hand
neighbour, the arrow is negative otherwise. These more general communica
tion patterns are still "simple" in the sense that permanent nonactivity of a
specific process will lead after a bounded number of communication acts to
nonactivity of the whole network connected to it. Such networks are simple
because the absence of the danger of deadlock implies then the absence of
the danger of individual starvation.

For the sake of completeness we formulate

Lemma 5. Consider a deadlock-free network with "a leaf ", i.e. anode with
only one neighbour. If the leaf, together with its outgoing arrow, is removed at
a moment that its neighbour did not point to it, and the cyclic order of its
neighbour' s remaining neighbours remains the same, the resulting system is
again deadlock-free.

Lemma 5 is a variation on Lemma 4, and we leave its proof to the reader.

* * *

A Class of Simple Communication Patterns 337

The theorem described and proved in tbis note is a theorem of the type
the need of wbich 1 discussed last month at lunch with c.A.R. Hoare, when
we met in Newcastle-upon-Tyne. At the end of that discussion we agreed
that the discovery of a dass of such theorems might be a proper thesis topic.
Is the moral of tbis note that that topic might be unsuitable, because it is
too small?

The theorem given in this note and its proof have been inspired in
particular by the self -stabilizing systems designed earlier by L. Lamport and
C.S. Scholten, in wbich processes at the nodes of a tree were considered. A
discussion with C.S. Scholten on the topic of EWD642 (still in statu
nascendi) was the incentive for its discovery.

Nuenen PROF. DR. EDSGER W. DUKSTRA

Burroughs Research Fellow

EWD648
"Why Is Software So Expensive?"
An Explanation to
the Hardware Designer

Recently I received an invitation from a sizeable (and growing) hardware
company. For many years its traditional product line has been high-quality
analog equipment; in the more recent past, however, digital components are
beginning to playamore important röle. The company's corporate manage
ment was aware of more or less unavoidably entering the (for the company
unfamiliar) field of software, was aware of the existence of its many pitfalls
without having a dear understanding of them, and I was invited to explain
to the company's corporate management what the design of software is aH
about, why it is so expensive, etc.

Having many other obligations, I don't know yet whether I shall be able
to accept the invitation, but, independently of that, the chaHenge absolutely
delights me. Not only have I programmed for more than 25 years, but right
from the beginning up till this very day I have done so in, over periods even
dose, cooperation with hardware designers, machine developers, prototype
testers, etc. I think that I know the average digital hardware designer and
his problems weH enough to understand why he does not understand why
designing software is so difficult. To explain the difficulty of software
design to him is hard enough, almost as hard as explaining it to a pure
mathematician. To explain it to a group of designers with their background
and professional pride in high-quality analog equipment adds definitely a
distinctive flavour to the challenge! Observing myself thinking about how to
meet it and realizing that, even if I accept the invitation, my host will not
have exdusive rights of my explanation, I decided to take pen and paper.
Hence this text.

* * *
To the economic question "Why is software so expensive?" the equally

economic answer could be "Because it is tried with cheap labour.". Why is

338

"Why Is Software So Expensive?" An Explanation to the Hardware Designer 339

it tried that way? Because its intrinsic difficulties are widely and grossly
underestimated. So let us concentrate on "Why is software design so
difficult?". One of the morals of my answer will be that with inadequate1y
educated personnel it will be impossible; with adequately educated software
designers it might be possible, but will certainly remain difficult. 1 would
like to stress, right at the start, that current problems in software design can
only partly be explained by identified lack of competence of the pro
gtammers involved. 1 would like to do so right at the start, because that
explanation, although not uncommon, is too facile.

It is understandable: it must be very frustrating for a hardware manager
to produce what he rightly considers as a reliable machine with a splendid
cost/performance ratio and to observe thereafter that, by the time the
customer receives the total system, the system is bug-ridden and its perfor
mance has dropped below the designer's worst dreams. And besides having
to swallow that the software guys have ruined his product, he is expected to
accept that while he works more and more efficiently every year, the
software group is honoured for its incompetence by yearly increasing
budgets. Without further explanations from our side, we programmers
should forgive him his occasional bittemess, for by accusing us of incom
petence he sins in ignorance And as long as we haven't been able to
explain the nature of our problems dearly, we cannot blame him for that
ignorance!

* * *
A comparison between the hardware world and the software world seems

a good introduction for the hardware designer to the problems of his
software colleague.

The hardware designer has to simulate a discrete machine by essentially
analog means. As a result the hardware designer has to think about delays,
slopes of signals, fan-in and fan-out, skew docks, heat dissipation, cooling,
and power supply, and all the other problems of technology and manufac
turing. Building essentially from analog components implies that "toler
ances" are a very essential aspect of his component specifications; his
quality control is essentially of a statistical nature and, when all is said and
done, quality assurance is essentially a probabilistic statement. The fact that
with current quality standards the probability of correct operation is very,
very high should not seduce us to forget its probabilistic nature: very high
probability should not be confused with certainty (in the mathematical
sense) and it is therefore entirely appropriate that no piece of equipment is
delivered without being exercised by test programs. As technology is pushed
more and more to its limits -and it is so all the time- and tolerances
become narrower and narrower, the control of these tolerances becomes a
major concem for the hardware builders. Compared to the hardware
designer who constantly struggles with an unruly nature, the software
designer lives in heaven, for he builds his artefacts from zeros and ones

340 EWD648

alone. A zero is a zero and a one is a one: there is no fuzziness about bis
building blocks and the whole engineering notion of something being
"within tolerance" is just not applicable. In tbis sense the programmer
works indeed in a heavenly environment. The hypothetical one-hundred
percent circuit designer who equates the problems of design and building
with the problems of keeping the tolerances under control must be blind to
the programming problems: once he has simulated the discrete machine
correcdy, all the really hard problems have been solved, haven't they?

To explain to the hardware world why programming still presents
problems, we must draw attention to a few other differences. In very general
terms we can view "design" as bridging a gap, as composing an artefact of
given components; as long as "the target artefact" and "the source compo
nents" don't change, we can reuse the old design. The fact that we need to
design continuously is because they do change. Here, however, hardware
and software designers have been faced with very different, almost opposite
types of variation, change, and diversity.

For the hardware designer the greatest variation has been in "the source
components": as long as machines have been designed he has had to catch
up with new technologies, he has never had time to become fully familiar
with bis source material because before he reached that stage, new compo
nents, new technologies appeared on the scene. Compared to the drastic
variation in bis "source components", bis "target artefact" has almost
remained constant: all the time he has redesigned and redesigned the same
few macbines.

For the programmer the variation and diversity is just at the other end:
the hardware designer's target is the programmer's starting point. The
programmer's "source components" have been remarkably stable -in the
eyes of some, even depressingly so!- : FORTRAN and COBOL, still very
much en vogue, are more than a quarter of a century old! The programmer
finds the diversity at the other side of the gap to be bridged: he is faced with
a collection of "target artefacts" of great diversity. Of very great diversity
even; of an essentially very great diversity even, because here we find
reflected that today's equipment, indeed, deserves the name "general pur
pose".

During the last decade, software designers have carried on an almost
religious debate on "bottom-up" versus "top-down" design. It used to be
"bottom-up", I tbink that now the "top-down" religion has the majority as
its adherents. If we accept the sound principle that, when faced with a
many-sided problem, we should explore the area of our greatest uncertainty
first (because the solution of familiar problems can be postponed with less
risk), we can interpret the conversion of the programming community from
"bottom-up" to "top-down" as a slow recognition of the circumstance that
the programmer's greatest diversity is at the other side of the gap.

Besides being at the other side of the gap to be bridged, the variation and
diversity the programmer is faced with is more open-ended. For the under
standing of bis source components the hardware designer has always physics

"Why Is Software So Expensive?" An Explanation to the Hardware Designer 341

and electronics to fall back on as a last resort: for the understanding of his
target problem and the design of algorithms solving it the software designer
finds the appropriate theory more often lacking than not. How crippling the
absence of an adequate theory can be has, however, only been discovered
slowly.

With the first machine applications, which were scientific/technical,
there were no such difficulties. The problem to be solved was scientifically
perfecdy understood and the numerical mathematics was available to pro
vide the algorithms and their justification. The additional coding to be done,
such as for the conversions between decimal and binary number system and
for program loaders, was so trivial that common sense sufficed.

Since then we have seen again and again that, for lack of appropriate
theory, problems were tackled with common sense, while common sense
turned out to be insufficient. The first compilers were made in the fifties
without any decent theory for language definition, for parsing, etc., and they
were full of bugs. Parsing theory and the like came later. The first operating
systems were made without proper understanding of synchronization, of
deadlock, of danger of starvation, etc., and they too suffered from the
defects that in hindsight were predictable. Again, the indispensable theory
came later.

It is understandable that people have to discover by trying that common
sense alone is not always a sufficient mental too1. The problem is that by the
time the necessary theory has been developed, the pre-scientific, intuitive
approach has already established itself and, in spite of its patent insuf
ficiency, it is harder to eradicate than one would like to think. Here I must
place a critical comment on a management practice that is not uncommon
among computer manufacturers, viz. to choose as project manager someone
with practical experience from an earlier, similar project: if the earlier
project had been tackled by pre-scientific techniques, this is likely to happen
to the new project as weH, even if the relevant theory is in the meantime
available.

A second consequence of this state of affairs is that one of the most vital
abilities of a software designer faced with a new task is the ability to judge
whether existing theory and common sense will suffice, or whether a new
inteHectual discipline of some sort needs to be developed first. In the latter
case it is absolutely essential not to embark upon coding before that
necessary piece of theory is there. Think first! I shall return to this topic
later, in view of its management consequences.

* * *
Let me now try to give you, by analogy and example, some feeling for the

kind of thinking required.
Since IBM stole the term "structured programming" I don't use it

anymore myself, but I lectured on the subject in the late sixties at MIT. A
key point of my message was that (large) programs were objects without any
precedent in our cultural history, and that the most closely analogous object

342 EWD648

I could tbink of was a mathematical theory. And I have illustrated tbis with
the analogy between a lemma and a subroutine: the lemma is proved
indepe:p.dently of how it is going to be used and is used independently of
how it has been proved; similarly a subroutine is implemented indepen
dently of how it is going to be used and is used independently of how it has
been implemented. Both were examples of "Divide and Rule": the mathe
matical argument is parcelled out in theorems and lemmata, and the
program is similarly divided up into processes, subroutines, clusters, etc.

In the meantime I know that the analogy extends to the ways in wbich
mathematical theories and programs are developed. By word of mouth I
recently heard that Dana S. Scott described the design of a mathematical
theory as an experimental science, experimental in the sense that adequacy
and utility of new notations and concepts were determined experimentally,
to wit: by trying to use them. Tbis, now, is very similar to the way a design
team tries to cope with the conceptual challenges it faces.

When the design is complete one must be able to talk meaningfully about
it, but the final design may very weIl be something of a structure never
talked about before. So the design team must invent its own language to talk
about it, it must discover the illuminating concepts and invent good names
for them. But it cannot wait to do so until the design is complete, for it
needs the language in the act of designing! It is the old problem of the
cbicken and the egg. I know of only one way of escaping from that infinite
regress: invent the language that you seem to need, somewhat loosely
wherever you aren't quite sure, and test its adequacy by trying to use it, for
from their usage the new words will get their meaning.

Let me give you one example. In the first half of the sixties I designed as
part of a multiprogramming system a subsystem whose function it was to
abstract from the difference between primary and secondary store: the unit
in wbich information was to be shuffled between storage levels was called
"a page". When we studied our first design, it turned out that we could
regard that only as a first approximation, because efficiency considerations
forced us to give a sub set of the pages in primary store a special status. We
called them "holy pages", the idea being that, the presence of a holy page in
primary store being guaranteed, access to them could be speeded up. Was
tbis a good idea? We had to define "holy pages" in such a way that we
could prove that their number would be bounded. Eventually we came up
with a very precise definition of "holy" that satisfied all our logic and
efficiency requirements, but all during these discussions the notion "holy"
only slowly developed into something precise and useful. Originally, for
instance, I remember that "holiness" was a boolean attribute: a page was
holy or not. Eventually pages tumed out to have a "holiness counter", and
the original boolean attribute became the question whether the holiness
counter was positive.

If during those discussions astranger would have entered our room and
would have listened to us for fifteen minutes, he would have made the

"Why Is Software So Expensive?" An Explanation to the Hardware Designer 343

remark "I don't believe that you know what you are talking about.". Our
answer would have been "Yes, you are right, and that is exactly why we are
talking: we are trying to discover about precisely what we should be
talking." .

I have described tbis scene at some length because I remember it so well
and because I believe it to be quite typical. Eventually you come up with a
very formal and well-defined product, but tbis eventual birth is preceded by
aperiod of gestation during wbich new ideas are tried and discarded or
deve1oped. That is the only way 1 know of in wbich the mind can cope with
such conceptual problems. From experience 1 have learned that in that
ge station period, when a new jargon has to be created, an excellent mastery
of their native tongue is an absolute requirement for all participants. A
programmer that talks sloppily is just a dis aster. Excellent mastery of bis
native tongue is my first se1ection criterion for a prospective programmer;
good taste in mathematics is the second important criterion. (As luck will
have it, they often go hand in hand.)

I had a third reason for describing the birth of the notion "holy" at some
length. A few years ago I learned that it is not just a romantization, not just
a sweet memory from a project we allliked: our experience was at the heart
of the matter. I leamed so when I wished to give, by way of exercise for
myself, the complete formal deve10pment of a recursive parser for a simple
programming language, defined in terms of some five or six syntactic
categories. The only way in wbich 1 could get the formal treatment right was
by the introduction of new syntactic categories! Those new syntactic cate
gories' characterized character sequences that were meaningless in the origi
nal programming language to be parsed, but indispensable for the
understanding and justification of the parsing algorithm under design. My
formal exercise was very illuminating, not because it had resulted in a nice
parser, but because in a nice, formal nutshell it illustrated the need for the
kind of invention software development requires: the new syntactic cate
gories were exemplary of the concepts that have to be invented along the
way, concepts that are meaningless with respect to the original problem
statement but indispensable for understanding the solution.

* * *
I hope that the above gives you some feeling for the programmer's task.

When dealing with the problems of software design, I must also devote a
word or two to the phenomenon of the bad software manager. It is
regrettable, but bad software managers do exist and, although bad, they
have enough power to ruin a project. I have lectured all over the world to
programmers working in all sorts of organizations, and the overwhelming
impression I got from the discussions is that the bad software manager is an
almost ubiquitous phenomenon: one of the most common reactions from
the audience in the discussion after a lecture is "What a pity that our
manager isn't here! We cannot explain it to him, but from you he would

344 EWD648

perhaps have accepted it. We would love to work in the way you have
described, but our manager, who doesn't understand, won't let us.". I have
encountered tbis reaction so often that I can only conclude that, on the
average, the situation is really bad. (I had my worst experience in a bank,
with some govemment organizations as good seconds.)

In connection with bad managers I have often described my experience
as a lecturer at IBM, Hursley, because it was so illuminating. Just before I
came, the interior decorator had redone the auditorium, and in doing so he
had replaced the old-fasbioned blackboard by screen and overhead projec
tor. As a result I had to perform in a dimly lighted room with my sunglasses
on in order not to get completely blinded. I could just see the people in the
front rows.

That 1ecture was one of the most terrible experiences in my life. With a
few well-chosen examples I illustrated the problem solving techniques I
could formulate at that time, showed the designer's freedom on the one
hand, and the formal discipline needed to control it on the other. But the
visible audience was absolutely unresponsive: I feIt as if I were addressing
an audience of puppets made from chewing gum. It was sheer torture, but I
knew that it was a good lecture and with a dogged determination I carried
my performance through until the bitter end.

When I had finished and the lights were tumed up I was surprised by a
shattering applause ... from the back rows that had been invisible! It then
tumed out that I had had a very mixed audience, delighted programmers in
the back rows and in the front rows their managers who were extremely
annoyed at my performance: by openly displaying the amount of "inven
tion" involved, I had presented the programming task as even more "un
manageable" than they already feared. Prom their point of view I had done
a very poor job. It was at that occasion that I formulated for myself the
conclusion that poor software managers see programming primarily as a
management problem because they don't know how to manage it.

These problems are less prevalent in those organizations - I know a few
software houses- where the management consists of competent, experi
enced programmers (rather than a banker with colonial experience, but still
too young to retire). One of the problems caused by the non-understanding
software manager is that he thinks that bis subordinates have to produce
code: they have to solve problems, and in order to do so, they have to use
code. To tbis very day we have organizations that measure "programmer
productivity" by the "number of lines of code produced per month". Tbis
number can, indeed, be counted, but they are booking it on the wrong side
of the ledger, for we should talk about "the number of lines of code spent".

Coding requires great care and a non-failing talent for accuracy; it is
labour-intensive and should therefore be postponed until you are as sure as
sure can be that the program you are about to code is, indeed, the program
you are aiming for. I know of one very successful software firm in wbich it
is a rule of the house that for a one-year project coding is not allowed to

"Why Is Software So Expensive?" An Explanation to the Hardware Designer 345

start before the ninth month! In tbis organization they know that the
eventual code is no more than the deposit of your understanding. When I
told its director that my main concem in teaching students computing
science was to train them to think first and not to rush into coding, he just
said "If you succeed in doing so, you are worth your weight in gold." (I am
not very heavy).

But apparently, many managers create havoc by discouraging thinking
and urging their subordinates to "produce" code. Later they complain that
80 percent of their labour force is tied up with "program maintenance" and
blame software technology for that sorry state of affairs, instead of them
selves. So much for the poor software manager. (All tbis is well-known, but
occasionally needs to be said again.)

* * *
Another profound difference between the hardware and the software

worlds is presented by the different roles of testing.
When, 25 years ago, a logic designer had cooked up a circuit, bis next

acts were to build and to try it, and if it did not work he would probe a few
signals with bis scope and adjust a capacitor. And when it worked he would
subject the voltages from the power supply to 10 percent variations, adjust,
etc., until he had a circuit that worked correctly over the whole range of
conditions he was aiming at. He made a product of wbich he could "see that
it worked over the whole range". Of course he did not try it for "all" points
of the range, but that wasn't necessary, for very general continuity consider
ations made it evident that it was sufficient to test the circuit under a very
limited number of conditions, together "covering" the whole range.

This iterative design process of trial and error has been taken so much for
granted that it has also been adopted under circumstances in wbich the
continuity assumption that justifies the whole procedure is not valid. In the
case of an artefact with a discrete "performance space" such as a program,
the assumption of continuity is not valid, and as a result the iterative design
process of trial and error is therefore fundamentally inadequate. The good
software designer knows tbis; he knows that from the observation that in
the cases tried bis program produced the correct result he is not allowed to
extrapolate that bis program is okay; therefore he tries to prove mathemati
cally that bis program meets the requirements.

The mere suggestion of the existence of an environment in wbich the
traditional design process of trial and error is inadequate and where,
therefore, mathematical proof is required, is unpalatable for those for whom
mathematical proofs are beyond their mental grasp. As a result, the sugges
tion has encountered a considerable resistance, even among programmers
who should know better. It is not to be wondered that in the hardware
world the recognition of the potential inadequacy of the testing procedure is
still very rare.

346 EWD648

Some hardware designers are beginning to worry, but usually not because
they consider the fundamental inadequacy of the testing approach, but only
because the "adjustment" has become so expensive since the advent of
LSI-technology. But even without that financial aspect they should already
worry, because in the meantime a sizeable fraction of their design activity
does take place in a discrete environment.

Recently I heard a story about a machine -not a machine design by
Burroughs, I am happy to add- . It was a microprogrammed multi
processor installation that had been speeded up by the addition of a slave
store, but its designers had done the addition badly; when the two processors
operated simultaneously on the two halves of the same word, the machine
with the slave store reacted differently from the version without it. After a
few months of operation a system breakdown was traced back to this very
design error. By testing you just cannot hope to catch such an error that
becomes apparent by coincidence. Clearly the machine had been designed
by people that hadn't the foggiest notion about programming. A single
competent programmer on the design crew would have prevented that
blunder: as soon as you complicate the design of a multiprocessor installa
tion by introducing a slave store, the obligation to prove -instead of just
believing without convincing evidence- that after the introduction of the
slave store the machine still meets its original functional specifications is
obvious to a competent programmer. (Such a proof doesn't seem to present
any fundamental or practical difficulties either.) To convince hardware
designers of the fact that they have moved into an environment in which
their conventional experimental techniques for design and quality control
are no longer adequate is one of the major educational challenges in the
field.

I called it "major" because, as long as it isn't met, hardware designers
won't understand what a software designer is responsible for. In the
traditional engineering tradition, the completed design is the designer's
complete product: you build an artefact and, 10 and behold, it works! If you
don't believe it, just try it and you will see that "it works". In the case of an
artefact with a discrete performance space, the only appropriate reaction to
the observation that it has "worked" in the cases tried is: "So what?". The
only convincing evidence that such a device with a discrete performance
space meets its requirements includes a mathematical proof. It is a severe
mistake to think that the programmer's products are the programs he writes;
the programmer has to produce trustworthy solutions, and he has to
produce and present them in the form of convincing arguments. Those
arguments constitute the hard core of his product and the written program
text is only the accompanying material to which his arguments are applic
able.

* * *
Many software projects carried out in the past have been overly complex

and, consequently, full of bugs and patches. Mainly the following two

"Why Is Software So Expensive?" An Explanation to the Hardware Designer 347

circumstances have been responsible for this:

(1) dramatic increases of processor speeds and memory sizes, which made
it seem as if the sky were the limit; only after the creation of a number
of disastrously complicated systems it dawned upon us, that our
limited thinking ability was the bottleneck

(2) a world that became over-ambitious in its desire to apply those
wonderful new machines; many programmers have yielded to the
pressure to stretch their available programming technology beyond its
limits; this was not a very scientific behaviour, but perhaps stepping
beyond the limit was necessary for discovering that limit's position.

In retrospect we can add two other reasons: for lack of experience
programmers did not know how harmful complexity is, and secondly they
did not know how complexity can usually be avoided if you put your mind
to it. Perhaps it would have helped if the analogy between a software design
and a mathematical theory had been widely recognized earlier, because
everyone knows that even for a single theorem the first proof discovered is
seldom the best one: later proofs are often orders of magnitude simpler.

When C.A.R. Hoare writes -as he did early this year- " ... the
threshold for my tolerance of complexity is much lower than it used to be"
he reflects a dual development: a greater awareness of the dangers of
complexity, but also a raised standard of elegance. The awareness of the
dangers of complexity made greater simplicity a laudable goal, but at first it
was entirely an open question whether that goal could be reached. Some
problems may defy elegant solutions, but there seems overwhelming evi
dence that much of what has been done in programming (and in computing
science in general) can be simplified drastically. Numerous are the stories of
the 30-line solutions concocted by a so-called professional programmer -or
even a teacher of programming!- that could be reduced to a program of 4
or 5 lines.

To educate a generation of programmers with a much lower threshold for
their tolerance of complexity and to teach them how to search for the truly
simple solution is the second major intellectual challenge in our field. This is
technically hard, for you have to instil some of the manipulative ability and
a lot of the good taste of the mathematician. It is psychologically hard in an
environment that confuses between love of perfection and claim of perfec
tion and, by blaming you for the first, accuses you of the latter.

How do we convince people that in programming simplicity and clarity
-in short: what mathematicians call "e1egance" - are not a dispensable
luxury, but a crucial matter that decides between success and failure? I
expect help from economic considerations. Contrary to the situation with
hardware, where an increase in reliability usually has to be paid for by a
higher price, in the case of software unreliability is the greatest cost factor.
lt may sound paradoxieal, but a reliable (and therefore simple) program is
much cheaper to develop and use than a (complicated and therefore)

348 EWD648

unreliable one. This "paradox" should make us very hesitant to attach too
much weight to a possible analogy between software design and more
traditional engineering disciplines.

Nuenen PROF. DR. EDSGER W. DUKSTRA

Burroughs Research Fellow

EWD650
A Theorem About Odd Powers of
Odd Integers

Theorem. For any odd p ;;;. I, integer K;;;. I, and odd r such that 1 ,.;; r < 2K ,

a value x exists such that

R: 1,.;; x< 2K and 2K I (x P - r) and odd(x)

NOTE. For "a I b" read: "a divides b". (End of note.)

PROOF. The existence of xis proved by designing a program computing x
satisfying R.

Trying to establish R by means of a repetitive construct, we must choose
an invariant relation. This time we apply the well-known technique of
replacing a constant by a variable, and replace the constant K by the
variable k. Introducing d = 2k for the sake of brevity, we then get

P: d = 2k and 1 ,.;; x< d and dl (x P - r) and odd(x)

This choice of invariant relation P is suggested by the observation that R is
trivial to satisfy for K = 1; hence P is trivial to establish initially. The
simplest structure to try for our program is therefore:

x, k, d := 1,1,2{P};
do k =F K ~"increase k by 1 under invariance of P" od {R}

Increasing k by 1 (together with doubling d) can only violate the term
dl (x P - r). The weakest precondition that d := 2 * d does not do so is
-according to the axiom of assignment- (2 * d) I (xP - r). Hence an
acceptable component for "increase k by 1 under invariance of P" is

(2*d)l(xp-r)~k,d :=k+ l,hd

349

350 EWD650

In the case non (2 * d) I (xP - r) we conc1ude from d I (x P - r) that x P - r
is an odd multiple of d. Because dis even, and p and x are odd, the binomial
expansion tells us that (x + d)p - x P is an odd multiple of d, and that
hence (x + d)p - r is a multiple of 2 * d. Because also dis doubled, x < d
remains true under x : = x + d, because dis even odd(x) obviously remains
true, and our program becomes:

x,k,d:= 1,1,2{P};
dok*K-df(2*d)l(xP-r)~k,d :=k+ 1,2*d{P}

od {R}

o non(2*d)l(xP-r)~x,k,d :=x+d,k+ 1,2*d{P}
fi {P}

Because this program obviously terminates, its existence proves the theorem.
(End of proof.)

* * *
With the argument as given, the above program was found in five

minutes. I only mention this in reply to Zohar Manna and Richard
Waldinger, who wrote in "Synthesis: Dreams => Programs" (SR! Technical
Note 156, November 1977)

Our instruetors at the Struetured Programming Sehool have urged us to find
the appropriate invariant assertion before introducing a loop. But how are we
to seleet the sueeessful invariant when there are so many promising eandidates
around? [...] Reeursion seems to be the ideal vehic1e for systematie program
eonstruetion [...]. In ehoosing to emphasize iteration instead, the proponents
of struetured programming have had to resort to more dubious (sie!) means."

Although I haven't used the term Structured Programming any more for at
least five years, and although I have avested interest in recursion, yet I felt
addressed by the two gentlemen. So it seemed only appropriate to record
that the "more dubious means" have -again!- been pretty effective. (I
have evidence that, despite the existence of this very simple solution, the
problem is not trivial: many computing scientists could not solve the
programming problem within an hour. Try it on your colleagues, if you
don't believe me.)

Nuenen PROF. DR. EDSGER W. DIJKSTRA

Burroughs Research Fellow

EWD671
Program Inversion

Let the integer array p(O .. M-I) be such that the sequence
p(O), p(I), ... ,p(M - I) represents apermutation of the numbers from 0
through M - 1 and let the integer array y(O .. M-I) be such that (A i:
o .;;; i < M: 0 .;;; y(i) .;;; i). Under those constraints we are interested in the
relation

(A i: 0 .;;; i < M: y(i) = (Nj: 0 ';;;j < i: p{j) < p(i)) (I)

(Legenda: "(N j: 0 .;;; j < i: p(j) < p(i»" should be read as "the number of
mutually different values j in the range 0 .;;; j < i, such that p(j) < p(i)".)

W e can now consider the two solvable problems

(A) Given p, assign to y a value such that (1) is satisfied.
(B) Given y, assign to p a value such that (1) is satisfied.

Because we want to consider programs whose execution may modify the
given array, we rephrase:

(A) Given p, assign to y a value such that (I) holds between the initial
value of p and the final value of y.

(B) Given y, assign to p a value such that (I) holds between the initial
value of y and the final value of p.

If A transforms p into a (standard) value which is its initial value in B,
and if B transforms y into a (standard) value which is its initial value in A,
then transformations A and B are inverse transformations on the pair
(p, y). We are interested in these inverse transformations because in general
problem A is regarded as easier than B: we have solved problem B as soon
as we have for A a reversible solution!

351

352 EWD671

Our First Effort

Let the standard value for p be such that (A i: 0 ..; i < M: p(i) = i). From
(1) we immediately deduce that a permutation of the values p(O), ... ,
p(k - 1) does not affect the values of y(i) for i;;;' k. This suggests the
computation of the values y(k) in the order of increasing k, each time
combining the computation of y(k) with a permutation of p(O), . .. ,pe k).
Because the final value of p should be sorted, we are led most naturally to a
bubble sort:

k := 0; {p(O), ... ,p(k - 1) is ordered}
do k =1= M - "make p(O), ... ,p(k) ordered";

k := k + 1 {p(O), ... ,p(k - 1) is ordered}
od

The standard program for the bubble sort is

k :=0;
do k =1= M - j := k;

doj > 0 candp(j - 1) > p(j) -p:swap(j - 1, j);
j :=j - 1

od {here j = the value y(k) should get};
k := k + 1

od {A i: 0..; i < M: p(i) = i}

We initialize with y := (0) the array variable y as the empty array with
y.lob = 0, each time extending it with a new value as soon as that has been
computed. Because k = y.dom would be an invariant, variable k can be
eliminated.

Program Al:
y := (0); {y.dom = O}
do y.dom =1= M - j := y.dom {this is an initialization}; {j = y.dom}

doj> 0 candp(j - 1) > p(j) -p:swap(j - 1, j);
j :=j - 1
{j <y.dom}

od; y:hiext(j) {j's value is no longer relevant}
{y.dom > O}

od {A i: 0..; i < M: pU) = i}
Inverting it we construct

Program BI:
p := (0); dop.dom =1= M - p:hiext(p.dom) od;
{A i: 0 ..; i < M: p(i) = i}

do y.dom =1= 0 - j, y:hipop {this is an initialization ofj};

od

doj=l= y.dom - j :=j + 1; p:swap(j - 1, j) od
{j's value is no longer relevant}

Program Inversion 353

This inversion was easy because the postcondition of each repeatable
statement implies the negation of the stated precondition of the repetitive
construct as a whole; furthermore we have used the fact that y: hiext(j) and
j, y:hipop are each other's inverse, thatj :=j + 1 andj :=j - 1 are each
other's inverse, and that p:swap(j - 1, j) is its own inverse.

We leave to the reader the insertion of provable assertions in program BI
that would justify the derivation of Al from BI by inversion.

Our Second Effort

We can also compute the values y(k) in the order of decreasing k. (Here it is
as if our standard value of p is the empty array with p./ob = 0 and the
standard value of y is the empty array withy.hib = M - 1.) We make three
observations:

(1) As soon as the y(i) for i ;;;. k have been computed, the p(i) for i ;;;. k no
longer matter, i.e. we can work with a single array, v(O .. M-l) say,
where in A/B, in relation (1) p refers to the initial/final value of v,
and y refers to the final/initial value of v.

(2) Denoting with Q(k): "the sequence p(O), p(I), ... ,p(k) represents a
permutation of the numbers 0, ... , k ", we can write Q(k) => y(k) =
p(k).

(3) Decreasing in the range 0.,;;; i < k a11 p(i) such that p(i) > p(k) by 1
leaves all y(i) with 0 .,;;; i < k unaffected.

These observations lead to the following program (in which we can view
the elements v(i) with i < k as the corresponding elements of (a changing) p
and the v(i) with i;;;. k as the corresponding elements of a growingy).

k := M; {k = M and Q(k - 1) and v = p}
do k * 0 -+ k := k - 1; {Q(k)}

i := 0; do i '1= k -+ if v(i) > v(k) -+ v:(i) = v(i) - 1
{v(i);;;.v(k)}

o v(i) < v(k) -+ skip{v(i) < v(k)}
fi; i := i + 1

od {i = k and Q(k - I)}
od {k = 0 and v = y}

354 EWD671

In the alternative construct the postconditions have been added in order to
ease the inversion:

Program B2:
k := O{v = y};
do k '1= M i := k;

doi'l=O i :=i-l;

od {i = O};
k := k + 1

od {k = M and v = p}

if v(i);;;' v(k) v:(i) = v(i) + 1
D v(i) < v(k) skip
fi

* * *
I had invented problems A and B for examination purposes. After the

students had handed in their work, it was W.H.J. Feijen who suggested that
it would be nice to derive the one program from the other using inversion.
Because in this case we have a deterministic program in which no informa
tion is destroyed, the inversion is a straightforward process. What remains
of these techniques in the general situation remains to be seen. Is it possible
to show that a program with nondeterministic elements leads to a unique
answer because in its inverse no information is destroyed? Who knows
In the meantime I have derived a program - B2 to be precise- that was
new for me.

Nuenen PROF. DR. EDSGER W. DIJKSTRA

Burroughs Research Fellow

EWD673
On Weak and Strong Termination

In the literature we find two concepts of "termination". WeshalI call them
"weak" and "strong" termination respectively. They are equivalent within
the realm of continuous functions, but different in the presence of un
bounded nondeterminacy. It will be shown that in the realm of continuous
functions the generality of (infinite) well-founded sets is of no essential use
for proofs of termination, as partially ordered finite sets will do just as
nicely.

* * *
In a proof of weak termination we demonstrate the impossibility that a

computation will continue "forever" , although an upper bound on the
"time" it will take need not exist; in a proof of strong termination we
demonstrate that the computation will have terminated within a certain
amount of "time".

For proofs of strong termination the conceptually simplest tool is the
so-called " variant function", an integer-valued function of the state which is
bounded from below (;;;. 0, say), and decreased by at least 1 at each "step"
of the computation.

For proofs of weak termination Floyd [1967] has suggested to replace, as
range of the variant function, the natural numbers by the elements of a
so-called "well-founded set". A well-founded set is a set on which a (partial)
ordering has been defined such that no element is the first of an infinite
decreasing sequence of elements from the set. A well-known example of a
well-founded set is the one consisting of the pairs (x, y) of natural numbers
with the ordering defined as

(x', y') < (x, y) = x' < x or (x' = x andy' <y)
dei

355

356 EWD673

This well-founded set would be the proper vehicle for proving the weak
termination of -X and Y being natural constants-

S: x, y := X, Y;
do x > 0 ---> x, y := x - 1, any natural number
Oy>O--->y:=y-1

od

where "any natural number" denotes a function of unbounded nonde
terminacy, i.e. such that

wp("y := any natural number", y ~ 0) = T
wp("y := any natural number", y .;;;; k) = F

and
for aU k

Note that in general program S does not enjoy the property of strong
termination, because for X > 0 no upper bound for y can be given.

The well-founded set of the pairs (x, y) used above illustrates nicely the
way in which well-founded sets are a true generalization of the natural
numbers. Each natural number n is the first element of only finite decreas
ing sequences, but only of a finite number of them _2n, to be precise
that, therefore, have a maximum length -n + 1, to be precise- . In the
more general well-founded set we considered, each element (x, y) with
x ~ 1 is the first element of only finite decreasing sequences, but of
infinitely many of them, whose lengths have no maximum. Our example
also suggests that the generality the well-founded sets offer over and above
the natural numbers is the last thing we need.

With program S we showed how, under assumption of the availability of
the function "any natural number" of unbounded nondeterminacy, we
could implement a weakly terminating program that was not strongly
terminating. On the other hand it is quite easy to derive from any weakly
terminating program that does not terminate strongly a computation of
"any natural number": just add to it a count of the number of "steps"
executed. Therefore the availability of the function "any natural number" of
unbounded nondeterminacy is equivalent to the existence of programs that
terminate weakly, but not strongly. Furthermore it is known -see, for
instance, Dijkstra [1976], Chapter 9- that unbounded nondeterminacy is
incompatible with the constraint of continuity.

Several conclusions present themselves:

(1) Within the realm of continuous functions, where nondeterminacy is
bounded, weak termination and strong termination are equivalent.

(2) We only need the greater generality of the well-founded sets over and
above the natural numbers, when we decide to leave the realm of the
continuous functions. As long as there is very litde incentive to do so,
the greater generality of (infinite) well-founded sets is of no essential
use, and (partially) ordered finite sets will do just as nicely. (Since a
partial order on a finite set can always be embedded in a total order,
the prevalence of the use of the range of natural numbers - the first K,

On Weak and Strong Termination 357

for some sufficiently large K, to be precise- now becomes fully
understandable.)

Dijkstra, Edsger W. [1976] A Discipline 0/ Programming, Prentice-Hall, Englewood
Cliffs, NJ, U.SA

Floyd, R.W. [1967] "Assigning Meanings to Programs". Proc. Symp. in Applied
Mathematics, vol. 19 (J.T. Schwartz, ed.), American Mathematical Society, Provi
dence, RI, U.S.A.

Nuenen PROF. DR. EDSGER W. DIJKSTRA

Burroughs Research Fellow

EWD675
The Equivalence of Bounded
Nondeterminacy and Continuity

Unbounded nondeterminacy is presented by the function "any natural
number" such that

wp("x := any natural number", ° .;;;; x) = T
wp("x := any natural number", x .;;;; k) = F for all k

Program S is continuous -see Chapter 9 of "A Discipline of Program
ming", where this property is called Property 5- means that for any
infinite sequence of predicates Co' CI' C2 , ••• such that

for r ;;. ° for all states

we have for all states

wp(S, (E r: r;;' 0: Cr)) = (E s: s ;;. 0: wp(S, Cs)) (I)

and in the same chapter I have shown that aI1 programs that could be
written in my programming language fragment -with finite (!) guarded
command sets- are continuous.

It is further shown that the program "x := any natural number" is not
continuous, and therefore cannot be written in that programming language
fragment. For the sake of completeness, we repeat the proof. Assume the
program S: "x := any natural number" to be continuous. We then have:

T=wp(S,O';;;;x)

= wp (S, (E r: r ;;. 0: ° .;;;; x .;;;; r))

= (Es: s;;' 0: wp(S, 0.;;;; x.;;;; s))

= (E s: s ;;. 0: F) = F

a contradiction that leads to the conclusion that "x : = any natural number"
cannot be continuous, i.e. that continuity implies bounded nondeterminacy.

358

The Equivalence of Bounded Nondeterrninacy and Continuity 359

In the sequel of this note we shall show that the inverse holds as well, viz.
that the existence of a noncontinuous program implies the inc1usion of
unbounded nondeterminacy. (The following argument was suggested to me
by C.S. Scholten almost instantaneously when I had posed the problem.)

Assume the existence of a program Sand an infinite sequence of
predicates Cr satisfying Cr ~ Cr+ l' such that (l) does not hold. Because in
(1) the right-hand side trivially implies the left-hand side, this means that we
assurne

wp(S, (E r: r ~ 0: Cr)) and non (Es: s ~ 0: wp(S, Cs)) =
wp(S, (E r: r ~ 0: Cr)) and (A s: s ~ 0: non wp(S, Cs)) (2)

to be different from F.
Consider now the program

S; x := (MIN: k: Ck)

started in an initial state satisfying (2). Because the initial state satisfies
wp(S, (E r: r ~ 0: Cr»' this program terminates and is guaranteed to
establish 0 .;;; x. On the other hand, the assumption that for some K it is
certain to establish x';;; K means that S is certain to establish CK , a
conc1usion that is incompatible with the second term of (2). Hence its
nondeterminacy is unbounded. (The fact that our program of unbounded
nondeterminacy is not a total program, but only defined for initial states
satisfying (2), is not relevant here: the essential thing is that (2) differs from
F, i.e. that the set of states satisfying (2) is not empty.)

We have established the equivalence of continuity and the boundedness
of nondeterminacy. In EWD673 we established the equivalence of the
boundedness of nondeterminacy and the equality of weak and strong
termination. Hence the three criteria

(l) continuity or not
(2) nondeterminacy bounded or not
(3) weak and strong termination equivalent or not

are three different aspects of the same dichotomy. All this is very satisfying.
(The arguments are so simple that, presumably, this is already known. But it
was new for me, and I like the arguments.)

Plataanstraat 5
5671 AL Nuenen
The N etherlands

PROF. DR. EDSGER W. DUKSTRA

Burroughs Research Fellow

EWD678
A Story that Starts with a
Very Good Computer

Once upon a time, a long time ago, an organization decided to get a
computation centre. The organization hired a manager to manage the
computation centre, and he was a very competent manager, for he hired a
very good computer to do the computing and a very good programmer to
do the programming. The manager's high quality was shown by his choice
of computer: knowing that in the work of his organization, sorting would
play a very big role, he selected the one and only computer on the market
that had a very fast, built-in sort instruction, called "SORT", in its
instruction code. The manager's high quality also manifested itself by the
choice of the programmer, as will become c1ear in the sequel.

The machine was installed, and the main application program, in which
the instruction SORT occurred 77 times, was written and proved to be
correct. The programmer could do so because for each of the instructions of
the order code, SORT inc1uded, the reference manual gave him the func
tional specifications on which to base his correctness proof. The main
application program was put in operation and everybody in the whole
organization was instantaneously happy. .. until, after the first month of
operation, the electricity bill arrived! The bill was very high

Suspicion, quite naturally, fell on the new computer and the manager
inspected its power consumption more c1osely. He discovered that the
SORT-instruction was the culprit, and asked his programmer, whether he
could reduce the power consumption of his program. The programmer made
a more detailed study of the power consumption of the SORT-instruction
and discovered that it rose steeply -more than quadratically, as a matter of
fact- with the lel1gth of the array to be sorted. And since almost all his 77
calls of the SORT-instruction were on rather long arrays, he understood the
height of the bill immediately, and also realized his only hope for reducing
the power consumption: shortening the length of the arrays supplied to the
SORT -instruction.

360

A Story that Starts with a Very Good Computer 361

He decided to replace all 77 occurrences of the SORT-instruction in his
main application program by calls on a subroutine (still to be written) that
he modestly called "saveO", and in order that the correctness proof of the
main program would remain valid, he decided that the functional specifica
tions of saveO would be identical to those of SORT.

He thought for a long time how to construct the body of saveO. He then
came up with the following idea. If the array consists of less than two
elements, it is sorted by definition, and control can return immediately.
Otherwise, by (if necessary, repeatedly) swapping two values when the larger
was to the left of the smaller, he managed to rearrange and divide the array
in such a way, that the largest element in the left-hand section did not
exceed the smallest element in the right-hand section; thereafter he gave two
SORT-instructions, one for each section.

The programmer was very pleased by what he had done: the correctness
proof for the main application program remained automatically valid, his
only additional proof obligation had been to prove the correctness of the
body of saveO -but he had already some experience in proving the
correctness of programs using the SORT-instruction and that helped- .

Also the manager was very pleased, for this minor program change -it
was hardly a "change": it was almost only an addition- indeed had cut the
electricity bill by more than a factor of two! But improvement, like all
novelty, wears out, and after a few months the manager asked the pro
grammer whether he could reduce the still high power consumption yet
further. This time the programmer said instantaneously "Oh yes.", for now
he knew the trick: he introduced a subroutine savel, the body of which was
a copy of the body of saveO, and thereafter replaced in the body of saveO
the two occurrences of the SORT-instruction by calls on savel. The pro
grammer was extremely pleased with himself, for this time he had reduced
the power consumption by a further factor of two, but had done so without
any further proof obligations!

The manager was also pleased, but only for a month or two. When he
asked his programmer again, whether he could reduce the power consump
tion still further, the programmer, again, said immediately "Oh yes." but
went to his desk to do some sensible coding. He could have repeated the
trick by introducing a new subroutine save2, etc., but by now he knew that,
a few months later, the manager would come again. Besides that, he did not
like the prospect of filling more and more of the store with almost equal
copies of the same sub routine. He decided to map the texts of saveO, savel,
save2, etc. on the same general text -which he called saven- at the
expense of a global variable n -initialized in the main program at zero
the value of which should indicate whether a call on saven should act as
saveO, savel, save2, etc. The body of saven was derived from the ones of
saveO, savel, etc.: upon entry, n was increased by 1, just before return, n
was decreased by 1, and the internal calls on the next save or on SORT were

362 EWD678

replaced by

if n < N --> saven U n = N --> SORT fi (1)

and he satisfied his manager by setting the constant N = 3. As he had
foreseen, a month later he was asked to reduce the power consumption still
further: he just increased N by 1.

Having thus mechanized the optimization process that reduced the power
consumption, the programmer gladly increased N by 1, every time he was
asked to reduce the power consumption, and that was about once a month.

After a year or so, the manager discovered that, lately, his programmer's
optimizations had become less and less effective. Since he was a very
competent manager, he investigated the matter; in the course of his investi
gations he discovered that the SORT-instruction was hardly invoked at all!
This discovery worried him, because for that SORT-instruction his organi
zation paid a lot of money: for a much lower rental price the manufacturer
offered a model without SORT-instruction, but otherwise identical. The
manager went to the programmer, telling him his observation that the
SORT-instruction was hardly exercised: could the programmer avoid its use
completely? For then they could replace their expensive machine by the
cheaper model!

This time, the programmer had to think again. Looking at (1) -the only
place left where the SORT-instruction still occurred- he realized that if n
remained under an upper bound, he could choose N larger than that upper
bound, with the result that the second alternative of (1) would never be
selected! By inspecting his main application he could prove that N = 25
would be large enough, and he replaced (1) by

if n < 25 --> saven fi (2)

Later he realized that, having proved that the guard would always be
true, he could simplify the program still further by replacing (2) just by

saven (3)

Now he was completely happy: with the last simplification the correct
ness of his program was no longer dependent on the exact value of the
upper bound, but only on its existence. The machine was replaced by the
simpler model and the manager, too, was happy ever after.

* *
The above fairy tale -like all fairy tales, for that matter- has been

written for educational purposes. It deserves to be remembered because it is
a sobering thought that, upon instigation of his manager, a programmer
engaged on optimization could have discovered all this -with the exact
nature of the proof obligation included! - long before mathematicians
called it Recursion.

Nuenen PROF. DR. EDSGER W. DIJKSTRA

Burroughs Research Fellow

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions false
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFA1B:2005
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (sRGB IEC61966-2.1)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0034002e00350032003600330029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003100200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

