

Learning Perl

SIXTH EDITION

Learning Perl

Randal L. Schwartz, brian d foy, and Tom Phoenix

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Learning Perl, Sixth Edition
by Randal L. Schwartz, brian d foy, and Tom Phoenix

Copyright © 2011 Randal L. Schwartz, brian d foy, and Tom Phoenix. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Simon St.Laurent
Production Editor: Kristen Borg
Copyeditor: Audrey Doyle
Proofreader: Kiel Van Horn

Indexer: John Bickelhaupt
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
November 1993: First Edition.
July 1997: Second Edition.
July 2001: Third Edition.
July 2005: Fourth Edition.
July 2008: Fifth Edition.
June 2011: Sixth Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Learning Perl, the image of a llama, and related trade dress are trademarks of
O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-30358-7

[LSI]

1308077187

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com

Table of Contents

Preface . xiii

1. Introduction . 1
Questions and Answers 1

Is This the Right Book for You? 1
Why Are There So Many Footnotes? 2
What About the Exercises and Their Answers? 3
What Do Those Numbers Mean at the Start of the Exercise? 4
What If I’m a Perl Course Instructor? 4

What Does “Perl” Stand For? 4
Why Did Larry Create Perl? 5
Why Didn’t Larry Just Use Some Other Language? 5
Is Perl Easy or Hard? 6
How Did Perl Get to Be So Popular? 7
What’s Happening with Perl Now? 7
What’s Perl Really Good For? 8
What Is Perl Not Good For? 8

How Can I Get Perl? 9
What Is CPAN? 10
How Can I Get Support for Perl? 10
Are There Any Other Kinds of Support? 10
What If I Find a Bug in Perl? 12

How Do I Make a Perl Program? 12
A Simple Program 13
What’s Inside That Program? 15
How Do I Compile My Perl Program? 16

A Whirlwind Tour of Perl 17
Exercises 18

2. Scalar Data . 21
Numbers 21

v

All Numbers Have the Same Format Internally 22
Floating-Point Literals 22
Integer Literals 22
Nondecimal Integer Literals 23
Numeric Operators 23

Strings 24
Single-Quoted String Literals 25
Double-Quoted String Literals 25
String Operators 26
Automatic Conversion Between Numbers and Strings 27

Perl’s Built-in Warnings 28
Scalar Variables 29

Choosing Good Variable Names 30
Scalar Assignment 31
Binary Assignment Operators 31

Output with print 32
Interpolation of Scalar Variables into Strings 32
Creating Characters by Code Point 34
Operator Precedence and Associativity 34
Comparison Operators 36

The if Control Structure 37
Boolean Values 38

Getting User Input 39
The chomp Operator 39
The while Control Structure 40
The undef Value 41
The defined Function 42
Exercises 42

3. Lists and Arrays . 43
Accessing Elements of an Array 44
Special Array Indices 45
List Literals 46

The qw Shortcut 46
List Assignment 48

The pop and push Operators 49
The shift and unshift Operators 50
The splice Operator 50

Interpolating Arrays into Strings 51
The foreach Control Structure 53

Perl’s Favorite Default: $_ 54
The reverse Operator 54
The sort Operator 54

vi | Table of Contents

The each Operator 55
Scalar and List Context 55

Using List-Producing Expressions in Scalar Context 57
Using Scalar-Producing Expressions in List Context 58
Forcing Scalar Context 59

<STDIN> in List Context 59
Exercises 60

4. Subroutines . 63
Defining a Subroutine 63
Invoking a Subroutine 64
Return Values 64
Arguments 66
Private Variables in Subroutines 68
Variable-Length Parameter Lists 69

A Better &max Routine 69
Empty Parameter Lists 70

Notes on Lexical (my) Variables 71
The use strict Pragma 72
The return Operator 74

Omitting the Ampersand 74
Non-Scalar Return Values 76
Persistent, Private Variables 76
Exercises 78

5. Input and Output . 81
Input from Standard Input 81
Input from the Diamond Operator 83
The Invocation Arguments 85
Output to Standard Output 86
Formatted Output with printf 89

Arrays and printf 90
Filehandles 91
Opening a Filehandle 93

Binmoding Filehandles 95
Bad Filehandles 96
Closing a Filehandle 96

Fatal Errors with die 97
Warning Messages with warn 99
Automatically die-ing 99

Using Filehandles 100
Changing the Default Output Filehandle 100

Reopening a Standard Filehandle 101

Table of Contents | vii

Output with say 102
Filehandles in a Scalar 103
Exercises 104

6. Hashes . 107
What Is a Hash? 107

Why Use a Hash? 109
Hash Element Access 110

The Hash As a Whole 112
Hash Assignment 113
The Big Arrow 114

Hash Functions 115
The keys and values Functions 115
The each Function 116

Typical Use of a Hash 118
The exists Function 118
The delete Function 118
Hash Element Interpolation 119

The %ENV hash 119
Exercises 120

7. In the World of Regular Expressions . 121
What Are Regular Expressions? 121
Using Simple Patterns 122

Unicode Properties 123
About Metacharacters 123
Simple Quantifiers 124
Grouping in Patterns 125
Alternatives 127

Character Classes 128
Character Class Shortcuts 129
Negating the Shortcuts 131

Exercises 131

8. Matching with Regular Expressions . 133
Matches with m// 133
Match Modifiers 134

Case-Insensitive Matching with /i 134
Matching Any Character with /s 134
Adding Whitespace with /x 135
Combining Option Modifiers 135
Choosing a Character Interpretation 136
Other Options 138

viii | Table of Contents

Anchors 138
Word Anchors 140

The Binding Operator =~ 141
Interpolating into Patterns 142
The Match Variables 143

The Persistence of Captures 144
Noncapturing Parentheses 145
Named Captures 146
The Automatic Match Variables 147

General Quantifiers 149
Precedence 150

Examples of Precedence 151
And There’s More 152

A Pattern Test Program 152
Exercises 153

9. Processing Text with Regular Expressions . 155
Substitutions with s/// 155

Global Replacements with /g 156
Different Delimiters 157
Substitution Modifiers 157
The Binding Operator 157
Nondestructive Substitutions 157
Case Shifting 158

The split Operator 159
The join Function 160
m// in List Context 161
More Powerful Regular Expressions 161

Nongreedy Quantifiers 162
Matching Multiple-Line Text 164
Updating Many Files 164
In-Place Editing from the Command Line 166

Exercises 168

10. More Control Structures . 169
The unless Control Structure 169

The else Clause with unless 170
The until Control Structure 170
Expression Modifiers 171
The Naked Block Control Structure 172
The elsif Clause 173
Autoincrement and Autodecrement 174

The Value of Autoincrement 175

Table of Contents | ix

The for Control Structure 176
The Secret Connection Between foreach and for 178

Loop Controls 178
The last Operator 179
The next Operator 179
The redo Operator 181
Labeled Blocks 182

The Conditional Operator ?: 182
Logical Operators 184

The Value of a Short Circuit Operator 184
The defined-or Operator 185
Control Structures Using Partial-Evaluation Operators 186

Exercises 188

11. Perl Modules . 189
Finding Modules 189
Installing Modules 190

Using Your Own Directories 191
Using Simple Modules 193

The File::Basename Module 194
Using Only Some Functions from a Module 195
The File::Spec Module 196
Path::Class 197
CGI.pm 198
Databases and DBI 199
Dates and Times 200

Exercises 201

12. File Tests . 203
File Test Operators 203

Testing Several Attributes of the Same File 207
Stacked File Test Operators 208

The stat and lstat Functions 210
The localtime Function 211
Bitwise Operators 212

Using Bitstrings 213
Exercises 214

13. Directory Operations . 215
Moving Around the Directory Tree 215
Globbing 216
An Alternate Syntax for Globbing 217
Directory Handles 218

x | Table of Contents

Recursive Directory Listing 220
Manipulating Files and Directories 221
Removing Files 221
Renaming Files 223
Links and Files 224
Making and Removing Directories 229
Modifying Permissions 230
Changing Ownership 231
Changing Timestamps 231
Exercises 232

14. Strings and Sorting . 235
Finding a Substring with index 235
Manipulating a Substring with substr 236
Formatting Data with sprintf 238

Using sprintf with “Money Numbers” 238
Interpreting Non-Decimal Numerals 240

Advanced Sorting 240
Sorting a Hash by Value 244
Sorting by Multiple Keys 245

Exercises 246

15. Smart Matching and given-when . 247
The Smart Match Operator 247
Smart Match Precedence 250
The given Statement 251

Dumb Matching 254
Using when with Many Items 256
Exercises 257

16. Process Management . 259
The system Function 259

Avoiding the Shell 261
The Environment Variables 263
The exec Function 263
Using Backquotes to Capture Output 264

Using Backquotes in a List Context 267
External Processes with IPC::System::Simple 268
Processes as Filehandles 269
Getting Down and Dirty with Fork 271
Sending and Receiving Signals 272
Exercises 274

Table of Contents | xi

17. Some Advanced Perl Techniques . 277
Slices 277

Array Slice 279
Hash Slice 281

Trapping Errors 282
Using eval 282
More Advanced Error Handling 286
autodie 288

Picking Items from a List with grep 289
Transforming Items from a List with map 290
Fancier List Utilities 291
Exercises 293

A. Exercise Answers . 295

B. Beyond the Llama . 331

C. A Unicode Primer . 343

Index . 353

xii | Table of Contents

Preface

Welcome to the sixth edition of Learning Perl, updated for Perl 5.14 and its latest
features. This book is still good even if you are still using Perl 5.8 (although, it’s been
a long time since it was released; have you thought about upgrading?).

If you’re looking for the best way to spend your first 30 to 45 hours with the Perl
programming language, you’ve found it. In the pages that follow, you’ll find a carefully
paced introduction to the language that is the workhorse of the Internet, as well as the
language of choice for system administrators, web hackers, and casual programmers
around the world.

We can’t give you all of Perl in just a few hours. The books that promise that are
probably fibbing a bit. Instead, we’ve carefully selected a useful subset of Perl for you
to learn, good for programs from one to 128 lines long, which end up being about 90%
of the programs in use out there. And when you’re ready to go on, you can get Inter-
mediate Perl, which picks up where this book leaves off. We’ve also included a number
of pointers for further education.

Each chapter is small enough so you can read it in an hour or two. Each chapter ends
with a series of exercises to help you practice what you’ve just learned, with the answers
in Appendix A for your reference. Thus, this book is ideally suited for a classroom
“Introduction to Perl” course. We know this directly because the material for this book
was lifted almost word-for-word from our flagship “Learning Perl” course, delivered
to thousands of students around the world. However, we’ve designed the book for self-
study as well.

Perl lives as the “toolbox for Unix,” but you don’t have to be a Unix guru, or even a
Unix user, to read this book. Unless otherwise noted, everything we’re saying applies
equally well to Windows ActivePerl from ActiveState and pretty much every other
modern implementation of Perl.

Although you don’t need to know a single thing about Perl to begin reading this book,
we recommend that you already have familiarity with basic programming concepts
such as variables, loops, subroutines, and arrays, and the all-important “editing a
source code file with your favorite text editor.” We don’t spend any time trying to
explain those concepts. Although we’re pleased that we’ve had many reports of people

xiii

http://oreilly.com/catalog/9780596102067/
http://oreilly.com/catalog/9780596102067/

successfully picking up Learning Perl and grasping Perl as their first programming lan-
guage, of course we can’t promise the same results for everyone.

Typographical Conventions
The following font conventions are used in this book:

Constant width
is used for method names, function names, variables, and attributes. It is also used
for code examples.

Constant width bold
is used to indicate user input.

Constant width italic
is used to indicate a replaceable item in code (e.g., filename, where you are sup-
posed to substitute an actual filename).

Italic
is used for filenames, URLs, hostnames, commands in text, important words on
first mention, and emphasis.

Footnotes
are used to attach parenthetical notes that you should not read on your first (or
perhaps second or third) reading of this book. Sometimes lies are spoken to simplify
the presentation, and the footnotes restore the lie to truth. Often the material in
the footnote will be advanced material not even mentioned anywhere else in the
book.

[2]
at the start of an exercise’s text represents our (very rough) estimate of how many
minutes you can expect to spend on that particular exercise.

Code Examples
This book is here to help you get your job done. You are invited to copy the code in
the book and adapt it for your own needs. Rather than copying by hand, however, we
encourage you to download the code from http://www.learning-perl.com.

In general, you may use the code in this book in your programs and documentation.
You do not need to contact us for permission unless you’re reproducing a significant
portion of the code. For example, writing a program that uses several chunks of code
from this book does not require permission. Selling or distributing a CD-ROM of ex-
amples from O’Reilly books does require permission. Answering a question by citing
this book and quoting example code does not require permission. Incorporating a sig-
nificant amount of example code from this book into your product’s documentation
does require permission.

xiv | Preface

http://www.learning-perl.com

We appreciate, but do not require, attribution. An attribution usually includes the title,
authors, publisher, and ISBN. For example: “Learning Perl, 6th edition, by Randal L.
Schwartz, brian d foy, and Tom Phoenix (O’Reilly). Copyright 2011 Randal L.
Schwartz, brian d foy, and Tom Phoenix, 978-1-449-30358-7.” If you feel your use of
code examples falls outside fair use or the permission given above, feel free to contact
us at permissions@oreilly.com

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
We have tested and verified all the information in this book to the best of our abilities,
but you may find that features have changed or that we have let errors slip through the
production of the book. Please let us know of any errors that you find, as well as sug-
gestions for future editions, by writing to:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for the book, where we’ll list examples, errata, and any additional
information. It also offers a downloadable set of text files (and a couple of Perl pro-
grams) that are useful, but not required, when doing some of the exercises. You can
access this page at:

http://www.learning-perl.com

Preface | xv

http://my.safaribooksonline.com/?portal=oreilly
http://www.learning-perl.com

or go to the O’Reilly page at:

http://oreilly.com/catalog/0636920018452/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

History of This Book
For the curious, here’s how Randal tells the story of how this book came about:

After I had finished the first Programming perl book with Larry Wall (in 1991), I was
approached by Taos Mountain Software in Silicon Valley to produce a training course.
This included having me deliver the first dozen or so courses and train their staff to
continue offering the course. I wrote the course for them* and delivered it for them as
promised.

On the third or fourth delivery of that course (in late 1991), someone came up to me
and said, “You know, I really like Programming perl, but the way the material is pre-
sented in this course is so much easier to follow—you oughta write a book like this
course.” It sounded like an opportunity to me, so I started thinking about it.

I wrote to Tim O’Reilly with a proposal based on an outline that was similar to the
course I was presenting for Taos—although I had rearranged and modified a few of the
chapters based on observations in the classroom. I think that was my fastest proposal
acceptance in history—I got a message from Tim within fifteen minutes, saying “We’ve
been waiting for you to pitch a second book—Programming perl is selling like gang-
busters.” That started the effort over the next 18 months to finish the first edition of
Learning Perl.

During that time, I was starting to see an opportunity to teach Perl classes outside
Silicon Valley,† so I created a class based on the text I was writing for Learning Perl. I
gave a dozen classes for various clients (including my primary contractor, Intel Oregon),
and used the feedback to fine-tune the book draft even further.

* In the contract, I retained the rights to the exercises, hoping someday to reuse them in some other way, like
in the magazine columns I was writing at the time. The exercises are the only things that leapt from the Taos
course to the book.

† My Taos contract had a no-compete clause, so I had to stay out of Silicon Valley with any similar courses,
which I respected for many years.

xvi | Preface

http://oreilly.com/catalog/0636920018452/
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

The first edition hit the streets on the first day of November 1993,‡ and became a
smashing success, frequently even outpacing Programming perl book sales.

The back-cover jacket of the first book said “written by a leading Perl trainer.” Well,
that became a self-fulfilling prophecy. Within a few months, I was starting to get email
from all over the United States asking me to teach at their site. In the following seven
years, my company became the leading worldwide on-site Perl training company, and
I had personally racked up (literally) a million frequent-flier miles. It didn’t hurt that
the Web started taking off about then, and the webmasters and webmistresses picked
Perl as the language of choice for content management, interaction through CGI, and
maintenance.

For two years, I worked closely with Tom Phoenix in his role as lead trainer and content
manager for Stonehenge, giving him charter to experiment with the “Llama” course by
moving things around and breaking things up. When we had come up with what we
thought was the best major revision of the course, I contacted O’Reilly and said, “It’s
time for a new book!” And that became the third edition.

Two years after writing the third edition of the Llama, Tom and I decided it was time
to push our follow-on “advanced” course out into the world as a book, for people
writing programs that are “100 to 10,000 lines of code.” And together we created the
first Alpaca book, released in 2003.

But fellow instructor brian d foy was just getting back from the conflict in the Gulf, and
had noticed that we could use some rewriting in both books, because our courseware
still needed to track the changing needs of the typical student. So, he pitched the idea
to O’Reilly to take on rewriting both the Llama and the Alpaca one final time before
Perl 6 (we hope). This edition of the Llama reflects those changes. brian has really been
the lead writer here, working with my occasional guidance, and has done a brilliant job
of the usual “herding cats” that a multiple-writer team generally feels like.

On December 18, 2007, the Perl 5 Porters released Perl 5.10, a significant new version
of Perl with several new features. The previous version, 5.8, had focused on the un-
derpinnings of Perl and its Unicode support. The latest version, starting from the stable
5.8 foundation, was able to add completely new features, some of which it borrowed
from the development of Perl 6 (not yet released). Some of these features, such as named
captures in regular expressions, are much better than the old ways of doing things, thus
perfect for Perl beginners. We hadn’t thought about a fifth edition of this book, but
Perl 5.10 was so much better that we couldn’t resist.

Since then, Perl has been under constant improvement and is keeping a regular release
cycle. We didn’t have a chance to update this book for Perl 5.12 because development
proceeded too quickly. We’re pleased to offer this update for Perl 5.14, and are amazed
that there’s now a sixth edition.

‡ I remember that date very well, because it was also the day I was arrested at my home for computer-related-
activities around my Intel contract, a series of felony charges for which I was later convicted.

Preface | xvii

Changes from the Previous Edition
The text is updated for the latest version, Perl 5.14, and some of the code only works
with that version. We note in the text when we are talking about a Perl 5.14 feature,
and we mark those code sections with a special use statement that ensures you’re using
the right version:

use 5.014; # this script requires Perl 5.14 or greater

If you don’t see that use 5.014 in a code example (or a similar statement with a different
version), it should work all the way back to Perl 5.8. To see which version of Perl you
have, try the -v command-line switch:

$ perl -v

Here’s some of the new features from Perl 5.14 that we cover, and where appropriate,
we still show you the old ways of doing the same thing:

• We include Unicode examples and features where appropriate. If you haven’t star-
ted playing with Unicode, we include a primer in Appendix C. You have to bite
the bullet sometime, so it might as well be now. You’ll see Unicode throughout
the book, most notably in the chapters on Scalars (Chapter 2), Input/Output
(Chapter 5), and Sorting (Chapter 14).

• There is more information in the regular expression chapters, covering the new
features from Perl 5.14 to deal with Unicode case-folding. The regular expression
operators have new /a, /u, and /l switches. We now cover matching by Unicode
properties with the \p{} and \P{} regular expression features.

• Perl 5.14 adds a nondestructive substitution operator (Chapter 9), which turns out
to be really handy.

• Smart matching and given-when has mutated a bit since their introduction in Perl
5.10, so we update Chapter 15 to cover the new rules.

• We updated and expanded Perl Modules (Chapter 11) to include the latest news,
including the zero-conf cpanm tool. We add some more module examples as well.

• Some of the items previously in Appendix B, the advanced-but-not-demonstrated
features, move into the main text. Notably, that includes the fat arrow => moving
into Hashes (Chapter 6) and splice moving into Lists and Arrays (Chapter 3).

Acknowledgments

From Randal
I want to thank the Stonehenge trainers past and present (Joseph Hall, Tom Phoenix,
Chip Salzenberg, brian d foy, and Tad McClellan) for their willingness to go out and
teach in front of classrooms week after week and to come back with their notes about

xviii | Preface

what’s working (and what’s not), so we could fine-tune the material for this book. I
especially want to single out my co-author and business associate, Tom Phoenix, for
having spent many, many hours working to improve Stonehenge’s Llama course and
to provide the wonderful core text for most of this book. And brian d foy for being the
lead writer beginning with the fourth edition, and taking that eternal to-do item out of
my inbox so that it would finally happen.

I also want to thank everyone at O’Reilly, especially our very patient editor and overseer
for previous editions, Allison Randal (no relation, but she has a nicely spelled last
name), current editor Simon St.Laurent, and Tim O’Reilly himself for taking a chance
on me in the first place with the Camel and Llama books.

I am also absolutely indebted to the thousands of people who have purchased the past
editions of the Llama so that I could use the money to stay “off the streets and out of
jail,” and to those students in my classrooms who have trained me to be a better trainer,
and to the stunning array of Fortune 1000 clients who have purchased our classes in
the past and will continue to do so into the future.

As always, a special thanks to Lyle and Jack, for teaching me nearly everything I know
about writing. I won’t ever forget you guys.

From Tom
I’ve got to echo Randal’s thanks to everyone at O’Reilly. For the third edition of this
book, Linda Mui was our editor, and I still thank her, for her patience in pointing out
which jokes and footnotes were most excessive, while pointing out that she is in no
way to blame for the ones that remain. Both she and Randal have guided me through
the process of writing, and I am grateful. In a previous edition, Allison Randal took
charge; now Simon St.Laurent has become the editor. My thanks go to each of them
in recognition of their unique contributions.

And another echo with regard to Randal and the other Stonehenge trainers, who hardly
ever complained when I unexpectedly updated the course materials to try out a new
teaching technique. You folks have contributed many different viewpoints on teaching
methods that I would never have seen.

For many years, I worked at the Oregon Museum of Science and Industry (OMSI), and
I’d like to thank the folks there for letting me hone my teaching skills as I learned to
build a joke or two into every activity, explosion, or dissection.

To the many folks on Usenet who have given me your appreciation and encouragement
for my contributions there, thanks. As always, I hope this helps.

Also to my many students, who have shown me with their questions (and befuddled
looks) when I needed to try a new way of expressing a concept. I hope that the present
edition helps to relieve any remaining puzzlement.

Preface | xix

Of course, deep thanks are due especially to my co-author, Randal, for giving me the
freedom to try various ways of presenting the material both in the classroom and here
in the book, as well as for the push to make this material into a book in the first place.
And without fail, I must say that I am indeed inspired by your ongoing work to ensure
that no one else becomes ensnared by the legal troubles that have stolen so much of
your time and energy; you’re a fine example.

To my wife, Jenna, thanks for being a cat person, and everything thereafter.

From brian
I have to thank Randal first, since I learned Perl from the first edition of this book, and
then had to learn it again when he asked me to start teaching for Stonehenge in 1998.
Teaching is often the best way to learn. Since then, Randal has mentored me not only
in Perl but several other things he thought I needed to learn—like the time he decided
that we could use Smalltalk instead of Perl for a demonstration at a web conference.
I’m always amazed at the breadth of his knowledge. He’s the one who told me to start
writing about Perl. Now I’m helping out on the book where I started. I’m honored,
Randal.

I probably only actually saw Tom Phoenix for less than two weeks in the entire time I
worked for Stonehenge, but I had been teaching his version of Stonehenge’s Learning
Perl course for years. That version turned into the third edition of this book. By teaching
Tom’s new version, I found new ways to explain almost everything, and learned even
more corners of Perl.

When I convinced Randal that I should help out on the Llama update, I was anointed
as the maker of the proposal to the publisher, the keeper of the outline, and the version
control wrangler. Our editor, Allison Randal, helped me get all of those set up and
endured my frequent emails without complaining. After Allison went on to other
things, Simon St. Laurent has been extremely helpful in the role of editor and inside
guy at O’Reilly, patiently waiting for the right phase of the moon to suggest another
update.

From All of Us
Thanks to our reviewers, David H. Adler, Alan Haggai Alavi, Andy Armstrong, Dave
Cross, Chris Devers, Paul Fenwick, Stephen B. Jenkins, Matthew Musgrove, Jacinta
Richardson, Steve Peters, Peter Scott, Wil Wheaton, and Karl Williamson, for providing
comments on the draft of this book.

Thanks also to our many students who have let us know what parts of the course
material have needed improvement over the years. It’s because of you that we’re all so
proud of it today.

xx | Preface

Thanks to the many Perl Mongers who have made us feel at home as we’ve visited your
cities. Let’s do it again sometime.

And finally, our sincerest thanks to our friend Larry Wall, for having the wisdom to
share his really cool and powerful toys with the rest of the world so that we can all get
our work done just a little bit faster, easier, and with more fun.

Preface | xxi

CHAPTER 1

Introduction

Welcome to the Llama book!

This is the sixth edition of a book that has been enjoyed by over half a million readers
since 1993. At least, we hope they’ve enjoyed it. It’s a sure thing that we enjoyed writing
it.*

Questions and Answers
You probably have some questions about Perl, and maybe even some about this book;
especially if you’ve already flipped through it to see what’s coming. So, we’ll use this
chapter to answer them, including how to find answers that we don’t provide.

Is This the Right Book for You?
If you’re anything like us, you probably didn’t get to browse this book before you
bought it. As we finish up this edition, the bookstore Borders is closing many of its
stores and other booksellers aren’t doing much better. You might be reading this book
in a digital form that you downloaded, or as HTML in Safari Books Online. How can
you find out if this book is the one you want to buy if you can’t look at it first? How
can we warn you off if you need to buy the book to read this paragraph?

This is not a reference book. It’s a tutorial on the very basics of Perl, which is just enough
for you to create simple programs mostly for your own use. We don’t cover every detail
of every topic, and we spread out some of the topics over several chapters so you pick
up concepts as you need them.

* To be sure, the first edition was written by Randal L. Schwartz, the second by Randal and Tom Christiansen,
then one by Randal and Tom Phoenix, and now three by Randal, Tom Phoenix, and brian d foy. So, whenever
we say “we” in this edition, we mean that last group. Now, if you’re wondering how we can say that we’ve
enjoyed writing it (in the past tense) when we’re still on the first page, that’s easy: we started at the end, and
worked our way backward. It sounds like a strange way to do it, we know. But, honestly, once we finished
writing the index, the rest was hardly any trouble at all.

1

Our intended readers are people who know at least a little bit about programming and
just need to learn Perl. We assume that you have at least some background in using a
terminal, editing files, and running programs—just not Perl programs. You already
know about variables and subroutines and the like, but you just need to see how Perl
does it.

This doesn’t mean that the absolute beginner, having never touched a terminal program
or written a single line of code, will be completely lost. You might not catch everything
we say the first time you go through the book, but many beginners have used the book
with only minor frustrations. The trick is to not worry about everything you might be
missing and to focus on just the core concepts we present. You might take a little longer
than an experienced programmer, but you have to start somewhere.

And, this shouldn’t be the only Perl book you ever read. It’s just a tutorial. It’s not
comprehensive. It gets you started in the right direction so you can go on to our other
books, Intermediate Perl (at the time of this writing, the second edition is forthcoming)
and Mastering Perl, when you are ready. The definitive reference for Perl is Program-
ming Perl, also known as the “Camel book.”

We should also note that even though this book covers up to Perl 5.14, it’s still useful
even if you have an earlier version. You might miss out on some of the cool new features,
but you’ll still learn how to use basic Perl. The least recent version that we’ll think
about, however, is Perl 5.8, even though that was released almost 10 years ago.

Why Are There So Many Footnotes?
Thank you for noticing. There are a lot of footnotes in this book. Ignore them. They’re
needed because Perl is chock-full of exceptions to its rules. This is a good thing, as real
life is chock-full of exceptions to rules.

But it means that we can’t honestly say, “The fizzbin operator frobnicates the hoozi-
static variables” without a footnote giving the exceptions.† We’re pretty honest, so we
have to write the footnotes. But you can be honest without reading them. (It’s funny
how that works out.) The footnotes are extra information that you don’t need for the
core concepts.

Many of the exceptions have to do with portability. Perl began on Unix systems, and
it still has deep roots in Unix. But wherever possible, we’ve tried to show when some-
thing may behave unexpectedly, whether that’s because it’s running on a non-Unix
system or for another reason. We hope that readers who know nothing about Unix will
nevertheless find this book a good introduction to Perl. (And they’ll learn a little about
Unix along the way, at no extra charge.)

† Except on Tuesdays, during a power outage, when you hold your elbow at a funny angle during the equinox,
or when use integer is in effect inside a loop block being called by a prototyped subroutine prior to Perl
version 5.12.

2 | Chapter 1: Introduction

http://oreilly.com/catalog/0636920012689/
http://oreilly.com/catalog/9780596527242/
http://oreilly.com/catalog/9780596000271/
http://oreilly.com/catalog/9780596000271/

And many of the other exceptions have to do with the old “80/20” rule. By that we
mean that 80% of the behavior of Perl can be described in 20% of the documentation,
and the other 20% of the behavior takes up the other 80% of the documentation. So,
to keep this book small, we’ll talk about the most common, easy-to-talk-about behavior
in the main text, and hint in the direction of the other stuff in the footnotes (which are
in a smaller font, so we can say more in the same space).‡ Once you’ve read the book
all the way through without reading the footnotes, you’ll probably want to look back
at some sections for reference. At that point, or if you become unbearably curious along
the way, go ahead and read the notes. A lot of them are just computer jokes anyway.

What About the Exercises and Their Answers?
The exercises are at the end of each chapter because, between the three of us, we’ve
presented this same course material to several thousand students.§ We have carefully
crafted these exercises to give you the chance to make mistakes as well.

It’s not that we want you to make mistakes, but you need to have the chance. That’s
because you are going to make most of these mistakes during your Perl programming
career, and it may as well be now. Any mistake that you make while reading this book
you won’t make again when you’re writing a program on a deadline. And we’re always
here to help you out if something goes wrong, in the form of Appendix A, which has
our answers for each exercise and a little text to go with it, explaining the mistakes you
made and a few you didn’t. Check out the answers when you’re done with the exercises.

Try not to peek at the answer until you’ve given the problem a good try, though. You’ll
learn better if you figure it out rather than read about it. Don’t knock your head re-
peatedly against the wall if you don’t figure out a solution: move on to the next chapter
and don’t worry too much about it.

Even if you never make any mistakes, you should look at the answers when you’re done;
the accompanying text will point out some details of the program that might not be
obvious at first.

If you want additional exercises, check out the Learning Perl Student Workbook, which
adds several exercises for each chapter.

‡ We even discussed doing the entire book as a footnote to save the page count, but footnotes on footnotes
started to get a bit crazy.

§ Not all at once.

Questions and Answers | 3

What Do Those Numbers Mean at the Start of the Exercise?
Each exercise has a number in square brackets in front of the exercise text, looking
something like this:

1. [2] What does the number 2 inside square brackets mean, when it appears at the
start of an exercise’s text?

That number is our (very rough) estimate of how many minutes you can expect to spend
on that particular exercise. It’s rough, so don’t be too surprised if you’re all done (with
writing, testing, and debugging) in half that time, or not done in twice that long. On
the other hand, if you’re really stuck, we won’t tell anyone that you peeked at Appen-
dix A to see what our answer looked like.

What If I’m a Perl Course Instructor?
If you’re a Perl instructor who has decided to use this as your textbook (as many have
over the years), you should know that we’ve tried to make each set of exercises short
enough that most students could do the whole set in 45 minutes to an hour, with a
little time left over for a break. Some chapters’ exercises should be quicker, and some
may take longer. That’s because, once we had written all of those little numbers in
square brackets, we discovered that we don’t know how to add (luckily we know how
to make computers do it for us).

We also have a companion book, the Learning Perl Student Workbook, which has ad-
ditional exercises for each chapter. If you get the version of the workbook for the fourth
edition, you will have to adjust the chapter order because in this edition, we have added
a chapter and moved another.

What Does “Perl” Stand For?
Perl is sometimes called the “Practical Extraction and Report Language,” although it
has also been called a “Pathologically Eclectic Rubbish Lister,” among other expan-
sions. It’s actually a backronym, not an acronym, since Larry Wall, Perl’s creator, came
up with the name first and the expansion later. That’s why “Perl” isn’t in all caps.
There’s no point in arguing which expansion is correct: Larry endorses both.

You may also see “perl” with a lowercase p in some writing. In general, “Perl” with a
capital P refers to the language and “perl” with a lowercase p refers to the actual inter-
preter that compiles and runs your programs. In the house style, we write the names
of programs like perl.

4 | Chapter 1: Introduction

Why Did Larry Create Perl?
Larry created Perl in the mid-1980s when he was trying to produce some reports from
a Usenet-news-like hierarchy of files for a bug-reporting system, and awk ran out of
steam. Larry, being the lazy programmer that he is,‖ decided to overkill the problem
with a general-purpose tool that he could use in at least one other place. The result was
Perl version zero.

Why Didn’t Larry Just Use Some Other Language?
There’s no shortage of computer languages, is there? But, at the time, Larry didn’t see
anything that really met his needs. If one of the other languages of today had been
available back then, perhaps Larry would have used one of those. He needed something
with the quickness of coding available in shell or awk programming, and with some of
the power of more advanced tools like grep, cut, sort, and sed,# without having to resort
to a language like C.

Perl tries to fill the gap between low-level programming (such as in C or C++ or as-
sembly) and high-level programming (such as “shell” programming). Low-level pro-
gramming is usually hard to write and ugly, but fast and unlimited; it’s hard to beat the
speed of a well-written low-level program on a given machine. And there’s not much
you can’t do there. High-level programming, at the other extreme, tends to be slow,
hard, ugly, and limited; there are many things you can’t do at all with the shell or batch
programming if there’s no command on your system that provides the needed func-
tionality. Perl is easy, nearly unlimited, mostly fast, and kind of ugly.

Let’s take another look at those four claims we just made about Perl.

First, Perl is easy. As you’ll see, though, this means it’s easy to use. It’s not especially
easy to learn. If you drive a car, you spent many weeks or months learning how, and
now it’s easy to drive. When you’ve been programming Perl for about as many hours
as it took you to learn to drive, Perl will be easy for you.*

Perl is nearly unlimited. There are very few things you can’t do with Perl. You wouldn’t
want to write an interrupt-microkernel-level device driver in Perl (even though that’s
been done), but most things that ordinary folks need most of the time are good tasks
for Perl, from quick little one-off programs to major industrial-strength applications.

‖ We’re not insulting Larry by saying he’s lazy; laziness is a virtue. The wheelbarrow was invented by someone
who was too lazy to carry things; writing was invented by someone who was too lazy to memorize; Perl was
invented by someone who was too lazy to get the job done without inventing a whole new computer language.

#Don’t worry if you don’t know what these are. All that matters is that they were the programs Larry had in
his Unix toolbox, but they weren’t up to the tasks at hand.

* But we hope you’ll crash less often with the car.

What Does “Perl” Stand For? | 5

Perl is mostly fast. That’s because nobody is developing Perl who doesn’t also use it—
so we all want it to be fast. If someone wants to add a feature that would be really cool
but would slow down other programs, Larry is almost certain to refuse the new feature
until we find a way to make it quick enough.

Perl is kind of ugly. This is true. The symbol of Perl has become the camel, from the
cover of the venerable Camel book (also known as Programming Perl), a cousin of this
book’s Llama (and her sister, the Alpaca). Camels are kind of ugly, too. But they work
hard, even in tough conditions. Camels are there to get the job done despite all diffi-
culties, even when they look bad and smell worse and sometimes spit at you. Perl is a
little like that.

Is Perl Easy or Hard?
Perl is easy to use, but sometimes hard to learn. This is a generalization, of course. In
designing Perl, Larry made many trade-offs. When he’s had the chance to make some-
thing easier for the programmer at the expense of being more difficult for the student,
he’s decided in the programmer’s favor nearly every time. That’s because you’ll learn
Perl only once, but you’ll use it again and again.† Perl has any number of conveniences
that let the programmer save time. For example, most functions will have a default;
frequently, the default is the way that you’ll want to use the function. So you’ll see lines
of Perl code like these:‡

while (<>) {
 chomp;
 print join("\t", (split /:/)[0, 2, 1, 5]), "\n";
}

Written out in full, without using Perl’s defaults and shortcuts, that snippet would be
roughly ten or twelve times longer, so it would take much longer to read and write. It
would be harder to maintain and debug, too, with more variables. If you already know
some Perl, and you don’t see the variables in that code, that’s part of the point. They’re
all being used by default. But to have this ease at the programmer’s tasks means paying
the price when you’re learning; you have to learn those defaults and shortcuts.

A good analogy is the proper and frequent use of contractions in English. Sure, “will
not” means the same as “won’t.” But most people say “won’t” rather than “will not”
because it saves time, and because everybody knows it and it makes sense. Similarly,
Perl’s “contractions” abbreviate common “phrases” so that they can be “spoken”
quicker and understood by the maintainer as a single idiom, rather than a series of
unrelated steps.

† If you’re going to use a programming language for only a few minutes each week or month, you’d prefer one
that is easier to learn, since you’ll have forgotten nearly all of it from one use to the next. Perl is for people
who are programmers for at least twenty minutes per day, and probably most of that in Perl.

‡ We won’t explain it all here, but this example pulls some data from an input file or files in one format and
writes some of it out in another format. All of its features are covered in this book.

6 | Chapter 1: Introduction

Once you become familiar with Perl, you may find yourself spending less time trying
to get shell quoting (or C declarations) right, and more time surfing the Web because
Perl is a great tool for leverage. Perl’s concise constructs allow you to create (with
minimal fuss) some very cool one-up solutions or general tools. Also, you can drag
those tools along to your next job because Perl is highly portable and readily available,
so you’ll have even more time to surf.

Perl is a very high-level language. That means that the code is quite dense; a Perl pro-
gram may be around a quarter to three-quarters as long as the corresponding program
in C. This makes Perl faster to write, faster to read, faster to debug, and faster to main-
tain. It doesn’t take much programming before you realize that, when the entire sub-
routine is small enough to fit onscreen all at once, you don’t have to keep scrolling back
and forth to see what’s going on. Also, since the number of bugs in a program is roughly
proportional to the length of the source code§ (rather than being proportional to the
program’s functionality), the shorter source in Perl will mean fewer bugs on average.

Like any language, Perl can be “write-only”—it’s possible to write programs that are
impossible to read. But with proper care, you can avoid this common accusation. Yes,
sometimes Perl looks like CPAN line-noise to the uninitiated, but to the seasoned Perl
programmer, it looks like the notes of a grand symphony. If you follow the guidelines
of this book, your programs should be easy to read and easy to maintain, and they
probably won’t win The Obfuscated Perl Contest.

How Did Perl Get to Be So Popular?
After playing with Perl a bit, adding stuff here and there, Larry released it to the com-
munity of Usenet readers, commonly known as “the Net.” The users on this ragtag
fugitive fleet of systems around the world (tens of thousands of them) gave him feed-
back, asking for ways to do this, that, or the other thing, many of which Larry had never
envisioned his little Perl handling.

But as a result, Perl grew, and grew, and grew. It grew in features. It grew in portability.
What was once a little language available on only a couple of Unix systems now has
thousands of pages of free online documentation, dozens of books, several mainstream
Usenet newsgroups (and a dozen newsgroups and mailing lists outside the mainstream)
with an uncountable number of readers, and implementations on nearly every system
in use today—and don’t forget this Llama book as well.

What’s Happening with Perl Now?
Larry Wall doesn’t write the code these days, but he still guides the development
and makes the big decisions. Perl is mostly maintained by a hardy group of people

§ With a sharp jump when any one section of the program exceeds the size of your screen.

What Does “Perl” Stand For? | 7

called the Perl 5 Porters. You can follow their work and discussions on the
perl5-porters@perl.org mailing list.

As we write this (March 2011), there is a lot happening with Perl. For the past couple
of years, many people have been working on the next major version of Perl: Perl 6.

In short, Perl 6 is a completely different language now, even to the point that it’s main
implementation goes by the name Rakudo. In 2000, Perl 6 started as something that
might replace Perl 5, which had been in the doldrums with long lag times in the releases
of Perl 5.6, 5.8, and 5.10. Through various accidents and tangents, it turned out that
as Perl 5 hotted up again, Perl 6 bogged down. Ironic, perhaps?

However, Perl 5 development was also revitalized and now has monthly releases of
experimental versions and roughly yearly releases of new maintenance versions. The
last edition of this book covered 5.10, and there wasn’t time to update it before Perl
5.12 came out. Now this book is available right around the time Perl 5.14 should be
released, with the Perl 5 Porters already thinking about Perl 5.16.

What’s Perl Really Good For?
Perl is good for quick-and-dirty programs that you whip up in three minutes. Perl is
also good for long-and-extensive programs that will take a dozen programmers three
years to finish. Of course, you’ll probably find yourself writing many programs that
take you less than an hour to complete, from the initial plan to the fully tested code.

Perl is optimized for problems which are about 90% working with text and about 10%
everything else. That description seems to fit most programming tasks that pop up
these days. In a perfect world, every programmer would know every language; you’d
always be able to choose the best language for each project. Most of the time, you’d
choose Perl.‖ Although the Web wasn’t even a twinkle in Tim Berners-Lee’s eye when
Larry created Perl, it was a marriage made on the Net. Some claim that the deployment
of Perl in the early 1990s permitted people to move lots of content into HTML format
very rapidly, and the Web couldn’t exist without content. Of course, Perl is the darling
language for small CGI scripting (programs run by a web server) as well—so much so
that many of the uninformed still make statements like “Isn’t CGI just Perl?” or “Why
would you use Perl for something other than CGI?” We find those statements amusing.

What Is Perl Not Good For?
So, if it’s good for so many things, what is Perl not good for? Well, you shouldn’t choose
Perl if you’re trying to make an opaque binary. That’s a program that you could give

‖ Don’t just take our word for it, though. If you want to know whether Perl is better than language X, learn
them both and try them both, then see which one you use most often. That’s the one that’s best for you. In
the end, you’ll understand Perl better because of your study of language X, and vice versa, so it will be time
well spent.

8 | Chapter 1: Introduction

mailto:perl5-porters@perl.org

away or sell to someone who then can’t see your secret algorithms in the source, and
thus can’t help you maintain or debug your code either. When you give someone your
Perl program, you’ll normally be giving them the source, not an opaque binary.

If you’re wishing for an opaque binary, though, we have to tell you that they don’t exist.
If someone can install and run your program, they can turn it back into source code.
Granted, this won’t necessarily be the same source that you started with, but it will be
some kind of source code. The real way to keep your secret algorithm a secret is, alas,
to apply the proper number of attorneys; they can write a license that says “you can do
this with the code, but you can’t do that. And if you break our rules, we’ve got the
proper number of attorneys to ensure that you’ll regret it.”

How Can I Get Perl?
You probably already have it. At least, we find Perl wherever we go. It ships with many
systems, and system administrators often install it on every machine at their site. But
if you can’t find it already on your system, you can still get it for free. It comes pre-
installed with most Linux or *BSD systems, Mac OS X, and some others. Companies
such as ActiveState (http://www.activestate.com) provide pre-built and enhanced dis-
tributions for several platforms, including Windows. You can also get Strawberry Perl
for Windows (http://www.strawberryperl.com), which comes with all the same stuff as
regular Perl plus extra tools to compile and install third-party modules.

Perl is distributed under two different licenses. For most people, since you’ll merely be
using it, either license is as good as the other. If you’ll be modifying Perl, however, you’ll
want to read the licenses more closely, because they put some small restrictions on
distributing the modified code. For people who won’t modify Perl, the licenses essen-
tially say, “It’s free—have fun with it.”

In fact, it’s not only free, but it runs rather nicely on nearly everything that calls itself
Unix and has a C compiler. You download it, type a command or two, and it starts
configuring and building itself. Or, better yet, you get your system administrator to
type those two commands and install it for you.# Besides Unix and Unix-like systems,
people addicted to Perl have ported it to other systems, such as Mac OS X, VMS,
OS/2, even MS/DOS, and every modern species of Windows—and probably even more
by the time you read this.* Many of these ports of Perl come with an installation program
that’s even easier to use than the process for installing Perl on Unix. Check for links in
the “ports” section on CPAN.

#If system administrators can’t install software, what good are they? If you have trouble convincing your admin
to install Perl, offer to buy a pizza. We’ve never met a sysadmin who could say no to a free pizza, or at least
counteroffer with something just as easy to get.

* And no, as we write this, it won’t fit in your Blackberry—it’s just too darn big, even stripped down. We’ve
heard rumors that it runs on WinCE though.

How Can I Get Perl? | 9

http://www.activestate.com
http://www.strawberryperl.com

What Is CPAN?
CPAN is the Comprehensive Perl Archive Network, your one-stop shopping for Perl.
It has the source code for Perl itself, ready-to-install ports of Perl to all sorts of non-
Unix systems,† examples, documentation, extensions to Perl, and archives of messages
about Perl. In short, CPAN is comprehensive.

CPAN is replicated on hundreds of mirror machines around the world; start at http://
search.cpan.org/ to browse or search the archive. If you don’t have access to the Net,
you might find a CD-ROM or DVD-ROM with all of the useful parts of CPAN on it;
check with your local technical bookstore. Look for a recently minted archive, though.
Since CPAN changes daily, an archive from two years ago is an antique. Better yet, get
a kind friend with Net access to burn you one with today’s CPAN.

How Can I Get Support for Perl?
Well, you get the complete source—so you get to fix the bugs yourself!

That doesn’t sound so good, does it? But it really is a good thing. Since there’s no
“source code escrow” on Perl, anyone can fix a bug—in fact, by the time you’ve found
and verified a bug, someone else has probably already got a fix for it. There are thou-
sands of people around the world who help maintain Perl.

Now, we’re not saying that Perl has a lot of bugs. But it’s a program, and every program
has at least one bug. To see why it’s so useful to have the source to Perl, imagine that
instead of using Perl, you licensed a programming language called Forehead from a
giant, powerful corporation owned by a zillionaire with a bad haircut. (This is all hy-
pothetical. Everyone knows there’s no such programming language as Forehead.) Now
think of what you can do when you find a bug in Forehead. First, you can report it.
Second, you can hope—hope that they fix the bug, hope that they fix it soon, hope that
they won’t charge too much for the new version. You can hope that the new version
doesn’t add new features with new bugs, and hope that the giant company doesn’t get
broken up in an antitrust lawsuit.

But with Perl, you’ve got the source. In the rare and unlikely event that you can’t get a
bug fixed any other way, you can hire a programmer or ten and get to work. For that
matter, if you buy a new machine that Perl doesn’t yet run on, you can port it yourself.
Or if you need a feature that doesn’t yet exist, well, you know what to do.

Are There Any Other Kinds of Support?
Sure. One of our favorites is the Perl Mongers. This is a worldwide association of Perl
users’ groups; see http://www.pm.org/ for more information. There’s probably a group

† It’s nearly always better to compile Perl from the source on Unix systems. Other systems may not have a C
compiler and other tools needed for compilation, so CPAN has binaries for these.

10 | Chapter 1: Introduction

http://search.cpan.org/
http://search.cpan.org/
http://www.pm.org/

near you with an expert or someone who knows an expert. If there’s no group, you can
easily start one.

Of course, for the first line of support, you shouldn’t neglect the documentation. Be-
sides the included documentation, you can also read the documentation on CPAN,
http://www.cpan.org, as well as other sites—http://perldoc.perl.org has HTML and PDF
versions of the Perl documentation, and http://faq.perl.org/ has the latest version of the
perlfaq.

Another authoritative source is the book Programming Perl, commonly called “the
Camel book” because of its cover animal (just as this book is known as “the Llama
book”). The Camel book contains the complete reference information, some tutorial
stuff, and a bunch of miscellaneous information about Perl. There’s also a separate
pocket-sized Perl 5 Pocket Reference by Johan Vromans (O’Reilly) that’s handy to keep
at hand (or in your pocket).

If you need to ask a question of someone, there are newsgroups on Usenet and any
number of mailing lists.‡ At any hour of the day or night, there’s a Perl expert awake
in some time zone answering questions on Usenet’s Perl newsgroups—the sun never
sets on the Perl empire. This means that if you ask a question, you’ll often get an answer
within minutes. And if you didn’t check the documentation and FAQ first, you’ll get
flamed within minutes.

The official Perl newsgroups on Usenet are located in the comp.lang.perl.* part of the
hierarchy. As of this writing, there are five of them, but they change from time to time.
You (or whoever is in charge of Perl at your site) should generally subscribe to
comp.lang.perl.announce, which is a low-volume newsgroup just for important an-
nouncements about Perl, including any security-related announcements. Ask your local
expert if you need help with Usenet.

Also, a few web communities have sprung up around Perl discussions. One very popular
one, known as The Perl Monastery (http://www.perlmonks.org), has seen quite a bit of
participation from many Perl book and column authors, including at least two of the
authors of this book. There is also good Perl support on Stack Overflow (http://www
.stackoverflow.com).

You can also check out http://learn.perl.org/ and its associated mailing list,
beginners@perl.org. Many well-known Perl programmers also have blogs that regularly
feature Perl-related posts, most of which you can read through Perlsphere, http://perl
sphere.net/.

If you find yourself needing a support contract for Perl, there are a number of firms
who are willing to charge as much as you’d like. In most cases, these other support
avenues will take care of you for free.

‡ Many mailing lists are listed at http://lists.perl.org.

How Can I Get Perl? | 11

http://www.cpan.org
http://perldoc.perl.org
http://faq.perl.org/
http://oreilly.com/catalog/9780596000271/
http://oreilly.com/catalog/0636920018476/
http://www.perlmonks.org
http://www.stackoverflow.com
http://www.stackoverflow.com
http://learn.perl.org/
mailto:beginners@perl.org
http://perlsphere.net/
http://perlsphere.net/
http://lists.perl.org

What If I Find a Bug in Perl?
The first thing to do when you find a bug is to check the documentation§ again.‖ Perl
has so many special features and exceptions to rules that you may have discovered a
feature, not a bug. Also, check that you don’t have an older version of Perl; maybe you
found something that’s been fixed in a more recent version.

Once you’re 99% certain that you’ve found a real bug, ask around. Ask someone at
work, at your local Perl Mongers meeting, or at a Perl conference. Chances are, it’s
still a feature, not a bug.

Once you’re 100% certain that you’ve found a real bug, cook up a test case. (What,
you haven’t done so already?) The ideal test case is a tiny self-contained program that
any Perl user could run to see the same (mis-)behavior as you’ve found. Once you’ve
got a test case that clearly shows the bug, use the perlbug utility (which comes with
Perl) to report the bug. That will normally send email from you to the Perl developers,
so don’t use perlbug until you’ve got your test case ready.

Once you’ve sent off your bug report, if you’ve done everything right, it’s not unusual
to get a response within minutes. Typically, you can apply a simple patch and get right
back to work. Of course, you may (at worst) get no response at all; the Perl developers
are under no obligation to read your bug reports. But all of us love Perl, so nobody likes
to let a bug escape our notice.

How Do I Make a Perl Program?
It’s about time you asked (even if you didn’t). Perl programs are text files; you can create
and edit them with your favorite text editor. You don’t need any special development
environment, although there are some commercial ones available from various vendors.
We’ve never used any of these enough to recommend them (but long enough to stop
using them). Besides, your environment is a personal choice. Ask three programmers
what you should use and you’ll get eight answers.

You should generally use a programmers’ text editor, rather than an ordinary editor.
What’s the difference? Well, a programmers’ text editor will let you do things that
programmers need, like indenting or un-indenting a block of code, or finding the
matching closing curly brace for a given opening curly brace. On Unix systems, the two
most popular programmers’ editors are emacs and vi (and their variants and clones).
BBEdit and TextMate are good editors for Mac OS X, and a lot of people have said nice
things about UltraEdit and PFE (Programmer’s Favorite Editor) on Windows. The

§ Even Larry admits to consulting the documentation from time to time.

‖ Maybe even two or three times. Many times, we’ve gone into the documentation looking to explain a
particular unexpected behavior and found some new little nuance that ends up on a slide or in a magazine
article.

12 | Chapter 1: Introduction

perlfaq3 documentation lists several other editors, too. Ask your local expert about text
editors on your system.

For the simple programs you’ll write for the exercises in this book, none of which should
be more than about 20 or 30 lines of code, any text editor will be fine.

Some beginners try to use a word processor instead of a text editor. We recommend
against this—it’s inconvenient at best and impossible at worst. But we won’t try to stop
you. Be sure to tell the word processor to save your file as “text only”; the word pro-
cessor’s own format will almost certainly be unusable. Most word processors will
probably also tell you that your Perl program is spelled incorrectly and you should use
fewer semicolons.

In some cases, you may need to compose the program on one machine, then transfer
it to another to run it. If you do this, be sure that the transfer uses “text” or “ASCII”
mode, and not “binary” mode. This step is needed because of the different text formats
on different machines. Without it, you may get inconsistent results—some versions of
Perl actually abort when they detect a mismatch in the line endings.

A Simple Program
According to the oldest rule in the book, any book about a computer language that has
Unix-like roots has to start with showing the “Hello, world” program. So, here it is in
Perl:

#!/usr/bin/perl
print "Hello, world!\n";

Let’s imagine that you’ve typed that into your text editor. (Don’t worry yet about what
the parts mean and how they work. You’ll see about those in a moment.) You can
generally save that program under any name you wish. Perl doesn’t require any special
kind of filename or extension, and it’s better not to use an extension at all.# But some
systems may require an extension like .plx (meaning PerL eXecutable); see your sys-
tem’s release notes for more information.

You may also need to do something so that your system knows it’s an executable pro-
gram (that is, a command). What you’ll do depends upon your system; maybe you
won’t have to do anything more than save the program in a certain place. (Your current
directory will generally be fine.) On Unix systems, you mark a program as being exe-
cutable using the chmod command, perhaps like this:

$ chmod a+x my_program

#Why is it better to have no extension? Imagine that you’ve written a program to calculate bowling scores and
you’ve told all of your friends that it’s called bowling.plx. One day you decide to rewrite it in C. Do you still
call it by the same name, implying that it’s still written in Perl? Or do you tell everyone that it has a new
name? (And don’t call it bowling.c, please!) The answer is that it’s none of their business what language it’s
written in, if they’re merely using it. So it should have simply been called bowling in the first place.

How Do I Make a Perl Program? | 13

http://perldoc.perl.org/perlfaq3.html

The dollar sign (and space) at the start of the line represents the shell prompt, which
will probably look different on your system. If you’re used to using chmod with a num-
ber like 755 instead of a symbolic parameter like a+x, that’s fine too, of course. Either
way, it tells the system that this file is now a program.

Now you’re ready to run it:

$./my_program

The dot and slash at the start of this command mean to find the program in the current
working directory. That’s not needed in all cases, but you should use it at the start of
each command invocation until you fully understand what it’s doing.* If everything
worked, it’s a miracle. More often, you’ll find that your program has a bug. Edit and
try again—but you don’t need to use chmod each time, as that should “stick” to the
file. (Of course, if the bug is that you didn’t use chmod correctly, you’ll probably get a
“permission denied” message from your shell.)

There’s another way to write this simple program in Perl 5.10 or later, and we might
as well get that out of the way right now. Instead of print, we use say, which does
almost the same thing, but with less typing. It adds the newline for us, meaning that
we can save some time forgetting to add it ourselves. Since it’s a new feature and you
might not be using Perl 5.10 yet, we include a use 5.010 statement that tells Perl that
we used new features:

#!/usr/bin/perl

use 5.010;

say "Hello World!";

This program only runs under Perl 5.10 or later. When we introduce Perl 5.10 or later
features in this book, we’ll explicitly say they are new features in the text and include
that use 5.010 statement to remind you. Perl actually thinks about the minor version
as a three digit number, so ensure that you say use 5.010 and not use 5.10 (which Perl
thinks is 5.100, a version we definitely don’t have yet!).

Typically, we only require the earliest version of Perl for the features that we need. This
book covers up to Perl 5.14, so in many of the new features we preface the examples
to remind you to add this line:

use 5.014;

* In short, it’s preventing your shell from running another program (or shell built-in) of the same name. A
common mistake among beginners is to name their first program test. Many systems already have a program
(or shell built-in) with that name; that’s what the beginners run instead of their program.

14 | Chapter 1: Introduction

What’s Inside That Program?
Like other “free-form” languages, Perl generally lets you use insignificant whitespace
(like spaces, tabs, and newlines) at will to make your program easier to read. Most Perl
programs use a fairly standard format, though, much like most of what we show
here.† We strongly encourage you to properly indent your programs, as that makes
your program easier to read; a good text editor will do most of the work for you. Good
comments also make a program easier to read. In Perl, comments run from a pound
sign (#) to the end of the line. (There are no “block comments” in Perl.‡) We don’t use
many comments in the programs in this book because the surrounding text explains
their workings, but you should use comments as needed in your own programs.

So another way (a very strange way, it must be said) to write that same “Hello, world”
program might be like this:

#!/usr/bin/perl
 print # This is a comment
"Hello, world!\n"
; # Don't write your Perl code like this!

That first line is actually a very special comment. On Unix systems,§ if the very first
two characters on the first line of a text file are #!, then what follows is the name of the
program that actually executes the rest of the file. In this case, the program is stored in
the file /usr/bin/perl.

This #! line is actually the least portable part of a Perl program because you’ll need to
find out what goes there for each machine. Fortunately, it’s almost always either /usr/
bin/perl or /usr/local/bin/perl. If that’s not it, you’ll have to find where your system is
hiding perl, then use that path. On some Unix systems, you might use a shebang line
that finds perl for you:

#!/usr/bin/env perl

If perl is not in any of the directories in your search path, you might have to ask your
local system administrator or somebody using the same system as you. Beware though,
that finds the first perl, which might not be the one that you wanted.

On non-Unix systems, it’s traditional (and even useful) to make the first line say #!
perl. If nothing else, it tells your maintenance programmer as soon as he gets ready to
fix it that it’s a Perl program.

If that #! line is wrong, you’ll generally get an error from your shell. This may be some-
thing unexpected, like “file not found” or “bad interpreter”. It’s not your program that’s

† There is some general advice (not rules!) in the perlstyle documentation.

‡ But there are a number of ways to fake them. See the perlfaq portions of the documentation.

§ Most modern ones, anyway. The “sh-bang” mechanism, pronounced “sheh-bang” as in “the whole shebang”,
was introduced somewhere in the mid-1980s, and that’s pretty ancient, even on the extensively long Unix
timeline.

How Do I Make a Perl Program? | 15

http://perldoc.perl.org/perlstyle.html
http://perldoc.perl.org/perlfaq.html

not found, though; it’s that /usr/bin/perl wasn’t where it should have been. We’d make
the message clearer if we could, but it’s not coming from Perl; it’s the shell that’s
complaining.

Another problem you could have is that your system doesn’t support the #! line at all.
In that case, your shell (or whatever your system uses) will probably try to run your
program all by itself, with results that may disappoint or astonish you. If you can’t
figure out what some strange error message is telling you, search for it in the perldiag
documentation.

The “main” program consists of all the ordinary Perl statements (not including anything
in subroutines, which you’ll see later). There’s no “main” routine, as there is in lan-
guages like C or Java. In fact, many programs don’t even have routines (in the form of
subroutines).

There’s also no required variable declaration section, as there is in some other lan-
guages. If you’ve always had to declare your variables, you may be startled or unsettled
by this at first. But it allows us to write quick-and-dirty Perl programs. If your program
is only two lines long, you don’t want to have to use one of those lines just to declare
your variables. If you really want to declare your variables, that’s a good thing; you’ll
see how to do that in Chapter 4.

Most statements are an expression followed by a semicolon.‖ Here’s the one you’ve
seen a few times so far:

print "Hello, world!\n";

As you may have guessed by now, this line prints the message Hello, world! At the
end of that message is the shortcut \n, which is probably familiar to you if you’ve used
another language like C, C++, or Java; it means a newline character. When that’s prin-
ted after the message, the print position drops down to the start of the next line, al-
lowing the following shell prompt to appear on a line of its own, rather than being
attached to the message. Every line of output should end with a newline character.
We’ll see more about the newline shortcut and other so-called backslash escapes in the
next chapter.

How Do I Compile My Perl Program?
Just run your Perl program. The perl interpreter compiles and runs your program in
one user step:

$ perl my_program

When you run your program, Perl’s internal compiler first runs through your entire
source, turning it into internal bytecodes, which is an internal data structure represent-
ing the program. Perl’s bytecode engine takes over and actually runs the bytecode. If

‖ You only need semicolons to separate statements, not terminate them.

16 | Chapter 1: Introduction

http://perldoc.perl.org/perldiag.html

there’s a syntax error on line 200, you’ll get that error message before you start running
line 2.# If you have a loop that runs 5,000 times, it’s compiled just once; the actual loop
can then run at top speed. And there’s no runtime penalty for using as many comments
and as much whitespace as you need to make your program easy to understand. You
can even use calculations involving only constants, and the result is a constant com-
puted once as the program is beginning—not each time through a loop.

To be sure, this compilation does take time—it’s inefficient to have a voluminous Perl
program that does one small quick task (out of many potential tasks, say) and then
exits because the runtime for the program will be dwarfed by the compile time. But the
compiler is very fast; normally the compilation will be a tiny percentage of the runtime.

An exception might be if you were writing a program run as a CGI script, where it may
be called hundreds or thousands of times every minute. (This is a very high usage rate.
If it were called a few hundreds or thousands of times per day, like most programs on
the Web, we probably wouldn’t worry too much about it.) Many of these programs
have very short runtimes, so the issue of recompilation may become significant. If this
is an issue for you, you’ll want to find a way to keep your program in memory between
invocations. The mod_perl extension to the Apache web server (http://perl.apache
.org) or Perl modules like CGI::Fast can help you.

What if you could save the compiled bytecodes to avoid the overhead of compilation?
Or, even better, what if you could turn the bytecodes into another language, like C,
and then compile that? Well, both of these things are possible in some cases, but they
probably won’t make most programs any easier to use, maintain, debug, or install, and
they may even make your program slower.

A Whirlwind Tour of Perl
So, you want to see a real Perl program with some meat? (If you don’t, just play along
for now.) Here you are:

#!/usr/bin/perl
@lines = `perldoc -u -f atan2`;
foreach (@lines) {
 s/\w<([^>]+)>/\U$1/g;
 print;
}

Now, the first time you see Perl code like this, it can seem pretty strange. (In fact, every
time you see Perl code like this, it can seem pretty strange.) But let’s take it line by line,
and see what this example does. These explanations are very brief; this is a whirlwind
tour, after all. We’ll see all of this program’s features in more detail during the rest of
this book. You’re not really supposed to understand the whole thing until later.

#Unless line 2 happens to be a compile-time operation, like a BEGIN block or a use invocation.

A Whirlwind Tour of Perl | 17

http://perl.apache.org
http://perl.apache.org

The first line is the #! line, as you saw before. You might need to change that line for
your system, as we showed you earlier.

The second line runs an external command, named within backquotes (` `). (The
backquote key is often found next to the number 1 on full-sized American keyboards.
Be sure not to confuse the backquote with the single quote, '.) The command we used
is perldoc -u -f atan2; try typing that in your command line to see what its output looks
like. The perldoc command is used on most systems to read and display the documen-
tation for Perl and its associated extensions and utilities, so it should normally be avail-
able.* This command tells you something about the trigonometric function atan2; we’re
using it here just as an example of an external command whose output we wish to
process.

The output of that command in the backquotes is saved in an array variable called
@lines. The next line of code starts a loop that will process each one of those lines.
Inside the loop, the statements are indented. Although Perl doesn’t require this, good
programmers do.

The first line inside the loop body is the scariest one; it says s/\w<([^>]+)>/\U$1/g;.
Without going into too much detail, we’ll just say that this can change any line that
has a special marker made with angle brackets (< >), and there should be at least one
of those in the output of the perldoc command.

The next line, in a surprise move, prints out each (possibly modified) line. The resulting
output should be similar to what perldoc -u -f atan2 would do on its own, but there
will be a change where any of those markers appear.

Thus, in the span of a few lines, we’ve run another program, saved its output in memory,
updated the memory items, and printed them out. This kind of program is a fairly
common use of Perl, where one type of data is converted to another.

Exercises
Normally, each chapter will end with some exercises, with the answers in Appen-
dix A. But you don’t need to write the programs needed to complete this section—
those are supplied within the chapter text.

If you can’t get these exercises to work on your machine, double-check your work and
then consult your local expert. Remember that you may need to tweak each program
a little, as described in the text:

* If perldoc is not available, that probably means that your system doesn’t have a command-line interface, and
your Perl can’t run commands (like perldoc!) in backquotes or via a piped open, which you’ll see in
Chapter 14. In that case, you should simply skip the exercises that use perldoc.

18 | Chapter 1: Introduction

1. [7] Type in the “Hello, world” program and get it to work! You may name it any-
thing you wish, but a good name might be ex1-1, for simplicity, as it’s exercise 1
in Chapter 1. This is a program that even an experienced programmer would write,
mostly to test the setup of a system. If you can run this program, your perl is
working.

2. [5] Type the command perldoc -u -f atan2 at a command prompt and note its
output. If you can’t get that to work, find out from a local administrator or the
documentation for your version of Perl about how to invoke perldoc or its equiv-
alent. You’ll need this for the next exercise anyway.

3. [6] Type in the second example program (from the previous section) and see what
it prints. Hint: be careful to type those punctuation marks exactly as shown! Do
you see how it changed the output of the command?

Exercises | 19

CHAPTER 2

Scalar Data

In English, as in many other spoken languages, you’re used to distinguishing between
singular and plural. As a computer language designed by a human linguist, Perl is sim-
ilar. As a general rule, when Perl has just one of something, that’s a scalar.* A scalar is
the simplest kind of data that Perl manipulates. Most scalars are either a number (like
255 or 3.25e20) or a string of characters (like hello† or the Gettysburg Address). Al-
though you may think of numbers and strings as very different things, Perl uses them
nearly interchangeably.

You can act on a scalar value with operators (like addition or concatenation), generally
yielding a scalar result. You can store a scalar value in a scalar variable. You can read
scalars from files and devices, and write to them as well.

Numbers
Although a scalar is most often either a number or a string, it’s useful to look at numbers
and strings separately for the moment. We’ll cover numbers first, and then move on to
strings.

* This has little to do with the similar term from mathematics or physics in that a scalar is a single thing; there
are no “vectors” in Perl.

† If you have been using other programming languages, you may think of hello as a collection of five characters,
rather than as a single thing. But in Perl, a string is a single scalar value. Of course, you can access the individual
characters when you need to; you’ll see how to do that in later chapters.

21

All Numbers Have the Same Format Internally
As you’ll see in the next few paragraphs, you can specify both integers (whole numbers,
like 255 or 2,001) and floating-point numbers (real numbers with decimal points, like
3.14159, or 1.35 × 1,025). But internally, Perl computes with double-precision floating-
point values.‡ This means that there are no integer values internal to Perl—an integer
constant in the program is treated as the equivalent floating-point value.§ You probably
won’t notice the conversion (or care much), but you should stop looking for distinct
integer operations (as opposed to floating-point operations) because there aren’t any.‖

Floating-Point Literals
A literal is how you represent a value in your Perl source code. A literal is not the result
of a calculation or an I/O operation; it’s data that you type directly into your program.

Perl’s floating-point literals should look familiar to you. Numbers with and without
decimal points are allowed (including an optional plus or minus prefix), as well
as tacking on a power-of-10 indicator (exponential notation) with E notation. For
example:

1.25
255.000
255.0
7.25e45 # 7.25 times 10 to the 45th power (a big number)
–6.5e24 # negative 6.5 times 10 to the 24th
 # (a big negative number)
–12e–24 # negative 12 times 10 to the –24th
 # (a very small negative number)
–1.2E–23 # another way to say that the E may be uppercase

Integer Literals
Integer literals are also straightforward, as in:

0
2001
–40
255
61298040283768

‡ A double-precision floating-point value is whatever the C compiler that compiled Perl used for a double
declaration. While the size may vary from machine to machine, most modern systems use the IEEE-754
format, which suggests 15 digits of precision and a range of at least 1e-100 to 1e100.

§ Well, Perl will sometimes use internal integers in ways that are not visible to the programmer. That is, the
only difference you should generally be able to see is that your program runs faster. And who could complain
about that?

‖ Okay, there is the integer pragma. But using that is beyond the scope of this book. And yes, some operations
compute an integer from a given floating-point number, as you’ll see later. But that’s not what we’re talking
about here.

22 | Chapter 2: Scalar Data

That last one is a little hard to read. Perl allows you to add underscores for clarity within
integer literals, so you can also write that number with embedded underscores to make
it easier to read:

61_298_040_283_768

It’s the same value; it merely looks different to us human beings. You might have
thought that commas should be used for this purpose, but commas are already used
for a more-important purpose in Perl (as you’ll see in Chapter 3).

Nondecimal Integer Literals
Like many other programming languages, Perl allows you to specify numbers in other
ways than base 10 (decimal). Octal (base 8) literals start with a leading 0, hexadecimal
(base 16) literals start with a leading 0x, and binary (base 2) literals start with a leading
0b.# The hex digits A through F (or a through f) represent the conventional digit values
of 10 through 15. For example:

0377 # 377 octal, same as 255 decimal
0xff # FF hex, also 255 decimal
0b11111111 # also 255 decimal

Although these values look different to us humans, they’re all three the same number
to Perl. It makes no difference to Perl whether you write 0xFF or 255.000, so choose the
representation that makes the most sense to you and your maintenance programmer
(by which we mean the poor chap who gets stuck trying to figure out what you meant
when you wrote your code. Most often, this poor chap is you, and you can’t recall why
you did what you did three months ago).

When a nondecimal literal is more than about four characters long, it may be hard to
read, so underscores are handy:

0x1377_0B77
0x50_65_72_7C

Numeric Operators
Perl provides the typical ordinary addition, subtraction, multiplication, and division
operators, and so on. For example:

2 + 3 # 2 plus 3, or 5
5.1 – 2.4 # 5.1 minus 2.4, or 2.7
3 * 12 # 3 times 12 = 36
14 / 2 # 14 divided by 2, or 7

#The “leading zero” indicator works only for literals—not for automatic string-to-number conversions, which
you’ll see later in this chapter in “Automatic Conversion Between Numbers and Strings” on page 27. You
can convert a data string that looks like an octal or hex value into a number with oct() or hex(). Although
there’s no bin() function for converting binary values, oct() can do that for strings beginning with 0b.

Numbers | 23

10.2 / 0.3 # 10.2 divided by 0.3, or 34
10 / 3 # always floating-point divide, so 3.3333333...

Perl also supports a modulus operator (%). The value of the expression 10 % 3 is the
remainder when 10 is divided by 3, which is 1. Both values are first reduced to their
integer values, so 10.5 % 3.2 is computed as 10 % 3.* Additionally, Perl provides the
FORTRAN-like exponentiation operator, which many have yearned for in Pascal and
C. The operator is represented by the double asterisk, such as 2**3, which is two to the
third power, or eight.† In addition, there are other numeric operators, which we’ll
introduce as we need them.

Strings
Strings are sequences of characters, such as hello or ☃★๛. Strings may contain any
combination of any characters.‡ The shortest possible string has no characters, and is
called the empty string. The longest string fills all of your available memory (although
you wouldn’t be able to do much with that). This is in accordance with the principle
of “no built-in limits” that Perl follows at every opportunity. Typical strings are print-
able sequences of letters and digits and punctuation. However, the ability to have any
character in a string means you can create, scan, and manipulate raw binary data as
strings—something with which many other utilities would have great difficulty. For
example, you could update a graphical image or compiled program by reading it into
a Perl string, making the change, and writing the result back out.

Perl has full support for Unicode, and your string can contain any of the valid Unicode
characters. However, because of Perl’s history, it doesn’t automatically interpret your
source code as Unicode. If you want to use Unicode literally in your program, you need
to add the utf8 pragma:§

use utf8;

For the rest of this book, we assume that you’re using that pragma. In some cases it
won’t matter, but if you see characters outside the ASCII range in the source, you’ll
need it. Also, you should ensure that you save your files with the UTF-8 encoding. If
you skipped our advice about Unicode from the Preface, you might want to go through
Appendix C to learn more about Unicode.

* The result of a modulus operator when a negative number (or two) is involved can vary between Perl
implementations. Beware.

† You can’t normally raise a negative number to a noninteger exponent. Math geeks know that the result would
be a complex number. To make that possible, you’ll need the help of the Math::Complex module.

‡ Unlike C or C++, there’s nothing special about the NUL character in Perl because Perl uses length counting,
not a null byte, to determine the end of the string.

§ It’s probably a good practice to always include this in your program unless you know why you wouldn’t
want to.

24 | Chapter 2: Scalar Data

Like numbers, strings have a literal representation, which is the way you represent the
string in a Perl program. Literal strings come in two different flavors: single-quoted string
literals and double-quoted string literals.

Single-Quoted String Literals
A single-quoted string literal is a sequence of characters enclosed in single quotes, the
' character. The single quotes are not part of the string itself—they’re just there to let
Perl identify the beginning and the ending of the string. Any character other than a
single quote or a backslash between the quote marks (including newline characters, if
the string continues on to successive lines) stands for itself inside a string. To get a
backslash, put two backslashes in a row, and to get a single quote, put a backslash
followed by a single quote. In other words:

'fred' # those four characters: f, r, e, and d
'barney' # those six characters
'' # the null string (no characters)
'⅚∞☃☠' # Some "wide" Unicode characters
'Don\'t let an apostrophe end this string prematurely!'
'the last character is a backslash: \\'
'hello\n' # hello followed by backslash followed by n
'hello
there' # hello, newline, there (11 characters total)
'\'\\' # single quote followed by backslash

Note that Perl does not interpret the \n within a single-quoted string as a newline, but
as the two characters backslash and n. Only when the backslash is followed by another
backslash or a single quote does it have special meaning.

Double-Quoted String Literals
A double-quoted string literal is a sequence of characters, although this time enclosed
in double quotes. But now the backslash takes on its full power to specify certain control
characters, or even any character at all through octal and hex representations. Here are
some double-quoted strings:

"barney" # just the same as 'barney'
"hello world\n" # hello world, and a newline
"The last character of this string is a quote mark: \""
"coke\tsprite" # coke, a tab, and sprite
"\x{2668}" # Unicode HOT SPRINGS character code point

Note that the double-quoted literal string "barney" means the same six-character string
to Perl as does the single-quoted literal string 'barney'. It’s like what you saw with
numeric literals, where you saw that 0377 was another way to write 255.0. Perl lets you
write the literal in the way that makes more sense to you. Of course, if you wish to use
a backslash escape (like \n to mean a newline character), you’ll need to use the double
quotes.

Strings | 25

The backslash can precede many different characters to mean different things (generally
called a backslash escape). The nearly complete list of double-quoted string escapes is
given in Table 2-1.

Table 2-1. Double-quoted string backslash escapes

Construct Meaning

\n Newline

\r Return

\t Tab

\f Formfeed

\b Backspace

\a Bell

\e Escape (ASCII escape character)

\007 Any octal ASCII value (here, 007 = bell)

\x7f Any hex ASCII value (here, 7f = delete)

\x{2744} Any hex Unicode code point (here, U+2744 = snowflake)

\cC A “control” character (here, Ctrl-C)

\\ Backslash

\“ Double quote

\l Lowercase next letter

\L Lowercase all following letters until \E

\u Uppercase next letter

\U Uppercase all following letters until \E

\Q Quote nonword characters by adding a backslash until \E

\E End \L, \U, or \Q

Another feature of double-quoted strings is that they are variable interpolated, meaning
that some variable names within the string are replaced with their current values when
the strings are used. You haven’t formally been introduced to what a variable looks like
yet, so we’ll get back to that later in this chapter.

String Operators
You can concatenate, or join, string values with the . operator. (Yes, that’s a single
period.) This does not alter either string, any more than 2+3 alters either 2 or 3. The
resulting (longer) string is then available for further computation or assignment to a
variable. For example:

26 | Chapter 2: Scalar Data

"hello" . "world" # same as "helloworld"
"hello" . ' ' . "world" # same as 'hello world'
'hello world' . "\n" # same as "hello world\n"

Note that you must explicitly use the concatenation operator, unlike in some other
languages where you merely have to stick the two values next to each other.

A special string operator is the string repetition operator, consisting of the single
lowercase letter x. This operator takes its left operand (a string) and makes as many
concatenated copies of that string as indicated by its right operand (a number). For
example:

"fred" x 3 # is "fredfredfred"
"barney" x (4+1) # is "barney" x 5, or "barneybarneybarneybarneybarney"
5 x 4.8 # is really "5" x 4, which is "5555"

That last example is worth noting carefully. The string repetition operator wants a string
for a left operand, so the number 5 is converted to the string "5" (using rules described
in detail later), giving a one-character string. The x copies the new string four times,
yielding the four-character string 5555. Note that if you had reversed the order of the
operands, as 4 x 5, you would have made five copies of the string 4, yielding 44444.
This shows that string repetition is not commutative.

The copy count (the right operand) is first truncated to an integer value (4.8 becomes
4) before being used. A copy count of less than one results in an empty (zero-length)
string.

Automatic Conversion Between Numbers and Strings
For the most part, Perl automatically converts between numbers and strings as needed.
How does it know which it should use? It all depends upon the operator that you apply
to the scalar value. If an operator expects a number (like + does), Perl will see the value
as a number. If an operator expects a string (like . does), Perl will see the value as a
string. So, you don’t need to worry about the difference between numbers and strings;
just use the proper operators, and Perl will make it all work.

When you use a string value where an operator needs a number (say, for multiplication),
Perl automatically converts the string to its equivalent numeric value, as if you had
entered it as a decimal floating-point value. So "12" * "3" gives the value 36. Trailing
nonnumber stuff and leading whitespace are discarded, so "12fred34" * " 3" will also
give 36 without any complaints.‖ At the extreme end of this, something that isn’t a
number at all converts to zero. This would happen if you used the string "fred" as a
number.

‖ Unless you turn on warnings, which we’ll show in a moment.

Strings | 27

The trick of using a leading zero to mean an octal value works for literals, but never for
automatic conversion, which is always base-10:#

0377 # that's octal for 255 decimal
'0377' # that's 377 decimal

Likewise, if a numeric value is given when a string value is needed (say, for string con-
catenation), the numeric value is expanded into whatever string would have been prin-
ted for that number. For example, if you want to concatenate the string Z followed by
the result of 5 multiplied by 7,* you can say this simply as:

"Z" . 5 * 7 # same as "Z" . 35, or "Z35"

In other words, you don’t really have to worry about whether you have a number or a
string (most of the time). Perl performs all the conversions for you.†

Perl’s Built-in Warnings
Perl can be told to warn you when it sees something suspicious going on in your pro-
gram. With Perl 5.6 and later, you can turn on warnings with a pragma (but be careful
because it won’t work for people with earlier versions of Perl):‡

#!/usr/bin/perl
use warnings;

You can use the -w option on the command line, which turns on warnings everywhere
in your program:§

$ perl -w my_program

You can also specify the command-line switches on the shebang line:

#!/usr/bin/perl -w

That works even on non-Unix systems, where it’s traditional to write something like
this, since the path to Perl doesn’t generally matter:

#!perl -w

#If you have a numeric string in octal or hexadecimal, or even binary, you may convert it with the oct() or
hex() functions. See “Interpreting Non-Decimal Numerals” on page 240.

* You’ll see about precedence and parentheses shortly.

† And if you’re worried about efficiency, don’t be. Perl generally remembers the result of a conversion so that
it’s done only once.

‡ The warnings pragma actually allows lexical warnings, but you’ll have to see the perllexwarn documentation
to find out about those. The advantage of warnings over -w is that you only turn on warnings for the file in
which you use the pragma, whereas -w turns on for the entire program.

§ This might include modules that you use but didn’t write yourself, so you might see warnings from other
people’s code.

28 | Chapter 2: Scalar Data

http://perldoc.perl.org/perllexwarn.html

Now, Perl will warn you if you use '12fred34' as if it were a number:

Argument "12fred34" isn't numeric

Perl still turns the non-numeric '12fred34' into 12 using its normal rules even though
you get the warning.

Of course, warnings are generally meant for programmers, not for end users. If the
warning won’t be seen by a programmer, it probably won’t do you any good. And
warnings won’t change the behavior of your program, except that now it gripes once
in a while. If you get a warning message you don’t understand, you can get a longer
description of the problem with the diagnostics pragma. The perldiag documentation
has both the short warning and the longer diagnostic description, and is the source of
diagnostics’ helpfulness:

#!/usr/bin/perl
use diagnostics;

When you add the use diagnostics pragma to your program, it may seem to you that
your program now pauses for a moment whenever you launch it. That’s because your
program has to do a lot of work (and gobble a chunk of memory) just in case you want
to read the documentation as soon as Perl notices your mistakes, if any. This leads to
a nifty optimization that can speed up your program’s launch (and memory footprint)
with no adverse impact on users: once you no longer need to read the documentation
about the warning messages produced by your program, remove the use diagnostics
pragma. (It’s even better if you fix your program to avoid causing the warnings. But it’s
sufficient merely to finish reading the output.)

A further optimization can be had by using one of Perl’s command-line options, -M, to
load the pragma only when needed instead of editing the source code each time to
enable and disable diagnostics:

$ perl -Mdiagnostics ./my_program
Argument "12fred34" isn't numeric in addition (+) at ./my_program line 17 (#1)
 (W numeric) The indicated string was fed as an argument to
 an operator that expected a numeric value instead. If you're
 fortunate the message will identify which operator was so unfortunate.

Note the (W numeric) in the message. The W says that the message is a warning and the
numeric is the class of warning. In this case, you know to look for something dealing
with a number.

As we run across situations in which Perl will usually be able to warn us about a mistake
in your code, we’ll point them out. But you shouldn’t count on the text or behavior of
any warning staying exactly the same in future Perl releases.

Scalar Variables
A variable is a name for a container that holds one or more values. As you’ll see, a scalar
variable holds exactly one value, and in upcoming chapters you’ll see other types of

Scalar Variables | 29

http://perldoc.perl.org/perldiag.html

variables, such as arrays and hashes, that can hold many values. The name of the var-
iable stays the same throughout your program, but the value or values in that variable
can change over and over again throughout the execution of the program.

A scalar variable holds a single scalar value, as you’d expect. Scalar variable names begin
with a dollar sign, called the sigil, followed by a Perl identifier: a letter or underscore,
and then possibly more letters, or digits, or underscores. Another way to think of it is
that it’s made up of alphanumerics and underscores, but can’t start with a digit. Up-
percase and lowercase letters are distinct: the variable $Fred is a different variable from
$fred. And all of the letters, digits, and underscores are significant, so all of these refer
to different variables:

$name
$Name
$NAME

$a_very_long_variable_that_ends_in_1
$a_very_long_variable_that_ends_in_2
$A_very_long_variable_that_ends_in_2
$AVeryLongVariableThatEndsIn2

Perl doesn’t restrict itself to ASCII for variable names, either. If you enable the utf8
pragma, you can use a much wider range of alphabetic or numeric characters in your
identifiers:

$résumé
$coördinate

Perl uses the sigils to distinguish things that are variables from anything else that you
might type in the program. You don’t have to know the names of all the Perl functions
and operators to choose your variable name.

Furthermore, Perl uses the sigil to denote what you’re doing with that variable. The $
sigil really means “single item” or “scalar.” Since a scalar variable is always a single
item, it always gets the “single item” sigil. In Chapter 3, you’ll see the “single item” sigil
used with another type of variable, the array.

Choosing Good Variable Names
You should generally select variable names that mean something regarding the purpose
of the variable. For example, $r is probably not very descriptive but $line_length is. If
you are using a variable for only two or three lines close together, you might call some-
thing simple, like $n, but a variable you use throughout a program should probably
have a more descriptive name to not only remind you want it does, but let other people
know what it does.‖

‖ Most of your program will make sense to you because you’re the one who invented it. However, someone
else isn’t going to know why a name like $srly makes sense to you.

30 | Chapter 2: Scalar Data

Similarly, properly placed underscores can make a name easier to read and understand,
especially if your maintenance programmer has a different spoken language back-
ground than you have. For example, $super_bowl is a better name than $superbowl,
since that last one might look like $superb_owl. Does $stopid mean $sto_pid (storing
a process ID of some kind?) or $s_to_pid (converting something to a process ID?) or
$stop_id (the ID for some kind of “stop” object?) or is it just a stopid misspelling?

Most variable names in our Perl programs are all lowercase, like most of the ones you’ll
see in this book. In a few special cases, uppercase letters are used. Using all caps (like
$ARGV) generally indicates that there’s something special about that variable. When a
variable’s name has more than one word, some say $underscores_are_cool, while others
say $giveMeInitialCaps. Just be consistent.# You can name your variables with all up-
percase, but you might end up using a special variable reserved for Perl. If you avoid
all uppercase names you won’t have that problem.*

Of course, choosing good or poor names makes no difference to Perl. You could name
your program’s three most important variables $OOO000OOO, $OO00OO00, and
$O0O0O0O0O and Perl wouldn’t be bothered—but in that case, please, don’t ask us to
maintain your code.

Scalar Assignment
The most common operation on a scalar variable is assignment, which is the way to
give a value to a variable. The Perl assignment operator is the equals sign (much like
other languages), which takes a variable name on the left side, and gives it the value of
the expression on the right. For example:

$fred = 17; # give $fred the value of 17
$barney = 'hello'; # give $barney the five-character string 'hello'
$barney = $fred + 3; # give $barney the current value of $fred plus 3 (20)
$barney = $barney * 2; # $barney is now $barney multiplied by 2 (40)

Notice that last line uses the $barney variable twice: once to get its value (on the right
side of the equals sign), and once to define where to put the computed expression (on
the left side of the equals sign). This is legal, safe, and rather common. In fact, it’s so
common that you can write it using a convenient shorthand, as you’ll see in the next
section.

Binary Assignment Operators
Expressions like $fred = $fred + 5 (where the same variable appears on both sides of
an assignment) occur frequently enough that Perl (like C and Java) has a shorthand for
the operation of altering a variable—the binary assignment operator. Nearly all binary

#There is some advice in the perlstyle documentation.

* You can see all of Perl’s special variables in the perlvar documentation.

Scalar Variables | 31

http://perldoc.perl.org/perlstyle.html
http://perldoc.perl.org/perlvar.html

operators that compute a value have a corresponding binary assignment form with an
appended equals sign. For example, the following two lines are equivalent:

$fred = $fred + 5; # without the binary assignment operator
$fred += 5; # with the binary assignment operator

These are also equivalent:

$barney = $barney * 3;
$barney *= 3;

In each case, the operator alters the existing value of the variable in some way, rather
than simply overwriting the value with the result of some new expression.

Another common assignment operator is made with the string concatenate operator
(.); this gives us an append operator (.=):

$str = $str . " "; # append a space to $str
$str .= " "; # same thing with assignment operator

Nearly all binary operators are valid this way. For example, a raise to the power of
operator is written as **=. So, $fred **= 3 means “raise the number in $fred to the third
power, placing the result back in $fred”.

Output with print
It’s generally a good idea to have your program produce some output; otherwise,
someone may think it didn’t do anything. The print operator makes this possible: it
takes a scalar argument and puts it out without any embellishment onto standard out-
put. Unless you’ve done something odd, this will be your terminal display. For example:

print "hello world\n"; # say hello world, followed by a newline

print "The answer is ";
print 6 * 7;
print ".\n";

You can give print a series of values, separated by commas:

print "The answer is ", 6 * 7, ".\n";

This is really a list, but we haven’t talked about lists yet, so we’ll put that off for later.

Interpolation of Scalar Variables into Strings
When a string literal is double-quoted, it is subject to variable interpolation† (besides
being checked for backslash escapes). This means that any scalar variable‡ name in the
string is replaced with its current value. For example:

† This has nothing to do with mathematical or statistical interpolation.

‡ And some other variable types, but you won’t see those until later.

32 | Chapter 2: Scalar Data

$meal = "brontosaurus steak";
$barney = "fred ate a $meal"; # $barney is now "fred ate a brontosaurus steak"
$barney = 'fred ate a ' . $meal; # another way to write that

As you see on the last line above, you can get the same results without the double
quotes, but the double-quoted string is often the more convenient way to write it.

If the scalar variable has never been given a value,§ the empty string is used instead:

$barney = "fred ate a $meat"; # $barney is now "fred ate a "

Don’t bother with interpolating if you have just the one lone variable:

print "$fred"; # unneeded quote marks
print $fred; # better style

There’s nothing really wrong with putting quote marks around a lone variable,‖ but
the other programmers will laugh at you behind your back, or maybe even to your face.
Variable interpolation is also known as double-quote interpolation because it happens
when double-quote marks (but not single quotes) are used. It happens for some other
strings in Perl, which we’ll mention as we get to them.

To put a real dollar sign into a double-quoted string, precede the dollar sign with a
backslash, which turns off the dollar sign’s special significance:

$fred = 'hello';
print "The name is \$fred.\n"; # prints a dollar sign

Alternatively, you could avoid using double quotes around the problematic part of the
string:

print 'The name is $fred' . "\n"; # so does this

The variable name will be the longest possible variable name that makes sense at that
part of the string. This can be a problem if you want to follow the replaced value im-
mediately with some constant text that begins with a letter, digit, or underscore.#

§ This is actually the special undefined value, undef, which you’ll see a little later in this chapter. If warnings
are turned on, Perl will complain about interpolating the undefined value.

‖ Well, it may interpret the value as a string, rather than a number. In a few rare cases that may be needed, but
nearly always it’s just a waste of typing.

#There are some other characters that may be a problem as well. If you need a left square bracket or a left curly
brace just after a scalar variable’s name, precede it with a backslash. You may also do that if the variable’s
name is followed by an apostrophe or a pair of colons, or you could use the curly brace method described in
the main text.

Output with print | 33

As Perl scans for variable names, it considers those characters as additional name char-
acters, which is not what you want. Perl provides a delimiter for the variable name in
a manner similar to the shell. Simply enclose the name of the variable in a pair of curly
braces. Or, you can end that part of the string and start another part of the string with
a concatenation operator:

$what = "brontosaurus steak";
$n = 3;
print "fred ate $n $whats.\n"; # not the steaks, but the value of $whats
print "fred ate $n ${what}s.\n"; # now uses $what
print "fred ate $n $what" . "s.\n"; # another way to do it
print 'fred ate ' . $n . ' ' . $what . "s.\n"; # an especially difficult way

Creating Characters by Code Point
Sometimes you want to create strings with characters that may not appear on your
keyboard, such as é, å, α, or א. How you get these characters into your program depends
on your system and the editor you’re using, but sometimes, instead of typing them out,
it’s easier to create them by their code point* with the chr() function:

$alef = chr(0x05D0);
$alpha = chr(hex('03B1'));
$omega = chr(0x03C9);

You can go the other way with the ord() function, which turns a character into its code
point:

$code_point = ord('א');

You can interpolate these into double-quoted strings just like any other variable:

"$alpha$omega"

That might be more work than interpolating them directly by putting the hexadecimal
representation in \x{}:

"\x{03B1}\x{03C9}"

Operator Precedence and Associativity
Operator precedence determines which operations in a complex group of operations
happen first. For example, in the expression 2+3*4, do you perform the addition first
or the multiplication first? If you did the addition first, you’d get 5*4, or 20. But if you
did the multiplication first (as you were taught in math class), you’d get 2+12, or 14.
Fortunately, Perl chooses the common mathematical definition, performing the mul-
tiplication first. Because of this, you say multiplication has a higher precedence than
addition.

* We’ll use code point throughout the book because we’re assuming Unicode. In ASCII, we might have just
said ordinal value to denote the numeric position in ASCII. To pick up anything you might have missed about
Unicode, see Appendix C.

34 | Chapter 2: Scalar Data

Parentheses have the highest precedence. Anything inside parentheses is completely
computed before the operator outside of the parentheses is applied (just like you
learned in math class). So if you really want the addition before the multiplication, you
can say (2+3)*4, yielding 20. Also, if you wanted to demonstrate that multiplication is
performed before addition, you could add a decorative but unnecessary set of paren-
theses, as in 2+(3*4).

While precedence is simple for addition and multiplication, you start running into
problems when faced with, say, string concatenation compared with exponentiation.
The proper way to resolve this is to consult the official, accept-no-substitutes Perl
operator precedence chart in the perlop documentation, which we partially show in
Table 2-2.†

Table 2-2. Associativity and precedence of operators (highest to lowest)

Associativity Operators

left parentheses and arguments to list operators

left ->

 ++ -- (autoincrement and autodecrement)

right **

right \ ! ~ + - (unary operators)

left =~ !~

left * / % x

left + - . (binary operators)

left << >>

 named unary operators (-X filetests, rand)

 < <= > >= lt le gt ge (the “unequal” ones)

 == != <=> eq ne cmp (the “equal” ones)

left &

left | ^

left &&

left ||

right ?: (conditional operator)

right = += -= .= (and similar assignment operators)

left , =>

 list operators (rightward)

† C programmers: rejoice! The operators that are available in both Perl and C have the same precedence and
associativity in both.

Output with print | 35

http://perldoc.perl.org/perlop.html

Associativity Operators

right not

left and

left or xor

In the chart, any given operator has higher precedence than all of the operators listed
below it, and lower precedence than all of the operators listed above it. Operators at
the same precedence level resolve according to rules of associativity instead.

Just like precedence, associativity resolves the order of operations when two operators
of the same precedence compete for three operands:

4 ** 3 ** 2 # 4 ** (3 ** 2), or 4 ** 9 (right associative)
72 / 12 / 3 # (72 / 12) / 3, or 6/3, or 2 (left associative)
36 / 6 * 3 # (36/6)*3, or 18

In the first case, the ** operator has right associativity, so the parentheses are implied
on the right. Comparatively, the * and / operators have left associativity, yielding a set
of implied parentheses on the left.

So should you just memorize the precedence chart? No! Nobody actually does that.
Instead, just use parentheses when you don’t remember the order of operations, or
when you’re too busy to look in the chart. After all, if you can’t remember it without
the parentheses, your maintenance programmer is going to have the same trouble. So
be nice to your maintenance programmer: you may be that person one day.

Comparison Operators
To compare numbers, Perl has logical comparison operators that may remind you of
algebra: < <= == >= > !=. Each of these returns a true or false value. You’ll find out
more about those return values in the next section. Some of these may be different than
you’d use in other languages. For example, == is used for equality, not a single = sign
because that’s used for assignment. And != is used for inequality testing because <> is
used for another purpose in Perl. And you’ll need >= and not => for “greater than or
equal to” because the latter is used for another purpose in Perl. In fact, nearly every
sequence of punctuation is used for something in Perl. So, if you get writer’s block, just
let the cat walk across the keyboard, and debug the result.

To compare strings, Perl has an equivalent set of string comparison operators which
look like funny little words: lt, le, eq, ge, gt, and ne. These compare two strings char-
acter-by-character to see whether they’re the same, or whether one comes first in
standard string sorting order. Note that the order of characters in ASCII or Unicode is
not an order that might make sense to you. You’ll see how to fix that in Chapter 14.

The comparison operators (for both numbers and strings) are given in Table 2-3.

36 | Chapter 2: Scalar Data

Table 2-3. Numeric and string comparison operators

Comparison Numeric String

Equal == eq

Not equal != ne

Less than < lt

Greater than > gt

Less than or equal to <= le

Greater than or equal to >= ge

Here are some example expressions using these comparison operators:

35 != 30 + 5 # false
35 == 35.0 # true
'35' eq '35.0' # false (comparing as strings)
'fred' lt 'barney' # false
'fred' lt 'free' # true
'fred' eq "fred" # true
'fred' eq 'Fred' # false
' ' gt '' # true

The if Control Structure
Once you can compare two values, you’ll probably want your program to make deci-
sions based upon that comparison. Like all similar languages, Perl has an if control
structure that only executes if its condition returns a true value:

if ($name gt 'fred') {
 print "'$name' comes after 'fred' in sorted order.\n";
}

If you need an alternative choice, the else keyword provides that as well:

if ($name gt 'fred') {
 print "'$name' comes after 'fred' in sorted order.\n";
} else {
 print "'$name' does not come after 'fred'.\n";
 print "Maybe it's the same string, in fact.\n";
}

You must have those block curly braces around the conditional code, unlike C (whether
you know C or not). It’s a good idea to indent the contents of the blocks of code as we
show here; that makes it easier to see what’s going on. If you’re using a programmers’
text editor (as we show in Chapter 1), it should do most of that work for you.

The if Control Structure | 37

Boolean Values
You may actually use any scalar value as the conditional of the if control structure.
That’s handy if you want to store a true or false value into a variable, like this:

$is_bigger = $name gt 'fred';
if ($is_bigger) { ... }

But how does Perl decide whether a given value is true or false? Perl doesn’t have a
separate Boolean datatype, like some languages have. Instead, it uses a few simple
rules:‡

• If the value is a number, 0 means false; all other numbers mean true.

• Otherwise, if the value is a string, the empty string ('') means false; all other strings
mean true.

• Otherwise (that is, if the value is another kind of scalar than a number or a string),
convert it to a number or a string and try again.§

There’s one trick hidden in those rules. Because the string '0' is the exact same scalar
value as the number 0, Perl has to treat them both the same. That means that the string
'0' is the only non-empty string that is false.

If you need to get the opposite of any Boolean value, use the unary not operator, !. If
what follows is a true value, it returns false; if what follows is false, it returns true:

if (! $is_bigger) {
 # Do something when $is_bigger is not true
}

Here’s a handy trick. Since the ! changes true to false and false to true, and since Perl
doesn’t have a separate Boolean type, the ! has to return some scalar to represent true
and false. It turns out that 1 and 0 are good enough values, so some people like to
standardize their values to just those values. To do that, they double up the ! to turn
true into false into true again (or the other way around):

$still_true = !! 'Fred';
$still_false = !! '0';

However, this idiom isn’t documented to always return exactly the values 1 or 0, but
we don’t think that behavior will change any time soon.

‡ These aren’t the rules that Perl uses, of course. These are some rules that you can use to get essentially the
same result, though.

§ This means that undef (which you’ll see soon) means false, while all references (which we cover in Intermediate
Perl) are true.

38 | Chapter 2: Scalar Data

http://oreilly.com/catalog/9780596102067/
http://oreilly.com/catalog/9780596102067/

Getting User Input
At this point, you’re probably wondering how to get a value from the keyboard into a
Perl program. Here’s the simplest way: use the line-input operator, <STDIN>.‖

Each time you use <STDIN> in a place where Perl expects a scalar value, Perl reads the
next complete text line from standard input (up to the first newline), and uses that string
as the value of <STDIN>. Standard input can mean many things, but unless you do
something uncommon, it means the keyboard of the user who invoked your program
(probably you). If there’s nothing waiting for <STDIN> to read (typically the case, unless
you type ahead a complete line), the Perl program will stop and wait for you to enter
some characters followed by a newline (return).#

The string value of <STDIN> typically has a newline character on the end of it,* so you
could do something like this:

$line = <STDIN>;
if ($line eq "\n") {
 print "That was just a blank line!\n";
} else {
 print "That line of input was: $line";
}

But in practice, you don’t often want to keep the newline, so you need the chomp()
operator.

The chomp Operator
The first time you read about the chomp() operator, it seems terribly overspecialized. It
works on a variable. The variable has to hold a string, and if the string ends in a newline
character, chomp() removes the newline. That’s (nearly) all it does. For example:

$text = "a line of text\n"; # Or the same thing from <STDIN>
chomp($text); # Gets rid of the newline character

But it turns out to be so useful, you’ll put it into nearly every program you write. As
you see, it’s the best way to remove a trailing newline from a string in a variable. In fact,
there’s an easier way to use chomp() because of a simple rule: any time that you need a
variable in Perl, you can use an assignment instead. First, Perl does the assignment.

‖ This is actually a line-input operator working on the filehandle STDIN, but we can’t tell you about that until
we get to filehandles (in Chapter 5).

#To be honest, it’s normally your system that waits for the input; perl waits for your system. Although the
details depend upon your system and its configuration, you can generally correct your mistyping with a
backspace key before you press return—your system handles that, not perl itself. If you need more control
over the input, get the Term::ReadLine module from CPAN.

* The exception is if the standard input stream somehow runs out in the middle of a line. But that’s not a proper
text file, of course!

The chomp Operator | 39

Then it uses the variable in whatever way you requested. So the most common use of
chomp() looks like this:

chomp($text = <STDIN>); # Read the text, without the newline character

$text = <STDIN>; # Do the same thing...
chomp($text); # ...but in two steps

At first glance, the combined chomp() may not seem to be the easy way, especially if it
seems more complex! If you think of it as two operations—read a line, then chomp()
it—then it’s more natural to write it as two statements. But if you think of it as one
operation—read just the text, not the newline—it’s more natural to write the one
statement. And since most other Perl programmers are going to write it that way, you
may as well get used to it now.

chomp() is actually a function. As a function, it has a return value, which is the number
of characters removed. This number is hardly ever useful:

$food = <STDIN>;
$betty = chomp $food; # gets the value 1 - but you knew that!

As you see, you may write chomp() with or without the parentheses. This is another
general rule in Perl: except in cases where it changes the meaning to remove them,
parentheses are always optional.

If a line ends with two or more newlines,† chomp() removes only one. If there’s no
newline, it does nothing, and returns zero.

The while Control Structure
Like most algorithmic programming languages, Perl has a number of looping struc-
tures.‡ The while loop repeats a block of code as long as a condition is true:

$count = 0;
while ($count < 10) {
 $count += 2;
 print "count is now $count\n"; # Gives values 2 4 6 8 10
}

As always in Perl, the truth value here works like the truth value in the if test. Also like
the if control structure, the block curly braces are required. The conditional expression
is evaluated before the first iteration, so the loop may be skipped completely if the
condition is initially false.

† This situation can’t arise if you’re reading a line at a time, but it certainly can when you have set the input
separator ($/) to something other than newline, or used the read function, or perhaps have glued some strings
together yourself.

‡ Every programmer eventually creates an infinite loop by accident. If your program keeps running and running,
though, you can generally stop it in the same way you’d stop any other program on your system. Often,
typing Control-C will stop a runaway program; check with your system’s documentation to be sure.

40 | Chapter 2: Scalar Data

The undef Value
What happens if you use a scalar variable before you give it a value? Nothing serious,
and definitely nothing fatal. Variables have the special undef value before they are first
assigned, which is just Perl’s way of saying, “Nothing here to look at—move along,
move along.” If you try to use this “nothing” as a “numeric something,” it acts like
zero. If you try to use it as a “string something,” it acts like the empty string. But
undef is neither a number nor a string; it’s an entirely separate kind of scalar value.

Because undef automatically acts like zero when used as a number, it’s easy to make a
numeric accumulator that starts out empty:

Add up some odd numbers
$n = 1;
while ($n < 10) {
 $sum += $n;
 $n += 2; # On to the next odd number
}
print "The total was $sum.\n";

This works properly when $sum was undef before the loop started. The first time through
the loop $n is one, so the first line inside the loop adds one to $sum. That’s like adding
one to a variable that already holds zero (because you’re using undef as if it were a
number). So now it has the value 1. After that, since it’s been initialized, addition works
in the traditional way.

Similarly, you could have a string accumulator that starts out empty:

$string .= "more text\n";

If $string is undef, this will act as if it already held the empty string, putting "more text
\n" into that variable. But if it already holds a string, the new text is simply appended.

Perl programmers frequently use a new variable in this way, letting it act as either zero
or the empty string as needed.

Many operators return undef when the arguments are out of range or don’t make sense.
If you don’t do anything special, you’ll get a zero or a null string without major con-
sequences. In practice, this is hardly a problem. In fact, most programmers will rely
upon this behavior. But you should know that when warnings are turned on, Perl will
typically warn about unusual uses of the undefined value, since that may indicate a
bug. For example, simply copying undef from one variable into another isn’t a problem,
but trying to print it generally causes a warning.

The undef Value | 41

The defined Function
One operator that can return undef is the line-input operator, <STDIN>. Normally, it will
return a line of text. But if there is no more input, such as at end-of-file, it returns
undef to signal this.§ To tell whether a value is undef and not the empty string, use the
defined function, which returns false for undef, and true for everything else:

$madonna = <STDIN>;
if (defined($madonna)) {
 print "The input was $madonna";
} else {
 print "No input available!\n";
}

If you’d like to make your own undef values, you can use the obscurely named undef
operator:

$madonna = undef; # As if it had never been touched

Exercises
See “Answers to Exercises” on page 296 for answers to the following exercises:

1. [5] Write a program that computes the circumference of a circle with a radius of
12.5. Circumference is 2π times the radius (approximately 2 times 3.141592654).
The answer you get should be about 78.5.

2. [4] Modify the program from the previous exercise to prompt for and accept a
radius from the person running the program. So, if the user enters 12.5 for the
radius, she should get the same number as in the previous exercise.

3. [4] Modify the program from the previous exercise so that, if the user enters a
number less than zero, the reported circumference will be zero, rather than
negative.

4. [8] Write a program that prompts for and reads two numbers (on separate lines of
input) and prints out the product of the two numbers multiplied together.

5. [8] Write a program that prompts for and reads a string and a number (on separate
lines of input) and prints out the string the number of times indicated by the num-
ber on separate lines. (Hint: use the x operator.) If the user enters “fred” and “3”,
the output should be three lines, each saying “fred”. If the user enters “fred” and
“299792,” there may be a lot of output.

§ Normally, there’s no “end-of-file” when the input comes from the keyboard, but input may have been
redirected to come from a file. Or the user may have pressed the key that the system recognizes to indicate
end-of-file.

42 | Chapter 2: Scalar Data

CHAPTER 3

Lists and Arrays

If a scalar is the “singular” in Perl, as we described it at the beginning of Chapter 2, the
“plural” in Perl is represented by lists and arrays.

A list is an ordered collection of scalars. An array is a variable that contains a list. People
tend to use the terms interchangeably, but there’s a big difference. The list is the data
and the array is the variable that stores the data. You can have a list value that isn’t in
an array, but every array variable holds a list (although that list may be empty). Fig-
ure 3-1 represents a list, whether it’s stored in an array or not.

Since lists and arrays share many of the same operations, just like scalar values and
variables do, we’ll treat them in parallel. Don’t forget their differences though.

Figure 3-1. A list with five elements

43

Each element of an array or list is a separate scalar value. These values are ordered—
that is, they have a particular sequence from the first to the last element. The elements
of an array or a list are indexed by small integers starting at zero* and counting by ones,
so the first element of any array or list is always element zero.

Since each element is an independent scalar value, a list or array may hold numbers,
strings, undef values, or any mixture of different scalar values. Nevertheless, it’s com-
mon to have all elements of the same type, such as a list of book titles (all strings) or a
list of cosines (all numbers).

Arrays and lists can have any number of elements. The smallest one has no elements,
while the largest can fill all of available memory. Once again, this is in keeping with
Perl’s philosophy of “no unnecessary limits.”

Accessing Elements of an Array
If you’ve used arrays in another language, you won’t be surprised to find that Perl
provides a way to subscript an array in order to refer to an element by a numeric index.

The array elements are numbered using sequential integers,† beginning at zero and
increasing by one for each element, like this:

$fred[0] = "yabba";
$fred[1] = "dabba";
$fred[2] = "doo";

The array name itself (in this case, fred) is from a completely separate namespace than
scalars use; you can have a scalar variable named $fred in the same program, and Perl
will treat them as different things and won’t be confused.‡ (Your maintenance pro-
grammer might be confused, though, so don’t capriciously make all of your variable
names the same!)

You can use an array element like $fred[2] in every place§ where you could use any
other scalar variable like $fred. For example, you can get the value from an array ele-
ment or change that value by the same sort of expressions you used in Chapter 2:

print $fred[0];
$fred[2] = "diddley";
$fred[1] .= "whatsis";

* Array and list indices always start at zero in Perl, unlike in some other languages. In early Perl, it was possible
to change the starting number of array and list indexing (not for just one array or list, but for all of them at
once!). Larry later realized that this was a misfeature, and its (ab)use is now strongly discouraged. But, if
you’re terminally curious, look up the $[variable in the perlvar documentation.

† Yes, you can use the negative ones too, but we’ll show that later.

‡ The syntax is always unambiguous—tricky perhaps, but unambiguous.

§ Well, almost. The most notable exception is that the control variable of a foreach loop, which you’ll see in
“The foreach Control Structure” on page 53, must be a simple scalar. And there are others, like the “indirect
object slot” and “indirect filehandle slot” for print and printf.

44 | Chapter 3: Lists and Arrays

http://perldoc.perl.org/perlvar.html

Of course, the subscript may be any expression that gives a numeric value. If it’s not
an integer already, Perl will automatically truncate it (not round!) to the next lower
integer:

$number = 2.71828;
print $fred[$number – 1]; # Same as printing $fred[1]

If the subscript indicates an element that would be beyond the end of the array, the
corresponding value will be undef. This is just as with ordinary scalars; if you’ve never
stored a value into the variable, it’s undef:

$blank = $fred[142_857]; # unused array element gives undef
$blanc = $mel; # unused scalar $mel also gives undef

Special Array Indices
If you store into an array element that is beyond the end of the array, the array is
automatically extended as needed—there’s no limit on its length, as long as there’s
available memory for Perl to use.‖ If Perl needs to create the intervening elements, it
creates them as undef values:

$rocks[0] = 'bedrock'; # One element...
$rocks[1] = 'slate'; # another...
$rocks[2] = 'lava'; # and another...
$rocks[3] = 'crushed rock'; # and another...
$rocks[99] = 'schist'; # now there are 95 undef elements

Sometimes, you need to find out the last element index in an array. For the array of
rocks, the last element index is $#rocks.# That’s not the same as the number of elements,
though, because there’s an element number zero:

$end = $#rocks; # 99, which is the last element's index
$number_of_rocks = $end + 1; # okay, but you'll see a better way later
$rocks[$#rocks] = 'hard rock'; # the last rock

Using the $#name value as an index, like that last example, happens often enough that
Larry has provided a shortcut: negative array indices count from the end of the array.
But don’t get the idea that these indices “wrap around.” If you have three elements in
the array, the valid negative indices are –1 (the last element), –2 (the middle element),
and –3 (the first element). If you try –4 and beyond, you just get undef. In the real world,
nobody seems to use any of these except –1, though:

$rocks[–1] = 'hard rock'; # easier way to do that last example
$dead_rock = $rocks[–100]; # gets 'bedrock'
$rocks[–200] = 'crystal'; # fatal error!

‖ This isn’t strictly true. The largest array index is the size of a signed integer, so, up to now, you can only have
2,147,483,647 entries. At the risk of repeating history, “that should be enough for anyone.”

#Blame this ugly syntax on the C shell. Fortunately, you don’t have to look at this very often in the real world.

Special Array Indices | 45

List Literals
A list literal (the way you represent a list value within your program) is a list of comma-
separated values enclosed in parentheses. These values form the elements of the list.
For example:

(1, 2, 3) # list of three values 1, 2, and 3
(1, 2, 3,) # the same three values (the trailing comma is ignored)
("fred", 4.5) # two values, "fred" and 4.5
() # empty list - zero elements
(1..100) # list of 100 integers

That last one uses the .. range operator, which you see here for the first time. That
operator creates a list of values by counting from the left scalar up to the right scalar
by ones.* For example:

(1..5) # same as (1, 2, 3, 4, 5)
(1.7..5.7) # same thing; both values are truncated
(5..1) # empty list; .. only counts "uphill"
(0, 2..6, 10, 12) # same as (0, 2, 3, 4, 5, 6, 10, 12)
($m..$n) # range determined by current values of $m and $n
(0..$#rocks) # the indices of the rocks array from the previous section

As you can see from those last two items, the elements of a list literal are not necessarily
constants—they can be expressions that will be newly evaluated each time the literal
is used. For example:

($m, 17) # two values: the current value of $m, and 17
($m+$o, $p+$q) # two values

Of course, a list may have any scalar values, like this typical list of strings:

("fred", "barney", "betty", "wilma", "dino")

The qw Shortcut
It turns out that lists of simple words (like the previous example) are frequently needed
in Perl programs. The qw shortcut makes it easy to generate them without typing a lot
of extra quote marks:

qw(fred barney betty wilma dino) # same as above, but less typing

qw stands for “quoted words” or “quoted by whitespace,” depending upon whom you
ask. Either way, Perl treats it like a single-quoted string (so, you can’t use \n or $fred
inside a qw list as you would in a double-quoted string). The whitespace (characters like
spaces, tabs, and newlines) disappear and whatever is left becomes the list of items.
Since whitespace is insignificant, here’s another (but unusual) way to write that same
list:

* The range operator only counts up, unfortunately, but Perl has a way around that.

46 | Chapter 3: Lists and Arrays

qw(fred
 barney betty
wilma dino) # same as above, but pretty strange whitespace

Since qw is a form of quoting, though, you can’t put comments inside a qw list. Some
people like to format their lists with one element per line, which makes it easy to read
as a column:

qw(
 fred
 barney
 betty
 wilma
 dino
)

The previous two examples have used parentheses as the delimiter, but Perl actually
lets you choose any punctuation character as the delimiter. Here are some of the com-
mon ones:

qw! fred barney betty wilma dino !
qw/ fred barney betty wilma dino /
qw# fred barney betty wilma dino # # like in a comment!

Sometimes the two delimiters can be different. If the opening delimiter is one of those
“left” characters, the corresponding “right” character is the proper closing delimiter:

qw(fred barney betty wilma dino)
qw{ fred barney betty wilma dino }
qw[fred barney betty wilma dino]
qw< fred barney betty wilma dino >

If you need to include the closing delimiter within the string as one of the characters,
you probably picked the wrong delimiter. But even if you can’t or don’t want to change
the delimiter, you can still include the character using the backslash:

qw! yahoo\! google ask msn ! # include yahoo! as an element

As in single-quoted strings, two consecutive backslashes contribute one single back-
slash to the item:

qw(This as a \\ real backslash);

Now, although the Perl motto is “There’s More Than One Way To Do It,” you may
well wonder why anyone would need all of those different ways! Well, you’ll see later
that there are other kinds of quoting where Perl uses this same rule, and it can come in
handy in many of those. But even here, it could be useful if you need a list of Unix
filenames:

qw{
 /usr/dict/words
 /home/rootbeer/.ispell_english
}

List Literals | 47

That list would be quite inconvenient to read, write, and maintain if you could only
use the / as a delimiter.

List Assignment
In much the same way as you can assign scalar values to variables, you can assign list
values to variables:

($fred, $barney, $dino) = ("flintstone", "rubble", undef);

All three variables in the list on the left get new values, just as if you did three separate
assignments. Since the list on the right side is built up before the assignment starts, this
makes it easy to swap two variables’ values in Perl:†

($fred, $barney) = ($barney, $fred); # swap those values
($betty[0], $betty[1]) = ($betty[1], $betty[0]);

But what happens if the number of variables (on the left side of the equals sign) isn’t
the same as the number of values (from the right side)? In a list assignment, extra values
are silently ignored—Perl figures that if you wanted those values stored somewhere,
you would have told it where to store them. Alternatively, if you have too many vari-
ables, the extras get the value undef:‡

($fred, $barney) = qw< flintstone rubble slate granite >; # two ignored items
($wilma, $dino) = qw[flintstone]; # $dino gets undef

Now that you can assign lists, you could build up an array of strings with a line of code
like this:§

($rocks[0], $rocks[1], $rocks[2], $rocks[3]) = qw/talc mica feldspar quartz/;

But when you wish to refer to an entire array, Perl has a simpler notation. Just use the
at sign (@) before the name of the array (and no index brackets after it) to refer to the
entire array at once. You can read this as “all of the,” so @rocks is “all of the rocks.”‖

This works on either side of the assignment operator:

@rocks = qw/ bedrock slate lava /;
@tiny = (); # the empty list
@giant = 1..1e5; # a list with 100,000 elements
@stuff = (@giant, undef, @giant); # a list with 200,001 elements
$dino = "granite";
@quarry = (@rocks, "crushed rock", @tiny, $dino);

† As opposed to languages like C, in which there is no easy way to do this in general. C programmers use an
auxiliary swap variable to temporarily hold the value, possibly managed via a macro.

‡ Well, that’s true for scalar variables. Array variables get an empty list, as you’ll see in a moment.

§ We’re cheating by assuming that the rocks array is empty before this statement. If there were a value in
$rocks[7], say, this assignment wouldn’t affect that element.

‖ Larry claims that he chose the dollar and at sign because they can be read as $calar (scalar) and @rray (array).
If you don’t get that, or can’t remember it that way, no big deal.

48 | Chapter 3: Lists and Arrays

That last assignment gives @quarry the five-element list (bedrock, slate, lava, crushed
rock, granite), since @tiny contributes zero elements to the list. (In particular, it
doesn’t add an undef item into the list—but you could do that explicitly, as we did with
@stuff earlier.) It’s also worth noting that an array name expands to the list it contains.
An array doesn’t become an element in the list, because these arrays can contain only
scalars, not other arrays.# The value of an array variable that has not yet been assigned
is (), the empty list. Just as new, empty scalars start out with undef, new, empty arrays
start out with the empty list.

When an array is copied to another array, it’s still a list assignment. The lists are simply
stored in arrays. For example:

@copy = @quarry; # copy a list from one array to another

The pop and push Operators
You could add new items to the end of an array by simply storing them as elements
with new, larger indices. But real Perl programmers don’t use indices.* So in the next
few sections, we’ll present some ways to work with an array without using indices.

One common use of an array is as a stack of information, where you add new values to
and remove old values from the righthand side of the list, like a stack of plates in a
cafeteria.† The righthand side is the end with the “last” items in the array, the end with
the highest index values. These operations occur often enough to have their own special
functions.

The pop operator takes the last element off of an array and returns it:

@array = 5..9;
$fred = pop(@array); # $fred gets 9, @array now has (5, 6, 7, 8)
$barney = pop @array; # $barney gets 8, @array now has (5, 6, 7)
pop @array; # @array now has (5, 6). (The 7 is discarded.)

That last example uses pop “in a void context,” which is merely a fancy way of saying
the return value isn’t going anywhere. There’s nothing wrong with using pop in this
way, if that’s what you want.

#But in Intermediate Perl, we’ll show you a special kind of scalar called a reference that lets you make what
are informally called “lists of lists,” among other interesting and useful structures. But in that case, you’re
still not really storing a list into a list; you’re storing a reference to an array.

* Of course, we’re joking, but there’s a kernel of truth in this joke. Indexing into arrays is not using Perl’s
strengths. If you use the pop, push, and similar operators that avoid using indexing, your code will generally
be faster than if you use many indices, and you avoid “off-by-one” errors, often called “fencepost” errors.
Occasionally, a beginning Perl programmer (wanting to see how Perl’s speed compares to C’s) will take, say,
a sorting algorithm optimized for C (with many array index operations), rewrite it straightforwardly in Perl
(again, with many index operations) and wonder why it’s so slow. The answer is that using a Stradivarius
violin to pound nails should not be considered a sound construction technique.

† The other way is a queue, where you add to the end but take from the front.

List Assignment | 49

http://oreilly.com/catalog/9780596102067/

If the array is empty, pop leaves it alone (since there is no element to remove) and returns
undef.

You may have noticed that you can use pop with or without parentheses. This is a
general rule in Perl: as long you don’t change the meaning by removing the parentheses,
they’re optional.‡ The converse operation is push, which adds an element (or a list of
elements) to the end of an array:

push(@array, 0); # @array now has (5, 6, 0)
push @array, 8; # @array now has (5, 6, 0, 8)
push @array, 1..10; # @array now has those 10 new elements
@others = qw/ 9 0 2 1 0 /;
push @array, @others; # @array now has those five new elements (19 total)

Note that the first argument to push or the only argument for pop must be an array
variable—pushing and popping would not make sense on a literal list.

The shift and unshift Operators
The push and pop operators do things to the end of an array (or the right side of an array,
or the portion with the highest subscripts, depending upon how you like to think of
it). Similarly, the unshift and shift operators perform the corresponding actions on
the “start” of the array (or the “left” side of an array, or the portion with the lowest
subscripts). Here are a few examples:

@array = qw# dino fred barney #;
$m = shift(@array); # $m gets "dino", @array now has ("fred", "barney")
$n = shift @array; # $n gets "fred", @array now has ("barney")
shift @array; # @array is now empty
$o = shift @array; # $o gets undef, @array is still empty
unshift(@array, 5); # @array now has the one-element list (5)
unshift @array, 4; # @array now has (4, 5)
@others = 1..3;
unshift @array, @others; # @array now has (1, 2, 3, 4, 5)

Analogous to pop, shift returns undef if you give it an empty array variable.

The splice Operator
The push-pop and shift-unshift operators work with the ends of the array, but what if
you need to remove or add elements to the middle? That’s where the splice operator
comes in. It takes up to four arguments, two of which are optional. The first argument
is always the array and the second argument is the position where you want to start. If
you only use those two arguments, Perl removes all of the elements from your starting
position to the end and returns them to you:

‡ You might recognize that this is a tautology.

50 | Chapter 3: Lists and Arrays

@array = qw(pebbles dino fred barney betty);
@removed = splice @array, 2; # remove everything after fred
 # @removed is qw(fred barney betty)
 # @array is qw(pebbles dino)

You can use a third argument to specify a length. Read that sentence again because
many people assume that the third argument is an ending position, but no, it’s a length.
That way you can remove elements from the middle and leave some at the end:

@array = qw(pebbles dino fred barney betty);
@removed = splice @array, 1, 2; # remove dino, fred
 # @removed is qw(dino fred)
 # @array is qw(pebbles barney betty)

The fourth argument is a replacement list. At the same time that you take some elements
out, you can put others in. The replacement list does not need to be the same size as
the slice that you are removing:

@array = qw(pebbles dino fred barney betty);
@removed = splice @array, 1, 2, qw(wilma); # remove dino, fred
 # @removed is qw(dino fred)
 # @array is qw(pebbles wilma
 # barney betty)

You don’t have to remove any elements. If you specify a length of 0, you remove no
elements but still insert the “replacement” list:

@array = qw(pebbles dino fred barney betty);
@removed = splice @array, 1, 0, qw(wilma); # remove nothing
 # @removed is qw()
 # @array is qw(pebbles wilma dino
 # fred barney betty)

Notice that wilma shows up before dino. Perl inserted the replacement list starting at
index 1 and moved everything else over.

splice might not seem like a big deal to you, but this is a hard thing to do in some
languages, and many people developed complicated techniques, such as linked lists,
that take a lot of programmer attention to get right.

Interpolating Arrays into Strings
As with scalars, you can interpolate array values into a double-quoted string. Perl ex-
pands the array and automatically adds spaces between the elements, putting the whole
result in the string§ upon interpolation:

@rocks = qw{ flintstone slate rubble };
print "quartz @rocks limestone\n"; # prints five rocks separated by spaces

§ Actually, the separator is the value of the special $" variable, which is a space by default.

Interpolating Arrays into Strings | 51

There are no extra spaces added before or after an interpolated array; if you want those,
you’ll have to put them in yourself:

print "Three rocks are: @rocks.\n";
print "There's nothing in the parens (@empty) here.\n";

If you forget that arrays interpolate like this, you’ll be surprised when you put an email
address into a double-quoted string:

$email = "fred@bedrock.edu"; # WRONG! Tries to interpolate @bedrock

Although you probably intended to have an email address, Perl sees the array named
@bedrock and tries to interpolate it. Depending on your version of Perl, you’ll probably
just get a warning:‖

Possible unintended interpolation of @bedrock

To get around this problem, you either escape the @ in a double-quoted string or use a
single-quoted string:

$email = "fred\@bedrock.edu"; # Correct
$email = 'fred@bedrock.edu'; # Another way to do that

A single element of an array interpolates into its value, just as you’d expect from a scalar
variable:

@fred = qw(hello dolly);
$y = 2;
$x = "This is $fred[1]'s place"; # "This is dolly's place"
$x = "This is $fred[$y-1]'s place"; # same thing

Note that the index expression evaluates as an ordinary expression, as if it were outside
a string. It is not variable-interpolated first. In other words, if $y contains the string
"2*4", we’re still talking about element 1, not element 7, because the string "2*4" as a
number (the value of $y used in a numeric expression) is just plain 2.# If you want to
follow a simple scalar variable with a left square bracket, you need to delimit the square
bracket so that it isn’t considered part of an array reference, as follows:

@fred = qw(eating rocks is wrong);
$fred = "right"; # we are trying to say "this is right[3]"
print "this is $fred[3]\n"; # prints "wrong" using $fred[3]
print "this is ${fred}[3]\n"; # prints "right" (protected by braces)
print "this is $fred"."[3]\n"; # right again (different string)
print "this is $fred\[3]\n"; # right again (backslash hides it)

‖ Some Perl versions before 5.6 actually made this a fatal error, but they changed it to a warning because that
was too annoying. That shouldn’t be a problem if you’re using a recent version of Perl.

#Of course, if you turn on warnings, Perl is likely to remind you that "2*4" is a pretty funny-looking number.

52 | Chapter 3: Lists and Arrays

The foreach Control Structure
It’s handy to be able to process an entire array or list, so Perl provides a control structure
to do just that. The foreach loop steps through a list of values, executing one iteration
(time through the loop) for each value:

foreach $rock (qw/ bedrock slate lava /) {
 print "One rock is $rock.\n"; # Prints names of three rocks
}

The control variable ($rock in that example) takes on a new value from the list for each
iteration. The first time through the loop, it’s "bedrock"; the third time, it’s "lava".

The control variable is not a copy of the list element—it actually is the list element.
That is, if you modify the control variable inside the loop, you modify the element itself,
as shown in the following code snippet. This is useful, and supported, but it would
surprise you if you weren’t expecting it:

@rocks = qw/ bedrock slate lava /;
foreach $rock (@rocks) {
 $rock = "\t$rock"; # put a tab in front of each element of @rocks
 $rock .= "\n"; # put a newline on the end of each
}
print "The rocks are:\n", @rocks; # Each one is indented, on its own line

What is the value of the control variable after the loop has finished? It’s the same as it
was before the loop started. Perl automatically saves and restores the value of the con-
trol variable of a foreach loop. While the loop is running, there’s no way to access or
alter that saved value. So after the loop is done, the variable has the value it had before
the loop, or undef if it hadn’t had a value:

$rock = 'shale';
@rocks = qw/ bedrock slate lava /;

foreach $rock (@rocks) {
 ...
}

print "rock is still $rock\n"; # 'rock is still shale'

That means that if you want to name your loop control variable $rock, you don’t have
to worry that maybe you’ve already used that name for another variable. After we in-
troduce subroutines to you in Chapter 4, we’ll show you a better way to handle that.

The foreach Control Structure | 53

Perl’s Favorite Default: $_
If you omit the control variable from the beginning of the foreach loop, Perl uses its
favorite default variable, $_. This is (mostly) just like any other scalar variable, except
for its unusual name. For example:

foreach (1..10) { # Uses $_ by default
 print "I can count to $_!\n";
}

Although this isn’t Perl’s only default by a long shot, it’s Perl’s most common default.
You’ll see many other cases in which Perl will automatically use $_ when you don’t tell
it to use some other variable or value, thereby saving the programmer from the heavy
labor of having to think up and type a new variable name. So as not to keep you in
suspense, one of those cases is print, which will print $_ if given no other argument:

$_ = "Yabba dabba doo\n";
print; # prints $_ by default

The reverse Operator
The reverse operator takes a list of values (which may come from an array) and returns
the list in the opposite order. So if you were disappointed that the range operator (..)
only counts upward, this is the way to fix it:

@fred = 6..10;
@barney = reverse(@fred); # gets 10, 9, 8, 7, 6
@wilma = reverse 6..10; # gets the same thing, without the other array
@fred = reverse @fred; # puts the result back into the original array

The last line is noteworthy because it uses @fred twice. Perl always calculates the value
being assigned (on the right) before it begins the actual assignment.

Remember that reverse returns the reversed list; it doesn’t affect its arguments. If the
return value isn’t assigned anywhere, it’s useless:

reverse @fred; # WRONG - doesn't change @fred
@fred = reverse @fred; # that's better

The sort Operator
The sort operator takes a list of values (which may come from an array) and sorts them
in the internal character ordering. For strings, that would be in code point order.* In
pre-Unicode Perls, the sort order was based on ASCII, but Unicode maintains that same
order as well as defining the order of many more characters. So, the code point order
is a strange place where all of the capital letters come before all of the lowercase letters,
where the numbers come before the letters, and the punctuation marks—well, those

* The Unicode sorting assumes that you have no locale in effect, but you have to do something special to turn
that on so you’re probably not using locales.

54 | Chapter 3: Lists and Arrays

are here, there, and everywhere. But sorting in that order is just the default behavior;
you’ll see in Chapter 14 how to sort in whatever order you’d like. The sort operator
takes an input list, sorts it, and outputs a new list:

@rocks = qw/ bedrock slate rubble granite /;
@sorted = sort(@rocks); # gets bedrock, granite, rubble, slate
@back = reverse sort @rocks; # these go from slate to bedrock
@rocks = sort @rocks; # puts sorted result back into @rocks
@numbers = sort 97..102; # gets 100, 101, 102, 97, 98, 99

As you can see from that last example, sorting numbers as if they were strings may not
give useful results. But, of course, any string that starts with 1 has to sort before any
string that starts with 9, according to the default sorting rules. And like what happened
with reverse, the arguments themselves aren’t affected. If you want to sort an array,
you must store the result back into that array:

sort @rocks; # WRONG, doesn't modify @rocks
@rocks = sort @rocks; # Now the rock collection is in order

The each Operator
Starting with Perl 5.12, you can use the each operator on arrays. Before that version,
you could only use each with hashes, but we don’t show you those until Chapter 5.

Every time that you call each on an array, it returns two values for the next element in
the array—the index of the value and the value itself:

use 5.012;

@rocks = qw/ bedrock slate rubble granite /;
while(my($index, $value) = each @rocks) {
 say "$index: $value";
}

If you wanted to do this without each, you have to iterate through all of the indices of
the array and use the index to get the value:

@rocks = qw/ bedrock slate rubble granite /;
foreach $index (0 .. $#rocks) {
 print "$index: $rocks[$index]\n";
}

Depending on your task, one or the other may be more convenient for you.

Scalar and List Context
This is the most important section in this chapter. In fact, it’s the most important section
in the entire book. In fact, it wouldn’t be an exaggeration to say that your entire career
in using Perl will depend upon understanding this section. So if you’ve gotten away
with skimming the text up to this point, this is where you should really pay attention.

Scalar and List Context | 55

That’s not to say that this section is in any way difficult to understand. It’s actually a
simple idea: a given expression may mean different things depending upon where it
appears and how you use it. This is nothing new to you; it happens all the time in
natural languages. For example, in English,† suppose someone asked you what the
word “read”‡ means. It has different meanings depending on how it’s used. You can’t
identify the meaning until you know the context.

The context refers to how you use an expression. You’ve actually already seen some
contextual operations with numbers and strings. When you do numbery sorts of things,
you get numeric results. When you do stringy sorts of things, you get string results.
And, it’s the operator that decides what you are doing, not the values. The * in 2*3 is
numeric multiplication, while the x in <2×3> is string replication. The first gives you 8
while the second gives you 222. That’s context at work for you.

As Perl is parsing your expressions, it always expects either a scalar value or a list
value.§ What Perl expects is called the context of the expression:‖

42 + something # The something must be a scalar
sort something # The something must be a list

Even if something is the exact same sequence of characters, in one case it may give a
single, scalar value, while in the other, it may give a list.# Expressions in Perl always
return the appropriate value for their context. For example, how about the “name”* of
an array. In a list context, it gives the list of elements. But in a scalar context, it returns
the number of elements in the array:

@people = qw(fred barney betty);
@sorted = sort @people; # list context: barney, betty, fred
$number = 42 + @people; # scalar context: 42 + 3 gives 45

Even ordinary assignment (to a scalar or a list) causes different contexts:

@list = @people; # a list of three people
$n = @people; # the number 3

† If you aren’t a native speaker of English, this analogy may not be obvious to you. But context sensitivity
happens in every spoken language, so you may be able to think of an example in your own language.

‡ Or maybe they were asking what the word “red” means, if they were speaking rather than writing a
book. It’s ambiguous either way. As Douglas Hofstadter said, no language can express every thought
unambiguously, especially this one.

§ Unless, of course, Perl is expecting something else entirely. There are other contexts that aren’t covered here.
In fact, nobody knows how many contexts Perl uses; the biggest brains in all of Perl haven’t agreed on an
answer to that yet.

‖ This is no different than what you’re used to in human languages. If I make a grammatical mistake, you notice
it right away because you expect certain words in places certain. Eventually, you’ll read Perl this way, too,
but at first you have to think about it.

#The list may be just one element long, of course. It could also be empty, or it could have any number of
elements.

* Well, the true name of the array @people is just people. The @ sign is just a qualifier.

56 | Chapter 3: Lists and Arrays

But please don’t jump to the conclusion that scalar context always gives the number
of elements that would have been returned in list context. Most list-producing expres-
sions† return something much more interesting.

Not only that, but you can’t make any general rules to apply what you know about
some expressions to others. Each expression can make up its own rules. Or, really,
follow the overall rule that isn’t very helpful to you: do the thing that makes the most
sense for that context. Perl is very much a language that tries to do the most common,
mostly right thing for you.

Using List-Producing Expressions in Scalar Context
There are many expressions that you will typically use to produce a list. If you use one
in a scalar context, what do you get? See what the author of that operation says about
it. Usually, that person is Larry, and usually the documentation gives the whole story.
In fact, a big part of learning Perl is actually learning how Larry thinks.‡ Therefore,
once you can think like Larry does, you know what Perl should do. But while you’re
learning, you’ll probably need to look into the documentation.

Some expressions don’t have a scalar-context value at all. For example, what should
sort return in a scalar context? You wouldn’t need to sort a list to count its elements,
so until someone implements something else, sort in a scalar context always returns
undef.

Another example is reverse. In a list context, it gives a reversed list. In a scalar context,
it returns a reversed string (or reversing the result of concatenating all the strings of a
list, if given one):§

@backwards = reverse qw/ yabba dabba doo /;
 # gives doo, dabba, yabba
$backwards = reverse qw/ yabba dabba doo /;
 # gives oodabbadabbay

At first, it’s not always obvious whether an expression is being used in a scalar or a list
context. But, trust us, it will become second nature for you eventually.

† But with regard to the point of this section, there’s no difference between a “list-producing” expression and
a “scalar-producing” one; any expression can produce a list or a scalar, depending upon context. So when
we say “list-producing expressions,” we mean expressions that are typically used in a list context and therefore
might surprise you when they’re used unexpectedly in a scalar context (like reverse or @fred).

‡ This is only fair, since while writing Perl he tried to think like you do to predict what you would want!

§ One of us once cornered Larry in an elevator and asked him what problem he was solving with this, but he
looked as far off into the distance as he could in an elevator and said, “It seemed like a good idea at the time.”

Scalar and List Context | 57

Here are some common contexts to start you off:

$fred = something; # scalar context
@pebbles = something; # list context
($wilma, $betty) = something; # list context
($dino) = something; # still list context!

Don’t be fooled by the one-element list; that last one is a list context, not a scalar one.
The parentheses are significant here, making the fourth of those different than the first.
If you assign to a list (no matter the number of elements), it’s a list context. If you assign
to an array, it’s a list context.

Here are some other expressions you’ve seen, and the contexts they provide. First, some
that provide scalar context to something:

$fred = something;
$fred[3] = something;
123 + something
something + 654
if (something) { ... }
while (something) { ... }
$fred[something] = something;

And here are some that provide a list context:

@fred = something;
($fred, $barney) = something;
($fred) = something;
push @fred, something;
foreach $fred (something) { ... }
sort something
reverse something
print something

Using Scalar-Producing Expressions in List Context
Going this direction is straightforward: if an expression doesn’t normally have a list
value, the scalar value is automatically promoted to make a one-element list:

@fred = 6 * 7; # gets the one-element list (42)
@barney = "hello" . ' ' . "world";

Well, there’s one possible catch:

@wilma = undef; # OOPS! Gets the one-element list (undef)
 # which is not the same as this:
@betty = (); # A correct way to empty an array

Since undef is a scalar value, assigning undef to an array doesn’t clear the array. The
better way to do that is to assign an empty list.‖

‖ Well, in most real-world algorithms, if the variable is declared in the proper scope, you do not need to
explicitly empty it. So this type of assignment is rare in well-written Perl programs. You’ll learn about scoping
in Chapter 4.

58 | Chapter 3: Lists and Arrays

Forcing Scalar Context
On occasion, you may need to force scalar context where Perl is expecting a list. In that
case, you can use the fake function scalar. It’s not a true function because it just tells
Perl to provide a scalar context:

@rocks = qw(talc quartz jade obsidian);
print "How many rocks do you have?\n";
print "I have ", @rocks, " rocks!\n"; # WRONG, prints names of rocks
print "I have ", scalar @rocks, " rocks!\n"; # Correct, gives a number

Oddly enough, there’s no corresponding function to force list context. It turns out you
almost never need it. Trust us on this, too.

<STDIN> in List Context
One previously seen operator that returns a different value in an array context is the
line-input operator, <STDIN>. As we described earlier, <STDIN> returns the next line of
input in a scalar context. Now, in list context, this operator returns all of the remaining
lines up to the end-of-file. It returns each line as a separate element of the list. For
example:

@lines = <STDIN>; # read standard input in list context

When the input is coming from a file, this will read the rest of the file. But how can
there be an end-of-file when the input comes from the keyboard? On Unix and similar
systems, including Linux and Mac OS X, you’ll normally type a Control-D# to indicate
to the system that there’s no more input; the special character itself is never seen
by Perl,* even though it may be echoed to the screen. On DOS/Windows systems, use
Ctrl-Z instead.† You’ll need to check the documentation for your system or ask your
local expert if it’s different from these.

If the person running the program types three lines, then presses the proper keys needed
to indicate end-of-file, the array ends up with three elements. Each element will be a
string that ends in a newline, corresponding to the three newline-terminated lines
entered.

#This is merely the default; it can be changed by the stty command. But it’s pretty dependable—we’ve never
seen a Unix system where a different character was used to mean end-of-file from the keyboard.

* It’s the OS that “sees” the Control key and reports “end-of-file” to the application.

† There’s a bug affecting some ports of Perl for DOS/Windows where the first line of output to the terminal
following the use of Control-Z is obscured. On these systems, you can work around this problem by simply
printing a blank line ("\n") after reading the input.

<STDIN> in List Context | 59

Wouldn’t it be nice if, having read those lines, you could chomp the newlines all at once?
It turns out that if you give chomp an array holding a list of lines, it will remove the
newlines from each item in the list. For example:

@lines = <STDIN>; # Read all the lines
chomp(@lines); # discard all the newline characters

But the more common way to write that is with code similar to what you used earlier:

chomp(@lines = <STDIN>); # Read the lines, not the newlines

Although you’re welcome to write your code either way in the privacy of your own
cubicle, most Perl programmers will expect the second, more compact, notation.

It may be obvious to you (but it’s not obvious to everyone) that once these lines of input
have been read, they can’t be reread.‡ Once you’ve reached end-of-file, there’s no more
input out there to read.

And what happens if the input is coming from a 400 MB logfile? The line input operator
reads all of the lines, gobbling up lots of memory.§ Perl tries not to limit you in what
you can do, but the other users of your system (not to mention your system adminis-
trator) are likely to object. If the input data is large, you should generally find a way to
deal with it without reading it all into memory at once.

Exercises
See “Answers to Exercises” on page 298 for answers to the following exercises:

1. [6] Write a program that reads a list of strings on separate lines until end-of-input
and prints out the list in reverse order. If the input comes from the keyboard, you’ll
probably need to signal the end of the input by pressing Control-D on Unix, or
Control-Z on Windows.

2. [12] Write a program that reads a list of numbers (on separate lines) until end-of-
input and then prints for each number the corresponding person’s name from the
list shown below. (Hardcode this list of names into your program. That is, it should
appear in your program’s source code.) For example, if the input numbers were
1, 2, 4, and 2, the output names would be fred, betty, dino, and betty:

fred betty barney dino wilma pebbles bamm-bamm

‡ Well, yes, if the input is from a source upon which you can seek, then you’ll be able to go back and read
again. But that’s not what we’re talking about here.

§ Typically, that’s much more memory than the size of the file, too. That is, a 400MB file will typically take up
at least a full gigabyte of memory when read into an array. This is because Perl will generally waste memory
to save time. This is a good trade-off; if you’re short of memory, you can buy more; if you’re short on time,
you’re hosed.

60 | Chapter 3: Lists and Arrays

3. [8] Write a program that reads a list of strings (on separate lines) until end-of-input.
Then it should print the strings in code point order. That is, if you enter the strings
fred, barney, wilma, betty, the output should show barney betty fred wilma. Are
all of the strings on one line in the output or on separate lines? Could you make
the output appear in either style?

Exercises | 61

CHAPTER 4

Subroutines

You’ve already seen and used some of the built-in system functions, such as chomp,
reverse, print, and so on. But, as other languages do, Perl has the ability to make
subroutines, which are user-defined functions.* These let you recycle one chunk of code
many times in one program. The name of a subroutine is another Perl identifier (letters,
digits, and underscores, but they can’t start with a digit) with a sometimes-optional
ampersand (&) in front. There’s a rule about when you can omit the ampersand and
when you cannot; you’ll see that rule by the end of the chapter. For now, just use it
every time that it’s not forbidden, which is always a safe rule. We’ll tell you every place
where it’s forbidden, of course.

The subroutine name comes from a separate namespace, so Perl won’t be confused if
you have a subroutine called &fred and a scalar called $fred in the same program—
although there’s no reason to do that under normal circumstances.

Defining a Subroutine
To define your own subroutine, use the keyword sub, the name of the subroutine
(without the ampersand), then the block of code in curly braces which makes up the
body of the subroutine. Something like this:

sub marine {
 $n += 1; # Global variable $n
 print "Hello, sailor number $n!\n";
}

You may put your subroutine definitions anywhere in your program text, but pro-
grammers who come from a background of languages like C or Pascal like to put them

* Perl doesn’t generally make the distinction that Pascal programmers are used to, between functions, which
return a value, and procedures, which don’t. But a subroutine is always user-defined, while a function may
or may not be. That is, you may use the word function as a synonym for subroutine, or it may mean one of
Perl’s built-in functions. That’s why this chapter is titled Subroutines; it’s about the ones you may define, not
the built-ins. Mostly.

63

at the start of the file. Others may prefer to put them at the end of the file so that the
main part of the program appears at the beginning. It’s up to you. In any case, you don’t
normally need any kind of forward declaration.† Subroutine definitions are global;
without some powerful trickiness, there are no private subroutines.‡ If you have two
subroutine definitions with the same name,§ the later one overwrites the earlier one.
Although, if you have warnings enabled, Perl will tell you when you do that. It’s gen-
erally considered bad form, or the sign of a confused maintenance programmer.

As you may have noticed in the previous example, you may use any global variables
within the subroutine body. In fact, all of the variables you’ve seen so far are global;
that is, they are accessible from every part of your program. This horrifies linguistic
purists, but the Perl development team formed an angry mob with torches and ran them
out of town years ago. You’ll see how to make private variables in the section “Private
Variables in Subroutines” on page 68.

Invoking a Subroutine
You invoke a subroutine from within an expression by using the subroutine name (with
the ampersand):‖

&marine; # says Hello, sailor number 1!
&marine; # says Hello, sailor number 2!
&marine; # says Hello, sailor number 3!
&marine; # says Hello, sailor number 4!

Most often, you refer to the invocation as simply calling the subroutine. You’ll also see
other ways that you may call the subroutine as you go on in this chapter.

Return Values
You always invoke a subroutine as part of an expression, even if you don’t use the result
of the expression. When you invoked &marine earlier, you were calculating the value of
the expression containing the invocation, but then throwing away the result.

† Unless your subroutine is being particularly tricky and declares a “prototype,” which dictates how a compiler
will parse and interpret its invocation arguments. This is rare—see the perlsub documentation for more
information.

‡ If you wish to be powerfully tricky, read the Perl documentation about coderefs stored in private (lexical)
variables.

§ We don’t talk about subroutines of the same name in different packages until Intermediate Perl.

‖ And frequently a pair of parentheses, even if empty. As written, the subroutine inherits the caller’s @_ value,
which we’ll show you shortly. So don’t stop reading here, or you’ll write code with unintended effects!

64 | Chapter 4: Subroutines

http://perldoc.perl.org/perlsub.html
http://oreilly.com/catalog/9780596102067/

Many times, you call a subroutine and actually do something with the result.
This means that you do something with the return value of the subroutine. All Perl
subroutines have a return value—there’s no distinction between those that return val-
ues and those that don’t. Not all Perl subroutines have a useful return value, however.

Since you can call Perl subroutines in a way that needs a return value, it’d be a bit
wasteful to have to declare special syntax to “return” a particular value for the majority
of the cases. So Larry made it simple. As Perl chugs along in a subroutine, it calculates
values as part of its series of actions. Whatever calculation is last performed in a sub-
routine is automatically also the return value.

For example, this subroutine has an addition as the last expression:

sub sum_of_fred_and_barney {
 print "Hey, you called the sum_of_fred_and_barney subroutine!\n";
 $fred + $barney; # That's the return value
}

The last evaluated expression in the body of this subroutine is the sum of $fred and
$barney, so the sum of $fred and $barney is the return value. Here’s that in action:

$fred = 3;
$barney = 4;
$wilma = &sum_of_fred_and_barney; # $wilma gets 7
print "\$wilma is $wilma.\n";

$betty = 3 * &sum_of_fred_and_barney; # $betty gets 21
print "\$betty is $betty.\n";

That code produces this output:

Hey, you called the sum_of_fred_and_barney subroutine!
$wilma is 7.
Hey, you called the sum_of_fred_and_barney subroutine!
$betty is 21.

That print statement is just a debugging aid, so you can see that you called the sub-
routine. You normally take in those sorts of statements when you’re ready to deploy
your program. But suppose you added another print to the end of the subroutine, like
this:

sub sum_of_fred_and_barney {
 print "Hey, you called the sum_of_fred_and_barney subroutine!\n";
 $fred + $barney; # That's not really the return value!
 print "Hey, I'm returning a value now!\n"; # Oops!
}

The last expression evaluated is not the addition anymore; it’s now the print statement,
whose return value is normally 1, meaning “printing was successful,”# but that’s not

#The return value of print is true for a successful operation and false for a failure. You’ll see how to determine
the kind of failure in Chapter 5.

Return Values | 65

the return value you actually wanted. So be careful when adding additional code to a
subroutine, since the last expression evaluated will be the return value.

So, what happened to the sum of $fred and $barney in that second (faulty) subroutine?
You didn’t put it anywhere, so Perl discarded it. If you had requested warnings, Perl
(noticing that there’s nothing useful about adding two variables and discarding the
result) would likely warn you about something like “a useless use of addition in a void
context.” The term void context is just a fancy way of saying that you aren’t using the
answer, whether that means storing it in a variable or using it any other way.

“The last evaluated expression” really means the last expression that Perl evaluates,
rather than the last statement in the subroutine. For example, this subroutine returns
the larger value of $fred or $barney:

sub larger_of_fred_or_barney {
 if ($fred > $barney) {
 $fred;
 } else {
 $barney;
 }
}

The last evaluated expression is either $fred or $barney, so the value of one of those
variables becomes the return value. You don’t know if the return value will be $fred or
$barney until you see what those variables hold at runtime.

These are all rather trivial examples. It gets better when you can pass values that are
different for each invocation into a subroutine instead of relying on global variables. In
fact, that’s coming right up.

Arguments
That subroutine called larger_of_fred_or_barney would be much more useful if it
didn’t force you to use the global variables $fred and $barney. If you wanted to get the
larger value from $wilma and $betty, you currently have to copy those into $fred and
$barney before you can use larger_of_fred_or_barney. And if you had something useful
in those variables, you’d have to first copy those to other variables, say $save_fred and
$save_barney. And then, when you’re done with the subroutine, you’d have to copy
those back to $fred and $barney again.

Luckily, Perl has subroutine arguments. To pass an argument list to the subroutine,
simply place the list expression, in parentheses, after the subroutine invocation, like
this:

$n = &max(10, 15); # This sub call has two parameters

Perl passes the list to the subroutine; that is, Perl makes the list available for the sub-
routine to use however it needs to. Of course, you have to store this list somewhere, so
Perl automatically stores the parameter list (another name for the argument list) in the

66 | Chapter 4: Subroutines

special array variable named @_ for the duration of the subroutine. You can access this
array to determine both the number of arguments and the value of those arguments.

This means that the first subroutine parameter is in $_[0], the second one is stored in
$_[1], and so on. But—and here’s an important note—these variables have nothing
whatsoever to do with the $_ variable, any more than $dino[3] (an element of the
@dino array) has to do with $dino (a completely distinct scalar variable). It’s just that
the parameter list must be in some array variable for your subroutine to use it, and Perl
uses the array @_ for this purpose.

Now, you could write the subroutine &max to look a little like the subroutine
&larger_of_fred_or_barney, but instead of using $fred you could use the first subrou-
tine parameter ($_[0]), and instead of using $barney, you could use the second
subroutine parameter ($_[1]). And so you could end up with something like this:

sub max {
 # Compare this to &larger_of_fred_or_barney
 if ($_[0] > $_[1]) {
 $_[0];
 } else {
 $_[1];
 }
}

Well, as we said, you could do that. But it’s pretty ugly with all of those subscripts, and
hard to read, write, check, and debug, too. You’ll see a better way in a moment.

There’s another problem with this subroutine. The name &max is nice and short, but it
doesn’t remind us that this subroutine works properly only if called with exactly two
parameters:

$n = &max(10, 15, 27); # Oops!

max ignores the extra parameters since it never looks at $_[2]. Perl doesn’t care whether
there’s something in there or not. Perl doesn’t care about insufficient parameters
either—you simply get undef if you look beyond the end of the @_ array, as with any
other array. You’ll see how to make a better &max, which works with any number of
parameters, later in this chapter.

The @_ variable is private to the subroutine;* if there’s a global value in @_, Perl saves it
before it invokes the next subroutine and restores its previous value upon return from
that subroutine.† This also means that a subroutine can pass arguments to another
subroutine without fear of losing its own @_ variable—the nested subroutine invocation
gets its own @_ in the same way. Even if the subroutine calls itself recursively, each

* Unless there’s an ampersand in front of the name for the invocation, and no parentheses (or arguments)
afterward, in which case the @_ array is inherited from the caller’s context. That’s generally a bad idea, but
is occasionally useful.

† You might recognize that this is the same mechanism as used with the control variable of the foreach loop,
as seen in Chapter 3. In either case, the variable’s value is saved and automatically restored by Perl.

Arguments | 67

invocation gets a new @_, so @_ is always the parameter list for the current subroutine
invocation.

Private Variables in Subroutines
But if Perl can give you a new @_ for every invocation, can’t it give you variables for your
own use as well? Of course it can.

By default, all variables in Perl are global variables; that is, they are accessible from
every part of the program. But you can create private variables called lexical variables
at any time with the my operator:

sub max {
 my($m, $n); # new, private variables for this block
 ($m, $n) = @_; # give names to the parameters
 if ($m > $n) { $m } else { $n }
}

These variables are private (or scoped) to the enclosing block; any other $m or $n is totally
unaffected by these two. And that goes the other way, too—no other code can access
or modify these private variables, by accident or design.‡ So, you could drop this sub-
routine into any Perl program in the world and know that you wouldn’t mess up that
program’s $m and $n (if any).§ It’s also worth pointing out that, inside those if’s blocks,
you don’t need a semicolon after the return value expression. Although Perl allows you
to omit the last semicolon in a block,‖ in practice you omit it only when the code is so
simple that you can write the block in a single line.

You can make the subroutine in the previous example even simpler. Did you notice
that the list ($m, $n) shows up twice? You can apply the my operator to a list of variables
enclosed in parentheses you use in a list assignment, so it’s customary to combine those
first two statements in the subroutine:

my($m, $n) = @_; # Name the subroutine parameters

That one statement creates the private variables and sets their values, so the first
parameter now has the easier-to-use name $m and the second has $n. Nearly every sub-
routine starts with a line much like that one, naming its parameters. When you see that
line, you’ll know that the subroutine expects two scalar parameters, which you’ll call
$m and $n inside the subroutine.

‡ Advanced programmers will realize that a lexical variable’s data may be accessible by reference from outside
its scope, but never by name. We show that in Intermediate Perl.

§ Of course, if that program already had a subroutine called &max, you’d mess that up.

‖ The semicolon is really a statement separator, not a statement terminator.

68 | Chapter 4: Subroutines

http://oreilly.com/catalog/9780596102067/

Variable-Length Parameter Lists
In real-world Perl code, subroutines often have parameter lists of arbitrary length.
That’s because of Perl’s “no unnecessary limits” philosophy that you’ve already seen.
Of course, this is unlike many traditional programming languages, which require every
subroutine to be strictly typed; that is, to permit only a certain predefined number of
parameters of predefined types. It’s nice that Perl is so flexible, but (as you saw with
the &max routine earlier) that may cause problems when you call a subroutine with a
different number of arguments than it expects.

Of course, you can easily check that the subroutine has the right number of arguments
by examining the @_ array. For example, you could have written &max to check its ar-
gument list like this:#

sub max {
 if (@_ != 2) {
 print "WARNING! &max should get exactly two arguments!\n";
 }
 # continue as before...
 .
 .
 .
}

That if test uses the “name” of the array in a scalar context to find out the number of
array elements, as you saw in Chapter 3.

But in real-world Perl programming, virtually no one really uses this sort of check; it’s
better to make your subroutines adapt to the parameters.

A Better &max Routine
Rewrite &max to allow for any number of arguments, so you can call it like this:

$maximum = &max(3, 5, 10, 4, 6);

sub max {
 my($max_so_far) = shift @_; # the first one is the largest yet seen
 foreach (@_) { # look at the remaining arguments
 if ($_ > $max_so_far) { # could this one be bigger yet?
 $max_so_far = $_;
 }
 }
 $max_so_far;
}

#As soon as you learn about warn in Chapter 5, you’ll see that you can use it to turn improper usage like this
into a proper warning. Or perhaps you’ll decide that this case is severe enough to warrant using die, described
in the same chapter.

Variable-Length Parameter Lists | 69

This code uses what has often been called the “high-water mark” algorithm; after a
flood, when the waters have surged and receded for the last time, the high-water mark
shows where the highest water was seen. In this routine, $max_so_far keeps track of
our high-water mark, the largest number yet seen, in the $max_so_far variable.

The first line sets $max_so_far to 3 (the first parameter in the example code) by shifting
that parameter from the parameter array, @_. So @_ now holds (5, 10, 4, 6), since you
removed the 3. And the largest number yet seen is the only one yet seen: 3, the first
parameter.

Next, the foreach loop steps through the remaining values in the parameter list, from
@_. The control variable of the loop is, by default, $_. (But, remember, there’s no au-
tomatic connection between @_ and $_; it’s just a coincidence that they have such similar
names.) The first time through the loop, $_ is 5. The if test sees that it is larger than
$max_so_far, so it sets $max_so_far to 5—the new high-water mark.

The next time through the loop, $_ is 10. That’s a new record high, so you store it in
$max_so_far as well.

The next time, $_ is 4. The if test fails, since that’s no larger than $max_so_far, which
is 10, so you skip the body of the if.

Finally, $_ is 6, and you skip the body of the if again. And that was the last time through
the loop, so the loop is done.

Now, $max_so_far becomes the return value. It’s the largest number you’ve seen, and
you’ve seen them all, so it must be the largest from the list: 10.

Empty Parameter Lists
That improved &max algorithm works fine now, even if there are more than two pa-
rameters. But what happens if there are none?

At first, it may seem too esoteric to worry about. After all, why would someone call
&max without giving it any parameters? But maybe someone wrote a line like this one:

$maximum = &max(@numbers);

And the array @numbers might sometimes be an empty list; perhaps it was read in from
a file that turned out to be empty, for example. So you need to know: what does &max
do in that case?

The first line of the subroutine sets $max_so_far by using shift on @_, the (now empty)
parameter array. That’s harmless; the array is left empty, and shift returns undef to
$max_so_far.

Now the foreach loop wants to iterate over @_, but since that’s empty, you execute the
loop body zero times.

70 | Chapter 4: Subroutines

So in short order, Perl returns the value of $max_so_far—undef—as the return value of
the subroutine. In some sense, that’s the right answer because there is no largest
(non)value in an empty list.

Of course, whoever called this subroutine should be aware that the return value may
be undef—or they could simply ensure that the parameter list is never empty.

Notes on Lexical (my) Variables
Those lexical variables can actually be used in any block, not merely in a subroutine’s
block. For example, they can be used in the block of an if, while, or foreach:

foreach (1..10) {
 my($square) = $_ * $_; # private variable in this loop
 print "$_ squared is $square.\n";
}

The variable $square is private to the enclosing block; in this case, that’s the block of
the foreach loop. If there’s no enclosing block, the variable is private to the entire source
file. For now, your programs aren’t going to use more than one source file,* so this isn’t
an issue. But the important concept is that the scope of a lexical variable’s name is
limited to the smallest enclosing block or file. The only code that can say $square and
mean that variable is the code inside that textual scope. This is a big win for maintain-
ability—if you find a wrong value in $square, you should also find the culprit within a
limited amount of source code. As experienced programmers have learned (often the
hard way), limiting the scope of a variable to a page of code, or even to a few lines of
code, really speeds along the development and testing cycle.

Note also that the my operator doesn’t change the context of an assignment:

my($num) = @_; # list context, same as ($num) = @_;
my $num = @_; # scalar context, same as $num = @_;

In the first one, $num gets the first parameter, as a list-context assignment; in the second,
it gets the number of parameters, in a scalar context. Either line of code could be what
the programmer wanted; you can’t tell from that one line alone, and so Perl can’t warn
you if you use the wrong one. (Of course, you wouldn’t have both of those lines in the
same subroutine, since you can’t have two lexical variables with the same name de-
clared in the same scope; this is just an example.) So, when reading code like this, you
can always tell the context of the assignment by seeing what the context would be
without the word my.

* We cover reuseable libraries and modules in Intermediate Perl.

Notes on Lexical (my) Variables | 71

http://oreilly.com/catalog/9780596102067/

Remember that without the parentheses, my only declares a single lexical variable:†

my $fred, $barney; # WRONG! Fails to declare $barney
my($fred, $barney); # declares both

Of course, you can use my to create new, private arrays as well:‡

my @phone_number;

Any new variable will start out empty—undef for scalars, or the empty list for arrays.

In regular Perl programming, you’ll probably use my to introduce any new variable in
a scope. In Chapter 3, you saw that you could define your own control variable with
the foreach structure. You can make that a lexical variable, too:

foreach my $rock (qw/ bedrock slate lava /) {
 print "One rock is $rock.\n"; # Prints names of three rocks
}

This is important in the next section, where you start using a feature that makes you
declare all your variables.

The use strict Pragma
Perl tends to be a pretty permissive language.§ But maybe you want Perl to impose a
little discipline; that can be arranged with the use strict pragma.

A pragma is a hint to a compiler, telling it something about the code. In this case, the
use strict pragma tells Perl’s internal compiler that it should enforce some good pro-
gramming rules for the rest of this block or source file.

Why would this be important? Well, imagine that you’re composing your program and
you type a line like this one:

$bamm_bamm = 3; # Perl creates that variable automatically

Now, you keep typing for a while. After that line has scrolled off the top of the screen,
you type this line to increment the variable:

$bammbamm += 1; # Oops!

Since Perl sees a new variable name (the underscore is significant in a variable name),
it creates a new variable and increments that one. If you’re lucky and smart, you’ve
turned on warnings, and Perl can tell you that you used one or both of those global
variable names only a single time in your program. But if you’re merely smart, you used
each name more than once, and Perl won’t be able to warn you.

† As usual, turning on warnings will generally report this abuse of my. Using the strict pragma, which we’ll
see in a moment, should forbid it outright.

‡ Or hashes, which you’ll see in Chapter 6.

§ Bet you hadn’t noticed.

72 | Chapter 4: Subroutines

To tell Perl that you’re ready to be more restrictive, put the use strict pragma at the
top of your program (or in any block or file where you want to enforce these rules):

use strict; # Enforce some good programming rules

Starting with Perl 5.12, you implicitly use this pragma when you declare a minimum
Perl version:

use 5.012; # loads strict for you

Now, among other restrictions,‖ Perl will insist that you declare every new variable,
usually done with my:#

my $bamm_bamm = 3; # New lexical variable

Now if you try to spell it the other way, Perl recognizes the problems and complains
that you haven’t declared any variable called $bammbamm, so your mistake is automati-
cally caught at compile time:

$bammbamm += 1; # No such variable: Compile time fatal error

Of course, this applies only to new variables; you don’t need to declare Perl’s built-in
variables, such as $_ and @_.* If you add use strict to an already written program, you’ll
generally get a flood of warning messages, so it’s better to use it from the start, when
it’s needed.

Most people recommend that programs that are longer than a screenful of text generally
need use strict. And we agree.

From here on, we’ll write most (but not all) of our examples as if use strict is in effect,
even where we don’t show it. That is, we’ll generally declare variables with my where
it’s appropriate. But, even though we don’t always do so here, we encourage you to
include use strict in your programs as often as possible. You’ll thank us in the long run.

‖ To learn about the other restrictions, see the documentation for strict. The documentation for any pragma
is under that pragma’s name, so the command perldoc strict (or your system’s native documentation method)
should find it for you. In brief, the other restrictions require that you quote strings in most cases, and that
references be true (hard) references. (We don’t talk about references, soft or hard, until Intermediate Perl).
Neither of these restrictions should affect beginners in Perl.

#There are some other ways to declare variables, too.

* And, at least in some circumstances, you don’t want to declare $a and $b, because Perl uses them internally
for sort, which you’ll see in Chapter 14. So if you’re testing this feature, use other variable names than those
two. The fact that use strict doesn’t forbid these two is one of the most frequently reported nonbugs in Perl.

The use strict Pragma | 73

http://oreilly.com/catalog/9780596102067/

The return Operator
What if you want to stop your subroutine right away? The return operator immediately
returns a value from a subroutine:

my @names = qw/ fred barney betty dino wilma pebbles bamm-bamm /;
my $result = &which_element_is("dino", @names);

sub which_element_is {
 my($what, @array) = @_;
 foreach (0..$#array) { # indices of @array's elements
 if ($what eq $array[$_]) {
 return $_; # return early once found
 }
 }
 –1; # element not found (return is optional here)
}

You’re asking this subroutine to find the index of dino in the array @names. First, the
my declaration names the parameters: there’s $what, which is what you’re searching for,
and @array, an array of values to search within. That’s a copy of the array @names, in
this case. The foreach loop steps through the indices of @array (the first index is 0, and
the last one is $#array, as you saw in Chapter 3).

Each time through the foreach loop, you check to see whether the string in $what is
equal† to the element from @array at the current index. If it’s equal, you return that
index at once. This is the most common use of the keyword return in Perl—to return
a value immediately, without executing the rest of the subroutine.

But what if you never found that element? In that case, the author of this subroutine
has chosen to return –1 as a “value not found” code. It would be more Perlish, perhaps,
to return undef in that case, but this programmer used –1. Saying return –1 on that last
line would be correct, but the word return isn’t really needed.

Some programmers like to use return every time there’s a return value, as a means of
documenting that it is a return value. For example, you might use return when the
return value is not the last line of the subroutine, such as in the subroutine
&larger_of_fred_or_barney, earlier in this chapter. You don’t really need it, but it
doesn’t hurt anything either. However, many Perl programmers believe it’s just an extra
seven characters of typing.

Omitting the Ampersand
As promised, now we’ll tell you the rule for when you can omit the ampersand on a
subroutine call. If the compiler sees the subroutine definition before invocation, or if
Perl can tell from the syntax that it’s a subroutine call, the subroutine can be called

† You noticed the string equality test, eq, instead of the numeric equality test, ==, didn’t you?

74 | Chapter 4: Subroutines

without an ampersand, just like a built-in function. (But there’s a catch hidden in that
rule, as you’ll see in a moment.)

This means that if Perl can see that it’s a subroutine call without the ampersand, from
the syntax alone, that’s generally fine. That is, if you’ve got the parameter list in
parentheses, it’s got to be a function‡ call:

my @cards = shuffle(@deck_of_cards); # No & necessary on &shuffle

Or, if Perl’s internal compiler has already seen the subroutine definition, that’s generally
okay, too. In that case, you can even omit the parentheses around the argument list:

sub division {
 $_[0] / $_[1]; # Divide first param by second
}

my $quotient = division 355, 113; # Uses &division

This works because of the rule that you may always omit parentheses when they don’t
change the meaning of the code.

But don’t put that subroutine declaration after the invocation or the compiler won’t
know what the attempted invocation of division is all about. The compiler has to see
the definition before the invocation in order to use the subroutine call as if it were a
built-in. Otherwise, the compiler doesn’t know what to do with that expression.

That’s not the catch, though. The catch is this: if the subroutine has the same name as
a Perl built-in, you must use the ampersand to call your version. With an ampersand,
you’re sure to call the subroutine; without it, you can get the subroutine only if there’s
no built-in with the same name:

sub chomp {
 print "Munch, munch!\n";
}

&chomp; # That ampersand is not optional!

Without the ampersand, you’d be calling the built-in chomp, even though you’ve defined
the subroutine &chomp. So, the real rule to use is this one: until you know the names of
all Perl’s built-in functions, always use the ampersand on function calls. That means
that you will use it for your first hundred programs or so. But when you see someone
else has omitted the ampersand in his own code, it’s not necessarily a mistake; perhaps
he simply knows that Perl has no built-in with that name.§ When programmers plan
to call their subroutines as if they were calling Perl’s built-ins, often when writing
modules, they often use prototypes to tell Perl about the parameters to expect. Making
modules is an advanced topic, though; when you’re ready for that, see Perl’s

‡ In this case, the function is the subroutine &shuffle. But it may be a built-in function, as you’ll see in a moment.

§ Then again, maybe it is a mistake; you can search the perlfunc and perlop documentation for that name,
though, to see whether it’s the same as a built-in. And Perl will usually be able to warn you about this when
you have warnings turned on.

The return Operator | 75

http://perldoc.perl.org/perlfunc.html
http://perldoc.perl.org/perlop.html

documentation (in particular, the perlmod and perlsub documents) for more informa-
tion about subroutine prototypes and making modules.‖

Non-Scalar Return Values
A scalar isn’t the only kind of return value a subroutine may have. If you call your
subroutine in a list context,# it can return a list of values.

Suppose you want to get a range of numbers (as from the range operator, ..), except
that you want to be able to count down as well as up. The range operator only counts
upward, but that’s easily fixed:

sub list_from_fred_to_barney {
 if ($fred < $barney) {
 # Count upwards from $fred to $barney
 $fred..$barney;
 } else {
 # Count downwards from $fred to $barney
 reverse $barney..$fred;
 }
}

$fred = 11;
$barney = 6;
@c = &list_from_fred_to_barney; # @c gets (11, 10, 9, 8, 7, 6)

In this case, the range operator gives you the list from 6 to 11, then reverse reverses the
list so that it goes from $fred (11) to $barney (6), just as we wanted.

The least you can return is nothing at all. A return with no arguments will return
undef in a scalar context or an empty list in a list context. This can be useful for an error
return from a subroutine, signaling to the caller that a more meaningful return value is
unavailable.

Persistent, Private Variables
With my, you were able to make variables private to a subroutine, although each time
you called the subroutine you had to define them again. With state, you can still have
private variables scoped to the subroutine but Perl will keep their values between calls.

‖ Or, continue your education with Intermediate Perl.

#You can detect whether a subroutine is being evaluated in a scalar or list context using the wantarray function,
which lets you easily write subroutines with specific list or scalar context values.

76 | Chapter 4: Subroutines

http://perldoc.perl.org/perlmod.html
http://perldoc.perl.org/perlsub.html
http://oreilly.com/catalog/9780596102067/

Going back to the first example in this chapter, you had a subroutine named marine
that incremented a variable:

sub marine {
 $n += 1; # Global variable $n
 print "Hello, sailor number $n!\n";
}

Now that you know about strict, you add that to your program and realize that your
use of the global variable $n is now a compilation error. You can’t make $n a lexical
variable with my because it wouldn’t retain its value between calls.

Declaring our variable with state tells Perl to retain the variable’s value between calls
to the subroutine and to make the variable private to the subroutine. This feature
showed up in Perl 5.10:

use 5.010;

sub marine {
 state $n = 0; # private, persistent variable $n
 $n += 1;
 print "Hello, sailor number $n!\n";
}

Now you can get the same output while being strict-clean and not using a global
variable. The first time you call the subroutine, Perl declares and initializes $n. Perl
ignores the statement on all subsequent calls. Between calls, Perl retains the value of
$n for the next call to the subroutine.

You can make any variable type a state variable; it’s not just for scalars. Here’s a sub-
routine that remembers its arguments and provides a running sum by using a state
array:

use 5.010;

running_sum(5, 6);
running_sum(1..3);
running_sum(4);

sub running_sum {
 state $sum = 0;
 state @numbers;

 foreach my $number (@_) {
 push @numbers, $number;
 $sum += $number;
 }

 say "The sum of (@numbers) is $sum";
 }

Persistent, Private Variables | 77

This outputs a new sum each time you call it, adding the new arguments to all of the
previous ones:

The sum of (5 6) is 11
The sum of (5 6 1 2 3) is 17
The sum of (5 6 1 2 3 4) is 21

There’s a slight restriction on arrays and hashes as state variables, though. You can’t
initialize them in list contexts as of Perl 5.10:

state @array = qw(a b c); # Error!

This gives you an error that hints that you might be able to do it in a future version of
Perl, but as of Perl 5.14, you still can’t:

Initialization of state variables in list context currently forbidden ...

Exercises
See “Answers to Exercises” on page 299 for answers to the following exercises:

1. [12] Write a subroutine, named total, which returns the total of a list of numbers.
Hint: the subroutine should not perform any I/O; it should simply process its pa-
rameters and return a value to its caller. Try it out in this sample program, which
merely exercises the subroutine to see that it works. The first group of numbers
should add up to 25.

my @fred = qw{ 1 3 5 7 9 };
my $fred_total = total(@fred);
print "The total of \@fred is $fred_total.\n";
print "Enter some numbers on separate lines: ";
my $user_total = total(<STDIN>);
print "The total of those numbers is $user_total.\n";

2. [5] Using the subroutine from the previous problem, make a program to calculate
the sum of the numbers from 1 to 1,000.

3. [18] Extra credit exercise: write a subroutine, called &above_average, which takes
a list of numbers and returns the ones which are above the average (mean). (Hint:
make another subroutine that calculates the average by dividing the total by the
number of items.) Try your subroutine in this test program.

my @fred = above_average(1..10);
print "\@fred is @fred\n";
print "(Should be 6 7 8 9 10)\n";
my @barney = above_average(100, 1..10);
print "\@barney is @barney\n";
print "(Should be just 100)\n";

4. [10] Write a subroutine named greet that welcomes the person you name by telling
them the name of the last person it greeted:

greet("Fred");
greet("Barney");

78 | Chapter 4: Subroutines

This sequence of statements should print:

Hi Fred! You are the first one here!
Hi Barney! Fred is also here!

5. [10] Modify the previous program to tell each new person the names of all the
people it has previously greeted:

greet("Fred");
greet("Barney");
greet("Wilma");
greet("Betty");

This sequence of statements should print:

Hi Fred! You are the first one here!
Hi Barney! I've seen: Fred
Hi Wilma! I've seen: Fred Barney
Hi Betty! I've seen: Fred Barney Wilma

Exercises | 79

CHAPTER 5

Input and Output

You’ve already seen how to do some input/output (I/O) in order to make some of the
earlier exercises possible. But now you’ll learn more about those operations by covering
the 80% of the I/O you’ll need for most programs. If you’re already familiar with the
workings of standard input, output, and error streams, you’re ahead of the game. If
not, we’ll get you caught up by the end of this chapter. For now, just think of “standard
input” as being “the keyboard,” and “standard output” as being “the display screen.”

Input from Standard Input
Reading from the standard input stream is easy. You’ve been doing it already with the
<STDIN> operator.* Evaluating this operator in a scalar context gives you the next line
of input:

$line = <STDIN>; # read the next line
chomp($line); # and chomp it

chomp($line = <STDIN>); # same thing, more idiomatically

Since the line-input operator will return undef when you reach end-of-file, this is handy
for dropping out of loops:

while (defined($line = <STDIN>)) {
 print "I saw $line";
}

* What we’re calling the line-input operator here, <STDIN>, is actually a line-input operator (represented by the
angle brackets) around a filehandle. You’ll learn about filehandles later in this chapter.

81

There’s a lot going on in that first line: you’re reading the input into a variable, checking
that it’s defined, and if it is (meaning that we haven’t reached the end of the input)
you’re running the body of the while loop. So, inside the body of the loop, you’ll see
each line, one after another, in $line.† This is something you’ll want to do fairly often,
so naturally Perl has a shortcut for it. The shortcut looks like this:

while (<STDIN>) {
 print "I saw $_";
}

Now, to make this shortcut, Larry chose some useless syntax. That is, this is literally
saying, “Read a line of input, and see if it’s true. (Normally it is.) And if it is true, enter
the while loop, but throw away that line of input!” Larry knew that it was a useless thing
to do; nobody should ever need to do that in a real Perl program. So, Larry took this
useless syntax and made it useful.

What this is actually saying is that Perl should do the same thing as you saw in our
earlier loop: it tells Perl to read the input into a variable, and (as long as the result was
defined, so you haven’t reached end-of file) then enter the while loop. However, instead
of storing the input into $line, Perl uses its favorite default variable, $_, just as if you
had written this:

while (defined($_ = <STDIN>)) {
 print "I saw $_";
}

Now, before you go any further, we must be very clear about something: this shortcut
works only if you write it just like that. If you put a line-input operator anywhere else
(in particular, as a statement all on its own), it won’t read a line into $_ by default. It
works only if there’s nothing but the line-input operator in the conditional of a while
loop.‡ If you put anything else into the conditional expression, this shortcut won’t
apply.

There’s otherwise no other connection between the line-input operator (<STDIN>) and
Perl’s favorite default variable ($_). In this case, though, it just happens that Perl is
storing the input in that variable.

On the other hand, evaluating the line-input operator in a list context gives you all of
the (remaining) lines of input as a list—each element of the list is one line:

foreach (<STDIN>) {
 print "I saw $_";
}

† You probably noticed that you never chomped that input. In this kind of a loop, you can’t really put chomp into
the conditional expression, so it’s often the first item in the loop body, when it’s needed. You’ll see examples
of that in the next section.

‡ Well, okay, the conditional of a for loop is just a while conditional in disguise, so it works there, too.

82 | Chapter 5: Input and Output

Once again, there’s no connection between the line-input operator and Perl’s favorite
default variable. In this case, though, the default control variable for foreach is $_. So
in this loop, you see each line of input in $_, one after the other.

That may sound familiar, and for good reason: that’s the same behavior the while loop
would do. Isn’t it?

The difference is under the hood. In the while loop, Perl reads a single line of input,
puts it into a variable, and runs the body of the loop. Then, it goes back to find another
line of input. But in the foreach loop, you’re using the line-input operator in a list
context (since foreach needs a list to iterate through); you read all of the input before
the loop can start running. That difference will become apparent when the input is
coming from your 400 MB web server logfile! It’s generally best to use code like the
while loop’s shortcut, which will process input a line at a time, whenever possible.

Input from the Diamond Operator
Another way to read input is with the diamond§ operator: <>. This is useful for making
programs that work like standard Unix‖ utilities, with respect to the invocation argu-
ments (which we’ll see in a moment). If you want to make a Perl program that can be
used like the utilities cat, sed, awk, sort, grep, lpr, and many others, the diamond op-
erator will be your friend. If you want to make anything else, the diamond operator
probably won’t help.

The invocation arguments to a program are normally a number of “words” on the com-
mand line after the name of the program.# In this case, they give the names of the files
your program will process in sequence:

$./my_program fred barney betty

That command means to run the command my_program (which will be found in the
current directory), and that it should process file fred, followed by file barney, followed
by file betty.

§ The diamond operator was named by Larry’s daughter, Heidi, when Randal went over to Larry’s house one
day to show off the new training materials he’d been writing and complained that there was no spoken name
for “that thing.” Larry didn’t have a name for it, either. Heidi (eight years old at the time) quickly chimed in,
“That’s a diamond, Daddy.” So the name stuck. Thanks, Heidi!

‖ But not just on Unix systems. Many other systems have adopted this way of using invocation arguments.

#Whenever a program is started, it has a list of zero or more invocation arguments, supplied by whatever
program is starting it. Often this is the shell, which makes up the list depending upon what you type on the
command line. But you’ll see later that you can invoke a program with pretty much any strings as the
invocation arguments. Because they often come from the shell’s command line, they are sometimes called
“command-line arguments” as well.

Input from the Diamond Operator | 83

If you give no invocation arguments, the program should process the standard input
stream. Or, as a special case, if you give just a hyphen as one of the arguments, that
means standard input as well.* So, if the invocation arguments had been fred - betty,
that would have meant that the program should process file fred, followed by the
standard input stream, followed by file betty.

The benefit of making your programs work like this is that you may choose where the
program gets its input at run time; for example, you won’t have to rewrite the program
to use it in a pipeline (which we’ll show more later). Larry put this feature into Perl
because he wanted to make it easy for you to write your own programs that work like
standard Unix utilities—even on non-Unix machines. Actually, he did it so he could
make his own programs work like standard Unix utilities; since some vendors’ utilities
don’t work just like others’, Larry could make his own utilities, deploy them on a
number of machines, and know that they’d all have the same behavior. Of course, this
meant porting Perl to every machine he could find.

The diamond operator is actually a special kind of line-input operator. But instead of
getting the input from the keyboard, it comes from the user’s choice of input:†

while (defined($line = <>)) {
 chomp($line);
 print "It was $line that I saw!\n";
}

So, if you run this program with the invocation arguments fred, barney, and betty, it
will say something like: “It was [a line from file fred] that I saw!”, “It was [another line
from file fred] that I saw!”, on and on until it reaches the end of file fred. Then, it will
automatically go on to file barney, printing out one line after another, and then on
through file betty. Note that there’s no break when you go from one file to another;
when you use the diamond, it’s as if the input files have been merged into one big
file.‡ The diamond will return undef (and we’ll drop out of the while loop) only at the
end of all of the input.

In fact, since this is just a special kind of line-input operator, you may use the same
shortcut you saw earlier to read the input into $_ by default:

while (<>) {
 chomp;
 print "It was $_ that I saw!\n";
}

* Here’s a possibly unfamiliar Unix fact: most of those standard utilities, like cat and sed, use this same
convention, where a hyphen stands for the standard input stream.

† Which may or may not include getting input from the keyboard.

‡ If it matters to you, or even if it doesn’t, the current file’s name is kept in Perl’s special variable $ARGV. This
name may be "-" instead of a real filename if the input is coming from the standard input stream, though.

84 | Chapter 5: Input and Output

This works like the loop above, but with less typing. And you may have noticed that
you use the default for chomp; without an argument, chomp works on $_. Every little bit
of saved typing helps!

Since you generally use the diamond operator to process all of the input, it’s typically
a mistake to use it in more than one place in your program. If you find yourself putting
two diamonds into the same program, especially using the second diamond inside the
while loop that is reading from the first one, it’s almost certainly not going to do what
you would like.§ In our experience, when beginners put a second diamond into a pro-
gram, they meant to use $_ instead. Remember, the diamond operator reads the input,
but the input itself is (generally, by default) found in $_.

If the diamond operator can’t open one of the files and read from it, it’ll print an al-
legedly helpful diagnostic message, such as:

can't open wimla: No such file or directory

The diamond operator will then go on to the next file automatically, much like what
you’d expect from cat or another standard utility.

The Invocation Arguments
Technically, the diamond operator isn’t looking literally at the invocation arguments—
it works from the @ARGV array. This array is a special array that is preset by the Perl
interpreter as the list of the invocation arguments. In other words, this is just like any
other array (except for its funny, all-caps name), but when your program starts,
@ARGV is already stuffed full of the list of invocation arguments.‖

You can use @ARGV just like any other array; you could shift items off of it, perhaps, or
use foreach to iterate over it. You could even check to see if any arguments start with
a hyphen, so that you could process them as invocation options (like Perl does with its
own -w option).#

The diamond operator looks in @ARGV to determine what filenames it should use. If it
finds an empty list, it uses the standard input stream; otherwise it uses the list of files
that it finds. This means that after your program starts and before you start using the

§ If you reinitialize @ARGV before using the second diamond, then you’re on solid ground. We’ll see @ARGV in the
next section.

‖ C programmers may be wondering about argc(there isn’t one in Perl), and what happened to the program’s
own name (that’s found in Perl’s special variable $0, not @ARGV). Also, depending upon how you’ve invoked
your program, there may be a little more happening than we say here. See the perlrun documentation for the
full details.

#If you need more than just one or two such options, you should almost certainly use a module to process
them in a standard way. See the documentation for the Getopt::Long and Getopt::Std modules, which are
part of the standard distribution.

The Invocation Arguments | 85

http://perldoc.perl.org/perlrun.html

diamond, you’ve got a chance to tinker with @ARGV. For example, you can process three
specific files, regardless of what the user chose on the command line:

@ARGV = qw# larry moe curly #; # force these three files to be read
while (<>) {
 chomp;
 print "It was $_ that I saw in some stooge-like file!\n";
}

You’ll see more about @ARGV in Chapter 14, when we show you how to translate its
values to the right encoding.*

Output to Standard Output
The print operator takes a list of values and sends each item (as a string, of course) to
standard output in turn, one after another. It doesn’t add any extra characters before,
after, or in between the items;† if you want spaces between items and a newline at the
end, you have to say so:

$name = "Larry Wall";
print "Hello there, $name, did you know that 3+4 is ", 3+4, "?\n";

Of course, that means that there’s a difference between printing an array and interpo-
lating an array:

print @array; # print a list of items
print "@array"; # print a string (containing an interpolated array)

That first print statement will print a list of items, one after another, with no spaces in
between. The second one will print exactly one item, which is the string you get by
interpolating @array into the empty string—that is, it prints the contents of @array,
separated by spaces.‡ So, if @array holds qw/ fred barney betty /,§ the first one prints
fredbarneybetty, while the second prints fred barney betty separated by spaces.

But before you decide to always use the second form, imagine that @array is a list of
unchomped lines of input. That is, imagine that each of its strings has a trailing newline
character. Now, the first print statement prints fred, barney, and betty on three sep-
arate lines. But the second one prints this:

 fred
 barney
 betty

* See Appendix C if you need to brush up on encodings.

† Well, it doesn’t add anything extra by default, but this default (like so many others in Perl) may be changed.
Changing these defaults will likely confuse your maintenance programmer, though, so avoid doing so except
in small, quick-and-dirty programs, or (rarely) in a small section of a normal program. See the perlvar
documentation to learn about changing the defaults.

‡ Yes, the spaces are another default; see the $" variable in the perlvar documentation.

§ You know that we mean a three-element list here, right? This is just Perl notation.

86 | Chapter 5: Input and Output

http://perldoc.perl.org/perlvar.html
http://perldoc.perl.org/perlvar.html

Do you see where the spaces come from? Perl is interpolating an array, so it puts spaces
between the elements. So, we get the first element of the array (fred and a newline
character), then a space, then the next element of the array (barney and a newline
character), then a space, then the last element of the array (betty and a newline char-
acter). The result is that the lines seem to have become indented, except for the first one.

Every week or two, a mailing list or forum has a message with a subject line something
like “Perl indents everything after the first line.”

Without even reading the message, we can immediately see that the program used
double quotes around an array containing unchomped strings.

“Did you perhaps put an array of unchomped strings inside double quotes?” we ask,
and the answer is always yes.

Generally, if your strings contain newlines, you simply want to print them, after all:

print @array;

But if they don’t contain newlines, you generally want to add one at the end:

print "@array\n";

So, if you use the quote marks, you’re (generally) adding the \n at the end of the string
anyway; this should help you to remember which is which.

It’s normal for your program’s output to be buffered. That is, instead of sending out
every little bit of output at once, your program saves the output until there’s enough
to bother with.

If (for example) you want to save the output to disk, it’s (relatively) slow and inefficient
to spin the disk every time you add one or two characters to the file. Generally, then,
the output will go into a buffer that is flushed (that is, actually written to disk, or wher-
ever) only when the buffer gets full, or when the output is otherwise finished (such as
at the end of runtime). Usually, that’s what you want.

But if you (or a program) may be waiting impatiently for the output, you may wish to
take that performance hit and flush the output buffer each time you print. See the Perl
documentation for more information on controlling buffering in that case.

Since print is looking for a list of strings to print, it evaluates its arguments in list
context. Since the diamond operator (as a special kind of line-input operator) returns
a list of lines in a list context, these can work well together:

print <>; # source code for 'cat'

print sort <>; # source code for 'sort'

Well, to be fair, the standard Unix commands cat and sort do have some additional
functionality that these replacements lack. But you can’t beat them for the price! You
can now reimplement all of your standard Unix utilities in Perl and painlessly port them
to any machine that has Perl, whether that machine is running Unix or not. And you

Output to Standard Output | 87

can be sure that the programs on every different type of machine will nevertheless have
the same behavior.‖

What might not be obvious is that print has optional parentheses, which can some-
times cause confusion. Remember the rule that parentheses in Perl may always be
omitted—except when doing so would change the meaning of a statement. So, here
are two ways to print the same thing:

print("Hello, world!\n");
print "Hello, world!\n";

So far, so good. But another rule in Perl is that if the invocation of print looks like a
function call, then it is a function call. It’s a simple rule, but what does it mean for
something to look like a function call?

In a function call, there’s a function name immediately# followed by parentheses
around the function’s arguments, like this:

print (2+3);

That looks like a function call, so it is a function call. It prints 5, but it returns a value
like any other function. The return value of print is a true or false value, indicating the
success of the print. It nearly always succeeds, unless you get some I/O error, so the
$result in the following statement will normally be 1:

$result = print("hello world!\n");

But what if you use the result in some other way? Suppose you decide to multiply the
return value times four:

print (2+3)*4; # Oops!

When Perl sees this line of code, it prints 5, just as you asked. Then it takes the return
value from print, which is 1, and multiplies that times 4. It then throws away the prod-
uct, wondering why you didn’t tell it to do something else with it. And at this point,
someone looking over your shoulder says, “Hey, Perl can’t do math! That should have
printed 20, rather than 5!”

This is the problem with the optional parentheses; sometimes we humans forget where
the parentheses really belong. When there are no parentheses, print is a list operator,
printing all of the items in the following list; that’s generally what you’d expect. But
when the first thing after print is a left parenthesis, print is a function call, and it will

‖ In fact, the PPT (Perl Power Tools) project, whose goal was to implement all of the classic Unix utilities in
Perl, completed nearly all the utilities (and most of the games!) but got bogged down when they got to
reimplementing the shell. The PPT project has been helpful because it has made these standard utilities
available on many non-Unix machines.

#We say “immediately” here because Perl won’t permit a newline character between the function name and
the opening parenthesis in this kind of function call. If there is a newline there, Perl sees your code as making
a list operator, rather than a function call. This is the kind of piddling technical detail that we mention only
for completeness. If you’re terminally curious, see the full story in the documentation.

88 | Chapter 5: Input and Output

print only what’s found inside the parentheses. Since that line had parentheses, it’s the
same to Perl as if you’d said this:

(print(2+3)) * 4; # Oops!

Fortunately, Perl itself can almost always help you with this, if you ask for warnings—
so use -w, or use warnings, at least during program development and debugging.

Actually, this rule—“If it looks like a function call, it is a function call”—applies to all
list functions* in Perl, not just to print. It’s just that you’re most likely to notice it with
print. If print (or another function name) is followed by an open parenthesis, make
sure that the corresponding close parenthesis comes after all of the arguments to that
function.

Formatted Output with printf
You may wish to have a little more control with your output than print provides. In
fact, you may be accustomed to the formatted output of C’s printf function. Fear not!
Perl provides a comparable operation with the same name.

The printf operator takes a format string followed by a list of things to print. The
format† string is a fill-in-the-blanks template showing the desired form of the output:

printf "Hello, %s; your password expires in %d days!\n",
 $user, $days_to_die;

The format string holds a number of so-called conversions; each conversion begins with
a percent sign (%) and ends with a letter. (As you’ll see in a moment, there may be
significant extra characters between these two symbols.) There should be the same
number of items in the following list as there are conversions; if these don’t match up,
it won’t work correctly. In the example above, there are two items and two conversions,
so the output might look something like this:

Hello, merlyn; your password expires in 3 days!

There are many possible printf conversions, so we’ll take time here to describe just the
most common ones. Of course, the full details are available in the perlfunc
documentation.

To print a number in what’s generally a good way, use %g,‡ which automatically chooses
floating-point, integer, or even exponential notation, as needed:

printf "%g %g %g\n", 5/2, 51/17, 51 ** 17; # 2.5 3 1.0683e+29

* Functions that take zero or one arguments don’t suffer from this problem.

† Here, we’re using “format” in the generic sense. Perl has a report-generating feature called “formats” that we
won’t even be mentioning (except in this footnote) until Appendix B, and then only to say that we really
aren’t going to talk about them. So, you’re on your own there. Just wanted to keep you from getting lost.

‡ “General” numeric conversion. Or maybe “Good conversion for this number,” or “Guess what I want the
output to look like.”

Formatted Output with printf | 89

http://perldoc.perl.org/perlfunc.html

The %d format means a decimal§ integer, truncated as needed:

printf "in %d days!\n", 17.85; # in 17 days!

Note that this is truncated, not rounded; you’ll see how to round off a number in a
moment.

In Perl, you most often use printf for columnar data, since most formats accept a field
width. If the data won’t fit, the field will generally be expanded as needed:

printf "%6d\n", 42; # output like ````42 (the ` symbol stands for a space)
printf "%2d\n", 2e3 + 1.95; # 2001

The %s conversion means a string, so it effectively interpolates the given value as a string,
but with a given field width:

printf "%10s\n", "wilma"; # looks like `````wilma

A negative field width is left-justified (in any of these conversions):

printf "%-15s\n", "flintstone"; # looks like flintstone`````

The %f conversion (floating-point) rounds off its output as needed, and even lets you
request a certain number of digits after the decimal point:

printf "%12f\n", 6 * 7 + 2/3; # looks like ```42.666667
printf "%12.3f\n", 6 * 7 + 2/3; # looks like ``````42.667
printf "%12.0f\n", 6 * 7 + 2/3; # looks like ``````````43

To print a real percent sign, use %%, which is special in that it uses no element from
the list:‖

printf "Monthly interest rate: %.2f%%\n",
 5.25/12; # the value looks like "0.44%"

Arrays and printf
Generally, you won’t use an array as an argument to printf. That’s because an array
may hold any number of items, and a given format string will work with only a certain
fixed number of items.

But there’s no reason you can’t whip up a format string on the fly, since it may be any
expression. This can be tricky to get right, though, so it may be handy (especially when
debugging) to store the format into a variable:

§ There’s also %x for hexadecimal and %o for octal if you need those. But we really say “decimal” here as a
memory aid: %d for decimal integer.

‖ Maybe you thought you could simply put a backslash in front of the percent sign. Nice try, but no. The reason
that won’t work is that the format is an expression, and the expression "\%" means the one-character string
'%'. Even if we got a backslash into the format string, printf wouldn’t know what to do with it. Besides, C
programmers are used to printf working like this.

90 | Chapter 5: Input and Output

my @items = qw(wilma dino pebbles);
my $format = "The items are:\n" . ("%10s\n" x @items);
print "the format is >>$format<<\n"; # for debugging
printf $format, @items;

This uses the x operator (which you learned about in Chapter 2) to replicate the given
string a number of times given by @items (which is being used in a scalar context). In
this case, that’s 3, since there are 3 items, so the resulting format string is the same as
if you wrote it as "The items are:\n%10s\n%10s\n%10s\n". And the output prints each
item on its own line, right-justified in a 10-character column, under a heading line.
Pretty cool, huh? But not cool enough because you can even combine these:

printf "The items are:\n".("%10s\n" x @items), @items;

Note that here you have @items being used once in a scalar context, to get its length,
and once in a list context, to get its contents. Context is important.

Filehandles
A filehandle is the name in a Perl program for an I/O connection between your Perl
process and the outside world. That is, it’s the name of a connection, not necessarily
the name of a file. Indeed, Perl has evolved that there might not even be a file behind
that filehandle.

Before Perl 5.6, all filehandle names were barewords, and Perl 5.6 added the ability to
store a filehandle reference in a normal scalar variable. We’ll show you the bareword
versions first since Perl still uses those for its special filehandles, and catch up with the
scalar variable versions later in this chapter.

You name these filehandles just like other Perl identifiers: letters, digits, and under-
scores (but not starting with a digit). The bareword filehandles don’t have any prefix
character, so Perl might confuse them with present or future reserved words, or with
labels, which you’ll see in Chapter 10. Once again, as with labels, the recommendation
from Larry is that you use all uppercase letters in the name of your filehandle—not only
does it stand out better, but it also guarantees that your program won’t fail when Perl
introduces a future (always lowercase) reserved word.

But there are also six special filehandle names that Perl already uses for its own pur-
poses: STDIN, STDOUT, STDERR, DATA, ARGV, and ARGVOUT.# Although you may choose any
filehandle name you like, you shouldn’t choose one of those six unless you intend to
use that one’s special properties.*

#Some people hate typing in all caps, even for a moment, and will try spelling these in lowercase, like stdin.
Perl may even let you get away with that from time to time, but not always. The details of when these work
and when they fail are beyond the scope of this book. But the important thing is that programs that rely upon
this kindness will one day break, so it is best to avoid lowercase here.

* In some cases, you could (re)use these names without a problem. But your maintenance programmer may
think that you’re using the name for its built-in features, and thus may be confused.

Filehandles | 91

Maybe you recognized some of those names already. When your program starts,
STDIN is the filehandle naming the connection between the Perl process and wherever
the program should get its input, known as the standard input stream. This is generally
the user’s keyboard unless the user asked for something else to be the source of input,
such as a file or the output of another program through a pipe.† There’s also the standard
output stream, which is STDOUT. By default, this one goes to the user’s display screen,
but the user may send the output to a file or to another program, as you’ll see shortly.
These standard streams come to you from the Unix “standard I/O” library, but they
work in much the same way on most modern operating systems.‡ The general idea is
that your program should blindly read from STDIN and blindly write to STDOUT, trusting
in the user (or generally whichever program is starting your program) to have set those
up. In that way, the user can type a command like this one at the shell prompt:

$./your_program <dino >wilma

That command tells the shell that the program’s input should be read from the file
dino, and the output should go to the file wilma. As long as the program blindly reads
its input from STDIN, processes it (in whatever way we need), and blindly writes its
output to STDOUT, this will work just fine.

And at no extra charge, the program will work in a pipeline. This is another concept
from Unix, which lets us write command lines like this one:

$ cat fred barney | sort | ./your_program | grep something | lpr

Now, if you’re not familiar with these Unix commands, that’s okay. This line says that
the cat command should print out all of the lines of file fred followed by all of the lines
of file barney. Then that output should be the input of the sort command, which sorts
those lines and passes them on to your_program. After it has done its processing,
your_program sends the data on to grep, which discards certain lines in the data, send-
ing the others on to the lpr command, which should print everything that it gets on a
printer. Whew!

Pipelines like that are common in Unix and many other systems today because they let
you build powerful, complex commands out of simple, standard building blocks. Each
building block does one thing very well, and it’s your job to use them together in the
right way.

There’s one more standard I/O stream. If (in the previous example) your_program had
to emit any warnings or other diagnostic messages, those shouldn’t go down the pipe-
line. The grep command is set to discard anything that it hasn’t specifically been told

† The defaults we speak of in this chapter for the three main I/O streams are what the Unix shells do by default.
But it’s not just shells that launch programs, of course. You’ll see in Chapter 14 what happens when you
launch another program from Perl.

‡ If you’re not already familiar with how your non-Unix system provides standard input and output, see the
perlport documentation or the documentation for that system’s equivalent to the Unix shell (the program
that runs programs based upon your keyboard input).

92 | Chapter 5: Input and Output

http://perldoc.perl.org/perlport.html

to look for, and so it will most likely discard the warnings. Even if it did keep the
warnings, you probably don’t want to pass them downstream to the other programs
in the pipeline. So that’s why there’s also the standard error stream: STDERR. Even if the
standard output is going to another program or file, the errors will go to wherever the
user desires. By default, the errors will generally go to the user’s display screen,§ but
the user may send the errors to a file with a shell command like this one:

$ netstat | ./your_program 2>/tmp/my_errors

Opening a Filehandle
So you’ve seen that Perl provides three filehandles—STDIN, STDOUT, and STDERR—which
are automatically open to files or devices established by the program’s parent process
(probably the shell). When you need other filehandles, use the open operator to tell Perl
to ask the operating system to open the connection between your program and the
outside world. Here are some examples:

open CONFIG, 'dino';
open CONFIG, '<dino';
open BEDROCK, '>fred';
open LOG, '>>logfile';

The first one opens a filehandle called CONFIG to a file called dino. That is, the (existing)
file dino will be opened and whatever it holds will come into our program through the
filehandle named CONFIG. This is similar to the way that data from a file could come in
through STDIN if the command line had a shell redirection like <dino. In fact, the second
example uses exactly that sequence. The second does the same as the first, but the less-
than sign explicitly says “use this filename for input,” even though that’s the default.‖

Although you don’t have to use the less-than sign to open a file for input, we include
that because, as you can see in the third example, a greater-than sign means to create
a new file for output. This opens the filehandle BEDROCK for output to the new file
fred. Just as when the greater-than sign is used in shell redirection, we’re sending the
output to a new file called fred. If there’s already a file of that name, you’re asking to
wipe it out and replace it with this new one.

The fourth example shows how you may use two greater-than signs (again, as the shell
does) to open a file for appending. That is, if the file already exists, you will add new
data at the end. If it doesn’t exist, you will create it in much the same way as if you had

§ Also, generally, errors aren’t buffered. That means that if the standard error and standard output streams are
both going to the same place (such as the monitor), the errors may appear earlier than the normal output.
For example, if your program prints a line of ordinary text, then tries to divide by zero, the output may show
the message about dividing by zero first, and the ordinary text second.

‖ This may be important for security reasons. As you’ll see in a moment (and in further detail in Chapter 14),
there are a number of magical characters that may be used in filenames. If $name holds a user-chosen filename,
simply opening $name will allow any of these magical characters to come into play. We recommend always
using the three-argument form, which we’ll show you in a moment.

Opening a Filehandle | 93

used just one greater-than sign. This is handy for logfiles; your program could write a
few lines to the end of a logfile each time it’s run. So that’s why the fourth example
names the filehandle LOG and the file logfile.

You can use any scalar expression in place of the filename specifier, although typically
you’ll want to be explicit about the direction specification:

my $selected_output = 'my_output';
open LOG, "> $selected_output";

Note the space after the greater-than. Perl ignores this,# but it keeps unexpected things
from happening if $selected_output were ">passwd" for example (which would make
an append instead of a write).

In modern versions of Perl (starting with Perl 5.6), you can use a “three-argument” open:

open CONFIG, '<', 'dino';
open BEDROCK, '>', $file_name;
open LOG, '>>', &logfile_name();

The advantage here is that Perl never confuses the mode (the second argument) with
some part of the filename (the third argument), which has nice advantages for security.
Since they are separate arguments, Perl doesn’t have a chance to get confused.

The three-argument form has another big advantage. Along with the mode, you can
specify an encoding. If you know that your input file is UTF-8, you can specify that by
putting a colon after the file mode and naming the encoding:

open CONFIG, '<:encoding(UTF-8)', 'dino';

If you want to write your data to a file with a particular encoding, you do the same
thing with one of the write modes:

open BEDROCK, '>:encoding(UTF-8)', $file_name;
open LOG, '>>:encoding(UTF-8)', &logfile_name();

There’s a shortcut for this. Instead of the full encoding(UTF-8), you might sometimes
see :utf8. This isn’t really a shortcut for the full version because it doesn’t care if the
input (or output) is valid UTF-8. If you use encoding(UTF-8), you ensure that the data
is encoded correctly. The :utf8 takes whatever it gets and marks it as a UTF-8 string
even if it isn’t, which might cause problems later. Still, you might see people do some-
thing like this:

open BEDROCK, '>:utf8', $file_name; # probably not right

With the encoding() form, you can specify other encodings too. You can get a list of
all of the encodings that your perl understands with a Perl one-liner:

% perl -MEncode -le "print for Encode->encodings(':all')"

#Yes, this means that if your filename were to have leading whitespace, that would also be ignored by Perl.
See perlfunc and perlopentut if you’re worried about this.

94 | Chapter 5: Input and Output

http://perldoc.perl.org/perlfunc.html
http://perldoc.perl.org/perlopentut.html

You should be able to use any of the names from that list as an encoding for reading
or writing a file. Not all encodings are available on every machine since the list depends
on what you’ve installed (or excluded).

If you want a little-endian version of UTF-16:

open BEDROCK, '>:encoding(UTF-16LE)', $file_name;

Or perhaps Latin-1:

open BEDROCK, '>:encoding(iso-8859-1)', $file_name;

There are other layers* that perform transformations on the input or output. For in-
stance, you sometimes need to handle files that have DOS line endings, where each line
ends with a carriage-return/linefeed (CR-LF) pair (also normally written as "\r\n").
Unix line endings only use the newlines. When you try to use one on the other, odd
things can happen. The :crlf encoding takes care of that.† When you want to ensure
you get a CR-LF at the end of each line, you can set that encoding on the file:

open BEDROCK, '>:crlf', $file_name;

Now when you print to each line, this layer translates each newline to a CR-LF, al-
though be careful since if you already have a CR-LF, you’ll end up with two carriage
returns in a row.

You can do the same thing to read a file which might have DOS line endings:

open BEDROCK, '<:crlf', $file_name;

Now when you read a file, Perl will translate all CR-LF to just newlines.

Binmoding Filehandles
You don’t have to know the encoding ahead of time, or even specify it if you already
know it. In older Perls, if you didn’t want to translate line endings, such as a random
value in a binary file that happens to have the same ordinal value as the newline, you
used binmode to turn off line ending processing:‡

binmode STDOUT; # don't translate line endings
binmode STDERR; # don't translate line endings

* A layer is slightly different from an encoding because it doesn’t really have to do anything. You can stack
layers (which is how they get their name) to get different effects.

† The :crlf encoding is already the default on Windows.

‡ Much like you’d set binary mode in FTP, if you remember what that is.

Opening a Filehandle | 95

Starting with Perl 5.6, you could specify a layer§ as the second argument to binmode. If
you want to output Unicode to STDOUT, you want to ensure that STDOUT knows how to
handle what it gets:

binmode STDOUT, ':encoding(UTF-8)';

If you don’t do that, you might get a warning (even without turning on warnings)
because STDOUT doesn’t know how you’d like to encode it:

Wide character in print at test line 1.

You can use binmode with either input or output handles. If you expect UTF-8 on
standard input, you can tell Perl to expect that:

binmode STDERR, ':encoding(UTF-8)';

Bad Filehandles
Perl can’t actually open a file all by itself. Like any other programming language, Perl
can merely ask the operating system to let us open a file. Of course, the operating system
may refuse, because of permission settings, an incorrect filename, or other reasons.

If you try to read from a bad filehandle (that is, a filehandle that isn’t properly open or
a closed network connection), you’ll see an immediate end-of-file. (With the I/O meth-
ods you’ll see in this chapter, end-of-file will be indicated by undef in a scalar context
or an empty list in a list context.) If you try to write to a bad filehandle, the data is
silently discarded.

Fortunately, these dire consequences are easy to avoid. First of all, if you ask for warn-
ings with -w or the warnings pragma, Perl will generally be able to tell you with a warning
when it sees that you’re using a bad filehandle. But even before that, open always tells
you if it succeeded or failed by returning true for success or false for failure. So you
could write code like this:

my $success = open LOG, '>>', 'logfile'; # capture the return value
if (! $success) {
 # The open failed
 ...
}

Well, you could do it like that, but there’s another way that you’ll see in the next section.

Closing a Filehandle
When you are finished with a filehandle, you may close it with the close operator like
this:

close BEDROCK;

§ Perl 5.6 called it a discipline, but that name changed in favor of layer.

96 | Chapter 5: Input and Output

Closing a filehandle tells Perl to inform the operating system that you’re done with the
given data stream, so it should write any last output data to disk in case someone is
waiting for it.‖ Perl automatically closes a filehandle if you reopen it (that is, if you reuse
the filehandle name in a new open) or if you exit the program.#

Because of this, many simple Perl programs don’t bother with close. But it’s there if
you want to be tidy, with one close for every open. In general, it’s best to close each
filehandle soon after you’re done with it, though the end of the program often arrives
soon enough.*

Fatal Errors with die
Step aside for a moment. You need some stuff that isn’t directly related to (or limited
to) I/O, but is more about getting out of a program earlier than normal.

When a fatal error happens inside Perl (for example, if you divide by zero, use an invalid
regular expression, or call a subroutine that you haven’t declared), your program stops
with an error message telling why.† But this functionality is available to you with the
die function, so you can make your own fatal errors.

The die function prints out the message you give it (to the standard error stream, where
such messages should go) and makes sure that your program exits with a nonzero exit
status.

You may not have known it, but every program that runs on Unix (and many other
modern operating systems) has an exit status, telling whether it was successful or not.
Programs that run other programs (like the make utility program) look at that exit status
to see that everything happened correctly. The exit status is just a single byte, so it can’t
say much; traditionally, it is 0 for success and a nonzero value for failure. Perhaps 1
means a syntax error in the command arguments, while 2 means that something went
wrong during processing and 3 means the configuration file couldn’t be found; the

‖ If you know much about I/O systems, you’ll know there’s more to the story. Generally, though, when a
filehandle is closed, here’s what happens. If there’s input remaining in a file, it’s ignored. If there’s input
remaining in a pipeline, the writing program may get a signal that the pipeline is closed. If there’s output
going to a file or pipeline, the buffer is flushed (that is, pending output is sent on its way). If the filehandle
had a lock, the lock is released. See your system’s I/O documentation for further details.

#Any exit from the program will close all filehandles, but if Perl itself breaks, it can’t flush the pending output
buffers. That is to say, if you accidentally crash your program by dividing by zero, for example, Perl itself is
still running. Perl will ensure that data you’ve written actually gets output in that case. But if Perl itself can’t
run (because you ran out of memory or caught an unexpected signal), the last few pieces of output may not
be written to disk. Usually, this isn’t a big issue.

* Closing a filehandle will flush any output buffers and release any locks on the file. Since someone else may
be waiting for those things, a long-running program should generally close each filehandle as soon as possible.
But many of our programs will take only one or two seconds to run to completion, so this may not matter.
Closing a filehandle also releases possibly limited resources, so it’s more than just being tidy.

† Well, it does this by default, but errors may be trapped with an eval block, as you’ll see in Chapter 16.

Fatal Errors with die | 97

details differ from one command to the next. But 0 always means that everything
worked. When the exit status shows failure, a program like make knows not to go on
to the next step.

So you could rewrite the previous example, perhaps something like this:

if (! open LOG, '>>', 'logfile') {
 die "Cannot create logfile: $!";
}

If the open fails, die terminates the program and tells you that it cannot create the logfile.
But what’s that $! in the message? That’s the human-readable complaint from the
system. In general, when the system refuses to do something you’ve requested (such as
opening a file), $! will give you a reason (perhaps “permission denied” or “file not
found,” in this case). This is the string that you may have obtained with perror in C or
a similar language. This human-readable complaint message is available in Perl’s special
variable $!.‡ It’s a good idea to include $! in the message when it could help the user
to figure out what he or she did wrong. But if you use die to indicate an error that is
not the failure of a system request, don’t include $!, since it will generally hold an
unrelated message left over from something Perl did internally. It will hold a useful
value only immediately after a failed system request. A successful request won’t leave
anything useful there.

There’s one more thing that die will do for you: it will automatically append the Perl
program name and line number§ to the end of the message, so you can easily identify
which die in your program is responsible for the untimely exit. The error message from
the previous code might look like this, if $! contained the message permission denied:

Cannot create logfile: permission denied at your_program line 1234.

That’s pretty helpful—in fact, you always seem to want more information in your error
messages than you included the first time around. If you don’t want the line number
and file revealed, make sure the dying words have a newline on the end. That is, another
way you could use die is with a trailing newline on the message:

if (@ARGV < 2) {
 die "Not enough arguments\n";
}

If there aren’t at least two command-line arguments, that program will say so and quit.
It won’t include the program name and line number, since the line number is of no use
to the user; this is the user’s error, after all. As a rule of thumb, put the newline on

‡ On some non-Unix operating systems, $! may say something like error number 7, leaving it up to the user
to look that one up in the documentation. On Windows and VMS, the variable $^E may have additional
diagnostic information.

§ If the error happened while reading from a file, the error message will include the “chunk number” (usually
the line number) from the file and the name of the filehandle as well, since those are often useful in tracking
down a bug.

98 | Chapter 5: Input and Output

messages that indicate a usage error and leave it off when the error might be something
you want to track down during debugging.‖

You should always check the return value of open, since the rest of the program is relying
upon its success.

Warning Messages with warn
Just as die can indicate a fatal error that acts like one of Perl’s built-in errors (like
dividing by zero), you can use the warn function to cause a warning that acts like one
of Perl’s built-in warnings (like using an undef value as if it were defined, when warnings
are enabled).

The warn function works just like die does, except for that last step—it doesn’t actually
quit the program. But it adds the program name and line number if needed, and it prints
the message to standard error, just as die would.#

And having talked about death and dire warnings, we now return you to your regularly
scheduled I/O instructional material. Read on.

Automatically die-ing
Starting with Perl 5.10, the autodie pragma is part of the Standard Library. So far in
the examples, you checked the return value of open and handled the error yourself:

if (! open LOG, '>>', 'logfile') {
 die "Cannot create logfile: $!";
}

That can get a bit tedious if you have to do that every time you want to open a filehandle.
Instead, you can use the autodie pragma once in your program and automatically get
the die if your open fails:

use autodie;

open LOG, '>>', 'logfile';

‖ The program’s name is in Perl’s special variable $0, so you may wish to include that in the string: "$0:Not
enough arguments\n". This is useful if the program may be used in a pipeline or shell script, for example,
where it’s not obvious which command is complaining. You can change $0 during the execution of the
program, however. You might also want to look into the special __FILE__ and __LINE__ tokens (or the
caller function) to get the information that is being left out by adding the newline, so you can print it in your
own choice of format.

#You can’t trap warnings with an eval block like you can with fatal errors. See the documentation for the
__WARN__ pseudosignal (in the perlvar documentation for %SIG) if you need to trap a warning.

Fatal Errors with die | 99

http://perldoc.perl.org/perlvar.html

This pragma works by recognizing which Perl built-ins are system calls, which might
fail for reasons beyond your program’s control. When one of those system calls fails,
autodie magically invokes the die on your behalf. Its error message looks close to what
you might choose yourself:

Can't open('>>', 'logfile'): No such file or directory at test line 3

Using Filehandles
Once a filehandle is open for reading, you can read lines from it just like you can read
from standard input with STDIN. So, for example, to read lines from the Unix password
file:

if (! open PASSWD, "/etc/passwd") {
 die "How did you get logged in? ($!)";
}

while (<PASSWD>) {
 chomp;
 ...
}

In this example, the die message uses parentheses around $!. Those are merely paren-
theses around the message in the output. (Sometimes a punctuation mark is just a
punctuation mark.) As you can see, what we’ve been calling the “line-input operator”
is really made of two components; the angle brackets (the real line-input operator) are
around an input filehandle.

You can use a filehandle open for writing or appending with print or printf, appearing
immediately after the keyword but before the list of arguments:

print LOG "Captain's log, stardate 3.14159\n"; # output goes to LOG
printf STDERR "%d percent complete.\n", $done/$total * 100;

Did you notice that there’s no comma between the filehandle and the items to be prin-
ted?* This looks especially weird if you use parentheses. Either of these forms is correct:

printf (STDERR "%d percent complete.\n", $done/$total * 100);
printf STDERR ("%d percent complete.\n", $done/$total * 100);

Changing the Default Output Filehandle
By default, if you don’t give a filehandle to print (or to printf, as everything we say
here about one applies equally well to the other), the output will go to STDOUT. But that

* If you got straight As in freshman English or Linguistics, when we say that this is called “indirect object
syntax,” you may say, “Ah, of course! I see why there’s no comma after the filehandle name—it’s an indirect
object!” We didn’t get straight As; we don’t understand why there’s no comma; we merely omit it because
Larry told us that we should omit the comma.

100 | Chapter 5: Input and Output

default may be changed with the select operator. Here we’ll send some output lines
to BEDROCK:

select BEDROCK;
print "I hope Mr. Slate doesn't find out about this.\n";
print "Wilma!\n";

Once you’ve selected a filehandle as the default for output, it stays that way. But it’s
generally a bad idea to confuse the rest of the program, so you should generally set it
back to STDOUT when you’re done.† Also by default, the output to each filehandle is
buffered. Setting the special $| variable to 1 will set the currently selected filehandle
(that is, the one selected at the time that the variable is modified) to always flush the
buffer after each output operation. So if you wanted to be sure that the logfile gets its
entries at once, in case you might be reading the log to monitor progress of your long-
running program, you could use something like this:

select LOG;
$| = 1; # don't keep LOG entries sitting in the buffer
select STDOUT;
... time passes, babies learn to walk, tectonic plates shift, and then...
print LOG "This gets written to the LOG at once!\n";

Reopening a Standard Filehandle
We mentioned earlier that if you were to reopen a filehandle (that is, if you were to
open a filehandle FRED when you’ve already got an open filehandle named FRED), the
old one would be closed for you automatically. And we said that you shouldn’t reuse
one of the six standard filehandle names unless you intended to get that one’s special
features. And we also said that the messages from die and warn, along with Perl’s in-
ternally generated complaints, go automatically to STDERR. If you put those three pieces
of information together, you now have an idea about how you could send error mes-
sages to a file, rather than to your program’s standard error stream:‡

Send errors to my private error log
if (! open STDERR, ">>/home/barney/.error_log") {
 die "Can't open error log for append: $!";
}

† In the unlikely case that STDOUT might not be the selected filehandle, you could save and restore the filehandle,
using the technique shown in the documentation for select in the perlfunc documentation. And as long as
we’re sending you to that documentation, we may as well tell you that there are actually two built-in functions
in Perl named select, and both are covered in the perlfunc documentation. The other select always has four
arguments, so it’s sometimes called “four-argument select”.

‡ Don’t do this without a reason. It’s nearly always better to let the user set up redirection when launching
your program, rather than have redirection hardcoded. But this is handy in cases where your program is being
run automatically by another program (say, by a web server or a scheduling utility like cron or at). Another
reason might be that your program is going to start another process (probably with system or exec, which
you’ll see in Chapter 14), and you need that process to have different I/O connections.

Reopening a Standard Filehandle | 101

http://perldoc.perl.org/perlfunc.html
http://perldoc.perl.org/perlfunc.html

After reopening STDERR, any error messages from Perl go into the new file. But what
happens if the die is executed—where will that message go, if the new file couldn’t be
opened to accept the messages?

The answer is that if one of the three system filehandles—STDIN, STDOUT, or STDERR—
fails to reopen, Perl kindly restores the original one.§ That is, Perl closes the original
one (of those three) only when it sees that opening the new connection is successful.
Thus, this technique could be used to redirect any (or all) of those three system file-
handles from inside your program,‖ almost as if the program had been run with that
I/O redirection from the shell in the first place.

Output with say
Perl 5.10 borrowed the say built-in from the ongoing development of Perl 6 (which may
have borrowed its say from Pascal’s println). It’s the same as print, although it adds
a newline to the end. These forms all output the same thing:

use 5.010;

print "Hello!\n";
print "Hello!", "\n";
say "Hello!";

To just print a variable’s value followed by a newline, I don’t need to create an extra
string or print a list. I just say the variable. This is especially handy in the common case
of simply wanting to put a newline after whatever I want to output:

use 5.010;

my $name = 'Fred';
print "$name\n";
print $name, "\n";
say $name;

To interpolate an array, I still need to quote it, though. It’s the quoting that puts the
spaces between the elements:

use 5.010;

my @array = qw(a b c d);
say @array; # "abcd\n"
say "@array"; # "a b c d\n";

§ At least, this is true if you haven’t changed Perl’s special $^F variable, which tells Perl that only those three
are special like this. But you’d never change that.

‖ But don’t open STDIN for output or the others for input. Just thinking about that makes our heads hurt.

102 | Chapter 5: Input and Output

Just like with print, I can specify a filehandle with say:

use 5.010;

say BEDROCK "Hello!";

Since this is a Perl 5.10 feature though, we’ll only use it when we are otherwise using
a Perl 5.10 feature. The old, trusty print is still as good as it ever was, but we suspect
that there will be some Perl programmers out there who want the immediate savings
of not typing the four extra characters (two in the name and the \n).

Filehandles in a Scalar
Since Perl 5.6, you can create a filehandle in a scalar variable so you don’t have to use
a bareword. This makes many things, such as passing a filehandle as a subroutine
argument, storing them in arrays or hashes, or controlling its scope, much easier. Al-
though, you still need to know how to use the barewords because you’ll still find them
in Perl code and they are actually quite handy in short scripts where you don’t benefit
that much from the filehandles in a variable.

If you use a scalar variable without a value in place of the bareword in open, your
filehandle ends up in the variable. People typically do this with a lexical variable since
that ensures you get a variable without a value; some like to put a _fh on the end of
these variable names to remind themselves that they are using it for a filehandle:

my $rocks_fh;
open $rocks_fh, '<', 'rocks.txt'
 or die "Could not open rocks.txt: $!";

You can even combine those two statements so you declare the lexical variable right in
the open:

open my $rocks_fh, '<', 'rocks.txt'
 or die "Could not open rocks.txt: $!";

Once you have the filehandle in your scalar variable, you use the variable, sigil and all,
in the same place that you used the bareword version:

while(<$rocks_fh>) {
 chomp;
 ...
}

This works for output filehandles too. You open the filehandle with the appropriate
mode then use the scalar variable in place of the bareword filehandle:

open my $rocks_fh, '>>', 'rocks.txt'
 or die "Could not open rocks.txt: $!";
foreach my $rock (qw(slate lava granite)) {
 say $rocks_fh $rock
}

Filehandles in a Scalar | 103

print $rocks_fh "limestone\n";
close $rocks_fh;

Notice that you still don’t use a comma after the filehandle in these examples. Perl
realizes that $fh is a filehandle because there’s no comma after the first thing following
print. If you put a comma after the filehandle, your output looks odd. This probably
isn’t what you want to do:

print $rocks_fh, "limestone\n"; # WRONG

That example produces something like this:

GLOB(0xABCDEF12)limestone

What happened? Since you used the comma after the first argument, Perl treated that
first argument as a string to print instead of the filehandle. Although we don’t talk about
references until the next book, Intermediate Perl, you’re seeing a stringification of the
reference instead of using it as you probably intend. This also means that these two are
subtly different:

print STDOUT;
print $rock_fh; # WRONG, probably

In the first case, Perl knows that STDOUT is a filehandle because it is a bareword. Since
there are no other arguments, it uses $_ by default. In the second one, Perl can’t tell
what $rock_fh will have until it actually runs the statement. Since it doesn’t know that
it’s a filehandle ahead of time, it always assumes that the $rock_fh has a value you want
to output. To get around this, you can always surround anything that should be a
filehandle in braces to make sure that Perl does the right thing, even if you are using a
filehandle that you stored in an array or a hash:

print { $rock_fh }; # uses $_ by default
print { $rocks[0] } "sandstone\n";

Depending on the sort of programming that you actually do, you might go one way or
the other choosing between bareword and scalar variable filehandles. For short pro-
grams, such as in system administration, barewords don’t pose much of a problem. For
big application development, you probably want to use the lexical variables to control
the scope of your open filehandles.

Exercises
See “Answers to Exercises” on page 302 for answers to the following exercises:

1. [7] Write a program that acts like cat, but reverses the order of the output lines.
(Some systems have a utility like this named tac.) If you run yours as ./tac fred
barney betty, the output should be all of file betty from last line to first, then
barney and then fred, also from last line to first. (Be sure to use the ./ in your
program’s invocation if you call it tac so that you don’t get the system’s utility
instead!)

104 | Chapter 5: Input and Output

http://oreilly.com/catalog/9780596102067/

2. [8] Write a program that asks the user to enter a list of strings on separate lines,
printing each string in a right-justified, 20-character column. To be certain that the
output is in the proper columns, print a “ruler line” of digits as well. (This is simply
a debugging aid.) Make sure that you’re not using a 19-character column by mis-
take! For example, entering hello, good-bye should give output something like this:

123456789012345678901234567890123456789012345678901234567890
 hello
 good-bye

3. [8] Modify the previous program to let the user choose the column width, so that
entering 30, hello, good-bye (on separate lines) would put the strings at the 30th
column. (Hint: see “Interpolation of Scalar Variables into Strings” on page 32 in
Chapter 2, about controlling variable interpolation.) For extra credit, make the
ruler line longer when the selected width is larger.

Exercises | 105

CHAPTER 6

Hashes

In this chapter, you will see a feature that makes Perl one of the world’s truly great
programming languages—hashes.* Although hashes are a powerful and useful feature,
you may have used other powerful languages for years without ever hearing of hashes.
But you’ll use hashes in nearly every Perl program you write from now on; they’re that
important.

What Is a Hash?
A hash is a data structure, not unlike an array in that it can hold any number of values
and retrieve them at will. But instead of indexing the values by number, as you did with
arrays, you look up hash values by name. That is, the indices, called keys, aren’t num-
bers, but instead they are arbitrary, unique strings (see Figure 6-1).

Hash keys are strings, first of all, so instead of getting element number 3 from an array,
you access the hash element named wilma, for instance.

These keys are arbitrary strings—you can use any string expression for a hash key. And
they are unique strings—just as there’s only one array element numbered 3, there’s only
one hash element named wilma.

Another way to think of a hash is that it’s like a barrel of data, where each piece of data
has a tag attached. You can reach into the barrel and pull out any tag and see what
piece of data is attached. But there’s no “first” item in the barrel; it’s just a jumble. In
an array, you start with element 0, then element 1, then element 2, and so on. But in a
hash there’s no fixed order, no first element. It’s just a collection of key-value pairs.

* In the olden days, we called these “associative arrays.” But the Perl community decided around 1995 that
this was too many letters to type and too many syllables to say, so we changed the name to “hashes.”

107

Figure 6-1. Hash keys and values

The keys and values are both arbitrary scalars, but the keys are always converted to
strings. So, if you used the numeric expression 50/20 as the key,† it would be turned
into the three-character string "2.5", which is one of the keys shown in Figure 6-2.

Figure 6-2. A hash as a barrel of data

† That’s a numeric expression, not the five-character string "50/20". If you used that five-character string as a
hash key, it would stay the same five-character string, of course.

108 | Chapter 6: Hashes

As usual, Perl’s “no unnecessary limits” philosophy applies: a hash may be of any size,
from an empty hash with zero key-value pairs, up to whatever fills up your memory.

Some implementations of hashes (such as in the original awk language, where Larry
borrowed the idea from) slow down as the hashes get larger and larger. This is not the
case in Perl—it has a good, efficient, scalable algorithm.‡ So, if a hash has only three
key-value pairs, it’s very quick to “reach into the barrel” and pull out any one of those.
If the hash has three million key-value pairs, it should be just about as quick to pull out
any one of those. A big hash is nothing to fear.

It’s worth mentioning again that the keys are always unique, although you may use the
same value more than once. The values of a hash may be all numbers, all strings,
undef values, or a mixture.§ But the keys are all arbitrary, unique strings.

Why Use a Hash?
When you first hear about hashes, especially if you’ve lived a long and productive life
as a programmer using languages that don’t have hashes, you may wonder why anyone
would want one of these strange beasts. Well, the general idea is that you’ll have one
set of data “related to” another set of data. For example, here are some hashes you
might find in typical applications of Perl:

Given name, family name
The given name (first name) is the key, and the family name is the value. This
requires unique given names, of course; if there were two people named randal,
this wouldn’t work. With this hash, you can look up anyone’s given name, and
find the corresponding family name. If you use the key tom, you get the value
phoenix.

Hostname, IP address
You may know that each computer on the Internet has both a hostname (like http:
//www.stonehenge.com) and an IP address number (like 123.45.67.89). That’s be-
cause machines like working with the numbers, but we humans have an easier time
remembering the names. The hostnames are unique strings, so they can be used
to make this hash. With this hash, you could look up a hostname and find the
corresponding IP address.‖

‡ Technically, Perl rebuilds the hash table as needed for larger hashes. In fact, the term “hashes” comes from
the fact that a hash table is used for implementing them.

§ Or, in fact, any scalar values, including other scalar types than the ones we’ll see in this book.

‖ This isn’t a great example because we know that some hosts may have multiple IP addresses, and some IP
addresses might map to multiple hosts, but you get the idea.

What Is a Hash? | 109

http://www.stonehenge.com
http://www.stonehenge.com

IP address, hostname
Or you could go in the opposite direction. You might think of an IP address as a
number, but it can also be a unique string (like any Perl number), so it’s suitable
for use as a hash key. In this hash, we can use the IP address to look up the corre-
sponding hostname. Note that this is not the same hash as the previous example:
hashes are a one-way street, running from key to value; there’s no way to look up
a value in a hash and find the corresponding key! So these two are a pair of hashes,
one for storing IP addresses, one for hostnames. It’s easy enough to create one of
these given the other, though, as you’ll see below.

Word, count of number of times that word appears
This is a very common use of a hash. It’s so common, in fact, that it just might turn
up in the exercises at the end of this chapter!

The idea here is that you want to know how often each word appears in a given
document. Perhaps you’re building an index to a number of documents so that
when a user searches for fred, you’ll know that a certain document mentions
fred five times, another mentions fred seven times, and yet another doesn’t men-
tion fred at all—so you’ll know which documents the user is likely to want. As the
index-making program reads through a given document, each time it sees a men-
tion of fred, it adds one to the value filed under the key of fred. That is, if you had
seen fred twice already in this document, the value would be 2, but now you in-
crement it to 3. If you had not yet seen fred, you change the value from undef (the
implicit, default value) to 1.

Username, number of disk blocks they are using [wasting]
System administrators like this one: the usernames on a given system are all unique
strings, so they can be used as keys in a hash to look up information about that user.

Driver’s license number, name
There may be many, many people named John Smith, but you hope that each one
has a different driver’s license number. That number makes for a unique key, and
the person’s name is the value.

Yet another way to think of a hash is as a very simple database, in which just one piece
of data may be filed under each key. In fact, if your task description includes phrases
like “finding duplicates,” “unique,” “cross-reference,” or “lookup table,” it’s likely that
a hash will be useful in the implementation.

Hash Element Access
To access an element of a hash, you use syntax that looks like this:

$hash{$some_key}

110 | Chapter 6: Hashes

This is similar to what you used for array access, but here you use curly braces instead
of square brackets around the subscript (key).# And that key expression is now a string,
rather than a number:

$family_name{'fred'} = 'flintstone';
$family_name{'barney'} = 'rubble';

Figure 6-3 shows how the resulting hash keys are assigned.

Figure 6-3. Assigned hash keys

This lets you use code like this:

foreach my $person (qw< barney fred >) {
 print "I've heard of $person $family_name{$person}.\n";
}

The name of the hash is like any other Perl identifier. And it’s from a separate name-
space; that is, there’s no connection between the hash element $family_name{"fred"}
and a subroutine &family_name, for example. Of course, there’s no reason to confuse
everyone by giving everything the same name. But Perl won’t mind if you also have a
scalar called $family_name and array elements like $family_name[5]. We humans will
have to do as Perl does; that is, you look to see what punctuation appears before and
after the identifier to see what it means. When there is a dollar sign in front of the name
and curly braces afterward, you’re accessing a hash element.

When choosing the name of a hash, it’s often nice to think of the word “for” between
the name of the hash and the key. As in, “the family_name for fred is flintstone”. So
the hash is named family_name. Then the relationship between the keys and their values
becomes clear.

Of course, the hash key may be any expression, not just the literal strings and simple
scalar variables that you’re showing here:

$foo = 'bar';
print $family_name{ $foo . 'ney' }; # prints 'rubble'

#Here’s a peek into the mind of Larry Wall: Larry says that you use curly braces instead of square brackets
because you’re doing something fancier than ordinary array access, so you should use fancier punctuation.

Hash Element Access | 111

When you store something into an existing hash element, it overwrites the previous
value:

$family_name{'fred'} = 'astaire'; # gives new value to existing element
$bedrock = $family_name{'fred'}; # gets 'astaire'; old value is lost

That’s analogous to what happens with arrays and scalars; if you store something new
into $pebbles[17] or $dino, the old value is replaced. If you store something new into
$family_name{'fred'}, the old value is replaced as well.

Hash elements spring into existence when you first assign to them:

$family_name{'wilma'} = 'flintstone'; # adds a new key (and value)
$family_name{'betty'} .= $family_name{'barney'}; # creates the element if needed

That’s also just like what happens with arrays and scalars;* if you didn’t have
$pebbles[17] or $dino before, you will have it after you assign to it. If you didn’t
have $family_name{'betty'} before, you do now.

And accessing outside the hash gives undef:

$granite = $family_name{'larry'}; # No larry here: undef

Once again, this is just like what happens with arrays and scalars; if there’s nothing yet
stored in $pebbles[17] or $dino, accessing them will yield undef. If there’s nothing
yet stored in $family_name{'larry'}, accessing it will yield undef.

The Hash As a Whole
To refer to the entire hash, use the percent sign (%) as a prefix. So, the hash you’ve been
using for the last few pages is actually called %family_name.

For convenience, you can convert a hash into a list and back again. Assigning to a hash
(in this case, the one from Figure 6-1) is a list-context assignment, where the list is key-
value pairs:†

%some_hash = ('foo', 35, 'bar', 12.4, 2.5, 'hello',
 'wilma', 1.72e30, 'betty', "bye\n");

The value of the hash (in a list context) is a simple list of key-value pairs:

@any_array = %some_hash;

Perl calls this unwinding the hash; turning it back into a list of key-value pairs. Of course,
the pairs won’t necessarily be in the same order as the original list:

print "@any_array\n";
 # might give something like this:
 # betty bye (and a newline) wilma 1.72e+30 foo 35 2.5 hello bar 12.4

* This is a feature called autovivification, which we talk about more in Intermediate Perl.

† Although you can use any list expression, it must have an even number of elements, because the hash is made
of key-value pairs. An odd element will likely do something unreliable, although it’s a warnable offense.

112 | Chapter 6: Hashes

http://oreilly.com/catalog/9780596102067/

The order is jumbled because Perl keeps the key-value pairs in an order that’s conven-
ient for Perl so that it can look up any item quickly.‡ You use a hash either when you
don’t care what order the items are in, or when you have an easy way to put them into
the order you want.

Of course, even though the order of the key-value pairs is jumbled, each key “sticks”
with its corresponding value in the resulting list. So, even though you don’t know where
the key foo will appear in the list, you know that its value, 35, will be right after it.

Hash Assignment
It’s rare to do so, but you can copy a hash using the obvious syntax of simply assigning
one hash to another:

my %new_hash = %old_hash;

This is actually more work for Perl than meets the eye. Unlike what happens in lan-
guages like Pascal or C, where such an operation would be a simple matter of copying
a block of memory, Perl’s data structures are more complex. So, that line of code tells
Perl to unwind the %old_hash into a list of key-value pairs, then assign those to
%new_hash, building it up one key-value pair at a time.

It’s more common to transform the hash in some way, though. For example, you could
make an inverse hash:

my %inverse_hash = reverse %any_hash;

This takes %any_hash and unwinds it into a list of key-value pairs, making a list like
(key, value, key, value, key, value, …). Then reverse turns that list end-for-end,
making a list like (value, key, value, key, value, key, …). Now the keys are where
the values used to be, and the values are where the keys used to be. When you store
that in %inverse_hash, you can look up a string that was a value in %any_hash—it’s now
a key of %inverse_hash. And the value you find is one that was one of the keys from
%any_hash. So, you have a way to look up a “value” (now a key), and find a “key” (now
a value).

Of course, you might guess (or determine from scientific principles, if you’re clever)
that this will work properly only if the values in the original hash were unique—
otherwise you’d have duplicate keys in the new hash, and keys are always unique.
Here’s the rule that Perl uses: the last one in wins. That is, the later items in the list
overwrite any earlier ones.

‡ Perl also jumbles the order so an attacker can’t predict how Perl will store the hash.

Hash Element Access | 113

Of course, you don’t know what order the key-value pairs will have in this list, so there’s
no telling which ones would win. You’d use this technique only if you know there are
no duplicates among the original values.§ But that’s the case for the IP address and
hostname examples given earlier:

%ip_address = reverse %host_name;

Now you can look up a hostname or IP address with equal ease to find the correspond-
ing IP address or hostname.

The Big Arrow
When assigning a list to a hash, sometimes it’s not obvious which elements are keys
and which are values. For example, in this assignment (which you saw earlier), we
humans have to count through the list, saying, “key, value, key, value…,” in order to
determine whether 2.5 is a key or a value:

%some_hash = ('foo', 35, 'bar', 12.4, 2.5, 'hello',
 'wilma', 1.72e30, 'betty', "bye\n");

Wouldn’t it be nice if Perl gave you a way to pair up keys and values in that kind of a
list so it would be easy to see which ones were which? Larry thought so, too, which is
why he invented the big arrow (=>).‖ To Perl, it’s just a different way to “spell” a comma,
so it’s also sometimes called the “fat comma.” That is, in the Perl grammar, any time
that you need a comma (,), you can use the big arrow instead; it’s all the same to
Perl.# So here’s another way to set up the hash of last names:

my %last_name = (# a hash may be a lexical variable
 'fred' => 'flintstone',
 'dino' => undef,
 'barney' => 'rubble',
 'betty' => 'rubble',
);

Here, it’s easy (or perhaps at least easier) to see whose name pairs with which value,
even if we end up putting many pairs on one line. And notice that there’s an extra
comma at the end of the list. As we saw earlier, this is harmless, but convenient; if we
need to add additional people to this hash, we’ll simply make sure that each line has a

§ Or if you don’t care that there are duplicates. For example, you could invert the %family_name hash (in which
the keys are people’s given names and values are their family names) to make it easy to determine whether
there is or is not anyone with a given family name in the group. Thus, in the inverted hash, if there’s no key
of slate, you’d know that there’s no one with that name in the original hash.

‖ Yes, there’s also a little arrow, (->). It’s used with references, which is an advanced topic; see the perlreftut
and perlref documentation when you’re ready for that.

#Well, there’s one technical difference: any bareword (a sequence of nothing but letters, digits, and underscores
not starting with a digit, but optionally prefixed with plus or minus) to the left of the big arrow is implicitly
quoted. So you can leave off the quote marks on a bareword to the left of the big arrow. You may also omit
the quote marks if there’s nothing but a bareword as a key inside the curly braces of a hash.

114 | Chapter 6: Hashes

http://perldoc.perl.org/perlreftut.html
http://perldoc.perl.org/perlref.html

key-value pair and a trailing comma. Perl will see that there is a comma between each
item and the next, and one extra (harmless) comma at the end of the list.

It gets better though. Perl offers many shortcuts that can help the programmer. Here’s
a handy one: you may omit the quote marks on some hash keys when you use the fat
comma, which automatically quotes the values to its left:

my %last_name = (
 fred => 'flintstone',
 dino => undef,
 barney => 'rubble',
 betty => 'rubble',
);

Of course, you can’t omit the quote marks on just any key, since a hash key may be
any arbitrary string. If that value on the left looks like a Perl operator, Perl can get
confused. This won’t work because Perl thinks the + is the addition operator, not a
string to quote:

my %last_name = (
 + => 'flintstone', # WRONG! Compilation error!
);

But keys are often simple. If the hash key is made up of nothing but letters, digits, and
underscores without starting with a digit, you may be able to omit the quote marks.
This kind of simple string without quote marks is called a bareword, since it stands
alone without quotes.

Another place you are permitted to use this shortcut is the most common place a hash
key appears: in the curly braces of a hash element reference. For example, instead of
$score{'fred'}, you could write simply $score{fred}. Since many hash keys are simple
like this, not using quotes is a real convenience. But beware; if there’s anything inside
the curly braces besides a bareword, Perl will interpret it as an expression. For instance,
if there is a ., Perl interprets it as a string concatenation:

$hash{ bar.foo } = 1; # that's the key 'foobar'

Hash Functions
Naturally, there are some useful functions that can work on an entire hash at once.

The keys and values Functions
The keys function yields a list of all the keys in a hash, while the values function gives
the corresponding values. If there are no elements to the hash, then either function
returns an empty list:

my %hash = ('a' => 1, 'b' => 2, 'c' => 3);
my @k = keys %hash;
my @v = values %hash;

Hash Functions | 115

So, @k will contain 'a', 'b', and 'c', and @v will contain 1, 2, and 3—in some order.
Remember, Perl doesn’t maintain the order of elements in a hash. But, whatever order
the keys are in, the values are in the corresponding order: if 'b' is last in the keys, 2 will
be last in the values; if 'c' is the first key, 3 will be the first value. That’s true as long
as you don’t modify the hash between the request for the keys and the one for the values.
If you add elements to the hash, Perl reserves the right to rearrange it as needed, to keep
the access quick.* In a scalar context, these functions give the number of elements (key-
value pairs) in the hash. They do this quite efficiently, without having to visit each
element of the hash:

my $count = keys %hash; # gets 3, meaning three key-value pairs

Once in a long while, you’ll see that someone has used a hash as a Boolean (true/false)
expression, something like this:

if (%hash) {
 print "That was a true value!\n";
}

That will be true if (and only if) the hash has at least one key-value pair.† So, it’s just
saying, “If the hash is not empty….” But this is a pretty rare construct, as such things go.

The each Function
If you wish to iterate over (that is, examine every element of) an entire hash, one of the
usual ways is to use the each function, which returns a key-value pair as a two-element
list.‡ On each evaluation of this function for the same hash, the next successive key-
value pair is returned, until you have accessed all the elements. When there are no more
pairs, each returns an empty list.

In practice, the only way to use each is in a while loop, something like this:

while (($key, $value) = each %hash) {
 print "$key => $value\n";
}

There’s a lot going on here. First, each %hash returns a key-value pair from the hash, as
a two-element list; let’s say that the key is "c" and the value is 3, so the list is ("c",
3). That list is assigned to the list ($key, $value), so $key becomes "c", and $value
becomes 3.

* Of course, if you started adding elements to the hash between keys and values, your list of values (or keys,
whichever you did second) would have additional items, which would be tough to match up with the first
list. So no normal programmer would do that.

† The actual result is an internal debugging string useful to the people who maintain Perl. It looks something
like “4/16”, but the value is guaranteed to be true when the hash is non-empty, and false when it’s empty,
so the rest of us can still use it for that.

‡ The other usual way to iterate over an entire hash is to use foreach on a list of keys from the hash; you’ll see
that by the end of this section.

116 | Chapter 6: Hashes

But that list assignment is happening in the conditional expression of the while loop,
which is a scalar context. (Specifically, it’s a Boolean context, looking for a true/false
value; and a Boolean context is a particular kind of scalar context.) The value of a list
assignment in a scalar context is the number of elements in the source list—2, in
this case. Since 2 is a true value, you enter the body of the loop and print the message
c => 3.

The next time through the loop, each %hash gives a new key-value pair; say it’s ("a",
1) this time. (It knows to return a different pair than previously because it keeps track
of where it is; in technical jargon, there’s an iterator stored in with each hash.§) Those
two items are stored into ($key, $value). Since the number of elements in the source
list was again 2, a true value, the while condition is true, and the loop body runs again,
telling us a => 1.

You go one more time through the loop, and by now you know what to expect, so it’s
no surprise to see b => 2 appear in the output.

But you knew it couldn’t go on forever. Now, when Perl evaluates each %hash, there
are no more key-value pairs available so each has to return an empty list.‖ The empty
list is assigned to ($key, $value), so $key gets undef, and $value also gets undef.

But that hardly matters, because you’re evaluating the whole thing in the conditional
expression of the while loop. The value of a list assignment in a scalar context is the
number of elements in the source list—in this case, that’s 0. Since 0 is a false value, the
while loop is done, and execution continues with the rest of the program.

Of course, each returns the key-value pairs in a jumbled order. (It’s the same order as
keys and values would give, incidentally; the “natural” order of the hash.) If you need
to go through the hash in order, simply sort the keys, perhaps something like this:

foreach $key (sort keys %hash) {
 $value = $hash{$key};
 print "$key => $value\n";
 # Or, we could have avoided the extra $value variable:
 # print "$key => $hash{$key}\n";
}

We’ll see more about sorting hashes in Chapter 14.

§ Since each hash has its own private iterator, loops using each may be nested as long as they are iterating over
different hashes. And, as long as we’re already in a footnote, we may as well tell you: it’s unlikely you’ll ever
need to do so, but you may reset the iterator of a hash by using the keys or values function on the hash. Perl
automatically resets the iterator if a new list is stored into the entire hash, or if each has iterated through all
of the items to the “end” of the hash. On the other hand, adding new key-value pairs to the hash while iterating
over it is generally a bad idea, since that won’t necessarily reset the iterator. That’s likely to confuse you, your
maintenance programmer, and each as well.

‖ It’s being used in list context, so it can’t return undef to signal failure; that would be the one-element list
(undef) instead of the empty (zero-element) list ().

Hash Functions | 117

Typical Use of a Hash
At this point, you may find it helpful to see a more concrete example.

The Bedrock Library uses a Perl program in which a hash keeps track of how many
books each person has checked out, among other information:

$books{'fred'} = 3;
$books{'wilma'} = 1;

It’s easy to see whether an element of the hash is true or false; do this:

if ($books{$someone}) {
 print "$someone has at least one book checked out.\n";
}

But there are some elements of the hash that aren’t true:

$books{"barney"} = 0; # no books currently checked out
$books{"pebbles"} = undef; # no books EVER checked out; a new library card

Since Pebbles has never checked out any books, her entry has the value of undef, rather
than 0.

There’s a key in the hash for everyone who has a library card. For each key (that is, for
each library patron), there’s a value that is either a number of books checked out, or
undef if that person’s library card has never been used.

The exists Function
To see whether a key exists in the hash (that is, whether someone has a library card or
not), use the exists function, which returns a true value if the given key exists in the
hash, whether the corresponding value is true or not:

if (exists $books{"dino"}) {
 print "Hey, there's a library card for dino!\n";
}

That is to say, exists $books{"dino"} will return a true value if (and only if) dino is
found in the list of keys from keys %books.

The delete Function
The delete function removes the given key (and its corresponding value) from the hash
(if there’s no such key, its work is done; there’s no warning or error in that case):

my $person = "betty";
delete $books{$person}; # Revoke the library card for $person

Note that this is not the same as storing undef into that hash element—in fact, it’s
precisely the opposite! Checking exists($books{"betty"}) will give opposite results in
these two cases; after a delete, the key can’t exist in the hash, but after storing undef,
the key must exist.

118 | Chapter 6: Hashes

In the example, delete versus storing undef is the difference between taking away Betty’s
library card versus giving her a card that has never been used.

Hash Element Interpolation
You can interpolate a single hash element into a double-quoted string just as you’d
expect:

foreach $person (sort keys %books) { # each patron, in order
 if ($books{$person}) {
 print "$person has $books{$person} items\n"; # fred has 3 items
 }
}

But there’s no support for entire hash interpolation; "%books" is just the six characters
of (literally) %books.# So you’ve seen all of the magical characters that need backslashing
in double quotes: $ and @, because they introduce a variable that Perl will try to inter-
polate; ", since that’s the quoting character that would otherwise end the double-
quoted string; and \, the backslash itself. Any other characters in a double-quoted string
are nonmagical and should simply stand for themselves.*

The %ENV hash
Your Perl program, like any other program, runs in a certain environment, and your
program can look at the environment to get information about its surroundings. Perl
stores this information in the %ENV hash. For instance, you’ll probably see a PATH key in
%ENV:

print "PATH is $ENV{PATH}\n";

Depending on your particular setup and operating system, you’ll see something like
this:

PATH is /usr/local/bin:/usr/bin:/sbin:/usr/sbin

Most of these are set for you automatically, but you can add to the environment your-
self. How you do this depends on your operating system and shell:

Bourne shell

$ CHARACTER=Fred; export CHARACTER
$ export CHARACTER=Fred

#Well, it couldn’t really be anything else; if you tried to print out the entire hash, as a series of key-value pairs,
that would be nearly useless. And, as you saw in Chapter 5, the percent sign is frequently used in printf
format strings; giving it another meaning here would be terribly inconvenient.

* But do beware of the apostrophe ('), left square bracket ([), left curly brace ({), the small arrow (->), or double
colon (::) following a variable name in a double-quoted string, as they could perhaps mean something you
didn’t intend.

The %ENV hash | 119

csh

% setenv CHARACTER Fred

DOS or Windows command

C:> set CHARACTER=Fred

Once you set these environment variables outside of your Perl program, you can access
them inside your Perl program:

print "CHARACTER is $ENV{CHARACTER}\n";

Exercises
See “Answers to Exercises” on page 304 for answers to the following exercises:

1. [7] Write a program that will ask the user for a given name and report the corre-
sponding family name. Use the names of people you know, or (if you spend so
much time on the computer that you don’t know any actual people) use the fol-
lowing table:

Input Output

fred flintstone

barney rubble

wilma flintstone

2. [15] Write a program that reads a series of words (with one word per line†) until
end-of-input, then prints a summary of how many times each word was seen. (Hint:
remember that when an undefined value is used as if it were a number, Perl auto-
matically converts it to 0. It may help to look back at the earlier exercise that kept
a running total.) So, if the input words were fred, barney, fred, dino, wilma, fred
(all on separate lines), the output should tell us that fred was seen 3 times. For
extra credit, sort the summary words in code point order in the output.

3. [15] Write a program to list all of the keys and values in %ENV. Print the results in
two columns in ASCIIbetical order. For extra credit, arrange the output to vertically
align both columns. The length function can help you figure out how wide to make
the first column. Once you get the program running, try setting some new envi-
ronment variables and ensuring that they show up in your output.

† It has to be one word per line because we still haven’t shown you how to extract individual words from a line
of input.

120 | Chapter 6: Hashes

CHAPTER 7

In the World of Regular Expressions

Perl has many features that set it apart from other languages. Of all those features, one
of the most important is its strong support for regular expressions. These allow fast,
flexible, and reliable string handling.

But that power comes at a price. Regular expressions are actually tiny programs in their
own special language, built inside Perl. (Yes, you’re about to learn another program-
ming language!* Fortunately, it’s a simple one.) So in this chapter, you’ll visit the world
of regular expressions, where (mostly) you can forget about the world of Perl. Then, in
the next chapter, we’ll show you where this world fits into Perl’s world.

Regular expressions aren’t merely part of Perl; they’re also found in sed and awk,
procmail, grep, most programmers’ text editors such as vi and emacs, and even in more
esoteric places. If you’ve seen some of these already, you’re ahead of the game. Keep
watching, and you’ll see many more tools that use or support regular expressions, such
as search engines on the Web, email clients, and others. The bad news is that every-
body’s regular expressions have slightly different syntax, so you may need to learn to
include or omit an occasional backslash.

What Are Regular Expressions?
A regular expression, often called a pattern in Perl, is a template that either matches or
doesn’t match a given string.† That is, there are an infinite number of possible text
strings; a given pattern divides that infinite set into two groups: the ones that match,
and the ones that don’t. There’s never any kinda-sorta-almost-up-to-here wishy-washy
matching: either it matches or it doesn’t.

* Some might argue that regular expressions are not a complete programming language. We won’t argue, but
Perl does have a way to embed more Perl code inside its regular expressions.

† Purists would ask for a more rigorous definition. But then again, purists say that Perl’s patterns aren’t really
regular expressions. If you’re serious about regular expressions, we highly recommend the book Mastering
Regular Expressions by Jeffrey Friedl (O’Reilly).

121

http://oreilly.com/catalog/9780596528126/
http://oreilly.com/catalog/9780596528126/

A pattern may match just one possible string, or just two or three, or a dozen, or a
hundred, or an infinite number. Or it may match all strings except for one, or except
for some, or except for an infinite number.‡ We already referred to regular expressions
as being little programs in their own simple programming language. It’s a simple lan-
guage because the programs have just one task: to look at a string and say “it matches”
or “it doesn’t match.”§ That’s all they do.

One of the places you’re likely to have seen regular expressions is in the Unix grep
command, which prints out text lines matching a given pattern. For example, if you
wanted to see which lines in a given file mention flint and, somewhere later on the
same line, stone, you might do something like this with the Unix grep command:

$ grep 'flint.*stone' chapter*.txt
chapter3.txt:a piece of flint, a stone which may be used to start a fire by striking
chapter3.txt:found obsidian, flint, granite, and small stones of basaltic rock, which
chapter9.txt:a flintlock rifle in poor condition. The sandstone mantle held several

Don’t confuse regular expressions with shell filename-matching patterns, called
globs, which is a different sort of pattern with its own rules. A typical glob is what you
use when you type *.pm to the Unix shell to match all filenames that end in .pm. The
previous example uses a glob of chapter*.txt. (You may have noticed that you had to
quote the pattern to prevent the shell from treating it like a glob.) Although globs use
a lot of the same characters that you use in regular expressions, those characters are
used in totally different ways.‖ We’ll visit globs later, in Chapter 13, but for now try to
put them totally out of your mind.

Using Simple Patterns
To match a pattern (regular expression) against the contents of $_, simply put the pat-
tern between a pair of forward slashes (/). The simple sort of pattern is just a sequence
of literal characters:

$_ = "yabba dabba doo";
if (/abba/) {
 print "It matched!\n";
}

The expression /abba/ looks for that four-letter string in $_; if it finds it, it returns a
true value. In this case, it’s found more than one, but that doesn’t make any difference.
If it’s found at all, it’s a match; if it’s not in there at all, it fails.

‡ And as you’ll see, you could have a pattern that always matches or that never does. In rare cases, even these
may be useful. Generally, though, they’re mistakes.

§ The programs also pass back some information that Perl can use later. One such piece of information is the
“regular expressions captures” that you’ll learn about in Chapter 8.

‖ Globs are also (alas) sometimes called patterns. What’s worse, though, is that some bad Unix books for
beginners (and possibly written by beginners) have taken to calling globs “regular expressions,” which they
certainly are not. This confuses many folks at the start of their work with Unix.

122 | Chapter 7: In the World of Regular Expressions

Because you generally use a pattern match to return a true or false value, you almost
always want to use it in the conditional expression of if or while. You’ll see more
reasons for that in Chapter 8.

All of the usual backslash escapes that you can put into double-quoted strings are
available in patterns, so you could use the pattern /coke\tsprite/ to match the 11
characters of coke, a tab, and sprite.

Unicode Properties
Unicode characters know something about themselves; they aren’t just sequences of
bits. Every character not only knows what it is, but it also knows what properties it
has. Instead of matching on a particular character, you can match a type of character.

Each property has a name, which you can read about in the perluniprops documenta-
tion. To match a particular property, you put the name in \p{PROPERTY}. For instance,
some characters are whitespace, corresponding to the property name Space. To match
any sort of space, you use \p{Space}:

if (/\p{Space}/) { # 26 different possible characters
 print "The string has some whitespace.\n";
}

If you want to match a digit, you use the Digit property:

if (/\p{Digit}/) { # 411 different possible characters
 print "The string has a digit.\n";
}

Those are both much more expansive than the sets of characters you may have run
into. Some properties are more specific, though. How about matching two hex digits,
[0-9A-Fa-f], next to each other:

if (/\p{Hex}\p{Hex}/) {
 print "The string has a pair of hex digits.\n";
}

You can also match characters that don’t have a particular Unicode property. Instead
of a lowercase p, you use an uppercase one to negate the property:

if (/\P{Space}/) { # Not space (many many characters!)
 print "The string has one or more non-whitespace characters.\n";
}

About Metacharacters
Of course, if patterns matched only simple literal strings, they wouldn’t be very useful.
That’s why there are a number of special characters, called metacharacters, that have
special meanings in regular expressions.

For example, the dot (.) is a wildcard character—it matches any single character except
a newline (which is represented by "\n"). So, the pattern /bet.y/ would match betty.

Using Simple Patterns | 123

http://perldoc.perl.org/perluniprops.html

Or it would match betsy, or bet=y, or bet.y, or any other string that has bet, followed
by any one character (except a newline), followed by y. It wouldn’t match bety or
betsey, though, since those don’t have exactly one character between the t and the y.
The dot always matches exactly one character.

So, if you want to match a period in the string, you could use the dot. But that would
match any possible character (except a newline), which might be more than you wan-
ted. If you wanted the dot to match just a period, you can simply backslash it. In fact,
that rule goes for all of Perl’s regular expression metacharacters: a backslash in front
of any metacharacter makes it nonspecial. So, the pattern /3\.14159/ doesn’t have a
wildcard character.

So the backslash is the second metacharacter. If you mean a real backslash, just use a
pair of them—a rule that applies just as well everywhere else in Perl:

$_ = 'a real \\ backslash';
if (/\\/) {
 print "It matched!\n";
}

Simple Quantifiers
It often happens that you need to repeat something in a pattern. The star (*) means to
match the preceding item zero or more times. So, /fred\t*barney/ matches any number
of tab characters between fred and barney. That is, it matches "fred\tbarney" with one
tab, or "fred\t\tbarney" with two tabs, or "fred\t\t\tbarney" with three tabs, or even
"fredbarney" with nothing in between at all. That’s because the star means “zero or
more”—so you could even have hundreds of tab characters in between, but nothing
other than tabs. You may find it helpful to think of the star as saying, “That previous
thing, any number of times, even zero times” (because * is the “times” operator in
multiplication).#

What if you want to allow something besides tab characters? The dot matches any
character,* so .* will match any character, any number of times. That means that the
pattern /fred.*barney/ matches “any old junk” between fred and barney. Any line that
mentions fred and (somewhere later) barney will match that pattern. People often
call .* the “any old junk” pattern, because it can match any old junk in your strings.

The star is a type of quantifier, meaning that it specifies a quantity of the preceding
item. But it’s not the only quantifier; the plus (+) is another. The plus means to match
the preceding item one or more times: /fred +barney/ matches if fred and barney are

#In the math of regular expressions, it’s called the Kleene star.

* Except newline. But we’re going to stop reminding you of that so often, because you know it by now. Most
of the time it doesn’t matter, anyway, because your strings will more often not have newlines. But don’t forget
this detail, because someday a newline will sneak into your string and you’ll need to remember that the dot
doesn’t match newline.

124 | Chapter 7: In the World of Regular Expressions

separated by spaces and only spaces. (The space is not a metacharacter.) This won’t
match fredbarney, since the plus means that there must be one or more spaces between
the two names, so at least one space is required. It may be helpful to think of the plus
as saying, “That last thing, plus (optionally) more of the same thing.”

There’s a third quantifier like the star and plus, but more limited. It’s the question mark
(?), which means that the preceding item is optional. That is, the preceding item may
occur once or not at all. Like the other two quantifiers, the question mark means that
the preceding item appears a certain number of times. It’s just that in this case the item
may match one time (if it’s there) or zero times (if it’s not). There aren’t any other
possibilities. So, /bamm-?bamm/ matches either spelling: bamm-bamm or bammbamm. This is
easy to remember, since it’s saying, “That last thing, maybe? Or maybe not?”

All three of these quantifiers must follow something, since they tell how many times
the previous item may repeat.

Grouping in Patterns
You can use parentheses (“()”) to group parts of a pattern. So, parentheses are
also metacharacters. As an example, the pattern /fred+/ matches strings like
freddddddddd because the quantifier only applies to the thing right before it, but strings
like that don’t show up often in real life. The pattern /(fred)+/ matches strings like
fredfredfred, which is more likely to be what you wanted. And what about the pat-
tern /(fred)*/? That matches strings like hello, world.†

The parentheses also give you a way to reuse part of the string directly in the match.
You can use back references to refer to text that you matched in the parentheses, called
a capture group.‡ You denote a back reference as a backslash followed by a number,
like \1, \2, and so on. The number denotes the capture group.

When you use the parentheses around the dot, you match any non-newline character.
You can match again whichever character you matched in those parentheses by using
the back reference \1:

$_ = "abba";
if (/(.)\1/) { # matches 'bb'
 print "It matched same character next to itself!\n";
}

The (.)\1 says that you have to match a character right next to itself. At first try, the
(.) matches an a, but when it looks at the back reference, which says the next thing it
must match is a, that trial fails. Perl starts over, using the (.) to match the next character,

† The star means to match zero or more repetitions of fred. When you’re willing to settle for zero, it’s hard to
be disappointed! That pattern will match any string, even the empty string.

‡ You may also see “memories” or “capture buffers” in older documentation and earlier editions of this book,
but the official name is “capture group.” Later you’ll see how to make a noncapturing group.

Using Simple Patterns | 125

a b. The back reference \1 now says that the next character in the pattern is b, which
Perl can match.

The back reference doesn’t have to be right next to the capture group. The next pattern
matches any four non-newline characters after a literal y, and you use the \1 back
reference to denote that you want to match the same four characters after the d:

$_ = "yabba dabba doo";
if (/y(....) d\1/) {
 print "It matched the same after y and d!\n";
}

You can use multiple groups of parentheses, and each group gets its own back reference.
You want to match a non-newline character in a capture group, followed by another
non-newline character in a capture group. After those two groups, you use the back
reference \2 followed by the back reference \1. In effect, you’re matching a palindrome
such as abba:

$_ = "yabba dabba doo";
if (/y(.)(.)\2\1/) { # matches 'abba'
 print "It matched after the y!\n";
}

Now, this brings up the question, “How do I know which group gets which number?”
Fortunately, Larry did the easiest thing for humans to understand: just count the order
of the opening parenthesis and ignore nesting:

$_ = "yabba dabba doo";
if (/y((.)(.)\3\2) d\1/) {
 print "It matched!\n";
}

You might be able to see this if you write out the regular expression to see the different
parts (although this isn’t a valid regular expression)§:

(# first open parenthesis
 (.) # second open parenthesis
 (.) # third open parenthesis
 \3
 \2
)

Perl 5.10 introduced a new way to denote back references. Instead of using the back-
slash and a number, you can use \g{N}, where N is the number of the back reference
that you want to use.

Consider the problem where you want to use a back reference next to a part of the
pattern that is a number. In this regular expression, you want to use \1 to repeat the
character you matched in the parentheses and follow that with the literal string 11:

§ You can expand regular expressions like this by using the /x modifier, but we’re not showing that to you
until Chapter 8.

126 | Chapter 7: In the World of Regular Expressions

$_ = "aa11bb";
if (/(.)\111/) {
 print "It matched!\n";
}

Perl has to guess what you mean there. Is that \1, \11, or \111? Perl will create as many
back references as it needs, so it assumes that you mean \111. Since you don’t have 111
(or 11) capture groups, Perl complains when it tries to compile the program.

By using \g{1}, you disambiguate the back reference and the literal parts of the pattern:‖

use 5.010;

$_ = "aa11bb";
if (/(.)\g{1}11/) {
 print "It matched!\n";
}

With the \g{N} notation, you can also use negative numbers. Instead of specifying the
absolute number of the capture group, you can specify a relative back reference. You
can rewrite the last example to use –1 as the number to do the same thing:

use 5.010;

$_ = "aa11bb";
if (/(.)\g{–1}11/) {
 print "It matched!\n";
}

If you decide to add more to that pattern later, you don’t have to remember to change
the back reference. If you add another capture group, you change the absolute num-
bering of all the back references. The relative back reference, however, just counts from
its own position and refers to the group right before it no matter its absolute number,
so it stays the same:

use 5.010;

$_ = "xaa11bb";
if (/(.)(.)\g{–1}11/) {
 print "It matched!\n";
}

Alternatives
The vertical bar (|), often called “or” in this usage, means that either the left side may
match, or the right side. That is, if the part of the pattern on the left of the bar fails, the
part on the right gets a chance to match. So, /fred|barney|betty/ will match any string
that mentions fred, or barney, or betty.

‖ In general, you could leave the curly braces off the \g{1} and just use \g1, but in this case you need the braces.
Instead of thinking about it, we recommend just using the braces all the time, at least until you’re more sure
of yourself.

Using Simple Patterns | 127

Now you can make patterns like /fred(|\t)+barney/, which matches if fred and
barney are separated by spaces, tabs, or a mixture of the two. The plus means to repeat
one or more times; each time it repeats, the (|\t) has the chance to match either a
space or a tab.# There must be at least one of those characters between the two names.

If you want the characters between fred and barney to all be the same, you could rewrite
that pattern as /fred(+|\t+)barney/. In this case, the separators must be all spaces or
all tabs.

The pattern /fred (and|or) barney/ matches any string containing either of the two
possible strings: fred and barney, or fred or barney.* You could match the same two
strings with the pattern /fred and barney|fred or barney/, but that would be too much
typing. It would probably also be less efficient, depending upon what optimizations
are built into the regular expression engine.

Character Classes
A character class, a list of possible characters inside square brackets ([]), matches any
single character from within the class. It matches just one single character, but that one
character may be any of the ones you list in the brackets.

For example, the character class [abcwxyz] may match any one of those seven charac-
ters. For convenience, you may specify a range of characters with a hyphen (-), so that
class may also be written as [a-cw-z]. That didn’t save much typing, but it’s more usual
to make a character class like [a-zA-Z] to match any one letter out of that set of 52.
Those 52 don’t include letters like Ä and é and ø and Ü. Those are different characters,
but we’ll show you how to match them later.

You may use the same character shortcuts as in any double-quotish string to define a
character, so the class [\000-\177] matches any seven-bit ASCII character.† Of course,
a character class will be just part of a full pattern; it will never stand on its own in Perl.
For example, you might see code that says something like this:

$_ = "The HAL-9000 requires authorization to continue.";
if (/HAL-[0-9]+/) {
 print "The string mentions some model of HAL computer.\n";
}

Sometimes, it’s easier to specify the characters you want to leave out, rather than the
ones within the character class. A caret (^) at the start of the character class negates it.
That is, [^def] will match any single character except one of those three. And [^n\-z]

#This particular match would normally be done more efficiently with a character class, as you’ll see in the next
section.

* Note that the words and and or are not operators in regular expressions! They are shown here in a fixed-width
typeface because they’re part of the strings.

† At least, if you use ASCII and not EBCDIC.

128 | Chapter 7: In the World of Regular Expressions

matches any character except for n, hyphen, or z. Note that the hyphen is backslashed
because it’s special inside a character class. But the first hyphen in /HAL-[0-9]+/ doesn’t
need a backslash because hyphens aren’t special outside a character class.

Character Class Shortcuts
Some character classes appear so frequently that they have shortcuts. These shortcuts
were much easier to use in Perl’s ASCII days when you didn’t have to worry about so
many characters, but with Unicode, they may have outlived their usefulness. That’s a
bit sad for those of us who have used Perl for a long, long time, but we can’t escape
reality. And you can’t escape reality either. You’re going to see code from other
people—whether its stuff they wrote a long time ago or even yesterday—and they may
use these character classes because they don’t realize it’s not the 1990s anymore. This
is actually quite a big deal in Perl, likely to draw some heated debates. In the end,
though, the only thing that matters is working code.

For example, you can abbreviate the character class for any digit as \d. Thus, you could
write the pattern from the example about HAL as /HAL-\d+/ instead:

$_ = 'The HAL-9000 requires authorization to continue.';

if (/HAL-[\d]+/) {
 say 'The string mentions some model of HAL computer.';
}

However, there are many more digits than the 0 to 9 that you may expect from ASCII,
so that will also match HAL-٩٠٠٠. Before Perl 5.6, the \d shortcut was the same as the
character class [0-9], and that’s how many people used it then and still use it today. It
still mostly works because running into digits such as ٤, , or ๒ is rare, unless you’re
counting in Arabic, Mongolian, or Thai. Still, \d matches those for all modern Perls.

Recognizing this problematic shift from ASCII to Unicode thinking, Perl 5.14 adds a
way for you to restore the old ASCII semantics if that’s what you really want. The /a
modifier on the end of the match operator (we explain options further in Chapter 8)
tells Perl to use the old ASCII interpretation:

use 5.014;

$_ = 'The HAL-9000 requires authorization to continue.';

if (/HAL-[\d]+/a) { # old, ASCII semantics
 say 'The string mentions some model of HAL computer.';
}

The \s shortcut is good for matching any whitespace, which is almost the same as the
Unicode property \p{Space}.‡ Before Perl 5.6, \s only matched the five whitespace

‡ Even under Unicode semantics, the \s still doesn’t match the vertical tab, next line, or nonbreaking space.
Is this getting too weird yet? See “Know your character classes under different semantics” at http://www
.effectiveperlprogramming.com/blog/991.

Character Classes | 129

http://www.effectiveperlprogramming.com/blog/991
http://www.effectiveperlprogramming.com/blog/991

characters form-feed, tab, newline, carriage return, and the space character itself,
which, taken together, is the character class [\f\t\n\r]. You can still get back to the
ASCII whitespace semantics just like you did with /d:

use 5.014;

if (/\s/a) { # old, ASCII semantics
 say 'The string matched ASCII whitespace.';
}

Perl 5.10 added more restrictive character classes for whitespace. The \h shortcut only
matches horizontal whitespace. The \v shortcut only matches vertical whitespace.
Taken together, the \h and \v are the same as \p{Space}:

use 5.010;

if (/\h/) {
 say 'The string matched some horizontal whitespace.';
}

if (/\v/) {
 say 'The string matched some vertical whitespace.';
}

if (/[\v\h]/) { # same as \p{Space}, but not more than \s
 say 'The string matched some whitespace.';
}

The \R shortcut, introduced in Perl 5.10, matches any sort of linebreak, meaning that
you don’t have to think about which operating system you’re using and what it thinks
a linebreak is since \R will figure it out. This means you don’t have to sweat the differ-
ence between \r\n, \n, and the other sorts of line endings that Unicode allows. It doesn’t
matter to you if there are DOS or Unix line endings.

The shortcut \w is a so-called “word” character, although its idea of a word isn’t like a
normal word at all. Although popular, this character class has always been a bit
of a problem. It’s not a big problem, but it advertises itself oddly. The “word” was
actually meant as an identifier character: the ones that you could use to name a Perl
variable or subroutine.§ With ASCII semantics, the \w matches the set of characters
[a-zA-Z0-9_], and even with just that, it caused problems because most of the time
people wanted to match only letters, as you would expect in a real word. Sometimes
they’d want to match letters and numbers, but forgot that underscore was in there too.

The trick with a good pattern is to not match more than you ever mean to match, and
there’s only really one good place for [a-zA-Z0-9_], and that’s matching variable names.
How often do you want to do that?

§ It’s really a C identifier, but Perl used the same thing in its teenage years.

130 | Chapter 7: In the World of Regular Expressions

The Unicode expansion of \w matches quite a bit more: over 100,000 different char-
acters.‖ The modern definition of \w is more cosmopolitan and correct, but a lot less
useful for real world applications for most people. That doesn’t mean you can ignore
it; people still use \w quite a bit and you are probably going to see it in a lot of code.
It’s your job to figure out which of those 100,000 characters the authors intended to
match: in most cases it’s going to be [a-zA-Z]. You’ll see more on this in “Word An-
chors” on page 140 when we talk about “word boundaries.”

In many cases, you’re going to make better, more maintainable patterns by avoiding
these character class shortcuts in new code.

Negating the Shortcuts
Sometimes you may want the opposite of one of these three shortcuts. That is, you may
want [^\d], [^\w], or [^\s], meaning a nondigit character, a nonword character, or a
nonwhitespace character, respectively. That’s easy enough to accomplish by using their
uppercase counterparts: \D, \W, or \S. These match any character that their counterpart
would not match.

Any of these shortcuts will work either in place of a character class (standing on their
own in a pattern), or inside the square brackets of a larger character class. That means
that you could now use /[0-9A-F]+/i to match hexadecimal (base 16) numbers, which
use letters ABCDEF (or the same letters in lowercase) as additional digits.

Another compound character class is [\d\D], which means any digit, or any nondigit.
That is to say, any character at all! This is a common way to match any character, even
a newline. (As opposed to ., which matches any character except a newline.) And then
there’s the totally useless [^\d\D], which matches anything that’s not either a digit or
a nondigit. Right—nothing!

Exercises
See “Answers to Exercises” on page 306 for answers to the following exercises.

Remember, it’s normal to be surprised by some of the things that regular expressions
do; that’s one reason that the exercises in this chapter are even more important than
the others. Expect the unexpected:

1. [10] Make a program that prints each line of its input that mentions fred. (It
shouldn’t do anything for other lines of input.) Does it match if your input string
is Fred, frederick, or Alfred? Make a small text file with a few lines mentioning
“fred flintstone” and his friends, then use that file as input to this program and the
ones later in this section.

‖ The perluniprops documentation lists all of the Unicode properties and how many characters match that
property.

Exercises | 131

http://perldoc.perl.org/perluniprops.html

2. [6] Modify the previous program to allow Fred to match as well. Does it match
now if your input string is Fred, frederick, or Alfred? (Add lines with these names
to the text file.)

3. [6] Make a program that prints each line of its input that contains a period (.),
ignoring other lines of input. Try it on the small text file from the previous exercise:
does it notice Mr. Slate?

4. [8] Make a program that prints each line that has a word that is capitalized but not
ALL capitalized. Does it match Fred but neither fred nor FRED?

5. [8] Make a program that prints each line that has a two of the same nonwhitespace
characters next to each other. It should match lines that contain words such as
Mississippi, Bamm-Bamm, or llama.

6. [8] Extra credit exercise: write a program that prints out any input line that men-
tions both wilma and fred.

132 | Chapter 7: In the World of Regular Expressions

CHAPTER 8

Matching with Regular Expressions

In Chapter 7, you visited the world of Regular Expressions. Now you’ll see how that
world fits into the world of Perl.

Matches with m//
In Chapter 7, you put patterns in pairs of forward slashes, like /fred/. But this is actually
a shortcut for the m// (pattern match operator), the pattern match operator. As you
saw with the qw// operator, you may choose any pair of delimiters to quote the contents.
So, you could write that same expression as m(fred), m<fred>, m{fred}, or m[fred] using
those paired delimiters, or as m,fred,, m!fred!, m^fred^, or many other ways using
nonpaired delimiters.*

The shortcut is that if you choose the forward slash as the delimiter, you may omit the
initial m. Since Perl folks love to avoid typing extra characters, you’ll see most pattern
matches written using slashes, as in /fred/.

Of course, you should wisely choose a delimiter that doesn’t appear in your pattern.†

If you wanted to make a pattern to match the beginning of an ordinary web URL,
you might start to write /http:\/\// to match the initial "http://". But that would
be easier to read, write, maintain, and debug if you used a better choice of delimiter:
m%http://%.‡ It’s common to use curly braces as the delimiter. If you use a programmer’s

* Nonpaired delimiters are the ones that don’t have a different “left” and “right” variety; the same punctuation
mark is used for both ends.

† If you’re using paired delimiters, you shouldn’t generally have to worry about using the delimiter inside the
pattern, since that delimiter will generally be paired inside your pattern. That is, m(fred(.*)barney) and
m{\w{2,}} and m[wilma[\n \t]+betty] are all fine, even though the pattern contains the quoting character,
since each “left” has a corresponding “right.” But the angle brackets (< and >) aren’t regular expression
metacharacters, so they may not be paired; if the pattern were m{(\d+)\s*>=?\s*(\d+)}, quoting it with angle
brackets would mean having to backslash the greater-than sign so that it wouldn’t prematurely end the
pattern.

‡ Remember, the forward slash is not a metacharacter, so you don’t need to escape it when it’s not the delimiter.

133

text editor, it probably has the ability to jump from an opening curly brace to the
corresponding closing one, which can be handy in maintaining code.

Match Modifiers
There are several modifier letters, sometimes called flags,§ which you can append as a
group right after the ending delimiter of a match operator to change its behavior from
the default. We showed you the /a in Chapter 7, but there are many more.

Case-Insensitive Matching with /i
To make a case-insensitive pattern match, so that you can match FRED as easily as fred or
Fred, use the /i modifier:

print "Would you like to play a game? ";
chomp($_ = <STDIN>);
if (/yes/i) { # case-insensitive match
 print "In that case, I recommend that you go bowling.\n";
}

Matching Any Character with /s
By default, the dot (.) doesn’t match newline, and this makes sense for most “look
within a single line” patterns. If you might have newlines in your strings, and you want
the dot to be able to match them, the /s modifier will do the job. It changes every
dot‖ in the pattern to act like the character class [\d\D] does, which is to match any
character, even if it is a newline. Of course, you have to have a string with newlines for
this to make a difference:

$_ = "I saw Barney\ndown at the bowling alley\nwith Fred\nlast night.\n";
if (/Barney.*Fred/s) {
 print "That string mentions Fred after Barney!\n";
}

Without the /s modifier, that match would fail, since the two names aren’t on the same
line.

This sometimes leaves you with a problem though. The /s applies to every . in the
pattern. What if you wanted to still match any character except a newline? You could
use the character class [^\n], but that’s a bit much to type, so Perl 5.12 added the
shortcut \N to mean the complement of \n.

§ And, in the land of Perl 6, these sorts of things have the formal name adverbs, but that boat has already sailed
for Perl 5.

‖ If you wish to change just some of them, and not all, you’ll probably want to replace just those few with
[\d\D].

134 | Chapter 8: Matching with Regular Expressions

Adding Whitespace with /x
The third modifier you’ll see allows you to add arbitrary whitespace to a pattern, in
order to make it easier to read:

/-?[0-9]+\.?[0-9]*/ # what is this doing?
/ -? [0-9]+ \.? [0-9]* /x # a little better

Since the /x allows whitespace inside the pattern, Perl ignores literal space or tab char-
acters within the pattern. You could use a backslashed space or \t (among many other
ways) to match these, but it’s more common to use \s (or \s* or \s+) when you want
to match whitespace.

Remember that Perl considers comments a type of whitespace, so you can put com-
ments into that pattern to tell other people what you are trying to do:

/
 -? # an optional minus sign
 [0-9]+ # one or more digits before the decimal point
 \.? # an optional decimal point
 [0-9]* # some optional digits after the decimal point
/x # end of string

Since the pound sign indicates the start of a comment, you need to use the escaped
character, \#, or the character class, [#], if you need to match a literal pound sign:

/
 [0-9]+ # one or more digits before the decimal point
 [#] # literal pound sign
/x # end of string

Also, be careful not to include the closing delimiter inside the comments, or it will
prematurely terminate the pattern. This pattern ends before you think it does:

/
 -? # with / without - <--- OOPS!
 [0-9]+ # one or more digits before the decimal point
 \.? # an optional decimal point
 [0-9]* # some optional digits after the decimal point
/x # end of string

Combining Option Modifiers
If you want to use more than one modifier on the same match, just put them both at
the end (their order isn’t significant):

if (/barney.*fred/is) { # both /i and /s
 print "That string mentions Fred after Barney!\n";
}

Match Modifiers | 135

Or as a more expanded version with comments:

if (m{
 barney # the little guy
 .* # anything in between
 fred # the loud guy
}six) { # all three of /s and /i and /x
 print "That string mentions Fred after Barney!\n";
}

Note the shift to curly braces here for the delimiters, allowing programmer-style editors
to easily bounce from the beginning to the ending of the regular expression.

Choosing a Character Interpretation
Perl 5.14 adds some modifiers that let you tell Perl how to interpret the characters in a
match for two important topics: case-folding and character class shortcuts. Everything
in this section applies only to Perl 5.14 or later.

There are three interpretations for this: ASCII, Unicode, and locale. It’s only that last
one that causes the problems, though. The /a tells Perl to use ASCII, the /u tells Perl
to use Unicode, and the /l tells Perl to respect the locale. Without these modifiers, Perl
does what it thinks is the right thing based on the situations described in the perlre
documentation. You use these modifiers to tell Perl exactly what you want despite
whatever else is going on in the program.

First, the character class shortcuts. You’ve already seen the /a modifier. That tells Perl
to include only the ASCII ranges in \w, \d, and \s character class shortcuts. The /u
match modifier tells Perl to use the much more expansive Unicode ranges for those
shortcuts. The /l tells Perl to respect the locale settings, so any character that the locale
thinks is a word character shows up in \w, for instance.# If you are going to use the
character class shortcuts and want one interpretation over another, use the right modi-
fier for your situation:

use 5.014;

/\w+/a # A-Z, a-z, 0-9, _
/\w+/u # any Unicode word charcter
/\w+/l # The ASCII version, and word chars from the locale,
 # perhaps characters like Œ from Latin-9

Which one is right for you? We can’t tell you because we don’t know what you’re trying
to do. Each of them might be right for you at different times. Of course, you can always
create your own character classes to get exactly what you want if the shortcuts don’t
work for you.

#There’s also a /d, which tells Perl to use “traditional” behavior, where Perl might guess what to do.

136 | Chapter 8: Matching with Regular Expressions

http://perldoc.perl.org/perlre.html

Now on to the harder issue. Consider the case-folding issue, where you need to know
which lowercase letter you should get from an uppercase letter.* If you want to match
while ignoring case, Perl has to know how to produce lowercase characters. In ASCII,
you know a K’s (0x4B) partner is a k (0x6B). In ASCII, you also know that a k’s up-
percase partner is K (0x4B), which seems sensible but is actually not.

In Unicode, things are not as simple, but it’s still easy to deal with because the mapping
is well defined.† The Kelvin sign, K (U+212A), also has k (0x6B) as its lowercase partner.
Even though K and K might look the same to you, they aren’t to the computer.‡ That
is, lowercasing is not one-to-one. Once you get the lowercase k, you can’t go back to
its uppercase partner because there is more than one uppercase character for it. Not
only that, some characters, such as the ligature ff (U+FB00), have two characters as
their lowercase equivalent, in this case ff. The letter ß is ss in lowercase, but maybe you
don’t want to match that. A single /a modifier affects the character class shortcuts, but
if you have two /a, it also tells Perl to use ASCII-only case-folding:

/k/aai # only matches the ASCII K or k, not Kelvin sign
/k/aia # the /a's don't need to be next to each other
/ss/aai # only matches ASCII ss, SS, sS, Ss, not ß
/ff/aai # only matches ASCII ff, FF, fF, Ff, not ff

With locales it’s not so simple. You have to know which locale you are using to know
what a character is. If you have the ordinal value 0xBC, is that Latin-9’s Œ or Latin-1’s
¼ or something else in some other locale? You can’t know how to lowercase it until you
know what the locale thinks that value represents:§

$_ = <STDIN>;

my $OE = chr(0xBC); # get exactly what we intend

if (/$OE/i) { # case-insensitive??? Maybe not.
 print "Found $OE\n";
}

In this case, you might get different results depending on how Perl treats the string in
$_ and the string in match operator. If your source code is in UTF-8 but your input is
Latin-9, what happens? In Latin-9, the character Œ has ordinal value 0xBC and its
lowercase partner œ has 0xBD. In Unicode, Œ is code point U+0152 and œ is code
point U+0153. In Unicode, U+0OBC is ¼ and doesn’t have a lowercase version. If your
input in $_ is 0xBD and Perl treats that regular expression as UTF-8, you won’t get the

* This is part of the “Unicode bug” in Perl, where the internal representation decides what answer you get. See
the perlunicode documentation for gory details.

† See http://unicode.org/Public/UNIDATA/CaseFolding.txt.

‡ Unless the production process distorted our source, you should be able to copy those characters from the
ebook and verify they are not the same thing even if they have the same appearance.

§ We make the character with chr() to ensure we get the right bit pattern regardless of the encoding issues.

Match Modifiers | 137

http://perldoc.perl.org/perlunicode.html
http://unicode.org/Public/UNIDATA/CaseFolding.txt

answer you expect. You can, however, add the /l modifier to force Perl to interpret the
regular expression using the locale’s rules:

$_ = <STDIN>;

my $OE = chr(0xBC); # get exactly what we intend

if (/$OE/li) { # that's better
 print "Found $OE\n";
}

If you always want to use Unicode semantics (which is the same as Latin-1) for this
part, you can use the /u modifier:

$_ = <STDIN>;
if (/Œ/ui) { # now uses Unicode
 print "Found Œ\n";
}

If you think this is a big headache, you’re right. No one likes this situation, but Perl
does the best it can with the input and encodings it has to deal with. If only we could
reset history and not make so many mistakes next time.

Other Options
There are many other modifiers available. We’ll cover those as we get to them, or you
can read about them in the perlop documentation and in the descriptions of m// and
the other regular expression operators that you’ll see later in this chapter.

Anchors
By default, if a pattern doesn’t match at the start of the string, it can “float” on down
the string, trying to match somewhere else. But there are a number of anchors that may
be used to hold the pattern at a particular point in a string.

The \A anchor matches at the absolute beginning of a string, meaning that your pattern
will not float down the string at all. This pattern looks for an https only at the start of
the string:

m{\Ahttps?://}i

If you want to anchor something to the end of the string, you use \z. This pattern
matches .png only at the absolute end of the string:

m{\.png\z}i

Why “absolute end of string”? We have to emphasize that nothing can come after the
\z because there is a bit of history here. There’s another end-of-string anchor, the \Z,
which allows an optional newline after it. That makes it easy to match something at
the end of a single line without worrying about the trailing newline:

138 | Chapter 8: Matching with Regular Expressions

http://perldoc.perl.org/perlop.html

while (<STDIN>) {
 print if /\.png\Z/;
}

If you had to think about the newline, you’d have to remove it before the match and
put it back on for the output:

while (<STDIN>) {
 chomp;
 print "$_\n" if /\.png\z/;
}

Sometimes, you’ll want to use both of these anchors to ensure that the pattern matches
an entire string. A common example is /\A\s*\Z/, which matches a blank line. But this
“blank” line may include some whitespace characters, like tabs and spaces, which are
invisible to you and me. Any line that matches that pattern looks just like any other
one on paper, so this pattern treats all blank lines as equivalent. Without the anchors,
it would match nonblank lines as well.

The \A, \Z, and \z are Perl 5 regular expression features, but not everyone uses them.
In Perl 4, where many people picked up their programming habits, the beginning-of-
string anchor was the caret‖ (^) and the end-of-string was $. Those still work in Perl 5,
but they morphed into the beginning-of-line and end-of-line anchors.

What’s the difference between the beginning-of-line and beginning-of-string? It comes
down to the difference between how you think about lines and how the computer thinks
about lines. When you match against the string in $_, Perl doesn’t care what’s in it. To
Perl, it’s just one big string, even if it looks like multiple lines to you because you have
newlines in the string. Lines matter to humans because we spatially separate parts of
the string:

$_ = 'This is a wilma line
barney is on another line
but this ends in fred
and a final dino line';

Suppose your task, however, is to find strings that have fred at the end of any line
instead of just at the end of the entire string. In Perl 5, you can do that with the $ anchor
and the /m modifier to turn on multiline matching. This pattern matches because in the
multiline string, fred is at the end of a line:

/fred$/m

The addition of the /m changes how the old Perl 4 anchor works. Now it matches
fred anywhere as long as it’s either followed by a newline anywhere in the string, or is
at the absolute end of the string.

‖ Yes, you’ve seen the caret used in another way in patterns. As the first character of a character class, it negates
the class. But outside of a character class, it’s a metacharacter in a different way, being the start-of-string
anchor.

Anchors | 139

The /m does the same for the ^ anchor, which then matches either at the absolute
beginning of the string or anywhere after a newline. This pattern matches because in
the multiline string, barney is at the beginning of a line:

/^barney/m

Without the /m, the ̂ and $ act just like \A and \z. However, since someone might come
along later and add a /m switch, changing your anchors to something you didn’t intend,
it’s safer to use only the anchors that mean exactly what you want and nothing more.
But, as we said, many programmers have habits they carried over from Perl 4, so you’ll
still see many ^ and $ anchors that really should be \A and \z. For the rest of the book,
we’ll use \A and \z unless we specifically want multiline matching.

Word Anchors
Anchors aren’t just at the ends of the string. The word-boundary anchor \b matches at
either end of a word.# So you can use /\bfred\b/ to match the word fred but not
frederick or alfred or manfred mann. This is similar to the feature often called something
like “match whole words only” in a word processor’s search command.

Alas, these aren’t words as you and I are likely to think of them; they’re those \w-type
words made up of ordinary letters, digits, and underscores. The \b anchor matches at
the start or end of a group of \w characters. This is subject to the rules that \w is following,
as we showed you earlier in this chapter.

In Figure 8-1, there’s a gray underline under each “word,” and the arrows show the
corresponding places where \b could match. There are always an even number of word
boundaries in a given string, since there’s an end-of-word for every start-of-word.

The “words” are sequences of letters, digits, and underscores; that is, a word in this
sense is what’s matched by /\w+/. There are five words in that sentence: That, s, a,
word, and boundary.* Notice that the quote marks around word don’t change the word
boundaries; these words are made of \w characters.

Each arrow points to the beginning or the end of one of the gray underlines, since the
word-boundary anchor \b matches only at the beginning or the end of a group of word
characters.

#Some regular expression implementations have one anchor for start-of-word and another for end-of-word,
but Perl uses \b for both.

* You can see why we wish we could change the definition of “word”; That's should be one word, not two
words with an apostrophe in between. And even in text that may be mostly ordinary English, it’s normal to
find a soupçon of other characters spicing things up.

140 | Chapter 8: Matching with Regular Expressions

Figure 8-1. Word-boundary matches with \b

The word-boundary anchor is useful to ensure that you don’t accidentally find cat in
delicatessen, dog in boondoggle, or fish in selfishness. Sometimes you’ll want just
one word-boundary anchor, as when using /\bhunt/ to match words like hunt or
hunting or hunter, but not shunt, or when using /stone\b/ to match words like sand
stone or flintstone but not capstones.

The nonword-boundary anchor is \B; it matches at any point where \b would not
match. So the pattern /\bsearch\B/ will match searches, searching, and searched, but
not search or researching.

The Binding Operator =~
Matching against $_ is merely the default; the binding operator (=~) tells Perl to match
the pattern on the right against the string on the left, instead of matching against $_.†

For example:

my $some_other = "I dream of betty rubble.";
if ($some_other =~ /\brub/) {
 print "Aye, there's the rub.\n";
}

The first time you see it, the binding operator looks like some kind of assignment
operator. But it’s no such thing! It is simply saying, “This pattern match that would
attach to $_ by default—make it work with this string on the left instead.” If there’s no
binding operator, the expression uses $_ by default.

In the (somewhat unusual) example below, $likes_perl is set to a Boolean value ac-
cording to what the user typed at the prompt. This is a little on the quick-and-dirty side
because you discard the line of input itself. This code reads the line of input, tests that
string against the pattern, then discards the line of input.‡ It doesn’t use or change $_
at all:

print "Do you like Perl? ";
my $likes_perl = (<STDIN> =~ /\byes\b/i);
... # Time passes...

† The binding operator is also used with some other operations besides the pattern match, as you’ll see later.

‡ Remember, Perl doesn’t automatically store the line of input into $_ unless the line-input operator
(<STDIN>) is all alone in the conditional expression of a while loop.

The Binding Operator =~ | 141

if ($likes_perl) {
 print "You said earlier that you like Perl, so...\n";
 ...
}

Because the binding operator has fairly high precedence, the parentheses around the
pattern test expression aren’t required, so the following line does the same thing as the
one above—it stores the result of the test (and not the line of input) into the variable:

my $likes_perl = <STDIN> =~ /\byes\b/i;

Interpolating into Patterns
The match operator acts just as if it were a double-quoted string, interpolating any
variables it finds. This allows you to write a quick grep-like program like this:

#!/usr/bin/perl -w
my $what = "larry";

while (<>) {
 if (/\A($what)/) { # pattern is anchored at beginning of string
 print "We saw $what in beginning of $_";
 }
}

The pattern is built up out of whatever’s in $what when you run the pattern match. In
this case, it’s the same as if we wrote /\A(larry)/, looking for larry at the start of each
line.

But you didn’t have to get the value of $what from a literal string; you could get it instead
from the command-line arguments in @ARGV:

my $what = shift @ARGV;

Now, if the first command-line argument were fred|barney, the pattern be-
comes /\A(fred|barney)/, looking for fred or barney at the start of each line.§ The
parentheses (which weren’t really necessary when searching for larry) are important,
now, because without them you match fred at the start or barney anywhere in the string.

With that line changed to get the pattern from @ARGV, this program resembles the Unix
grep command. But you have to watch out for metacharacters in the string. If $what
contains 'fred(barney', the pattern would look like /^(fred(barney)/, and you know
that can’t work right—it’ll crash your program with an invalid regular expression error.
With some advanced techniques,‖ you can trap this kind of error (or prevent the magic
of the metacharacters in the first place) so that it won’t crash your program. But for

§ The astute reader will know that you can’t generally type fred|barney as an argument at the command line
because the vertical bar is a shell metacharacter. See the documentation to your shell to learn about how to
quote command-line arguments.

‖ In this case, you would use an eval block to trap the error, or you would quote the interpolated text using
quotemeta (or its \Q equivalent form) so that it’s no longer treated as a regular expression.

142 | Chapter 8: Matching with Regular Expressions

now, just know that if you give your users the power of regular expressions, they’ll also
need the responsibility to use them correctly.

The Match Variables
Parentheses normally trigger the regular expression engine’s capturing features. The
capture groups hold the part of the string matched by the part of the pattern inside
parentheses. If there is more than one pair of parentheses, there will be more than one
capture group. Each regular expression capture holds part of the original string,
not part of the pattern. You could refer to these groups in your pattern using back
references, but these groups also stick around after the match as the capture variables.

Since these variables hold strings, they are scalar variables; in Perl, they have names
like $1 and $2. There are as many of these variables as there are pairs of capturing
parentheses in the pattern. As you’d expect, $4 means the string matched by the fourth
set of parentheses. This is the same string that the back reference \4 would refer to
during the pattern match. But these aren’t two different names for the same thing; \4
refers back to the capture during the pattern while it is trying to match, while $4 refers
to the capture of an already completed pattern match. For more information on back
references, see the perlre documentation.

These match variables are a big part of the power of regular expressions, because they
let you pull out the parts of a string:

$_ = "Hello there, neighbor";
if (/\s(\[a-zA-Z]+),/) { # capture the word between space and comma
 print "the word was $1\n"; # the word was there
}

Or you could use more than one capture at once:

$_ = "Hello there, neighbor";
if (/(\S+) (\S+), (\S+)/) {
 print "words were $1 $2 $3\n";
}

That tells you that the words were Hello there neighbor. Notice that there’s no comma
in the output. Because the comma is outside of the capture parentheses in the pattern,
there is no comma in capture two. Using this technique, you can choose exactly what
you want in the captures, as well as what you want to leave out.

You could even have an empty match variable,# if that part of the pattern might be
empty. That is, a match variable may contain the empty string:

my $dino = "I fear that I'll be extinct after 1000 years.";
if ($dino =~ /([0-9]*) years/) {
 print "That said '$1' years.\n"; # 1000

#An empty string is different than an undefined one. If you have three or fewer sets of parentheses in the
pattern, $4 will be undef.

The Match Variables | 143

http://perldoc.perl.org/perlre.html

}

$dino = "I fear that I'll be extinct after a few million years.";
if ($dino =~ /([0-9]*) years/) {
 print "That said '$1' years.\n"; # empty string
}

The Persistence of Captures
These capture variables generally stay around until the next successful pattern
match.* That is, an unsuccessful match leaves the previous capture values intact, but a
successful one resets them all. This correctly implies that you shouldn’t use these match
variables unless the match succeeded; otherwise, you could be seeing a capture from
some previous pattern. The following (bad) example is supposed to print a word
matched from $wilma. But if the match fails, it’s using whatever leftover string happens
to be found in $1:

my $wilma = '123';
$wilma =~ /([0-9]+)/; # Succeeds, $1 is 123
$wilma =~ /([a-zA-Z]+)/; # BAD! Untested match result
print "Wilma's word was $1... or was it?\n"; # Still 123!

This is another reason a pattern match is almost always found in the conditional ex-
pression of an if or while:

if ($wilma =~ /([a-zA-Z]+)/) {
 print "Wilma's word was $1.\n";
} else {
 print "Wilma doesn't have a word.\n";
}

Since these captures don’t stay around forever, you shouldn’t use a match variable like
$1 more than a few lines after its pattern match. If your maintenance programmer adds
a new regular expression between your regular expression and your use of $1, you’ll be
getting the value of $1 for the second match, rather than the first. For this reason, if you
need a capture for more than a few lines, it’s generally best to copy it into an ordinary
variable. Doing this helps make the code more readable at the same time:

if ($wilma =~ /([a-zA-Z]+)/) {
 my $wilma_word = $1;
 ...
}

Later, in Chapter 9, you’ll see how to get the capture value directly into the variable at
the same time as the pattern match happens, without having to use $1 explicitly.

* The actual scoping rule is much more complex (see the documentation if you need it), but as long as you
don’t expect the match variables to be untouched many lines after a pattern match, you shouldn’t have
problems.

144 | Chapter 8: Matching with Regular Expressions

Noncapturing Parentheses
So far you’ve seen parentheses that capture parts of a matched string and store them
in the capture variables, but what if you just want to use the parentheses to group
things? Consider a regular expression where we want to make part of it optional, but
only capture another part of it. In this example, you want “bronto” to be optional, but
to make it optional you have to group that sequence of characters with parentheses.
Later in the pattern, you use an alternation to get either “steak” or “burger,” and you
want to know which one you found:

if (/(bronto)?saurus (steak|burger)/) {
 print "Fred wants a $2\n";
}

Even if “bronto” is not there, its part of the pattern goes into $1. Perl just counts the
order of the opening parentheses to decide what the capture variables will be. The part
that you want to remember ends up in $2. In more complicated patterns, this situation
can get quite confusing.

Fortunately, Perl’s regular expressions have a way to use parentheses to group things
but not trigger the capture groups, called noncapturing parentheses, and you write them
with a special sequence. You add a question mark and a colon after the opening pa-
renthesis, (?:)†, and that tells Perl you only want to use these parentheses for grouping.

You change your regular expression to use noncapturing parentheses around “bronto,”
and the part that you want to remember now shows up in $1:

if (/(?:bronto)?saurus (steak|burger)/) {
 print "Fred wants a $1\n";
}

Later, when you change your regular expression, perhaps to include a possible barbecue
version of the brontosaurus burger, you can make the added “BBQ ” (with a space!)
optional and noncapturing, so the part you want to remember still shows up in $1.
Otherwise, you’d potentially have to shift all of your capture variable names every time
you add grouping parentheses to your regular expression:

if (/(?:bronto)?saurus (?:BBQ)?(steak|burger)/) {
 print "Fred wants a $1\n";
}

Perl’s regular expressions have several other special parentheses sequences that do
fancy and complicated things, like look-ahead, look-behind, embed comments, or even
run code right in the middle of a pattern. You’ll have to check out the perlre documen-
tation for the details though.

† This is the fourth type of ? you’ll see in regular expressions: a literal question mark (escaped), the 0 or 1
quantifier, the nongreedy modifier (Chapter 9), and now the start of an extended pattern.

The Match Variables | 145

http://perldoc.perl.org/perlre.html

Named Captures
You can capture parts of the string with parentheses and then look in the number
variables $1, $2, and so on to get the parts of the string that matched. Keeping track of
those number variables and what should be in them can be confusing even for simple
patterns. Consider this regular expression that tries to match the two names in $names:

use 5.010;

my $names = 'Fred or Barney';
if ($names =~ m/(\w+) and (\w+)/) { # won't match
 say "I saw $1 and $2";
}

You don’t see the message from say because the string has an or where you were ex-
pecting an and. Maybe you were supposed to have it both ways, so you change the
regular expression to have an alternation to handle both and and or, adding another set
of parentheses to group the alternation:

use 5.010;

my $names = 'Fred or Barney';
if ($names =~ m/(\w+) (and|or) (\w+)/) { # matches now
 say "I saw $1 and $2";
}

Oops! You see a message this time, but it doesn’t have the second name in it because
you added another set of capture parentheses. The value in $2 is from the alternation
and the second name is now in $3 (which we don’t output):

I saw Fred and or

You could have used the noncapturing parentheses to get around this, but the real
problem is that you have to remember which numbered parentheses belong to which
data you are trying to capture. Imagine how much tougher this gets with many captures.

Instead of remembering numbers such as $1, Perl 5.10 lets you name the captures di-
rectly in the regular expression. It saves the text it matches in the hash named %+: the
key is the label you used and the value is the part of the string that it matched. To label
a match variable, you use (?<LABEL>PATTERN) where you replace LABEL with your own
names.‡ You label the first capture name1 and the second one name2, and look in
$+{name1} and $+{name2} to find their values:

use 5.010;

my $names = 'Fred or Barney';
if ($names =~ m/(?<name1>\w+) (?:and|or) (?<name2>\w+)/) {
 say "I saw $+{name1} and $+{name2}";
}

‡ Perl also lets you use the Python syntax (?P<LABEL>...) to do the same thing.

146 | Chapter 8: Matching with Regular Expressions

Now you see the right message:

I saw Fred and Barney

Once you label your captures, you can move them around and add additional capture
groups without disturbing the order of the captures:

use 5.010;

my $names = 'Fred or Barney';
if ($names =~ m/((?<name2>\w+) (and|or) (?<name1>\w+))/) {
 say "I saw $+{name1} and $+{name2}";
}

Now that you have a way to label matches, you also need a way to refer to them for
back references. Previously, you used either \1 or \g{1} for this. With a labeled group,
you can use the label in \g{label}:

use 5.010;

my $names = 'Fred Flintstone and Wilma Flintstone';

if ($names =~ m/(?<last_name>\w+) and \w+ \g{last_name}/) {
 say "I saw $+{last_name}";
}

You can do the same thing with another syntax. Instead of using \g{label}, you use
\k<label:§

use 5.010;

my $names = 'Fred Flintstone and Wilma Flintstone';

if ($names =~ m/(?<last_name>\w+) and \w+ \k<last_name>/) {
 say "I saw $+{last_name}";
}

The Automatic Match Variables
There are three more match variables that you get for free,‖ whether the pattern has
capture parentheses or not. That’s the good news; the bad news is that these variables
have weird names.

§ A \k<label is slightly different than \g{label}. In patterns that have two or more labeled groups with the
same label, \k<label> and \g{label} always refer to the leftmost group, but \g{N} can be a relative back
reference. If you’re a fan of Python, you can also use the (?P=label) syntax.

‖ Yeah, right. There’s no such thing as a free match. These are “free” only in the sense that they don’t require
match parentheses. Don’t worry; we’ll mention their real cost a little later, though.

The Match Variables | 147

Now, Larry probably would have been happy enough to call these by slightly less weird
names, like perhaps $gazoo or $ozmodiar. But those are names that you just might want
to use in your own code. To keep ordinary Perl programmers from having to memorize
the names of all of Perl’s special variables before choosing their first variable names in
their first programs,# Larry has given strange names to many of Perl’s built-in variables,
names that “break the rules.” In this case, the names are punctuation marks: $&, $`,
and $'. They’re strange, ugly, and weird, but those are their names.* The part of the
string that actually matched the pattern is automatically stored in $&:

if ("Hello there, neighbor" =~ /\s(\w+),/) {
 print "That actually matched '$&'.\n";
}

That tells you that the part that matched was " there," (with a space, a word, and a
comma). Capture one, in $1, has just the five-letter word there, but $& has the entire
matched section.

Whatever came before the matched section is in $`, and whatever was after it is in $'.
Another way to say that is that $` holds whatever the regular expression engine had to
skip over before it found the match, and $' has the remainder of the string that the
pattern never got to. If you glue these three strings together in order, you’ll always get
back the original string:

if ("Hello there, neighbor" =~ /\s(\w+),/) {
 print "That was ($`)($&)($').\n";
}

The message shows the string as (Hello)(there,)(neighbor), showing the three au-
tomatic match variables in action. We’ll show more of those variables in a moment.

Any or all of these three automatic match variables may be empty, of course, just like
the numbered capture variables. And they have the same scope as the numbered match
variables. Generally, that means they’ll stay around until the next successful pattern
match.

Now, we said earlier that these three are “free.” Well, freedom has its price. In this case,
the price is that once you use any one of these automatic match variables anywhere in
your program, every regular expression will run a little more slowly.†

#You should still avoid a few classical variable names like $ARGV, but these few are in all-caps. All of Perl’s
built-in variables are documented in the perlvar documentation.

* If you really can’t stand these names, check out the English module, which attempts to give all of Perl’s
strangest variables nearly normal names. But the use of this module has never really caught on; instead, Perl
programmers have grown to love (or hate) the punctuation-mark variable names, strange as they are.

† For every block entry and exit, which is practically everywhere.

148 | Chapter 8: Matching with Regular Expressions

http://perldoc.perl.org/perlvar.html

Granted, this isn’t a giant slowdown, but it’s enough of a worry that many Perl pro-
grammers will simply never use these automatic match variables.‡ Instead, they’ll use
a workaround. For example, if the only one you need is $&, just put parentheses around
the whole pattern and use $1 instead (you may need to renumber the pattern’s captures,
of course).

If you are using Perl 5.10 or higher, though, you can have your cake and eat it too.
The /p modifier lets you have the same sort of variables while only suffering the penalty
for that particular regular expression. Instead of $`, $&, or $', you use ${^PREMATCH},
${^MATCH}, or ${^POSTMATCH}. The previous examples then turn into:

use 5.010;
if ("Hello there, neighbor" =~ /\s(\w+),/p) {
 print "That actually matched '${^MATCH}'.\n";
}

if ("Hello there, neighbor" =~ /\s(\w+),/p) {
 print "That was (${^PREMATCH})(${^MATCH})(${^POSTMATCH}).\n";
}

Those variable names look a bit odd since they have the braces around the name and
start with ^. As Perl evolves, it runs out of names it can use for special names. Starting
with a ^ means it won’t clash with names that you might create (the ^ is an illegal
character in a user-defined variable), but then it needs the braces to surround the entire
variable name.

Match variables (both the automatic ones and the numbered ones) are most often used
in substitutions, which you’ll see in Chapter 9.

General Quantifiers
A quantifier in a pattern means to repeat the preceding item a certain number of times.
You’ve already seen three quantifiers: *, +, and ?. But if none of those three suits your
needs, just use a comma-separated pair of numbers inside curly braces ({}) to specify
exactly how few and how many repetitions you want.

So the pattern /a{5,15}/ will match from five to fifteen repetitions of the letter a. If the
a appears three times, that’s too few, so it won’t match. If it appears five times, it’s a
match. If it appears ten times, that’s still a match. If it appears twenty times, just the
first fifteen will match, since that’s the upper limit.

If you omit the second number (but include the comma), there’s no upper limit to the
number of times the item will match. So, /(fred){3,}/ will match if there are three or

‡ Most of these folks haven’t actually benchmarked their programs to see whether their workarounds actually
save time, though; it’s as though these variables were poisonous or something. But we can’t blame them for
not benchmarking—many programs that could benefit from these three variables take up only a few minutes
of CPU time in a week, so benchmarking and optimizing would be a waste of time. But in that case, why fear
a possible extra millisecond?

General Quantifiers | 149

more instances of fred in a row (with no extra characters, like spaces, allowed between
each fred and the next). There’s no upper limit so that would match 88 instances of
fred if you had a string with that many.

If you omit the comma as well as the upper bound, the number given is an exact
count: /\w{8}/ will match exactly eight word characters (occurring as part of a larger
string, perhaps). And /,{5}chameleon/ matches “comma comma comma comma
comma chameleon”. By George, that is nice.

In fact, the three quantifier characters that you saw earlier are just common shortcuts.
The star is the same as the quantifier {0,}, meaning zero or more. The plus is the same
as {1,}, meaning one or more. And the question mark could be written as {0,1}. In
practice, it’s unusual to need any curly brace quantifiers, since the three shortcut char-
acters are nearly always the only ones needed.

Precedence
With all of these metacharacters in regular expressions, you may feel that you can’t
keep track of the players without a scorecard. That’s the precedence chart, which shows
us which parts of the pattern “stick together” the most tightly. Unlike the precedence
chart for operators, the regular expression precedence chart is simple, with only four
levels. As a bonus, this section will review all of the metacharacters that Perl uses in
patterns. Table 8-1 shows the precedence, described here:

1. At the top of the precedence chart are the parentheses, (“()”), used for grouping
and capturing. Anything in parentheses will “stick together” more tightly than
anything else.

2. The second level is the quantifiers. These are the repeat operators—star (*), plus
(+), and question mark (?)—as well as the quantifiers made with curly braces, like
{5,15}, {3,}, and {5}. These always stick to the item they’re following.

3. The third level of the precedence chart holds anchors and sequence. The anchors
are the \A, \Z, \z, ^, $, \b, \B anchors you’ve already seen.§ Sequence (putting one
item after another) is actually an operator, even though it doesn’t use a metachar-
acter. That means that letters in a word will stick together just as tightly as the
anchors stick to the letters.

4. The next-to-lowest level of precedence is the vertical bar (|) of alternation. Since
this is at the bottom of the chart, it effectively cuts the pattern into pieces. It’s at
the bottom of the chart because you want the letters in the words in /fred|
barney/ to stick together more tightly than the alternation. If alternation were
higher priority than sequence, that pattern would mean to match fre, followed by
a choice of d or b, followed by arney. So, alternation is at the bottom of the chart,
and the letters within the names stick together.

§ There’s a \G anchor that we don’t mention.

150 | Chapter 8: Matching with Regular Expressions

5. At the lowest level, there are the so-called atoms that make up the most basic pieces
of the pattern. These are the individual characters, character classes, and back
references.

Table 8-1. Regular expression precedence

Regular expression feature Example

Parentheses (grouping or capturing) (…), (?:…), (?<LABEL>…)

Quantifiers a*, a+, a?, a{n,m}

Anchors and sequence abc, ^, $, \A, \b, \z, \Z

Alternation a|b|c

Atoms a, [abc], \d, \1, \g{2}

Examples of Precedence
When you need to decipher a complex regular expression, you’ll need to do as Perl
does, and use the precedence chart to see what’s really going on.

For example, /\Afred|barney\z/ is probably not what the programmer intended. That’s
because the vertical bar of alternation is very low precedence; it cuts the pattern in two.
That pattern matches either fred at the beginning of the string or barney at the end. It’s
much more likely that the programmer wanted /\A(fred|barney)\z/, which will match
if the whole line has nothing but fred or nothing but barney.‖ And what will /(wilma|
pebbles?)/ match? The question mark applies to the previous character,# so that will
match either wilma or pebbles or pebble, perhaps as part of a larger string (since there
are no anchors).

The pattern /\A(\w+)\s+(\w+)\z/ matches lines that have a “word,” some required
whitespace, and another “word,” with nothing else before or after. That might be used
to match lines like fred flintstone, for example. The parentheses around the words
aren’t needed for grouping, so they may be intended to save those substrings into the
regular expression captures.

When you’re trying to understand a complex pattern, it may be helpful to add paren-
theses to clarify the precedence. That’s okay, but remember that grouping parentheses
are also automatically capturing parentheses; use the noncapturing parentheses if you
just want to group things.

‖ And, perhaps, a newline at the end of the string, as we mentioned earlier in connection with the \z anchor.

#Because a quantifier sticks to the letter s more tightly than the s sticks to the other letters in pebbles.

Precedence | 151

And There’s More
Although we’ve covered all of the regular expression features that most people are likely
to need for everyday programming, there are still even more features. A few are covered
in Intermediate Perl, but also check the perlre, perlrequick, and perlretut documentation
for more information about what patterns in Perl can do.*

A Pattern Test Program
When in the course of Perl events it becomes necessary for a programmer to write a
regular expression, it may be difficult to tell just what the pattern will do. It’s normal
to find that a pattern matches more than you expected, or less. Or it may match earlier
in the string than you expected, or later, or not at all.

This program is useful to test out a pattern on some strings and see just what it matches,
and where:†

#!/usr/bin/perl
while (<>) { # take one input line at a time
 chomp;
 if (/YOUR_PATTERN_GOES_HERE/) {
 print "Matched: |$`<$&>$'|\n"; # the special match vars
 } else {
 print "No match: |$_|\n";
 }
}

This pattern test program is written for programmers to use, not end users; you can tell
because it doesn’t have any prompts or usage information. It will take any number of
input lines and check each one against the pattern that you’ll put in place of the string
saying YOUR_PATTERN_GOES_HERE. For each line that matches, it uses the three special
match variables ($`, $&, and $') to make a picture of where the match happened.‡ What
you’ll see is this: if the pattern is /match/ and the input is beforematchafter, the output
will say |before<match>after|, using angle brackets to show you just what part of the
string was matched by your pattern. If your pattern matches something you didn’t
expect, you’ll be able to see that right away.

* And check out YAPE::Regex::Explain in CPAN as a regular-expression-to-English translator.

† If you aren’t using the ebook where you can cut and paste this code, you can get this from our companion
book site at http://www.learning-perl.com in the Downloads section.

‡ We don’t care about the performance here, and we want this to work even if you don’t have Perl 5.10 or
later, so we use the performance-inhibiting per-match variables.

152 | Chapter 8: Matching with Regular Expressions

http://oreilly.com/catalog/9780596102067/
http://perldoc.perl.org/perlre.html
http://perldoc.perl.org/perlrequick.html
http://perldoc.perl.org/perlretut.html
http://www.learning-perl.com

Exercises
See “Answers to Exercises” on page 306 for answers to the following exercises.

Several of these exercises ask you to use the test program from this chapter. You
could manually type up this program, taking great care to get all of the odd punctuation
marks correct, but you can also find it in the Downloads section of our companion site
at http://www.learning-perl.com.§

1. [8] Using the pattern test program, make a pattern to match the string match. Try
the program with the input string beforematchafter. Does the output show the
three parts of the match in the right order?

2. [7] Using the pattern test program, make a pattern that matches if any word (in
the \w sense of word) ends with the letter a. Does it match wilma but not barney?
Does it match Mrs. Wilma Flintstone? What about wilma&fred? Try it on the sample
text file from the Exercises in Chapter 7 (and add these test strings if they weren’t
already in there).

3. [5] Modify the program from the previous exercise so that the word ending with
the letter a is captured into $1. Update the code to display that variable’s contents
in single quotes, something like $1 contains 'Wilma'.

4. [5] Modify the program from the previous exercise to use named captures instead
of relying on $1. Update the code to display that label name, something like 'word'
contains 'Wilma'.

5. [5] Extra credit exercise: modify the program from the previous exercise so that
immediately following the word ending in a it will also capture up-to-five characters
(if there are that many characters, of course) in a separate capture variable. Update
the code to display both capture variables. For example, if the input string says I
saw Wilma yesterday, the up-to-five characters are “yest”. If the input is I,
Wilma!, the extra capture should have just one character. Does your pattern still
match just plain wilma?

6. [5] Write a new program (not the test program!) that prints out any input line
ending with whitespace (other than just a newline). Put a marker character at the
end of the output line so as to make the whitespace visible.

§ If you do type it up on your own, remember that the backquote character (`) is not the same as the
apostrophe ('). On most full-sized computer keyboards these days (in the U.S., at least), the backquote is
found on a key immediately to the left of the 1 key.

Exercises | 153

http://www.learning-perl.com

CHAPTER 9

Processing Text with
Regular Expressions

You can use regular expressions to change text too. So far we’ve only shown you how
to match a pattern, and now we’ll show you how to use patterns to locate the parts of
strings that you want to change.

Substitutions with s///
If you think of the m// pattern match as being like your word processor’s “search”
feature, the “search and replace” feature would be Perl’s s/// substitution operator.
This simply replaces whatever part of a variable* matches the pattern with a replacement
string:

$_ = "He's out bowling with Barney tonight.";
s/Barney/Fred/; # Replace Barney with Fred
print "$_\n";

If the match fails, nothing happens, and the variable is untouched:

Continuing from above; $_ has "He's out bowling with Fred tonight."
s/Wilma/Betty/; # Replace Wilma with Betty (fails)

Of course, both the pattern and the replacement string could be more complex. Here,
the replacement string uses the first capture variable, $1, which is set by the pattern
match:

s/with (\w+)/against $1's team/;
print "$_\n"; # says "He's out bowling against Fred's team tonight."

* Unlike m//, which can match against any string expression, s/// is modifying data that must therefore be
contained in what’s known as an lvalue. This is nearly always a variable, although it could actually be
anything that could be used on the left side of an assignment operator.

155

Here are some other possible substitutions. These are here only as samples; in the real
world, it would not be typical to do so many unrelated substitutions in a row:

$_ = "green scaly dinosaur";
s/(\w+) (\w+)/$2, $1/; # Now it's "scaly, green dinosaur"
s/^/huge, /; # Now it's "huge, scaly, green dinosaur"
s/,.*een//; # Empty replacement: Now it's "huge dinosaur"
s/green/red/; # Failed match: still "huge dinosaur"
s/\w+$/($`!)$&/; # Now it's "huge (huge !)dinosaur"
s/\s+(!\W+)/$1 /; # Now it's "huge (huge!) dinosaur"
s/huge/gigantic/; # Now it's "gigantic (huge!) dinosaur"

There’s a useful Boolean value from s///; it’s true if a substitution was successful;
otherwise it’s false:

$_ = "fred flintstone";
if (s/fred/wilma/) {
 print "Successfully replaced fred with wilma!\n";
}

Global Replacements with /g
As you may have noticed in a previous example, s/// will make just one replacement,
even if others are possible. Of course, that’s just the default. The /g modifier tells
s/// to make all possible non-overlapping† replacements:

$_ = "home, sweet home!";
s/home/cave/g;
print "$_\n"; # "cave, sweet cave!"

A fairly common use of a global replacement is to collapse whitespace; that is, to turn
any arbitrary whitespace into a single space:

$_ = "Input data\t may have extra whitespace.";
s/\s+/ /g; # Now it says "Input data may have extra whitespace."

Once we show collapsing whitespace, everyone wants to know about stripping leading
and trailing whitespace. That’s easy enough, in two steps:

s/^\s+//; # Replace leading whitespace with nothing
s/\s+$//; # Replace trailing whitespace with nothing

We could do that in one step with an alternation and the /g modifier, but that turns
out to be a bit slower, at least when we wrote this. The regular expression engine is
always being tuned, but to learn more about that, you can get Mastering Regular Ex-
pressions by Jeffrey Friedl (O’Reilly) and find out what makes regular expressions fast
(or slow):

s/^\s+|\s+$//g; # Strip leading, trailing whitespace

† It’s non-overlapping because each new match starts looking just beyond the latest replacement.

156 | Chapter 9: Processing Text with Regular Expressions

http://oreilly.com/catalog/9780596528126/
http://oreilly.com/catalog/9780596528126/

Different Delimiters
Just as you did with m// and qw//, you can change the delimiters for s///. But the
substitution uses three delimiter characters, so things are a little different.

With ordinary (nonpaired) characters that don’t have a left and right variety, just use
three of them, as you did with the forward slash. Here, you use the pound sign‡ as the
delimiter:

s#^https://#http://#;

But if you use paired characters, which have a left and right variety, you have to use
two pairs: one to hold the pattern and one to hold the replacement string. In this case,
the delimiters don’t have to be the same kind around the string as they are around the
pattern. In fact, the delimiters of the string could even be nonpaired. These are all the
same:

s{fred}{barney};
s[fred](barney);
s<fred>#barney#;

Substitution Modifiers
In addition to the /g modifier,§ you can use the /i, /x, and /s modifiers that you saw
in ordinary pattern matching (the order of modifiers isn’t significant):

s#wilma#Wilma#gi; # replace every WiLmA or WILMA with Wilma
s{__END__.*}{}s; # chop off the end marker and all following lines

The Binding Operator
Just as you saw with m//, we can choose a different target for s/// by using the binding
operator:

$file_name =~ s#^.*/##s; # In $file_name, remove any Unix-style path

Nondestructive Substitutions
What if you want to have the original and the modified version of a string at the same
time? You could make a copy and work with that:

my $original = 'Fred ate 1 rib';
my $copy = $original;
$copy =~ s/\d+ ribs?/10 ribs/;

‡ With apologies to our British friends, to whom the pound sign is something else! Although the pound sign
is generally the start of a comment in Perl, it won’t start a comment when the parser knows to expect a
delimiter—in this case, immediately after the s that starts the substitution.

§ We still speak of the modifiers with names like /i, even if the delimiter is something other than a slash.

Substitutions with s/// | 157

You could also write that as a single statement where you do the assignment and per-
form the substitution on the result:

(my $copy = $original) =~ s/\d+ ribs?/10 ribs/;

That can be a bit confusing because many people forget that the result of the assignment
is just as good as a string, so it’s really $copy that gets changed. Perl 5.14 adds a /r
modifier that changes how this works. Normally the result of a s/// is the number of
substitutions it made, but with the /r, it leaves the original string alone and returns a
modified copy of it:

use 5.014;

my $copy = $original =~ s/\d+ ribs?/10 ribs/r;

That looks almost the same as the previous example, just without the parentheses. In
this case, though, things happen in reverse order. You do the substitution first and the
assignment second.

Case Shifting
It often happens in a substitution that you’ll want to make sure that a replacement word
is properly capitalized (or not, as the case may be). That’s easy to accomplish with
Perl,‖ by using some backslash escapes. The \U escape forces what follows to all
uppercase:

$_ = "I saw Barney with Fred.";
s/(fred|barney)/\U$1/gi; # $_ is now "I saw BARNEY with FRED."

Similarly, the \L escape forces lowercase. Continuing from the previous code:

s/(fred|barney)/\L$1/gi; # $_ is now "I saw barney with fred."

By default, these affect the rest of the (replacement) string, or you can turn off case
shifting with \E:

s/(\w+) with (\w+)/\U$2\E with $1/i; # $_ is now "I saw FRED with barney."

When written in lowercase (\l and \u), they affect only the next character:

s/(fred|barney)/\u$1/ig; # $_ is now "I saw FRED with Barney."

You can even stack them up. Using \u with \L means “all lowercase, but capitalize the
first letter”:#

s/(fred|barney)/\u\L$1/ig; # $_ is now "I saw Fred with Barney."

‖ Remember all of our cautions in “Choosing a Character Interpretation” on page 136 in Chapter 8.

#The \L and \u may appear together in either order. Larry realized that people would sometimes get those two
backward, so he made Perl figure out that you want just the first letter capitalized and the rest lowercase.
Larry is a pretty nice guy.

158 | Chapter 9: Processing Text with Regular Expressions

As it happens, although we’re covering case shifting in relation to substitutions, these
escape sequences are available in any double-quotish string:

print "Hello, \L\u$name\E, would you like to play a game?\n";

The split Operator
Another operator that uses regular expressions is split, which breaks up a string
according to a pattern. This is useful for tab-separated data, or colon-separated,
whitespace-separated, or anything-separated data, really.* So long as you can specify
the separator with a regular expression (and generally, it’s a simple regular expression),
you can use split. It looks like this:

my @fields = split /separator/, $string;

The split operator† drags the pattern through a string and returns a list of fields (sub-
strings) that were separated by the separators. Whenever the pattern matches, that’s
the end of one field and the start of the next. So, anything that matches the pattern
never shows up in the returned fields. Here’s a typical split pattern, splitting on colons:

my @fields = split /:/, "abc:def:g:h"; # gives ("abc", "def", "g", "h")

You could even have an empty field, if there were two delimiters together:

my @fields = split /:/, "abc:def::g:h"; # gives ("abc", "def", "", "g", "h")

Here’s a rule that seems odd at first, but it rarely causes problems: leading empty fields
are always returned, but trailing empty fields are discarded:‡

my @fields = split /:/, ":::a:b:c:::"; # gives ("", "", "", "a", "b", "c")

It’s also common to split on whitespace, using /\s+/ as the pattern. Under that pattern,
all whitespace runs are equivalent to a single space:

my $some_input = "This is a \t test.\n";
my @args = split /\s+/, $some_input; # ("This", "is", "a", "test.")

The default for split is to break up $_ on whitespace:

my @fields = split; # like split /\s+/, $_;

* Except “comma-separated values,” normally called CSV files. Those are a pain to do with split; you’re better
off getting the Text::CSV module from CPAN.

† It’s an operator, even though it acts a lot like a function, and everyone generally calls it a function. But the
technical details of the difference are beyond the scope of this book.

‡ This is merely the default. It’s this way for efficiency. If you worry about losing trailing empty fields, use –1
as a third argument to split and they’ll be kept; see the perlfunc documentation.

The split Operator | 159

http://perldoc.perl.org/perlfunc.html

This is almost the same as using /\s+/ as the pattern, except that in this special case a
leading empty field is suppressed—so, if the line starts with whitespace, you won’t see
an empty field at the start of the list. If you’d like to get the same behavior when splitting
another string on whitespace, just use a single space in place of the pattern: split ' ',
$other_string. Using a space instead of the pattern is a special kind of split.

Generally, the patterns you use for split are as simple as the ones you see here. But if
the pattern becomes more complex, be sure to avoid using capturing parentheses in
the pattern since these trigger the (usually) wanted “separator retention mode” (see the
perlfunc documentation for details). Use the noncapturing parentheses, (?:), in
split if you need to group things.

The join Function
The join function doesn’t use patterns, but performs the opposite function of split:
split breaks up a string into a number of pieces, and join glues together a bunch of
pieces to make a single string. The join function looks like this:

my $result = join $glue, @pieces;

The first argument to join is the glue, which may be any string. The remaining argu-
ments are a list of pieces. join puts the glue string between the pieces and returns the
resulting string:

my $x = join ":", 4, 6, 8, 10, 12; # $x is "4:6:8:10:12"

In that example, you have five items, so there are only four colons. That is, there are
four pieces of glue. The glue shows up only between the pieces, never before or after
them. So, there will be one fewer piece of glue than the number of items in the list.

This means that there may be no glue at all if the list doesn’t have at least two elements:

my $y = join "foo", "bar"; # gives just "bar", since no foo glue is needed
my @empty; # empty array
my $empty = join "baz", @empty; # no items, so it's an empty string

Using $x from above, you can break up a string and put it back together with a different
delimiter:

my @values = split /:/, $x; # @values is (4, 6, 8, 10, 12)
my $z = join "-", @values; # $z is "4-6-8-10-12"

Although split and join work well together, don’t forget the first argument to join is
always a string, not a pattern.

160 | Chapter 9: Processing Text with Regular Expressions

http://perldoc.perl.org/perlfunc.html

m// in List Context
When you use split, the pattern specifies the separator: the part that isn’t the useful
data. Sometimes it’s easier to specify what you want to keep.

When a pattern match (m//) is used in a list context, the return value is a list of the
capture variables created in the match, or an empty list if the match failed:

$_ = "Hello there, neighbor!";
my($first, $second, $third) = /(\S+) (\S+), (\S+)/;
print "$second is my $third\n";

This makes it easy to give the match variables easy-to-use names, and these names may
persist past the next pattern match. (Note also that, because there’s no =~ in that code,
the pattern matches against $_ by default.)

The /g modifier that you first saw on s/// also works with m//, which lets it match at
more than one place in a string. In this case, a pattern with a pair of parentheses will
return a capture from each time it matches:

my $text = "Fred dropped a 5 ton granite block on Mr. Slate";
my @words = ($text =~ /([a-z]+)/ig);
print "Result: @words\n";
Result: Fred dropped a ton granite block on Mr Slate

This is like using split “inside out”: instead of specifying what we want to remove, we
specify what we want to keep.

In fact, if there is more than one pair of parentheses, each match may return more than
one string. Let’s say that we have a string that we want to read into a hash, something
like this:

my $data = "Barney Rubble Fred Flintstone Wilma Flintstone";
my %last_name = ($data =~ /(\w+)\s+(\w+)/g);

Each time the pattern matches, it returns a pair of captures. Those pairs of values then
become the key-value pairs in the newly-created hash.

More Powerful Regular Expressions
After already reading three (almost!) chapters about regular expressions, you know that
they’re a powerful feature in the core of Perl. But there are even more features that the
Perl developers have added; you’ll see some of the most important ones in this section.
At the same time, you’ll see a little more about the internal operation of the regular
expression engine.

More Powerful Regular Expressions | 161

Nongreedy Quantifiers
The four quantifiers you’ve already seen (in Chapter 7) are all greedy. That means that
they match as much as they can, only to reluctantly give some back if that’s necessary
to allow the overall pattern to succeed. Here’s an example: suppose you’re using the
pattern /fred.+barney/ on the string fred and barney went bowling last night. Of
course, you know that the regular expression will match that string, but let’s see how
it goes about it.§ First, of course, the subpattern fred matches the identical literal string.
The next part of the pattern is the .+, which matches any character except newline at
least one time. But the plus quantifier is greedy; it prefers to match as much as possible.
So it immediately matches all of the rest of the string, including the word night. (This
may surprise you, but the story isn’t over yet.)

Now the subpattern barney would like to match, but it can’t—you’re at the end of the
string. But since the .+ could still be successful even if it matched one fewer character,
it reluctantly gives back the letter t at the end of the string. (It’s greedy, but it wants
the whole pattern to succeed even more than it wants to match everything all by itself.)

The subpattern barney tries again to match, and still can’t. So the .+ gives back the
letter h and lets it try again. One character after another, the .+ gives back what it
matched until finally it gives up all of the letters of barney. Now, finally, the subpattern
barney can match, and the overall match succeeds.

Regular expression engines do a lot of backtracking like that, trying every different way
of fitting the pattern to the string until one of them succeeds, or until none of them
has.‖ But as you could see from this example, that can involve a lot of backtracking, as
the quantifier gobbles up too much of the string and the regular expression engine
forces it to return some of it.

For each of the greedy quantifiers, though, there’s also a nongreedy quantifier available.
Instead of the plus (+), we can use the nongreedy quantifier +?, which matches one or
more times (just as the plus does), except that it prefers to match as few times as pos-
sible, rather than as many as possible. Let’s see how that new quantifier works when
the pattern is rewritten as /fred.+?barney/.

Once again, fred matches right at the start. But this time the next part of the pattern
is .+?, which would prefer to match no more than one character, so it matches just the
space after fred. The next subpattern is barney, but that can’t match here (since the

§ The regular expression engine makes a few optimizations that make the true story different than we tell it
here, and those optimizations change from one release of Perl to the next. You shouldn’t be able to tell from
the functionality that it’s not doing as we say, though. If you want to know how it really works, you should
read the latest source code. Be sure to submit patches for any bugs you find.

‖ In fact, some regular expression engines try every different way, even continuing on after they find one that
fits. But Perl’s regular expression engine is primarily interested in whether the pattern can or cannot match,
so finding even one match means that the engine’s work is done. Again, see Jeffrey Friedl’s Mastering Regular
Expressions (O’Reilly).

162 | Chapter 9: Processing Text with Regular Expressions

http://oreilly.com/catalog/9780596528126/
http://oreilly.com/catalog/9780596528126/

string at the current position begins with and barney…). So the .+? reluctantly matches
the a and lets the rest of the pattern try again. Once again, barney can’t match, so
the .+? accepts the letter n and so on. Once the .+? has matched five characters,
barney can match, and the pattern is a success.

There was still some backtracking, but since the engine had to go back and try again
just a few times, it should be a big improvement in speed. Well, it’s an improvement if
you’ll generally find barney near fred. If your data often had fred near the start of the
string and barney only at the end, the greedy quantifier might be a faster choice. In the
end, the speed of the regular expression depends upon the data.

But the nongreedy quantifiers aren’t just about efficiency. Although they’ll always
match (or fail to match) the same strings as their greedy counterparts, they may match
different amounts of the strings. For example, suppose you had some HTML-like# text,
and you want to remove all of the tags <BOLD> and </BOLD>, leaving their contents intact.
Here’s the text:

I'm talking about the cartoon with Fred and <BOLD>Wilma</BOLD>!

And here’s a substitution to remove those tags. But what’s wrong with it?

s#<BOLD>(.*)</BOLD>#$1#g;

The problem is that the star is greedy.* What if the text had said this instead?

I thought you said Fred and <BOLD>Velma</BOLD>, not <BOLD>Wilma</BOLD>

In that case, the pattern would match from the first <BOLD> to the last </BOLD>, leaving
intact the ones in the middle of the line. Oops! Instead, you want a nongreedy quan-
tifier. The nongreedy form of star is *?, so the substitution now looks like this:

s#<BOLD>(.*?)</BOLD>#$1#g;

And it does the right thing.

Since the nongreedy form of the plus was +? and the nongreedy form of the star was
*?, you’ve probably realized that the other two quantifiers look similar. The nongreedy
form of any curly brace quantifier looks the same, but with a question mark after the
closing brace, like {5,10}? or {8,}?.† And even the question-mark quantifier has a non-
greedy form: ??. That matches either once or not at all, but it prefers not to match
anything.

#Once again, we aren’t using real HTML because you can’t correctly parse HTML with simple regular
expressions. If you really need to work with HTML or a similar markup language, use a module, such as
HTML::Parser, made to handle the complexities.

* There’s another possible problem: you should have used the /s modifier as well, since the end tag may be on
a different line than the start tag. It’s a good thing that this is just an example; if we were writing something
like this for real, we would have taken our own advice and used a well-written module.

† In theory, there’s also a nongreedy quantifier form that specifies an exact number, like {3}?. But since that
says to match exactly three of the preceding item, it has no flexibility to be either greedy or nongreedy.

More Powerful Regular Expressions | 163

Matching Multiple-Line Text
Classic regular expressions were used to match just single lines of text. But since Perl
can work with strings of any length, Perl’s patterns can match multiple lines of text as
easily as single lines. Of course, you have to include an expression that holds more than
one line of text. Here’s a string that’s four lines long:

$_ = "I'm much better\nthan Barney is\nat bowling,\nWilma.\n";

Now, the anchors ̂ and $ are normally anchors for the start and end of the whole string
(Chapter 8). But the /m regular expression option lets them match at internal newlines
as well (think m for multiple lines). This makes them anchors for the start and end of
each line, rather than the whole string.‡ So this pattern can match:

print "Found 'wilma' at start of line\n" if /^wilma\b/im;

Similarly, you could do a substitution on each line in a multiline string. Here, we read
an entire file into one variable,§ then add the file’s name as a prefix at the start of each
line:

open FILE, $filename
 or die "Can't open '$filename': $!";
my $lines = join '', <FILE>;
$lines =~ s/^/$filename: /gm;

Updating Many Files
The most common way of programmatically updating a text file is by writing an entirely
new file that looks similar to the old one, but making whatever changes we need as we
go along. As you’ll see, this technique gives nearly the same result as updating the file
itself, but it has some beneficial side effects as well.

In this example, suppose you have hundreds of files with a similar format. One of them
is fred03.dat, and it’s full of lines like these:

Program name: granite
Author: Gilbert Bates
Company: RockSoft
Department: R&D
Phone: +1 503 555-0095
Date: Tues March 9, 2004
Version: 2.1
Size: 21k
Status: Final beta

You need to fix this file so that it has some different information. Here’s roughly what
this one should look like when you’re done:

‡ Remember, this is why we recommend that you use \A and \z if you want the real beginning and end of the
string.

§ Hope it’s a small one. The file, that is, not the variable.

164 | Chapter 9: Processing Text with Regular Expressions

Program name: granite
Author: Randal L. Schwartz
Company: RockSoft
Department: R&D
Date: June 12, 2008 6:38 pm
Version: 2.1
Size: 21k
Status: Final beta

In short, you need to make three changes. The name of the Author should be changed;
the Date should be updated to today’s date, and the Phone should be removed com-
pletely. And you have to make these changes in hundreds of similar files as well.

Perl supports a way of in-place editing of files with a little extra help from the diamond
operator (<>). Here’s a program to do what you want, although it may not be obvious
how it works at first. This program’s only new feature is the special variable $^I; ignore
that for now, and we’ll come back to it:

#!/usr/bin/perl -w

use strict;

chomp(my $date = `date`);
$^I = ".bak";

while (<>) {
 s/^Author:.*/Author: Randal L. Schwartz/;
 s/^Phone:.*\n//;
 s/^Date:.*/Date: $date/;
 print;
}

Since you need today’s date, the program starts by using the system date command. A
better way to get the date (in a slightly different format) would almost surely be to use
Perl’s own localtime function in a scalar context:

my $date = localtime;

The next line sets $^I, but keep ignoring that for the moment.

The list of files for the diamond operator here is coming from the command line. The
main loop reads, updates, and prints one line at a time. With what you know so far,
that means that you’ll dump all of the files’ newly modified contents to your terminal,
scrolling furiously past your eyes, without the files being changed at all. But stick with
us. Note that the second substitution can replace the entire line containing the phone
number with an empty string—leaving not even a newline—so when that’s printed,
nothing comes out, and it’s as if the Phone never existed. Most input lines won’t match
any of the three patterns, and those will be unchanged in the output.

So this result is close to what you want, except that we haven’t shown you how the
updated information gets back out onto the disk. The answer is in the variable $^I. By
default it’s undef, and everything is normal. But when it’s set to some string, it makes
the diamond operator (<>) even more magical than usual.

More Powerful Regular Expressions | 165

You already know about much of the diamond’s magic—it will automatically open and
close a series of files for you, or read from the standard-input stream if there aren’t any
filenames given. But when there’s a string in $^I, that string is used as a backup file-
name’s extension. Let’s see that in action.

Let’s say it’s time for the diamond to open our file fred03.dat. It opens it like before,
but now it renames it, calling it fred03.dat.bak.‖ You’ve still got the same file open, but
now it has a different name on the disk. Next, the diamond creates a new file and gives
it the name fred03.dat. That’s okay; you weren’t using that name anymore. And now
the diamond selects the new file as the default for output, so that anything that we print
will go into that file.# So now the while loop will read a line from the old file, update
that, and print it out to the new file. This program can update thousands of files in a
few seconds on a typical machine. Pretty powerful, huh?

Once the program has finished, what does the user see? The user says, “Ah, I see what
happened! Perl edited my file fred03.dat, making the changes I needed, and saved me
a copy of the original in the backup file fred03.dat.bak just to be helpful!” But you now
know the truth: Perl didn’t really edit any file. It made a modified copy, said “Abraca-
dabra!”, and switched the files around while you were watching sparks come out of the
magic wand. Tricky.

Some folks use a tilde (~) as the value for $^I, since that resembles what emacs does for
backup files. Another possible value for $^I is the empty string. This enables in-place
editing, but doesn’t save the original data in a backup file. But since a small typo in
your pattern could wipe out all of the old data, using the empty string is recommended
only if you want to find out how good your backup tapes are. It’s easy enough to delete
the backup files when you’re done. And when something goes wrong and you need to
rename the backup files to their original names, you’ll be glad that you know how to
use Perl to do that (see the example in “Renaming Files” on page 223 in Chapter 13).

In-Place Editing from the Command Line
A program like the example from the previous section is fairly easy to write. But Larry
decided it wasn’t easy enough.

Imagine that you need to update hundreds of files that have the misspelling Randall
instead of the one-l name Randal. You could write a program like the one in the previous
section. Or you could do it all with a one-line program, right on the command line:

$ perl -p -i.bak -w -e 's/Randall/Randal/g' fred*.dat

‖ Some of the details of this procedure will vary on non-Unix systems, but the end result should be nearly the
same. See the release notes for your port of Perl.

#The diamond also tries to duplicate the original file’s permission and ownership settings as much as possible;
for example, if the old one was world-readable, the new one should be, as well.

166 | Chapter 9: Processing Text with Regular Expressions

Perl has a whole slew of command-line options you can use to build a complete program
in a few keystrokes.* Let’s see what these few do.

Starting the command with perl does something like putting #!/usr/bin/perl at the top
of a file: it says to use the program perl to process what follows.

The -p option tells Perl to write a program for you. It’s not much of a program, though;
it looks something like this:†

while (<>) {
 print;
}

If you want even less, you could use -n instead; that leaves out the automatic print
statement, so you can print only what you wish. (Fans of awk will recognize -p and
-n.) Again, it’s not much of a program, but it’s pretty good for the price of a few
keystrokes.

The next option is -i.bak, which you might have guessed sets $^I to ".bak" before the
program starts. If you don’t want a backup file, you can use -i alone, with no extension.
If you don’t want a spare parachute, you can leave the airplane with just one.

You’ve seen -w before—it turns on warnings.

The -e option says “executable code follows.” That means that the s/Randall/Randal/
g string is treated as Perl code. Since you’ve already got a while loop (from the -p option),
this code is put inside the loop, before the print. For technical reasons, the last semi-
colon in the -e code is optional. But if you have more than one -e, and thus more than
one chunk of code, you can safely omit only the semicolon at the end of the last one.

The last command-line parameter is fred*.dat, which says that @ARGV should hold the
list of filenames that match that filename pattern. Put the pieces all together, and it’s
as if you had written a program like this, and put it to work on all of those fred*.dat files:

#!/usr/bin/perl -w

$^I = ".bak";

while (<>) {
 s/Randall/Randal/g;
 print;
}

Compare this program to the one you used in the previous section. It’s pretty similar.
These command-line options are pretty handy, aren’t they?

* See the perlrun documentation for the complete list.

† Actually, the print occurs in a continue block. See the perlsyn and perlrun documentation for more
information.

More Powerful Regular Expressions | 167

http://perldoc.perl.org/perlrun.html
http://perldoc.perl.org/perlsyn.html
http://perldoc.perl.org/perlrun.html

Exercises
See “Answers to Exercises” on page 309 for answers to the following exercises:

1. [7] Make a pattern that will match three consecutive copies of whatever is currently
contained in $what. That is, if $what is fred, your pattern should match fred
fredfred. If $what is fred|barney, your pattern should match fredfredbarney or
barneyfredfred or barneybarneybarney or many other variations. (Hint: you should
set $what at the top of the pattern test program with a statement like my $what =
'fred|barney';.)

2. [12] Write a program that makes a modified copy of a text file. In the copy, every
string Fred (case-insensitive) should be replaced with Larry. (So, Manfred Mann
should become ManLarry Mann.) The input file name should be given on the com-
mand line (don’t ask the user!), and the output filename should be the corre-
sponding file name ending with .out.

3. [8] Modify the previous program to change every Fred to Wilma and every Wilma to
Fred. Now input like fred&wilma should look like Wilma&Fred in the output.

4. [10] Extra credit exercise: write a program to add a copyright line to all of your
exercise answers so far, by placing a line like:

 ## Copyright (C) 20XX by Yours Truly

in the file immediately after the “shebang” line. You should edit the files “in place,”
keeping a backup. Presume that the program will be invoked with the filenames to
edit already on the command line.

5. [15] Extra extra credit exercise: modify the previous program so that it doesn’t edit
the files that already contain the copyright line. As a hint on that, you might need
to know that the name of the file being read by the diamond operator is in $ARGV.

168 | Chapter 9: Processing Text with Regular Expressions

CHAPTER 10

More Control Structures

In this chapter, you’ll see some alternative ways to write Perl code. For the most part,
these techniques don’t make the language more powerful, but they make it easier or
more convenient to get the job done. You don’t have to use these techniques in your
own code, but don’t be tempted to skip this chapter—you’re certain to see these control
structures in other people’s code sooner or later (in fact, you’re absolutely certain to
see these things in use by the time you finish reading this book).

The unless Control Structure
In an if control structure, the block of code is executed only when the conditional
expression is true. If you want to execute a block of code only when the conditional is
false, change if to unless:

unless ($fred =~ /\A[A-Z_]\w*\z/i) {
 print "The value of \$fred doesn't look like a Perl identifier name.\n";
}

Using unless says to run the block of code unless this condition is true. It’s just like
using an if test with the opposite condition. Another way to say it is that it’s like having
the else clause on its own. That is, whenever you see an unless that you don’t under-
stand, you can rewrite it (either in your head or in reality) as an if test:

if ($fred =~ /\A[A-Z_]\w*\z/i) {
 # Do nothing
} else {
 print "The value of \$fred doesn't look like a Perl identifier name.\n";
}

It’s no more or less efficient, and it should compile to the same internal byte codes. Or,
another way to rewrite it would be to negate the conditional expression by using the
negation operator (!):

if (! ($fred =~ /\A[A-Z_]\w*\z/i)) {
 print "The value of \$fred doesn't look like a Perl identifier name.\n";
}

169

Generally, you should pick the way of writing code that makes the most sense to you,
since that will probably make the most sense to your maintenance programmer. If it
makes the most sense to write if with a negation, do that. More often, however, you’ll
probably find it natural to use unless.

The else Clause with unless
You could even have an else clause with an unless. While this syntax is supported, it’s
potentially confusing:

unless ($mon =~ /\AFeb/) {
 print "This month has at least thirty days.\n";
} else {
 print "Do you see what's going on here?\n";
}

Some people may wish to use this, especially when the first clause is very short (perhaps
only one line) and the second is several lines of code. But you could make this one a
negated if, or maybe simply swap the clauses to make a normal if:

if ($mon =~ /\AFeb/) {
 print "Do you see what's going on here?\n";
} else {
 print "This month has at least thirty days.\n";
}

It’s important to remember that you’re always writing code for two readers: the com-
puter that will run the code and the human being who has to keep the code working.
If the human can’t understand what you’ve written, pretty soon the computer won’t
be doing the right thing either.

The until Control Structure
Sometimes you want to reverse the condition of a while loop. To do that, just use until:

until ($j > $i) {
 $j *= 2;
}

This loop runs until the conditional expression returns true. But it’s really just a
while loop in disguise, except that this one repeats as long as the conditional is false,
rather than true. The conditional expression is evaluated before the first iteration, so
this is still a zero-or-more-times loop, just like the while loop.* As with if and unless,
you could rewrite any until loop to become a while loop by negating the condition.
But generally, you’ll find it simple and natural to use until from time to time.

* Pascal programmers, take note: in Pascal, the repeat-until always runs at least one iteration, but an until
loop in Perl may not run at all if the conditional expression is true before the loop starts.

170 | Chapter 10: More Control Structures

Expression Modifiers
In order to have a more compact notation, an expression may be followed by a modifier
that controls it. For example, the if modifier works in a way analogous to an if block:

print "$n is a negative number.\n" if $n < 0;

That gives exactly the same result as if you had used this code, except that you saved
some typing by leaving out the parentheses and curly braces:†

if ($n < 0) {
 print "$n is a negative number.\n";
}

As we’ve said, Perl folks generally like to avoid typing. And the shorter form reads like
in English: print this message if $n is less than zero.

Notice that the conditional expression is still evaluated first, even though it’s written
at the end. This is backward from the usual left-to-right ordering; in understanding Perl
code, you have to do as Perl’s internal compiler does, and read to the end of the state-
ment before you can tell what it’s really doing.

There are other modifiers as well:

&error("Invalid input") unless &valid($input);
$i *= 2 until $i > $j;
print " ", ($n += 2) while $n < 10;
&greet($_) foreach @person;

These all work just as (we hope) you would expect. That is, each one could be rewritten
in a similar way to rewriting the if modifier example earlier. Here is one:

while ($n < 10) {
 print " ", ($n += 2);
}

The expression in parentheses inside the print argument list is noteworthy because it
adds two to $n, storing the result back into $n. Then it returns that new value, which
will be printed.

These shorter forms read almost like a natural language: call the &greet subroutine for
each @person in the list. Double $i until it’s larger than $j.‡ One of the common uses
of these modifiers is in a statement like this one:

print "fred is '$fred', barney is '$barney'\n" if $I_am_curious;

† You can also leave out the line breaks. But we should mention that the curly brace form does create a new
scope. In the rare case that you need the full details, check the documentation.

‡ Well, it helps us to think of them like that.

Expression Modifiers | 171

By writing the code “in reverse” like this, you can put the important part of the state-
ment at the beginning. The point of that statement is to monitor some variables; the
point is not to check whether you’re curious.§ Some people prefer to write the whole
statement on one line, perhaps with some tab characters before the if, to move it over
toward the right margin as you saw in the previous example, while others put the if
modifier indented on a new line:

print "fred is '$fred', barney is '$barney'\n"
 if $I_am_curious;

Although you can rewrite any of these expressions with modifiers as a block (the “old-
fashioned” way), the converse isn’t necessarily true. Perl allows only a single expression
on either side of the modifier. So you can’t write something if something while some-
thing until something unless something foreach something, which would just be too
confusing. And you can’t put multiple statements on the left of the modifier. If you
need more than just a simple expression on each side, just write the code the old-
fashioned way, with the parentheses and curly braces.

As we mentioned in relation to the if modifier, the control expression (on the right) is
always evaluated first, just as it would be in the old-fashioned form.

With the foreach modifier, there’s no way to choose a different control variable—it’s
always $_. Usually, that’s no problem, but if you want to use a different variable, you’ll
need to rewrite it as a traditional foreach loop.

The Naked Block Control Structure
The so-called “naked” block is one without a keyword or condition. That is, suppose
you start with a while loop, which looks something like this:

while (condition) {
 body;
 body;
 body;
}

Now, take away the while keyword and the conditional expression, and you’ll have a
naked block:

{
 body;
 body;
 body;
}

The naked block is like a while or foreach loop, except that it doesn’t loop; it just
executes the body of the loop once, and it’s done. It’s an un-loop!

§ Of course, we made up the name $I_am_curious; it’s not a built-in Perl variable. Generally, folks who use this
technique will either call their variable $TRACING, or will use a constant declared with the constant pragma.

172 | Chapter 10: More Control Structures

You’ll see in a while that there are other uses for the naked block, but one of its features
is that it provides a scope for temporary lexical variables:

{
 print "Please enter a number: ";
 chomp(my $n = <STDIN>);
 my $root = sqrt $n; # calculate the square root
 print "The square root of $n is $root.\n";
}

In this block, $n and $root are temporary variables scoped to the block. As a general
guideline, all variables should be declared in the smallest scope available. If you need
a variable for just a few lines of code, you can put those lines into a naked block and
declare the variable inside that block. Of course, if you need the value of either $n or
$root later, you would need to declare them in a larger scope.

You may have noticed the sqrt function in that code and wondered about it—yes, it’s
a function we haven’t shown before. Perl has many built-in functions that are beyond
the scope of this book. When you’re ready, check the perlfunc documentation to learn
about more of them.

The elsif Clause
Every so often, you may need to check a number of conditional expressions, one after
another, to see which one of them is true. This can be done with the if control struc-
ture’s elsif clause, as in this example:

if (! defined $dino) {
 print "The value is undef.\n";
} elsif ($dino =~ /^-?\d+\.?$/) {
 print "The value is an integer.\n";
} elsif ($dino =~ /^-?\d*\.\d+$/) {
 print "The value is a _simple_ floating-point number.\n";
} elsif ($dino eq '') {
 print "The value is the empty string.\n";
} else {
 print "The value is the string '$dino'.\n";
}

Perl will test the conditional expressions one after another. When one succeeds, the
corresponding block of code is executed, and then the whole control structure is
done,‖ and execution goes on to the rest of the program. If none has succeeded, the
else block at the end is executed. (Of course, the else clause is still optional, although
in this case it’s often a good idea to include it.)

There’s no limit to the number of elsif clauses, but remember that Perl has to evaluate
the first 99 tests before it can get to the 100th. If you’ll have more than half a dozen
elsifs, you should consider whether there’s a more efficient way to write it. The Perl

‖ There’s no “fall-through” to the next block, as in the “switch” structure of languages like C.

The elsif Clause | 173

http://perldoc.perl.org/perlfunc.html

FAQ (see the perlfaq documentation) has a number of suggestions for emulating the
“case” or “switch” statements of other languages, and users of Perl 5.10 or later can
use given-when, described in Chapter 15, as an alternative.

You may have noticed by this point that the keyword is spelled elsif, with only one
e. If you write it as “elseif” with a second e, Perl will tell you it is not the correct spelling.
Why not? Because Larry says so.#

Autoincrement and Autodecrement
You’ll often want a scalar variable to count up or down by one. Since these are frequent
constructs, there are shortcuts for them, like nearly everything else we do frequently.

The autoincrement operator (++) adds one to a scalar variable, like the same operator
in C and similar languages:

my $bedrock = 42;
$bedrock++; # add one to $bedrock; it's now 43

Just like other ways of adding one to a variable, the scalar will be created if necessary:

my @people = qw{ fred barney fred wilma dino barney fred pebbles };
my %count; # new empty hash
$count{$_}++ foreach @people; # creates new keys and values as needed

The first time through that foreach loop, $count{$_} is incremented. That’s
$count{"fred"}, which thus goes from undef (since it didn’t previously exist in the hash)
up to 1. The next time through the loop, $count{"barney"} becomes 1; after that,
$count{"fred"} becomes 2. Each time through the loop, you increment one element in
%count, and possibly create it as well. After that loop finishes, $count{"fred"} is 3. This
provides a quick and easy way to see which items are in a list and how many times each
one appears.

Similarly, the autodecrement operator (--) subtracts one from a scalar variable:

$bedrock--; # subtract one from $bedrock; it's 42 again

#In fact, he resists any suggestion that it even be permitted as a valid alternative spelling. “If you want to spell
it with a second e, it’s simple. Step 1—Make up your own language. Step 2—Make it popular.” When you
make your own programming language, you can spell the keywords in any way you’d like. We hope that you
will decide that yours shouldn’t be the first to have an “elseunless”.

174 | Chapter 10: More Control Structures

http://perldoc.perl.org/perlfaq.html

The Value of Autoincrement
You can fetch the value of a variable and change that value at the same time. Put the
++ operator in front of the variable name to increment the variable first and then fetch
its value. This is a preincrement:

my $m = 5;
my $n = ++$m; # increment $m to 6, and put that value into $n

Or put the -- operator in front to decrement the variable first and then fetch its value.
This is a predecrement:

my $c = --$m; # decrement $m to 5, and put that value into $c

Here’s the tricky part. Put the variable name first to fetch the value first, and then do
the increment or decrement. This is called a postincrement or postdecrement:

my $d = $m++; # $d gets the old value (5), then increment $m to 6
my $e = $m--; # $e gets the old value (6), then decrement $m to 5

It’s tricky because you’re doing two things at once. You’re fetching the value, and you’re
changing it in the same expression. If the operator is first, you increment (or decrement)
first, then use the new value. If the variable is first, you return its (old) value first, then
do the increment or decrement. Another way to say it is that these operators return a
value, but they also have the side effect of modifying the variable’s value.

If you write these in an expression of their own,* not using the value but only the side
effect, there’s no difference† whether you put the operator before or after the variable:

$bedrock++; # adds one to $bedrock
++$bedrock; # just the same; adds one to $bedrock

A common use of these operators is in connection with a hash, to identify an item you
have seen before:

my @people = qw{ fred barney bamm-bamm wilma dino barney betty pebbles };
my %seen;

foreach (@people) {
 print "I've seen you somewhere before, $_!\n"
 if $seen{$_}++;
}

When barney shows up for the first time, the value of $seen{$_}++ is false, since it’s the
value of $seen{$_}, which is $seen{"barney"}, which is undef. But that expression has
the side effect of incrementing $seen{"barney"}. When barney shows up again,
$seen{"barney"} is now a true value, so you print the message.

* That is, in a void context.

† Programmers who get inside the implementations of languages may expect that postincrement and
postdecrement would be less efficient than their counterparts, but Perl’s not like that. Perl automatically
optimizes the post- forms when you use them in a void context.

Autoincrement and Autodecrement | 175

The for Control Structure
Perl’s for control structure is like the common for control structure you may have seen
in other languages such as C. It looks like this:

for (initialization; test; increment) {
 body;
 body;
}

To Perl, though, this kind of loop is really a while loop in disguise, something like this:‡

initialization;
while (test) {
 body;
 body;
 increment;
}

The most common use of the for loop, by far, is for making computed iterations:

for ($i = 1; $i <= 10; $i++) { # count from 1 to 10
 print "I can count to $i!\n";
}

When you’ve seen these before, you’ll know what the first line is saying even before
you read the comment. Before the loop starts, the control variable, $i, is set to 1. Then,
the loop is really a while loop in disguise, looping while $i is less than or equal to 10.
Between each iteration and the next is the increment, which here is a literal increment,
adding one to the control variable, which is $i.

So, the first time through this loop, $i is 1. Since that’s less than or equal to 10, you see
the message. Although the increment is written at the top of the loop, it logically hap-
pens at the bottom of the loop, after printing the message. So, $i becomes 2, which is
less than or equal to 10, so we print the message again, and $i is incremented to 3, which
is less than or equal to 10, and so on.

Eventually, you print the message that your program can count to 9. Then you incre-
ment $i to 10, which is less than or equal to 10, so you run the loop one last time and
print that your program can count to 10. Finally, you increment $i for the last time, to
11, which is not less than or equal to 10. So control drops out of the loop, and you’re
on to the rest of the program.

All three parts are together at the top of the loop so that it’s easy for an experienced
programmer to read that first line and say, “Ah, it’s a loop that counts $i from 1 to 10.”

Note that after the loop finishes, the control variable has a value “after” the loop. That
is, in this case, the control variable has gone all the way to 11.§ This loop is very versatile,

‡ Actually, the increment happens in a continue block, which is beyond the scope of this book. See the
perlsyn documentation for the truth.

§ See This is Spinal Tap if you haven’t had the pleasure yet.

176 | Chapter 10: More Control Structures

http://perldoc.perl.org/perlsyn.html

since you can make it count in all sorts of ways. For example, you can count down from
10 to 1:

for ($i = 10; $i >= 1; $i--) {
 print "I can count down to $i\n";
}

And this loop counts from –150 to 1000 by threes:‖

for ($i = –150; $i <= 1000; $i += 3) {
 print "$i\n";
}

In fact, you could make any of the three control parts (initialization, test, or increment)
empty, if you wish, but you still need the two semicolons. In this (quite unusual) ex-
ample, the test is a substitution, and the increment is empty:

for ($_ = "bedrock"; s/(.)//;) { # loops while the s/// is successful
 print "One character is: $1\n";
}

The test expression (in the implied while loop) is the substitution, which returns a true
value if it succeeded. In this case, the first time through the loop, the substitution re-
moves the b from bedrock. Each iteration removes another letter. When the string is
empty, the substitution will fail, and the loop is done.

If the test expression (the one between the two semicolons) is empty, it’s automatically
true, making an infinite loop. But don’t make an infinite loop like this until you see
how to break out of such a loop, which we’ll show later in this chapter:

for (;;) {
 print "It's an infinite loop!\n";
}

A more Perl-like way to write an intentional infinite loop, when you really want
one,# is with while:

while (1) {
 print "It's another infinite loop!\n";
}

Although C programmers are familiar with the first way, even a beginning Perl pro-
grammer should recognize that 1 is always true, making an intentional infinite loop, so
the second is generally a better way to write it. Perl is smart enough to recognize a
constant expression like that and optimize it away, so there’s no difference in efficiency.

‖ Of course, it never gets to 1000 exactly. The last iteration uses 999, since each value of $i is a multiple of three.

#If you somehow made an infinite loop that’s gotten away from you, see whether Control-C will halt it. It’s
possible that you’ll get a lot of output even after typing Control-C, depending upon your system’s I/O and
other factors. Hey, we warned you.

The for Control Structure | 177

The Secret Connection Between foreach and for
It turns out that, inside the Perl parser, the keyword foreach is exactly equivalent to
the keyword for. That is, any time Perl sees one of them, it’s the same as if you had
typed the other. Perl can tell which you meant by looking inside the parentheses. If
you’ve got the two semicolons, it’s a computed for loop (like we’ve just been talking
about). If you don’t have the semicolons, it’s really a foreach loop:

for (1..10) { # really a foreach loop from 1 to 10
 print "I can count to $_!\n";
}

That’s really a foreach loop, but it’s written for. Except for that one example, all
through this book we’ll spell out foreach wherever it appears. But in the real world, do
you think that Perl folks will type those extra four letters?* Excepting only beginners’
code, it’s always written for, and you’ll have to do as Perl does and look for the semi-
colons to tell which kind of loop it is.

In Perl, the true foreach loop is almost always a better choice. In the foreach loop
(written for) in that previous example, it’s easy to see at a glance that the loop will go
from 1 to 10. But do you see what’s wrong with this computed loop that’s trying to do
the same thing? Don’t peek at the answer in the footnote until you think you’ve found
what’s wrong:†

for ($i = 1; $i < 10; $i++) { # Oops! Something is wrong here!
 print "I can count to $_!\n";
}

Loop Controls
As you’ve surely noticed by now, Perl is one of the so-called “structured” programming
languages. In particular, there’s just one entrance to any block of code, which is at the
top of that block. But there are times when you may need more control or versatility
than what we’ve shown so far. For example, you may need to make a loop like a
while loop, but one that always runs at least once. Or maybe you need to occasionally
exit a block of code early. Perl has three loop-control operators you can use in loop
blocks to make the loop do all sorts of tricks.

* If you think that, you haven’t been paying attention. Among programmers, especially Perl programmers,
laziness is one of the classical virtues. If you don’t believe us, ask someone at the next Perl Mongers meeting.

† There are two and one-half bugs. First, the conditional uses a less-than sign, so the loop will run 9 times,
instead of 10. It’s easy to get a so-called “fencepost” bug with this kind of loop, like what happened when
the rancher needed enough fenceposts to make a 30-meter-long fence with a post every three meters. (The
answer is not 10 fenceposts.) Second, the control variable is $i, but the loop body is using $_. And second
and a half, it’s a lot more work to read, write, maintain, and debug this type of loop, which is why we say
that the true foreach is generally a better choice in Perl.

178 | Chapter 10: More Control Structures

The last Operator
The last operator immediately ends execution of the loop. (If you’ve used the “break”
operator in C or a similar language, it’s like that.) It’s the “emergency exit” for loop
blocks. When you hit last, the loop is done. For example:

Print all input lines mentioning fred, until the __END__ marker
while (<STDIN>) {
 if (/__END__/) {
 # No more input on or after this marker line
 last;
 } elsif (/fred/) {
 print;
 }
}
last comes here

Once an input line has the __END__ marker, that loop is done. Of course, that comment
line at the end is merely a comment—it’s not required in any way. We just threw that
in to make it clearer what’s happening.

There are five kinds of loop blocks in Perl. These are the blocks of for, foreach, while,
until, or the naked block.‡ The curly braces of an if block or subroutine§ don’t qualify.
As you may have noticed in the example above, the last operator applied to the entire
loop block.

The last operator will apply to the innermost currently running loop block. To jump
out of outer blocks, stay tuned; that’s coming up in a little bit.

The next Operator
Sometimes you’re not ready for the loop to finish, but you’re done with the current
iteration. That’s what the next operator is good for. It jumps to the inside of the bottom
of the current loop block.‖ After next, control continues with the next iteration of the
loop (much like the continue operator in C or a similar language):

Analyze words in the input file or files
while (<>) {
 foreach (split) { # break $_ into words, assign each to $_ in turn
 $total++;

‡ Yes, you can use last to jump out of a naked block. That’s not exactly the same as jumping naked out into
your block.

§ It’s probably not a good idea, but you could use these loop-control operators from inside a subroutine to
control a loop that is outside the subroutine. That is, if a subroutine is called in a loop block, and the subroutine
executes last when there’s no loop block running inside the subroutine, the flow of control will jump to just
after the loop block in the main code. This ability to use loop control from within a subroutine may go away
in a future version of Perl, and no one is likely to miss it.

‖ This is another of our many lies. In truth, next jumps to the start of the (usually omitted) continue block for
the loop. See the perlsyn documentation for the full details.

Loop Controls | 179

http://perldoc.perl.org/perlsyn.html

 next if /\W/; # strange words skip the remainder of the loop
 $valid++;
 $count{$_}++; # count each separate word
 ## next comes here ##
 }
}

print "total things = $total, valid words = $valid\n";
foreach $word (sort keys %count) {
 print "$word was seen $count{$word} times.\n";
}

This one is a little more complex than most of our examples up to this point, so let’s
take it step-by-step. The while loop is reading lines of input from the diamond operator,
one after another, into $_; you’ve seen that before. Each time through that loop, another
line of input will be in $_.

Inside that loop, the foreach loop iterates over the return value split. Do you remember
the default for split with no arguments?# That splits $_ on whitespace, in effect break-
ing $_ into a list of words. Since the foreach loop doesn’t mention some other control
variable, the control variable will be $_. So, you’ll see one word after another in $_.

But didn’t we just say that $_ holds one line of input after another? Well, in the outer
loop, that’s what it is. But inside the foreach loop, it holds one word after another. It’s
no problem for Perl to reuse $_ for a new purpose; this happens all the time.

Now, inside the foreach loop, you’re seeing one word at a time in $_. $total is incre-
mented, so it must be the total number of words. But the next line (which is the point
of this example) checks to see whether the word has any nonword characters—anything
but letters, digits, and underscores. So, if the word is Tom's, or if it is full-sized, or if
it has an adjoining comma, quote mark, or any other strange character, it will match
that pattern and you’ll skip the rest of the loop, going on to the next word.

But let’s say that it’s an ordinary word, like fred. In that case, you count $valid up by
one, and also $count{$_}, keeping a count for each different word. So, when you finish
the two loops, you’ve counted every word in every line of input from every file the user
wanted you to use.

We’re not going to explain the last few lines. By now, we hope you’ve got stuff like that
down already.

Like last, next may be used in any of the five kinds of loop blocks: for, foreach, while,
until, or the naked block. Also, if you nest loop blocks, next works with the innermost
one. You’ll see how to change that at the end of this section.

#If you don’t remember it, don’t worry too much. Don’t waste any brain cells remembering things that you
can look up with perldoc.

180 | Chapter 10: More Control Structures

http://perldoc.perl.org/perldoc.html

The redo Operator
The third member of the loop control triad is redo. It says to go back to the top of the
current loop block, without testing any conditional expression or advancing to the next
iteration. (If you’ve used C or a similar language, you’ve never seen this one before.
Those languages don’t have this kind of operator.) Here’s an example:

Typing test
my @words = qw{ fred barney pebbles dino wilma betty };
my $errors = 0;

foreach (@words) {
 ## redo comes here ##
 print "Type the word '$_': ";
 chomp(my $try = <STDIN>);
 if ($try ne $_) {
 print "Sorry - That's not right.\n\n";
 $errors++;
 redo; # jump back up to the top of the loop
 }
}
print "You've completed the test, with $errors errors.\n";

Like the other two operators, redo will work with any of the five kinds of loop blocks,
and it will work with the innermost loop block when they’re nested.

The big difference between next and redo is that next will advance to the next iteration,
but redo will redo the current iteration. Here’s an example program that you can play
with to get a feel for how these three operators work:

foreach (1..10) {
 print "Iteration number $_.\n\n";
 print "Please choose: last, next, redo, or none of the above? ";
 chomp(my $choice = <STDIN>);
 print "\n";
 last if $choice =~ /last/i;
 next if $choice =~ /next/i;
 redo if $choice =~ /redo/i;
 print "That wasn't any of the choices... onward!\n\n";
}

print "That's all, folks!\n";

If you just press return without typing anything (try it two or three times), the loop
counts along from one number to the next. If you choose last when you get to number
four, the loop is done, and you won’t go on to number five. If you choose next when
you’re on four, you’re on to number five without printing the “onward” message. And
if you choose redo when you’re on four, you’re back to doing number four all over again.

Loop Controls | 181

Labeled Blocks
When you need to work with a loop block that’s not the innermost one, use a label.
Labels in Perl are like other identifiers—made of letters, digits, and underscores, but
they can’t start with a digit—however, since they have no prefix character, labels could
be confused with the names of built-in function names, or even with your own sub-
routines’ names. So, it would be a poor choice to make a label called print or if. Because
of that, Larry recommends that they be all uppercase. That not only ensures that the
label won’t conflict with another identifier but it also makes it easy to spot the label in
the code. In any case, labels are rare, only showing up in a small percentage of Perl
programs.

To label a loop block, just put the label and a colon in front of the loop. Then, inside
the loop, you may use the label after last, next, or redo, as needed:

LINE: while (<>) {
 foreach (split) {
 last LINE if /__END__/; # bail out of the LINE loop
 ...
 }
}

For readability, it’s generally nice to put the label at the left margin, even if the current
code is at a higher indentation. Notice that the label names the entire block; it’s not
marking a target point in the code.* In that previous snippet of sample code, the special
__END__ token marks the end of all input. Once that token shows up, the program will
ignore any remaining lines (even from other files).

It often makes sense to choose a noun as the name of the loop.† That is, the outer loop
is processing a line at a time, so we called it LINE. If we had to name the inner loop, we
would have called it WORD, since it processes a word at a time. That makes it convenient
to say things like “(move on to the) next WORD” or “redo (the current) LINE.”

The Conditional Operator ?:
When Larry was deciding which operators to make available in Perl, he didn’t want
former C programmers to miss something that C had and Perl didn’t, so he brought
over all of C’s operators to Perl.‡ That meant bringing over C’s most confusing operator:
the conditional ?: operator. While it may be confusing, it can also be quite useful.

* This isn’t goto, after all.

† That is, it makes more sense to do that than not to do that. Perl doesn’t care if you call your loop labels things
like XYZZY or PLUGH. However, unless you were friendly with the Colossal Cave in the ’70s, you might not get
the reference.

‡ Well, to be sure, he did leave out the ones that have no use in Perl, such as the operator that turns a number
into the memory address of a variable. And he added several operators (like the string concatenation
operator), which make C folks jealous of Perl.

182 | Chapter 10: More Control Structures

The conditional operator is like an if-then-else test, all rolled into an expression. It’s
sometimes called a “ternary” operator because it takes three operands. It looks like this:

expression ? if_true_expr : if_false_expr

First, Perl evaluates the expression to see whether it’s true or false. If it’s true, Perl
returns the second expression; otherwise, it returns the third expression. Every time,
one of the two expressions on the right is evaluated, and one is ignored. That is, if the
first expression is true, then the second expression is evaluated, and the third is ignored.
If the first expression is false, then the second is ignored, and the third is evaluated as
the value of the whole thing.

In this example, the result of the subroutine &is_weekend determines which string ex-
pression you’ll assign to the variable:

my $location = &is_weekend($day) ? "home" : "work";

And here, you calculate and print out an average—or just a placeholder line of hyphens,
if there’s no average available:

my $average = $n ? ($total/$n) : "-----";
print "Average: $average\n";

You could always rewrite any use of the ?: operator as an if structure, often much less
conveniently and less concisely:

my $average;
if ($n) {
 $average = $total / $n;
} else {
 $average = "-----";
}
print "Average: $average\n";

Here’s a trick you might see used to code up a nice multiway branch:

my $size =
 ($width < 10) ? "small" :
 ($width < 20) ? "medium" :
 ($width < 50) ? "large" :
 "extra-large"; # default

That is really just three nested ?: operators, and it works quite well once you get the
hang of it.

Of course, you’re not obliged to use this operator. Beginners may wish to avoid it. But
you’ll see it in others’ code, sooner or later, and we hope that one day you’ll find a good
reason to use it in your own programs.

The Conditional Operator ?: | 183

Logical Operators
As you might expect, Perl has all of the necessary logical operators needed to work with
Boolean (true/false) values. For example, it’s often useful to combine logical tests by
using the logical AND operator (&&) and the logical OR operator (||):

if ($dessert{'cake'} && $dessert{'ice cream'}) {
 # Both are true
 print "Hooray! Cake and ice cream!\n";
} elsif ($dessert{'cake'} || $dessert{'ice cream'}) {
 # At least one is true
 print "That's still good...\n";
} else {
 # Neither is true; do nothing (we're sad)
}

There may be a shortcut. If the left side of a logical AND operation is false, the whole
thing is false, since logical AND needs both sides to be true in order to return true. In
that case, there’s no reason to check the right side, so Perl doesn’t evaluate it. Consider
what happens in this example if $hour is 3:

if ((9 <= $hour) && ($hour < 17)) {
 print "Aren't you supposed to be at work...?\n";
}

Similarly, if the left side of a logical OR operation is true, Perl doesn’t evaluate the right
side. Consider what happens here if $name is fred:

if (($name eq 'fred') || ($name eq 'barney')) {
 print "You're my kind of guy!\n";
}

Because of this behavior, these operators are called “short circuit” logical operators.
They take a short circuit to the result whenever they can. In fact, it’s fairly common to
rely upon this short circuit behavior. Suppose you need to calculate an average:

if (($n != 0) && ($total/$n < 5)) {
 print "The average is below five.\n";
}

In that example, Perl evaluates the right side only if the left side is true, so you can’t
accidentally divide by zero and crash the program (and we’ll show you more about that
in “Trapping Errors” on page 282 in Chapter 17).

The Value of a Short Circuit Operator
Unlike what happens in C (and similar languages), the value of a short circuit logical
operator is the last part evaluated, not just a Boolean value. This provides the same
result, in that the last part evaluated is always true when the whole thing should be
true, and it’s always false when the whole thing should be false.

184 | Chapter 10: More Control Structures

But it’s a much more useful return value. Among other things, the logical OR operator
is quite handy for selecting a default value:

my $last_name = $last_name{$someone} || '(No last name)';

If $someone is not listed in the hash, the left side will be undef, which is false. So, the
logical OR will have to look to the right side for the value, making the right side the
default. In this idiom the default value won’t merely replace undef; it would replace any
false value equally well. You could fix that with the conditional operator:

my $last_name = defined $last_name{$someone} ?
 $last_name{$someone} : '(No last name)';

That’s too much work, and you had to say $last_name{$someone} twice. Perl 5.10 added
a better way to do this, and it’s the next section.

The defined-or Operator
In the previous section, you used the || operator to give a default value. That ignored
the special case where the defined value was false but perfectly acceptable as a value.
You then saw the uglier version using the conditional operator.

Perl 5.10 got around this sort of bug with the defined-or operator, //, which short-
circuits when it finds a defined value, no matter if that value on the lefthand side is true
or false. Even if someone’s last name is 0, this version still works:

use 5.010;

my $last_name = $last_name{$someone} // '(No last name)';

Sometimes you just want to give a variable a value if it doesn’t already have one, and
if it already has a value leave it alone. Suppose you want to only print messages if you
set the VERBOSE environment variable. You check the value for the VERBOSE key in the
%ENV hash. If it doesn’t have a value, you want to give it one:

use 5.010;

my $Verbose = $ENV{VERBOSE} // 1;
print "I can talk to you!\n" if $Verbose;

You can see this in action by trying several values with // to see which ones pass through
to the default value:

use 5.010;

foreach my $try (0, undef, '0', 1, 25) {
 print "Trying [$try] ---> ";
 my $value = $try // 'default';
 say "\tgot [$value]";
 }

Logical Operators | 185

The output shows that you only get the default string when $try is undef:

Trying [0] ---> got [0]
Trying [] ---> got [default]
Trying [0] ---> got [0]
Trying [1] ---> got [1]
Trying [25] ---> got [25]

Sometimes you want to set a value when there isn’t one already. For instance, when
you have warnings enabled and try to print an undefined value, you get an annoying
error:

use warnings;

my $name; # no value, so undefined!
printf "%s", $name; # Use of uninitialized value in printf ...

Sometimes that error is harmless. You could just ignore it, but if you expect that you
might try to print an undefined value, you can use the empty string instead:

use 5.010;
use warnings;

my $name; # no value, so undefined!
printf "%s", $name // '';

Control Structures Using Partial-Evaluation Operators
The four operators that you’ve just seen—&&, ||, //, and ?:—all share a peculiar
property: depending upon the value on the left side, they may or may not evaluate an
expression. Sometimes they evaluate the expression and sometimes they don’t. For that
reason, these are sometimes called partial-evaluation operators, since they may not
evaluate all of the expressions around them. And partial-evaluation operators are
automatically control structures.§ It’s not as if Larry felt a burning need to add more
control structures to Perl. But once he had decided to put these partial-evaluation
operators into Perl, they automatically became control structures as well. After all,
anything that can activate and deactivate a chunk of code is, by that very fact, a control
structure.

Fortunately, you’ll notice this only when the controlled expression has side effects, like
altering a variable’s value or causing some output. For example, suppose you ran across
this line of code:

($m < $n) && ($m = $n);

Right away, you should notice that the result of the logical AND isn’t being assigned
anywhere.‖ Why not?

§ Some of you were wondering why these logical operators are being covered in this chapter, weren’t you?

‖ But don’t forget to consider that it might be a return value, as the last expression in a subroutine.

186 | Chapter 10: More Control Structures

If $m is really less than $n, the left side is true, so the right side will be evaluated, thereby
doing the assignment. But if $m is not less than $n, the left side will be false, and thus
the right side would be skipped. So that line of code would do essentially the same thing
as this one, which is easier to understand:

if ($m < $n) { $m = $n }

Or maybe even:

$m = $n if $m < $n;

Or maybe you’re fixing someone else’s program, and you see a line like this one:

($m > 10) || print "why is it not greater?\n";

If $m is really greater than 10, the left side is true and the logical OR is done. But if it’s
not, the left side is false, and this will go on to print the message. Once again, this could
(and probably should) be written in the traditional way, probably with if or unless.#

If you have a particularly twisted brain, you might even learn to read these lines as if
they were written in English. For example: check that $m is less than $n, and if it is, then
do the assignment. Check that $m is more than 10, or if it’s not, then print the message.

It’s generally former C programmers or old-time Perl programmers who most often use
these ways of writing control structures. Why do they do it? Some have the mistaken
idea that these are more efficient. Some think these tricks make their code cooler. Some
are merely copying what they saw someone else do.

In the same way, you can use the conditional operator for control. In this case, you
want to assign $x to the smaller of two variables:

($m < $n) ? ($m = $x) : ($n = $x);

If $m is smaller, it gets $x. Otherwise, $n does.

There is another way to write the logical AND and logical OR operators. You may wish
to write them out as words: and and or.* These word operators have the same behaviors
as the ones written with punctuation, but the words are down at the bottom of the
precedence chart. Since the words don’t “stick” so tightly to the nearby parts of the
expression, they may need fewer parentheses:

$m < $n and $m = $n; # but better written as the corresponding if

Then again, you may need more parentheses. Precedence is a bugaboo. Be sure to use
parentheses to say what you mean, unless you’re sure of the precedence. Nevertheless,
since the word forms are very low precedence, you can generally understand that they
cut the expression into big pieces, doing everything on the left first, and then (if needed)
everything on the right.

#You most often see this sort of expression from people coming from the shell scripting world and transferring
the idioms they know there into their new language.

* There are also the low-precedence not (like the logical-negation operator, !) and the rare xor.

Logical Operators | 187

Despite the fact that using logical operators as control structures can be confusing,
sometimes they’re the accepted way to write code. The idiomatic way of opening a file
in Perl looks like this:†

open my $fh, '<', $filename
 or die "Can't open '$filename': $!";

By using the low-precedence short circuit or operator, you tell Perl that it should “open
this file…or die!” If the open succeeds, returning a true value, the or is complete. But if
it fails, the false value causes the or to evaluate the part on the right, which will die with
a message.

So, using these operators as control structures is part of idiomatic Perl—Perl as she is
spoken. Used properly, they can make your code more powerful; otherwise, they can
make your code unmaintainable. Don’t overuse them.‡

Exercises
See “Answers to Exercises” on page 311 for the answers to the following exercises:

1. [25] Make a program that will repeatedly ask the user to guess a secret number
from 1 to 100 until the user guesses the secret number. Your program should pick
the number at random by using the magical formula int(1 + rand 100).§ When
the user guesses wrong, the program should respond, “Too high” or “Too low.” If
the user enters the word quit or exit, or if the user enters a blank line, the program
should quit. Of course, if the user guesses correctly, the program should quit then
as well!

2. [10] Modify the program from the previous exercise to print extra debugging in-
formation as it goes along, such as the secret number it chose. Make your change
such that you can turn it off, but your program emits no warnings if you turn it off.
If you are using Perl 5.10 or later, use the // operator. Otherwise, use the condi-
tional operator.

3. [10] Modify the program from Exercise 3 in Chapter 6 (the environment lister) to
print (undefined value) for environment variables without a value. You can set
the new environment variables in the program. Ensure that your program reports
the right thing for variables with a false value. If you are using Perl 5.10 or later,
use the // operator. Otherwise, use the conditional operator.

† Unless you are using autodie.

‡ Using these weird forms (anything but or die) more than once per month counts as overuse.

§ See what the perlfunc documentation says about int and rand if you’re curious about these functions.

188 | Chapter 10: More Control Structures

http://perldoc.perl.org/perlfunc.html

CHAPTER 11

Perl Modules

There is a lot more to Perl than what we’re able to show you in this book, and there
are a lot of people doing a lot of interesting things with Perl. If there is a problem to
solve, somebody has probably already solved it and made their solution available on
the Comprehensive Perl Archive Network (CPAN), which is a worldwide collection of
servers and mirrors containing thousands of modules of reusable Perl code. Indeed,
most of Perl 5 is in the modules since Larry designed it as an extensible language.

We’re not going to teach you how to write modules here: you’ll have to get that from
the Alpaca book. In this chapter, we’ll show you how to use modules that already exist.
The idea is to get you started with CPAN rather than give you a survey on modules.

Finding Modules
Modules come in two types: those that come with Perl that you should have available
to you, and those that you can get from CPAN to install yourself. Unless we say oth-
erwise, the modules that we show come with Perl.*

To find modules that don’t come with Perl, start at either CPAN Search, (http://search
.cpan.org). You can browse through the categories or search directly. You can read the
module documentation before you download the entire package. You can also browse
the distribution and have a peek at the files without the bother of installing the modules.
There are many other tools for inspecting a distribution too.

Before you go looking for a module, you should check if it is already installed. One way
is to just try to read the documentation with perldoc. The CGI.pm module comes with
Perl (and we’ll show it in “CGI.pm” on page 198), so you should be able to read its
documentation:

$ perldoc CGI

* Some vendors provide even more modules with their stock versions of Perl. There’s actually a third type:
vendor modules, but those are a bonus. Check your operating system to see what else you might have.

189

http://search.cpan.org
http://search.cpan.org

Try it with a module that does not exist and you’ll get an error message.

$ perldoc Llamas
No documentation found for "Llamas".

The documentation may be available in other formats (such as HTML) on your system,
too. If the documentation is there.†

The cpan command that comes with Perl can create an autobundle,‡ which is a list of
everything you have installed, along with the version numbers:

$ cpan -a

Installing Modules
When you want to install a module that you don’t already have, sometimes you can
simply download the distribution, unpack it, and run a series of commands from the
shell. There are two major build systems for Perl distributions, and you use them sim-
ilarly. Check for a README or INSTALL file that gives you more information.

If the module uses MakeMaker,§ the sequence will be something like this:

$ perl Makefile.PL
$ make install

If you can’t install modules in the system-wide directories, you can specify another
directory with an INSTALL_BASE argument to Makefile.PL:

$ perl Makefile.PL INSTALL_BASE=/Users/fred/lib

Some Perl module authors use another module, Module::Build, to build and install their
creations. That sequence will be something like this:

$ perl Build.PL
$./Build install

As before, you can specify an alternate installation directory:

$ perl Build.PL --install_base=/Users/fred/lib

† We cover Perl documentation in the Alpaca, but for now, just believe us that most module documentation
is in the same file as the actual code.

‡ A bundle file is a special sort of file that some CPAN clients can use to reinstall everything you already have
installed, either on the same machine or a different machine.

§ That’s really the Perl module ExtUtils::MakeMaker, which comes with Perl. It handles all of the stuff to create
the file that will have the installation instructions appropriate for your system and installation of perl.

190 | Chapter 11: Perl Modules

Some modules depend on other modules though, and they won’t work unless you
install yet more modules. Instead of doing all that work yourself, you can use one of
the modules that come with Perl, CPAN.pm.‖ From the command line, you can start
up the CPAN.pm shell from which you can issue commands:

$ perl -MCPAN -e shell

Even this can be a little complicated, so a while ago one of our authors wrote a little
script called cpan, which also comes with Perl and is usually installed with perl and its
tools. Just call the script with a list of the modules you want to install:

$ cpan Module::CoreList LWP CGI::Prototype

You might be saying, “But I don’t have a command line!” If you are using the ActiveState
port of Perl (for Windows, Linux, or Solaris), you can use the Perl Package Manager
(PPM),# which installs modules for you. You can even get the ActiveState ports on CD
or DVD.* Besides what you’ve seen so far, your particular operating system may have
ways to install software, including Perl modules.

There’s another handy tool, cpanm (for cpanminus), although it doesn’t come with Perl
(yet). It’s designed as a zero-conf, lightweight CPAN client that handles most of what
people want to do. You can download the single file from http://xrl.us/cpanm to get
started.

Once you have cpanm, you simply tell it which modules you want to install:

$ cpanm DBI WWW::Mechanize

Using Your Own Directories
One of the common problems with Perl module installation is that by default, the CPAN
tools want to install new modules into the same directories where perl is. You might
not have the proper permissions to create new files in those directories.

‖ The “.pm” file extension stands for “Perl Module,” and some popular modules are pronounced with the
“.pm” to distinguish them from something else. In this case, CPAN the archive is different than CPAN the
module, so the latter is said “CPAN.pm”.

#See http://aspn.activestate.com/ASPN/docs/ActivePerl/faq/ActivePerl-faq2.html.

* You can make your own CDs or DVDs too by creating a local repository. Even though CPAN is over 4 GB
by now, a minicpan (again, by one of the authors) pares it down to just the latest versions of everything, which
is about 500 MB. See the CPAN::Mini module.

Installing Modules | 191

http://xrl.us/cpanm
http://aspn.activestate.com/ASPN/docs/ActivePerl/faq/ActivePerl-faq2.html

The easiest way for beginners to keep additional Perl modules in their own directories
is to use local::lib, which you’ll have to get from CPAN since it doesn’t come with
perl (yet). This module sets the various environment variables that affect where CPAN
clients install modules. You can see what they set by loading the module on the com-
mand line without anything else:†

$ perl -Mlocal::lib
export PERL_LOCAL_LIB_ROOT="/Users/fred/perl5";
export PERL_MB_OPT="--install_base /Users/fred/perl5";
export PERL_MM_OPT="INSTALL_BASE=/Users/fred/perl5";
export PERL5LIB="...";
export PATH="/Users/brian/perl5/bin:$PATH";

The cpan client supports this if you use the -I switch to install modules:‡

$ cpan -I Set::Crossproduct

The cpanm tool is a bit smarter. If you’ve already set the same environment variables
local::lib would set for you, it uses them. If not, it checks the default module direc-
tories for write permissions. If you don’t have write permissions, it automatically uses
local::lib for you. If you want to be sure to use local::lib explicitly, you can do that:

$ cpanm --local-lib HTML::Parser

Advanced users can configure their CPAN clients to install into whatever directories
that they like, too.

You can set this in your CPAN.pm configuration so modules automatically install in your
private library directory when you use the CPAN.pm shell. You need to configure two
settings, one each for the ExtUtils::Makemaker and Module::Build systems:

$ cpan
cpan> o conf makepl_arg INSTALL_BASE=/Users/fred/perl5
cpan> o conf mbuild_arg "--install_base /Users/fred/perl5"
cpan> o conf commit

Notice these are the same settings that local::lib created for you in the environment.
By setting them in the CPAN.pm configuration, it adds them every time it tries to install
a module.

Once you’ve chosen where you want to put your Perl modules, you have to tell your
programs where to find them. If you are using local::lib, you simply load that module
in your program:

inside your Perl program
use local::lib;

If you installed them in some other location, you can use the lib pragma with a list of
additional module directories:

† Trust us on this one. We haven’t told you about command-line switches yet, but they are all in the perlrun
documentation.

‡ You need a recent version of CPAN.pm or the App::Cpan module. The local::lib feature was added for Perl 5.14.

192 | Chapter 11: Perl Modules

http://perldoc.perl.org/perlrun.html

also inside your Perl program
use lib qw(/Users/fred/perl5);

This is just enough to get you started. We talk much more about this in Intermediate
Perl, where you also learn to make your own modules. You can also read the entries in
the perlfaq8 documentation.

Using Simple Modules
Suppose that you’ve got a long filename like /usr/local/bin/perl in your program, and
you need to find out the basename without the directory portion. That’s easy enough,
since the basename is everything after the last slash (it’s just “perl” in this case):

my $name = "/usr/local/bin/perl";
(my $basename = $name) =~ s#.*/##; # Oops!

As you saw earlier, first Perl will do the assignment inside the parentheses, then it will
do the substitution. The substitution is supposed to replace any string ending with a
slash (that is, the directory name portion) with an empty string, leaving just the base-
name. You can even do this with the /r switch for the substitution operator:

use 5.014;
my $name = "/usr/local/bin/perl";
my $basename = $name =~ s#.*/##r; # Oops!

And if you try these, it seems to work. Well, it seems to, but actually, there are three
problems.

First, a Unix file or directory name could contain a newline character. (It’s not
something that’s likely to happen by accident, but it’s permitted.) So, since the regular
expression dot (.) can’t match a newline, a filename like the string "/home/fred/
flintstone\n/brontosaurus" won’t work right—that code would think the basename
is "flintstone\n/brontosaurus". You could fix that with the /s option to the pattern
(if you remembered about this subtle and infrequent case), making the substitution
look like this: s#.*/##s.

The second problem is that this is Unix-specific. It assumes that the forward slash will
always be the directory separator, as it is on Unix, and not the backslash or colon that
some systems use. Although you might think that your work will never leak out from
your Unix-only environment, most useful scripts (and some not so useful) tend to breed
in the wild.

And the third (and biggest) problem with this is that we’re trying to solve a problem
someone else has already solved. Perl comes with a number of modules, which are smart
extensions to Perl that add to its functionality. And if those aren’t enough, there are
many other useful modules available on CPAN, with new ones being added every week.
You (or, better yet, your system administrator) can install them if you need their
functionality.

Using Simple Modules | 193

http://oreilly.com/catalog/9780596102067/
http://oreilly.com/catalog/9780596102067/
http://perldoc.perl.org/perlfaq8.html

In the rest of this section, we’ll show you how to use some features of a couple simple
modules that come with Perl. (There’s more that these modules can do; this is just an
overview to illustrate the general principles of how to use a simple module.)

Alas, we can’t show you everything you’d need to know about using modules in general,
since you’d have to understand advanced topics like references and objects in order to
use some modules.§ Those topics, including how to create a module, will be covered
in great detail in Intermediate Perl. But this section should prepare you for using many
simple modules. Further information on some interesting and useful modules is inclu-
ded in Appendix B.

The File::Basename Module
In the previous example, you found the basename of a filename in a way that’s not
portable. Something that seemed straightforward was susceptible to subtle mistaken
assumptions (here, the assumption was that newlines would never appear in file or
directory names). And you were reinventing the wheel, solving a problem that others
have solved (and debugged) many times before you. Not to worry; it happens to all
of us.

Here’s a better way to extract the basename of a filename. Perl comes with a module
called File::Basename. With the command perldoc File::Basename, or with your sys-
tem’s documentation, you can read about what it does. That’s always the first step
when using a new module. (It’s often the third and fifth step, as well.)

Soon you’re ready to use it, so you declare it with a use directive near the top of your
program:‖

use File::Basename;

During compilation, Perl sees that line and loads the module. Now, it’s as if Perl has
some new functions that you may use in the remainder of your program.# The one we
wanted in the earlier example is the basename function itself:

use File::Basename;

my $name = "/usr/local/bin/perl";
my $basename = basename $name; # gives 'perl'

§ As we’ll see in the next few pages, though, you may be able to use a module that uses objects and references
without having to understand those advanced topics.

‖ It’s traditional to declare modules near the top of the file since that makes it easy for the maintenance
programmer to see which modules you’ll be using. That greatly simplifies matters when it’s time to install
your program on a new machine, for example.

#You guessed it: there’s more to the story, having to do with packages and fully qualified names. When your
programs are growing beyond a few hundred lines in the main program (not counting code in modules),
which is quite large in Perl, you should probably read up about these advanced features. Start with the
perlmod documentation.

194 | Chapter 11: Perl Modules

http://oreilly.com/catalog/9780596102067/
http://perldoc.perl.org/perlmod.html

Well, that worked for Unix. What if your program runs on MacPerl or Windows or
VMS, to name a few? There’s no problem—this module can tell which kind of machine
you’re using, and it uses that machine’s filename rules by default. (Of course, you’d
have that machine’s kind of filename string in $name, in that case.)

There are some related functions also provided by this module. One is the dirname
function, which pulls the directory name from a full filename. The module also lets you
separate a filename from its extension, or change the default set of filename rules.*

Using Only Some Functions from a Module
Suppose you discovered that when you went to add the File::Basename module to your
existing program, you already have a subroutine called &dirname—that is, you already
have a subroutine with the same name as one of the module’s functions.† Now there’s
trouble because the new dirname is also implemented as a Perl subroutine (inside the
module). What do you do?

In your use declaration, simply give File::Basename an import list showing exactly
which function names it should give you, and it’ll supply those and no others. Here,
you’ll get nothing but basename:

use File::Basename qw/ basename /;

And here, you ask for no new functions at all:

use File::Basename qw/ /;

This is also frequently written as an empty set of parentheses:

use File::Basename ();

Why would you want to do that? Well, this directive tells Perl to load up File::
Basename, just as before, but not to import any function names. Importing lets you use
the short, simple function names like basename and dirname. But even if you don’t import
those names, you can still use the functions. When they’re not imported, though, you
have to call them by their full names:

use File::Basename qw/ /; # import no function names

my $betty = &dirname($wilma); # uses your own subroutine &dirname
 # (not shown)

my $name = "/usr/local/bin/perl";
my $dirname = File::Basename::dirname $name; # dirname from the module

* You might need to change the filename rules if you are trying to work with a Unix machine’s filenames from
a Windows machine—perhaps while sending commands over an FTP connection, for example.

† Well, it’s not likely that you would already have a &dirname subroutine that you use for another purpose, but
this is just an example. Some modules offer hundreds (really!) of new functions, making a name collision
that much more frequent.

Using Simple Modules | 195

As you see, the full name of the dirname function from the module is File::Base
name::dirname. You can always use the function’s full name (once you’ve loaded the
module), whether you’ve imported the short name dirname or not.

Most of the time, you’ll want to use a module’s default import list. But you can always
override that with a list of your own, if you want to leave out some of the default items.
Another reason to supply your own list would be if you wanted to import some function
not on the default list, since most modules include some (infrequently needed) func-
tions that are not on the default import list.

As you’d guess, some modules will, by default, import more symbols than others. Each
module’s documentation should make it clear which symbols it imports, if any, but
you are always free to override the default import list by specifying one of your own,
just as we did with File::Basename. Supplying an empty list imports no symbols.

The File::Spec Module
Now you can find out a file’s basename. That’s useful, but you’ll often want to put that
together with a directory name to get a full filename. For example, here you want to
take a filename like /home/rootbeer/ice-2.1.txt and add a prefix to the basename:

use File::Basename;

print "Please enter a filename: ";
chomp(my $old_name = <STDIN>);

my $dirname = dirname $old_name;
my $basename = basename $old_name;

$basename =~ s/^/not/; # Add a prefix to the basename
my $new_name = "$dirname/$basename";

rename($old_name, $new_name)
 or warn "Can't rename '$old_name' to '$new_name': $!";

Do you see the problem here? Once again, you’re making the assumption that filenames
will follow the Unix conventions and use a forward slash between the directory name
and the basename. Fortunately, Perl comes with a module to help with this problem,
too.

The File::Spec module is used for manipulating file specifications, which are the names
of files, directories, and the other things that are stored on filesystems. Like File::Base
name, it understands what kind of system it’s running on, and it chooses the right set
of rules every time. But unlike File::Basename, File::Spec is an object-oriented (often
abbreviated “OO”) module.

If you’ve never caught the fever of OO, don’t let that bother you. If you understand
objects, that’s great; you can use this OO module. If you don’t understand objects,
that’s okay, too. You just type the symbols as we show you, and it works just as if you
knew what you were doing.

196 | Chapter 11: Perl Modules

In this case, you learn from reading the documentation for File::Spec that you want
to use a method called catfile. What’s a method? It’s just a different kind of function,
as far as you’re concerned here. The difference is that you’ll always call the methods
from File::Spec with their full names, like this:

use File::Spec;

.

. # Get the values for $dirname and $basename as above

.

my $new_name = File::Spec->catfile($dirname, $basename);

rename($old_name, $new_name)
 or warn "Can't rename '$old_name' to '$new_name': $!";

As you can see, the full name of a method is the name of the module (called a class,
here), a small arrow (->), and the short name of the method. It is important to use the
small arrow, rather than the double-colon that we used with File::Basename.

Since you’re calling the method by its full name, though, what symbols does the module
import? None of them. That’s normal for OO modules. So you don’t have to worry
about having a subroutine with the same name as one of the many methods of
File::Spec.

Should you bother using modules like these? It’s up to you, as always. If you’re sure
your program will never be run anywhere but on a Unix machine, say, and you’re sure
you completely understand the rules for filenames on Unix,‡ then you may prefer to
hardcode your assumptions into your programs. But these modules give you an easy
way to make your programs more robust in less time—and more portable at no extra
charge.

Path::Class
The File::Spec module does work with file paths from just about any platform, but
the interface is a bit clunky. The Path::Class module, which doesn’t come with Perl,
gives you a more pleasant interface:

my $dir = dir(qw(Users fred lib));
my $subdir = $dir−>subdir('perl5'); # Users/fred/lib/perl5
my $parent = $dir->parent; # Users/fred

my $windir = $dir−>as_foreign('Win32'); # Users\fred\lib

‡ If you didn’t know that filenames and directory names could contain newline characters, as we mentioned
earlier in this section, then you don’t know all the rules, do you?

Using Simple Modules | 197

CGI.pm
If you need to create CGI programs (which we don’t cover in this book), use the
CGI.pm module.§ Unless you really know what you are doing (and sometimes even then),
you don’t need to handle the actual interface and input the parsing portion of the script
that gets so many other people into trouble. The CGI.pm author, Lincoln Stein, spent a
lot of time ensuring that the module would work with most servers and operating
systems. Just use the module and focus on the interesting parts of your script.

The CGI module has two flavors: the plain old functional interface and the object-
oriented interface. You’ll use the first one. As before, you can follow the examples in
the CGI.pm documentation. Our simple CGI script simply parses the CGI input and
displays the input names and values as a plain text document. In the import list, we
use :all, which is an export tag that specifies a group of functions rather than a single
function like you saw with the previous modules:‖

#!/usr/bin/perl

use CGI qw(:all);

print header("text/plain");

foreach $param (param()) {
 print "$param: " . param($param) . "\n";
}

You can get more fancy though because you want to output HTML, and CGI.pm has
many, many convenience functions to do that. It handles the CGI header, the beginning
parts of HTML with start_html(), and many of the HTML tags with functions of the
same name, like h1() for the H1 tag:

#!/usr/bin/perl

use CGI qw(:all);

print header(),
 start_html("This is the page title"),
 h1("Input parameters");

my $list_items;
foreach my $param (param()) {
 $list_items .= li("$param: " . param($param));
}

§ As with the CPAN.pm module, we pronounce the “.pm” in CGI.pm to distinguish it from the protocol itself.

‖ The module has several other export tags to select different groups of functions. For instance, if you want
the ones that deal with just the CGI, you can use :cgi, or if you just want the HTML-generation functions,
you can use :html4. See the CGI.pm documentation for more details.

198 | Chapter 11: Perl Modules

print ul($list_items);

print end_html();

Wasn’t that easy? You don’t have to know how CGI.pm is doing all this stuff; you just
have to trust that it does it correctly. Once you let CGI.pm do all the hard work, you get
to focus on the interesting parts of your program.

The CGI.pm module does a lot more: it can handle cookies, redirection, multipage forms,
and a lot more. We don’t have room to cover it here, but you can learn more from the
examples in the module documentation.

Databases and DBI
The DBI (Database Interface) module doesn’t come with Perl, but it’s one of the most
popular modules since most people have to connect to a database of some sort. The
beauty of DBI is that it allows you to use the same interface for just about any database
server (or fake server, even), from simple comma-separated value files to big database
servers like Oracle. It has ODBC drivers, and some of its drivers are even vendor-
supported. To get the full details, get Programming the Perl DBI by Alligator Descartes
and Tim Bunce (O’Reilly). You can also check out the DBI website, http://dbi.perl.org/.

Once you install DBI, you also have to install a DBD (Database Driver). You can get a
long list of DBDs from CPAN Search. Install the right one for your database server, and
ensure that you get the version that goes with the version of your server.

The DBI is an object-oriented module, but you don’t have to know everything about
OO programming to use it. You just have to follow the examples in the documentation.
To connect to a database, you use the DBI module, then call its connect method:

use DBI;

 $dbh = DBI->connect($data_source, $username, $password);

The $data_source contains information particular to the DBD that you want to use, so
you’ll get that from the DBD. For PostgreSQL, the driver is DBD::Pg, and the
$data_source is something like:

my $data_source = "dbi:Pg:dbname=name_of_database";

Once you connect to the database, you go through a cycle of preparing, executing, and
reading queries:

my $sth = $dbh->prepare("SELECT * FROM foo WHERE bla");
$sth->execute();
my @row_ary = $sth->fetchrow_array;
$sth->finish;

When you are finished, you disconnect from the database:

$dbh->disconnect();

Using Simple Modules | 199

http://oreilly.com/catalog/9781565926998/
http://dbi.perl.org/

There are all sorts of other things that the DBI can do, too. See its documentation for
more details. Although it’s a bit old, Programming the Perl DBI is still mostly a good
introduction to the module.

Dates and Times
There are many modules that can handle dates and times for you, but the most popular
is the DateTime module from Dave Rolsky. It’s a complete solution, handling the intri-
cacies of time zones, date math, and many other things. You need to get this module
from CPAN.

Often, you will have the time as the system (or epoch) time, and you can easily convert
that to a DateTime object:

my $dt = DateTime−>from_epoch(epoch => time);

From there, you can access various parts of the date to get what you need:

printf '%4d%02d%02d', $dt->year, $dt->month, $dt->day;

The module has some methods to format dates for you:

print $dt−>ymd; # 2011−04−23
print $dt−>ymd('/'); # 2011/04/23
print $dt->ymd(''); # 20010423

If you have two DateTime objects, you can do date math with them. Using the normal
mathematical operators, which DateTime overloads:

my $dt1 = DateTime->new(
 year => 1987,
 month => 12,
 day => 18,
);

my $dt2 = DateTime->new(
 year => 2011,
 month => 5,
 day => 1,
);

my $duration = $dt2 - $dt1;

Because date math is complicated, you can’t just turn that into one number:

my @units = $duration->in_units(qw(year month day));

printf '%d years, %d months, and %d days', @units;

For those dates, this gives you the output:

23 years, 4 months, and 14 days

200 | Chapter 11: Perl Modules

http://oreilly.com/catalog/9781565926998

You can also start with a duration and add it to a date. Suppose that you wanted the
date that’s five days from the date in $dt2. Create the duration and add it to the date
you already have:

my $duration = DateTime::Duration->new(days => 5);
my $dt3 = $dt2 + $duration;
print $dt3->ymd; # 2011-05-06

If you don’t need the full power of DateTime, there are other modules that you might
use. If you just want to treat the time as an object, you can use Time::Piece, which
replaces the built-in localtime with one that returns an object instead of a long list. It
also gives you many convenience functions to represent the date parts in different ways,
such as converting the month to a name instead of a number:

use Time::Piece;

my $t = localtime;
print 'The month is ' . $t−>month . "\n"; # The month is Apr

Time::Piece comes with Perl 5.10 or later, and you can get it from CPAN if you have
an earlier version.

Exercises
See “Answer to Exercises” on page 313 for answers to the following exercises. Re-
member, you have to install some modules from CPAN, and part of these exercises
require you to research the module by reading its documentation:

1. [15] Install the Module::CoreList module from CPAN. Print a list of all of the mod-
ules that came with Perl 5.14. To build a hash whose keys are the names of the
modules that came with a given version of perl, use this line:

my %modules = %{ $Module::CoreList::version{5.014} };

2. [20] Write a program using DateTime to compute the interval between now and a
date that you enter as the year, month, and day on the command line:

$ perl duration.pl 1960 9 30
50 years, 8 months, and 20 days

Exercises | 201

CHAPTER 12

File Tests

Earlier, we showed you how to open a filehandle for output. Normally, that creates a
new file, wiping out any existing file with the same name. Perhaps you want to check
that there isn’t a file by that name. Perhaps you need to know how old a given file is.
Or perhaps you want to go through a list of files to find which ones are larger than a
certain number of bytes and have not been accessed for a certain amount of time. Perl
has a complete set of tests you can use to find out information about files.

File Test Operators
Perl has a set of file test operators that let you get particular information about files.
They all take the form of -X, where the X represents the particular test (and there is a
literal -X file test operator too, to confuse things a bit). In most cases, these operators
return true or false. Although we call these things operators, you’ll find their docu-
mentation in perlfunc.*

Before you start a program that creates a new file, you might want to ensure that the
file doesn’t already exist so that you don’t accidentally overwrite a vital spreadsheet
data file or that important birthday calendar. For this, you can use the -e file test, testing
a filename for existence:

die "Oops! A file called '$filename' already exists.\n"
 if -e $filename;

Notice that you don’t include $! in this die message, since you’re not reporting that
the system refused a request in this case. Here’s an example of checking whether a file
is being kept up-to-date. In this case, you’re testing an already-opened filehandle, in-
stead of a string filename. Let’s say that your program’s configuration file should be
updated every week or two. (Maybe it’s checking for computer viruses.) If the file hasn’t
been modified in the past 28 days, something is wrong. The -M file test returns the file

* To get the list, use the command line perldoc -f -X. That -X is literal and not a command-line switch. It stands
in for all the file test operators since you can’t use perldoc to look them up individually.

203

http://perldoc.perl.org/perlfunc.html

modification time in days since the start of the program, which seems like a mouthful
until you see how convenient the code is:

warn "Config file is looking pretty old!\n"
 if -M CONFIG > 28;

The third example is more complex. Here, say that disk space is filling up and rather
than buy more disks, you decide to move any large, useless files to the backup tapes.
So let’s go through our list of files† to see which of them are larger than 100 K. But even
if a file is large, you shouldn’t move it to the backup tapes unless it hasn’t been accessed
in the last 90 days (so we know that it’s not used too often). The -s file test operator,
instead of returning true or false, returns the file size in bytes (and an existing file might
have 0 bytes):‡

my @original_files = qw/ fred barney betty wilma pebbles dino bamm-bamm /;
my @big_old_files; # The ones we want to put on backup tapes
foreach my $filename (@original_files) {
 push @big_old_files, $filename
 if -s $filename > 100_000 and -A $filename > 90;
}

The file tests all look like a hyphen and a letter, which is the name of the test, followed
by either a filename or a filehandle to test. Many of them return a true/false value, but
several give something more interesting. See Table 12-1 for the complete list, and read
the following explanation to learn more about the special cases.

Table 12-1. File tests and their meanings

File test Meaning

-r File or directory is readable by this (effective) user or group

-w File or directory is writable by this (effective) user or group

-x File or directory is executable by this (effective) user or group

-o File or directory is owned by this (effective) user

-R File or directory is readable by this real user or group

-W File or directory is writable by this real user or group

-X File or directory is executable by this real user or group

-O File or directory is owned by this real user

-e File or directory name exists

-z File exists and has zero size (always false for directories)

-s File or directory exists and has nonzero size (the value is the size in bytes)

-f Entry is a plain file

† It’s more likely that instead of having the list of files in an array, as this example shows, you’ll read it directly
from the filesystem using a glob or directory handle, as we show in Chapter 13. Since you haven’t seen that
yet, we’ll just start with the list and go from there.

‡ There’s a way to make this example more efficient, as you’ll see by the end of the chapter.

204 | Chapter 12: File Tests

File test Meaning

-d Entry is a directory

-l Entry is a symbolic link

-S Entry is a socket

-p Entry is a named pipe (a “fifo”)

-b Entry is a block-special file (like a mountable disk)

-c Entry is a character-special file (like an I/O device)

-u File or directory is setuid

-g File or directory is setgid

-k File or directory has the sticky bit set

-t The filehandle is a TTY (as reported by the isatty() system function; filenames can’t be tested by this test)

-T File looks like a “text” file

-B File looks like a “binary” file

-M Modification age (measured in days)

-A Access age (measured in days)

-C Inode-modification age (measured in days)

The tests -r, -w, -x, and -o tell whether the given attribute is true for the effective user
or group ID,§ which essentially refers to the person who is “in charge of” running the
program.‖ These tests look at the “permission bits” on the file to see what is permitted.
If your system uses Access Control Lists (ACLs), the tests will use those as well. These
tests generally tell whether the system would try to permit something, but it doesn’t
mean that it really would be possible. For example, -w may be true for a file on a CD-
ROM, even though you can’t write to it, or -x may be true on an empty file, which can’t
truly be executed.

The -s test does return true if the file is nonempty, but it’s a special kind of true. It’s
the length of the file, measured in bytes, which evaluates as true for a nonzero number.

On a Unix filesystem,# there are just seven types of items, represented by the seven file
tests -f, -d, -l, -S, -p, -b, and -c. Any item should be one of those. But if you have a
symbolic link pointing to a file, that will report true for both -f and -l. So, if you want
to know whether something is a symbolic link, you should generally test that first.

§ The -o and -O tests relate only to the user ID and not to the group ID.

‖ Note for advanced students: the corresponding -R, -W, -X, and -O tests use the real user or group ID, which
becomes important if your program may be running set-ID; in that case, it’s generally the ID of the person
who requested running it. See any good book about advanced Unix programming for an explanation of set-
ID programs.

#This is the case on many non-Unix filesystems, but not all of the file tests are meaningful everywhere. For
example, you aren’t likely to have block-special files on your non-Unix system.

File Test Operators | 205

(You’ll learn more about symbolic links in Chapter 13, in “Links and
Files” on page 224.)

The age tests, -M, -A, and -C (yes, they’re uppercase), return the number of days since
the file was last modified, accessed, or had its inode changed.* (The inode contains all
of the information about the file except for its contents—see the stat system call doc-
umentation or a good book on Unix internals for details.) This age value is a full floating-
point number, so you might get a value of 2.00001 if a file had been modified two days
and one second ago. (These “days” aren’t necessarily the same as a human would count;
for example, if it’s one thirty in the morning when you check a file modified about an
hour before midnight, the value of -M for this file would be around 0.1, even though it
was modified “yesterday.”)

When checking the age of a file, you might even get a negative value like –1.2, which
means that the file’s last-access timestamp is set at about thirty hours in the future! The
zero point on this timescale is the moment your program started running,† so that value
might mean that a long-running program was looking at a file that had just been ac-
cessed. Or a timestamp could be set (accidentally or intentionally) to a time in the
future.

The tests -T and -B take a try at telling whether a file is text or binary. But people who
know a lot about filesystems know that there’s no bit (at least in Unix-like operating
systems) to indicate that a file is a binary or text file—so how can Perl tell? The answer
is that Perl cheats: it opens the file, looks at the first few thousand bytes, and makes an
educated guess. If it sees a lot of null bytes, unusual control characters, and bytes with
the high bit set, then that looks like a binary file. If there’s not much weird stuff then
it looks like text. As you might guess, it sometimes guesses wrong. It’s not perfect, but
if you just need to separate your source code from compiled files, or HTML files from
PNGs, these tests should do the trick.

You’d think that -T and -B would always disagree, since a text file isn’t a binary and
vice versa, but there are two special cases where they’re in complete agreement. If the
file doesn’t exist, or can’t be read, both are false, since it’s neither a text file nor a binary.
Alternatively, if the file is empty, it’s an empty text file and an empty binary file at the
same time, so they’re both true.

* This information will be somewhat different on non-Unix systems, since not all keep track of the same times
that Unix does. For example, on some systems, the ctime field (which the -C test looks at) is the file creation
time (which Unix doesn’t keep track of), rather than the inode change time; see the perlport documentation.

† As recorded in the $^T variable, which you could update (with a statement like $^T = time;) if you needed
to get the ages relative to a different starting time.

206 | Chapter 12: File Tests

http://perldoc.perl.org/perlport.html

The -t file test returns true if the given filehandle is a TTY—in short, if it’s interactive
because it’s not a simple file or pipe. When -t STDIN returns true, it generally means
that you can interactively ask the user questions. If it’s false, your program is probably
getting input from a file or pipe, rather than a keyboard.‡

Don’t worry if you don’t know what some of the other file tests mean—if you’ve never
heard of them, you won’t be needing them. But if you’re curious, get a good book about
programming for Unix. On non-Unix systems, these tests all try to give results analo-
gous to what they do on Unix, or undef for an unavailable feature. Usually you’ll be
able to guess correctly what they’ll do.

If you omit the filename or filehandle parameter to a file test (that is, if you have just
-r or just -s, say), the default operand is the file named in $_. The -t file test is an
exception, because that test isn’t useful with filenames (they’re never TTYs). By default,
it tests STDIN. So, to test a list of filenames to see which ones are readable, you simply
type:

foreach (@lots_of_filenames) {
 print "$_ is readable\n" if -r; # same as -r $_
}

But if you omit the parameter, be careful that whatever follows the file test doesn’t look
like it could be a parameter. For example, if you wanted to find out the size of a file in
kilobytes rather than in bytes, you might be tempted to divide the result of -s by 1000
(or 1024), like this:

The filename is in $_
my $size_in_K = -s / 1000; # Oops!

When the Perl parser sees the slash, it doesn’t think about division; since it’s looking
for the optional operand for -s, it sees what looks like the start of a regular expression
in the forward slash. One simple way to prevent this kind of confusion is to put pa-
rentheses around the file test:

my $size_in_k = (-s) / 1024; # Uses $_ by default

Of course, it’s always safe to explicitly give a file test a parameter.

Testing Several Attributes of the Same File
You can use more than one file test on the same file to create a complex logical condi-
tion. Suppose you only want to operate on files that are both readable and writable;
you check each attribute and combine them with and:

if (-r $file and -w $file) {
 ... }

‡ The IO::Interactive module might be a better choice for this because the situation is actually a bit more
complicated. That module explains this in its documentation.

File Test Operators | 207

This is an expensive operation, though. Each time you perform a file test, Perl asks the
filesystem for all of the information about the file (Perl’s actually doing a stat each
time, which we talk about in the next section). Although you already got that infor-
mation when you tested -r, Perl asks for the same information again so it can test -w.
What a waste! This can be a significant performance problem if you’re testing many
attributes on many files.

Perl has a special shortcut to help you not do so much work. The virtual filehandle _
(just the underscore) uses the information from the last file lookup that a file test op-
erator performed. Perl only has to look up the file information once now:

if (-r $file and -w _) {
 ... }

You don’t have to use the file tests next to each other to use _. Here we have them in
separate if conditions:

if (-r $file) {
 print "The file is readable!\n";
}

if (-w _) {
 print "The file is writable!\n";
}

You have to watch out that you know what the last file lookup really was, though. If
you do something else between the file tests, such as call a subroutine, the last file you
looked up might be different. For instance, this example calls the lookup subroutine,
which has a file test in it. When you return from that subroutine and do another file
test, the _ filehandle isn’t for $file like you expect, but for $other_file:

if (-r $file) {
 print "The file is readable!\n";
}

lookup($other_file);

if (-w _) {
 print "The file is writable!\n";
}

sub lookup {
 return -w $_[0];
}

Stacked File Test Operators
Prior to Perl 5.10, if you wanted to test several file attributes at the same time you had
to test them individually, even when using the _ filehandle to save some work. Suppose
you wanted to test if a file was readable and writable at the same time. You have to test
if it’s readable, then also test if it’s writable:

208 | Chapter 12: File Tests

if (-r $file and -w _) {
 print "The file is both readable and writable!\n";
}

It’s much easier to do this all at once. Starting with Perl 5.10, you could “stack” your
file test operators by lining them all up before the filename:

use 5.010;

if (-w -r $file) {
 print "The file is both readable and writable!\n";
}

This stacked example is the same as the previous example with just a change in syntax,
although it looks like the file tests are reversed. Perl does the file test nearest the filename
first. Normally, this isn’t going to matter.

Stacked file tests are especially handy for complex situations. Suppose you want to list
all the directories that are readable, writable, executable, and owned by your user? You
just need the right set of file tests:

use 5.010;

if (-r -w -x -o -d $file) {
 print "My directory is readable, writable, and executable!\n";
}

Stacked file tests aren’t good for those that return values other than true or false that
you would want to use in a comparison. You might think that this next bit of code first
tests that it’s a directory and then tests that it is less than 512 bytes, but it doesn’t:

use 5.010;

if (-s -d $file < 512) { # WRONG! DON'T DO THIS
 say 'The directory is less than 512 bytes!';
}

Rewriting the stacked file tests as the previous notation shows us what is going on. The
result of the combination of the file tests becomes the argument for the comparison:

if ((-d $file and -s _) < 512) {
 print "The directory is less than 512 bytes!\n";
 }

When the -d returns false, Perl compares that false value to 512. That turns out to be
true since false will be 0, which just happens to be less than 512. Instead of worrying
about that sort of confusion, you just write it as separate file tests to be nice to the
maintenance programmers who come after you:

if (-d $file and -s _ < 512) {
 print "The directory is less than 512 bytes!\n";
}

File Test Operators | 209

The stat and lstat Functions
While these file tests are fine for testing various attributes regarding a particular file or
filehandle, they don’t tell you the whole story. For example, there’s no file test that
returns the number of links to a file or the owner’s user ID (uid). To get at the remaining
information about a file, merely call the stat function, which returns pretty much ev-
erything that the stat Unix system call returns (hopefully more than you want to
know).§ The operand to stat is a filehandle (including the _ virtual filehandle), or an
expression that evaluates to a filename. The return value is either the empty list, indi-
cating that the stat failed (usually because the file doesn’t exist), or a 13-element list
of numbers, most easily described using the following list of scalar variables:

my($dev, $ino, $mode, $nlink, $uid, $gid, $rdev,
 $size, $atime, $mtime, $ctime, $blksize, $blocks)
 = stat($filename);

The names here refer to the parts of the stat structure, described in detail in the stat(2)
documentation. You should probably look there for the detailed descriptions. But in
short, here’s a quick summary of the important ones:

$dev and $ino
The device number and inode number of the file. Together they make up a “license
plate” for the file. Even if it has more than one name (hard link), the combination
of device and inode numbers should always be unique.

$mode
The set of permission bits for the file, and some other bits. If you’ve ever used the
Unix command ls -l to get a detailed (long) file listing, you’ll see that each line of
output starts with something like -rwxr-xr-x. The nine letters and hyphens of file
permissions‖ correspond to the nine least-significant bits of $mode, which would,
in this case, give the octal number 0755. The other bits, beyond the lowest nine,
indicate other details about the file. So, if you need to work with the mode, you’ll
generally want to use the bitwise operators covered later in this chapter.

§ On a non-Unix system, both stat and lstat, as well as the file tests, should return “the closest thing available.”
For example, a system that doesn’t have user IDs (that is, a system that has just one “user,” in the Unix sense)
might return zero for the user and group IDs, as if the one and only user is the system administrator. If stat or
lstat fails, it will return an empty list. If the system call underlying a file test fails (or isn’t available on the
given system), that test will generally return undef. See the perlport documentation for the latest about what
to expect on different systems.

‖ The first character in that string isn’t a permission bit; it indicates the type of entry: a hyphen for an ordinary
file, d for directory, or l for symbolic link, among others. The ls command determines this from the other
bits past the least-significant nine.

210 | Chapter 12: File Tests

http://perldoc.perl.org/perlport.html

$nlink
The number of (hard) links to the file or directory. This is the number of true names
the item has. This number is always 2 or more for directories and (usually) 1 for
files. You’ll see more about this when we talk about creating links to files in “Links
and Files” on page 224 in Chapter 13. In the listing from ls -l, this is the number
just after the permission-bits string.

$uid and $gid
The numeric user ID and group ID showing the file’s ownership.

$size
The size in bytes, as returned by the -s file test.

$atime, $mtime, and $ctime
The three timestamps, but here they’re represented in the system’s timestamp for-
mat: a 32-bit number telling how many seconds have passed since the epoch, an
arbitrary starting point for measuring system time. On Unix systems and some
others, the epoch is the beginning of 1970 at midnight Universal Time, but the
epoch is different on some machines. There’s more information later in this chapter
on turning that timestamp number into something useful.

Invoking stat on the name of a symbolic link returns information on what the symbolic
link points at, not information about the symbolic link itself (unless the link just hap-
pens to be pointing at nothing currently accessible). If you need the (mostly useless)
information about the symbolic link itself, use lstat rather than stat (which returns
the same information in the same order). If the operand isn’t a symbolic link, lstat
returns the same things that stat would.

Like the file tests, the operand of stat or lstat defaults to $_, meaning that the under-
lying stat system call will be performed on the file named by the scalar variable $_.

The localtime Function
When you have a timestamp number (such as the ones from stat), it will typically look
something like 1180630098. That’s not very useful for most humans, unless you need
to compare two timestamps by subtracting. You may need to convert it to something
human-readable, such as a string like “Thu May 31 09:48:18 2007”. Perl can do that
with the localtime function in a scalar context:

my $timestamp = 1180630098;
my $date = localtime $timestamp;

In a list context, localtime returns a list of numbers, several of which may not be quite
what you’d expect:

my($sec, $min, $hour, $day, $mon, $year, $wday, $yday, $isdst)
 = localtime $timestamp;

The localtime Function | 211

The $mon is a month number, ranging from 0 to 11, which is handy as an index into an
array of month names. The $year is the number of years since 1900, oddly enough, so
add 1900 to get the real year number. The $wday ranges from 0 (for Sunday) through 6
(for Saturday), and the $yday is the day-of-the-year (ranging from 0 for January 1,
through 364 or 365 for December 31).

There are two related functions that you’ll also find useful. The gmtime function is just
the same as localtime, except that it returns the time in Universal Time (what we once
called Greenwich Mean Time). If you need the current timestamp number from the
system clock, just use the time function. Both localtime and gmtime default to using
the current time value if you don’t supply a parameter:

my $now = gmtime; # Get the current universal timestamp as a string

For more on manipulating dates and times, see Appendix B for information about some
useful modules.

Bitwise Operators
When you need to work with numbers bit-by-bit, as when working with the mode bits
returned by stat, you’ll need to use the bitwise operators. These are the operators that
perform binary math operations on values. The bitwise-and operator (&) reports which
bits are set in the left argument and in the right argument. For example, the expression
10 & 12 has the value 8. The bitwise-and needs to have a one-bit in both operands to
produce a one-bit in the result. That means that the logical-and operation on 10 (which
is 1010 in binary) and 12 (which is 1100) gives 8 (which is 1000, with a one-bit only where
the left operand has a one-bit and the right operand also has a one-bit). See Figure 12-1.

Figure 12-1. Bitwise-and addition

The different bitwise operators and their meanings are shown in Table 12-2.

212 | Chapter 12: File Tests

Table 12-2. Bitwise operators and their meanings

Expression Meaning

10 & 12 Bitwise-and—which bits are true in both operands (this gives 8)

10 | 12 Bitwise-or—which bits are true in one operand or the other (this gives 14)

10 ^ 12 Bitwise-xor—which bits are true in one operand or the other but not both (this gives 6)

6 << 2 Bitwise shift left—shift the left operand by the number of bits shown in the right operand, adding zero-bits at
the least-significant places (this gives 24)

25 >> 2 Bitwise shift right—shift the left operand by the number of bits shown in the right operand, discarding the least-
significant bits (this gives 6)

~10 Bitwise negation, also called unary bit complement—return the number with the opposite bit for each bit in
the operand (this gives 0xFFFFFFF5)

So, here’s an example of some things you could do with the $mode returned by stat.
The results of these bit manipulations could be useful with chmod, which you’ll see in
Chapter 13:

$mode is the mode value returned from a stat of CONFIG
warn "Hey, the configuration file is world-writable!\n"
 if $mode & 0002; # configuration security problem
my $classical_mode = 0777 & $mode; # mask off extra high-bits
my $u_plus_x = $classical_mode | 0100; # turn one bit on
my $go_minus_r = $classical_mode & (~ 0044); # turn two bits off

Using Bitstrings
All of the bitwise operators can work with bitstrings, as well as with integers. If either
operand is an integer, the result will be an integer. (The integer will be at least a 32-bit
integer, but may be larger if your machine supports that. That is, if you have a 64-bit
machine, ~10 may give the 64-bit result 0xFFFFFFFFFFFFFFF5, rather than the 32-bit result
0xFFFFFFF5.)

But if both operands of a bitwise operator are strings, Perl will perform the operation
on those bitstrings. That is, "\xAA" | "\x55" will give the string "\xFF". Note that these
values are single-byte strings; the result is a byte with all eight bits set. Bitstrings may
be arbitrarily long.

This is one of the very few places where Perl distinguishes between strings and numbers.
See the perlop documentation for more information on using bitwise operators on
strings.

Bitwise Operators | 213

http://perldoc.perl.org/perlop.html

Exercises
See “Answers to Exercises” on page 314 for answers to the following exercises:

1. [15] Make a program that takes a list of files named on the command line and
reports for each one whether it’s readable, writable, executable, or doesn’t exist.
(Hint: it may be helpful to have a function that will do all of the file tests for one
file at a time.) What does it report about a file that has been chmod’ed to 0? (That
is, if you’re on a Unix system, use the command chmod 0 some_file to mark that
file as neither being readable, writable, nor executable.) In most shells, use a star
as the argument to mean all of the normal files in the current directory. That is,
you could type something like ./ex12-2 * to ask the program for the attributes of
many files at once.

2. [10] Make a program to identify the oldest file named on the command line and
report its age in days. What does it do if the list is empty? (That is, if no files are
mentioned on the command line.)

3. [10] Make a program that uses stacked file test operators to list all files named on
the command line that are readable, writable, and owned by you.

214 | Chapter 12: File Tests

CHAPTER 13

Directory Operations

The files you created in Chapter 12 were generally in the same place as your program.
But modern operating systems let you organize files into directories, allowing you to
keep your Beatles MP3s away from your important work documents so that you don’t
accidentally send an MP3 file to your boss. Perl lets you manipulate these directories
directly, in ways that are even fairly portable from one operating system to another.

Moving Around the Directory Tree
Your program runs with a working directory, which is the starting point for relative
pathnames. That is, if you refer to the file fred, that means “fred in the current working
directory.”

The chdir operator changes the working directory. It’s just like the Unix shell’s cd
command:

chdir '/etc' or die "cannot chdir to /etc: $!";

Because this is a system request, Perl sets the value of $! if an error occurs. You should
normally check $! when chdir returns a false value since that indicates that something
has not gone as requested.

The working directory is inherited by all processes that Perl starts (we’ll talk more about
that in Chapter 14). However, the change in working directory cannot affect the process
that invoked Perl, such as the shell. This isn’t a limitation on Perl’s part; it’s actually a
feature of Unix, Windows, and other systems. If you really need to change the shell’s
working directory, see the documentation of your shell. So you can’t make a Perl pro-
gram to replace your shell’s cd command. In general, you can only affect the processes
your program starts, not the thing that started your program.

If you call chdir without an argument, Perl determines your home directory as best as
possible and attempts to set the working directory to your home directory, similar to
using the cd command at the shell without a parameter. This is one of the few places
where omitting the parameter doesn’t use $_ as the default.

215

Some shells permit you to use a tilde-prefixed path with cd to use another user’s home
directory as a starting point (like cd ~merlyn). This is a function of the shell, not the
operating system, and Perl is calling the operating system directly. Thus, a tilde prefix
will not work with chdir.*

Globbing
Normally, the shell expands any filename patterns on each command line into the
matching filenames. This is called globbing. For example, if you give a filename pattern
of *.pm to the echo command, the shell expands this list to a list of names that match:

$ echo *.pm
barney.pm dino.pm fred.pm wilma.pm
$

The echo command doesn’t have to know anything about expanding *.pm because the
shell has already expanded it. This works even for your Perl programs. Here’s a program
that simply prints its arguments:

foreach $arg (@ARGV) {
 print "one arg is $arg\n";
}

When you run this program with a glob as the single argument, the shell expands
the glob before it sends the result to your program. Thus, you think you got many
arguments:

$ perl show-args *.pm
one arg is barney.pm
one arg is dino.pm
one arg is fred.pm
one arg is wilma.pm

Note that show-args didn’t need to know anything about globbing—the names were
already expanded in @ARGV.

But sometimes you end up with a pattern like *.pm inside your Perl program. Can we
expand this pattern into the matching filenames without working very hard? Sure—
just use the glob operator:

my @all_files = glob '*';
my @pm_files = glob '*.pm';

Here, @all_files gets all the files in the current directory, alphabetically sorted, but
doesn’t get the files beginning with a period—just like the shell. And @pm_files gets
the same list that you got before by using *.pm on the command line.

* You might try the File::HomeDir module to get the user’s home directory in a mostly portable fashion.

216 | Chapter 13: Directory Operations

In fact, anything you can say on the command line, you can also put as the (single)
argument to glob, including multiple patterns separated by spaces:

my @all_files_including_dot = glob '.* *';

Here, you include an additional “dot star” parameter to get the filenames that begin
with a dot as well as the ones that don’t. Please note that the space between these two
items inside the quoted string is significant, as it separates two different items you want
to glob.† The reason this works exactly as the shell works is that prior to Perl version
5.6, the glob operator simply called /bin/csh‡ behind the scenes to perform the expan-
sion. Because of this, globs were time-consuming and could break in large directories,
or in some other cases. Conscientious Perl hackers avoided globbing in favor of direc-
tory handles, which we will show later in this chapter. However, if you’re using a
modern version of Perl, you should no longer be concerned about such things.

An Alternate Syntax for Globbing
Although we use the term globbing freely, and we talk about the glob operator, you
might not see the word glob in very many of the programs that use globbing. Why not?
Well, a lot of legacy code was written before the Perl developers gave the glob operator
its name. Instead, it used the angle-bracket syntax, similar to reading from a filehandle:

my @all_files = <*>; # exactly the same as my @all_files = glob "*";

Perl interpolates the value between the angle brackets similarly to a double-quoted
string, which means that Perl expands variables to their current Perl values before being
globbed:

my $dir = '/etc';
my @dir_files = <$dir/* $dir/.*>;

Here, you fetch all the non-dot and dot files from the designated directory because
$dir has been expanded to its current value.

So, if using angle brackets means both filehandle reading and globbing, how does Perl
decide which of the two operators to use? Well, a filehandle has to be a Perl identifier
or a variable. So, if the item between the angle brackets is strictly a Perl identifier, it’s
a filehandle read; otherwise, it’s a globbing operation. For example:

my @files = <FRED/*>; # a glob
my @lines = <FRED>; # a filehandle read
my @lines = <$fred>; # a filehandle read
my $name = 'FRED';
my @files = <$name/*>; # a glob

† Windows users may be accustomed to using a glob of *.* to mean “all files.” But that actually means “all files
with a dot in their names,” even in Perl on Windows.

‡ Or it would call a valid substitute if a C-shell wasn’t available.

An Alternate Syntax for Globbing | 217

The one exception is if the contents are a simple scalar variable (not an element of a
hash or array) that’s not a filehandle object, then it’s an indirect filehandle read,§ where
the variable contents give the name of the filehandle you want to read:

my $name = 'FRED';
my @lines = <$name>; # an indirect filehandle read of FRED handle

Determining whether it’s a glob or a filehandle read is made at compile time, and thus
it is independent of the content of the variables.

If you want, you can get the operation of an indirect filehandle read using the
readline operator,‖ which also makes it clearer:

my $name = 'FRED';
my @lines = readline FRED; # read from FRED
my @lines = readline $name; # read from FRED

But Perlers rarely use the readline operator, as indirect filehandle reads are uncommon
and are generally performed against a simple scalar variable anyway.

Directory Handles
Another way to get a list of names from a given directory is with a directory handle. A
directory handle looks and acts like a filehandle. You open it (with opendir instead
of open), you read from it (with readdir instead of readline), and you close it (with
closedir instead of close). But instead of reading the contents of a file, you’re reading
the names of files (and other things) in a directory. For example:

my $dir_to_process = '/etc';
opendir my $dh, $dir_to_process or die "Cannot open $dir_to_process: $!";
foreach $file (readdir $dh) {
 print "one file in $dir_to_process is $file\n";
}
closedir $dh;

Like filehandles, directory handles are automatically closed at the end of the program
or if the directory handle is reopened onto another directory.

You can also use a bareword directory handle, just like you could with a filehandle, but
this has the same problems:

opendir DIR, $dir_to_process
 or die "Cannot open $dir_to_process: $!";
foreach $file (readdir DIR) {
 print "one file in $dir_to_process is $file\n";
}
closedir DIR;

§ If the indirect handle is a text string, it’s subject to the “symbolic reference” test that is forbidden under use
strict. However, the indirect handle might also be a typeglob or reference to an I/O object, and then it would
work even under use strict.

‖ If you’re using Perl 5.005 or later.

218 | Chapter 13: Directory Operations

Unlike globbing, which in very old versions of Perl fired off a separate process, a
directory handle never fires off another process. So it makes them more efficient for
applications that demand every ounce of power from the machine. However, it’s also
a lower-level operation, meaning that we have to do more of the work ourselves.

For example, the names are returned in no particular order.# And the list includes all
files, not just those matching a particular pattern (like *.pm from our globbing exam-
ples). And the list includes all files, especially the dot files, and particularly the dot and
dot-dot entries.* So, if you wanted only the pm-ending files, you could use a skip-over
function inside the loop:

while ($name = readdir $dh) {
 next unless $name =~ /\.pm$/;
 ... more processing ...
}

Note here that the syntax is that of a regular expression, not a glob. And if you wanted
all the non-dot files, you could say that:

next if $name =~ /^\./;

Or if you wanted everything but the common dot (current directory) and dot-dot
(parent directory) entries, you could explicitly say that:

next if $name eq '.' or $name eq '..';

Here’s another part that gets most people mixed up, so pay close attention. The file-
names returned by the readdir operator have no pathname component. It’s just the
name within the directory. So, instead of /etc/passwd, you get just passwd. And because
this is another difference from the globbing operation, it’s easy to see how people get
confused.

So you need to patch up the name to get the full name:

opendir my $somedir, $dirname or die "Cannot open $dirname: $!";
while (my $name = readdir $somedir) {
 next if $name =~ /^\./; # skip over dot files
 $name = "$dirname/$name"; # patch up the path
 next unless -f $name and -r $name; # only readable files
 ...
}

#It’s actually the unsorted order of the directory entries, similar to the order you get from ls -f or find.

* Do not make the mistake of many old Unix programs and presume that dot and dot-dot are always returned
as the first two entries (sorted or not). If that hadn’t even occurred to you, pretend we never said it because
it’s a false presumption. In fact, we’re now sorry for even bringing it up.

Directory Handles | 219

For portability, you might want to use the File::Spec::Functions module that knows
how to construct paths appropriate for the local system:†

use File::Spec::Functions;

opendir my $somedir, $dirname or die "Cannot open $dirname: $!";
while (my $name = readdir $somedir) {
 next if $name =~ /^\./; # skip over dot files
 $name = catfile($dirname, $name); # patch up the path
 next unless -f $name and -r $name; # only readable files
 ...
}

Without the patch, the file tests would have been checking files in the current directory,
rather than in the directory named in $dirname. This is the single most common mistake
when using directory handles.

Recursive Directory Listing
You probably won’t need recursive directory access for the first few dozen hours of
your Perl programming career. So rather than distract you with the possibility of re-
placing all those ugly find scripts with Perl right now, we’ll simply entice you by saying
that Perl comes with a nice library called File::Find, which you can use for nifty re-
cursive directory processing. We’re also saying this to keep you from writing your own
routines, which everyone seems to want to do after those first few dozen hours of
programming, and then getting puzzled about things like “local directory handles” and
“how do I change my directory back?”

If you are already using Unix find commands to get work done, you can convert them
to Perl programs with the find2perl program that comes with Perl. You give it the same
arguments that you use with find and it spits out the equivalent Perl program:

$ find2perl . -name '*.pm'
#! /usr/bin/perl -w
 eval 'exec /usr/bin/perl -S $0 ${1+"$@"}'
 if 0; #$running_under_some_shell

use strict;
use File::Find ();

Set the variable $File::Find::dont_use_nlink if you're using AFS,
since AFS cheats.

for the convenience of &wanted calls, including -eval statements:
use vars qw/*name *dir *prune/;
*name = *File::Find::name;
*dir = *File::Find::dir;
*prune = *File::Find::prune;

† The Path::Class module is a nicer interface to the same thing, but it doesn’t come with Perl.

220 | Chapter 13: Directory Operations

sub wanted;

Traverse desired filesystems
File::Find::find({wanted => \&wanted}, '.');
exit;

sub wanted {
 /^.*\.pm\z/s
 && print("$name\n");
}

For more complex things, you might want to look at some CPAN modules, including
File::Find::Rule and File::Finder. Each of these tries to provide a more convenient
interface to File::Find.

Manipulating Files and Directories
Perl is commonly used to wrangle files and directories. Because Perl grew up in a Unix
environment and still spends most of its time there, most of the description in this
chapter may seem Unix-centric. But the nice thing is that to whatever degree possible,
Perl works exactly the same way on non-Unix systems.

Removing Files
Most of the time, you make files so that the data can stay around for a while. But when
the data has outlived its usefulness, it’s time to make the file go away. At the Unix shell
level, you type an rm command to remove a file or files:

$ rm slate bedrock lava

In Perl, you use the unlink operator with a list of the file that you want to remove:

unlink 'slate', 'bedrock', 'lava';

unlink qw(slate bedrock lava);

This sends the three named files away to bit heaven, never to be seen again.

Now, since unlink takes a list, and the glob function returns a list, you can combine
the two to delete many files at once:

unlink glob '*.o';

This is similar to rm *.o at the shell, except that you didn’t have to fire off a separate
rm process. So you can make those important files go away that much faster!

Removing Files | 221

The return value from unlink tells you how many files have been successfully deleted.
So, back to the first example, you can check its success:

my $successful = unlink "slate", "bedrock", "lava";
print "I deleted $successful file(s) just now\n";

Sure, if this number is 3, you know it removed all of the files, and if it’s 0, it removed
none of them. But what if it’s 1 or 2? Well, there’s no clue which ones had problems.
If you need to know, do them one at a time in a loop:

foreach my $file (qw(slate bedrock lava)) {
 unlink $file or warn "failed on $file: $!\n";
}

Here, each file being deleted one at a time means the return value will be 0 (failed) or
1 (succeeded), which happens to look like a nice Boolean value, controlling the execu-
tion of warn. Using or warn is similar to or die, except that it’s not fatal, of course (as
we said back in Chapter 5). In this case, you put the newline on the end of the message
to warn because it’s not a bug in your program that causes the message.

When a particular unlink fails, Perl sets the $! variable to something related to the
operating system error, which you can include in the message. This makes sense to use
only when you’re checking one filename at a time because the next operating system
failed request resets the variable. You can’t remove a directory with unlink, just like
you can’t remove a directory with the simple rm invocation either. Look for the rmdir
function coming up shortly for that.

Now, here’s a little-known Unix fact. It turns out that you can have a file that you can’t
read, you can’t write, you can’t execute, maybe you don’t even own the file—that is,
it’s somebody else’s file altogether—but you can still delete the file. That’s because the
permission to unlink a file doesn’t depend upon the permission bits on the file itself;
it’s the permission bits on the directory that contains the file that matter.

We mention this because it’s normal for a beginning Perl programmer, in the course
of trying out unlink, to make a file, to chmod it to 0 (so that it’s not readable or writable),
and then to see whether this makes unlink fail. But instead it vanishes without so much
as a whimper.‡ If you really want to see a failed unlink, though, just try to remove /etc/
passwd or a similar system file. Since that’s a file controlled by the system administrator,
you won’t be able to remove it.§

‡ Some of these folks know that rm would generally ask before deleting such a file. But rm is a command, and
unlink is a system call. System calls never ask permission, and they never say they’re sorry.

§ Of course, if you’re silly enough to try this kind of thing when you are logged in as the system administrator,
you deserve what you get.

222 | Chapter 13: Directory Operations

Renaming Files
Giving an existing file a new name is simple with the rename function:

rename 'old', 'new';

This is similar to the Unix mv command, taking a file named old and giving it the name
new in the same directory. You can even move things around:

rename 'over_there/some/place/some_file', 'some_file';

Some people like to use the fat arrow that you saw in Chapter 6 (“The Big Ar-
row” on page 114) so they remind themselves which way the rename happens:

rename 'over_there/some/place/some_file' => 'some_file';

This moves a file called some_file from another directory into the current directory,
provided the user running the program has the appropriate permissions.‖ Like most
functions that request something of the operating system, rename returns false if it fails,
and sets $! with the operating system error, so you can (and often should) use or die
(or or warn) to report this to the user.

One frequent# question in the Unix shell-usage newsgroups is how to rename every-
thing that ends with .old to the same name with .new. Here’s how to do it nicely in Perl:

foreach my $file (glob "*.old") {
 my $newfile = $file;
 $newfile =~ s/\.old$/.new/;
 if (-e $newfile) {
 warn "can't rename $file to $newfile: $newfile exists\n";
 } elsif (rename $file => $newfile) {
 # success, do nothing
 } else {
 warn "rename $file to $newfile failed: $!\n";
 }
}

The check for the existence of $newfile is needed because rename will happily rename
a file right over the top of an existing file, presuming the user has permission to remove
the destination filename. You put the check in so that it’s less likely that you’ll lose
information this way. Of course, if you wanted to replace existing files like
wilma.new, you wouldn’t bother testing with -e first.

Those first two lines inside the loop can be combined (and often are) to simply:

(my $newfile = $file) =~ s/\.old$/.new/;

‖ And the files must reside on the same filesystem. You’ll see why this rule exists a little later in this chapter.

#This isn’t just any old frequent question; the question of renaming a batch of files at once is one of the
most frequent question asked in these newsgroups. And that’s why it’s the first question answered in the
FAQs for those newsgroups. And yet, it stays in first place. Hmmm.

Renaming Files | 223

This works to declare $newfile, copy its initial value from $file, then modify $new
file with the substitution. You can read this as “transform $file to $newfile using this
replacement on the right.” And yes, because of precedence, those parentheses are
required.

That’s a bit easier in Perl 5.14 with the /r flag to the s/// operator. This line looks
almost the same, but lacks the parentheses:

use 5.014;

my $newfile = $file =~ s/\.old$/.new/r;

Also, some programmers seeing this substitution for the first time wonder why the
backslash is needed on the left, but not on the right. The two sides aren’t symmetrical:
the left part of a substitution is a regular expression, and the right part is a double-
quoted string. So you use the pattern /\.old$/ to mean “.old anchored at the end of
the string” (anchored at the end because you don’t want to rename the first occurrence
of .old in a file called betty.old.old), but on the right you can simply write .new to make
the replacement.

Links and Files
To understand more about what’s going on with files and directories, it helps to un-
derstand the Unix model of files and directories, even if your non-Unix system doesn’t
work in exactly this way. As usual, there’s more to the story than we’re able to explain
here, so check any good book on Unix internal details if you need the full story.

A mounted volume is a hard disk drive (or something else that works more or less like
that, such as a disk partition, a solid state device, a floppy disk, a CD-ROM, or a DVD-
ROM). It may contain any number of files and directories. Each file is stored in a num-
bered inode, which we can think of as a particular piece of disk real estate. One file
might be stored in inode 613, while another is in inode 7033.

To locate a particular file, though, you look it up in a directory. A directory is a special
kind of file maintained by the system. Essentially, it is a table of filenames and their
inode numbers.* Along with the other things in the directory, there are always two
special directory entries. One is . (called “dot”), which is the name of that very directory;
and the other is .. (“dot-dot”), which is the directory one step higher in the hierarchy
(i.e., the directory’s parent directory).† Figure 13-1 provides an illustration of two
inodes. One is for a file called chicken, and the other is Barney’s directory of
poems, /home/barney/poems, which contains that file. The file is stored in inode 613,

* On Unix systems (others don’t generally have inodes, hard links, and such), you can use the ls command’s
-i option to see files’ inode numbers. Try a command like ls -ail. When two or more inode numbers are the
same for multiple items on a given filesystem, there’s really just one file involved, one piece of the disk.

† The Unix system root directory has no parent. In that directory, .. is the same directory as ., which is the
system root directory itself.

224 | Chapter 13: Directory Operations

while the directory is stored in inode 919. (The directory’s own name, poems, doesn’t
appear in the illustration, because it’s stored in another directory.) The directory con-
tains entries for three files (including chicken) and two directories (one of which is the
reference back to the directory itself, in inode 919), along with each item’s inode
number.

When it’s time to make a new file in a given directory, the system adds an entry with
the file’s name and the number of a new inode. How can the system tell that a particular
inode is available though? Each inode holds a number called its link count. The link
count is always 0 if the inode isn’t listed in any directory, so any inode with a link count
of 0 is available for new file storage. When the inode is added to a directory, the link
count is incremented; when the listing is removed, the link count is decremented. For
the file chicken illustrated above, the inode count of 1 is shown in the box above the
inode’s data.

But some inodes have more than one listing. For example, you’ve already seen that each
directory entry includes ., which points back to that directory’s own inode. So the link
count for a directory should always be at least two: its listing in its parent directory and
its listing in itself. In addition, if it has subdirectories, each of those will add a link,
since each will contain .. .‡ In Figure 13-1, the directory’s inode count of 2 is shown in
the box above its data. A link count is the number of true names for the inode.§ Could
an ordinary file inode have more than one listing in the directory? It certainly could.
Suppose that, working in the directory shown above, Barney uses the Perl link function
to create a new link:

link 'chicken', 'egg'
 or warn "can't link chicken to egg: $!";

Figure 13-1. The chicken before the egg

‡ This implies that the link count of a directory is always equal to two plus the number of directories it contains.
On some systems that’s true, in fact, but some other systems work differently.

§ In the traditional output of ls -l, the number of hard links to the item appears just to the right of the permission
flags (like -rwxr-xr-x). Now you know why this number is more than one for directories and nearly always
1 for ordinary files.

Links and Files | 225

This is similar to typing ln chicken egg at the Unix shell prompt. If link succeeds, it
returns true. If it fails, it returns false and sets $!, which Barney is checking in the error
message. After this runs, the name egg is another name for the file chicken, and vice
versa; neither name is “more real” than the other, and (as you may have guessed) it
would take some detective work to find out which came first. Figure 13-2 shows a
picture of the new situation, where there are two links to inode 613.

Figure 13-2. The egg is linked to the chicken

These two filenames are thus talking about the same place on the disk. If the file
chicken holds 200 bytes of data, egg holds the same 200 bytes, for a total of 200 bytes
(since it’s really just one file with two names). If Barney appends a new line of text to
the file egg, that line will also appear at the end of chicken.‖ Now, if Barney were to
accidentally (or intentionally) delete chicken, that data would not be lost—it’s still
available under the name egg. And vice versa: if he were to delete egg, he would still
have chicken. Of course, if he were to delete both of them, the data would be lost.#

There’s another rule about the links in directory listings: the inode numbers in a given
directory listing all refer to inodes on that same mounted volume.* This rule ensures
that if you move the physical medium (the diskette, perhaps) to another machine, all
of the directories stick together with their files. That’s why you can use rename to move
a file from one directory to another, but only if both directories are on the same file-
system (mounted volume). If they were on different disks, the system would have to
relocate the inode’s data, which is too complex an operation for a simple system call.

‖ If you experiment with making links and changing text files, be aware that most text editors don’t edit the
file “in place” but instead save a modified copy. If Barney were to edit egg with a text editor, he’d most likely
end up with a new file called egg and the old file called chicken—two separate files, rather than two links to
the same file.

#Although the system won’t necessarily overwrite this inode right away, there’s no easy way in general to get
the data back once the link count has gone to 0. Have you made a backup recently?

* The one exception is the special .. entry in the volume’s root directory, which refers to the directory in which
that volume is mounted.

226 | Chapter 13: Directory Operations

And yet another restriction on links is that they can’t make new names for directories.
That’s because the directories are arranged in a hierarchy. If you were able to change
that, utility programs like find and pwd could easily become lost trying to find their way
around the filesystem.

So, you can’t add links to directories, and they can’t cross from one mounted volume
to another. Fortunately, there’s a way to get around these restrictions on links, by using
a new and different kind of link: a symbolic link.† A symbolic link (also called a soft
link to distinguish it from the true or hard links that we’ve been talking about up to
now) is a special entry in a directory that tells the system to look elsewhere. Let’s say
that Barney (working in the same directory of poems as before) creates a symbolic link
with Perl’s symlink function, like this:

symlink 'dodgson', 'carroll'
 or warn "can't symlink dodgson to carroll: $!";

This is similar to what would happen if Barney used the command ln -s dodgson
carroll from the shell. Figure 13-3 shows a picture of the result, including the poem in
inode 7033.

Figure 13-3. A symlink to inode 7033

Now if Barney chooses to read /home/barney/poems/carroll, he gets the same data as if
he had opened /home/barney/poems/dodgson because the system follows the symbolic
link automatically. But that new name isn’t the “real” name of the file because (as you
can see in the diagram) the link count on inode 7033 is still just one. That’s because
the symbolic link simply tells the system, “If you got here looking for carroll, now you
want to go off to find something called dodgson instead.”

A symbolic link can freely cross mounted filesystems or provide a new name for a
directory, unlike a hard link. In fact, a symbolic link could point to any filename, one
in this directory or in another one—or even to a file that doesn’t exist! But that also
means that a soft link can’t keep data from being lost as a hard link can, since the
symlink doesn’t contribute to the link count. If Barney were to delete dodgson, the

† Some very old Unix systems don’t support symlinks, but those are pretty rare nowadays.

Links and Files | 227

system would no longer be able to follow the soft link.‡ Even though there would still
be an entry called carroll, trying to read from it would give an error like file not
found. The file test -l 'carroll' would report true, but -e 'carroll' would be false:
it’s a symlink, but its target doesn’t exist.

Since a soft link could point to a file that doesn’t yet exist, it could be used when creating
a file as well. Barney has most of his files in his home directory, /home/barney, but he
also needs frequent access to a directory with a long name that is difficult to type: /usr/
local/opt/system/httpd/root-dev/users/staging/barney/cgi-bin. So he sets up a symlink
named /home/barney/my_stuff, which points to that long name, and now it’s easy for
him to get to it. If he creates a file (from his home directory) called my_stuff/bowling,
that file’s real name is /usr/local/opt/system/httpd/root-dev/users/staging/barney/cgi-bin/
bowling. Next week, when the system administrator moves these files of Barney’s
to /usr/local/opt/internal/httpd/www-dev/users/staging/barney/cgi-bin, Barney just
repoints the one symlink, and now he and all of his programs can still find his files
with ease.

It’s normal for either /usr/bin/perl or /usr/local/bin/perl (or both) to be symbolic links
to the true Perl binary on your system. This makes it easy to switch to a new version of
Perl. Say you’re the system administrator, and you’ve built the new Perl. Of course,
your older version is still running and you don’t want to disrupt anything. When you’re
ready for the switch, you simply move a symlink or two, and now every program that
begins with #!/usr/bin/perl will automatically use the new version. In the unlikely case
that there’s some problem, it’s a simple thing to replace the old symlinks and have the
older Perl running the show again. (But, like any good admin, you notified your users
to test their code with the new /usr/bin/perl-7.2 well in advance of the switch, and you
told them they can keep using the older one during the next month’s grace period by
changing their programs’ first lines to #!/usr/bin/perl-6.1, if they need to.)

Perhaps surprisingly, both hard and soft links are very useful. Many non-Unix operating
systems have neither, and the lack is sorely felt. On some non-Unix systems, symbolic
links may be implemented as a “shortcut” or an “alias”—check the perlport documen-
tation for the latest details.

To find out where a symbolic link is pointing, use the readlink function. This will tell
you where the symlink leads, or it will return undef if its argument wasn’t a symlink:

my $where = readlink 'carroll'; # Gives "dodgson"

my $perl = readlink '/usr/local/bin/perl'; # Maybe tells where perl is

You can remove either kind of link with unlink—and now you see where that operation
gets its name. unlink simply removes the directory entry associated with the given
filename, decrementing the link count and thus possibly freeing the inode.

‡ Deleting carroll would merely remove the symlink, of course.

228 | Chapter 13: Directory Operations

http://perldoc.perl.org/perlport.html

Making and Removing Directories
Making a directory inside an existing directory is easy. Just invoke the mkdir function:

mkdir 'fred', 0755 or warn "Cannot make fred directory: $!";

Again, true means success, and Perl sets $! on failure.

But what’s that second parameter, 0755? That’s the initial permission setting§ on the
newly created directory (you can always change it later). The value here is specified as
an octal because the value will be interpreted as a Unix permission value, which has a
meaning based on groups of three bits each, and octal values represent that nicely. Yes,
even on Windows or MacPerl, you still need to know a little about Unix permission
values to use the mkdir function. Mode 0755 is a good one to use because it gives you
full permission, but lets everyone else have read access but no permission to change
anything.

The mkdir function doesn’t require you to specify this value in octal—it’s just looking
for a numeric value (either a literal or a calculation). But unless you can quickly figure
that 0755 octal is 493 decimal in your head, it’s probably easier to let Perl calculate that.
And if you accidentally leave off the leading zero, you get 755 decimal, which is 1363
octal, a strange permission combination indeed.

As you saw earlier (in Chapter 2), a string value being used as a number is never inter-
preted as octal, even if it starts with a leading zero. So this doesn’t work:

my $name = "fred";
my $permissions = "0755"; # danger...this isn't working
mkdir $name, $permissions;

Oops, you just created a directory with the bizarre 01363 permissions because 0755 was
treated as a decimal. To fix that, use the oct() function, which forces octal interpreta-
tion of a string whether or not there’s a leading zero:

mkdir $name, oct($permissions);

Of course, if you are specifying the permission value directly within the program, just
use a number instead of a string. The need for the extra oct() function shows up most
often when the value comes from user input. For example, suppose you take the argu-
ments from the command line:

my ($name, $perm) = @ARGV; # first two args are name, permissions
mkdir $name, oct($perm) or die "cannot create $name: $!";

The value here for $perm is initially interpreted as a string, and thus the oct() function
interprets the common octal representation properly.

§ The permission value is modified by the umask value in the usual way. See umask(2) for further information.

Making and Removing Directories | 229

To remove empty directories, use the rmdir function in a manner similar to the
unlink function, although it can only remove one directory per call:

foreach my $dir (qw(fred barney betty)) {
 rmdir $dir or warn "cannot rmdir $dir: $!\n";
}

The rmdir operator fails for nonempty directories. As a first pass, you can attempt to
delete the contents of the directory with unlink, then try to remove what should now
be an empty directory. For example, suppose you need a place to write many temporary
files during the execution of a program:‖

my $temp_dir = "/tmp/scratch_$$"; # based on process ID; see the text
mkdir $temp_dir, 0700 or die "cannot create $temp_dir: $!";
...
use $temp_dir as location of all temporary files
...
unlink glob "$temp_dir/* $temp_dir/.*"; # delete contents of $temp_dir
rmdir $temp_dir; # delete now-empty directory

The initial temporary directory name includes the current process ID, which is unique
for every running process and is accessed with the $$ variable (similar to the shell). You
do this to avoid colliding with any other processes, as long as they also include their
process IDs as part of their pathnames as well. (In fact, it’s common to use the program’s
name as well as the process ID, so if the program is called quarry, the directory would
probably be something like /tmp/quarry_$$.)

At the end of the program, that last unlink should remove all the files in this temporary
directory, and then the rmdir function can delete the then-empty directory. However,
if you’ve created subdirectories under that directory, the unlink operator fails on those,
and the rmdir also fails. For a more robust solution, check out the rmtree function
provided by the File::Path module of the standard distribution.

Modifying Permissions
The Unix chmod command changes the permissions on a file or directory. Similarly, Perl
has the chmod function to perform this task:

chmod 0755, 'fred', 'barney';

As with many of the operating system interface functions, chmod returns the number of
items successfully altered, and when used with a single argument, sets $! in a sensible
way for error messages when it fails. The first parameter is the Unix permission value
(even for non-Unix versions of Perl). For the same reasons we presented earlier in de-
scribing mkdir, this value is usually specified in octal.

‖ If you really need to create temporary directories or files, check out the File::Temp module, which comes
with Perl.

230 | Chapter 13: Directory Operations

Symbolic permissions (like +x or go=u-w) accepted by the Unix chmod command are
not valid for the chmod function.#

Changing Ownership
If the operating system permits it, you may change the ownership and group member-
ship of a list of files (or filehandles) with the chown function. The user and group are
both changed at once, and both have to be the numeric user ID and group ID values.
For example:

my $user = 1004;
my $group = 100;
chown $user, $group, glob '*.o';

What if you have a username like merlyn instead of the number? Simple. Just call
the getpwnam function to translate the name into a number, and the corresponding
getgrnam* to translate the group name into its number:

defined(my $user = getpwnam 'merlyn') or die 'bad user';
defined(my $group = getgrnam 'users') or die 'bad group';
chown $user, $group, glob '/home/merlyn/*';

The defined function verifies that the return value is not undef, which will be returned
if the requested user or group is not valid.

The chown function returns the number of files affected, and it sets $! on error.

Changing Timestamps
In those rare cases when you want to lie to other programs about when a file was most
recently modified or accessed, you can use the utime function to fudge the books a bit.
The first two arguments give the new access time and modification time, while the
remaining arguments are the list of filenames to alter to those timestamps. The times
are specified in internal timestamp format (the same type of values returned from the
stat function that we mentioned in Chapter 12 in “The stat and lstat Func-
tions” on page 210).

One convenient value to use for the timestamps is “right now,” returned in the proper
format by the time function. To update all the files in the current directory to look like
they were modified a day ago, but accessed just now, you could simply do this:

my $now = time;
my $ago = $now - 24 * 60 * 60; # seconds per day
utime $now, $ago, glob '*'; # set access to now, mod to a day ago

#Unless you’ve installed and invoked the File::chmod module from CPAN, which can apparently upgrade the
chmod operator to understand symbolic mode values.

* These two are among the ugliest function names known to mankind. But don’t blame Larry for them; he’s
just giving them the same names that the folks at Berkeley did.

Changing Timestamps | 231

Of course, nothing stops you from creating a file that is arbitrarily stamped far in the
future or past (within the limits of the Unix timestamp values of 1970 to 2038, or
whatever your non-Unix system uses, unless you have 64-bit timestamps). Maybe you
could use this to create a directory where you keep your notes for that time-travel novel
you’re writing.

The third timestamp (the ctime value) is always set to “now” whenever anything alters
a file, so there’s no way to set it (it would have to be reset to “now” after you set it)
with the utime function. That’s because its primary purpose is for incremental backups:
if the file’s ctime is newer than the date on the backup tape, it’s time to back it up again.

Exercises
The programs here are potentially dangerous! Be careful to test them in a mostly empty
directory to make it difficult to accidentally delete something useful.

See “Answers to Exercises” on page 317 for answers to the following exercises:

1. [12] Write a program to ask the user for a directory name, then change to that
directory. If the user enters a line with nothing but whitespace, change to his or
her home directory as a default. After changing, list the ordinary directory contents
(not the items whose names begin with a dot) in alphabetical order. (Hint: will that
be easier to do with a directory handle or with a glob?) If the directory change
doesn’t succeed, just alert the user—but don’t try showing the contents.

2. [4] Modify the program to include all files, not just the ones that don’t begin with
a dot.

3. [5] If you used a directory handle for the previous exercise, rewrite it to use a glob.
Or if you used a glob, try it now with a directory handle.

4. [6] Write a program that works like rm, deleting any files named on the command
line. (You don’t need to handle any of the options of rm.)

5. [10] Write a program that works like mv, renaming the first command-line argu-
ment to the second command-line argument. (You don’t need to handle any of the
options of mv or additional arguments.) Remember to allow for the destination to
be a directory; if it is, use the same original basename in the new directory.

6. [7] If your operating system supports it, write a program that works like ln, making
a hard link from the first command-line argument to the second. (You don’t need
to handle options of ln or more arguments.) If your system doesn’t have hard links,
just print out a message telling which operation you would perform if it were
available. Hint: this program has something in common with the previous one—
recognizing that could save you time in coding.

232 | Chapter 13: Directory Operations

7. [7] If your operating system supports it, fix up the program from the previous
exercise to allow an optional -s switch before the other arguments to indicate that
you want to make a soft link instead of a hard link. (Even if you don’t have hard
links, see whether you can at least make soft links with this program.)

8. [7] If your operating system supports it, write a program to find any symbolic links
in the current directory and print out their values (like ls -l would: name -> value).

Exercises | 233

CHAPTER 14

Strings and Sorting

As we mentioned near the beginning of this book, Perl is designed to be good at solving
programming problems that are about 90% working with text and 10% everything else.
So it’s no surprise that Perl has strong text-processing abilities, including all that you’ve
done with regular expressions. But sometimes the regular expression engine is too fancy
and you need a simpler way of working with a string, as you’ll see in this chapter.

Finding a Substring with index
Finding a substring depends on where you have lost it. If you happen to have lost it
within a bigger string, you’re in luck because the index function can help you out. Here’s
how it looks:

$where = index($big, $small);

Perl locates the first occurrence of the small string within the big string, returning an
integer location of the first character. The character position returned is a zero-based
value—if the substring is found at the very beginning of the string, index returns 0. If
it’s one character later, the return value is 1, and so on. If index can’t find the substring
at all, it returns –1 to indicate that.* In this example, $where gets 6:

my $stuff = "Howdy world!";
my $where = index($stuff, "wor");

Another way you could think of the position number is the number of characters to
skip over before getting to the substring. Since $where is 6, you know that you have to
skip over the first six characters of $stuff before you find wor.

* Former C programmers will recognize this as being like C’s index function. Current C programmers ought
to recognize it as well—but by this point in the book, you should really be a former C programmer.

235

The index function will always report the location of the first found occurrence of the
substring. But you can tell it to start searching at a later point than the start of the string
by using the optional third parameter, which tells index to start at that position:

my $stuff = "Howdy world!";
my $where1 = index($stuff, "w"); # $where1 gets 2
my $where2 = index($stuff, "w", $where1 + 1); # $where2 gets 6
my $where3 = index($stuff, "w", $where2 + 1); # $where3 gets –1 (not found)

(Of course, you don’t normally search repeatedly for a substring without using a loop.)
That third parameter is effectively giving a minimum value for the return value; if the
substring isn’t at that position or later, index returns –1.

Once in a while, you might prefer to have the last occurrence of the substring. You can
get that with the rindex function, which starts scanning from the end of the string. In
this example, you can find the last slash, which turns out to be at position 4 in a string,
still counting from the left just like index:

my $last_slash = rindex("/etc/passwd", "/"); # value is 4

The rindex function also has an optional third parameter, but, in this case, it effectively
gives the maximum permitted return value:

my $fred = "Yabba dabba doo!";

my $where1 = rindex($fred, "abba"); # $where1 gets 7
my $where2 = rindex($fred, "abba", $where1 - 1); # $where2 gets 1
my $where3 = rindex($fred, "abba", $where2 - 1); # $where3 gets –1

Manipulating a Substring with substr
The substr function works with only a part of a larger string. It looks like this:

my $part = substr($string, $initial_position, $length);

It takes three arguments: a string value, a zero-based initial position (such as the return
value of index), and a length for the substring. The return value is the substring:

my $mineral = substr("Fred J. Flintstone", 8, 5); # gets "Flint"
my $rock = substr "Fred J. Flintstone", 13, 1000; # gets "stone"

As you may have noticed in the previous example, if the requested length (1000 char-
acters, in this case) would go past the end of the string, there’s no complaint from Perl,
but you simply get a shorter string than you might have expected. But if you want to
be sure to go to the end of the string, however long or short it may be, just omit that
third parameter (the length), like this:

my $pebble = substr "Fred J. Flintstone", 13; # gets "stone"

236 | Chapter 14: Strings and Sorting

The initial position of the substring in the larger string can be negative, counting from
the end of the string (that is, position –1 is the last character).† In this example, position
–3 is three characters from the end of the string, which is the location of the letter i:

my $out = substr("some very long string", –3, 2); # $out gets "in"

As you might expect, index and substr work well together. In this example, you can
extract a substring that starts at the location of the letter l:

my $long = "some very very long string";
my $right = substr($long, index($long, "l"));

Now here’s something really cool—you can change the selected portion of the string
if the string is a variable:‡

my $string = "Hello, world!";
substr($string, 0, 5) = "Goodbye"; # $string is now "Goodbye, world!"

As you see, the assigned (sub)string doesn’t have to be the same length as the substring
it’s replacing. The string’s length is adjusted to fit. Or if that wasn’t cool enough to
impress you, you could use the binding operator (=~) to restrict an operation to work
with just part of a string. This example replaces fred with barney wherever possible
within just the last 20 characters of a string:

substr($string, –20) =~ s/fred/barney/g;

Much of the work that you do with substr and index you could also do with regular
expressions. Use those where they’re appropriate. But substr and index can often be
faster, since they don’t have the overhead of the regular expression engine: they’re never
case-insensitive, they have no metacharacters to worry about, and they don’t set any
of the capture variables.

Besides assigning to the substr function (which looks a little weird at first glance,
perhaps), you can also use substr in a slightly more traditional manner§ with the four-
argument version, in which the fourth argument is the replacement substring:

my $previous_value = substr($string, 0, 5, "Goodbye");

The previous value comes back as the return value, although as always, you can use
this function in a void context to simply discard it.

† This is homologous to what you saw with array indices in Chapter 3. Just as arrays may be indexed either
from 0 (the first element) upward or from –1 (the last element) downward, substring locations may be indexed
from position 0 (at the first character) upward or from position –1 (at the last character) downward.

‡ Well, technically, it can be any lvalue. What that term means precisely is beyond the scope of this book, but
you can think of it as anything that can be put on the left side of the equals sign (=) in a scalar assignment.
That’s usually a variable, but it can (as you see here) even be an invocation of the substr operator.

§ By traditional we mean in the “function invocation” sense, but not the “Perl” sense, since this feature was
introduced to Perl relatively recently.

Manipulating a Substring with substr | 237

Formatting Data with sprintf
The sprintf function takes the same arguments as printf (except for the optional
filehandle, of course), but it returns the requested string instead of printing it. This is
handy if you want to store a formatted string into a variable for later use, or if you want
more control over the result than printf alone would provide:

my $date_tag = sprintf
 "%4d/%02d/%02d %2d:%02d:%02d",
 $yr, $mo, $da, $h, $m, $s;

In that example, $date_tag gets something like "2038/01/19 3:00:08". The format string
(the first argument to sprintf) used a leading zero on the format number, which we
didn’t mention when we talked about printf formats in Chapter 5. The leading zero
on the format number means to use leading zeroes as needed to make the number as
wide as requested. Without a leading zero in the formats, the resulting date-and-time
string would have unwanted leading spaces instead of zeroes, looking like "2038/ 1/19
3: 0: 8".

Using sprintf with “Money Numbers”
One popular use for sprintf is when you want to format a number with a certain
number of places after the decimal point, such as when you want to show an amount
of money as 2.50 and not 2.5—and certainly not as 2.49997! That’s easy to accomplish
with the "%.2f" format:

my $money = sprintf "%.2f", 2.49997;

The full implications of rounding are numerous and subtle, but in most cases you
should keep numbers in memory with all of the available accuracy, rounding off only
for output.

If you have a “money number” that may be large enough to need commas to show its
size, you might find it handy to use a subroutine like this one:‖

sub big_money {
 my $number = sprintf "%.2f", shift @_;
 # Add one comma each time through the do-nothing loop
 1 while $number =~ s/^(-?\d+)(\d\d\d)/$1,$2/;
 # Put the dollar sign in the right place
 $number =~ s/^(-?)/$1\$/;
 $number;
}

‖ Yes, we know that not everywhere in the world are commas used to separate groups of digits, not everywhere
are the digits grouped by threes, and not everywhere the currency symbol appears as it does for U.S. dollars.
But this is a good example anyway, so there!

238 | Chapter 14: Strings and Sorting

This subroutine uses some techniques you haven’t seen yet, but they logically follow
from what we’ve shown you. The first line of the subroutine formats the first (and only)
parameter to have exactly two digits after the decimal point. That is, if the parameter
were the number 12345678.9, now your $number is the string "12345678.90".

The next line of code uses a while modifier. As we mentioned when we covered that
modifier in Chapter 10, that can always be rewritten as a traditional while loop:

while ($number =~ s/^(-?\d+)(\d\d\d)/$1,$2/) {
 1;
}

What does that say to do? It says that as long as the substitution returns a true value
(signifying success), the loop body should run. But the loop body does nothing! That’s
okay with Perl, but it tells us that the purpose of that statement is to do the conditional
expression (the substitution), rather than the useless loop body. The value 1 is tradi-
tionally used as this kind of a placeholder, although any other value would be equally
useful.# This works just as well as the loop above:

'keep looping' while $number =~ s/^(-?\d+)(\d\d\d)/$1,$2/;

So, now you know that the substitution is the real purpose of the loop. But what is the
substitution doing? Remember that $number is some string like "12345678.90" at this
point. The pattern will match the first part of the string, but it can’t get past the decimal
point. (Do you see why it can’t?) Memory $1 will get "12345", and $2 will get "678", so
the substitution will make $number into "12345,678.90" (remember, it couldn’t match
the decimal point, so the last part of the string is left untouched).

Do you see what the dash is doing near the start of that pattern? (Hint: the dash is
allowed at only one place in the string.) We’ll tell you at the end of this section, in case
you haven’t figured it out.

You’re not done with that substitution statement yet. Since the substitution succeeded,
the do-nothing loop goes back to try again. This time, the pattern can’t match anything
from the comma onward, so $number becomes "12,345,678.90". The substitution thus
adds a comma to the number each time through the loop.

Speaking of the loop, it’s still not done. Since the previous substitution was a success,
you’re back around the loop to try again. But this time, the pattern can’t match at all,
since it has to match at least four digits at the start of the string, so now that is the end
of the loop.

#Which is to say, useless. By the way, in case you’re wondering, Perl optimizes away the constant expression,
so it doesn’t even take up any runtime.

Formatting Data with sprintf | 239

Why couldn’t you have simply used the /g modifier to do a “global” search-and-replace,
to save the trouble and confusion of the 1 while? You couldn’t use that because you’re
working backward from the decimal point, rather than forward from the start of the
string. You can’t put the commas in a number like this simply with the s///g substi-
tution alone.* So, did you figure out the dash? It allows a possible minus sign at the
start of the string. The next line of code makes the same allowance, putting the dollar
sign in the right place so that $number is something like "$12,345,678.90", or perhaps
"-$12,345,678.90" if it’s negative. Note that the dollar sign isn’t necessarily the first
character in the string, or that line would be a lot simpler. Finally, the last line of code
returns your nicely formatted “money number,” which you can print in the annual
report.

Interpreting Non-Decimal Numerals
If you have a string that represents a number as another base, you can use the hex() or
oct() functions to interpret those numbers correctly. Curiously, the oct() function is
smart enough to recognize the correct base if you use prefix characters to specify hex
or binary, but the only valid prefix for hex is 0x:

hex('DEADBEEF') # 3_735_928_559 decimal
hex('OxDEADBEEF') # 3_735_928_559 decimal

oct('0377') # 255 decimal
oct('377') # 255 decimal
oct('0xDEADBEEF') # 3_735_928_559 decimal, saw leading 0x
oct('0b1101') # 13 decimal, saw leading 0b
oct("0b$bits") # convert $bits from binary

Advanced Sorting
Earlier, in Chapter 3, we showed that you could sort a list in ascending order by using
the built-in sort operator. What if you want a numeric sort? Or a case-insensitive sort?
Or maybe you want to sort items according to information stored in a hash. Well, Perl
lets you sort a list in whatever order you’d need; you’ll see all of those examples by the
end of the chapter.

You’ll tell Perl what order you want by making a sort-definition subroutine, or sort
subroutine for short. Now, when you first hear the term “sort subroutine,” if you’ve
been through any computer science courses, visions of bubble sort and shell sort and
quick sort race through your head, and you say, “No, never again!” Don’t worry; it’s
not that bad. In fact, it’s pretty simple. Perl already knows how to sort a list of items;
it merely doesn’t know which order you want. So, the sort-definition subroutine simply
tells it the order.

* At least, can’t do it without some more advanced regular expression techniques than we’ve shown you so
far. Those darn Perl developers keep making it harder and harder to write Perl books that use the word “can’t.”

240 | Chapter 14: Strings and Sorting

Why is this necessary? Well, if you think about it, sorting is putting a bunch of things
in order by comparing them all. Since you can’t compare them all at once, you need to
compare two at a time, eventually using what you find out about each pair’s order
to put the whole kit’n’caboodle in line. Perl already understands all of those steps
except for the part about how you’d like to compare the items, so that’s all you have to
write.

This means that the sort subroutine doesn’t need to sort many items after all. It merely
has to be able to compare two items. If it can put two items in the proper order, Perl
will be able to tell (by repeatedly consulting the sort subroutine) what order you want
for your data.

The sort subroutine is defined like an ordinary subroutine (well, almost). This routine
will be called repeatedly, each time checking on a pair of elements from the list you’re
sorting.

Now, if you were writing a subroutine that’s expecting to get two parameters that need
sorting, you might write something like this to start:

sub any_sort_sub { # It doesn't really work this way
 my($a, $b) = @_; # Get and name the two parameters
 # start comparing $a and $b here
 ...
}

But you’re going to call that sort subroutine again and again, often hundreds or thou-
sands of times. Declaring the variables $a and $b and assigning them values at the top
of the subroutine will take just a little time, but multiply that by the thousands of times
you will call the routine, and you can see that it contributes significantly to the overall
execution speed.

You don’t do it like that. (In fact, if you did it that way, it wouldn’t work.) Instead, it
is as if Perl has done this for you, before your subroutine’s code has even started. You’ll
really write a sort subroutine without that first line; both $a and $b have been assigned
for you. When the sort subroutine starts running, $a and $b are two elements from the
original list.

The subroutine returns a coded value describing how the elements compare (like C’s
qsort(3) does, but it’s Perl’s own internal sort implementation). If $a should appear
before $b in the final list, the sort subroutine returns –1 to say so. If $b should
appear before $a, it returns 1.

If the order of $a and $b doesn’t matter, the subroutine returns 0. Why would it not
matter? Perhaps you’re doing a case-insensitive sort and the two strings are fred and
Fred. Or perhaps you’re doing a numeric sort, and the two numbers are equal.

Advanced Sorting | 241

You could now write a numeric sort subroutine like this:

sub by_number {
 # a sort subroutine, expect $a and $b
 if ($a < $b) { –1 } elsif ($a > $b) { 1 } else { 0 }
}

To use the sort subroutine, just put its name (without an ampersand) between the
keyword sort and the list you’re sorting. This example puts a numerically sorted list
of numbers into @result:

my @result = sort by_number @some_numbers;

You can call this subroutine by_number to describe how it sorts. But more importantly,
you can read the line of code that uses it with sort as saying “sort by number,” as you
would in English. Many sort-subroutine names begin with by_ to describe how they
sort. Or you could have called this one numerically, for a similar reason, but that’s
more typing and more chance to mess up something.

Notice that you don’t have to do anything in the sort subroutine to declare $a and $b
and set their values—and if you did, the subroutine wouldn’t work right. We just let
Perl set up $a and $b for us, so all you need to write is the comparison.

In fact, you can make it even simpler (and more efficient). Since this kind of three-way
comparison is frequent, Perl has a convenient shortcut to use to write it. In this case,
you use the spaceship operator (<=>).† This operator compares two numbers and re-
turns –1, 0, or 1 as needed to sort them numerically. So you could write that sort sub-
routine better, like this:

sub by_number { $a <=> $b }

Since the spaceship compares numbers, you may have guessed that there’s a corre-
sponding three-way string-comparison operator: cmp. These two are easy to remember
and keep straight. The spaceship has a family resemblance to the numeric comparison
operators like >=, but it’s three characters long instead of two because it has three
possible return values instead of two. And cmp has a family resemblance to the string
comparison operators like ge, but it’s three characters long instead of two because it
also has three possible return values instead of two.‡ Of course, cmp by itself provides
the same order as the default sort. You’d never need to write this subroutine, which
yields merely the default sort order:§

sub by_code_point { $a cmp $b }

my @strings = sort by_code_point @any_strings;

† It looks like one of the TIE Fighters from Star Wars. Well, it looks like that to us, anyway.

‡ This is no accident. Larry does things like this on purpose, to make Perl easier to learn and remember.
Remember, he’s a linguist at heart, so he’s studied how people think of languages.

§ You’d never need to write this unless, of course, you were writing an introductory Perl book and needed it
for an example.

242 | Chapter 14: Strings and Sorting

But you can use cmp to build a more complex sort order, like a case-insensitive sort:

sub case_insensitive { "\L$a" cmp "\L$b" }

In this case, you’re comparing the string from $a (forced to lowercase) against the string
from $b (forced to lowercase), giving a case-insensitive sort order.

But, remember that Unicode has the concept of canonical and compatible equivalence,
which we cover in Appendix C. To sort equivalent forms next to each other, you need
to sort the decomposed form. If you are dealing with Unicode strings, this is probably
what you want most of the time:

use Unicode::Normalize;

sub equivalents { NFKD($a) cmp NFKD($b) }

Note that you’re not modifying the elements themselves in any of these;‖ you’re merely
using their values. That’s actually important: for efficiency reasons, $a and $b aren’t
copies of the data items. They’re actually new, temporary aliases for elements of the
original list, so if you change them you mangle the original data. Don’t do that—it’s
neither supported nor recommended.

When your sort subroutine is as simple as the ones you see here (and most of the time,
it is), you can make the code even simpler yet, by replacing the name of the sort routine
with the entire sort routine “inline,” like so:

my @numbers = sort { $a <=> $b } @some_numbers;

In fact, in modern Perl, you’ll hardly ever see a separate sort subroutine; you’ll fre-
quently find sort routines written inline as we’ve done here.

Suppose you want to sort in descending numeric order. That’s easy enough to do with
the help of reverse:

my @descending = reverse sort { $a <=> $b } @some_numbers;

But here’s a neat trick. The comparison operators (<=> and cmp) are very nearsighted;
that is, they can’t see which operand is $a and which is $b, but only which value is on
the left and which is on the right. So if $a and $b were to swap places, the comparison
operator would get the results backward every time. That means that this is another
way to get a reversed numeric sort:

my @descending = sort { $b <=> $a } @some_numbers;

You can (with a little practice) read this at a glance. It’s a descending-order comparison
(because $b comes before $a, which is descending order), and it’s a numeric comparison
(because it uses the spaceship instead of cmp). So, it is sorting numbers in reverse order.
(In modern Perl versions, it doesn’t matter much which one of those you do, because
reverse is recognized as a modifier to sort, and special shortcuts are taken to avoid
sorting it one way just to have to turn it around the other way.)

‖ Unless the subroutine you call modifies its arguments, but that should be rare.

Advanced Sorting | 243

Sorting a Hash by Value
Once you’ve been sorting lists happily for a while you’ll run into a situation where you
want to sort a hash by value. For example, three of our characters went out bowling
last night, and you have their bowling scores in the following hash. You want to be able
to print out the list in the proper order, with the game winner at the top, so you have
to sort the hash by score:

my %score = ("barney" => 195, "fred" => 205, "dino" => 30);
my @winners = sort by_score keys %score;

Of course, you aren’t really going to be able to sort the hash by score; that’s just a verbal
shortcut. You can’t sort a hash! But when you used sort with hashes before now, you
sorted the keys of the hash (in code point order). Now, you’re still going to sort the
keys of the hash, but the order is now defined by their corresponding values from the
hash. In this case, the result should be a list of our three characters’ names, in order
according to their bowling scores.

Writing this sort subroutine is fairly easy. What you want is to use a numeric compar-
ison on the scores, rather than the names. That is, instead of comparing $a and $b (the
players’ names), you want to compare $score{$a} and $score{$b} (their scores). If you
think of it that way, it almost writes itself, as in:

sub by_score { $score{$b} <=> $score{$a} }

Step through this to see how it works. Imagine that the first time it’s called, Perl has
set $a to barney and $b to fred. So the comparison is $score{"fred"} <=> $score
{"barney>"}, which (as you can see by consulting the hash) is 205 <=> 195. Remember,
now, the spaceship is nearsighted, so when it sees 205 before 195, it says, in effect: “No,
that’s not the right numeric order; $b should come before $a.” So it tells Perl that
fred should come before barney.

Maybe the next time the routine is called, $a is barney again but $b is now dino. The
nearsighted numeric comparison sees 30 <=> 195 this time, so it reports that they’re in
the right order; $a does indeed sort in front of $b. That is, barney comes before dino.
At this point, Perl has enough information to put the list in order: fred is the winner,
then barney in second place, then dino.

Why did the comparison use the $score{$b} before the $score{$a}, instead of the other
way around? That’s because you want bowling scores arranged in descending order,
from the highest score of the winner down. So you can (again, after a little practice)
read this one at sight as well: $score{$b} <=> $score{$a} means to sort according to
the scores, in reversed numeric order.

244 | Chapter 14: Strings and Sorting

Sorting by Multiple Keys
We forgot to mention that there was a fourth player bowling last night with the other
three, so the hash really looked like this:

my %score = (
 "barney" => 195, "fred" => 205,
 "dino" => 30, "bamm-bamm" => 195,
);

Now, as you can see, bamm-bamm has the same score as barney. So which one will be first
in the sorted list of players? There’s no telling because the comparison operator (seeing
the same score on both sides) will have to return zero when checking those two.

Maybe that doesn’t matter, but you generally prefer to have a well-defined sort. If
several players have the same score, you want them to be together in the list, of course.
But within that group, the names should be in code point order. But how can you write
the sort subroutine to say that? Again, this turns out to be pretty easy:

my @winners = sort by_score_and_name keys %score;

sub by_score_and_name {
 $score{$b} <=> $score{$a} # by descending numeric score
 or
 $a cmp $b # code point order by name
 }

How does this work? Well, if the spaceship sees two different scores, that’s the com-
parison you want to use. It returns –1 or 1, a true value, so the low-precedence short
circuit or will mean that the rest of the expression will be skipped, and the comparison
you want is returned. (Remember, the short circuit or returns the last expression eval-
uated.) But if the spaceship sees two identical scores, it returns 0, a false value, and thus
the cmp operator gets its turn at bat, returning an appropriate ordering value considering
the keys as strings. That is, if the scores are the same, the string-order comparison breaks
the tie.

You know that when you use the by_score_and_name sort subroutine like this, it will
never return 0. (Do you see why it won’t? The answer is in the footnote.)# So you know
that the sort order is always well-defined; that is, you know that the result today will
be the same as the result with the same data tomorrow.

There’s no reason that your sort subroutine has to be limited to two levels of sorting,
of course. Here the Bedrock Library program puts a list of patron ID numbers in order
according to a five-level sort.* This example sorts according to the amount of each

#The only way it could return 0 would be if the two strings were identical, and (since the strings are keys of a
hash) you already know that they’re different. Of course, if you passed a list with duplicate (identical) strings
to sort, it would return 0 when comparing those, but you’re passing a list of hash keys.

* It’s not unusual in the modern world to need a five-level sort like this, although it was quite infrequent in
prehistoric times.

Advanced Sorting | 245

patron’s outstanding fines (as calculated by a subroutine &fines, not shown here), the
number of items they currently have checked out (from %items), their name (in order
by family name, then by personal name, both from hashes), and finally by the patron’s
ID number, in case everything else is the same:

@patron_IDs = sort {
 &fines($b) <=> &fines($a) or
 $items{$b} <=> $items{$a} or
 $family_name{$a} cmp $family_name{$b} or
 $personal_name{$a} cmp $family_name{$b} or
 $a <=> $b
} @patron_IDs;

Exercises
See “Answers to Exercises” on page 320 for answers to the following exercises:

1. [10] Write a program to read in a list of numbers and sort them numerically, print-
ing out the resulting list in a right-justified column. Try it out on this sample data:

17 1000 04 1.50 3.14159 –10 1.5 4 2001 90210 666

2. [15] Make a program that will print the following hash’s data sorted in case-
insensitive alphabetical order by last name. When the last names are the same, sort
those by first name (again, without regard for case). That is, the first name in the
output should be Fred’s, while the last one should be Betty’s. All of the people with
the same family name should be grouped together. Don’t alter the data. The names
should be printed with the same capitalization as shown here:

my %last_name = qw{
 fred flintstone Wilma Flintstone Barney Rubble
 betty rubble Bamm-Bamm Rubble PEBBLES FLINTSTONE
};

3. [15] Make a program that looks through a given string for every occurrence of a
given substring, printing out the positions where the substring is found. For
example, given the input string "This is a test." and the substring "is", it should
report positions 2 and 5. If the substring were "a", it should report 8. What does it
report if the substring is "t"?

246 | Chapter 14: Strings and Sorting

CHAPTER 15

Smart Matching and given-when

Wouldn’t it be great if computers could just figure out what you wanted and do that?
Perl already does its best to use numbers when you want numbers, strings when you
want strings, single values where you mean a single value, and lists when you mean
multiple items. With Perl 5.10’s smart match operator and given-when control struc-
ture, it gets even better.

Smart matching showed up in Perl 5.10.0, but in a broken form. That’s not a big deal
because most of the problems disappeared in Perl 5.10.1. (That means that you may
need an updated version for this chapter.) Don’t even consider using smart matching
in Perl 5.10.0. It will just cause problems later. As such, we’re going to be much more
specific about the Perl version in this chapter by specifying the point release version to
remind you to use an appropriate version:

use 5.010001; # at least 5.10.1

The Smart Match Operator
The smart match operator, ~~, looks at both of its operands and decides on its own
how it should compare them. If the operands look like numbers, it does a numeric
comparison. If they look like strings, it does a string comparison. If one of the operands
is a regular expression, it does a pattern match. It can also do some complex tasks that
would otherwise take a lot of code, so it keeps you from doing too much typing.

The ~~ looks almost like the binding operator, =~, which you saw in Chapter 8, but
~~ can do much more. It can even stand in for the binding operator. Up to now, you
could match a pattern by using the binding operator to associate $name with the regular
expression operator:

print "I found Fred in the name!\n" if $name =~ /Fred/;

247

Now, you can change that binding operator to the smart match operator and do exactly
the same thing:

use 5.010001;

say "I found Fred in the name!" if $name ~~ /Fred/;

The smart match operator sees that it has a scalar on the lefthand side and the regular
expression operator on the righthand side, and figures out on its own to do the pattern
match. That’s not impressive though. It gets much, much better.

The smart match operator starts to show its power with more complex operations.
Suppose you wanted to print a message if one of the keys in the hash %names matches
Fred. You can’t use exists because it only checks for the exact key. You could do it
with a foreach that tests each key with the regular expression operator, skipping those
that don’t match. When you finds one that does match, you can change the value of
$flag and skip the rest of the iterations with last:

my $flag = 0;
foreach my $key (keys %names) {
 next unless $key =~ /Fred/;
 $flag = $key;
 last;
}

print "I found a key matching 'Fred'. It was $flag\n" if $flag;

Whew! That was a lot of work just to explain it, but it works in any version of Perl 5.
With the smart match operator, you just need the hash on one side and the regular
expression operator on the other side:

use 5.010001;

say "I found a key matching 'Fred'" if %names ~~ /Fred/;

The smart match operator knows what to do because it sees a hash and a regular ex-
pression. With those two operands, the smart match operator knows to look through
the keys in %names and apply the regular expression to each one. If it finds one that
matches, it already knows to stop and return true. It’s not the same sort of match as
the scalar and regular expression. It’s smart; it does what’s right for the situation. It’s
just that the operator is the same, even though the operation isn’t.

How do you know what it’s going to do? There’s a table in the perlsyn documentation
that tells you what it does for each pair of operands, including the side that they appear
on. In this case, it doesn’t matter which side has the hash or the regex because the smart
match table indicates that same thing. You could have written it with the operands
reversed:

use 5.010001;

say "I found a key matching 'Fred'" if /Fred/ ~~ %names;

248 | Chapter 15: Smart Matching and given-when

http://perldoc.perl.org/perlsyn.html

If you want to compare two arrays (limiting them to the same size just to make things
simpler), you could go through the indices of one of the arrays and compare the cor-
responding elements in each of the arrays. Each time the corresponding elements are
the same, you increment the $equal counter. After the loop, if $equal is the same as the
number of elements in @names1, the arrays must be the same:

my $equal = 0;
foreach my $index (0 .. $#names1) {
 last unless $names1[$index] eq $names2[$index];
 $equal++;
}

print "The arrays have the same elements!\n"
 if $equal == @names1;

Again, that’s too much work. Wouldn’t it be great if there was an easy way to do that?
Wait! How about the smart match operator? Just put the arrays on either side of the
~~. This little bit of code does the same thing as the last example, but with almost no
code:

use 5.010001;

say "The arrays have the same elements!"
 if @names1 ~~ @names2;

Okay, one more example. Suppose you call a function and want to check that its return
value is one of a set of possible or expected values. Going back to the max() subroutine
in Chapter 4, you know that max() should return one of the values you passed it. You
could check by comparing the return value of max to its argument list using the same
techniques as the previous hard ways:

my @nums = qw(1 2 3 27 42);
my $result = max(@nums);

my $flag = 0;
foreach my $num (@nums) {
 next unless $result == $num;
 $flag = 1;
 last;
}

print "The result is one of the input values\n" if $flag;

You already know what we are going to say: that’s too much work! You can get rid of
all the code in the middle by using ~~. This is much easier than the previous example:

use 5.010001;

my @nums = qw(1 2 3 27 42);
my $result = max(@nums);

say "The result [$result] is one of the input values (@nums)"
 if @nums ~~ $result;

The Smart Match Operator | 249

You can also write that smart match with the operands in the other order and get the
same answer. The smart match operator doesn’t care which operands are on which
side in this case:

use 5.010001;

my @nums = qw(1 2 3 27 42);
my $result = max(@nums);

say "The result [$result] is one of the input values (@nums)"
 if $result ~~ @nums;

Smart Match Precedence
Now that you’ve seen how the smart match operator can save you a lot of work, you
just need to know how to tell which sort of match it will do. For that you have to check
the table in the perlsyn documentation under “Smart matching in detail”. Table 15-1
shows some of the things the smart match operator can do.

Table 15-1. Smart match operations for pairs of operands

Example Type of match

%a ~~ %b hash keys identical

%a ~~ @b or @a ~~ %b at least one key in %a is in @b

%a ~~ /Fred/ or /Fred/ ~~ %b at least one key matches pattern

'Fred' ~~ %a exists $a{Fred}

@a ~~ @b arrays are the same

@a ~~ /Fred/ at least one element in @a matches pattern

$name ~~ undef $name is not defined

$name ~~ /Fred/ pattern match

123 ~~ ’123.0’ numeric equality with “numish” string

’Fred’ ~~ ’Fred’ string equality

123 ~~ 456 numeric equality

When you use the smart match operator, Perl goes to the top of the chart and starts
looking for a type of match that corresponds to its two operands. It does the first type
of match it finds. The order of the operands matters sometimes. For instance, you have
an array and a hash with the smart match:

use 5.010001;

if (@array ~~ %hash) { ... }

250 | Chapter 15: Smart Matching and given-when

http://perldoc.perl.org/perlsyn.html

Perl first finds the match type for a hash and an array, which checks that at least one
of the elements of @array is a key in %hash. That one is easy because there is only one
type of match for those two operands.

The smart match operator is not always commutative, which you may remember from
high school algebra as the fancy way to say that the order of the operands doesn’t matter.
If there is a number on the lefthand side, you get a numeric comparison, but if there is
a string on the lefthand side, you get a string comparison. Comparing a number to a
string gives a different result depending on which comes first:

use 5.010001;

say "match number ~~ string" if 4 ~~ '4abc';
say "match string ~~ number" if '4abc' ~~ 4;

You only get output for one of the smart matches:

match string ~~ number

The first one is a string comparison even though it has a number on the lefthand side.
The only entry in the precedence table with a Num on the lefthand side expects a
“numish” operand on the righthand side. The 4abc doesn’t look numish enough for
Perl, so the smart match ends up at the final level where it has “Any” and “Any”. The
operation there is a string comparison.

The second one is a numeric comparison. It has “Any” on the lefthand side and “Num”
on the righthand side. That’s a couple of levels above the comparison the first one
triggered.

What if you have two scalar variables?

use 5.010001;

if ($fred ~~ $barney) { ... }

So far you can’t tell what sort of match it is going to do because Perl needs to look inside
$scalar1 and $scalar2 to see what would happen. Perl can’t decide until it sees the
actual data inside the scalars. Is the smart match going to do a numeric or string
comparison?

The given Statement
The given-when control structure allows you to run a block of code when the argument
to given satisfies a condition. It’s Perl’s equivalent to C’s switch statement, but as with
most things Perly, it’s a bit more fancy so it gets a fancier name.

Here’s a bit of code that takes the first argument from the command line, $ARGV[0], and
goes through the when conditions to see if it can find Fred. Each when block reports a
different way that it found Fred, starting with the least restrictive to the most:

The given Statement | 251

use 5.010001;

given ($ARGV[0]) {
 when ('Fred') { say 'Name is Fred' }
 when (/fred/i) { say 'Name has fred in it' }
 when (/\AFred/) { say 'Name starts with Fred' }
 default { say "I don't see a Fred" }
}

The given aliases its argument to $_,* and each of the when conditions tries an implicit
smart match against $_. You could rewrite the previous example with explicit smart
matching to see exactly what’s happening:

use 5.010001;

given($ARGV[0]) {
 when ($_ ~~ 'Fred') { say 'Name is Fred' }
 when ($_ ~~ /\AFred/) { say 'Name starts with Fred' }
 when ($_ ~~ /fred/i) { say 'Name has fred in it' }
 default { say "I don't see a Fred" }
}

If $_ does not satisfy any of the when conditions, Perl executes the default block. Here’s
the output from several trial runs:

$ perl5.10.1 switch.pl Fred
Name is Fred
$ perl5.10.1 switch.pl Frederick
Name starts with Fred
$ perl5.10.1 switch.pl Barney
I don't see a Fred
$ perl5.10.1 switch.pl Alfred
Name has fred in it

“Big deal,” you say, “I could write this example with if-elsif-else.” The next example
does just that, using a $_ declared with my and with all the scoping rules of my, another
feature added in Perl 5.10:†

use 5.010001;

{
my $_ = $ARGV[0]; # lexical $_ as of 5.10!

 if ($_ ~~ 'Fred') { say 'Name is Fred' }
elsif ($_ ~~ /\AFred/) { say 'Name starts with Fred' }
elsif ($_ ~~ /fred/i) { say 'Name has fred in it' }
else { say "I don't see a Fred" }
}

* In Perl parlance, given is a topicalizer because it makes its argument the topic, the fancy new name for $_ in
Perl 6.

† Perl’s special variables are global variables, like we show in Chapter 4. The $_ variable is so useful, though,
that Perl 5.10 allows you to make it lexical. You can set $_ in your scope so that operators and built-ins that
use it by default don’t have to disturb anything else in the program.

252 | Chapter 15: Smart Matching and given-when

If given were just the same thing as if-elsif-else, it wouldn’t be that interesting.
Unlike an if-elsif-else construct, however, a given-when can satisfy one condition
and then try the others, too. Once an if-elsif-else satisfies a condition, it will only
ever execute one block of code.

Before we go on, let’s make a couple more things explicit so you can see everything
that’s happening. Unless you say otherwise, there is an implicit break at the end of each
when block, and that tells Perl to stop the given-when construct and move on with the
rest of the program. The previous example really has breaks in it, although you don’t
have to type them yourself:

use 5.010001;

given ($ARGV[0]) {
 when ($_ ~~ 'Fred') { say 'Name is Fred'; break }
 when ($_ ~~ /fred/i) { say 'Name has fred in it'; break }
 when ($_ ~~ /\AFred/) { say 'Name starts with Fred'; break }
 default { say "I don't see a Fred"; break }
}

This doesn’t work very well for the problem, though. Since our example goes from
general to specific, if the argument matches /fred/i, Perl doesn’t test any of the when
conditions. I don’t get to check if the argument is exactly Fred because the first
when block stops the entire control structure.

If you use continue at the end of a when instead, Perl tries the succeeding when statements
too, repeating the process it started before. That’s something that if-elsif-else can’t
do. When another when satisfies its condition, Perl executes its block (again, implicitly
breaking at the end of the block unless you say otherwise.) Putting a continue at the
end of each when block means Perl tries every condition:

use 5.010001;

given ($ARGV[0]) {
 when ($_ ~~ 'Fred') { say 'Name is Fred'; continue } # OOPS!
 when ($_ ~~ /fred/i) { say 'Name has fred in it'; continue }
 when ($_ ~~ /\AFred/) { say 'Name starts with Fred'; continue }
 default { say "I don't see a Fred" }
}

There’s a slight problem with that code, though. When we run the code, we see that
the default block runs, too:

$ perl5.10.1 switch.pl Alfred
Name has fred in it
I don't see a Fred

The given Statement | 253

That default block is really a when with a condition that is always true. If the when before
the default has a continue, Perl goes on to the default, too. It’s as if the default were
really another when:

use 5.010001;

given ($ARGV[0]) {
 when ($_ ~~ 'Fred') { say 'Name is Fred'; continue }
 when ($_ ~~ /\AFred/) { say 'Name starts with Fred'; continue }
 when ($_ ~~ /fred/i) { say 'Name has fred in it'; continue } # OOPS!
 when (1 == 1) { say "I don't see a Fred" } # default
}

To get around this, we leave off that last continue so the last when stops the process:

use 5.010001;

given ($ARGV[0]) {
 when ($_ ~~ 'Fred') { say 'Name is Fred'; continue }
 when ($_ ~~ /\AFred/) { say 'Name starts with Fred'; continue }
 when ($_ ~~ /fred/i) { say 'Name has fred in it' } # OK now!
 when (1 == 1) { say "I don't see a Fred" }
}

Now that we’ve shown you everything that’s going on, we rewrite it in the idiomatic
form and how you should use it in your programs:

use 5.010001;

given ($ARGV[0]) {
 when ('Fred') { say 'Name is Fred'; continue }
 when (/\AFred/) { say 'Name starts with Fred'; continue }
 when (/fred/i) { say 'Name has fred in it'; }
 default { say "I don't see a Fred" }
}

Dumb Matching
Although the given-when can use smart matching, you can use the “dumb” comparisons
you are already familiar with. It’s not really dumb, it’s just the regular matching that
you already know. When Perl sees an explicit comparison operator (of any type) or the
binding operator, it does only what those operators do:

use 5.010001;

given ($ARGV[0]) {
 when ($_ eq 'Fred') { say 'Name is Fred'; continue }
 when ($_ =~ /\AFred/) { say 'Name starts with Fred'; continue }
 when ($_ =~ /fred/i) { say 'Name has fred in it'; }
 default { say "I don't see a Fred" }
}

254 | Chapter 15: Smart Matching and given-when

You can even mix and match dumb and smart matching; the individual when expres-
sions figure out their comparisons on their own:

use 5.010001;

given ($ARGV[0]) {
 when ('Fred') { #smart
 say 'Name is Fred'; continue }
 when ($_ =~ /\AFred/) { #dumb
 say 'Name starts with Fred'; continue }
 when (/fred/i) { #smart
 say 'Name has fred in it'; }
 default { say "I don't see a Fred" }
}

Note that the dumb and smart match for a pattern match are indistinguishable since
the regular expression operator already binds to $_ by default.

The smart match operator finds things that are the same (or mostly the same), so it
doesn’t work with comparisons for greater than or less than. In those cases you have
to use the right comparison operators:

use 5.010001;

given ($ARGV[0]) {
 when (! /\A-?\d+\.\d+\z/) { #smart
 say 'Not a number!' }
 when ($_ > 10) { #dumb
 say 'Number is greater than 10' }
 when ($_ < 10) { #dumb
 say 'Number is less than 10' }
 default { say 'Number is 10' }
}

There are certain situations that Perl will automatically use dumb matching. You can
use the result of a subroutine‡ inside the when, in which case Perl uses the truth or
falseness of the return value:

use 5.010001;

given ($ARGV[0]) {
 when (name_has_fred($_)) { #dumb
 say 'Name has fred in it'; continue }
}

The subroutine call rule also applies to the Perl built-ins defined, exists, and eof too,
since those are designed to return true or false.

‡ Perl doesn’t use smart matching for method calls either, but we don’t cover object-oriented programming
until Intermediate Perl.

The given Statement | 255

http://oreilly.com/catalog/9780596102067/

Negated expressions, including a negated regular expression, don’t use a smart match
either. These cases are just like the control structure conditions you saw in previous
chapters:

use 5.010001;

given($ARGV[0]) {
 when(! $boolean) { #dumb
 say 'Name has fred in it' }
 when(! /fred/i) { #dumb
 say 'Does not match Fred' }
 }

Using when with Many Items
Sometimes you’ll want to go through many items, but given only takes one thing at a
time. You would wrap given in a foreach loop. If you wanted to go through @names,
you could assign the current element to $name, then use that for given:

use 5.010001;

foreach my $name (@names) {
 given($name) {
 ...
 }
}

Guess what? Yep, that’s too much work. Are you tired of all this extra work yet? This
time, you’d alias the current element of @names just so given could alias the alias. Perl
should be smarter than that! Don’t worry, it is.

To go through many elements, you don’t need the given. Let foreach put the current
element in $_ on its own. If you want to use smart matching, the current element has
to be in $_:

use 5.010001;

foreach (@names) { # don't use a named variable!
 when (/fred/i) { say 'Name has fred in it'; continue }
 when (/\AFred/) { say 'Name starts with Fred'; continue }
 when ('Fred') { say 'Name is Fred'; }
 default { say "I don't see a Fred" }
}

If you are going through several names, you probably want to see which name you’re
working on. You can put other statements in the foreach block, such as a say statement:

256 | Chapter 15: Smart Matching and given-when

use 5.010001;

foreach (@names) { # don't use a named variable!
 say "\nProcessing $_";

 when (/fred/i) { say 'Name has fred in it'; continue }
 when (/\AFred/) { say 'Name starts with Fred'; continue }
 when ('Fred') { say 'Name is Fred'; }
 default { say "I don't see a Fred" }
}

You can even put extra statements between the whens, such as putting a debugging
statement right before the default (which you can also do with given):

use 5.010001;

foreach (@names) { # don't use a named variable!
 say "\nProcessing $_";

 when (/fred/i) { say 'Name has fred in it'; continue }
 when (/\AFred/) { say 'Name starts with Fred'; continue }
 when ('Fred') { say 'Name is Fred'; }
 say "Moving on to default...";
 default { say "I don't see a Fred" }
}

Exercises
See “Answers to Exercises” on page 323 for answers to the following exercises:

1. [15] Rewrite your number guessing program from Exercise 1 in Chapter 10 to use
given. How would you handle non-numeric input? You don’t need to use smart
matching.

2. [15] Write a program using given-when that takes a number as its input, then prints
“Fizz” if it is divisible by 3, “Bin” if it is divisible by 5, and “Sausage” if it is divisible
by 7. For a number like 15, it should print “Fizz” and “Bin” since 15 is divisible by
both 3 and 5. What’s the first number for which your program prints “Fizz Bin
Sausage”?

3. [15] Using for-when, write a program that goes through a list of files on the com-
mand line and reports if each file is readable, writable, or executable. You don’t
need to use smart matching.

4. [20] Using given and smart matching, write a program that reports all the divisors
(except 1 and the number itself) of a number you specify on the command line.
For instance, for the number 99, your program should report it is divisible by 3, 9,
11, and 33. If the number is prime (it has no divisors), report that the number is
prime instead. If the command line argument is not a number, report the error and
don’t try to compute the divisors. Although you could do this with if constructs
and with dumb matching, only use smart matching.

Exercises | 257

To get you started, here’s a subroutine to return a list of divisors. It tries all of the
numbers up to one half of $number:

sub divisors {
 my $number = shift;

 my @divisors = ();
 foreach my $divisor (2 .. ($number/2)) {
 push @divisors, $divisor unless $number % $divisor;
 }

 return @divisors;
}

5. [20] Modify the program from the previous exercise to also report if the number
is odd or even, if the number is prime (you find no divisors other than 1 and the
number itself), and if it is divisible by your favorite number. Again, only use smart
matching.

258 | Chapter 15: Smart Matching and given-when

CHAPTER 16

Process Management

One of the best parts of being a programmer is launching someone else’s code so that
you don’t have to write it yourself. It’s time to learn how to manage your children* by
launching other programs directly from Perl.

And like everything else in Perl, There’s More Than One Way To Do It, with lots of
overlap, variations, and special features. So, if you don’t like the first way, just read on
for another page or two for a solution more to your liking.

Perl is very portable; most of the rest of this book doesn’t need many notes saying that
it works this way on Unix systems and that way on Windows and some other way on
VMS. But when you’re starting other programs on your machine, different programs
are available on a Macintosh than you’ll likely find on an old Cray (which used to be a
“super” computer). The examples in this chapter are primarily Unix-based; if you have
a non-Unix system, you can expect to see some differences.

The system Function
The simplest way to launch a child process in Perl to run a program is the system
function. For example, to invoke the Unix date command from within Perl, you tell
system that’s the program you want to run:

system 'date';

You run that from the parent process. When it runs, the system command creates an
identical copy of your Perl program, called the child process. The child process imme-
diately changes itself into the command that you want to run, such as date, inheriting
Perl’s standard input, standard output, and standard error. This means that the normal
short date-and-time string generated by date ends up wherever Perl’s STDOUT was already
going.

* Child processes, that is.

259

The parameter to the system function is generally whatever you normally type at the
shell. So, if it were a more complicated command, like ls -l $HOME, you’d just have
put all that into the parameter:

system 'ls -l $HOME';

Note that you had to switch here from double quotes to single quotes, since $HOME is
the shell’s variable. Otherwise, the shell would never have seen the dollar sign since
that’s also an indicator for Perl to interpolate. Alternatively, you could write:

system "ls -l \$HOME";

But that can quickly get unwieldy.

Now, the normal Unix date command is output-only, but let’s say it's a chatty com-
mand, asking first “for which time zone do you want the time?”† That’ll end up on
standard output, and then the program listens on standard input (inherited from Perl’s
STDIN) for the response. You see the question, and type in the answer (like “Zimbabwe
time”), and then date will finish its duty.

While the child process is running, Perl patiently waits for it to finish. So if the date
command takes 37 seconds, Perl pauses for those 37 seconds. You can use the shell’s
facility to launch a background process,‡ however:

system "long_running_command with parameters &";

Here, the shell gets launched, which then notices the ampersand at the end of the
command line, causing the shell to put long_running_command into the background. And
then the shell exits rather quickly, which Perl notices and moves on. In this case, the
long_running_command is really a grandchild of the Perl process, to which Perl really has
no direct access or knowledge.

When the command is “simple enough,” no shell gets involved. So for the date and ls
commands earlier, Perl directly launched your requested command, which searches
the inherited PATH§ to find the command, if necessary. But if there’s anything weird in
the string (such as shell metacharacters like the dollar sign, semicolon, or vertical bar),
Perl invokes the standard Bourne Shell (/bin/sh)‖ to work through the complicated stuff.
In that case, the shell is the child process, and the requested commands are grandchil-
dren (or further offspring).

† As far as we know, no one has made a date command that works like this.

‡ See what we mean about this depending upon your system? The Unix shell (/bin/sh) lets you use the
ampersand on this kind of command to make a background process. If your non-Unix system doesn’t support
this way to launch a background process, then you can’t do it this way, that’s all.

§ The PATH is the list of directories where executable programs (commands) are found, even on some non-Unix
systems. You can change PATH by adjusting its entry in Perl’s %ENV: $ENV{'PATH'} at any time. Initially, this is
the environment variable inherited from the parent process (usually the shell). Changing this value affects
new child processes, but cannot affect any preceding parent processes.

‖ Or whatever was determined when Perl was built. Practically always, this is just /bin/sh on Unix-like systems.

260 | Chapter 16: Process Management

For example, you can write an entire little shell script in the argument:#

system 'for i in *; do echo == $i ==; cat $i; done';

Here, again, you’re using single quotes because the dollar signs are for the shell and
not for Perl. Double quotes would allow Perl to interpolate $i to its current Perl value
and not let the shell expand it to its own value.* By the way, that little shell script goes
through all of the normal files in the current directory, printing out each one’s name
and contents; you can try it out yourself if you don’t believe us.

Avoiding the Shell
The system operator may also be invoked with more than one argument,† in which case
a shell doesn’t get involved, no matter how complicated the text:‡

my $tarfile = 'something*wicked.tar';
my @dirs = qw(fred|flintstone <barney&rubble> betty);
system 'tar', 'cvf', $tarfile, @dirs;

In this case, the first parameter ('tar' here) gives the name of a command found in the
normal PATH-searching way, while Perl passes the remaining arguments one-by-one,
directly to that command. Even if the arguments have shell-significant characters, such
as the name in $tarfile or the directory names in @dirs, the shell never gets a chance
to mangle the string. That tar command will get precisely five parameters. Compare
that with this security problem:

system "tar cvf $tarfile @dirs"; # Oops!

Here, we’ve now piped a bunch of stuff into a flintstone command and put it into the
background, and opened betty for output. That’s a relatively tame effect, but what if
@dirs was something more interesting, such as:

my @dirs = qw(; rm -rf /);

It doesn’t matter that @dirs is a list because Perl simply interpolates it into the single
string to pass to system.

#CPAN has a shell to Perl converter which Randal uploaded on a particularly notable date. It uses this trick
to do its work.

* Of course, if you set $i = '$i', then it would work anyway, until a maintenance programmer came along
and “fixed” that line out of existence.

† Or with a parameter in the indirect object slot, like system { 'fred' } 'barney';, which runs the program
barney, but lies to it so it thinks that it’s called 'fred'. See the perlfunc documentation.

‡ See Mastering Perl’s security chapter for even more details.

The system Function | 261

http://perldoc.perl.org/perlfunc.html
http://oreilly.com/catalog/9780596527242/

And that’s a bit scary,§ especially if those variables are from user input—such as from
a web form or something. So if you can arrange things so that you can use the multiple
argument version of system, you probably should use that way to launch your
subprocess. You’ll have to give up the ability to have the shell do the work for you to
set up I/O redirection, background processes, and the like, though. There’s no such
thing as a free launch.

Note that redundantly, a single argument invocation of system is nearly equivalent to
the proper multiple-argument version of system:

system $command_line;
system '/bin/sh', '-c', $command_line;

But nobody writes the latter, unless you want things processed by a different shell, like
the C-shell:

system '/bin/csh', '-fc', $command_line;

Even this is pretty rare, since the One True Shell‖ seems to have a lot more flexibility,
especially for scripted items.

The return value of the system operator is based upon the exit status of the child com-
mand.# In Unix, an exit value of 0 means that everything is OK, and a nonzero exit
value usually indicates that something went wrong:

unless (system 'date') {
 # Return was zero, meaning success
 print "We gave you a date, OK!\n";
}

Note that this is backward from the normal “true is good—false is bad” strategy for
most of the operators, so to write a typical “do this or die” style, we’ll need to flip false
and true. The easiest way is to simply prefix the system operator with a bang (the logical-
not operator):

!system 'rm -rf files_to_delete' or die 'something went wrong';

In this case, including $! in the error message is not appropriate because the failure is
most likely somewhere within the experience of the external rm command, and it’s not
a system related error within Perl that $! can reveal.

§ Unless you’re using taint checking and have done all the right things to prescan your data to ensure that the
user isn’t trying to pull a fast one on you.

‖ That’s /bin/sh, or whatever your Unix system has installed as the most Bourne-like shell. If you don’t have a
One True Shell, Perl figures out how to invoke some other command-line interpreter, with notable
consequences—noted, that is, in the documentation for that Perl port.

#It’s actually the “wait” status, which is the child exit code times 256, plus 128 if core was dumped, plus the
signal number triggering termination, if any. But we rarely check the specifics of that, and a simple true/false
value suffices for nearly all applications.

262 | Chapter 16: Process Management

The Environment Variables
When you’re starting another process (with any of the methods we show here), you
may need to set up its environment in one way or another. As we mentioned earlier,
you could start the process with a certain working directory, which it inherits from your
process. Another common configuration detail is the environment variables.

One of the best known environment variables is PATH. (If you’ve never heard of it, you
probably haven’t used a system that has environment variables.) On Unix and similar
systems, PATH is a colon-separated list of directories that may hold programs. When
you type a command like rm fred, the system will look for the rm command in that list
of directories, in order. Perl (or your system) will use PATH whenever it needs to find the
program to run. If the program in turn runs other programs, those may also be found
along the PATH. (Of course, if you give a complete name for a command, such as /bin/
echo, there’s no need to search PATH. But that’s generally much less convenient.)

In Perl, the environment variables are available via the special %ENV hash; each key in
this hash represents one environment variable. At the start of your program’s execution,
%ENV holds values it has inherited from its parent process (generally the shell). Modifying
this hash changes the environment variables, which will then be inherited by new pro-
cesses and possibly used by Perl as well. For example, suppose you wished to run the
system’s make utility (which typically runs other programs), and you want to use a
private directory as the first place to look for commands (including make itself). And
let’s say that you don’t want the IFS environment variable to be set when you run the
command, because that might cause make or some subcommand do the wrong thing.
Here we go:

$ENV{'PATH'} = "/home/rootbeer/bin:$ENV{'PATH'}";
delete $ENV{'IFS'};
my $make_result = system 'make';

Newly created processes will generally inherit from their parent the environment var-
iables, the current working directory, the standard input, output, and error streams,
and a few more esoteric items. See the documentation about programming on your
system for more details. (But on most systems, your program can’t change the envi-
ronment for the shell or other parent process that started it.)

The exec Function
Everything we’ve just said about system syntax and semantics is also true about the
exec function, except for one (very important) thing. The system function creates a child
process, which then scurries off to perform the requested action while Perl naps. The
exec function causes the Perl process itself to perform the requested action. Think of it
as more like a “goto” than a subroutine call.

The exec Function | 263

For example, suppose you wanted to run the bedrock command in the /tmp directory,
passing it arguments of -o args1 followed by whatever arguments your own program
was invoked with. That’d look like this:

chdir '/tmp' or die "Cannot chdir /tmp: $!";
exec 'bedrock', '-o', 'args1', @ARGV;

When you reach the exec operation, Perl locates bedrock and “jumps into it.” At that
point, there is no Perl process any more,* just the process running the bedrock com-
mand. When bedrock finishes, there’s no Perl to come back to.

Why is this useful? Sometimes you want to use Perl to set up the environment for a
program. You can affect environment variables, change the current working directory,
and change the default filehandles:

$ENV{PATH} = '/bin:/usr/bin';
$ENV{DEBUG} = 1;
$ENV{ROCK} = 'granite';

chdir '/Users/fred';
open STDOUT, '>', '/tmp/granite.out';

exec 'bedrock';

If you use system instead of exec, you have a Perl program just standing around tapping
its toes waiting for the other program to complete just so Perl could finally immediately
exit as well, and that wastes a resource.

Having said that, it’s actually quite rare to use exec, except in combination with fork
(which you’ll see later). If you are puzzling over system versus exec, just pick system,
and nearly all of the time you’ll be just fine.

Because Perl is no longer in control once the requested command has started, it doesn’t
make any sense to have any Perl code following the exec, except for handling the error
when the requested command cannot be started:

exec 'date';
die "date couldn't run: $!";

Using Backquotes to Capture Output
With both system and exec, the output of the launched command ends up wherever
Perl’s standard output is going. Sometimes, it’s interesting to capture that output as a
string value to perform further processing. And that’s done simply by creating a string
using backquotes instead of single or double quotes:

my $now = `date`; # grab the output of date
print "The time is now $now"; # newline already present

* However, it’s the same process, having performed the Unix exec(2) system call (or equivalent). The process
ID remains the same.

264 | Chapter 16: Process Management

Normally, this date command spits out a string approximately 30 characters long to its
standard output, giving the current date and time followed by a newline. When you’ve
placed date between backquotes, Perl executes the date command, arranging to capture
its standard output as a string value, and in this case assigning it to the $now variable.

This is very similar to the Unix shell’s meaning for backquotes. However, the shell also
performs the additional job of ripping off the final end-of-line to make it easier to use
the value as part of other things. Perl is honest; it gives the real output. To get the same
result in Perl, you can simply add an additional chomp operation on the result:

chomp(my $no_newline_now = `date`);
print "A moment ago, it was $no_newline_now, I think.\n";

The value between backquotes is just like the single-argument form of system† and is
interpreted as a double-quoted string, meaning that backslash-escapes and variables
are expanded appropriately.‡ For example, to fetch the Perl documentation on a list of
Perl functions, we might invoke the perldoc command repeatedly, each time with a
different argument:

my @functions = qw{ int rand sleep length hex eof not exit sqrt umask };
my %about;

foreach (@functions) {
 $about{$_} = `perldoc -t -f $_`;
}

Note that $_ is a different value for each invocation, letting you grab the output of a
different command varying only in one of its parameters. Also note that if you haven’t
seen some of these functions yet, it might be useful to look them up in the documen-
tation to see what they do!

Instead of the backquotes, you can also use the generalized quoting operator, qx() that
does the same thing:

foreach (@functions) {
 $about{$_} = qx(perldoc -t -f $_);
}

As with the other generalized quotes, you mainly use this when the stuff inside the
quotes is also the default delimiter. If you wanted to have a literal backquote in your
command, you can use the qx() mechanism to avoid the hassle of escaping the offending
character. There’s another benefit to the generalized quoting, too. If you use the single
quote as the delimiter, the quoting does not interpolate anything. If you want to
use the shell’s process ID variable $$ instead of Perl’s, you use qx'' to avoid the
interpolation:

my $output = qx'echo $$';

† That is, it’s also always interpreted by the One True Shell (/bin/sh) or alternative, as with system.

‡ So, if you want to pass a real backslash to the shell, you’ll need to use two. If you need to pass two (which
happens frequently on Windows systems), you’ll need to use four.

Using Backquotes to Capture Output | 265

http://perldoc.perl.org/perldoc.html

At the risk of actually introducing the behavior by demonstrating how not to do it, we’d
also like to suggest that you avoid using backquotes in a place where the value isn’t
being captured.§ For example:

print "Starting the frobnitzigator:\n";
`frobnitz -enable`; # please don't do this!
print "Done!\n";

The problem is that Perl has to work a bit harder to capture the output of this command,
even if you don’t use it, and then you also lose the option to use multiple arguments to
system to precisely control the argument list. So from both a security standpoint and
an efficiency viewpoint, just use system instead, please.

Standard error of a backquoted command goes to the same place as Perl’s current
standard error output. If the command spits out error messages to the default standard
error, you’ll probably see them on the terminal, which could be confusing to the user
who hasn’t personally invoked the frobnitz command but still sees its errors. If you
want to capture error messages with standard output, you can use the shell’s normal
“merge standard error to the current standard output,” which is spelled 2>&1 in the
normal Unix shell:

my $output_with_errors = `frobnitz -enable 2>&1`;

Note that this will intermingle the standard error output with the standard output,
much as it appears on the terminal (although possibly in a slightly different sequence
because of buffering). If you need the output and the error output separated, there are
many more flexible solutions.‖ Similarly, standard input is inherited from Perl’s current
standard input. Most commands you typically use with backquotes do not read stand-
ard input, so that’s rarely a problem. However, let’s say the date command asked which
time zone (as we imagined earlier). That’ll be a problem because the prompt for “which
time zone” will be sent to standard output, which is being captured as part of the value,
and then the date command will start trying to read from standard input. But since the
user has never seen the prompt, he doesn’t know he should be typing anything! Pretty
soon, the user calls you up and tells you that your program is stuck.

So, stay away from commands that read standard input. If you’re not sure whether
something reads from standard input, add a redirection from /dev/null for input, like
this:

my $result = `some_questionable_command arg arg argh </dev/null`;

Then the child shell will redirect input from /dev/null, and the questionable grandchild
command will at worst try to read and immediately get an end-of-file.

§ This is called a “void” context.

‖ Such as IPC::Open3 in the standard Perl library, or writing your own forking code, as you will see later.

266 | Chapter 16: Process Management

Using Backquotes in a List Context
The scalar context use of backquotes returns the captured as a single long string, even
if it looks to you like there are multiple “lines” because it has newlines.# However,
using the same backquoted string in a list context yields a list containing one line of
output per element.

For example, the Unix who command normally spits out a line of text for each current
login on the system as follows:

merlyn tty/42 Dec 7 19:41
rootbeer console Dec 2 14:15
rootbeer tty/12 Dec 6 23:00

The left column is the username, the middle column is the TTY name (that is, the name
of the user’s connection to the machine), and the rest of the line is the date and time
of login (and possibly remote login information, but not in this example). In a scalar
context, you get all that at once, which you would then need to split up on your own:

my $who_text = `who`;
my @who_lines = split /\n/, $who_text;

But in a list context, we automatically get the data broken up by lines:

my @who_lines = `who`;

You’ll have a number of separate elements in @who_lines, each one terminated by a
newline. Of course, adding a chomp around the outside of that will rip off those newlines,
but you can go a different direction. If you put that as part of the value for a foreach,
you’ll iterate over the lines automatically, placing each one in $_:

foreach (`who`) {
 my($user, $tty, $date) = /(\S+)\s+(\S+)\s+(.*)/;
 $ttys{$user} .= "$tty at $date\n";
}

This loop will iterate three times for the data above. (Your system will probably have
more than three active logins at any given time.) Notice that you have a regular ex-
pression match, and in the absence of the binding operator (=~), that matches against
$_—which is good because that’s where the data is.

Also notice the regular expression looks for a nonblank word, some whitespace, a
nonblank word, some whitespace, and then the rest of the line up to, but not including,
the newline (since dot doesn’t match newline by default).* That’s also good, because
that’s what the data looks like each time in $_. That’ll make $1 be merlyn, $2 be
tty/42, and $3 be Dec 7 19:41, as a successful match on the first time through the loop.

#Computers don’t care about lines, really. That’s something we care about and tell computers to interpret for
us. Otherwise, those newlines are just another character as far as a computer is concerned.

* Now you can see why dot doesn’t match newline by default. It makes it easy to write patterns like this one,
in which we don’t have to worry about a newline at the end of the string. Remember, if you have Perl 5.12
or later, you can use \N to mean “not a newline,” which is much nicer.

Using Backquotes to Capture Output | 267

However, this regular expression match is in a list context, so you get the list of mem-
ories instead of the true/false “did it match” value, as you saw in Chapter 8. So,
$user ends up being merlyn, and so on.

The second statement inside the loop simply stores away the TTY and date information,
appending to a (possibly undef) value in the hash, because a user might be logged in
more than once, as user rootbeer was in that example.

External Processes with IPC::System::Simple
Running or capturing output from external commands is tricky business, especially
since Perl aims to work on so many diverse platforms, each with their own way of doing
things. Paul Fenwick’s IPC::System::Simple module fixes that by providing a simpler
interface that hides the complexity of the operating system-specific stuff. It doesn’t
come with Perl (yet), so you have to get it from CPAN.†

There’s really not that much to say about this module because it is truly simple. You
can use it to replace the built-in system with its own more robust version:

use IPC::System::Simple qw(system);

my $tarfile = 'something*wicked.tar';
my @dirs = qw(fred|flintstone <barney&rubble> betty);
system 'tar', 'cvf', $tarfile, @dirs;

It also provides a systemx that never uses the shell, so you should never have the problem
of unintended shell actions:

systemx 'tar', 'cvf', $tarfile, @dirs;

If you want to capture the output, you change the system or systemx to capture or
capturex, both of which work like backquotes (but better):

my @output = capturex 'tar', 'cvf', $tarfile, @dirs;

Paul put in a lot of work to ensure these subroutines do the right thing under Windows.
There’s a lot more that this module can do to make your life easier, although we’ll refer
you to the module documentation for that since some of the fancier features require
references that we haven’t shown you yet.‡ If you can use it, we recommend it over the
built-in Perl operators for the same thing.

† See http://search.cpan.org/dist/IPC-System-Simple.

‡ But, you’re almost to the end of this book and Intermediate Perl, the next book in the series, starts with
references.

268 | Chapter 16: Process Management

http://search.cpan.org/dist/IPC-System-Simple
http://oreilly.com/catalog/9780596102067/

Processes as Filehandles
So far, you’ve seen ways to deal with synchronous processes, where Perl stays in charge,
launches a command, (usually) waits for it to finish, then possibly grabs its output. But
Perl can also launch a child process that stays alive, communicating§ to Perl on an
ongoing basis until the task is complete.

The syntax for launching a concurrent (parallel) child process is to put the command
as the “filename” for an open call, and either precede or follow the command with a
vertical bar, which is the “pipe” character. For that reason, this is often called a piped
open. In the two-argument form, the pipe goes before or after the command that you
want to run:

open DATE, 'date|' or die "cannot pipe from date: $!";
open MAIL, '|mail merlyn' or die "cannot pipe to mail: $!";

In the first example, with the vertical bar on the right, Perl launches the command with
its standard output connected to the DATE filehandle opened for reading, similar to the
way that the command date | your_program would work from the shell. In the second
example, with the vertical bar on the left, Perl connects the command’s standard input
to the MAIL filehandle opened for writing, similar to what happens with the command
your_program | mail merlyn. In either case, the command continues independently of
the Perl process.‖ The open fails if Perl can’t start the child process. If the command
itself does not exist or exits erroneously, Perl will not see this as an error when opening
the filehandle, but as an error when closing it. We’ll get to that in a moment.

The three-argument form is a bit tricky because for the read filehandle, the pipe char-
acter comes after the command. There are special modes for that though. For the file-
handle mode, if you want a read filehandle, you use -|, and if you want a write
filehandle, you use |- to show which side of the pipe you want to place the command:

open my $date_fh, '-|', 'date' or die "cannot pipe from date: $!";
open my $mail_fh, '|-', 'mail merlyn'
 or die "cannot pipe to mail: $!";

The pipe opens can also take more than three commands. The fourth and subsequent
arguments become the arguments to the command, so you can break up that command
string to separate the command name from its arguments:

open my $mail_fh, '|-', 'mail', 'merlyn'
 or die "cannot pipe to mail: $!";

§ Via pipes, or whatever your operating system provides for simple interprocess communication.

‖ If the Perl process exits before the command is complete, a command that’s been reading will see end-of-file,
while a command that’s been writing will get a “broken pipe” error signal on the next write, by default.

Processes as Filehandles | 269

Either way, for all intents and purposes, the rest of the program doesn’t know, doesn’t
care, and would have to work pretty hard to figure out that this is a filehandle opened
on a process rather than on a file. So, to get data from a filehandle opened for reading,
you read the filehandle normally:

my $now = <$date_fh>;

And to send data to the mail process (waiting for the body of a message to deliver to
merlyn on standard input), a simple print-with-a-filehandle will do:

print $mail_fh "The time is now $now"; # presume $now ends in newline

In short, you can pretend that these filehandles are hooked up to magical files, one that
contains the output of the date command, and one that will automatically be mailed
by the mail command.

If a process is connected to a filehandle that is open for reading, and then exits, the
filehandle returns end-of-file, just like reading up to the end of a normal file. When you
close a filehandle open for writing to a process, the process will see end-of-file. So, to
finish sending the email, close the handle:

close $mail_fh;
die "mail: non-zero exit of $?" if $?;

Closing a filehandle attached to a process waits for the process to complete so that Perl
can get the process’s exit status. The exit status is then available in the $? variable
(reminiscent of the same variable in the Bourne Shell) and is the same kind of number
as the value returned by the system function: zero for success, nonzero for failure. Each
new exited process overwrites the previous value though, so save it quickly if you want
it. (The $? variable also holds the exit status of the most recent system or backquoted
command, if you’re curious.)

The processes are synchronized just like a pipelined command. If you try to read and
no data is available, the process is suspended (without consuming additional CPU time)
until the sending program has started speaking again. Similarly, if a writing process gets
ahead of the reading process, the writing process is slowed down until the reader starts
to catch up. There’s a buffer (usually 8 KB or so) in between, so they don’t have to stay
precisely in lockstep.

Why use processes as filehandles? Well, it’s the only easy way to write to a process
based on the results of a computation. But if you’re just reading, backquotes are often
much easier to manage, unless you want to have the results as they come in.

For example, the Unix find command locates files based on their attributes, and it can
take quite a while if used on a fairly large number of files (such as starting from the root
directory). You can put a find command inside backquotes, but it’s often nicer to see
the results as they are found:

open my $find_fh, '-|',
 'find', qw(/ -atime +90 -size +1000 -print)
 or die "fork: $!";

270 | Chapter 16: Process Management

while (<$find_fh>) {
 chomp;
 printf "%s size %dK last accessed %.2f days ago\n",
 $_, (1023 + -s $_)/1024, -A $_;
}

That find command looks for all the files that have not been accessed within the past
90 days and that are larger than 1,000 blocks (these are good candidates to move to
longer-term storage). While find is searching and searching, Perl can wait. As it finds
each file, Perl responds to the incoming name and displays some information about
that file for further research. Had this been written with backquotes, you would not
see any output until the find command had finished, and it’s comforting to see that it’s
actually doing the job even before it’s done.

Getting Down and Dirty with Fork
In addition to the high-level interfaces already described, Perl provides nearly direct
access to the low-level process management system calls of Unix and some other sys-
tems. If you’ve never done this before,# you will probably want to skip this section.
While it’s a bit much to cover all that stuff in a chapter like this, let’s at least look at a
quick reimplementation of this:

system 'date';

You can do that using the low-level system calls:

defined(my $pid = fork) or die "Cannot fork: $!";
unless ($pid) {
 # Child process is here
 exec 'date';
 die "cannot exec date: $!";
}
Parent process is here
waitpid($pid, 0);

Here, you check the return value from fork, which is undef if it failed. Usually it suc-
ceeds, causing two separate processes to continue to the next line, but only the parent
process has a nonzero value in $pid, so only the child process executes the exec function.
The parent process skips over that and executes the waitpid function, waiting for that
particular child to finish (if others finish in the meantime, they are ignored). If that all
sounds like gobbledygook, just remember that you can continue to use the system
function without being laughed at by your friends.

When you go to this extra trouble, you also have full control over creating arbitrary
pipes, rearranging filehandles, and noticing your process ID and your parent’s process
ID (if knowable). But again, that’s all a bit complicated for this chapter, so see the details

#Or you’re not running on a system that has support for forking. But the Perl developers work hard to support
forking even on systems whose underlying process model is very different than the one in Unix.

Getting Down and Dirty with Fork | 271

in the perlipc documentation (and in any good book on application programming for
your system) for further information.

Sending and Receiving Signals
A Unix signal* is a tiny message sent to a process. It can’t say much; it’s like a car horn
honking—does that honk you hear mean “look out—the bridge collapsed” or “the light
has changed—get going” or “stop driving—you’ve got a baby on the roof” or “hello,
world”? Well, fortunately, Unix signals are a little easier to interpret than that because
there’s a different one for each of these situations.† Different signals are identified by a
name (such as SIGINT, meaning “interrupt signal”) and a corresponding small integer
(in the range from 1 to 16, 1 to 32, or 1 to 63, depending on your Unix flavor). Programs
or the operating system typically send signals to another program when a significant
event happens, such as pressing the interrupt character (typically Control-C) on the
terminal, which sends a SIGINT to all the processes attached to that terminal.‡ Some
signals are sent automatically by the system, but they can also come from another
process.

You can send signals from your Perl process to another process, but you have to know
the target’s process ID number. How you figure that out is a bit complicated,§ but let’s
say you know that you want to send a SIGINT to process 4201. That’s easy enough if
you know that SIGINT corresponds to the number 2:‖

kill 2, 4201 or die "Cannot signal 4201 with SIGINT: $!";

It’s named “kill” because one of the primary purposes of signals is to stop a process
that’s gone on long enough. You can also use the string 'INT' in place of the 2, so you
don’t have to know the number:

kill 'INT', 4201 or die "Cannot signal 4201 with SIGINT: $!";

You can even use the => operator to automatically quote the signal name:

kill INT => 4201 or die "Cannot signal 4201 with SIGINT: $!";

* Windows doesn’t have signals. It’s a different sort of beast altogether.

† Well, not exactly these situations, but analogous Unix-like ones. For these, the signals are SIGHUP, SIGCONT,
SIGINT, and the fake SIGZERO (signal number zero).

‡ And you thought that pressing Control-C stopped your program. Actually, it simply sends the SIGINT signal,
and that stops the program by default. As you’ll see later in this chapter, you can make a program that does
something different when SIGINT comes in, rather than stopping at once.

§ Usually you have the process ID because it’s a child process you produced with fork, or you found it in a file
or from an external program. Using an external program can be difficult and problematic, which is why many
long-running programs save their own current process ID into a file, usually described in the program’s
documentation.

‖ On a Unix system, you can get a list by running kill -l on the command line

272 | Chapter 16: Process Management

http://perldoc.perl.org/perlipc.html

If the process no longer exists,# you’ll get a false return value, so you can also use this
technique to see whether a process is still alive. A special signal number of 0 says “just
check to see whether I could send a signal if I wanted to, but I don’t want to, so don’t
actually send anything.” So a process probe might look like:

unless (kill 0, $pid) {
 warn "$pid has gone away!";
}

Perhaps a little more interesting than sending signals is catching signals. Why might
you want to do this? Well, suppose you have a program that creates files in /tmp,
and you normally delete those files at the end of the program. If someone presses
Control-C during the execution, that leaves trash in /tmp, a very impolite thing to do.
To fix this, you can create a signal handler that takes care of the cleanup:

my $temp_directory = "/tmp/myprog.$$"; # create files below here
mkdir $temp_directory, 0700 or die "Cannot create $temp_directory: $!";

sub clean_up {
 unlink glob "$temp_directory/*";
 rmdir $temp_directory;
}

sub my_int_handler {
 &clean_up();
 die "interrupted, exiting...\n";
}

$SIG{'INT'} = 'my_int_handler';
.
. # Time passes, the program runs, creates some temporary
. # files in the temp directory, maybe someone presses Control-C
.
Now it's the end of normal execution
&clean_up();

The assignment into the special %SIG hash activates the handler (until revoked). The
key is the name of the signal (without the constant SIG prefix), and the value is a
string* naming the subroutine, without the ampersand. From then on, if a SIGINT comes
along, Perl stops whatever it’s doing and jumps immediately to the subroutine. Your
subroutine cleans up the temp files and then exits. (And if nobody presses Control-C,
we’ll still call &clean_up() at the end of normal execution.)

If the subroutine returns rather than exiting, execution resumes right where the signal
interrupted it. This can be useful if the signal needs to actually interrupt something
rather than causing it to stop. For example, suppose processing each line of a file takes

#Sending a signal will also fail if you’re not the superuser or it’s someone else’s process. It would be rude to
send SIGINT to someone else’s programs, anyway.

* The value can also be a subroutine reference (which is actually the better way to do it), but we haven’t covered
references in this book.

Sending and Receiving Signals | 273

a few seconds, which is pretty slow, and you want to abort the overall processing when
an interrupt is processed—but not in the middle of processing a line. Just set a flag in
the signal procedure and check it at the end of each line’s processing:

my $int_count = 0;
sub my_int_handler { $int_count++ }
$SIG{'INT'} = 'my_int_handler';
...;
while (<SOMEFILE>) {
 ...; # some processing that takes a few seconds ...
 if ($int_count) {
 # interrupt was seen!
 print "[processing interrupted...]\n";
 last;
 }
}

Now as you process each line, the value of $int_count will be 0 if no one has pressed
Control-C, and so the loop continues to the next item. However, if a signal comes in,
the signal handler increments the $int_count flag, breaking out of the loop when
checked at the end.

So, you can either set a flag or break out of the program, and that covers most of what
you’ll need from catching signals. For the most part, Perl will only handle a signal once
it reaches a safe point to do so. For instance, Perl will not deliver most signals in the
middle of allocating memory or rearranging its internal data structures.† Perl delivers
some signals, such as SIGILL, SIGBUS, and SIGSEGV, right away, so those are still unsafe.

Exercises
See “Answers to Exercises” on page 327 for answers to the following exercises:

1. [6] Write a program that changes to some particular (hardcoded) directory, like
the system’s root directory, then executes the ls -l command to get a long-format
directory listing in that directory. (If you use a non-Unix system, use your own
system’s command to get a detailed directory listing.)

2. [10] Modify the previous program to send the output of the command to a file
called ls.out in the current directory. The error output should go to a file called
ls.err. (You don’t need to do anything special about the fact that either of these
files may end up being empty.)

† If you care about how Perl handles this, see the perlipc documentation.

274 | Chapter 16: Process Management

http://perldoc.perl.org/perlipc.html

3. [8] Write a program to parse the output of the date command to determine the
current day of the week. If the day of the week is a weekday, print get to work;
otherwise, print go play. The output of the date command begins with Mon on a
Monday.‡ If you don’t have a date command on your non-Unix system, make a
fake little program that simply prints a string like date might print. We’ll even give
you this two-line program if you promise not to ask us how it works:

#!/usr/bin/perl
print localtime() . "\n";

4. [15] (Unix only) Write an infinite loop program that catches signals and reports
which signal it caught and how many times it has seen that signal before. Exit if
you catch the INT signal. If you can use the command-line kill, you can send signals
like so:

$ kill -USR1 12345

If you can’t use the command-line kill, write another program to send signals to it.
You might be able to get away with a Perl one-liner:

$ perl -e 'kill HUP => 12345'

‡ At least when the days of the week are given in English. You might have to adjust accordingly if that’s not
the case on your system.

Exercises | 275

CHAPTER 17

Some Advanced Perl Techniques

What you’ve seen so far is the core of Perl, the part that you as a Perl user should
understand. But there are many other techniques that, while not obligatory, are still
valuable tools to have in your toolbox. We’ve gathered the most important of those for
this chapter. This also segues into the continuation of this book, Intermediate Perl,
which is your next step in Perl.

Don’t be misled by the title of the chapter, though; the techniques here aren’t especially
more difficult to understand than those that you’ve already seen. They are “advanced”
merely in the sense that they aren’t necessary for beginners. The first time you read this
book, you may want to skip (or skim) this chapter so you can get right to using Perl.
Come back to it a month or two later, when you’re ready to get even more out of Perl.
Consider this entire chapter a huge footnote.*

Slices
It often happens that you need to work with only a few elements from a given list. For
example, the Bedrock Library keeps information about their patrons in a large file.†

Each line in the file describes one patron with six colon-separated fields: a person’s
name, library card number, home address, home phone number, work phone number,
and number of items currently checked out. A little bit of the file looks something like
this:

fred flintstone:2168:301 Cobblestone Way:555-1212:555-2121:3
barney rubble:709918:3128 Granite Blvd:555-3333:555-3438:0

* We contemplated doing that in one of the drafts, but got firmly rejected by O’Reilly’s editors.

† It should really be a full-featured database rather than a flat file. They plan to upgrade their system, right
after the next Ice Age.

277

http://oreilly.com/catalog/9780596102067/

One of the library’s applications needs only the card numbers and number of items
checked out; it doesn’t use any of the other data. You could use something like this to
get only the fields you need:

while (<$fh>) {
 chomp;
 my @items = split /:/;
 my($card_num, $count) = ($items[1], $items[5]);
 ... # now work with those two variables
}

But you don’t need the array @items for anything else; it seems like a waste.‡ Maybe it
would be better for you to assign the result of split to a list of scalars, like this:

my($name, $card_num, $addr, $home, $work, $count) = split /:/;

That avoids the unneeded array @items—but now you have four scalar variables that
you don’t really need. For this situation, some people make up a number of dummy
variable names, like $dummy_1, that shows they really don’t care about that element from
the split. But Larry thought that was too much trouble, so he added a special use of
undef. If you use undef as an item in a list you’re assigning to, Perl simply ignores the
corresponding element of the source list:

my(undef, $card_num, undef, undef, undef, $count) = split /:/;

Is this any better? Well, it has the advantage that you don’t use any unneeded variables.
But it has the disadvantage that you have to count undefs to tell which element is
$count. And this becomes quite unwieldy if there are more elements in the list. For
example, some people who wanted just the mtime value from stat would write code
like this:

my(undef, undef, undef, undef, undef, undef, undef,
 undef, undef, $mtime) = stat $some_file;

If you use the wrong number of undefs, you get the atime or ctime by mistake, and that’s
a tough one to debug. There’s a better way: Perl can index into a list as if it were an
array. This is a list slice. Here, since the mtime is item 9 in the list returned by stat,§ you
can get it with a subscript:

my $mtime = (stat $some_file)[9];

Those parentheses are required around the list of items (in this case, the return value
from stat). If you wrote it like this, it wouldn’t work:

my $mtime = stat($some_file)[9]; # Syntax error!

A list slice has to have a subscript expression in square brackets after a list in paren-
theses. The parentheses holding the arguments to a function call don’t count.

‡ It’s not much of a waste, really. But stay with us. Programmers who don’t understand slices still use these
techniques, so it’s worthwhile to see all of them here when you have to deal with someone else’s code.

§ It’s the tenth item, but the index number is 9, since the first item is at index 0. This is the same kind of zero-
based indexing that we’ve used already with arrays.

278 | Chapter 17: Some Advanced Perl Techniques

Going back to the Bedrock Library, the list you work with is the return value from
split. You can now use a slice to pull out item 1 and item 5 with subscripts:

my $card_num = (split /:/)[1];
my $count = (split /:/)[5];

Using a scalar-context slice like this (pulling just a single element from the list) isn’t
bad, but it would be more efficient and simpler if you don’t have to do the split twice.
So let’s not do it twice; let’s get both values at once by using a list slice in list context:

my($card_num, $count) = (split /:/)[1, 5];

The indices pull out element 1 and element 5 from the list, returning those as a two-
element list. When you assign that to the two my variables, you get exactly what we
wanted. You do the slice just once, and you set the two variables with a simple
notation.

A slice is often the simplest way to pull a few items from a list. Here, you can pull just
the first and last items from a list, using the fact that index –1 means the last element:‖

my($first, $last) = (sort @names)[0, –1];

The subscripts of a slice may be in any order and may even repeat values. This example
pulls 5 items from a list of 10:

my @names = qw{ zero one two three four five six seven eight nine };
my @numbers = (@names)[9, 0, 2, 1, 0];
print "Bedrock @numbers\n"; # says Bedrock nine zero two one zero

Array Slice
That previous example could be made even simpler. When slicing elements from an
array (as opposed to a list), the parentheses aren’t needed. So we could have done the
slice like this:

my @numbers = @names[9, 0, 2, 1, 0];

This isn’t merely a matter of omitting the parentheses; this is actually a different nota-
tion for accessing array elements: an array slice. In Chapter 3, we said that the at sign
on @names meant “all of the elements.” Actually, in a linguistic sense, it’s more like a
plural marker, much like the letter “s” in words like “cats” and “dogs.” In Perl, the
dollar sign means there’s just one of something, but the at sign means there’s a list of
items.

A slice is always a list, so the array slice notation uses an at sign to indicate that. When
you see something like @names[...] in a Perl program, you need to do just as Perl
does and look at the at sign at the beginning as well as the square brackets at the end.
The square brackets mean that you’re indexing into an array, and the at sign means

‖ Sorting a list merely to find the extreme elements isn’t likely to be the most efficient way. But Perl’s sort is
fast enough that this is generally acceptable, as long as the list doesn’t have more than a few hundred elements.

Slices | 279

that you’re getting a whole list# of elements, not just a single one (which is what the
dollar sign would mean). See Figure 17-1.

Figure 17-1. Array slices versus single elements

The punctuation mark at the front of the variable reference (either the dollar sign or at
sign) determines the context of the subscript expression. If there’s a dollar sign in front,
the subscript expression is evaluated in a scalar context to get an index. But if there’s
an at sign in front, the subscript expression is evaluated in a list context to get a list of
indices.

So you see that @names[2, 5] means the same list as ($names[2], $names[5]) does. If
you want that list of values, you can simply use the array slice notation. Any place you
might want to write the list, you can instead use the simpler array slice.

But you can use the slice in one place where you can’t use a list. You can interpolate a
slice directly into a string:

my @names = qw{ zero one two three four five six seven eight nine };
print "Bedrock @names[9, 0, 2, 1, 0]\n";

If you were to interpolate @names, you’d get all of the items from the array, separated
by spaces. If instead you interpolate @names[9, 0, 2, 1, 0], that gives just those
items from the array, separated by spaces.* Let’s go back to the Bedrock Library for a
moment. Maybe now your program is updating Mr. Slate’s address and phone number
in the patron file because he just moved into a large new place in the Hollyrock Hills.
If you have a list of information about him in @items, you could do something like this
to update just those two elements of the array:

#Of course, when we say “a whole list,” that doesn’t necessarily mean more elements than one—the list could
be empty, after all.

* More accurately, the items of the list are separated by the contents of Perl’s $" variable, whose default is a
space. This should not normally be changed. When interpolating a list of values, Perl internally does join
$", @list, where @list stands in for the list expression.

280 | Chapter 17: Some Advanced Perl Techniques

my $new_home_phone = "555-6099";
my $new_address = "99380 Red Rock West";
@items[2, 3] = ($new_address, $new_home_phone);

Once again, the array slice makes a more compact notation for a list of elements. In
this case, that last line is the same as an assignment to ($items[2], $items[3]), but
more compact and efficient.

Hash Slice
In a way exactly analogous to an array slice, you can also slice some elements from a
hash in a hash slice. Remember when three of your characters went bowling, and you
kept their bowling scores in the %score hash? You could pull those scores with a list of
hash elements or with a slice. These two techniques are equivalent, although the second
is more concise and efficient:

my @three_scores = ($score{"barney"}, $score{"fred"}, $score{"dino"});

my @three_scores = @score{ qw/ barney fred dino/ };

A slice is always a list, so the hash slice notation uses an at sign to indicate that. If it
sounds as if we’re repeating ourselves here, it’s because we want to emphasize that hash
slices are homologous to array slices. When you see something like @score{ ... } in a
Perl program, you need to do just as Perl does and look at the at sign at the beginning
as well as the curly braces at the end. The curly braces mean that you’re indexing into
a hash; the at sign means that you’re getting a whole list of elements, not just a single
one (which is what the dollar sign would mean). See Figure 17-2.

Figure 17-2. Hash slices versus single elements

As you saw with the array slice, the punctuation mark at the front of the variable ref-
erence (either the dollar sign or at sign) determines the context of the subscript ex-
pression. If there’s a dollar sign in front, the subscript expression is evaluated in a scalar

Slices | 281

context to get a single key.† But if there’s an at sign in front, the subscript expression
is evaluated in a list context to get a list of keys.

It’s normal at this point to wonder why there’s no percent sign (%) here, when we’re
talking about a hash. That’s the marker that means there’s a whole hash; a hash slice
(like any other slice) is always a list, not a hash.‡ In Perl, the dollar sign means there’s
just one of something, but the at sign means there’s a list of items, and the percent sign
means there’s an entire hash.

As you saw with array slices, a hash slice may be used instead of the corresponding list
of elements from the hash, anywhere within Perl. So you can set your friends’ bowling
scores in the hash (without disturbing any other elements in the hash) in this simple
way:

my @players = qw/ barney fred dino /;
my @bowling_scores = (195, 205, 30);
@score{ @players } = @bowling_scores;

That last line does the same thing as if you had assigned to the three-element list
($score{"barney"}, $score{"fred"}, $score{"dino"}).

A hash slice may be interpolated, too. Here, you print out the scores for your favorite
bowlers:

print "Tonight's players were: @players\n";
print "Their scores were: @score{@players}\n";

Trapping Errors
Sometimes things don’t always work out in your programs, but that doesn’t mean you
want your programs to merely complain before they stop themselves dead. Dealing
with errors is a major part of the work of programming, and although we could fill a
book on just that, we’re still going to give you the introduction. See the third book in
this series, Mastering Perl, for an in-depth examination of error handling in Perl.

Using eval
Sometimes, your ordinary, everyday code can cause a fatal error in your program. Each
of these typical statements could crash a program:

my $barney = $fred / $dino; # divide-by-zero error?

my $wilma = '[abc';
print "match\n" if /\A($wilma)/; # illegal regular expression error?

† There’s an exception you’re not likely to run across, since it isn’t used much in modern Perl code. See the
entry for $; in the perlvar documentation.

‡ A hash slice is a slice (not a hash) in the same way that a house fire is a fire (not a house), while a fire house
is a house (not a fire). More or less.

282 | Chapter 17: Some Advanced Perl Techniques

http://oreilly.com/catalog/9780596527242/
http://perldoc.perl.org/perlvar.html

open my $caveman, '<', $fred # user-generated error from die?
 or die "Can't open file '$fred' for input: $!";

You could go to some trouble to catch some of these, but it’s hard to get them all. How
could you check the string $wilma to ensure it makes a valid regular expression?§ For-
tunately, Perl provides a simple way to catch fatal errors—you can wrap the code in an
eval block:

eval { $barney = $fred / $dino };

Now, even if $dino is zero, that line won’t crash your program. As soon as the eval
encounters a normally fatal error, it stops the entire block and continues with the rest
of the program. Notice that semicolon after the eval block. The eval is actually an
expression (not a control structure, like while or foreach) so you need that semicolon
at the end of the block.

The return value of the eval is the last evaluated expression, just like a subroutine.
Instead of putting $barney on the inside of the eval, you could assign it the result of the
eval, which allows you to declare $barney in the scope outside the eval:

my $barney = eval { $fred / $dino }

If that eval catches an error, it returns undef. You can use the defined-or operator to
set a default value, such as NaN (“Not a Number”):

use 5.010;
my $barney = eval { $fred / $dino } // 'NaN';

When a normally fatal error happens during the execution of an eval block, the block
is done running, but the program doesn’t crash.

When an eval finishes, you want to know whether it exited normally or whether it
caught a fatal error. If the eval caught a fatal error, it returns undef and puts the error
message in the $@ special variable, perhaps something like: Illegal division by zero
at my_program line 12. If there was no error, $@ will be empty. Of course, that means
$@ is a useful Boolean (true/false) value, true if there was an error. You sometimes see
code like this after an eval block:

use 5.010;
my $barney = eval { $fred / $dino } // 'NaN';
print "I couldn't divide by \$dino: $@" if $@;

You can also check the return value, but only if you expect it to be defined if it works.
In fact, you should prefer this form to the previous example if it works for your situation:

unless(eval { $fred / $dino }) {
 print "I couldn't divide by \$dino: $@" if $@;
}

§ It’s easy to check a regular expression for validity, but we haven’t shown you the tools to do that yet. See our
chapter on regular expression objects in Intermediate Perl.

Trapping Errors | 283

http://oreilly.com/catalog/9780596102067/

Sometimes the part that you want to test has no meaningful return value even on suc-
cess, so you can add one yourself. If the eval catches a failure, it won’t get the final
statement, which is just 1 in this case:

unless(eval { some_sub(); 1 }) {
 print "I couldn't divide by \$dino: $@" if $@;
}

In list context, a failed eval returns an empty list. In this line, @averages only gets two
elements if the eval fails, because the eval doesn’t contribute anything to the list:

my @averages = (2/3, eval { $fred / $dino }, 22/7);

The eval block is just like every other Perl block, so it makes a new scope for lexical
(my) variables and you can have as many statements as you like. Here’s an eval block
hard at work guarding against many potential fatal errors:

foreach my $person (qw/ fred wilma betty barney dino pebbles /) {
 eval {
 open my $fh, '<', $person
 or die "Can't open file '$person': $!";

 my($total, $count);

 while (<$fh>) {
 $total += $_;
 $count++;
 }

 my $average = $total/$count;
 print "Average for file $person was $average\n";

 &do_something($person, $average);
 };

 if ($@) {
 print "An error occurred ($@), continuing\n";
 }
}

How many possible fatal errors can that eval trap? If there is an error in opening the
file, you catch it. Calculating the average may divide by zero, but that won’t prematurely
stop your program. The eval even protects the call to the mysteriously named &do_some
thing subroutine against fatal errors. This feature is handy if you have to call a sub-
routine written by someone else, and you don’t know whether they’ve coded defen-
sively enough to avoid crashing your program. Some people purposedly use die to signal
problems because they expect you to use eval to handle it. We’ll talk about that more
in a moment.

If an error occurs during the processing of one of the files you have in the foreach list,
you get an error message but your program will go on to the next file without further
complaint.

284 | Chapter 17: Some Advanced Perl Techniques

You can also nest eval blocks inside other eval blocks without Perl getting confused.
The inner eval traps errors in its block, keeping them from reaching the outer blocks.
Of course, after the inner eval finishes, if it caught an error you may wish to repost the
error by using die, thereby letting the outer eval catch it. You could change the code
to catch an error in the division separately:

foreach my $person (qw/ fred wilma betty barney dino pebbles /) {
 eval {
 open my $fh, '<', $person
 or die "Can't open file '$person': $!";

 my($total, $count);

 while (<$fh>) {
 $total += $_;
 $count++;
 }

 my $average = eval { $total/$count } // 'NaN'; # Inner eval
 print "Average for file $person was $average\n";

 &do_something($person, $average);
 };

 if ($@) {
 print "An error occurred ($@), continuing\n";
 }
}

There are four kinds of problems that eval can’t trap. The first group are syntax errors
in the literal source, such as mismatched quotes, missing semicolons, missing operands,
or invalid literal regular expressions:

eval {
 print "There is a mismatched quote';
 my $sum = 42 +;
 /[abc/
 print "Final output\n";
 }

The perl compiler catches those errors as it parses the source and stops its work before
it starts to run the program. The eval can only catch errors once your Perl code is
actually running.

The second group are the very serious errors that crash perl itself, such as running out
of memory or getting an untrapped signal. This sort of error abnormally shuts down
the perl interpreter itself, and since perl isn’t running, there’s no way it can trap these
errors. Some of these errors are listed with an (X) code on the perldiag documentation,
if you’re curious.

The third problem group that an eval block can’t trap are warnings, either user-
generated ones (from warn), or Perl’s internally generated warnings from the -w
command-line option or the use warnings pragma. There’s a separate mechanism apart

Trapping Errors | 285

http://perldoc.perl.org/perldiag.html

from eval for trapping warnings; see the explanation of the __WARN__ pseudosignal in
the Perl documentation for the details.

The last sort of error isn’t really an error, but this is a good place to note it. The exit
operator terminates the program at once, even if you call it from a subroutine inside an
eval block. When you call exit, you expect and intend for your program to stop. That’s
what’s supposed to happen, and as such, eval doesn’t prevent it from doing its work.

We should also mention that there’s another form of eval that can be dangerous if it’s
mishandled. In fact, you sometimes run across someone who will say that you shouldn’t
use eval in your code for security reasons. They’re (mostly) right that you should use
eval only with great care, but they’re talking about the other form of eval, sometimes
called “eval of a string”. That eval takes a string, compiles it as Perl code, then executes
that code just as if you had typed it directly into your program. Notice that the result
of any string interpolation has to be valid Perl code:

my $operator = 'unlink';
eval "$operator \@files;";

If the keyword eval doesn’t come directly before a block of code in curly braces, as you
saw for most of this section, there’s no need to worry—that’s the safe kind of eval.

More Advanced Error Handling
Different languages naturally handle errors in their own way, but a popular concept is
the exception. You try some code and if anything goes wrong, the program throws an
exception that it expects you to catch. With just basic Perl, you throw an exception
with die and catch it with eval. You can inspect the value of $@ to figure out what
happened:

eval {
 ...;
 die "An unexpected exception message" if $unexpected;
 die "Bad denominator" if $dino == 0;
 $barney = $fred / $dino;
 }
if ($@ =~ /unexpected/) {
 ...;
 }
elsif($@ =~ /denominator/) {
 ...;
 }

There are many subtle problems with this sort of code, mostly based on the dynamic
scope of the $@ variable. In short, since $@ is a special variable and your use of eval
might be wrapped in a higher level eval (even if you don’t know about it), you need to
ensure that an error you catch doesn’t interfere with errors at the higher level:

286 | Chapter 17: Some Advanced Perl Techniques

{
local $@; # don't stomp on higher level errors

eval {
 ...;
 die "An unexpected exception message" if $unexpected;
 die "Bad denominator" if $dino == 0;
 $barney = $fred / $dino;
 }
if ($@ =~ /unexpected/) {
 ...;
 }
elsif($@ =~ /denominator/) {
 ...;
 }
}

That’s not the whole story though, and it’s a really tricky problem that’s easy to get
wrong. The Try::Tiny module solves most of this problem for you (and explains it too,
if you really need to know). It’s not included in the Standard Library, but you can get
it from CPAN.‖ The basic form looks like this:

use Try::Tiny;

try {
 ...; # some code that might throw errors
 }
catch {
 ...; # some code to handle the error
 }
finally {
 ...;
 }

The try acts like the eval you just saw. The construct runs the catch block only if there
was an error. It always runs the finally block, allowing you to do any cleanup you’d
like to do. You don’t need to have the catch or the finally, either. To simply ignore
errors, you can just use the try:

my $barney = try { $fred / $dino };

You can use catch to handle the error. Instead of messing with $@, Try::Tiny puts the
error message in $_. You can still access $@, but part of Try::Tiny’s purpose is to prevent
the abuse of $@:

use 5.010;

my $barney =
 try { $fred / $dino }
 catch {
 say "Error was $_"; # not $@
 };

‖ See http://search.cpan.org/dist/Try-Tiny.

Trapping Errors | 287

http://search.cpan.org/dist/Try-Tiny

The finally block runs in either case: if there was an error or not. If it has arguments
in @_, there was an error:

use 5.010;

my $barney =
 try { $fred / $dino }
 catch {
 say "Error was $_"; # not $@
 }
 finally {
 say @_ ? 'There was an error' : 'Everything worked';
 };

autodie
Starting with 5.10.1, Perl comes with autodie, a pragma that gives you more control
over how you handle errors in your program. For most of this book, you checked for
errors and used die when you found them, as in this call to open:

open my $fh, '>', $filename or
 die "Couldn't open $filename for writing: $!";

That looks fine on its own, but do you really want to do that every time you use open?
What about all of the other built-ins that interact with the system and might fail? Instead
of typing that “or die ...” business every time, you can let autodie add it
automatically:

use autodie;

open my $fh, '>', $filename; # still dies on error

If this fails, you get the error message you might have chosen yourself:

Can't open '/does/not/exist' for writing: 'No such file or directory'

The autodie module applies this magic to a default set of Perl built-ins, which is most
of the operators that deal with files, filehandles, interprocess communication, and
sockets. You can control which operators you apply autodie to by specifying them in
the import list:#

use autodie qw(open system :socket);

When autodie throws an error, it puts an autodie::exception object in $@, which you
can inspect to figure out what sort of error you caught. The example from Paul
Fenwick’s autodie documentation uses a given-when to figure out what happened:

use 5.010;

open my $fh, '>', $filename; # still dies on error

#See Intermediate Perl for more details about import lists.

288 | Chapter 17: Some Advanced Perl Techniques

http://oreilly.com/catalog/9780596102067/

given ($@) {
 when (undef) { say "No error"; }
 when ('open') { say "Error from open"; }
 when (':io') { say "Non-open, IO error."; }
 when (':all') { say "All other autodie errors." }
 default { say "Not an autodie error at all." }
 }

You might combine autodie with Try::Tiny:

use 5.010;

use autodie;
use Try::Tiny;

try {
 open my $fh, '>', $filename; # still dies on error
 }
catch {
 when('open') { say 'Got an open error' }
 };

Picking Items from a List with grep
Sometimes you want only certain items from a list; maybe it’s only the odd numbers
from a list of numbers, or maybe it’s only the lines mentioning Fred from a file of text.
As you see in this section, picking some items from a list can be done simply with the
grep operator.

Try this first one and get the odd numbers from a large list of numbers. You don’t need
anything new to do that:

my @odd_numbers;

foreach (1..1000) {
 push @odd_numbers, $_ if $_ % 2;
}

That code uses the modulus operator (%), which you saw in Chapter 2. If the number
is even, that number “mod two” gives zero, which is false. But an odd number will give
one; since that’s true, you only push the odd numbers onto @odd_numbers.

Now, there’s nothing wrong with that code as it stands—except that it’s a little longer
to write and slower to run than it might be, since Perl provides the grep operator to act
as a filter:

my @odd_numbers = grep { $_ % 2 } 1..1000;

That line gets a list of 500 odd numbers in one quick line of code. How does it work?
The first argument to grep is a block that uses $_ as a placeholder for each item in the
list, and returns a Boolean (true/false) value. The remaining arguments are the list of
items to search through. The grep operator will evaluate the expression once for each
item in the list, much as your original foreach loop did. For the ones where the last

Picking Items from a List with grep | 289

expression of the block returns a true value, that element is included in the list that
results from grep.

While the grep is running, Perl aliases $_ to one element of the list after another. You
saw this behavior before, in the foreach loop. It’s generally a bad idea to modify $_
inside the grep expression because this will change the original data, too.

The grep operator shares its name with a classic Unix utility that picks matching lines
from a file by using regular expressions. You can do that with Perl’s grep, which is much
more powerful. Here you select only the lines mentioning fred from a file:

my @matching_lines = grep { /\bfred\b/i } <$fh>;

There’s a simpler syntax for grep, too. If all you need for the selector is a simple ex-
pression (rather than a whole block), you can just use that expression, followed by a
comma, in place of the block. Here’s the simpler way to write that latest example:

my @matching_lines = grep /\bfred\b/i, <$fh>;

The grep operator also has a special scalar context mode in which it can tell you how
many items it selected. What if you only wanted to count the matching lines from a file
and you didn’t care about the lines yourself? You could do that after you created the
@matching_lines array:

my @matching_lines = grep /\bfred\b/i, <$fh>;
my $line_count = @matching_lines;

You can skip the intermediate array though (so you don’t have to create that array and
take up memory) by assigning to the scalar directly:

my $line_count = grep /\bfred\b/i, <$fh>;

Transforming Items from a List with map
Instead of a filter, you might want to change every item in a list. For example, suppose
you have a list of numbers that should be formatted as “money numbers” for output,
as with the subroutine &big_money from Chapter 13. You don’t want to modify the
original data; you need a modified copy of the list just for output. Here’s one way to
do that:

my @data = (4.75, 1.5, 2, 1234, 6.9456, 12345678.9, 29.95);
my @formatted_data;

foreach (@data) {
 push @formatted_data, &big_money($_);
}

290 | Chapter 17: Some Advanced Perl Techniques

That looks similar in form to the example code used at the beginning of the previous
section on grep, doesn’t it? So it may not surprise you that the replacement code re-
sembles the first grep example:

my @data = (4.75, 1.5, 2, 1234, 6.9456, 12345678.9, 29.95);

my @formatted_data = map { &big_money($_) } @data;

The map operator looks much like grep because it has the same kind of arguments: a
block that uses $_, and a list of items to process. And it operates in a similar way,
evaluating the block once for each item in the list, with $_ aliased to a different original
list element each time. But map uses the last expression of the block differently; instead
of giving a Boolean value, the final value actually becomes part of the resulting list. One
other important difference is that the expression used by map is evaluated in a list context
and may return any number of items, not necessarily one each time.

You can rewrite any grep or map statement as a foreach loop pushing items onto a
temporary array. But the shorter way is typically more efficient and more convenient.
Since the result of map or grep is a list, it can be passed directly to another function.
Here we can print that list of formatted “money numbers” as an indented list under a
heading:

print "The money numbers are:\n",
 map { sprintf("%25s\n", $_) } @formatted_data;

Of course, you could have done that processing all at once, without even the temporary
array @formatted_data:

my @data = (4.75, 1.5, 2, 1234, 6.9456, 12345678.9, 29.95);
print "The money numbers are:\n",
 map { sprintf("%25s\n", &big_money($_)) } @data;

As you saw with grep, there’s also a simpler syntax for map. If all you need for the selector
is a simple expression (rather than a whole block), you can just use that expression,
followed by a comma, in place of the block:

print "Some powers of two are:\n",
 map "\t" . (2 ** $_) . "\n", 0..15;

Fancier List Utilities
There are a couple of modules that you can use if you need fancier list handling in Perl.
After all, many programs really are just a series of moving lists around in various ways.

The List::Util module comes with the Standard Library and provides high-
performance versions of common list processing utilities. These are implemented at
the C level.

Fancier List Utilities | 291

Suppose you wanted to know if a list contains an item that matches some condition.
You don’t need to get all of the elements, and you want to stop once you find the first
matching element. You can’t use grep because it always scans the entire list, and if your
list is very long the grep might do a lot of extra, unnecessary work:

my $first_match;
foreach (@characters) {
 if (/\bPebbles\b/i) {
 $first_match = $_;
 last;
 }
}

That’s a lot of code. Instead, you can use the first subroutine from List::Util:

use List::Util qw(first);
my $first_match = first { /\bPebbles\b/i } @characters;

In the Exercises for Chapter 4, you created the &total subroutine. If you knew about
List::Util, you wouldn’t have done so much work:

use List::Util qw(sum);
my $total = sum(1..1000); # 500500

Also in Chapter 4, the &max subroutine did a lot of work to select the largest item from
a list. You don’t actually need to create that yourself since List::Util’s version can do
it for you:

use List::Util qw(max);
my $max = max(3, 5, 10, 4, 6);

That max deals with numbers only. If you wanted to do it with strings (using string
comparisons), you use maxstr instead:

use List::Util qw(maxstr);
my $max = maxstr(@strings);

If you want to randomize the order of elements in a list, you can use shuffle:

use List::Util qw(shuffle);
my @shuffled = shuffle(1..1000); # randomized order of elements

There’s another module, List::MoreUtils, that has even more fancy subroutines. This
one does not come with Perl so you need to install it from CPAN. You can check if no,
any, or all elements of a list match a condition. Each of these subroutines has the same
block syntax of grep:

use List::MoreUtils qw(none any all);

if (none { $_ > 100 } @numbers) {
 print "No elements over 100\n"
} elsif (any { $_ > 50 } @numbers) {
 print "Some elements over 50\n";
} elsif (all { $_ < 10 } @numbers) {
 print "All elements are less than 10\n";
}

292 | Chapter 17: Some Advanced Perl Techniques

If you want to deal with the list in groups of items, you can use the natatime (N at a
time) to handle that for you:

use List::MoreUtils qw(natatime);

my $iterator = natatime 3, @array;
while(my @triad = $iterator->()) {
 print "Got @triad\n";
}

If you need to combine two or more lists, you can use mesh to create the large list that
interweaves all of the elements, even if the small arrays are not the same length:

use List::MoreUtils qw(mesh);

my @abc = 'a' .. 'z';
my @numbers = 1 .. 20;
my @dinosaurs = qw(dino);

my @large_array = mesh @abc, @numbers, @dinosaurs;

This takes the first element of @abc and makes it the first element of @large_array, then
takes the first element of @numbers to make it the next element of @large_array, and
then does the same with @dinosaurs. It then goes back to @family to get its next element,
and so on through all of the elements. The start of the resulting list in @large_array is:

 a 1 dino b 2 c 3 ...

There are many more useful and interesting subroutines in List::MoreUtils. Before you
try to recreate what it already does, check its documentation.

Exercises
See “Answer to Exercises” on page 328 for an answer to the following exercises:

1. [30] Make a program that reads a list of strings from a file, one string per line, and
then lets the user interactively enter patterns that may match some of the strings.
For each pattern, the program should tell how many strings from the file matched,
then which ones those were. Don’t reread the file for each new pattern; keep the
strings in memory. The filename may be hardcoded in the file. If a pattern is invalid
(for example, if it has unmatched parentheses), the program should simply report
that error and let the user continue trying patterns. When the user enters a blank
line instead of a pattern, the program should quit. (If you need a file full of inter-
esting strings to try matching, try the file sample_text in the files you’ve surely
downloaded by now from the O’Reilly website; see the Preface.)

Exercises | 293

2. [15] Write a program to make a report of the access and modification times (in the
epoch time) of the files in the current directory. Use stat to get the times, using a
list slice to extract the elements. Report your results in three columns, like this:

fred.txt 1294145029 1290880566
barney.txt 1294197219 1290810036
betty.txt 1287707076 1274433310

3. [15] Modify your answer to Exercise 2 to report the times using the YYYY-MM-
DD format. Use a map with localtime and a slice to turn the epoch times into the
date strings that you need. Note the localtime documentation about the year and
month values it returns. Your report should look like this:

fred.txt 2011-10-15 2011-09-28
barney.txt 2011-10-13 2011-08-11
betty.txt 2011-10-15 2010-07-24

294 | Chapter 17: Some Advanced Perl Techniques

APPENDIX A

Exercise Answers

This appendix contains the answers to the exercises that appear throughout the book.

Answers to Chapter 1 Exercises
1. This exercise is easy since we already gave you the program.

print "Hello, world!\n";

If you have Perl 5.10 or later, you can try say:

use 5.010;
say "Hello, world!";

If you want to try it from the command line without creating a file, you can specify
your program on the command line with the -e switch:

$ perl -e 'print "Hello, World\n"'

There’s another switch, -l, that automatically adds the newline for you:

$ perl -le 'print "Hello, World"'

2. The perldoc command should come with your perl, so you should be able to run
it directly.

3. This program is easy too, as long as you got the previous exercise to work:

@lines = `perldoc -u -f atan2`;
foreach (@lines) {
 s/\w<([^>]+)>/\U$1/g;
 print;
}

295

Answers to Chapter 2 Exercises
1. Here’s one way to do it:

#!/usr/bin/perl -w
$pi = 3.141592654;
$circ = 2 * $pi * 12.5;
print "The circumference of a circle of radius 12.5 is $circ.\n";

As you see, we started this program with a typical #! line; your path to Perl may
vary. We also turned on warnings.

The first real line of code sets the value of $pi to our value of π. There are several
reasons a good programmer will prefer to use a constant* value like this: it takes
time to type 3.141592654 into your program if you ever need it more than once. It
may be a mathematical bug if you accidentally used 3.141592654 in one place and
3.14159 in another. There’s only one line to check on to make sure you didn’t
accidentally type 3.141952654 and send your space probe to the wrong planet. It’s
easier to type $pi than π, especially if you don’t have Unicode. And it will be easy
to maintain the program in case the value of π ever changes.† Next we calculate
the circumference, storing it into $circ, and we print it out in a nice message. The
message ends with a newline character, because every line of a good program’s
output should end with a newline. Without it, you might end up with output
looking something like this, depending upon your shell’s prompt:

The circumference of a circle of radius 12.5 is
78.53981635.bash-2.01$[]

The box represents the input cursor, blinking at the end of the line, and that’s the
shell’s prompt at the end of the message.‡ Since the circumference isn’t really
78.53981635.bash-2.01$, this should probably be construed as a bug. So, use \n at
the end of each line of output.

2. Here’s one way to do it:

#!/usr/bin/perl -w
$pi = 3.141592654;
print "What is the radius? ";
chomp($radius = <STDIN>);
$circ = 2 * $pi * $radius;
print "The circumference of a circle of radius $radius is $circ.\n";

* If you’d prefer a more formal sort of constant, the constant pragma may be what you’re looking for.

† It nearly did change more than a century ago by a legislative act in the state of Indiana. See House Bill No.
246, Indiana State Legislature, 1897, http://www.cs.uwaterloo.ca/~alopez-o/math-faq/node45.html.

‡ We asked O’Reilly to spend the extra money to print the input cursor with blinking ink, but they wouldn’t
do it for us.

296 | Appendix A: Exercise Answers

http://www.cs.uwaterloo.ca/~alopez-o/math-faq/node45.html

This is just like the last one, except now we ask the user for the radius, and then
we use $radius in every place where we previously used the hardcoded value
12.5. If we had written the first program with more foresight, in fact, we would
have a variable named $radius in that one as well. Note that we chomped the line
of input. If we hadn’t, the mathematical formula would still have worked because
a string like "12.5\n" is converted to the number 12.5 without any problem. But
when we print out the message, it would look like this:

The circumference of a circle of radius 12.5
 is 78.53981635.

Notice that the newline character is still in $radius, even though we’ve used that
variable as a number. Since we had a space between $radius and the word is in
the print statement, there’s a space at the beginning of the second line of output.
The moral of the story is: chomp your input unless you have a reason not to.

3. Here’s one way to do it:

#!/usr/bin/perl -w
$pi = 3.141592654;
print "What is the radius? ";
chomp($radius = <STDIN>);
$circ = 2 * $pi * $radius;
if ($radius < 0) {
 $circ = 0;
}
print "The circumference of a circle of radius $radius is $circ.\n";

Here we added the check for a bogus radius. Even if the given radius was impos-
sible, the returned circumference would at least be nonnegative. You could have
changed the given radius to be zero, and then calculated the circumference, too;
there’s more than one way to do it. In fact, that’s the Perl motto: There Is More
Than One Way To Do It. And that’s why each exercise answer starts with, “Here’s
one way to do it.”

4. Here’s one way to do it:

print "Enter first number: ";
chomp($one = <STDIN>);
print "Enter second number: ";
chomp($two = <STDIN>);
$result = $one * $two;
print "The result is $result.\n";

Notice that we’ve left off the #! line for this answer. In fact, from here on, we’ll
assume that you know it’s there, so you don’t need to read it each time.

Perhaps those are poor choices for variable names. In a large program, a mainte-
nance programmer might think that $two should have the value of 2. In this short
program, it probably doesn’t matter, but in a large one we could have called them
something more descriptive, with names like $first_response.

Answers to Exercises | 297

In this program, it wouldn’t make any difference if we forgot to chomp the two
variables $one and $two, since we never use them as strings once they’ve been set.
But if next week our maintenance programmer edits the program to print a message
like: The result of multiplying $one by $two is $result.\n, those pesky new-
lines will come back to haunt us. Once again, chomp unless you have a reason not
to chomp§—like in the next exercise.

5. Here’s one way to do it:

print "Enter a string: ";
$str = <STDIN>;
print "Enter a number of times: ";
chomp($num = <STDIN>);
$result = $str x $num;
print "The result is:\n$result";

This program is almost the same as the last one, in a sense. We’re “multiplying” a
string by a number of times, so we’ve kept the structure of the previous exercise.
In this case, though, we didn’t want to chomp the first input item—the string—
because the exercise asked for the strings to appear on separate lines. So, if the user
entered fred and a newline for the string, and 3 for the number, we’d get a newline
after each fred just as we wanted.

In the print statement at the end, we put the newline before $result because we
wanted to have the first fred printed on a line of its own. That is, we didn’t want
output like this, with only two of the three freds aligned in a column:

The result is: fred
fred
fred

At the same time, we didn’t need to put another newline at the end of the print
output because $result should already end with a newline.

In most cases, Perl won’t mind where you put spaces in your program; you can put
in spaces or leave them out. But it’s important not to accidentally spell the wrong
thing! If the x runs up against the preceding variable name $str, Perl will see
$strx, which won’t work.

Answers to Chapter 3 Exercises
1. Here’s one way to do it:

print "Enter some lines, then press Ctrl-D:\n"; # or maybe Ctrl-Z
@lines = <STDIN>;
@reverse_lines = reverse @lines;
print @reverse_lines;

§ Chomping is like chewing—not always needed, but most of the time it doesn’t hurt.

298 | Appendix A: Exercise Answers

…or, even more simply:

print "Enter some lines, then press Ctrl-D:\n";
print reverse <STDIN>;

Most Perl programmers would prefer the second one, as long as they don’t need
to keep the list of lines around for later use.

2. Here’s one way to do it:

@names = qw/ fred betty barney dino wilma pebbles bamm-bamm /;
print "Enter some numbers from 1 to 7, one per line, then press Ctrl-D:\n";
chomp(@numbers = <STDIN>);
foreach (@numbers) {
 print "$names[$_ - 1]\n";
}

We have to subtract one from the index number so that the user can count from 1
to 7, even though the array is indexed from 0 to 6. Another way to accomplish this
would be to have a dummy item in the @names array, like this:

@names = qw/ dummy_item fred betty barney dino wilma pebbles bamm-bamm /;

Give yourself extra credit if you checked to make sure that the user’s choice of
index was in fact in the range 1 to 7.

3. Here’s one way to do it if you want the output all on one line:

chomp(@lines = <STDIN>);
@sorted = sort @lines;
print "@sorted\n";

…or, to get the output on separate lines:

print sort <STDIN>;

Answers to Chapter 4 Exercises
1. Here’s one way to do it:

sub total {
 my $sum; # private variable
 foreach (@_) {
 $sum += $_;
 }
 $sum;
}

This subroutine uses $sum to keep a running total. At the start of the subroutine,
$sum is undef, since it’s a new variable. Then, the foreach loop steps through the
parameter list (from @_), using $_ as the control variable. (Note: once again, there’s
no automatic connection between @_, the parameter array, and $_, the default var-
iable for the foreach loop.)

Answers to Exercises | 299

The first time through the foreach loop, the first number (in $_) is added to $sum.
Of course, $sum is undef, since nothing has been stored in there. But since we’re
using it as a number, which Perl sees because of the numeric operator +=, Perl acts
as if it’s already initialized to 0. Perl thus adds the first parameter to 0, and puts the
total back into $sum.

Next time through the loop, the next parameter is added to $sum, which is no longer
undef. The sum is placed back into $sum, and on through the rest of the parameters.
Finally, the last line returns $sum to the caller.

There’s a potential bug in this subroutine, depending upon how you think of
things. Suppose that this subroutine was called with an empty parameter list (as
we considered with the rewritten subroutine &max in the chapter text). In that case,
$sum would be undef, and that would be the return value. But in this subroutine, it
would probably be “more correct” to return 0 as the sum of the empty list, rather
than undef. (Of course, if you wish to distinguish the sum of an empty list from the
sum of, say, (3, –5, 2), returning undef would be the right thing to do.)

If you don’t want a possibly undefined return value, though, it’s easy to remedy.
Simply initialize $sum to zero rather than use the default of undef:

my $sum = 0;

Now the subroutine will always return a number, even if the parameter list were
empty.

2. Here’s one way to do it:

Remember to include &total from previous exercise!
print "The numbers from 1 to 1000 add up to ", total(1..1000), ".\n";

Note that we can’t call the subroutine from inside the double-quoted string,‖ so
the subroutine call is another separate item being passed to print. The total should
be 500500, a nice round number. And it shouldn’t take any noticeable time at all
to run this program; passing a parameter list of 1,000 values is an everyday task
for Perl.

3. Here’s one way to do it:

sub average {
 if (@_ == 0) { return }
 my $count = @_;
 my $sum = total(@_); # from earlier exercise
 $sum/$count;
}

sub above_average {
 my $average = average(@_);
 my @list;
 foreach my $element (@_) {

‖ We can’t do this without advanced trickiness, that is. It’s rare to find anything that you absolutely can’t do
in Perl.

300 | Appendix A: Exercise Answers

 if ($element > $average) {
 push @list, $element;
 }
 }
 @list;
}

In average, we return without giving an explicit return value if the parameter list
is empty. That gives the caller undef# to report that no average comes from an
empty list. If the list wasn’t empty, using &total makes it simple to calculate the
average. We didn’t even need to use temporary variables for $sum and $count, but
doing so makes the code easier to read.

The second sub, above_average, simply builds up and returns a list of the desired
items. (Why is the control variable named $element, instead of using Perl’s favorite
default, $_?) Note that this second sub uses a different technique for dealing with
an empty parameter list.

4. To remember the last person that greet spoke to, use a state variable. It starts out
as undef, which is how we figure out Fred is the first person it greets. At the end of
the subroutine, we store the current $name in $last_name so we remember what it
is next time:

use 5.010;

greet('Fred');
greet('Barney');

sub greet {
 state $last_person;

 my $name = shift;

 print "Hi $name! ";

 if(defined $last_person) {
 print "$last_person is also here!\n";
 }
 else {
 print "You are the first one here!\n";
 }

 $last_person = $name;
}

5. This answer is similar to that for the preceding exercise, but this time we store all
the names we have seen. Instead of using a scalar variable, we declare @names as a
state variable and push each name onto it:

#Or an empty list, if &average is used in a list context.

Answers to Exercises | 301

use 5.010;

greet('Fred');
greet('Barney');
greet('Wilma');
greet('Betty');

sub greet {
 state @names;

 my $name = shift;

 print "Hi $name! ";

 if(@names) {
 print "I've seen: @names\n";
 }
 else {
 print "You are the first one here!\n";
 }

 push @names, $name;
}

Answers to Chapter 5 Exercises
1. Here’s one way to do it:

print reverse <>;

Well, that’s pretty simple! But it works because print is looking for a list of strings
to print, which it gets by calling reverse in a list context. And reverse is looking
for a list of strings to reverse, which it gets by using the diamond operator in list
context. So, the diamond returns a list of all the lines from all the files of the user’s
choice. That list of lines is just what cat would print out. Now reverse reverses the
list of lines, and print prints them out.

2. Here’s one way to do it:

print "Enter some lines, then press Ctrl-D:\n"; # or Ctrl-Z
chomp(my @lines = <STDIN>);

print "1234567890" x 7, "12345\n"; # ruler line to column 75

foreach (@lines) {
 printf "%20s\n", $_;
}

Here, we start by reading in and chomping all of the lines of text. Then we print
the ruler line. Since that’s a debugging aid, we’d generally comment-out that line
when the program is done. We could have typed "1234567890" again and again, or
even used copy-and-paste to make a ruler line as long as we needed, but we chose
to do it this way because it’s kind of cool.

302 | Appendix A: Exercise Answers

Now, the foreach loop iterates over the list of lines, printing each one with the
%20s conversion. If you chose to do so, you could have created a format to print
the list all at once, without the loop:

my $format = "%20s\n" x @lines;
printf $format, @lines;

It’s a common mistake to get 19-character columns. That happens when you say
to yourself,* “Hey, why do we chomp the input if we’re only going to add the newlines
back on later?” So you leave out the chomp and use a format of "%20s" (without a
newline).† And now, mysteriously, the output is off by one space. So, what went
wrong?

The problem happens when Perl tries to count the spaces needed to make the right
number of columns. If the user enters hello and a newline, Perl sees six characters,
not five, since newline is a character. So it prints fourteen spaces and a six-character
string, sure that it gives the twenty characters you asked for in "%20s". Oops.

Of course, Perl isn’t looking at the contents of the string to determine the width;
it merely checks the raw number of characters. A newline (or another special char-
acter, such as a tab or a null character) will throw things off.‡

3. Here’s one way to do it:

print "What column width would you like? ";
chomp(my $width = <STDIN>);

print "Enter some lines, then press Ctrl-D:\n"; # or Ctrl-Z
chomp(my @lines = <STDIN>);

print "1234567890" x (($width+9)/10), "\n"; # ruler line as needed

foreach (@lines) {
 printf "%${width}s\n", $_;
}

This is much like the previous one, but we ask for a column width first. We ask
for that first because we can’t ask for more input after the end-of-file indicator, at
least on some systems. Of course, in the real world, you’ll generally have a better
end-of-input indicator when getting input from the user, as we’ll see in later exer-
cise answers.

Another change from the previous exercise’s answer is the ruler line. We used some
math to cook up a ruler line that’s at least as long as we need, as suggested as an
extra credit part of the exercise. Proving that our math is correct is an additional
challenge. (Hint: consider possible widths of 50 and 51, and remember that the
right side operand to x is truncated, not rounded.)

* Or to Larry, if he’s standing nearby.

† Unless Larry told you not to do that.

‡ As Larry should have explained to you by now.

Answers to Exercises | 303

To generate the format this time, we used the expression "%${width}s\n", which
interpolates $width. The curly braces are required to “insulate” the name from the
following s; without the curly braces, we’d be interpolating $widths, the wrong
variable. If you forgot how to use curly braces to do this, though, you could have
written an expression like '%' . $width . "s\n" to get the same format string.

The value of $width brings up another case where chomp is vital. If the width isn’t
chomped, the resulting format string would resemble "%30\ns\n". That’s not
useful.

People who have seen printf before may have thought of another solution. Because
printf comes to us from C, which doesn’t have string interpolation, we can use
the same trick that C programmers use. If an asterisk (*) appears in place of a
numeric field width in a conversion, a value from the list of parameters will be used:

printf "%*s\n", $width, $_;

Answers to Chapter 6 Exercises
1. Here’s one way to do it:

my %last_name = qw{
 fred flintstone
 barney rubble
 wilma flintstone
};
print "Please enter a first name: ";
chomp(my $name = <STDIN>);
print "That's $name $last_name{$name}.\n";

In this one, we used a qw// list (with curly braces as the delimiter) to initialize the
hash. That’s fine for this simple data set, and it’s easy to maintain because each
data item is a simple given name and simple family name, with nothing tricky. But
if your data might contain spaces—for example, if robert de niro or mary kay
place were to visit Bedrock—this simple method wouldn’t work so well.

You might have chosen to assign each key/value pair separately, something like
this:

my %last_name;
$last_name{"fred"} = "flintstone";
$last_name{"barney"} = "rubble";
$last_name{"wilma"} = "flintstone";

Note that (if you chose to declare the hash with my, perhaps because use strict
was in effect), you must declare the hash before assigning any elements. You can’t
use my on only part of a variable, like this:

my $last_name{"fred"} = "flintstone"; # Oops!

The my operator works only with entire variables, never with just one element of
an array or hash. Speaking of lexical variables, you may have noticed that the lexical

304 | Appendix A: Exercise Answers

variable $name is being declared inside of the chomp function call; it is fairly common
to declare each my variable as it is needed, like this.

This is another case where chomp is vital. If someone enters the five-character string
"fred\n" and we fail to chomp it, we’ll be looking for "fred\n" as an element of the
hash—and it’s not there. Of course, chomp alone won’t make this bulletproof; if
someone enters "fred \n" (with a trailing space), with what we’ve seen so far, we
don’t have a way to tell that they meant fred.

If you added a check for whether the given key exists in the hash so that you’ll
give the user an explanatory message when they misspell a name, give yourself extra
points for that.

2. Here’s one way to do it:

my(@words, %count, $word); # (optionally) declare our variables
chomp(@words = <STDIN>);

foreach $word (@words) {
 $count{$word} += 1; # or $count{$word} = $count{$word} + 1;
}

foreach $word (keys %count) { # or sort keys %count
 print "$word was seen $count{$word} times.\n";
}

In this one, we declared all of the variables at the top. People who come to Perl
from a background in languages like Pascal (where variables are always declared
“at the top”) may find that way more familiar than declaring variables as they are
needed. Of course, we’re declaring these because we’re pretending that use
strict may be in effect; by default, Perl won’t require such declarations.

Next, we use the line-input operator, <STDIN>, in a list context to read all of the
input lines into @words, and then we chomp those all at once. So @words is our list of
words from the input (if the words were all on separate lines, as they should have
been, of course).

Now the first foreach loop goes through all the words. That loop contains the most
important statement of the entire program, the statement that says to add one to
$count{$word} and put the result back into $count{$word}. Although you could
write it either the short way (with the += operator) or the long way, the short way
is just a little bit more efficient, since Perl has to look up $word in the hash just
once.§ For each word in the first foreach loop, we add one to $count{$word}. So,
if the first word is fred, we add one to $count{"fred"}. Of course, since this is the
first time we’ve seen $count{"fred"}, it’s undef. But since we’re treating it as a
number (with the numeric += operator, or with + if you wrote it the long way), Perl

§ Also, at least in some versions of Perl, the shorter way will avoid a warning about using an undefined value
that may crop up with the longer one. The warning may also be avoided by using the ++ operator to increment
the variable, although we haven’t shown you that operator yet.

Answers to Exercises | 305

converts undef to 0 for us, automatically. The total is 1, which is then stored back
into $count{"fred"}.

The next time through that foreach loop, let’s say the word is barney. So, we add
1 to $count{"barney"}, bumping it up from undef to 1, as well.

Now let’s say the next word is fred again. When we add 1 to $count{"fred"}, which
is already 1, we get 2. This goes back into $count{"fred"}, meaning that we’ve now
seen fred twice.

When we finish the first foreach loop, then, we’ve counted how many times each
word has appeared. The hash has a key for each (unique) word from the input, and
the corresponding value is the number of times that word appeared.

So now, the second foreach loop goes through the keys of the hash, which are the
unique words from the input. In this loop, we’ll see each different word once. For
each one, it says something like “fred was seen 3 times.”

If you want the extra credit on this problem, you could put sort before keys to
print out the keys in order. If there will be more than a dozen items in an output
list, it’s generally a good idea for them to be sorted so that a human being who is
trying to debug the program will fairly quickly be able to find the item he wants.

3. Here’s one way to do it:

my $longest = 0;
foreach my $key (keys %ENV) {
 my $key_length = length($key);
 $longest = $key_length if $key_length > $longest;
 }

foreach my $key (sort keys %ENV) {
 printf "%-${longest}s %s\n", $key, $ENV{$key};
 }

In the first foreach loop, we go through all of the keys and use length to get their
lengths. If the length we just measured is greater than the one we stored in
$longest, we put the longer value in $longest.

Once we’ve gone through all of the keys, we use printf to print the keys and values
in two columns. We use the same trick we used in Exercise 3 from Chapter 5 by
interpolating $longest into the template string.

Answers to Chapter 7 Exercises
1. Here’s one way to do it:

while (<>) {
 if (/fred/) {
 print;
 }
}

306 | Appendix A: Exercise Answers

This is pretty simple. The more important part of this exercise is trying it out on
the sample strings. It doesn’t match Fred, showing that regular expressions are
case-sensitive. (We’ll see how to change that later.) It does match frederick and
Alfred, since both of those strings contain the four-letter string fred. (Matching
whole words only, so that frederick and Alfred wouldn’t match, is another feature
we’ll see later.)

2. Here’s one way to do it: change the pattern used in the first exercise’s answer
to /[fF]red/. You could also have tried /(f|F)red/ or /fred|Fred/, but the char-
acter class is more efficient.

3. Here’s one way to do it: change the pattern used in the first exercise’s answer
to /\./. The backslash is needed because the dot is a metacharacter, or you could
use a character class: /[.]/.

4. Here’s one way to do it: change the pattern used in the first exercise’s answer
to /[A-Z][a-z]+/.

5. Here’s one way to do it: change the pattern used in the first exercise’s answer
to /(\S)\1/. The \S character class matches the non-whitespace character and the
parentheses allow you to use the back reference \1 to match the same character
immediately following it.

6. Here’s one way to do it:

while (<>) {
 if (/wilma/) {
 if (/fred/) {
 print;
 }
 }
}

This tests /fred/ only after we find /wilma/ matches, but fred could appear before
or after wilma in the line; each test is independent of the other.

If you wanted to avoid the extra nested if test, you might have written something
like this:‖

while (<>) {
 if (/wilma.*fred|fred.*wilma/) {
 print;
 }
}

This works because we’ll either have wilma before fred, or fred before wilma. If we
had written just /wilma.*fred/, that wouldn’t have matched a line like fred and
wilma flintstone, even though that line mentions both of them.

‖ Folks who know about the logical-and operator, which we showed in Chapter 10, could do both tests /
fred/ and /wilma/ in the same if conditional. That’s more efficient, more scalable, and an all-around better
way than the ones given here. But we haven’t seen logical-and yet.

Answers to Exercises | 307

We made this an extra credit exercise because many folks have a mental block here.
We showed you an “or” operation (with the vertical bar, |), but we never showed
you an “and” operation. That’s because there isn’t one in regular expressions.# If
you want to know whether one pattern and another are both successful, just test
both of them.

Answers to Chapter 8 Exercises
1. There’s one easy way to do it, and we showed it back in the chapter body. But if

your output isn’t saying before<match>after as it should, you’ve chosen a hard way
to do it.

2. Here’s one way to do it:

/a\b/

(Of course, that’s a pattern for use inside the pattern test program!) If your pattern
mistakenly matches barney, you probably needed the word-boundary anchor.

3. Here’s one way to do it:

#!/usr/bin/perl
while (<STDIN>) {
 chomp;
 if (/(\b\w*a\b)/) {
 print "Matched: |$`<$&>$'|\n";
 print "\$1 contains '$1'\n"; # The new output line
 } else {
 print "No match: |$_|\n";
 }
}

This is the same test program (with a new pattern), except that the one marked
line has been added to print out $1.

The pattern uses a pair of \b word-boundary anchors* inside the parentheses, al-
though the pattern works the same way when they are placed outside. That’s be-
cause anchors correspond to a place in the string, but not to any characters in the
string: anchors have “zero width.”

4. This exercise answer is the same as the previous exercise with a slightly different
regular expression:

#!/usr/bin/perl

use 5.010;

#But there are some tricky and advanced ways of doing what some folks would call an “and” operation. These
are generally less efficient than using Perl’s logical-and, though, depending upon what optimizations Perl and
its regular expression engine can make.

* Admittedly, the first anchor isn’t really needed, due to details about greediness that we won’t go into here.
But it may help a tiny bit with efficiency, and it certainly helps with clarity—and in the end, that one wins out.

308 | Appendix A: Exercise Answers

while (<STDIN>) {
 chomp;
 if (/(?<word>\b\w*a\b)/) {
 print "Matched: |$`<$&>$'|\n";
 print "'word' contains '$+{word}'\n"; # The new output line
 } else {
 print "No match: |$_|\n";
 }
}

5. Here’s one way to do it:

m!
 (\b\w*a\b) # $1: a word ending in a
 (.{0,5}) # $2: up to five characters following
!xs # /x and /s modifiers

(Don’t forget to add code to display $2, now that you have two memory variables.
If you change the pattern to have just one again, you can simply comment-out the
extra line.) If your pattern doesn’t match just plain wilma anymore, perhaps you
require one or more characters, instead of zero or more. You may have omitted
the /s modifier, since there shouldn’t be newlines in the data. (Of course, if there
are newlines in the data, the /s modifier could make for different output.)

6. Here’s one way to do it:

while (<>) {
 chomp;
 if (/\s\z/) {
 print "$_#\n";
 }
}

We used the pound sign (#) as the marker character.

Answers to Chapter 9 Exercises
1. Here’s one way to do it:

/($what){3}/

Once $what has been interpolated, this gives a pattern resembling /(fred|barney)
{3}/. Without the parentheses, the pattern would be something like /fred|bar
ney{3}/, which is the same as /fred|barneyyy/. So, the parentheses are required.

2. Here’s one way to do it:

my $in = $ARGV[0];
if (! defined $in) {
 die "Usage: $0 filename";
}

my $out = $in;
$out =~ s/(\.\w+)?$/.out/;

Answers to Exercises | 309

if (! open $in_fh, '<', $in) {
 die "Can't open '$in': $!";
}

if (! open $out_fh, '>', $out) {
 die "Can't write '$out': $!";
}

while (<$in_fh>) {
 s/Fred/Larry/gi;
 print $out_fh $_;
}

This program begins by naming its one and only command-line parameter, and
complaining if it didn’t get it. Then it copies that to $out and does a substitution
to change the file extension, if any, to .out. (It would be sufficient, though, to
merely append .out to the filename.)

Once the filehandles IN and OUT are opened, the real program can begin. If you
didn’t use both options /g and /i, take off half a point, since every fred and Fred
should be changed.

3. Here’s one way to do it:

while (<$in_fh>) {
 chomp;
 s/Fred/\n/gi; # Replace all FREDs
 s/Wilma/Fred/gi; # Replace all WILMAs
 s/\n/Wilma/g; # Replace the placeholder
 print $out_fh "$_\n";
}

This replaces the loop from the previous program, of course. To do this kind of a
swap, we need to have some “placeholder” string that doesn’t otherwise appear in
the data. By using chomp (and adding the newline back for the output) we ensure
that a newline (\n) can be the placeholder. (You could choose some other unlikely
string as the placeholder. Another good choice would be the NUL character, \0.)

4. Here’s one way to do it:

$^I = ".bak"; # make backups
while (<>) {
 if (/\A#!/) { # is it the shebang line?
 $_ .= "## Copyright (C) 20XX by Yours Truly\n";
 }
 print;
}

Invoke this program with the filenames you want to update. For example, if you’ve
been naming your exercises ex01-1, ex01-2, and so on, so that they all begin with
ex..., you would use:

./fix_my_copyright ex*

310 | Appendix A: Exercise Answers

5. To keep from adding the copyright twice, we have to make two passes over the
files. First, we make a “set” with a hash where the keys are the filenames and
the values don’t matter (although we’ll use 1 for convenience):

my %do_these;
foreach (@ARGV) {
 $do_these{$_} = 1;
}

Next, we’ll examine the files, and remove from our to-do list any file that already
contains the copyright. The current filename is in $ARGV, so we can use that as the
hash key:

while (<>) {
 if (/\A## Copyright/) {
 delete $do_these{$ARGV};
 }
}

Finally, it’s the same program as before, once we’ve reestablished a reduced list of
names in @ARGV:

@ARGV = sort keys %do_these;
$^I = ".bak"; # make backups
while (<>) {
 if (/\A#!/) { # is it the shebang line?
 $_ .= "## Copyright (c) 20XX by Yours Truly\n";
 }
 print;
}

Answers to Chapter 10 Exercises
1. Here’s one way to do it:

my $secret = int(1 + rand 100);
This next line may be un-commented during debugging
print "Don't tell anyone, but the secret number is $secret.\n";

while (1) {
 print "Please enter a guess from 1 to 100: ";
 chomp(my $guess = <STDIN>);
 if ($guess =~ /quit|exit|\A\s*\z/i) {
 print "Sorry you gave up. The number was $secret.\n";
 last;
 } elsif ($guess < $secret) {
 print "Too small. Try again!\n";
 } elsif ($guess == $secret) {
 print "That was it!\n";
 last;
 } else {
 print "Too large. Try again!\n";
 }
}

Answers to Exercises | 311

The first line picks out our secret number from 1 to 100. Here’s how it works. First,
rand is Perl’s random number function, so rand 100 gives us a random number in
the range from 0 up to (but not including) 100. That is, the largest possible value
of that expression is something like 99.999.† Adding one gives a number from 1 to
100.999, then the int function truncates that, giving a result from 1 to 100, as we
needed.

The commented-out line can be helpful during development and debugging, or if
you like to cheat. The main body of this program is the infinite while loop. That
will keep asking for guesses until we execute last.

It’s important that we test the possible strings before the numbers. If we didn’t, do
you see what would happen when the user types quit? That would be interpreted
as a number (probably giving a warning message, if warnings were turned on), and
since the value as a number would be zero, the poor user would get the message
that his guess was too small. We might never get to the string tests, in that case.

Another way to make the infinite loop here would be to use a naked block with
redo. It’s not more or less efficient; merely another way to write it. Generally, if
you expect to mostly loop, it’s good to write while, since that loops by default. If
looping will be the exception, a naked block may be a better choice.

2. This program is a slight modification to the previous answer. We want to print the
secret number while we are developing the program, so we print the secret number
if the variable $Debug has a true value. The value of $Debug is either the value that
we already set as an environment variable, or 1 by default. By using the // operator,
we won’t set it to 1 unless the $ENV{DEBUG} is undefined:

use 5.010;

my $Debug = $ENV{DEBUG} // 1;

my $secret = int(1 + rand 100);

print "Don't tell anyone, but the secret number is $secret.\n"
 if $Debug;

To do this without features introduced in Perl 5.10, we just have to do a little more
work:

my $Debug = defined $ENV{DEBUG} ? $ENV{DEBUG} : 1;

3. Here’s one way to do it, which steals from the answer to Exercise 3 in Chapter 6.

At the top of the program, we set some environment variables. The keys ZERO and
EMPTY have false but defined values, and the key UNDEFINED has no value.

Later, in the printf argument list, we use the // operator to select the string
(undefined) only when $ENV{$key} is not a defined value:

† The actual largest possible value depends upon your system; see http://www.cpan.org/doc/FMTEYEWTK/
random if you really need to know.

312 | Appendix A: Exercise Answers

http://www.cpan.org/doc/FMTEYEWTK/random
http://www.cpan.org/doc/FMTEYEWTK/random

use 5.010;

$ENV{ZERO} = 0;
$ENV{EMPTY} = '';
$ENV{UNDEFINED} = undef;

my $longest = 0;
foreach my $key (keys %ENV)
 {
 my $key_length = length($key);
 $longest = $key_length if $key_length > $longest;
 }

foreach my $key (sort keys %ENV)
 {
 printf "%-${longest}s %s\n", $key, $ENV{$key} // "(undefined)";
 }

By using // here, we don’t disturb false values such as those in the keys ZERO and
EMPTY.

To do this without Perl 5.10, we use the ternary operator instead:

 printf "%-${longest}s %s\n", $key,
 defined $ENV{$key} ? $ENV{$key} : "(undefined)";

Answer to Chapter 11 Exercises
1. This answer uses a hash reference (which you’ll have to read about in Intermediate

Perl), but we gave you the part to get around that. You don’t have to know how it
all works as long as you know it does work. You can get the job done and learn the
details later.

Here’s one way to do it:

#!/usr/bin/perl

use Module::CoreList;

my %modules = %{ $Module::CoreList::version{5.006} };

print join "\n", keys %modules;

2. Once you install DateTime from CPAN, you just have to create two dates and sub-
tract them from each other. Remember to get the date order correct:

use DateTime;

my $t = localtime;

my $now = DateTime->new(
 year => $t[5] + 1900,
 month => $t[4] + 1,
 day => $t[3],
);

Answer to Exercises | 313

http://oreilly.com/catalog/9780596102067/
http://oreilly.com/catalog/9780596102067/

my $then = DateTime->new(
 year => $ARGV[0],
 month => $ARGV[1],
 day => $ARGV[2],
);

my $duration = $now - $then;

my @units = $duration->in_units(qw(years months days));

printf "%d years, %d months, and %d days\n", @units;

If you use the Time::Piece module, you don’t have to mess around with the oddities
of localtime, such as its offsets for the year and month counting:

use Time::Piece;

my $t = localtime;

my $now = DateTime->new(
 year => $t->year,
 month => $t->mon,
 day => $t->mday,
);

If you want to get more fancy, you can check that the date you entered is actually
in the past (otherwise your duration will be negative, which might not bother you).
The mathematical comparison operators work with dates, too:

if($now < $then) {
 die "You entered a date in the future!\n";
 }

Answers to Chapter 12 Exercises
1. Here’s one way to do it:

foreach my $file (@ARGV) {
 my $attribs = &attributes($file);
 print "'$file' $attribs.\n";
}

sub attributes {
 # report the attributes of a given file
 my $file = shift @_;
 return "does not exist" unless -e $file;

 my @attrib;
 push @attrib, "readable" if -r $file;
 push @attrib, "writable" if -w $file;
 push @attrib, "executable" if -x $file;

314 | Appendix A: Exercise Answers

 return "exists" unless @attrib;
 'is ' . join " and ", @attrib; # return value
}

In this solution, once again it’s convenient to use a subroutine. The main loop
prints one line of attributes for each file, perhaps telling us that 'cereal-killer'
is executable or that 'sasquatch' does not exist.

The subroutine tells us the attributes of the given filename. Of course, if the file
doesn’t even exist, there’s no need for the other tests, so we test for that first. If
there’s no file, we’ll return early.

If the file does exist, we’ll build a list of attributes. (Give yourself extra credit points
if you used the special _ filehandle instead of $file on these tests, to keep from
calling the system separately for each new attribute.) It would be easy to add ad-
ditional tests like the three we show here. But what happens if none of the attributes
is true? Well, if we can’t say anything else, at least we can say that the file exists,
so we do. The unless clause uses the fact that @attrib will be true (in a Boolean
context, which is a special case of a scalar context) if it’s got any elements.

But if we’ve got some attributes, we’ll join them with " and " and put "is " in
front, to make a description like is readable and writable. This isn’t perfect how-
ever; if there are three attributes, it says that the file is readable and writable and
executable, which has too many ands, but we can get away with it. If you wanted
to add more attributes to the ones this program checks for, you should probably
fix it to say something like is readable, writable, executable, and nonempty. If
that matters to you.

Note that if you somehow didn’t put any filenames on the command line, this
produces no output. This makes sense; if you ask for information on zero files, you
should get zero lines of output. But let’s compare that to what the next program
does in a similar case, in the explanation below.

2. Here’s one way to do it:

die "No file names supplied!\n" unless @ARGV;
my $oldest_name = shift @ARGV;
my $oldest_age = -M $oldest_name;

foreach (@ARGV) {
 my $age = -M;
 ($oldest_name, $oldest_age) = ($_, $age)
 if $age > $oldest_age;
}

printf "The oldest file was %s, and it was %.1f days old.\n",
 $oldest_name, $oldest_age;

This one starts right out by complaining if it didn’t get any filenames on the com-
mand line. That’s because it’s supposed to tell us the oldest filename—and there
ain’t one if there aren’t any files to check.

Answers to Exercises | 315

Once again, we’re using the “high-water mark” algorithm. The first file is certainly
the oldest one seen so far. We have to keep track of its age as well so that’s in
$oldest_age.

For each of the remaining files, we’ll determine the age with the -M file test, just as
we did for the first one (except that here, we’ll use the default argument of $_ for
the file test). The last-modified time is generally what people mean by the “age” of
a file, although you could make a case for using a different one. If the age is more
than $oldest_age, we’ll use a list assignment to update both the name and age. We
didn’t have to use a list assignment, but it’s a convenient way to update several
variables at once.

We stored the age from -M into the temporary variable $age. What would have
happened if we had simply used -M each time, rather than using a variable? Well,
first, unless we used the special _ filehandle, we would have been asking the op-
erating system for the age of the file each time, a potentially slow operation (not
that you’d notice unless you have hundreds or thousands of files, and maybe not
even then). More importantly, though, we should consider what would happen if
someone updated a file while we were checking it. That is, first we see the age of
some file, and it’s the oldest one seen so far. But before we can get back to use -M
a second time, someone modifies the file and resets the timestamp to the current
time. Now the age that we save into $oldest_age is actually the youngest age pos-
sible. The result would be that we’d get the oldest file among the files tested from
that point on, rather than the oldest overall; this would be a tough problem to
debug!

Finally, at the end of the program, we use printf to print out the name and age,
with the age rounded off to the nearest tenth of a day. Give yourself extra credit if
you went to the trouble to convert the age to a number of days, hours, and minutes.

3. Here’s one way to do it:

use 5.010;

say "Looking for my files that are readable and writable";

die "No files specified!\n" unless @ARGV;

foreach my $file (@ARGV) {
 say "$file is readable and writable" if -o -r -w $file;
 }

To use stacked file test operators, we need to use Perl 5.10 or later, so we start with
the use statement to ensure that we have the right version of Perl. We die if there
are no elements in @ARGV, and go through them with foreach otherwise.

We have to use three file test operators: -o to check if we own the file, -r to check
that it is readable, and -w to check if it is writable. Stacking them as -o -r -w creates
a composite test that only passes if all three of them are true, which is exactly what
we want.

316 | Appendix A: Exercise Answers

If we wanted to do this with a version before Perl 5.10, it’s just a little more code.
The says become prints with added newlines, and the stacked file tests become
separate tests combined with the && short circuit operator:

print "Looking for my files that are readable and writable\n";

die "No files specified!\n" unless @ARGV;

foreach my $file (@ARGV) {
 print "$file is readable and writable\n"
 if(-w $file && -r _ && -o _);
 }

Answers to Chapter 13 Exercises
1. Here’s one way to do it, with a glob:

print "Which directory? (Default is your home directory) ";
chomp(my $dir = <STDIN>);
if ($dir =~ /\A\s*\Z/) { # A blank line
 chdir or die "Can't chdir to your home directory: $!";
} else {
 chdir $dir or die "Can't chdir to '$dir': $!";
}

my @files = <*>;
foreach (@files) {
 print "$_\n";
}

First, we show a simple prompt, and read the desired directory, chomping it as
needed. (Without a chomp, we’d be trying to head for a directory that ends in a
newline—legal in Unix, and therefore cannot be presumed to simply be extraneous
by the chdir function.)

Then, if the directory name is nonempty, we’ll change to that directory, aborting
on a failure. If empty, the home directory is selected instead.

Finally, a glob on “star” pulls up all the names in the (new) working directory,
automatically sorted in alphabetical order, and they’re printed one at a time.

2. Here’s one way to do it:

print "Which directory? (Default is your home directory) ";
chomp(my $dir = <STDIN>);
if ($dir =~ /\A\s*\Z/) { # A blank line
 chdir or die "Can't chdir to your home directory:
$!";
} else {
 chdir $dir or die "Can't chdir to '$dir': $!";
}

Answers to Exercises | 317

my @files = <.* *>; ## now includes .*
foreach (sort @files) { ## now sorts
 print "$_\n";
}

Two differences from previous one: first, the glob now includes “dot star,” which
matches all the names that do begin with a dot. And second, we now must sort the
resulting list because some of the names that begin with a dot must be interleaved
appropriately, either before or after the list of things, without a beginning dot.

3. Here’s one way to do it:

print 'Which directory? (Default is your home directory) ';
chomp(my $dir = <STDIN>);
if ($dir =~ /\A\s*\Z/) { # A blank line
 chdir or die "Can't chdir to your home directory:
$!";
} else {
 chdir $dir or die "Can't chdir to '$dir': $!";
}

opendir DOT, "." or die "Can't opendir dot: $!";
foreach (sort readdir DOT) {
 # next if /\A\./; ## if we were skipping dot files
 print "$_\n";
}

Again, same structure as the previous two programs, but now we’ve chosen to open
a directory handle. Once we’ve changed the working directory, we want to open
the current directory, and we’ve shown that as the DOT directory handle.

Why DOT? Well, if the user asks for an absolute directory name, like /etc, there’s
no problem opening it. But if the name is relative, like fred, let’s see what would
happen. First, we chdir to fred, and then we want to use opendir to open it. But
that would open fred in the new directory, not fred in the original directory. The
only name we can be sure will mean “the current directory” is “.”, which always
has that meaning (on Unix and similar systems, at least).

The readdir function pulls up all the names of the directory, which are then sorted
and displayed. If we had done the first exercise this way, we would have skipped
over the dot files—and that’s handled by uncommenting the commented-out line
in the foreach loop.

You may find yourself asking, “Why did we chdir first? You can use readdir and
friends on any directory, not merely on the current directory.” Primarily, we wanted
to give the user the convenience of being able to get to her home directory with a
single keystroke. But this could be the start of a general file-management utility
program; maybe the next step would be to ask the user which of the files in this
directory should be moved to offline tape storage, say.

4. Here’s one way to do it:

unlink @ARGV;

318 | Appendix A: Exercise Answers

…or, if you want to warn the user of any problems:

foreach (@ARGV) {
 unlink $_ or warn "Can't unlink '$_': $!, continuing...\n";
}

Here, each item from the command-invocation line is placed individually into $_,
which is then used as the argument to unlink. If something goes wrong, the warning
gives a clue about why.

5. Here’s one way to do it:

use File::Basename;
use File::Spec;

my($source, $dest) = @ARGV;

if (-d $dest) {
 my $basename = basename $source;
 $dest = File::Spec->catfile($dest, $basename);
}

rename $source, $dest
 or die "Can't rename '$source' to '$dest': $!\n";

The workhorse in this program is the last statement, but the remainder of the
program is necessary when we are renaming into a directory. First, after declaring
the modules we’re using, we name the command-line arguments sensibly. If
$dest is a directory, we need to extract the basename from the $source name and
append it to the directory ($dest). Finally, once $dest is patched up if needed, the
rename does the deed.

6. Here’s one way to do it:

use File::Basename;
use File::Spec;

my($source, $dest) = @ARGV;

if (-d $dest) {
 my $basename = basename $source;
 $dest = File::Spec->catfile($dest, $basename);
}

link $source, $dest
 or die "Can't link '$source' to '$dest': $!\n";

As the hint in the exercise description said, this program is much like the previous
one. The difference is that we’ll link rather than rename. If your system doesn’t
support hard links, you might have written this as the last statement:

print "Would link '$source' to '$dest'.\n";

Answers to Exercises | 319

7. Here’s one way to do it:

use File::Basename;
use File::Spec;

my $symlink = $ARGV[0] eq '-s';
shift @ARGV if $symlink;

my($source, $dest) = @ARGV;
if (-d $dest) {
 my $basename = basename $source;
 $dest = File::Spec->catfile($dest, $basename);
}

if ($symlink) {
 symlink $source, $dest
 or die "Can't make soft link from '$source' to '$dest': $!\n";
} else {
 link $source, $dest
 or die "Can't make hard link from '$source' to '$dest': $!\n";
}

The first few lines of code (after the two use declarations) look at the first command-
line argument, and if it’s -s, we’re making a symbolic link, so we note that as a true
value for $symlink. If we saw that -s, we then need to get rid of it (in the next line).
The next few lines are cut-and-pasted from the previous exercise answers. Finally,
based on the truth of $symlink, we’ll choose either to create a symbolic link or a
hard link. We also updated the dying words to make it clear which kind of link we
were attempting.

8. Here’s one way to do it:

foreach (glob('.* *')) {
 my $dest = readlink $_;
 print "$_ -> $dest\n" if defined $dest;
}

Each item resulting from the glob ends up in $_ one by one. If the item is a symbolic
link, then readlink returns a defined value, and the location is displayed. If not,
the condition fails and we skip over it.

Answers to Chapter 14 Exercises
1. Here’s one way to do it:

my @numbers;
push @numbers, split while <>;
foreach (sort { $a <=> $b } @numbers) {
 printf "%20g\n", $_;
}

That second line of code is too confusing, isn’t it? Well, we did that on purpose.
Although we recommend that you write clear code, some people like writing code

320 | Appendix A: Exercise Answers

that’s as hard to understand as possible,‡ so we want you to be prepared for the
worst. Someday, you’ll need to maintain confusing code like this.

Since that line uses the while modifier, it’s the same as if it were written in a loop
like this:

while (<>) {
 push @numbers, split;
}

That’s better, but maybe it’s still a little unclear. (Nevertheless, we don’t have a
quibble about writing it this way. This one is on the correct side of the “too hard
to understand at a glance” line.) The while loop is reading the input one line at a
time (from the user’s choice of input sources, as shown by the diamond operator),
and split is, by default, splitting that on whitespace to make a list of words—or
in this case, a list of numbers. The input is just a stream of numbers separated by
whitespace, after all. Either way you write it, then, that while loop will put all of
the numbers from the input into @numbers.

The foreach loop takes the sorted list and prints each one on its own line, using
the %20g numeric format to put them in a right-justified column. You could have
used %20s instead. What difference would that make? Well, that’s a string format,
so it would have left the strings untouched in the output. Did you notice that our
sample data included both 1.50 and 1.5, and both 04 and 4? If you printed those
as strings, the extra zero characters will still be in the output; but %20g is a numeric
format, so equal numbers will appear identically in the output. Either format could
potentially be correct, depending upon what you’re trying to do.

2. Here’s one way to do it:

don't forget to incorporate the hash %last_name,
either from the exercise text or the downloaded file

my @keys = sort {
 "\L$last_name{$a}" cmp "\L$last_name{$b}" # by last name
 or
 "\L$a" cmp "\L$b" # by first name
} keys %last_name;

foreach (@keys) {
 print "$last_name{$_}, $_\n"; # Rubble,Bamm-Bamm
}

There’s not much to say about this one; we put the keys in order as needed, then
print them out. We chose to print them in last-name-comma-first-name order just
for fun; the exercise description left that up to you.

‡ Well, we don’t recommend it for normal coding purposes, but it can be a fun game to write confusing code,
and it can be educational to take someone else’s obfuscated code examples and spend a weekend or two
figuring out just what they do. If you want to see some fun snippets of such code and maybe get a little help
with decoding them, ask around at the next Perl Mongers meeting. Or search for JAPHs on the Web, or see
how well you can decipher the obfuscated code block near the end of Chapter 14’s Answers.

Answers to Exercises | 321

3. Here’s one way to do it:

print "Please enter a string: ";
chomp(my $string = <STDIN>);
print "Please enter a substring: ";
chomp(my $sub = <STDIN>);

my @places;

for (my $pos = –1; ;) { # tricky use of three-part for loop
 $pos = index($string, $sub, $pos + 1); # find next position
 last if $pos == –1;
 push @places, $pos;
}

print "Locations of '$sub' in '$string' were: @places\n";

This one starts out simply enough, asking the user for the strings and declaring an
array to hold the list of substring positions. But once again, as we see in the for
loop, the code seems to have been “optimized for cleverness,” which should be
done only for fun, never in production code. But this actually shows a valid tech-
nique, which could be useful in some cases, so let’s see how it works.

The my variable $pos is declared private to the scope of the for loop, and it starts
with a value of –1. So as not to keep you in suspense about this variable, we’ll tell
you right now that it’s going to hold a position of the substring in the larger string.
The test and increment sections of the for loop are empty, so this is an infinite
loop. (Of course, we’ll eventually break out of it, in this case with last).

The first statement of the loop body looks for the first occurrence of the substring
at or after position $pos + 1. That means that on the first iteration, when $pos is
still –1, the search will start at position 0, the start of the string. The location of the
substring is stored back into $pos. Now, if that was –1, we’re done with the for
loop, so last breaks out of the loop in that case. If it wasn’t –1, then we save the
position into @places and go around the loop again. This time, $pos + 1 means
that we’ll start looking for the substring just after the previous place where we
found it. And so we get the answers we wanted and the world is once again a happy
place.

If you didn’t want that tricky use of the for loop, you could accomplish the same
result as shown here:

{
 my $pos = –1;
 while (1) {
 ... # Same loop body as the for loop used above
 }
}

The naked block on the outside restricts the scope of $pos. You don’t have to do
that, but it’s often a good idea to declare each variable in the smallest possible
scope. This means we have fewer variables “alive” at any given point in the

322 | Appendix A: Exercise Answers

program, making it less likely that we’ll accidentally reuse the name $pos for some
new purpose. For the same reason, if you don’t declare a variable in a small scope,
you should generally give it a longer name that’s thereby less likely to be reused by
accident. Maybe something like $substring_position would be appropriate in this
case.

On the other hand, if you were trying to obfuscate your code (shame on you!), you
could create a monster like this (shame on us!):

for (my $pos = –1; –1 !=
 ($pos = index
 +$string,
 +$sub,
 +$pos
 +1
);
push @places, ((((+$pos))))) {
 'for ($pos != 1; # ;$pos++) {
 print "position $pos\n";#;';#' } pop @places;
}

That even trickier code works in place of the original tricky for loop. By now, you
should know enough to be able to decipher that one on your own, or to obfuscate
code in order to amaze your friends and confound your enemies. Be sure to use
these powers only for good, never for evil.

Oh, and what did you get when you searched for t in This is a test.? It’s at
positions 10 and 13. It’s not at position 0; since the capitalization doesn’t match,
the substring doesn’t match.

Answers to Chapter 15 Exercises
1. Here’s one way to rewrite the number guessing program from Chapter 10. We

don’t have to use a smart match, but we do use given:

use 5.010;

my $Verbose = $ENV{VERBOSE} // 1;

my $secret = int(1 + rand 100);

print "Don't tell anyone, but the secret number is $secret.\n"
 if $Verbose;

LOOP: {

 print "Please enter a guess from 1 to 100: ";
 chomp(my $guess = <STDIN>);

 my $found_it = 0;

Answers to Exercises | 323

 given($guess) {
 when(! /\A\d+\Z/) { say "Not a number!" }
 when($_ > $secret) { say "Too High!" }
 when($_ < $secret) { say "Too low!" }
 default { say "Just right!"; $found_it++ }
 }

 last LOOP if $found_it;
 redo LOOP;

}

In the first when, we check that we have a number before we go any further. If there
are nondigits, or even just the empty string, we head off any warnings in the nu-
meric comparisons.

Notice that we don’t put the last inside the default block. We actually did that
first, but it causes a warning with Perl 5.10.0 (but maybe that warning will go away
in future versions).

2. Here’s one way to do it:

use 5.010;

for (1 .. 105) {
 my $what = '';
 given ($_) {
 when (not $_ % 3) { $what .= ' Fizz'; continue }
 when (not $_ % 5) { $what .= ' Buzz'; continue }
 when (not $_ % 7) { $what .= ' Sausage' }
 }
 say "$_$what";
}

3. Here’s one way to do it:

use 5.010;

for(@ARGV)
 {
 say "Processing $_";

 when(! -e) { say "\tFile does not exist!" }
 when(-r _) { say "\tReadable!"; continue }
 when(-w _) { say "\tWritable!"; continue }
 when(-x _) { say "\tExecutable!"; continue }
 }

We don’t have to use the given because we can put the when directly in the for
block. First, we check that the file exists, or, actually, that the file does not exist.
If we execute that first when block, we’ll report that the file does not exist and rely
on the implicit break to keep us from going through the rest of the when tests.

In the second when, we test that the file is readable using -r. We also use the special,
virtual filehandle _ that uses the cached information from the last file stat (which

324 | Appendix A: Exercise Answers

is how the file tests get their information). You could have left off the _, and the
program would run the same but do a little more work. At the end of that when
block we use continue, so we try the next when too.

4. Here’s one way to do it with given and smart matching:

use 5.010;

say "Checking the number <$ARGV[0]>";

given($ARGV[0]) {
 when(! /\A\d+\Z/) { say "Not a number!" }

 my @divisors = divisors($_);

 my @empty;
 when(@divisors ~~ @empty) { say "Number is prime" }

 default { say "$_ is divisible by @divisors" }
 }

sub divisors {
 my $number = shift;

 my @divisors = ();
 foreach my $divisor (2 .. $number/2) {
 push @divisors, $divisor unless $number % $divisor;
 }

 return @divisors;
 }

We first report which number we’re working with. It’s always good to let ourselves
know that the program is running. We put the $ARGV[0] in angle brackets to set it
apart from the rest of the string.

In given, we have a couple when blocks, with some other statements around them.
The first when checks that we have a number by trying a regular expression to match
only digits. If that regular expression fails, we want to run that block of code to
say, “Not a number!” That when has an implicit break that stops the given structure.
If we get past that point, we’ll call divisors(). We could have done this outside
the given, but if we didn’t have a number, perhaps “Fred,” Perl would have issued
a warning. Our way avoids the warning by using the when as a guard condition.

Once we have the divisors, we want to know if there is anything in the @divisors
array. We could just use the array in scalar context to get the number of elements,
but we have to use smart matching. We know that if we compare two arrays, they
must have the same elements in the same order. We create an empty array,
@empty, that has nothing in it. When we compare that to @divisors, the smart match
only succeeds if there were no divisors. If that is true, we’ll run the when block,
which also has an implicit break.

Answers to Exercises | 325

Finally, if the number is not prime, we run the default block, which reports the
list of divisors.

Here’s a bit of a bonus that we shouldn’t really talk about in Learning Perl because
we don’t talk about references until Intermediate Perl. We did extra work to check
if @divisors is empty by creating an empty named array to compare it to. We could
do this with an anonymous array and skip the extra step:

when(@divisors ~~ []) { ... }

5. Here’s one way to do it, based on the answer to the previous exercise:

use 5.010;

say "Checking the number <$ARGV[0]>";

my $favorite = 42;

given($ARGV[0]) {
 when(! /\A\d+\Z/) { say "Not a number!" }

 my @divisors = divisors($ARGV[0]);

 when(@divisors ~~ 2) { # 2 is in @divisors
 say "$_ is even";
 continue;
 }

 when(!(@divisors ~~ 2)) { # 2 isn't in @divisors
 say "$_ is odd";
 continue;
 }

 when(@divisors ~~ $favorite) {
 say "$_ is divisible by my favorite number";
 continue;
 }

 when($favorite) { # $_ ~~ $favorite
 say "$_ is my favorite number";
 continue;
 }

 my @empty;
 when(@divisors ~~ @empty) { say "Number is prime" }

 default { say "$_ is divisible by @divisors" }
 }

sub divisors {
 my $number = shift;

 my @divisors = ();
 foreach my $divisor (2 .. ($ARGV[0]/2 + 1)) {
 push @divisors, $divisor unless $number % $divisor;
 }

326 | Appendix A: Exercise Answers

http://oreilly.com/catalog/9780596102067/

 return @divisors;
 }

This extension of the previous exercise adds more when blocks to handle the addi-
tional reporting situations. Once we have @divisors, we use the smart match op-
erator to see what’s in it. If 2 is in @divisors, it’s an even number. We report that
and use an explicit continue so given tries the next when too. For odd numbers, we
do the same smart match but negate the result. To see if our favorite number is in
@divisors, we do the same thing. We can even check if the number is exactly our
favorite number.

Answers to Chapter 16 Exercises
1. Here’s one way to do it:

chdir '/' or die "Can't chdir to root directory: $!";
exec 'ls', '-l' or die "Can't exec ls: $!";

The first line changes the current working directory to the root directory, as our
particular hardcoded directory. The second line uses the multiple-argument exec
function to send the result to standard output. We could have used the single-
argument form just as well, but it doesn’t hurt to do it this way.

2. Here’s one way to do it:

open STDOUT, '>', 'ls.out' or die "Can't write to ls.out: $!";
open STDERR, '>', 'ls.err' or die "Can't write to ls.err: $!";
chdir '/' or die "Can't chdir to root directory: $!";
exec 'ls', '-l' or die "Can't exec ls: $!";

The first and second lines reopen STDOUT and STDERR to a file in the current directory
(before we change directories). Then, after the directory change, the directory list-
ing command executes, sending the data back to the files opened in the original
directory.

Where would the message from the last die go? Why, it would go into ls.err, of
course, since that’s where STDERR is going at that point. The die from chdir would
go there, too. But where would the message go if we can’t reopen STDERR on the
second line? It goes to the old STDERR. When reopening the three standard filehan-
dles (STDIN, STDOUT, and STDERR), the old filehandles are still open.

3. Here’s one way to do it:

if (`date` =~ /\AS/) {
 print "go play!\n";
} else {
 print "get to work!\n";
}

Well, since both Saturday and Sunday start with an S, and the day of the week is
the first part of the output of the date command, this is pretty simple. Just check

Answers to Exercises | 327

the output of the date command to see if it starts with S. There are many harder
ways to do this program, and we’ve seen most of them in our classes.

If we had to use this in a real-world program, though, we’d probably use the pat-
tern /\A(Sat|Sun)/. It’s a tiny bit less efficient, but that hardly matters; besides, it’s
so much easier for the maintenance programmer to understand.

4. To catch some signals, we set up signal handlers. Just with the techniques we show
in this book, we have a bit of repetitive work to do. In each handler subroutine,
we set up a state variable so we can count the number of times we call that sub-
routine. We use a foreach loop to then assign the right subroutine name to the
appropriate key in %SIG. At the end, we create an infinite loop so the program runs
indefinitely:

use 5.010;

sub my_hup_handler { state $n; say 'Caught HUP: ', ++$n }
sub my_usr1_handler { state $n; say 'Caught USR1: ', ++$n }
sub my_usr2_handler { state $n; say 'Caught USR2: ', ++$n }
sub my_usr2_handler { say 'Caught INT. Exiting.'; exit }

say "I am $$";

foreach my $signal (qw(int hup usr1 usr2)) {
 $SIG{ uc $signal } = "my_${signal}_handler";
 }

while(1) { sleep 1 };

We need another terminal session to run a program to send the signals:

$ kill -HUP 61203
$ perl -e 'kill HUP => 61203'
$ perl -e 'kill USR2 => 61203'

The output shows the running count of signals as we catch them:

$ perl signal_catcher
I am 61203
Caught HUP: 1
Caught HUP: 2
Caught USR2: 1
Caught HUP: 3
Caught USR2: 2
Caught INT. Exiting.

Answer to Chapter 17 Exercises
1. Here’s one way to do it:

my $filename = 'path/to/sample_text';
open my $fh, '<', $filename
 or die "Can't open '$filename': $!";
chomp(my @strings = <FILE>);

328 | Appendix A: Exercise Answers

while (1) {
 print 'Please enter a pattern: ';
 chomp(my $pattern = <STDIN>);
 last if $pattern =~ /\A\s*\Z/;
 my @matches = eval {
 grep /$pattern/, @strings;
 };
 if ($@) {
 print "Error: $@";
 } else {
 my $count = @matches;
 print "There were $count matching strings:\n",
 map "$_\n", @matches;
 }
 print "\n";
}

This one uses an eval block to trap any failure that might occur when using the
regular expression. Inside that block, a grep pulls the matching strings from the
list of strings.

Once the eval is finished, we can report either the error message or the matching
strings. Note that we “unchomped” the strings for output by using map to add a
newline to each string.

2. This program is simple. There are many ways that we can get a list of files, but
since we only care about the ones in the current working directory we can just use
a glob. We use foreach to put each filename in the default variable $_ since we
know that stat uses that variable by default. We surround the entire stat before
we perform the slice:

foreach (glob('*')) {
 my($atime, $mtime) = (stat)[8,9];
 printf "%-20s %10d %10d\n", $_, $atime, $mtime;
 }

We know to use the indices 8 and 9 because we look at the documentation for
stat. The documentation writers have been quite kind to us by showing us a table
that maps the index of the list item to what it does so we don’t have to count over
ourselves.

If we don’t want to use $_, we can use our own control variable:

foreach my $file (glob('*')) {
 my($atime, $mtime) = (stat $file)[8,9];
 printf "%-20s %10d %10d\n", $file, $atime, $mtime;
 }

3. This solution builds on the previous one. The trick now is to use localtime to turn
the epoch times into date strings in the form YYYY-MM-DD. Before we integrate
that into the full program, let’s look at how we would do that, assuming that the
time is in $_ (which is the map control variable).

Answer to Exercises | 329

We get the indices for the slice from the localtime documentation:

my($year, $month, $day) = (localtime)[5,4,3];

We note that localtime returns the year minus 1900 and the month minus 1 (at
least minus 1 how we humans count), so we have to adjust that:

$year += 1900; $month += 1;

Finally, we can put it all together to get the format that we want, padding the month
and day with zeros if necessary:

sprintf '%4d-%02d-%02d', $year, $month, $day;

To apply this to a list of times, we use a map. Note that localtime is one of the
operators that doesn’t use $_ by default, so you have to supply it as an argument
explicitly:

my @times = map {
 my($year, $month, $day) = (localtime($_))[5,4,3];
 $year += 1900; $month += 1;
 sprintf '%4d-%02d-%02d', $year, $month, $day;
 } @epoch_times;

This, then, is what we have to substitute in our stat line in the previous program,
finally ending up with:

foreach my $file (glob('*')) {
 my($atime, $mtime) = map {
 my($year, $month, $day) = (localtime($_))[5,4,3];
 $year += 1900; $month += 1;
 sprintf '%4d-%02d-%02d', $year, $month, $day;
 } (stat $file)[8,9];

 printf "%-20s %10s %10s\n", $file, $atime, $mtime;
 }

Most of the point of this exercise was to use the particular techniques we covered
in Chapter 17. There’s another way to do this though, and it’s much easier. The
POSIX module, which comes with Perl, has a strftime subroutine the takes a
sprintf-style format string and the time components in the same order that local
time returns them. That makes the map much simpler:

use POSIX qw(strftime);

foreach my $file (glob('*')) {
 my($atime, $mtime) = map {
 strftime('%Y-%m-%d', localtime($_));
 } (stat $file)[8,9];

 printf "%-20s %10s %10s\n", $file, $atime, $mtime;
 }

330 | Appendix A: Exercise Answers

APPENDIX B

Beyond the Llama

We’ve covered a lot in this book, but there’s even more. In this appendix, we’ll tell you
about a little more of what Perl can do, and give some references on where to learn the
details. Some of what we mention here is on the bleeding edge and may have changed
by the time that you’re reading this book, which is one reason why we frequently send
you to the documentation for the full story. We don’t expect many readers to read every
word of this appendix, but we hope you’ll at least skim the headings so that you’ll be
prepared to fight back when someone tells you, “You just can’t use Perl for project X
because Perl can’t do Y.”

The most important thing to keep in mind (so that we’re not repeating it in every
paragraph) is that the most important part of what we’re not covering here is covered
in Intermediate Perl, also known as “the Alpaca.” You should definitely read the Alpaca,
especially if you’ll be writing programs that are longer than 100 lines (either alone, or
with other people). Especially if you’re tired of hearing about Fred and Barney, and
want to move on to another fictional universe, featuring seven people* who got to spend
a lot of time on an isolated island after a cruise!

After the Alpaca, you’ll be ready to move on to Mastering Perl, also know as “the
Vicunas.” It covers the everyday tasks that you’ll want to do while programming Perl,
such as benchmarking and profiling, program configuration, and logging. It also goes
through the work you’ll need to do to deal with code written by other people and how
to integrate that into your own applications.

There are many other good books to explore. Depending on your version of Perl, look
in either perlfaq2 or perlbook for many recommendations, especially before you spend
your money on a book that might be rubbish or out of date.

* Call them “Castaways.”

331

http://oreilly.com/catalog/9780596102067/
http://oreilly.com/catalog/9780596527242/
http://perldoc.perl.org/perlfaq2.html
http://perldoc.perl.org/perlbook.html

Further Documentation
The documentation that comes with Perl may seem overwhelming at first. Fortunately,
you can use your computer to search for keywords in the documentation. When
searching for a particular topic, it’s often good to start with the perltoc (table of
contents) and perlfaq (frequently asked questions) sections. On most systems, the
perldoc command should be able to track down the documentation for Perl, installed
modules, and related programs (including perldoc itself). You can read the same doc-
umentation online at http://perldoc.perl.org, although that is always for the latest ver-
sion of Perl.

Regular Expressions
Yes, there’s even more about regular expressions than we mentioned. Mastering Reg-
ular Expressions by Jeffrey Friedl is one of the best technical books we’ve ever read.†

It’s half about regular expressions in general, and half about Perl’s regular expressions,
which many other languages incorporate as Perl-Compatible Regular Expressions
(PCRE). It goes into great detail about how the regular expression engine works inter-
nally, and why one way of writing a pattern may be much more efficient than another.
Anyone who is serious about Perl should read this book. Also see the perlre documen-
tation (and its companion perlretut and perlrequick in newer versions of Perl). And,
there’s more about regular expressions in the Alpaca and Mastering Perl as well.

Packages
Packages‡ allow you to compartmentalize namespaces. Imagine that you have 10 pro-
grammers all working on one big project. If someone uses the global names $fred,
@barney, %betty, and &wilma in their part of the project, what happens when you acci-
dentally use one of those same names in your part? Packages let you keep them separate;
I can access your $fred, and you can access mine, but not by accident. You need pack-
ages to make Perl scalable so that you can manage large programs. We cover packages
in great detail in the Alpaca.

† And we’re not just saying that because it’s also published by O’Reilly Media, Inc. It’s really a superior book.

‡ The name “package” is perhaps an unfortunate choice, in that it makes many people think of a packaged-up
chunk of code (in Perl, that’s a module or a library). All that a package does is define a namespace (a collection
of global symbol names, like $fred or &wilma). A namespace is not a chunk of code.

332 | Appendix B: Beyond the Llama

http://perldoc.perl.org/perl.html
http://perldoc.perl.org/perlfaq.html
http://perldoc.perl.org
http://oreilly.com/catalog/9780596528126/
http://oreilly.com/catalog/9780596528126/
http://perldoc.perl.org/perlre.html
http://perldoc.perl.org/perlretut.html
http://perldoc.perl.org/perlrequick.html
http://oreilly.com/catalog/9780596527242/

Extending Perl’s Functionality
One of the most common pieces of good advice heard in the Perl discussion forums is
that you shouldn’t reinvent the wheel. Other folks have written code that you can put
to use. The most frequent way to add to what Perl can do is by using a library or module.
Many of these come with Perl, while others are available from CPAN. Of course, you
can even write your own libraries and modules.

Libraries
Many programming languages offer support for libraries much as Perl does. Libraries
are collections of (mostly) subroutines for a given purpose. In modern Perl, though, it’s
more common to use modules than libraries.

Writing Your Own Modules
In the rare case that there’s no module to do what you need, an advanced programmer
can write a new one, either in Perl or in another language (often C). See the perlmod
and perlmodlib documentation for more information. The Alpaca covers how to write,
test, and distribute modules.

Databases
If you’ve got a database, Perl can work with it. This section describes some of the
common types of databases. We’ve already seen the DBI module briefly in Chapter 15.

Direct System Database Access
Perl can directly access some system databases, sometimes with the help of a module.
These are databases like the Windows Registry (which holds machine-level settings),
or the Unix password database (which lists which username corresponds to which
number, and related information), as well as the domain-name database (which lets
you translate an IP number into a machine name, and vice versa).

Flat-File Database Access
If you’d like to access your own flat-file databases from Perl, there are modules to help
you do that (there is seemingly a new one every month or two, so any list here would
be out-of-date).

Databases | 333

http://perldoc.perl.org/perlmod.html
http://perldoc.perl.org/perlmodlib.html

Other Operators and Functions
Yes, there are more operators and functions than we can fit here, from the scalar ..
operator to the scalar , operator, from wantarray to goto(!), from caller to chr. See the
perlop and perlfunc documentations.

Transliteration with tr///
The tr/// operator looks like a regular expression, but it’s really for transliterating one
group of characters into another. It can also efficiently count selected characters. See
the perlop documentation.

Here Documents
Here documents are a useful form of multiline string quoting; see the perldata docu-
mentation.

Mathematics
Perl can do just about any kind of mathematics you can dream up.

Advanced Math Functions
All of the basic mathematical functions (square root, cosine, logarithm, absolute value,
and many others) are available as built-in functions; see the perlfunc documentation
for details. Some others (like tangent or base-10 logarithm) are omitted, but those may
be easily created from the basic ones, or loaded from a simple module that does so.
(See the POSIX module for many common math functions.)

Imaginary and Complex Numbers
Although the core of Perl doesn’t directly support them, there are modules available
for working with complex numbers. These overload the normal operators and func-
tions so that you can still multiply with * and get a square root with sqrt, even when
using complex numbers. See the Math::Complex module.

Large and High-Precision Numbers
You can do math with arbitrarily large numbers with an arbitrary number of digits of
accuracy. For example, you could calculate the factorial of two thousand, or determine
π to ten-thousand digits. See the Math::BigInt and Math::BigFloat modules.

334 | Appendix B: Beyond the Llama

http://perldoc.perl.org/perlop.html
http://perldoc.perl.org/perlfunc.html
http://perldoc.perl.org/perlop.html
http://perldoc.perl.org/perldata.html
http://perldoc.perl.org/perlfunc.html

Lists and Arrays
Perl has a number of features that make it easy to manipulate an entire list or array.

map and grep
In Chapter 16, we mentioned the map and grep list-processing operators. They can do
more than we could include here; see the perlfunc documentation for more information
and examples. And check out the Alpaca for more ways to use map and grep.

Bits and Pieces
You can work with an array of bits (a bitstring) with the vec operator, setting bit
number 123, clearing bit number 456, and checking to see the state of bit 789. Bitstrings
may be of arbitrary size. The vec operator can also work with chunks of other sizes, as
long as the size is a small power of two, so it’s useful if you need to view a string as a
compact array of nybbles, say. See the perlfunc documentation or Mastering Perl.

Formats
Perl’s formats are an easy way to make fixed-format template-driven reports with au-
tomatic page headers. In fact, they are one of the main reasons Larry developed Perl in
the first place, as a Practical Extraction and Report Language. But, alas, they’re limited.
The heartbreak of formats happens when someone discovers that he or she needs a
little more than what formats provide. This usually means ripping out the program’s
entire output section and replacing it with code that doesn’t use formats. Still, if you’re
sure that formats do what you need, all that you’ll need, and all that you’ll ever need,
they are pretty cool. See the perlform documentation.

Networking and IPC
If there’s a way that programs on your machine can talk with others, Perl can probably
do it. This section shows some common ways.

System V IPC
The standard functions for System V IPC (interprocess communication) are all sup-
ported by Perl, so you can use message queues, semaphores, and shared memory. Of
course, an array in Perl isn’t stored in a chunk of memory in the same way§ that an

§ In fact, it would generally be a lie to say that a Perl array is stored in “a chunk of memory” at all, as it’s almost
certainly spread among many separate chunks.

Networking and IPC | 335

http://perldoc.perl.org/perlfunc.html
http://perldoc.perl.org/perlfunc.html
http://oreilly.com/catalog/9780596527242/
http://perldoc.perl.org/perlform.html

array is stored in C, so shared memory can’t share Perl data as-is. But there are modules
that will translate data, so that you can pretend that your Perl data is in shared memory.
See the perlfunc and the perlipc documentation.

Sockets
Perl has full support for TCP/IP sockets, which means that you could write a web server
in Perl, or a web browser, Usenet news server or client, finger daemon or client, FTP
daemon or client, SMTP or POP or SOAP server or client, or either end of pretty much
any other kind of protocol in use on the Internet. You’ll find low-level modules for
these in the Net:: namespace, and many of them come with Perl.

Of course, there’s no need to get into the low-level details yourself; there are modules
available for all of the common protocols. For example, you can make a web server or
client with the LWP module and one or two lines of additional code.‖ The LWP module
(actually, a tightly integrated set of modules, which together implement nearly every-
thing that happens on the Web) is also a great example of high-quality Perl code, if
you’d like to copy from the best. For other protocols, search for a module with the
protocol’s name.

Security
Perl has a number of strong security-related features that can make a program written
in Perl more secure than the corresponding program written in C. Probably the most
important of these is data-flow analysis, better known as taint checking. When this is
enabled, Perl keeps track of which pieces of data seem to have come from the user or
environment (and are therefore untrustworthy). Generally, if any such piece of so-called
“tainted” data is used to affect another process, file, or directory, Perl will prohibit
the operation and abort the program. It’s not perfect, but it’s a powerful way to
prevent some security-related mistakes. There’s more to the story; see the perlsec
documentation.

‖ Although LWP makes it easy to make a simple “web browser” that pulls down a page or image, actually
rendering that to the user is another problem. You can drive an X11 display with Tk or Gtk widgets though,
or use curses to draw on a character terminal. It’s all a matter of downloading and installing the right modules
from CPAN.

336 | Appendix B: Beyond the Llama

http://perldoc.perl.org/perlfunc.html
http://perldoc.perl.org/perlipc.html
http://perldoc.perl.org/perlsec.html

Debugging
There’s a very good debugger that comes with Perl and supports breakpoints, watch-
points, single-stepping, and generally everything you’d want in a command-line Perl
debugger. It’s actually written in Perl (so, if there are bugs in the debugger, we’re
not sure how they get those out). But that means that, in addition to all of the usual
debugger commands, you can actually run Perl code from the debugger—calling your
subroutines, changing variables, even redefining subroutines—while your program is
running. See the perldebug documentation for the latest details. The Alpaca gives a
detailed walkthrough of the debugger.

Another debugging tactic is to use the B::Lint module, which can warn you about
potential problems that even the -w switch misses.

Command-Line Options
There are many different command-line options available in Perl; many let you write
useful programs directly from the command line. See the perlrun documentation.

Built-in Variables
Perl has dozens of built-in variables (like @ARGV and $0), which provide useful informa-
tion or control the operation of Perl itself. See the perlvar documentation.

Syntax Extensions
There are more tricks you could do with Perl syntax, including the continue block and
the BEGIN block. See the perlsyn and perlmod documentation.

References
Perl’s references are similar to C’s pointers, but in operation, they’re more like what
you have in Pascal or Ada. A reference “points” to a memory location, but because
there’s no pointer arithmetic or direct memory allocation and deallocation, you can be
sure that any reference you have is a valid one. References allow object-oriented pro-
gramming and complex data structures, among other nifty tricks. See the perlreftut and
perlref documentation. The Alpaca covers references in great detail.

References | 337

http://perldoc.perl.org/perldebug.html
http://perldoc.perl.org/perlrun.html
http://perldoc.perl.org/perlvar.html
http://perldoc.perl.org/perlsyn.html
http://perldoc.perl.org/perlmod.html
http://perldoc.perl.org/perlreftut.html
http://perldoc.perl.org/perlref.html

Complex Data Structures
References allow us to make complex data structures in Perl. For example, suppose
you want a two-dimensional array. You can do that,# or you can do something much
more interesting, like have an array of hashes, a hash of hashes, or a hash of arrays of
hashes.* See the perldsc (data-structures cookbook) and perllol (lists of lists) documen-
tation. Again, the Alpaca covers this quite thoroughly, including techniques for com-
plex data manipulation, like sorting and summarizing.

Object-Oriented Programming
Yes, Perl has objects; it’s buzzword-compatible with all of those other languages. Ob-
ject-oriented (OO) programming lets you create your own user-defined datatypes with
associated abilities, using inheritance, overriding, and dynamic method lookup.† Un-
like some object-oriented languages, though, Perl doesn’t force you to use objects.

If your program is going to be larger than N lines of code, it may be more efficient for
the programmer (if a tiny bit slower at runtime) to make it object-oriented. No one
knows the precise value of N, but we estimate it’s around a few thousand or so. See the
perlobj and perlboot documentations for a start, and Damian Conway’s excellent
Object-Oriented Perl (Manning Press) for more advanced information. The Alpaca
book covers objects thoroughly as well.

As we write this, the Moose meta-object system is very popular in Perl. It sits atop the
bare-metal Perl objects to provide a much nicer interface.

Anonymous Subroutines and Closures
Odd as it may sound at first, it can be useful to have a subroutine without a name. Such
subroutines can be passed as parameters to other subroutines, or they can be accessed
via arrays or hashes to make jump tables. Closures are a powerful concept that comes
to Perl from the world of Lisp. A closure is (roughly speaking) an anonymous subroutine
with its own private data. Again, we cover these in the Alpaca book and in Mastering
Perl.

#Well, not really, but you can fake it so well that you’ll hardly remember that there’s a difference.

* Actually, you can’t make any of these things; these are just verbal shorthands for what’s really happening.
What we call “an array of arrays” in Perl is really an array of references to arrays.

† OO has its own set of jargon words. In fact, the terms used in any one OO language aren’t even the same
ones that are typically used in another.

338 | Appendix B: Beyond the Llama

http://perldoc.perl.org/perldsc.html
http://perldoc.perl.org/perllol.html
http://perldoc.perl.org/perlobj.html
http://perldoc.perl.org/perlboot.html
http://oreilly.com/catalog/9780596527242/
http://oreilly.com/catalog/9780596527242/

Tied Variables
A tied variable may be accessed like any other, but using your own code behind the
scenes. So you could make a scalar that is really stored on a remote machine, or an
array that always stays sorted. See the perltie documentation or Mastering Perl.

Operator Overloading
You can redefine operators like addition, concatenation, comparison, or even the im-
plicit string-to-number conversion with the overload module. This is how a module
implementing complex numbers (for example) can let you multiply a complex number
by 8 to get a complex number as a result.

Dynamic Loading
The basic idea of dynamic loading is that your program decides at runtime that it needs
more functionality than what’s currently available, so it loads it up and keeps running.
You can always dynamically load Perl code, but it’s even more interesting to dynami-
cally load a binary extension.‡ This is how you make non-Perl modules.

Embedding
The reverse of dynamic loading (in a sense) is embedding.

Suppose you want to make a really cool word processor, and you start writing it in (say)
C++.§ Now, you decide you want the users to be able to use Perl’s regular expressions
for an extra powerful search-and-replace feature, so you embed Perl into your program.
Then you realize that you could open up some of the power of Perl to your users. A
power user could write a subroutine in Perl that could become a menu item in your
program. Users can customize the operation of your word processor by writing a little
Perl. Now you open up a little space on your website where users can share and ex-
change these Perl snippets, and you’ve got thousands of new programmers extending
what your program can do at no extra cost to your company. And how much do you
have to pay Larry for all this? Nothing—see the licenses that came with Perl. Larry is a
really nice guy. You should at least send him a thank-you note.

‡ Dynamic loading of binary extensions is generally available if your system supports that. If it doesn’t, you
can compile the extensions statically—that is, you can make a Perl binary with the extension built-in, ready
for use.

§ That’s probably the language we’d use for writing a word processor. Hey, we love Perl, but we didn’t swear
an oath in blood to use no other language. When language X is the best choice, use language X. But often, X
equals Perl.

Embedding | 339

http://perldoc.perl.org/perltie.html
http://oreilly.com/catalog/9780596527242/

Although we don’t know of such a word processor, some folks have already used this
technique to make other powerful programs. One such example is Apache’s
mod_perl, which embeds Perl into an already powerful web server. If you’re thinking
about embedding Perl, you should check out mod_perl; since it’s all open source, you
can see how it works.

Converting Other Languages to Perl
If you’ve got old sed and awk programs that you wish were written in Perl, you’re in
luck. Not only can Perl do everything that those can do, there’s also a conversion pro-
gram available, and it’s probably already installed on your system. Check the docu-
mentation for s2p (for converting from sed) or a2p (for converting from awk).‖ Since
programs don’t write programs as well as people do, the results won’t necessarily be
the best Perl—but it’s a start, and it’s easy to tweak. The translated program may be
faster or slower than the original, too. But after you’ve fixed up any gross inefficiencies
in the machine-written Perl code, it should be comparable.

Do you have C algorithms you want to use from Perl? Well, you’ve still got some luck
on your side; it’s not too hard to put C code into a compiled module that can be used
from Perl. In fact, any language that compiles to make object code can generally be
used to make a module. See the perlxs documentation, and the Inline module, as well
as the SWIG system.

Do you have a shell script that you want to convert to Perl? Your luck just ran out.
There’s no automatic way to convert shell to Perl. That’s because the shell hardly does
anything by itself; it spends all of its time running other programs. Sure, we could make
a program that would mostly just call system for each line of the shell, but that would
be much slower than just letting the shell do things in the first place. It really takes a
human level of intelligence to see how the shell’s use of cut, rm, sed, awk, and grep can
be turned into efficient Perl code. It’s better to rewrite the shell script from scratch.

Converting find Command Lines to Perl
A common task for a system administrator is to recursively search the directory tree for
certain items. On Unix, this is typically done with the find command. We can do that
directly from Perl, too.

The find2perl command, which comes with Perl, takes the same arguments that find
does. Instead of finding the requested items, however, the output of find2perl is a Perl
program that finds them. Since it’s a program, you can edit it for your own needs. (The
program is written in a somewhat odd style.)

‖ If you’re using gawk or nawk or some other variant, a2p may not be able to convert it. Both of these conversion
programs were written long ago and have had few updates except when needed to keep working with new
releases of Perl.

340 | Appendix B: Beyond the Llama

http://perldoc.perl.org/perlxs.html

One useful argument that’s available in find2perl but not in the standard find is the
-eval option. This says that what follows it is actual Perl code that should be run each
time that a file is found. When it’s run, the current directory will be the directory in
which some item is found, and $_ will contain the item’s name.

Here’s an example of how you might use find2perl. Suppose that you’re a system ad-
ministrator on a Unix machine, and you want to find and remove all of the old files in
the /tmp directory.# Here’s the command that writes the program to do that:

$ find2perl /tmp -atime +14 -eval unlink >Perl-program

That command says to search in /tmp (and recursively in subdirectories) for items whose
atime (last access time) is at least 14 days ago. For each item, the program should run
the Perl code unlink, which will use $_ by default as the name of a file to remove. The
output (redirected to go into the file Perl-program) is the program that does all of this.
Now you merely need to arrange for it to be run as needed.

Command-Line Options in Your Programs
If you’d like to make programs that take command-line options (like Perl’s own -w for
warnings, for example), there are modules that let you do this in a standard way. See
the documentation for the Getopt::Long and Getopt::Std modules.

Embedded Documentation
Perl’s own documentation is written in pod (plain-old documentation) format. You can
embed this documentation in your own programs, and it can then be translated to text,
HTML, or many other formats as needed. See the perlpod documentation. The Alpaca
book covers this, too.

More Ways to Open Filehandles
There are other modes to use in opening a filehandle; see the perlopentut documenta-
tion. The open built-in is so feature-full that it gets its own documentation page.

Threads and Forking
Perl now has support for threads. Although this is experimental (as of this writing), it
can be a useful tool for some applications. Using fork (where it’s available) is better
supported; see the perlfork and perlthrtut documentation.

#This is a task typically done by a cron job at some early-morning hour each day.

Threads and Forking | 341

http://perldoc.perl.org/perlpod.html
http://perldoc.perl.org/perlopentut.html
http://perldoc.perl.org/perlfork.html
http://perldoc.perl.org/perlthrtut.html

Graphical User Interfaces (GUIs)
There are several GUI toolkits with Perl interfaces. See CPAN for Tk, Wx, and others.

And More…
If you check out the module list on CPAN, you’ll find modules for even more purposes,
from generating graphs and other images to downloading email, from figuring the am-
ortization of a loan to figuring the time of sunset. New modules are added all the time,
so Perl is even more powerful today than it was when we wrote this book. We can’t
keep up with it all, so we’ll stop here.

Larry himself says he no longer keeps up with all of the development of Perl because
the Perl universe is big and keeps expanding. And he can’t get bored with Perl because
he can always find another corner of this ever-expanding universe. And we suspect,
neither will we. Thank you, Larry!

342 | Appendix B: Beyond the Llama

APPENDIX C

A Unicode Primer

This isn’t a complete or comprehensive introduction to Unicode; it’s just enough for
you to understand the parts of Unicode that we present in Learning Perl. Unicode is
tricky not only because it’s a new way to think about strings, with lots of adjusted
vocabulary, but also because computer languages in general have implemented it so
poorly. Perl 5.14 makes lots of improvements to Perl’s Unicode compliance, but it’s
not perfect (yet). It is, arguably, the best Unicode support that you will find, though.

Unicode
The Unicode Character Set (UCS) is an abstract mapping of characters to code points.
It has nothing to do with a particular representation in memory, which means we can
agree on at least one way to talk about characters no matter which platform we’re on.
An encoding turns the code points into a particular representation in memory, taking
the abstract mapping and representing it physically within a computer. You probably
think of this storage in terms of bytes, although when talking about Unicode, we use
the term octets (see Figure C-1). Different encodings store the characters differently.
To go the other way, interpreting the octets as characters, you decode them. You don’t
have to worry too much about these because Perl can handle most of the details for you.

When we talk about a code point, we specify its number in hexadecimal like so:
(U+0158); that’s the character Ř. Code points also have names, and that code point is
“LATIN CAPITAL LETTER R WITH CARON.” Not only that, but code points know
certain things about themselves. They know if they are an uppercase or lowercase
character, a letter or digit or whitespace, and so on. They know what their uppercase,
title case, or lowercase partner is, if appropriate. This means that not only can we work
with the particular characters, but we now have a way to talk about types of characters.
All of this is defined in Unicode datafiles that come with perl. Look for a unicore
directory in your Perl library directory; that’s how Perl knows everything it needs to
know about characters.

343

UTF-8 and Friends
The preferred encoding in Perl is UTF-8, which is short for UCS Transformation Format
8-bit. Rob Pike and Ken Thompson defined this encoding one night on the back of a
placemat in a New Jersey diner.* It’s just one possible encoding, although a very popular
one since it doesn’t have the drawbacks of some other encodings. If you’re using Win-
dows, you’re likely to run into UTF-16. We don’t have anything nice to say about that
encoding, so we’ll just keep quiet like our mothers told us.

Getting Everyone to Agree
Getting everything set up to use Unicode can be frustrating because every part of the
system needs to know which encoding to expect so it can display it properly. Mess up
on any part of that and you might see gibberish, with no clue which part isn’t working
correctly. If your program outputs UTF-8, your terminal needs to know that so it dis-
plays the characters correctly. If you input UTF-8, your Perl program needs to know
that so it interprets the input strings correctly. If you put data into a database, the
database server needs to store it correctly and return it correctly. You have to set up
your editor to save your source in UTF-8 if you want perl to interpret your typing as
UTF-8.

We don’t know which terminal you are using and we’re not going to list instructions
for every (or any) terminal here. For modern terminal programs, you should find a
setting in the preferences or properties for the encoding.

Figure C-1. The code point of a character is not its storage. The encoding transforms characters into
storage.

* Read about the invention of UTF-8 from Rob Pike himself at http://www.cl.cam.ac.uk/~mgk25/ucs/utf-8
-history.txt.

344 | Appendix C: A Unicode Primer

http://www.cl.cam.ac.uk/~mgk25/ucs/utf-8-history.txt
http://www.cl.cam.ac.uk/~mgk25/ucs/utf-8-history.txt

Beyond the encoding, various programs need to know how to output the encoding that
you want. Some look at the LC_* environment variables and some have their own:

LESSCHARSET=utf-8
LC_ALL=en_US.UTF-8

If something is not displaying correctly through your pager (i.e., less, more, type), read
their documentation to see what they expect you to set to give encoding hints.

Fancy Characters
Thinking in Unicode requires a different mindset if you are used to ASCII. For instance,
what’s the difference between é and é? You probably can’t tell just by looking at those,
and even if you have the digital version of this book, the publication process might have
“fixed” the difference. You might not even believe us that there is a difference, but there
is. The first one is a single character but the second one is two characters. How can that
be? To humans, those are the same thing. To us, they are the same grapheme (or
glyph) because the idea is the same no matter how the computer deals with either of
them. We mostly care about the end result (the grapheme) since that’s what imparts
information to our readers.

Before Unicode, common character sets defined characters such as é as an atom, or
single entity. That’s the first of our examples in the previous paragraph (just trust us).
However, Unicode also introduces the idea of mark characters—the accents and other
flourishes and annotations that combine with another character (called nonmarks).
That second é is actually the nonmark character e (U+0065, LATIN SMALL LETTER
E) and the mark character ´ (U+0301, COMBINING ACUTE ACCENT) that is the
pointy part over the letter. These two characters together make up the grapheme. In-
deed, this is why you should stop calling the overall representation a character and call
it a grapheme instead. One or more characters can make up the final grapheme. It’s a
bit pedantic, but it makes it much easier to discuss Unicode without going insane.

If the world was starting fresh, Unicode probably wouldn’t have to deal with single
character version of é, but the single character version exists historically so Unicode
does handle it to be somewhat backward compatible and friendly with the text that’s
already out there. Unicode code points have the same ordinal values for the ASCII and
Latin-1 encodings, which are all the codepoints from 0 to 255. That way, treating your
ASCII or Latin-1 strings as UTF-8 should work out just fine (but not UTF-16, where
every character takes up at least two bytes).

The single character version of é is a composed character because it represents two (or
more) characters as one code point. It composes the nonmark and mark into a single
character (U+00E9, LATIN SMALL LETTER E WITH ACUTE) that has its own code
point. The alternative is the decomposed version that uses two characters.

Fancy Characters | 345

So, why do you care? How can you properly sort text if what you think of as the same
thing is actually different characters? Perl’s sort cares about characters, not graphemes,
so the string "\x{E9}" and "\x{65}\x{301}", which are both logically é, do not sort to
the same position. Before you sort these strings, you want to ensure that both é’s sort
next to each other no matter how you represent them. Computers don’t sort in the
same way that humans want to sort items. You don’t care about composed or decom-
posed characters. We’ll show you the solution in a moment, and you should check
Chapter 14.

Fancier Characters
It gets worse though, although not as many of you probably care about this one. What’s
the difference between fi and fi? Unless the typesetter “optimized” this, the first one
has the f and the i separated while the second one combines those in a ligature, which
generally sets the graphemes in a way that make it easier for people to read.† The
overhanging part of the f appears to impose on the personal space of the dot on the i,
which is a bit ugly.‡ You may have never noticed it, but you’ll find several examples in
this paragraph, and you’ll find them often in typeset books.§

The difference is similar to the composed and decomposed forms of é, but slightly
different. The é’s were canonically equivalent because no matter which way you made
it, the result was the same visual appearance and the same idea. The fi and fi don’t have
the same visual appearance, so they are merely compatibility equivalent.‖ You don’t
need to know too much about that other than knowing that you can decompose both
canonically and compatibility equivalent forms to a common form that you can use to
sort (Figure C-2).

Suppose that you want to check if a string has an é or an fi and you don’t care about
which form it has. To do that, you decompose the strings to get them in a common
form. To decompose Unicode strings, use the Unicode::Normalize module, which
comes with Perl. It supplies two subroutines for decomposition. You use the NFD sub-
routine (Normalization Form Decomposition), which turns canonically equivalent
forms into the same decomposed form. You use the NFKD subroutine (Normalization
Form Kompatibility Decomposition). This example has a string with composed char-
acters that you decompose and match in various ways. The “oops” messages shouldn’t
print, while the “yay” message should:

† O’Reilly’s automated typesetting system doesn’t turn our fi’s into their ligature forms unless we type the
ligatures ourselves. It’s probably a faster document workflow that way, even if we do have to shuffle some
graphemes manually.

‡ Since we don’t actually read each letter in a word and instead recognize it as a whole, the ligature is a slight
improvement in our pattern recognition. So, typographers combine the two graphemes.

§ But usually not ebooks, which don’t care about looking nice.

‖ See Unicode Standard Annex #15, “Unicode Normalization Forms” for the gory details.

346 | Appendix C: A Unicode Primer

use utf8;
use Unicode::Normalize;

U+FB01 - fi ligature
U+0065 U+0301 - decomposed é
U+00E9 - composed é

binmode STDOUT, ':utf8';

my $string =
 "Can you \x{FB01}nd my r\x{E9}sum\x{E9}?";

if($string =~ /\x{65}\x{301}/) {
 print "Oops! Matched a decomposed é\n";
}
if($string =~ /\x{E9}/) {
 print "Yay! Matched a composed é\n";
}

my $nfd = NFD($string);
if($nfd =~ /\x{E9}/) {
 print "Oops! Matched a composed é\n";
}
if($nfd =~ /fi/) {
 print "Oops! Matched a decomposed fi\n";
}

my $nfkd = NFKD($string);
if($string =~ /fi/) {
 print "Oops! Matched a decomposed fi\n";
}
if($nfkd =~ /fi/) {
 print "Yay! Matched a decomposed fi\n";

Figure C-2. You can decompose and recompose canonical equivalent forms, but you can only
decompose compatible forms.

Fancy Characters | 347

}
if($nfkd =~ /\x{65}\x{301}/) {
 print "Yay! Matched a decomposed é\n";
}

As you can see, the NFKD forms always match the decompositions because NFKD()
decomposes both canonical and compatible equivalents. The NFKD forms miss the
compatible equivalents:

Yay! Matched a composed é
Yay! Matched a decomposed fi
Yay! Matched a decomposed é

There’s a caution here though: you can decompose and recompose canonical forms,
but you cannot necessarily recompose compatible forms. If you decompose the ligature
fi, you get the separate graphemes f and i. The recomposer has no way to know if those
came from a ligature or started separately.# Again, that’s the difference in canonical
and compatible forms: the canonical forms look the same either way.

Dealing with Unicode in Perl
This section is a quick summary of the most common ways you’ll incorporate Unicode
into your Perl programs. This is not a definitive guide, and even for the things we do
show there are some details that we ignore. It’s a big subject, and we don’t want to
scare you off. Learn a little at first (this appendix), but when you run into problems
reach for the detailed documentation we list at the end of the appendix.

Using Unicode in Your Source
If you want to have literal UTF-8 characters in your source code, you need to tell perl
to read your source as UTF-8. You do that with the utf8 pragma, whose only job is to
tell perl how to interpret your source. This example has Unicode characters in a string:

use utf8;

my $string = "Here is my ☃ résumé";

You can also use some characters in variable and subroutine names:

use utf8;

my %résumés = qw(
 Fred => 'fred.doc',
 ...
);

sub π () { 3.14159 }

#This is why we’re ignoring NFC and NFKC. Those forms decompose then recompose, but NFKC can’t
necessarily recompose to the original form.

348 | Appendix C: A Unicode Primer

The only job of the utf8 pragma is to tell perl to interpret your source code as UTF-8.
It doesn’t do anything else for you. As you decide to work with Unicode, it’s a good
idea to always include this pragma in your source unless you have a good reason not to.

Fancier Characters by Name
Unicode characters also have names. If you can’t easily type it with your keyboard and
you can’t easily remember the code points, you can use its name (although it is a lot
more typing). The charnames module, which comes with Perl, gives you access to those
names. Put the name inside \N{...} in a double-quotish context:

my $string = "\N{THAI CHARACTER KHOMUT}"; # U+0E5B

Note that the pattern portions of the match and substitution operators are also double-
quoted context, but there’s also a character class shortcut \N that means “not a newline”
(see Chapter 8). It usually works out just fine because there’s only some weird cases
where Perl might get confused.*

Reading from or Writing to STDOUT or STDERR
At the lowest level, your input and output is just octets. Your program needs to know
how to decode or encode them. We’ve mostly covered this in Chapter 5, but here’s a
summary.

You have two ways to use a particular encoding with a filehandle. The first one uses
binmode:

binmode STDOUT, ':encoding(UTF-8)';
binmode $fh, ':encoding(UTF-16LE)';

You can also specify the encoding when you open the filehandle:

open my $fh, '>:encoding(UTF-8)', $filename;

If you want to set the encoding for all filehandles that you will open, you can use the
open pragma. You can affect all input or all output filehandles:

use open IN => ':encoding(UTF-8)';
use open OUT => ':encoding(UTF-8)';

You can do both with a single pragma:

use open IN => ":crlf", OUT => ":bytes";

If you want to use the same encoding for both input and output, you can set them at
the same time, either using IO or omitting it:

use open IO => ":encoding(iso−8859−1)";
use open ':encoding(UTF-8)';

* For a detailed discussion of the \N problem, see http://www.effectiveperlprogramming.com/blog/972.

Dealing with Unicode in Perl | 349

http://www.effectiveperlprogramming.com/blog/972

Since the standard filehandles are already open, you can apply your previously stated
encoding by using the :std subpragma:

use open ':std';

This last one has no effect unless you’ve already explicitly declared an encoding.

You can also set these on the command line with the -C switch, which will set the
encodings on the standard filehandles according to the arguments you give to it:

 I 1 STDIN is assumed to be in UTF−8
 O 2 STDOUT will be in UTF−8
 E 4 STDERR will be in UTF−8
 S 7 I + O + E
 i 8 UTF−8 is the default PerlIO layer for input streams
 o 16 UTF−8 is the default PerlIO layer for output streams
 D 24 i + o

See the perlrun documentation for more information about command-line switches,
including the details for -C.

Reading from and Writing to Files
We cover this in Chapter 5, but here’s the summary. When you open a file, use the
three-argument form and specify the encoding so you know exactly what you are
getting:

open my($read_fh), '<:encoding(UTF-8)', $filename;
open my($write_fh), '>:encoding(UTF-8)', $file_name;
open my($append_fh), '>>:encoding(UTF-8)', $file_name;

Remember, though, that you don’t get to pick the encoding of the input (at least not
from inside your program). Don’t choose an encoding for the input unless you are sure
that’s the encoding the input actually is. Notice that although you’re really decoding
input, you still use :encoding.

If you don’t know what sort of input you’ll get (and one of the Laws of Programming
is that run enough times, you’ll see every possible encoding), you can also just read the
raw stream and guess the encoding, perhaps with Encode::Guess. There are many
gotchas there, though, and we won’t go into them here.

Once you get the data into your program, you don’t need to worry about the encoding
anymore. Perl stores it smartly and knows how to manipulate it. It’s not until you want
to store it in a file (or send it down a socket, and so on) that you need to encode it again.

350 | Appendix C: A Unicode Primer

http://perldoc.perl.org/perlrun.html

Dealing with Command-Line Arguments
As we have said before, you need to be careful about the source of any data when you
want to treat it as Unicode. The @ARGV array is a special case since it gets its values from
the command line, and the command line uses the locale:

use I18N::Langinfo qw(langinfo CODESET);
use Encode qw(decode);

my $codeset = langinfo(CODESET);

foreach my $arg (@ARGV) {
 push @new_ARGV, decode $codeset, $_;
}

Dealing with Databases
Our editor tells us that we are running out of space, and it’s almost the end of the book!
We don’t have that much space to cover this topic, but that’s okay because it’s not
really about Perl. Still, he’s allowing us a couple of sentences. It’s really too bad that
we can’t go into all the ways that database servers make life so hard, or how they all do
it in different ways.

Eventually you’ll want to store some of your information in a database. The most pop-
ular Perl module for database access, DBI, is Unicode-transparent, meaning it passes
the data it gets directly to the database server without messing with it. Check its various
drivers (e.g., DBD::mysql) to see which driver-specific settings you’ll need. You also have
to set up your database server, schemas, tables, and columns correctly. Now you can
see why we’re glad we’ve run out of space!

Further Reading
There are several parts of the Perl documentation that will help you with the Perl parts,
including the perlunicode, perlunifaq, perluniintro, perluniprops, perlunitut documen-
tation. Don’t forget to check the documentation for any of the Unicode modules that
you use.

The official Unicode site, http://www.unicode.org, has almost everything you’d ever
want to know about Unicode, and is a good place to start.

There’s also a Unicode chapter in Effective Perl Programming (Addison-Wesley), also
by one of the authors of this book.

Further Reading | 351

http://perldoc.perl.org/perlunicode.html
http://perldoc.perl.org/perlunifaq.html
http://perldoc.perl.org/perluniintro.html
http://perldoc.perl.org/perluniprops.html
http://perldoc.perl.org/perlunitut.html
http://www.unicode.org

Index

Symbols
// (see m// pattern match operator)
& (ampersand), 63

subroutine calls, 74
&& (AND) operator, 184
&max subroutine, 66, 69
< (less-than sign), 93
< > (angle brackets), 18

alternate globbing syntax, 217
<> (diamond operator), 83–86, 165

file updates using, 165
<=> (spaceship operator), 242
<STDIN> (line-input operator) (see line-input

operator)
> (greater-than sign), 93
= (assignment) operator, 31
@ (at-sign), 48
@ARGV array, 85
` ` (backquotes), 18

capturing output with, 264–268
\ (backslash), 25

as escape character, 26, 33
for back references, 125
in character matching, 124

\\ (double backslash), 124
\A anchor, 138
\b (word-boundary) anchor, 140
\d (digit) character class abbreviation, 129
\h (horizontal whitespace) matching, 130
\P (negative property) matching, 123
\p{Space} (whitespace) matching, 129
\R (linebreak) shortcut, 130
\s (whitespace) matching, 129
\v (vertical whitespace) matching, 130

\w (word character) matching, 130
\z (end-of-string) anchor, 138
\Z (end-of-string) anchor, 138
\p (property matching), 123
! (negation operator), 169
^ (caret), 128, 139
, (comma), 114
. (dot), 123
{ } (curly braces), 34, 37

quantifiers, usage for, 149
- (hyphen), 84

in character ranges, 128
-> (little arrow), 114
-e file test, 203
-e option, 167
-M command-line option, 29
-M file test, 203
-s file test operator, 204
-w command-line option, 28
. (dot) current directory, 224
.. (dot dot) parent directory, 224
.. (range operator), 46
.* (dot star) metacharacters, 124
.* (dot star) parameter, 217
() empty list, 49
== (equality operator), 36
=> (big arrow), 114
=~ (binding operator), 247
=~ (binding operator), 141
** (exponentiation operator), 24
/ (forward slash), 122
// (defined-or operator), 185
/a modifier, 136
/g modifier, 156
/i modifier, 134

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

353

/l modifier, 136
/s modifier, 134
/u modifier, 136
/x modifier, 135
!= (inequality operator), 36
% (modulus operator), 24
\n (newline character), 16
() (parentheses), 125, 143

noncapturing parentheses, 145
precedence, 150

% (percent sign), 89
use in hashes, 112

%% (doubled percent sign), 90
%ENV hash, 119, 263
.= (append) operator, 32
. (concatenation) operator, 26
+ (plus), 124
+? (nongreedy quantifier), 162
(pound sign), 135
#! (sh-bang), 15
? (question mark), 125
?: (conditional operator), 182
" (double-quote), 25
' (single-quote), 25
; (semicolon), 16
$ (sigil), 30, 139
$_ (default variable), 54, 82
$! (error message), 98
[] (square brackets), 128
* (star), 124
*? (nongreedy quantifier), 163
~~ (smart match operator) (see smart match

operator)
| (vertical bar), 127

precedence, 150

A
\A anchor, 138
/a modifier, 136
ACLs (Access Control Lists), 205
ActiveState, 9

port of Perl, 191
ampersand (&), 63

subroutine calls, 74
anchors, 138–141

precedence, 150
word anchors, 140

AND operator (&&), 184
angle brackets (< >), 18

alternate globbing syntax, 217
anonymous subroutines, 338
“any old junk” pattern, 124
arguments (subroutines), 66
ARGV and ARGVOUT filehandles, 91
array variables, 18
arrays, 43–45

@ARGV array, 85
accessing elements, 44
array indices, 45
control variables, 53
each operator, usage on, 55
elements, 44
interpolating into strings, 51
lists, compared to, 43
map and grep operators, 335
and printf operator, 90
slices of arrays, 279
smart match operator, comparison using,

249
state variables, usage as, 78

ASCII or “text” mode, 13
ASCII, character class shortcuts and, 129
assignment, 31

assignment (=) operator, 31
binary operators, 31
hashes, 113
list assignment, 48–51
to lists and arrays, context, 55

associativity and operator precedence, 36
associativity of operators, 35
at-sign (@), 48
atoms, precedence, 151
audience for book, 1
autobundle, 190
autodecrement operator (--), 174
autodie pragma, 99, 288
autoincrement operator (++), 174, 175
automatic match variables, 147
awk programs, converting to Perl, 340

B
\b (word-boundary) anchor, 140
back references, 125

relative back references, 127
\g{N} referencing, 126

background processes, 260
backquotes (` `), 18

capturing output with, 264–268

354 | Index

using in a list context, 267
backslash (\), 25

as escape character, 26, 33
for back references, 125
in character matching, 124

barewords, 115
basename function, 194
BBEdit, 12
BEGIN block, 337
big arrow (=>), 114
binary assignment operator, 31
binding operator (=~), 141, 157, 247
binmode, 349
bitstrings, 213, 335
bitwise operators, 212

using bitstrings, 213
blank lines, matching with regular expressions,

139
block curly braces ({ }), 37
blocks of code

indenting, 37
labeled blocks, 182
termination with semicolons, 68

Boolean values, 38
buffering of output, 87
bugs and bug reporting, 12
built-in variables, 337
built-in warnings, 28
bundle files, 190
bytecode, 16

C
C algorithms, using in Perl, 340
capture groups, 125, 143–149

named captures, 146–147
noncapturing parentheses, 145
persistence of captures, 144

caret (^), 128, 139
carriage-return/linefeed, 95
case in string comparisons, 54
case in variable names, 30, 31
case-insensitive pattern matching, 134
CGI.pm module, 198
character classes, 128–131

shortcuts, 129
negating, 131

charnames module, 349
chdir operator, 215
child process, 259

chmod function, 230
chomp() operator, 39
chown function, 231
chr() function, 34
closedir, 218
cmp operator, 242
code examples, usage, xiv
code point characters, 34, 343
code point order, 54
comma (,), 114
command-line options, 167, 337

in programs, 341
command-line, installing modules from, 191
comments, 15, 135
comp.lang.perl.*, 11
comparison operators, 36
compiling programs, 16
complex data structures, 338
concatenation (.) operator, 26
conditional operator (?:), 182
context, 55–59, 56

forcing scalar context, 59
scalar-producing expressions in list context,

58
continue block, 337
continue operator, 253
control structures

autoincrement and autodecrement, 174
conditional operator, 182
expression modifiers, 171
for, 176, 178
foreach, 178
given-when, 251
if, 37

elsif clause, 173
logical operators, 184–188
loop controls, 178–182
naked block, 172
partial-evaluation operators, using, 186
unless, 169
until, 170
while, 40

Control-D, 59
Control-Z, 59
conversions, 89
CPAN (Comprehensive Perl Archive Network),

10, 189
(see also modules)
as source of modules, 189

Index | 355

cpan command, 190
cpan script, 191
CPAN.pm, 191
CPAN::Mini module, 191
cpanm tool, 191
CR-LF (carriage-return/linefeed), 95
Ctrl-D, 59
Ctrl-Z, 59
curly braces { }, 34

quantifiers, usage for, 149

D
\d (digit) character class abbreviation, 129
DATA filehandle, 91
databases, 333
DateTime module, 200
DBDs (DataBase Drivers), 199
DBI (Database Interface) module, 199, 351
debugging, 337
default variable ($_), 54
defined function, 42
defined-or operator (//), 185
delete function, 118
delimiters, 133

non-paired delimiters, 47
device number (files), 210
diagnostics pragma, 29
diamond operator (<>), 83–86, 165

file updates using, 165
die function, 97, 286
Digit property, 123
directories, 224
directory operations, 215–232

changing ownership, 231
changing timestamps, 231
directory handles, 218
globbing, 216–218
links and files, 224–228
making and removing directories, 229
navigating the directory tree, 215
on Unix and non-Unix systems, 221
recursive directory listing, 220
removing files, 221
renaming files, 223

dirname function, 195
disciplines, 96
documentation, 332

embedded documentation in pod format,
341

dot (.) wildcard character, 123
dot star (.*) parameter, 217
double-precision floating-point values, 22
double-quote ("), 25
double-quote interpolation, 33
double-quoted string literals, 25
double-quoted strings

interpolating arrays into, 51
interpolation of a hash element, 119
string escapes, 26

dynamic loading, 339

E
-e file test, 203
-e option, 167
each function, 116
each operator, 55
echo command, 216
elements, 44
else keyword, 37
elsif clause, 173
email addresses in double-quoted strings, 52
embedded documentation, 341
embedding, 339
empty list (), 49
empty parameter lists, 70
encoding () form, 94
end-of-file, 59
environment variables, 119, 263
equality (==) operator, 36
error messages

autodie pragma, 99
die function, 97
warn function, 99

error trapping, 282–289
autodie pragma, 288
eval blocks, 282
try-catch-finally blocks, 286

eval blocks, 282
exceptions, 286
exec function, 263
executable programs, 13
exercises, 3

introduction, 18
time required for completion, 4

exists function, 118
exponentiation operator (**), 24
expression modifiers, 171
ExtUtils::MakeMaker module, 190

356 | Index

F
fatal errors, 97
file specifications, 196
file tests, 203

age tests, 206
bitwise operators, 212
file test operators, 203–209

complete list, 204
stacked file test operators, 208
test names, 204
testing several attributes on one file,

207
localtime functions, 211
stat and lstat functions, 210
text or binary, 206

File::Basename module, 194
File::Find module, 220
File::Spec module, 196
File::Spec::Functions module, 220
filehandles, 91–97

bad filehandles, 96
binmoding, 95
closing, 96
default output filehandle, changing, 100
filehandle reads versus globbing operations,

217
in scalars, 103–104
opening, 93
reserved filehandle names, 91
standard filehandles, reopening, 101
using, 100

filename extensions, 13
files

removing, 221
renaming, 223

find (Unix), 270
find command, converting to Perl, 340
find2perl command, 340
find2perl program, 220
flags, 134
floating-point literals, 22
floating-point numbers, 22
footnotes, 2
for control structure, 176
for keyword, 178
foreach keyword, 178
foreach loop, 53–55
foreach modifier, 172
foreach-when control structure, 256

fork, 271, 341
formats, 335
formatting output, 89
forward slash (/), 122
“free-form” languages, 15
functions, 63, 334

(see also subroutines)
built-in functions, 173
defaults, 6
documentation, 265
function calls, 88
hash functions, 115
mathematical functions, 334
using only some from a module, 195

G
/g modifier, 156
given statement, 251–256

compared to if-elsif-else, 253
dumb matching, 254

glob operator, 216
using with unlink to remove files, 221

global variables, 68
globbing, 216

alternate syntax, 217
filehandle reads versus globbing operations,

217
globs, 122
gmtime function, 212
greater-than sign (>), 93
greedy quantifiers, 162
grep command (Unix), 122
grep operator, 289, 335
GUIs (graphical user interfaces), 342

H
\h (horizontal whitespace) matching, 130
hard links, 227
hash slices, 281
hashes, 107–120

%ENV hash, 119
big arrow (=>), 114
example, 118
hash assignment, 113
hash element access, 110
hash element interpolation, 119
hash functions, 115
hash keys, 107

Index | 357

key-value structure, 109
sorting by value, 244
state variables, usage as, 78
uses for hashes, 109

“Hello, world” program, 13
here documents, 334
hex() function, 240
high-level languages, 7
high-level programming, 5
“high-water mark” algorithm, 70
hyphen (-), 84

in character ranges, 128

I
/i modifier, 134
identifier characters, 130
if control structure, 37

elsif clause, 173
if modifier, 171
import lists, 195
indentation, 15
index function, 235

using with substr, 237
indices

array and list, starting at zero, 44
reasons to avoid using, 49
special array indices, 45

indirect filehandle reads, 218
inodes, 210, 224
input, user, 39
input/output (I/O), 81

diamond operator (<>), 83–86
invocation arguments, 85

filehandles, 91–97
bad filehandles, 96
binmoding, 95
changing the default output filehandle,

100
closing filehandles, 96
in scalars, 103
opening a filehandle, 93–95
reopening, 101
using, 100–104

line-input operator (see line-input operator)
output to standard output, 86–89
printf operator for formatted output, 89
say operator, 102

INSTALL_BASE argument, 190
integer literals, 22

integers, 22
invocation arguments, 83, 85
IPC::System::Simple module, 268

J
join function, 160

K
key-value pairs, 109
keys, 107
keys function, 115
Kleene star, 124

L
/l modifier, 136
labeled blocks, 182
last operator, 179
layers, 96
less-than sign (<), 93
lexical variables, 68, 71
libraries, 333
ligatures, 346
line-input operator (<STDIN>), 39, 81

(see also input/output (I/O))
in list context, 59

links, 224–228
inodes, 224
link count, 225
soft links and hard links, 227
symbolic links, 227
unlink operator, 228

list context, 55
<STDIN> (line-input operator) in, 59
scalar-producing expressions, using in, 58

list literals, 46–48
list slices, 278
List::MoreUtils module, 292
List::Util module, 291
lists, 43

arrays, compared to, 43
control variables, 53
list assignment, 48–51
map and grep operators, 335

literal strings, 25
literals, 22
little arrow (->), 114
local::lib module, 192
localtime function, 165, 211

358 | Index

logical operators, 184
defined-or operator, 185
short circuit logical operators, 184

loop block types, 179
loop controls, 178

labeled blocks, 182
last operator, 179
next operator, 179
redo operator, 181

low-level programming, 5
lstat function, 211

M
-M command-line option, 29
-M file test, 203
m// (pattern match operator), 133

in list context, 161
interpolating into patterns, 142

MakeMaker, 190
map operator, 290, 335
match modifiers, 134–138

adding whitespace, 135
case-insensitive pattern matching, 134
character interpretation, 136–138
combining option modifiers, 135
matching any character, 134

match operator (see m// (pattern match
operator))

match variables, 143–149
automatic match variables, 147–149

mathematics, 334
&max subroutine, 69
metacharacters, 123
methods, 197
mkdir function, 229
Module::Build module, 190
modules, 189

CGI.pm module, 198
charnames module, 349
checking for installs, 189
command-line, installation from, 191
CPAN::Mini module, 191
DateTime module, 200
DBI module, 199, 351
ExtUtils::MakeMaker module, 190
File::Basename module, 194
File::Find module, 220
File::Spec, 196
File::Spec::Functions module, 220

finding modules, 189
import lists, 195
installing, 190

determining directory locations, 191
IPC::System::Simple module, 268
List::MoreUtils module, 292
List::Util module, 291
local::lib, 192
Path::Class module, 197
Term::ReadLine module, 39
Text::CSV module, 159
Time::Piece module, 201
Try::Tiny module, 287
Unicode::Normalize module, 346
Unix-specific problems, 193
using simple modules, 193
writing modules, 333
YAPE::Regex::Explain module, 152

modulus operator (%), 24
mounted volume, 224
my operator, 68, 71

N
naked block control structure, 172
named captures, 146–147
negation operator (!), 169
networking, 335
newline character (\n), 16
next operator, 179
nondecimal integer literals, 23
nongreedy quantifiers, 162
numbers, 21

conversion between numbers and strings,
27

floating-point literals, 22
integer literals, 22
internal format, 22
nondecimal integer literals, 23

numeric operators, 23

O
object-oriented (OO) programming, 338
oct() function, 229, 240
octets, 343
opaque binaries, 8
open operator, 93

“three-argument” open, 94
opendir, 218

Index | 359

operators, 334
append (.=) operator, 32
assignment (=) operator, 31
associativity of, 35
binary assignment operator, 31
binding (=~) operator, 141
chomp() operator, 39
comparison operators, 36
diamond operator (<>), 83–86
each operator, 55
line-input (<STDIN>) operator, 39, 81
match (m//) operator

interpolating into patterns, 142
my operator, 68, 71
open operator, 93
operator overloading, 339
operator precedence, 34
pattern match (m//) operator, 133

in list context, 161
pop and push operators, 49
print operator, 32, 86
printf operator, 89

arrays and, 90
range operator, 46
return operator, 74
reverse operator, 54, 57
say operator, 102
shift and unshift operators, 50
sort operator, 54
spaceship operator (<=>), 242
splice operator, 50
split operator, 159
substitution (s///) operator, 155–159

OR operator (||), 184
or symbol (|), 127
ord() function, 34
output, printing, 32–37

P
\P (negative property) matching, 123
\p (property matching), 123
\p{Space} (whitespace) matching, 129
packages, 332
paired delimiters, 133
parent process, 259
parentheses (), 125, 143

noncapturing parentheses, 145
precedence, 150

partial-evaluation operators, 186

PATH directory list, 260
PATH environment variable, 263
Path::Class module, 197
patterns, 121

pattern matches with m//, 133
percent sign (%), 89

use in hashes, 112
Perl, 4–18

acquisition and installation, 9
bugs and bug reporting, 12
compatible operating systems, 9
compiling programs, 16
differences among versions, xvii
example program, 17
licensing, 9
origins, 5
Perl 6, 7
resources, 10
uses, 8
version numbering, 14

Perl identifier, 30
perl interpreter, 4
Perl Monastery, The, 11
Perl Mongers, 10
Perl Package Manager (PPM), 191
perlbug utility, 12
perldoc command, 18, 189, 194
perlfaq3, 12
PFE (Programmer's Favorite Editor), 12
piped opens, 269
pipeline, 92
plus (+), 124
pop operator, 49
postincrement and postdecrement, 175
pragmas, 72

autodie pragma, 99, 288
diagnostic pragma, 29
documentation, 73
use strict pragma, 72
utf8 pragma, 30, 348

precedence
in regular expressions, 150
of operators, 35

predecrement, 175
preincrement, 175
print operator, 32, 86–89
printf operator, 89

arrays and, 90
private variables, 68

360 | Index

persistent private variables, 76
process management, 259

environment variables, 263
exec function, 263
fork, 271
IPC::System::Simple module, 268
processes as filehandles, 269
signals, sending and receiving, 272
system function, 259–262

avoiding the shell, 261
program style, 15
programs, running, 14
push operator, 50

Q
quantifiers, 124, 149

nongreedy quantifiers, 162
precedence, 150

question mark (?), 125
queues, 49
qw shortcut, 46

R
\R (linebreak) shortcut, 130
range operator (..), 46
readdir, 218
readline operator, 218
recursive directory listing, 220
redo operator, 181
reference, 49
references, 337
regular expressions, 121, 332

adding arbitrary whitespace, 135
alternatives, 127
anchors, 138

word anchors, 140
binding operator (=~), 141
capture groups, 143–149

persistence of captures, 144
change from ASCII to Unicode, 129
character classes, 128–131
character interpretations, 136–138
combining option modifiers, 135
grouping in patterns, 125
ignoring case, 137
interpolating into patterns, 142
locales, 137
match modifiers, 134–138

match variables, 143–149
matching whitespace, 129
metacharacters, 123
pattern matches with m//, 133
precedence, 150
quantifiers, 149
simple patterns, 122
simple quantifiers, 124
testing patterns, 152
text processing, 155

in-place editing via command line, 166
join function, 160
m// in list context, 161
matching multiple-line text, 164
multiple file updating, 164
nongreedy quantifiers, 162
s/// substitution operator, 155–159
split operator, 159

Unicode properties, 123
relative back references, 127
relative pathnames, 215
resources, 10
return function, 76
return operator, 74
return values (subroutines), 65
reverse operator, 54, 57
rindex function, 236
rmdir function, 230
rmtree function, 230

S
-s file test operator, 204
/s modifier, 134
\s (whitespace) matching, 129
s/// substitution operator, 155
say operator, 102
scalar, 21

numbers, 21–24
scalar context, 55

list producing expressions, using in, 57
scalar variables, 29–34

code point characters, 34
interpolation into strings, 32
scalar assignment, 31

scope of lexical variables, 71
scoped variables, 68
security, 336
sed programs, converting to Perl, 340
semicolon (;), 16

Index | 361

sequence and precedence, 150
sh-bang (#!), 15
shells and environment variables, 119
shift operator, 50
short circuit logical operators, 184

evaluation of value, 184
sigil, 30, 139
SIGINT, 272
single-quote ('), 25
single-quoted string literals, 25
slices, 277–282

array slices, 279
hash slices, 281

smart match operator (~~), 247–251
precedence, 250

sockets, 336
soft links, 227
sort operator, 54
sorting, 240

by multiple keys, 245
hashes, sorting by value, 244
sort-definition subroutine, 240

source code, 10
spaceship operator (<=>), 242
splice operator, 50
split operator, 159
sprintf function, 238

monetary decimal formatting, 238
square brackets [], 128
Stack Overflow, 11
stacked file test operators, 208
stacks, 49
standard error stream (STDERR), 93
standard input stream (STDIN), 92, 93
standard output stream (STDOUT), 92, 93
star (*), 124
stat function, 210
stat structure, parts, 210
state variables, 76
STDERR (standard error stream), 93
STDIN (standard input stream), 92
STDIN, STDOUT, and STDERR filehandles,

91
STDOUT (standard output stream), 92
Strawberry Perl, 9
string operators, 26
string repetition (x) operator, 27
strings, 24–28

conversion between numbers and strings,
27

finding substrings with index, 235
formatting data, 238
interpolation from scalar variables, 32
string comparison operators, 36
substrings, manipulating with substr, 236

sub keyword, 63
subroutines, 63–78

&max subroutine, 66, 69
anonymous subroutines, 338
arguments, 66
defining, 63
empty parameter lists, 70
invoking, 64
non-scalar return values, 76
omitting the ampersand, 74
persistent private variables, 76
private variables, 68
return operator, 74
return values, 64
use strict pragma, 72
variable-length parameter lists, 69

substitution operator (s///), 155
/g modifier, 156
binding operator, 157
case shifting, 158
different delimiters, 157
nondestructive substitutions, 157
substitution modifiers, 157

substr function, 236
switch statement (C language), 251
symbolic links, 227
symlink function, 227
syntax extensions, 337
system function, 259–262
System V IPC, 335
systemx function, 268

T
TCP/IP sockets, 336
Term::ReadLine module, 39
text editors, 12
Text::CSV module, 159
TextMate, 12
The Perl Monastery, 11
threads, 341
tied variables, 339
time function, 212

362 | Index

Time::Piece module, 201
timestamp numbers, 211
tr/// operator, 334
try-catch-finally blocks, 286
Try::Tiny module, 287

U
/u modifier, 136
UltraEdit, 12
undef value, 41, 278
Unicode, 343–351

ASCII, compared to, 345
character class shortcuts and, 129
charnames module, 349
command-line arguments, 351
DBI module, 351
reading from and writing to files, 350
reading from or writing to STDOUT or

STDERR, 349
UCS (Unicode Character Set), 343
Unicode properties, 123
Unicode::Normalize module, 346
using in source, 348
UTF-8, 344

unicore directory, 343
Unix signals, 272
unless control structure, 169

with else clause, 170
unlink operator, 221, 228
unshift operator, 50
until control structure, 170
unwinding a hash, 112
use directive, 194
use strict pragma, 72
Usenet groups, 11
user input, 39
utf8 pragma, 30, 348
utime function, 231

V
\v (vertical whitespace matching), 130
values function, 115
variable interpolation, 26, 32
variable-length parameter lists, 69
variables, 29

arrays (see arrays)
automatic match variables, 147
built-in variables, 337

environment variables, 119
hashes (see hashes)
match variables, 143
state variables, 76
tied variables, 339
variable names, 30

vertical bar (|), 127
precedence, 150

W
-w command-line option, 28
\w (word character) matching, 130
warn function, 99
while control structure, 40
whitespace, 15
Windows systems

Active Perl, xiii
filename globbing, 217
Perl versions for, 9

word anchors, 140
working directory, 215

X
x (string repetition operator), 27
/x modifier, 135

Y
YAPE::Regex::Explain module, 152

Z
\z (end-of-string) anchor, 138
\Z (end-of-string) anchor, 138

Index | 363

About the Authors
Randal L. Schwartz is a two-decade veteran of the software industry. He is skilled in
software design, system administration, security, technical writing, and training. Ran-
dal has coauthored the “must-have” standards: Programming Perl, Learning Perl, and
Learning Perl on Win32 Systems (all from O’Reilly); and Effective Perl Programming
(Addison-Wesley). He is also a regular columnist for WebTechniques, Performance-
Computing, SysAdmin, and Linux Magazine.

He is also a frequent contributor to the Perl newsgroups, and has moderated
comp.lang.perl.announce since its inception. His offbeat humor and technical mastery
have reached legendary proportions worldwide (but he probably started some of those
legends himself). Randal’s desire to give back to the Perl community inspired him to
help create and provide initial funding for The Perl Institute. He is also a founding board
member of the Perl Mongers (perl.org), the worldwide Perl grassroots advocacy
organization. Since 1985, Randal has owned and operated Stonehenge Consulting
Services, Inc. Randal can be reached for comment at merlyn@stonehenge.com, and
welcomes questions on Perl and other related topics.

brian d foy is a prolific Perl trainer and writer, and runs The Perl Review to help people
use and understand Perl through education, consulting, code review, and more. He’s
a frequent speaker at Perl conferences. He’s the coauthor of Learning Perl, Intermediate
Perl, and Effective Perl Programming (Addison-Wesley), and the author of Mastering
Perl. He was been an instructor and author for Stonehenge Consulting Services from
1998 to 2009, a Perl user since he was a physics graduate student, and a die-hard Mac
user since he first owned a computer. He founded the first Perl user group, the New
York Perl Mongers, as well as the Perl advocacy nonprofit Perl Mongers, Inc., which
helped form more than 200 Perl user groups across the globe. He maintains the perl-
faq portions of the core Perl documentation, several modules on CPAN, and some
stand-alone scripts.

Tom Phoenix has been working in the field of education since 1982. After more than
thirteen years of dissections, explosions, work with interesting animals, and high-
voltage sparks during his work at a science museum, he started teaching Perl classes
for Stonehenge Consulting Services, where he’s worked since 1996. Since then, he has
traveled to many interesting locations, so you might see him soon at a Perl Mongers
meeting. When he has time, he answers questions on Usenet’s comp.lang.perl.misc and
comp.lang.perl.moderated newsgroups, and contributes to the development and use-
fulness of Perl. Besides his work with Perl, Perl hackers, and related topics, Tom spends
his time on amateur cryptography and speaking Esperanto. His home is in Portland,
Oregon.

http://oreilly.com/catalog/9780596000271/
http://oreilly.com/catalog/9781449303587/
http://oreilly.com/catalog/9781565923249/
mailto:merlyn@stonehenge.com
http://oreilly.com/catalog/9781449303587/
http://oreilly.com/catalog/9780596102067/
http://oreilly.com/catalog/9780596102067/
http://oreilly.com/catalog/9780596527242/
http://oreilly.com/catalog/9780596527242/

Colophon
The animal on the cover of Learning Perl, Fifth Edition, is a llama (Lama glama), a
relation of the camel, and native to the Andean range. Also included in this llamoid
group is the domestic alpaca and their wild ancestors, the guanaco and the vicuña.
Bones found in ancient human settlements suggest that domestication of the alpaca
and the llama dates back about 4,500 years. In 1531, when Spanish conquistadors
overran the Inca Empire in the high Andes, they found both animals present in great
numbers. These llamas are suited for high mountain life; their hemoglobin can take in
more oxygen than that of other mammals.

Llamas can weigh up to 300 pounds and are mostly used as beasts of burden. A pack
train may contain several hundred animals and can travel up to 20 miles per day. Llamas
will carry loads up to 50 pounds, but have a tendency to be short-tempered and resort
to spitting and biting to demonstrate displeasure. To other people of the Andes, llamas
also provide meat, wool for clothing, hides for leather, and fat for candles. Their wool
can also be braided into ropes and rugs, and their dried dung is used for fuel.

The cover image is a 19th-century engraving from the Dover Pictorial Archive. The
cover font is Adobe ITC Garamond. The text font is Linotype Birka; the heading font
is Adobe Myriad Condensed; and the code font is LucasFont’s TheSans Mono
Condensed.

	Table of Contents
	Preface
	Typographical Conventions
	Code Examples
	Safari® Books Online
	How to Contact Us
	History of This Book
	Changes from the Previous Edition
	Acknowledgments
	From Randal
	From Tom
	From brian
	From All of Us

	Chapter 1. Introduction
	Questions and Answers
	Is This the Right Book for You?
	Why Are There So Many Footnotes?
	What About the Exercises and Their Answers?
	What Do Those Numbers Mean at the Start of the Exercise?
	What If I’m a Perl Course Instructor?

	What Does “Perl” Stand For?
	Why Did Larry Create Perl?
	Why Didn’t Larry Just Use Some Other Language?
	Is Perl Easy or Hard?
	How Did Perl Get to Be So Popular?
	What’s Happening with Perl Now?
	What’s Perl Really Good For?
	What Is Perl Not Good For?

	How Can I Get Perl?
	What Is CPAN?
	How Can I Get Support for Perl?
	Are There Any Other Kinds of Support?
	What If I Find a Bug in Perl?

	How Do I Make a Perl Program?
	A Simple Program
	What’s Inside That Program?
	How Do I Compile My Perl Program?

	A Whirlwind Tour of Perl
	Exercises

	Chapter 2. Scalar Data
	Numbers
	All Numbers Have the Same Format Internally
	Floating-Point Literals
	Integer Literals
	Nondecimal Integer Literals
	Numeric Operators

	Strings
	Single-Quoted String Literals
	Double-Quoted String Literals
	String Operators
	Automatic Conversion Between Numbers and Strings

	Perl’s Built-in Warnings
	Scalar Variables
	Choosing Good Variable Names
	Scalar Assignment
	Binary Assignment Operators

	Output with print
	Interpolation of Scalar Variables into Strings
	Creating Characters by Code Point
	Operator Precedence and Associativity
	Comparison Operators

	The if Control Structure
	Boolean Values

	Getting User Input
	The chomp Operator
	The while Control Structure
	The undef Value
	The defined Function
	Exercises

	Chapter 3. Lists and Arrays
	Accessing Elements of an Array
	Special Array Indices
	List Literals
	The qw Shortcut

	List Assignment
	The pop and push Operators
	The shift and unshift Operators
	The splice Operator

	Interpolating Arrays into Strings
	The foreach Control Structure
	Perl’s Favorite Default: $_
	The reverse Operator
	The sort Operator
	The each Operator

	Scalar and List Context
	Using List-Producing Expressions in Scalar Context
	Using Scalar-Producing Expressions in List Context
	Forcing Scalar Context

	<STDIN> in List Context
	Exercises

	Chapter 4. Subroutines
	Defining a Subroutine
	Invoking a Subroutine
	Return Values
	Arguments
	Private Variables in Subroutines
	Variable-Length Parameter Lists
	A Better &max Routine
	Empty Parameter Lists

	Notes on Lexical (my) Variables
	The use strict Pragma
	The return Operator
	Omitting the Ampersand

	Non-Scalar Return Values
	Persistent, Private Variables
	Exercises

	Chapter 5. Input and Output
	Input from Standard Input
	Input from the Diamond Operator
	The Invocation Arguments
	Output to Standard Output
	Formatted Output with printf
	Arrays and printf

	Filehandles
	Opening a Filehandle
	Binmoding Filehandles
	Bad Filehandles
	Closing a Filehandle

	Fatal Errors with die
	Warning Messages with warn
	Automatically die-ing

	Using Filehandles
	Changing the Default Output Filehandle

	Reopening a Standard Filehandle
	Output with say
	Filehandles in a Scalar
	Exercises

	Chapter 6. Hashes
	What Is a Hash?
	Why Use a Hash?

	Hash Element Access
	The Hash As a Whole
	Hash Assignment
	The Big Arrow

	Hash Functions
	The keys and values Functions
	The each Function

	Typical Use of a Hash
	The exists Function
	The delete Function
	Hash Element Interpolation

	The %ENV hash
	Exercises

	Chapter 7. In the World of Regular Expressions
	What Are Regular Expressions?
	Using Simple Patterns
	Unicode Properties
	About Metacharacters
	Simple Quantifiers
	Grouping in Patterns
	Alternatives

	Character Classes
	Character Class Shortcuts
	Negating the Shortcuts

	Exercises

	Chapter 8. Matching with Regular Expressions
	Matches with m//
	Match Modifiers
	Case-Insensitive Matching with /i
	Matching Any Character with /s
	Adding Whitespace with /x
	Combining Option Modifiers
	Choosing a Character Interpretation
	Other Options

	Anchors
	Word Anchors

	The Binding Operator =~
	Interpolating into Patterns
	The Match Variables
	The Persistence of Captures
	Noncapturing Parentheses
	Named Captures
	The Automatic Match Variables

	General Quantifiers
	Precedence
	Examples of Precedence
	And There’s More

	A Pattern Test Program
	Exercises

	Chapter 9. Processing Text with Regular
 Expressions
	Substitutions with s///
	Global Replacements with /g
	Different Delimiters
	Substitution Modifiers
	The Binding Operator
	Nondestructive Substitutions
	Case Shifting

	The split Operator
	The join Function
	m// in List Context
	More Powerful Regular Expressions
	Nongreedy Quantifiers
	Matching Multiple-Line Text
	Updating Many Files
	In-Place Editing from the Command Line

	Exercises

	Chapter 10. More Control Structures
	The unless Control Structure
	The else Clause with unless

	The until Control Structure
	Expression Modifiers
	The Naked Block Control Structure
	The elsif Clause
	Autoincrement and Autodecrement
	The Value of Autoincrement

	The for Control Structure
	The Secret Connection Between foreach and for

	Loop Controls
	The last Operator
	The next Operator
	The redo Operator
	Labeled Blocks

	The Conditional Operator ?:
	Logical Operators
	The Value of a Short Circuit Operator
	The defined-or Operator
	Control Structures Using Partial-Evaluation Operators

	Exercises

	Chapter 11. Perl Modules
	Finding Modules
	Installing Modules
	Using Your Own Directories

	Using Simple Modules
	The File::Basename Module
	Using Only Some Functions from a Module
	The File::Spec Module
	Path::Class
	CGI.pm
	Databases and DBI
	Dates and Times

	Exercises

	Chapter 12. File Tests
	File Test Operators
	Testing Several Attributes of the Same File
	Stacked File Test Operators

	The stat and lstat Functions
	The localtime Function
	Bitwise Operators
	Using Bitstrings

	Exercises

	Chapter 13. Directory Operations
	Moving Around the Directory Tree
	Globbing
	An Alternate Syntax for Globbing
	Directory Handles
	Recursive Directory Listing
	Manipulating Files and Directories
	Removing Files
	Renaming Files
	Links and Files
	Making and Removing Directories
	Modifying Permissions
	Changing Ownership
	Changing Timestamps
	Exercises

	Chapter 14. Strings and Sorting
	Finding a Substring with index
	Manipulating a Substring with substr
	Formatting Data with sprintf
	Using sprintf with “Money Numbers”
	Interpreting Non-Decimal Numerals

	Advanced Sorting
	Sorting a Hash by Value
	Sorting by Multiple Keys

	Exercises

	Chapter 15. Smart Matching and given-when
	The Smart Match Operator
	Smart Match Precedence
	The given Statement
	Dumb Matching

	Using when with Many Items
	Exercises

	Chapter 16. Process Management
	The system Function
	Avoiding the Shell

	The Environment Variables
	The exec Function
	Using Backquotes to Capture Output
	Using Backquotes in a List Context

	External Processes with IPC::System::Simple
	Processes as Filehandles
	Getting Down and Dirty with Fork
	Sending and Receiving Signals
	Exercises

	Chapter 17. Some Advanced Perl Techniques
	Slices
	Array Slice
	Hash Slice

	Trapping Errors
	Using eval
	More Advanced Error Handling
	autodie

	Picking Items from a List with grep
	Transforming Items from a List with map
	Fancier List Utilities
	Exercises

	Appendix A. Exercise Answers
	Answers to Chapter 1 Exercises
	Answers to Chapter 2 Exercises
	Answers to Chapter 3 Exercises
	Answers to Chapter 4 Exercises
	Answers to Chapter 5 Exercises
	Answers to Chapter 6 Exercises
	Answers to Chapter 7 Exercises
	Answers to Chapter 8 Exercises
	Answers to Chapter 9 Exercises
	Answers to Chapter 10 Exercises
	Answer to Chapter 11 Exercises
	Answers to Chapter 12 Exercises
	Answers to Chapter 13 Exercises
	Answers to Chapter 14 Exercises
	Answers to Chapter 15 Exercises
	Answers to Chapter 16 Exercises
	Answer to Chapter 17 Exercises

	Appendix B. Beyond the Llama
	Further Documentation
	Regular Expressions
	Packages
	Extending Perl’s Functionality
	Libraries
	Writing Your Own Modules

	Databases
	Direct System Database Access
	Flat-File Database Access

	Other Operators and Functions
	Transliteration with tr///
	Here Documents

	Mathematics
	Advanced Math Functions
	Imaginary and Complex Numbers
	Large and High-Precision Numbers

	Lists and Arrays
	map and grep

	Bits and Pieces
	Formats
	Networking and IPC
	System V IPC
	Sockets

	Security
	Debugging
	Command-Line Options
	Built-in Variables
	Syntax Extensions
	References
	Complex Data Structures
	Object-Oriented Programming
	Anonymous Subroutines and Closures

	Tied Variables
	Operator Overloading
	Dynamic Loading
	Embedding
	Converting Other Languages to Perl
	Converting find Command Lines to Perl
	Command-Line Options in Your Programs
	Embedded Documentation
	More Ways to Open Filehandles
	Threads and Forking
	Graphical User Interfaces (GUIs)
	And More…

	Appendix C. A Unicode Primer
	Unicode
	UTF-8 and Friends
	Getting Everyone to Agree
	Fancy Characters
	Fancier Characters

	Dealing with Unicode in Perl
	Using Unicode in Your Source
	Fancier Characters by Name
	Reading from or Writing to STDOUT or STDERR
	Reading from and Writing to Files
	Dealing with Command-Line Arguments
	Dealing with Databases

	Further Reading

	Index

