
BARBARA CHAPMAN,

GABRIELE JOST,

AND RUUD VAN DER PAS
C

H
A

P
M

A
N

, JO
S

T,

A
N

D
 V

A
N

 D
E

R
 P

A
S

foreword by

DAVID J . KUCK

Using OpenMP

PORTABLE SHARED MEMORY PARALLEL PROGRAMMING

SCIENTIFIC

AND

ENGINEERING

COMPUTATION

SERIES

U
s

in
g

 O
p

e
n

M
P

COMPUTER SCIENCE

OpenMP, a portable programming interface for shared memory parallel com-

puters, was adopted as an informal standard in 1997 by computer scientists

who wanted a unified model on which to base programs for shared memory

systems. OpenMP is now used by many software developers; it offers signif-

icant advantages over both hand-threading and MPI. Using OpenMP offers

a comprehensive introduction to parallel programming concepts and a

detailed overview of OpenMP.

Using OpenMP discusses hardware developments, describes where OpenMP

is applicable, and compares OpenMP to other programming interfaces for

shared and distributed memory parallel architectures. It introduces the

individual features of OpenMP, provides many source code examples that

demonstrate the use and functionality of the language constructs, and offers

tips on writing an efficient OpenMP program. It describes how to use

OpenMP in full-scale applications to achieve high performance on large-scale

architectures, discussing several case studies in detail, and offers in-depth

troubleshooting advice. It explains how OpenMP is translated into explicitly

multithreaded code, providing a valuable behind-the-scenes account of

OpenMP program performance. Finally, Using OpenMP considers trends likely

to influence OpenMP development, offering a glimpse of the possibilities of

a future OpenMP 3.0 from the vantage point of the current OpenMP 2.5.

With multicore computer use increasing, the need for a comprehensive

introduction and overview of the standard interface is clear. Using OpenMP

provides an essential reference not only for students at both undergraduate

and graduate levels but also for professionals who intend to parallelize

existing codes or develop new parallel programs for shared memory com-

puter architectures.

Barbara Chapman is Professor of Computer Science at the University of

Houston. Gabriele Jost is Principal Member of Technical Staff, Application

Server Performance Engineering, at Oracle, Inc. Ruud van der Pas is Senior

Staff Engineer at Sun Microsystems, Menlo Park.

“I hope that readers will learn to use the full expressibility and power of

OpenMP. This book should provide an excellent introduction to beginners,

and the performance section should help those with some experience who

want to push OpenMP to its limits.”

from the foreword by David J. Kuck, Intel Fellow, Software and Solutions Group,

and Director, Parallel and Distributed Solutions, Intel Corporation

“The advent of readily available, inexpensive multicore processors has

made parallel programming more important and more accessible than ever

before. OpenMP is a popular way to write parallel programs, and this book

makes OpenMP knowledge available to the average programmer in an

understandable, easy-to-apply fashion, while still providing information

for those who wish to dive more deeply into the subject.”

Larry Meadows, CEO, the OpenMP ARB

SCIENTIFIC AND ENGINEERING COMPUTATION SERIES

T H E M I T P R E S S M A S S A C H U S E T T S I N S T I T U T E O F T E C H N O L O G Y C A M B R I D G E , M A S S A C H U S E T T S 0 2 1 4 2 H T T P : / / M I T P R E S S . M I T. E D U

978-0-262-53302-7

Using OpenMP

PORTABLE SHARED MEMORY PARALLEL PROGRAMMING

Barbara Chapman, Gabriele Jost, and Ruud van der Pas

foreword by David J. Kuck

Using OpenMP

Scientific and Engineering Computation
William Gropp and Ewing Lusk, editors; Janusz Kowalik, founding editor

Data-Parallel Programming on MIMD Computers, Philip J. Hatcher and Michael J. Quinn, 1991

Unstructured Scientific Computation on Scalable Multiprocessors, edited by Piyush Mehrotra,

Joel Saltz, and Robert Voigt, 1992

Parallel Computational Fluid Dynamics: Implementation and Results, edited by Horst

D. Simon, 1992

Enterprise Integration Modeling: Proceedings of the First International Conference, edited by

Charles J. Petrie, Jr., 1992

The High Performance Fortran Handbook, Charles H. Koelbel, David B. Loveman, Robert

S. Schreiber, Guy L. Steele Jr., and Mary E. Zosel, 1994

PVM: Parallel Virtual Machine—A Users’ Guide and Tutorial for Network Parallel
Computing, Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Bob Manchek, and
Vaidy Sunderam, 1994

Practical Parallel Programming, Gregory V. Wilson, 1995

Enabling Technologies for Petaflops Computing, Thomas Sterling, Paul Messina, and Paul

H. Smith, 1995

An Introduction to High-Performance Scientific Computing, Lloyd D. Fosdick, Elizabeth

R. Jessup, Carolyn J. C. Schauble, and Gitta Domik, 1995

Parallel Programming Using C++, edited by Gregory V. Wilson and Paul Lu, 1996

Using PLAPACK: Parallel Linear Algebra Package, Robert A. van de Geijn, 1997

Fortran 95 Handbook, Jeanne C. Adams, Walter S. Brainerd, Jeanne T. Martin, Brian T. Smith,

and Jerrold L. Wagener, 1997

MPI—The Complete Reference: Volume 1, The MPI Core, Marc Snir, Steve Otto, Steven

Huss-Lederman, David Walker, and Jack Dongarra, 1998

MPI—The Complete Reference: Volume 2, The MPI-2 Extensions, William Gropp, Steven
Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, Bill Nitzberg, William Saphir, and Marc Snir,
1998

A Programmer’s Guide to ZPL, Lawrence Snyder, 1999

How to Build a Beowulf, Thomas L. Sterling, John Salmon, Donald J. Becker, and Daniel

F. Savarese, 1999

Using MPI: Portable Parallel Programming with the Message-Passing Interface, second
edition, William Gropp, Ewing Lusk, and Anthony Skjellum, 1999

Using MPI-2: Advanced Features of the Message-Passing Interface, William Gropp, Ewing

Lusk, and Rajeev Thakur, 1999

Beowulf Cluster Computing with Linux, Thomas Sterling, 2001

Beowulf Cluster Computing with Windows, Thomas Sterling, 2001

Scalable Input/Output: Achieving System Balance, Daniel A. Reed, 2003

Using OpenMP
Portable Shared Memory Parallel Programming

Barbara Chapman, Gabriele Jost, Ruud van der Pas

The MIT Press
Cambridge, Massachusetts
London, England

c© 2008 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or
mechanical means (including photocopying, recording, or information storage and retrieval)
without permission in writing from the publisher.

This book was set in LATEX by the authors and was printed and bound in the United States of
America.

Library of Congress Cataloging-in-Publication Data

Chapman, Barbara, 1954-
Using OpenMP : portable shared memory parallel programming / Barbara Chapman, Gabriele

Jost, Ruud van der Pas.
p. cm. – (Scientific and engineering computation)

Includes bibliographical references and index.
ISBN-13: 978-0-262-53302-7 (paperback : alk. paper)
1. Parallel programming (Computer science) 2. Application program interfaces

(Computer software) I. Jost, Gabriele. II. Pas, Ruud van der. III. Title.
QA76.642.C49 2007
005.2’75–dc22

2007026656

Dedicated to the memory of Ken Kennedy, who inspired in so many of us a
passion for High Performance Computing

Contents

Series Foreword xiii
Foreword xv
Preface xix

1 Introduction 1

1.1 Why Parallel Computers Are Here to Stay 1

1.2 Shared-Memory Parallel Computers 3

1.2.1 Cache Memory Is Not Shared 4
1.2.2 Implications of Private Cache Memory 6

1.3 Programming SMPs and the Origin of OpenMP 6

1.3.1 What Are the Needs? 7
1.3.2 A Brief History of Saving Time 7

1.4 What Is OpenMP? 8

1.5 Creating an OpenMP Program 9

1.6 The Bigger Picture 11

1.7 Parallel Programming Models 13

1.7.1 Realization of Shared- and Distributed-Memory
Models

14

1.8 Ways to Create Parallel Programs 15

1.8.1 A Simple Comparison 16
1.9 A Final Word 21

2 Overview of OpenMP 23

2.1 Introduction 23

2.2 The Idea of OpenMP 23

2.3 The Feature Set 25

2.3.1 Creating Teams of Threads 25
2.3.2 Sharing Work among Threads 26
2.3.3 The OpenMP Memory Model 28
2.3.4 Thread Synchronization 29
2.3.5 Other Features to Note 30

2.4 OpenMP Programming Styles 31

viii Contents

2.5 Correctness Considerations 32

2.6 Performance Considerations 33

2.7 Wrap-Up 34

3 Writing a First OpenMP Program 35

3.1 Introduction 35

3.2 Matrix Times Vector Operation 37

3.2.1 C and Fortran Implementations of the Problem 38
3.2.2 A Sequential Implementation of the Matrix Times

Vector Operation
38

3.3 Using OpenMP to Parallelize the Matrix Times Vector
Product

41

3.4 Keeping Sequential and Parallel Programs as a Single
Source Code

47

3.5 Wrap-Up 50

4 OpenMP Language Features 51

4.1 Introduction 51

4.2 Terminology 52

4.3 Parallel Construct 53

4.4 Sharing the Work among Threads in an OpenMP Program 57

4.4.1 Loop Construct 58
4.4.2 The Sections Construct 60
4.4.3 The Single Construct 64
4.4.4 Workshare Construct 66
4.4.5 Combined Parallel Work-Sharing Constructs 68

4.5 Clauses to Control Parallel and Work-Sharing Constructs 70

4.5.1 Shared Clause 71
4.5.2 Private Clause 72
4.5.3 Lastprivate Clause 73
4.5.4 Firstprivate Clause 75
4.5.5 Default Clause 77
4.5.6 Nowait Clause 78

Contents ix

4.5.7 Schedule Clause 79
4.6 OpenMP Synchronization Constructs 83

4.6.1 Barrier Construct 84
4.6.2 Ordered Construct 86
4.6.3 Critical Construct 87
4.6.4 Atomic Construct 90
4.6.5 Locks 93
4.6.6 Master Construct 94

4.7 Interaction with the Execution Environment 95

4.8 More OpenMP Clauses 100

4.8.1 If Clause 100
4.8.2 Num threads Clause 102
4.8.3 Ordered Clause 102
4.8.4 Reduction Clause 105
4.8.5 Copyin Clause 110
4.8.6 Copyprivate Clause 110

4.9 Advanced OpenMP Constructs 111

4.9.1 Nested Parallelism 111
4.9.2 Flush Directive 114
4.9.3 Threadprivate Directive 118

4.10 Wrap-Up 123

5 How to Get Good Performance by Using
OpenMP

125

5.1 Introduction 125

5.2 Performance Considerations for Sequential Programs 125

5.2.1 Memory Access Patterns and Performance 126
5.2.2 Translation-Lookaside Buffer 128
5.2.3 Loop Optimizations 129
5.2.4 Use of Pointers and Contiguous Memory in C 136
5.2.5 Using Compilers 137

5.3 Measuring OpenMP Performance 138

5.3.1 Understanding the Performance of an OpenMP
Program

140

x Contents

5.3.2 Overheads of the OpenMP Translation 142
5.3.3 Interaction with the Execution Environment 143

5.4 Best Practices 145

5.4.1 Optimize Barrier Use 145
5.4.2 Avoid the Ordered Construct 147
5.4.3 Avoid Large Critical Regions 147
5.4.4 Maximize Parallel Regions 148
5.4.5 Avoid Parallel Regions in Inner Loops 148
5.4.6 Address Poor Load Balance 150

5.5 Additional Performance Considerations 152

5.5.1 The Single Construct Versus the Master Construct 153
5.5.2 Avoid False Sharing 153
5.5.3 Private Versus Shared Data 156

5.6 Case Study: The Matrix Times Vector Product 156

5.6.1 Testing Circumstances and Performance Metrics 157
5.6.2 A Modified OpenMP Implementation 158
5.6.3 Performance Results for the C Version 159
5.6.4 Performance Results for the Fortran Version 164

5.7 Fortran Performance Explored Further 167

5.8 An Alternative Fortran Implementation 180

5.9 Wrap-Up 189

6 Using OpenMP in the Real World 191

6.1 Scalability Challenges for OpenMP 191

6.2 Achieving Scalability on cc-NUMA Architectures 193

6.2.1 Memory Placement and Thread Binding: Why Do
We Care?

193

6.2.2 Examples of Vendor-Specific cc-NUMA Support 196
6.2.3 Implications of Data and Thread Placement on

cc-NUMA Performance
199

6.3 SPMD Programming 200

Case Study 1: A CFD Flow Solver 201
6.4 Combining OpenMP and Message Passing 207

6.4.1 Case Study 2: The NAS Parallel Benchmark BT 211

Contents xi

6.4.2 Case Study 3: The Multi-Zone NAS Parallel
Benchmarks

214

6.5 Nested OpenMP Parallelism 216

6.5.1 Case Study 4: Employing Nested OpenMP for
Multi-Zone CFD Benchmarks

221

6.6 Performance Analysis of OpenMP Programs 228

6.6.1 Performance Profiling of OpenMP Programs 228
6.6.2 Interpreting Timing Information 230
6.6.3 Using Hardware Counters 239

6.7 Wrap-Up 241

7 Troubleshooting 243

7.1 Introduction 243

7.2 Common Misunderstandings and Frequent Errors 243

7.2.1 Data Race Conditions 243
7.2.2 Default Data-Sharing Attributes 246
7.2.3 Values of Private Variables 249
7.2.4 Problems with the Master Construct 250
7.2.5 Assumptions about Work Scheduling 252
7.2.6 Invalid Nesting of Directives 252
7.2.7 Subtle Errors in the Use of Directives 255
7.2.8 Hidden Side Effects, or the Need for Thread Safety 255

7.3 Deeper Trouble: More Subtle Problems 259

7.3.1 Memory Consistency Problems 259
7.3.2 Erroneous Assumptions about Memory Consistency 262
7.3.3 Incorrect Use of Flush 264
7.3.4 A Well-Masked Data Race 266
7.3.5 Deadlock Situations 268

7.4 Debugging OpenMP Codes 271

7.4.1 Verification of the Sequential Version 271
7.4.2 Verification of the Parallel Code 272
7.4.3 How Can Tools Help? 272

7.5 Wrap-Up 276

xii Contents

8 Under the Hood: How OpenMP Really Works 277

8.1 Introduction 277

8.2 The Basics of Compilation 278

8.2.1 Optimizing the Code 279
8.2.2 Setting Up Storage for the Program’s Data 280

8.3 OpenMP Translation 282

8.3.1 Front-End Extensions 283
8.3.2 Normalization of OpenMP Constructs 284
8.3.3 Translating Array Statements 286
8.3.4 Translating Parallel Regions 286
8.3.5 Implementing Worksharing 291
8.3.6 Implementing Clauses on Worksharing Constructs 294
8.3.7 Dealing with Orphan Directives 297
8.3.8 OpenMP Data Environment 298
8.3.9 Do Idle Threads Sleep? 300
8.3.10 Handling Synchronization Constructs 302

8.4 The OpenMP Runtime System 303

8.5 Impact of OpenMP on Compiler Optimizations 304

8.6 Wrap-Up 304

9 The Future of OpenMP 307

9.1 Introduction 307

9.2 The Architectural Challenge 309

9.3 OpenMP for Distributed-Memory Systems 311

9.4 Increasing the Expressivity of OpenMP 312

9.4.1 Enhancing OpenMP Features 312
9.4.2 New Features and New Kinds of Applications 314

9.5 How Might OpenMP Evolve? 317

9.6 In Conclusion 318

A Glossary 321

References 331
Index 349

Series Foreword

The Scientific and Engineering Computation Series from MIT Press aims to provide
practical and immediately usable information to scientists and engineers engaged
at the leading edge of modern computing. Aspects of modern computing first
presented in research papers and at computer science conferences are presented
here with the intention of accelerating the adoption and impact of these ideas in
scientific and engineering applications. Such aspects include parallelism, language
design and implementation, systems software, numerical libraries, and scientific
visualization.

This book is a tutorial on OpenMP, an approach to writing parallel programs for
the shared-memory model of parallel computation. Now that all commodity proces-
sors are becoming multicore, OpenMP provides one of the few programming models
that allows computational scientists to easily take advantage of the parallelism of-
fered by these processors. This book includes a complete description of how to
use OpenMP in both C and Fortran for real-world programs, provides suggestions
for achieving high performance with OpenMP, and discusses how OpenMP-enabled
compilers work. The book concludes with a discussion of future directions for
OpenMP.

William Gropp and Ewing Lusk, Editors

Foreword

Programming languages evolve just as natural languages do, driven by human de-
sires to express thoughts more cleverly, succinctly, or elegantly than in the past.
A big difference is the fact that one key receiver of programs is nonhuman. These
nonhumans evolve faster than humans do, helping drive language mutation after
mutation, and—together with the human program writers and readers—naturally
selecting among the mutations.

In the 1970s, vector and parallel computer evolution was on the move. Program-
ming assistance was provided by language extensions—first to Fortran and then
to C—in the form of directives and pragmas, respectively. Vendors differentiated
themselves by providing “better” extensions than did their competitors; and by
the mid-1980s things had gotten out of hand for software vendors. At Kuck and
Associates (KAI), we had the problem of dealing with the whole industry, so Bruce
Leasure and I set out to fix things by forming an industrywide committee, the
Parallel Computing Forum (PCF). PCF struck a nerve and became very active.
In a few years we had a draft standard that we took through ANSI, and after a
few more years it became the ANSI X3.H5 draft. Our stamina gave out before it
became an official ANSI standard, but the industry paid attention, and extensions
evolved more uniformly.

This situation lasted for a few years, but the 1980s were a golden era for parallel
architectural evolution, with many people writing parallel programs, so extensions
again diverged, and programming needs grew. KAI took on the challenge of re-
thinking things and defining parallel profiling and correctness-checking tools at the
same time, with the goal of innovative software development products. By the
mid-1990s we had made a lot of progress and had discussed it a bit with some
hardware vendors. When SGI bought Cray in April 1996, they had an immediate
directive problem (two distinct extensions) and approached us about working with
them. Together we refined what we had, opened up to the industry, and formed
the Architecture Review Board (ARB). OpenMP was born 18 months later, as the
New York Times reported:

NEW STANDARD FOR PARALLEL PROCESSING WORKSTATIONS

Compaq, Digital, Intel, IBM and Silicon Graphics have agreed to

support OpenMP, a new standard developed by Silicon Graphics and

Kuck & Associates to allow programmers to write a single version

of their software that will run on parallel processor computers

using Unix or Windows NT operating systems. The new standard will

xvi Foreword

hasten the trend in which scientists and engineers choose high-end

workstations rather than supercomputers for complex computational

applications. (NYT 28 Oct. 1997)

OpenMP has been adopted by many software developers in the past decade, but it
has competed with traditional hand threading at the one extreme and MPI at the
other. These alternatives are much lower-level expressions of parallelism: threading
allows more control, MPI more scalability. Both usually require much more initial
effort to think through the details of program control, data decomposition, and
expressing thoughts with assembly-language-style calls. The multicore revolution
now demands simple parallel application development, which OpenMP provides
with language extensions and tools. While OpenMP has limitations rooted in its
technical origins, the ARB continues to drive the standard forward.

The supercomputing needs of the New York Times article have now been largely
replaced by scalable clusters of commodity multicore processors. What was a work-
station is now a desktop or laptop multicore system. The need for effective parallel
software development continues to grow in importance.

This book provides an excellent introduction to parallel programming and Open-
MP. It covers the language, the performance of OpenMP programs (with one hun-
dred pages of details about Fortran and C), common sources of errors, scalability
via nested parallelism and combined OpenMP/MPI programs, OpenMP implemen-
tation issues, and future ideas. Few books cover the topics in this much detail; it
includes the new OpenMP 2.5 specification, as well as hints about OpenMP 3.0
discussions and issues.

The book should be welcomed by academia, where there is rising interest in un-
dergraduate parallel programming courses. Today, parallel programming is taught
in most universities, but only as a graduate course. With multicore processors now
used everywhere, introductory courses need to add parallel programming. Because
performance is little discussed in any undergraduate programming courses today,
parallel programming for performance is hard to incorporate. OpenMP helps to
bridge this gap because it can be added simply to sequential programs and comes
with multiple scheduling algorithms that can easily provide an experimental ap-
proach to parallel performance tuning.

OpenMP has some deceptive simplicities, both good and bad. It is easy to start
using, placing substantial burden on the system implementers. In that sense, it puts
off some experienced users and beginners with preconceived ideas about POSIX or
WinThreads, who decide that parallel programming can’t be that simple and who
want to indicate on which processor each thread is going to run (and other unnec-

Foreword xvii

essary details). OpenMP also allows for very strong correctness checking versus
the correctness of the sequential program to which OpenMP directives are added.
Intel Thread Checker and other tools can dynamically pinpoint, to the line num-
ber, most OpenMP parallel programming bugs. Thus, OpenMP implementations
indeed remove annoying burdens from developers. This book will help educate the
community about such benefits.

On the other hand, the simplicity of getting started with OpenMP can lead
one to believing that any sequential program can be made into a high-performance
parallel program, which is not true. Architectural and program constraints must be
considered in scaling up any parallel program. MPI forces one to think about this
immediately and in that sense is less seductive than OpenMP. However, OpenMP
scalability is being extended with nested parallelism and by Intel’s ClusterOpenMP
with new directives to distinguish shared- and distributed-memory variables. In
the end, a high-performance OpenMP or OpenMP/MPI program may need a lot
of work, but getting started with OpenMP remains quite easy, and this book treats
the intricacies of scaling via nesting and hybrid OpenMP/MPI.

OpenMP is supported by thriving organizations. The ARB membership now in-
cludes most of the world’s leading computer manufacturers and software providers.
The ARB is a technical body that works to define new features and fix problems.
Any interested programmer can join cOMPunity, a forum of academic and industrial
researchers and developers who help drive the standard forward.

I am pleased that the authors asked me to write this foreword, and I hope that
readers learn to use the full expressibility and power of OpenMP. This book should
provide an excellent introduction to beginners, and the performance section should
help those with some experience who want to push OpenMP to its limits.

David J. Kuck
Intel Fellow, Software and Solutions Group
Director, Parallel and Distributed Solutions
Intel Corporation
Urbana, IL, USA
March 14, 2007

Preface

At Supercomputing 1997, a major conference on High Performance Computing,
Networking, and Storage held in San Jose, California, a group of High Performance
Computing experts from industry and research laboratories used an informal “Birds
of a Feather” session to unveil a new, portable programming interface for shared-
memory parallel computers. They called it OpenMP. The proposers included repre-
sentatives from several hardware companies and from the software house Kuck and
Associates, as well as scientists from the Department of Energy who wanted a way
to write programs that could exploit the parallelism in shared memory machines
provided by several major hardware manufacturers.

This initiative could not have been more timely. A diversity of programming
models for those early shared-memory systems were in use. They were all different
enough to inhibit an easy port between them. It was good to end this undesirable
situation and propose a unified model.

A company was set up to own and maintain the new informal standard. It
was named the OpenMP Architecture Review Board (ARB). Since that time, the
number of vendors involved in the specification and maintenance of OpenMP has
steadily grown. There has been increased involvement of application developers,
compiler experts, and language specialists in the ARB too.

The original proposal provided directives, a user-level library, and several environ-
ment variables that could be used to turn Fortran 77 programs into shared-memory
parallel programs with minimal effort. Fairly soon after the first release, the speci-
fication was further developed to enable its use with C/C++ programs and to take
features of Fortran 90 more fully into account. Since then, the bindings for Fortran
and C/C++ have been merged, both for simplicity and to ensure that they are as
similar as possible. Over time, support for OpenMP has been added to more and
more compilers. So we can safely say that today OpenMP provides a compact,
yet flexible shared-memory programming model for Fortran, C, and C++ that is
widely available to application developers.

Many people collaborated in order to produce the first specification of OpenMP.
Since that time, many more have worked hard in the committees set up by the
ARB to clarify certain features of the language, to consider extensions, and to
make their implementations more compatible with each other. Proposals for a
standard means to support interactions between implementations and external tools
have been intensively debated. Ideas for new features have been implemented in
research prototypes. Other people have put considerable effort into promoting the
use of OpenMP and in teaching novices and experts alike how to utilize its features
to solve a variety of programming needs. One of the authors founded a not-for-

xx Preface

profit company called cOMPunity to help researchers participate more fully in the
evolution of OpenMP and to promote interactions between vendors, researchers,
and users. Many volunteers helped cOMPunity achieve its goals.

At the time of writing, hardware companies are poised to introduce a whole
new generation of computers. They are designing and building multicore platforms
capable of supporting the simultaneous execution of a growing number of threads
in a shared-memory system. Even laptops are already small parallel computers.
The question is when and how the software will be adapted to take advantage of
this trend. For a while, improved throughput is going to be the main benefit of
multicore technology. It is quite typical to deploy multiple independent activities
on a laptop or PC, but how many cores are needed for this? At some point, users
will expect individual applications to take advantage of the additional processing
power. To do so, a parallel programming model is required. We think OpenMP is
in a perfect position to satisfy this need — not only today, but also in the future.

Why a book on OpenMP? After all, the OpenMP specification can be downloaded
from the web. The answer lies in the fact that, although the specification has
been written in a relatively informal style and has numerous examples, it is still
not a particularly suitable starting point for learning how to write real programs.
Moreover, some of the factors that may influence a program’s performance are
not mentioned anywhere in that document. Despite its apparent simplicity, then,
additional information is needed. This book fills in those gaps.

Chapter 1 provides background information and explains where OpenMP is ap-
plicable, as well as how it differs from other programming interfaces.

Chapter 2 gives a brief overview of the features of OpenMP. It is intended as a
high-level introduction that can be read either before or after trying out OpenMP.
Among other topics, it explains how OpenMP deals with problems arising from the
complex memory hierarchy present on most modern computers.

Chapter 3 is an essential chapter for novice parallel programmers. It discusses a
complete OpenMP program (in both Fortran and C versions) that exploits a couple
of the most widely used features, and it explains the basics of the OpenMP syntax.

Chapter 4 provides an extensive overview of the OpenMP programming model,
with many examples. First, the most widely used features are introduced, with
a focus on those that enable work to be shared among multiple threads. Then,
some important additional elements of the API are presented. Finally, we de-
scribe some of OpenMP’s lesser-used parts. In the early sections, our examples are
straightforward. Later, we give solutions to some more challenging programming
problems.

Preface xxi

Chapters 5 and 6 discuss how to get good performance with OpenMP. We in-
clude a number of programming tips, along with an extended example that gives
insight into the process of investigating performance problems. With the growing
number of threads available on new platforms, the strategies given in Chapter 6 for
achieving higher levels of scalability are likely to be important for many application
developers.

Chapter 7 discusses problems of program correctness. Troubleshooting any ap-
plication can be hard, but shared-memory parallel programming adds another di-
mension to this effort. In particular, certain kinds of bugs are nondeterministic.
Whether they manifest themselves may depend on one or more external factors,
such as the number of threads used, the load on the system, the compiler, and the
OpenMP library implementation.

Chapter 8 shows how the compiler translates an OpenMP program to turn it into
an application capable of parallel execution. Since OpenMP provides a fairly high
level programming model, knowledge of what happens behind the scenes may help
the reader understand the impact of its translation and the workings of OpenMP-
aware compilers, performance tools, and debuggers. It may also give deeper insight
into techniques and strategies for obtaining high levels of performance.

Chapter 9 describes some of the trends that are likely to influence extensions to
the OpenMP specification. Included are comments on language features we expect
to be included in the reasonably near future.

Acknowledgments

A number of people have worked very hard to help maintain OpenMP, provide
feedback to users, debate and develop syntax for new language features, implement
those features, and teach others how to use them. It is their work that we present
here. We also acknowledge here the continuous efforts of many colleagues on the
various committees of the OpenMP Architecture Review Board. We particularly
mention Mark Bull, from the University of Edinburgh, without whom progress on
the language front is difficult to conceive.

We thank our colleagues who have contributed to the activities of cOMPunity,
which enables the participation of researchers and application developers in the
work of the ARB. These include Eduard Ayguade, Rudi Eigenmann, Dieter an
Mey, Mark Bull, Guy Robinson, and Mitsuhisa Sato.

We thank Michael Resch and colleagues at the High Performance Computing
Center (HLRS) of the University of Stuttgart, Germany, for providing logisitical
support for the creation of this manuscript and for offering a pleasant working

xxii Preface

environment and good company for one of us during a part of the writing phase.
We particularly thank Matthias Müller, originally from HLRS, but now at the
Dresden University of Technology, for his comments, encouragement, and support
and for getting us started with the publisher’s software.

Our sincere gratitude goes to the following organizations and individuals that
have helped us throughout the writing of this book: Lei Huang, Chunhua Liao,
and students in the HPC Tools lab at the University of Houston provided mate-
rial for some examples and criticized our efforts. We benefited from many helpful
discussions on OpenMP scalability issues with the staff of NASA Ames Research
Center. In particular, we thank Michael Aftosmis and Marsha Berger for the flow-
Cart example and Henry Jin for many interesting discussions of the NAS Parallel
Benchmarks and OpenMP in general. Our thanks go to colleagues at CEPBA (Eu-
ropean Center for Parallelism of Barcelona) and UPC (Universitat Politecnica de
Catalunya), especially Judit Gimenez and Jesus Labarta for fruitful collaborations
in performance analysis of large-scale OpenMP applications, and Eduard Ayguade,
Marc Gonzalez, and Xavier Martorell for sharing their experience in OpenMP com-
piler technology.

Nawal Copty, Eric Duncan, and Yuan Lin at Sun Microsystems gave their help
in answering a variety of questions on OpenMP in general and also on compiler and
library implementation issues.

We gratefully acknowledge copious feedback on draft versions of this book from
Tim Mattson (Intel Corporation) and Nawal Copty and Richard Friedman (both
at Sun Microsystems). They helped us find a number of mistakes and made many
suggestions for modifications and improvements. Remaining errors are, of course,
entirely our responsibility.

Last but not least, our gratitude goes to our families for their continued patience
and encouragement. Special thanks go to Dave Barker (a husband) for tolerating
awakening to the sound of a popcorn popper (the keyboard) in the wee hours and
for providing helpful feedback throughout the project; to Carola and Jonathan
(two children) for cheerfully putting up with drafts of book chapters lying around
in many likely, and some unlikely, places; and to Marion, Vincent, Stéphanie, and
Juliette, who never complained and who provided loving support throughout this
journey.

Using OpenMP

1 Introduction

OpenMP enables the creation of shared-memory parallel programs. In this chapter,
we describe the evolution of computers that has led to the specification of OpenMP
and that has made it relevant to mainstream computing. We put our subject matter
into a broader context by giving a brief overview of parallel computing and the main
approaches taken to create parallel programs. Our discussion of these topics is not
intended to be comprehensive.

1.1 Why Parallel Computers Are Here to Stay

No matter how fast computers are, technology is being developed to make them
even faster. Our appetite for compute power and memory seems insatiable. A more
powerful machine leads to new kinds of applications, which in turn fuel our demand
for yet more powerful systems. The result of this continued technological progress
is nothing short of breathtaking: the laptops a couple of us are using to type this
script would have been among the fastest machines on the planet just a decade ago,
if they had been around at the time.

In order to achieve their breakneck speed, today’s computer systems are highly
complex [85]. They are made up of multiple components, or functional units, that
may be able to operate simultaneously and have specific tasks, such as adding two
integer numbers or determining whether a value is greater than zero. As a result, a
computer might be able to fetch a datum from memory, multiply two floating-point
numbers, and evaluate a branch condition all at the same time. This is a very low
level of parallel processing and is often referred to as “instruction-level parallelism,”
or ILP. A processor that supports this is said to have a superscalar architecture.
Nowadays it is a common feature in general-purpose microprocessors, even those
used in laptops and PCs.

Careful reordering of these operations may keep the machine’s components busy.
The lion’s share of the work of finding such a suitable ordering of operations is
performed by the compiler (although it can be supported in hardware). To accom-
plish this, compiler writers developed techniques to determine dependences between
operations and to find an ordering that efficiently utilizes the instruction-level par-
allelism and keeps many functional units and paths to memory busy with useful
work. Modern compilers put considerable effort into this kind of instruction-level
optimization. For instance, software pipelining may modify the sequence of in-
structions in a loop nest, often overlapping instructions from different iterations to
ensure that as many instructions as possible complete every clock cycle. Unfortu-
nately, several studies [95] showed that typical applications are not likely to contain

2 Chapter 1

more than three or four different instructions that can be fed to the computer at a
time in this way. Thus, there is limited payoff for extending the hardware support
for this kind of instruction-level parallelism.

Back in the 1980s, several vendors produced computers that exploited another
kind of architectural parallelism.1 They built machines consisting of multiple com-
plete processors with a common shared memory. These shared-memory parallel, or
multiprocessor, machines could work on several jobs at once, simply by parceling
them out to the different processors. They could process programs with a variety
of memory needs, too, and were thus suitable for many different workloads. As a
result, they became popular in the server market, where they have remained impor-
tant ever since. Both small and large shared-memory parallel computers (in terms
of number of processors) have been built: at the time of writing, many of them have
two or four CPUs, but there also exist shared-memory systems with more than a
thousand CPUs in use, and the number that can be configured is growing. The
technology used to connect the processors and memory has improved significantly
since the early days [44]. Recent developments in hardware technology have made
architectural parallelism of this kind important for mainstream computing.

In the past few decades, the components used to build both high-end and desktop
machines have continually decreased in size. Shortly before 1990, Intel announced
that the company had put a million transistors onto a single chip (the i860). A
few years later, several companies had fit 10 million onto a chip. In the meantime,
technological progress has made it possible to put billions of transistors on a single
chip. As data paths became shorter, the rate at which instructions were issued
could be increased. Raising the clock speed became a major source of advances in
processor performance. This approach has inherent limitations, however, particu-
larly with respect to power consumption and heat emission, which is increasingly
hard to dissipate.

Recently, therefore, computer architects have begun to emphasize other strategies
for increasing hardware performance and making better use of the available space on
the chip. Given the limited usefulness of adding functional units, they have returned
to the ideas of the 1980s: multiple processors that share memory are configured in a
single machine and, increasingly, on a chip. This new generation of shared-memory
parallel computers is inexpensive and is intended for general-purpose usage.

Some recent computer designs permit a single processor to execute multiple in-
struction streams in an interleaved way. Simultaneous multithreading, for example,
interleaves instructions from multiple applications in an attempt to use more of the

1Actually, the idea was older than that, but it didn’t take off until the 1980s.

Introduction 3

hardware components at any given time. For instance, the computer might add two
values from one set of instructions and, at the same time, fetch a value from memory
that is needed to perform an operation in a different set of instructions. An ex-
ample is Intel’s hyperthreadingTM technology. Other recent platforms (e.g., IBM’s
Power5, AMD’s Opteron and Sun’s UltraSPARC IV, IV+, and T1 processors) go
even further, replicating substantial parts of a processor’s logic on a single chip and
behaving much like shared-memory parallel machines. This approach is known as
multicore. Simultaneous multithreading platforms, multicore machines, and shared-
memory parallel computers all provide system support for the execution of multiple
independent instruction streams, or threads. Moreover, these technologies may be
combined to create computers that can execute high numbers of threads.

Given the limitations of alternative strategies for creating more powerful com-
puters, the use of parallelism in general-purpose hardware is likely to be more
pronounced in the near future. Some PCs and laptops are already multicore or
multithreaded. Soon, processors will routinely have many cores and possibly the
ability to execute multiple instruction streams within each core. In other words,
multicore technology is going mainstream [159]. It is vital that application soft-
ware be able to make effective use of the parallelism that is present in our hardware
[171]. But despite major strides in compiler technology, the programmer will need
to help, by describing the concurrency that is contained in application codes. In
this book, we will discuss one of the easiest ways in which this can be done.

1.2 Shared-Memory Parallel Computers

Throughout this book, we will refer to shared-memory parallel computers as SMPs.
Early SMPs included computers produced by Alliant, Convex, Sequent [146], En-
core, and Synapse [10] in the 1980s. Larger shared-memory machines included
IBM’s RP3 research computer [149] and commercial systems such as the BBN But-
terfly [23]. Later SGI’s Power Challenge [65] and Sun Microsystem’s Enterprise
servers entered the market, followed by a variety of desktop SMPs.

The term SMP was originally coined to designate a symmetric multiprocessor sys-
tem, a shared-memory parallel computer whose individual processors share memory
(and I/O) in such a way that each of them can access any memory location with
the same speed; that is, they have a uniform memory access (UMA) time. Many
small shared-memory machines are symmetric in this sense. Larger shared-memory
machines, however, usually do not satisfy this definition; even though the differ-
ence may be relatively small, some memory may be “nearer to” one or more of
the processors and thus accessed faster by them. We say that such machines have

4 Chapter 1

cache-coherent non-uniform memory access (cc-NUMA). Early innovative attempts
to build cc-NUMA shared-memory machines were undertaken by Kendall Square
Research (KSR1 [62]) and Denelcor (the Denelcor HEP). More recent examples
of large NUMA platforms with cache coherency are SGI’s Origin and Altix series,
HP’s Exemplar, and Sun Fire E25K.

Today, the major hardware vendors all offer some form of shared-memory parallel
computer, with sizes ranging from two to hundreds – and, in a few cases, thousands
– of processors.

Conveniently, the acronym SMP can also stand for “shared-memory parallel
computer,” and we will use it to refer to all shared-memory systems, including
cc-NUMA platforms. By and large, the programmer can ignore this difference,
although techniques that we will explore in later parts of the book can help take
cc-NUMA characteristics into account.

1.2.1 Cache Memory Is Not Shared

Somewhat confusing is the fact that even SMPs have some memory that is not
shared. To explain why this is the case and what the implications for applications
programming are, we present some background information. One of the major
challenges facing computer architects today is the growing discrepancy in processor
and memory speed. Processors have been consistently getting faster. But the more
rapidly they can perform instructions, the quicker they need to receive the values
of operands from memory. Unfortunately, the speed with which data can be read
from and written to memory has not increased at the same rate. In response,
the vendors have built computers with hierarchical memory systems, in which a
small, expensive, and very fast memory called cache memory, or “cache” for short,
supplies the processor with data and instructions at high rates [74]. Each processor
of an SMP needs its own private cache if it is to be fed quickly; hence, not all
memory is shared.

Figure 1.1 shows an example of a generic, cache-based dual-core processor. There
are two levels of cache. The term level is used to denote how far away (in terms
of access time) a cache is from the CPU, or core. The higher the level, the longer
it takes to access the cache(s) at that level. At level 1 we distinguish a cache for
data (“Data Cache”), one for instructions (“Instr. Cache”), and the “Translation-
Lookaside Buffer” (or TLB for short). The last of these is an address cache. It
is discussed in Section 5.2.2. These three caches are all private to a core: other
core(s) cannot access them. Our figure shows only one cache at the second level. It

Introduction 5

is most likely bigger than each of the level-1 caches, and it is shared by both cores.
It is also unified, which means that it contains instructions as well as data.

Level 1

������
�	
�
��
����

��
	
������

Level 2

����
�	����

����
���

����
����

����
����

����

���

�	����
����

Processor

Figure 1.1: Block diagram of a generic, cache-based dual core processor
– In this imaginary processor, there are two levels of cache. Those closest to the core are
called “level 1.” The higher the level, the farther away from the CPU (measured in access
time) the cache is. The level-1 cache is private to the core, but the cache at the second
level is shared. Both cores can use it to store and retrieve instructions, as well as data.

Data is copied into cache from main memory: blocks of consecutive memory
locations are transferred at a time. Since the cache is very small in comparison
to main memory, a new block may displace data that was previously copied in.
An operation can be (almost) immediately performed if the values it needs are
available in cache. But if they are not, there will be a delay while the corresponding
data is retrieved from main memory. Hence, it is important to manage cache
carefully. Since neither the programmer nor the compiler can directly put data
into—or remove data from—cache, it is useful to learn how to structure program
code to indirectly make sure that cache is utilized well.2

2The techniques developed to accomplish this task are useful for sequential programming, too.
They are briefly covered in Section 5.2.3

6 Chapter 1

1.2.2 Implications of Private Cache Memory

In a uniprocessor system, new values computed by the processor are written back
to cache, where they remain until their space is required for other data. At that
point, any new values that have not already been copied back to main memory are
stored back there. This strategy does not work for SMP systems. When a processor
of an SMP stores results of local computations in its private cache, the new values
are accessible only to code executing on that processor. If no extra precautions are
taken, they will not be available to instructions executing elsewhere on an SMP
machine until after the corresponding block of data is displaced from cache. But it
may not be clear when this will happen. In fact, since the old values might still be
in other private caches, code executing on other processors might continue to use
them even then.

This is known as the memory consistency problem. A number of strategies have
been developed to help overcome it. Their purpose is to ensure that updates to data
that have taken place on one processor are made known to the program running on
other processors, and to make the modified values available to them if needed. A
system that provides this functionality transparently is said to be cache coherent.

Fortunately, the OpenMP application developer does not need to understand how
cache coherency works on a given computer. Indeed, OpenMP can be implemented
on a computer that does not provide cache coherency, since it has its own set of rules
on how data is shared among the threads running on different processors. Instead,
the programmer must be aware of the OpenMP memory model, which provides for
shared and private data and specifies when updated shared values are guaranteed
to be available to all of the code in an OpenMP program.

1.3 Programming SMPs and the Origin of OpenMP

Once the vendors had the technology to build moderately priced SMPs, they needed
to ensure that their compute power could be exploited by individual applications.
This is where things got sticky. Compilers had always been responsible for adapting
a program to make best use of a machine’s internal parallelism. Unfortunately, it is
very hard for them to do so for a computer with multiple processors or cores. The
reason is that the compilers must then identify independent streams of instructions
that can be executed in parallel. Techniques to extract such instruction streams
from a sequential program do exist; and, for simple programs, it may be worthwhile
trying out a compiler’s automatic (shared-memory) parallelization options. How-
ever, the compiler often does not have enough information to decide whether it is

Introduction 7

possible to split up a program in this way. It also cannot make large-scale changes
to code, such as replacing an algorithm that is not suitable for parallelization. Thus,
most of the time the compiler will need some help from the user.

1.3.1 What Are the Needs?

To understand how programmers might express a code’s parallelism, the hardware
manufacturers looked carefully at existing technology. Beginning in the 1980s,
scientists engaged in solving particularly tough computational problems attempted
to exploit the SMPs of the day to speed up their code and to perform much larger
computations than were possible on a uniprocessor. To get the multiple processors
to collaborate to execute a single application, they looked for regions of code whose
instructions could be shared among the processors. Much of the time, they focused
on distributing the work in loop nests to the processors.

In most programs, code executed on one processor required results that had been
calculated on another one. In principle, this was not a problem because a value
produced by one processor could be stored in main memory and retrieved from
there by code running on other processors as needed. However, the programmer
needed to ensure that the value was retrieved after it had been produced, that is,
that the accesses occurred in the required order. Since the processors operated
independently of one another, this was a nontrivial difficulty: their clocks were not
synchronized, and they could and did execute their portions of the code at slightly
different speeds.

Accordingly, the vendors of SMPs in the 1980s provided special notation to spec-
ify how the work of a program was to be parceled out to the individual processors of
an SMP, as well as to enforce an ordering of accesses by different threads to shared
data. The notation mainly took the form of special instructions, or directives, that
could be added to programs written in sequential languages, especially Fortran.
The compiler used this information to create the actual code for execution by each
processor. Although this strategy worked, it had the obvious deficiency that a
program written for one SMP did not necessarily execute on another one.

1.3.2 A Brief History of Saving Time

Toward the end of the 1980s, vendors began to collaborate to improve this state of
affairs. An informal industry group called the Parallel Computing Forum (PCF)
agreed on a set of directives for specifying loop parallelism in Fortran programs;
their work was published in 1991 [59]. An official ANSI subcommittee called X3H5
was set up to develop an ANSI standard based on PCF. A document for the new

8 Chapter 1

standard was drafted in 1994 [19], but it was never formally adopted. Interest in
PCF and X3H5 had dwindled with the rise of other kinds of parallel computers that
promised a scalable and more cost-effective approach to parallel programming. The
X3H5 standardization effort had missed its window of opportunity.

But this proved to be a temporary setback. OpenMP was defined by the OpenMP
Architecture Review Board (ARB), a group of vendors who joined forces during the
latter half of the 1990s to provide a common means for programming a broad
range of SMP architectures. OpenMP was based on the earlier PCF work. The
first version, consisting of a set of directives that could be used with Fortran, was
introduced to the public in late 1997. OpenMP compilers began to appear shortly
thereafter. Since that time, bindings for C and C++ have been introduced, and the
set of features has been extended. Compilers are now available for virtually all SMP
platforms. The number of vendors involved in maintaining and further developing
its features has grown. Today, almost all the major computer manufacturers, major
compiler companies, several government laboratories, and groups of researchers
belong to the ARB.

One of the biggest advantages of OpenMP is that the ARB continues to work to
ensure that OpenMP remains relevant as computer technology evolves. OpenMP
is under cautious, but active, development; and features continue to be proposed
for inclusion into the application programming interface. Applications live vastly
longer than computer architectures and hardware technologies; and, in general, ap-
plication developers are careful to use programming languages that they believe will
be supported for many years to come. The same is true for parallel programming
interfaces.

1.4 What Is OpenMP?

OpenMP is a shared-memory application programming interface (API) whose fea-
tures, as we have just seen, are based on prior efforts to facilitate shared-memory
parallel programming. Rather than an officially sanctioned standard, it is an
agreement reached between the members of the ARB, who share an interest in a
portable, user-friendly, and efficient approach to shared-memory parallel program-
ming. OpenMP is intended to be suitable for implementation on a broad range of
SMP architectures. As multicore machines and multithreading processors spread in
the marketplace, it might be increasingly used to create programs for uniprocessor
computers also.

Like its predecessors, OpenMP is not a new programming language. Rather, it
is notation that can be added to a sequential program in Fortran, C, or C++ to

Introduction 9

describe how the work is to be shared among threads that will execute on different
processors or cores and to order accesses to shared data as needed. The appropriate
insertion of OpenMP features into a sequential program will allow many, perhaps
most, applications to benefit from shared-memory parallel architectures—often with
minimal modification to the code. In practice, many applications have considerable
parallelism that can be exploited.

The success of OpenMP can be attributed to a number of factors. One is its
strong emphasis on structured parallel programming. Another is that OpenMP is
comparatively simple to use, since the burden of working out the details of the
parallel program is up to the compiler. It has the major advantage of being widely
adopted, so that an OpenMP application will run on many different platforms.

But above all, OpenMP is timely. With the strong growth in deployment of
both small and large SMPs and other multithreading hardware, the need for a
shared-memory programming standard that is easy to learn and apply is accepted
throughout the industry. The vendors behind OpenMP collectively deliver a large
fraction of the SMPs in use today. Their involvement with this de facto standard
ensures its continued applicability to their architectures.

1.5 Creating an OpenMP Program

OpenMP’s directives let the user tell the compiler which instructions to execute
in parallel and how to distribute them among the threads that will run the code.
An OpenMP directive is an instruction in a special format that is understood by
OpenMP compilers only. In fact, it looks like a comment to a regular Fortran
compiler or a pragma to a C/C++ compiler, so that the program may run just
as it did beforehand if a compiler is not OpenMP-aware. The API does not have
many different directives, but they are powerful enough to cover a variety of needs.
In the chapters that follow, we will introduce the basic idea of OpenMP and then
each of the directives in turn, giving examples and discussing their main uses.

The first step in creating an OpenMP program from a sequential one is to identify
the parallelism it contains. Basically, this means finding instructions, sequences of
instructions, or even large regions of code that may be executed concurrently by
different processors.

Sometimes, this is an easy task. Sometimes, however, the developer must reor-
ganize portions of a code to obtain independent instruction sequences. It may even
be necessary to replace an algorithm with an alternative one that accomplishes
the same task but offers more exploitable parallelism. This can be a challenging
problem. Fortunately, there are some typical kinds of parallelism in programs, and

10 Chapter 1

a variety of strategies for exploiting them have been developed. A good deal of
knowledge also exists about algorithms and their suitability for parallel execution.
A growing body of literature is being devoted to this topic [102, 60] and to the de-
sign of parallel programs [123, 152, 72, 34]. In this book, we will introduce some of
these strategies by way of examples and will describe typical approaches to creating
parallel code using OpenMP.

The second step in creating an OpenMP program is to express, using OpenMP,
the parallelism that has been identified. A huge practical benefit of OpenMP is
that it can be applied to incrementally create a parallel program from an existing
sequential code. The developer can insert directives into a portion of the program
and leave the rest in its sequential form. Once the resulting program version has
been successfully compiled and tested, another portion of the code can be paral-
lelized. The programmer can terminate this process once the desired speedup has
been obtained.

Although creating an OpenMP program in this way can be easy, sometimes sim-
ply inserting directives is not enough. The resulting code may not deliver the
expected level of performance, and it may not be obvious how to remedy the situa-
tion. Later, we will introduce techniques that may help improve a parallel program,
and we will give insight into how to investigate performance problems. Armed with
this information, one may be able to take a simple OpenMP program and make it
run better, maybe even significantly better. It is essential that the resulting code be
correct, and thus we also discuss the perils and pitfalls of the process. Finding cer-
tain kinds of bugs in parallel programs can be difficult, so an application developer
should endeavor to prevent them by adopting best practices from the start.

Generally, one can quickly and easily create parallel programs by relying on the
implementation to work out the details of parallel execution. This is how OpenMP
directives work. Unfortunately, however, it is not always possible to obtain high
performance by a straightforward, incremental insertion of OpenMP directives into
a sequential program. To address this situation, OpenMP designers included several
features that enable the programmer to specify more details of the parallel code.
Later in the book, we will describe a completely different way of using OpenMP
to take advantage of these features. Although it requires quite a bit more work,
users may find that getting their hands downright dirty by creating the code for
each thread can be a lot of fun. And, this may be the ticket to getting OpenMP to
solve some very large problems on a very big machine.

Introduction 11

1.6 The Bigger Picture

Many kinds of computer architectures have been built that exploit parallelism [55].
In fact, parallel computing has been an indispensable technology in many cutting-
edge disciplines for several decades. One of the earliest kinds of parallel systems
were the powerful and expensive vector computers that used the idea of pipelining
instructions to apply the same operation to many data objects in turn (e.g., Cyber-
205 [114], CRAY-1 [155], Fujitsu Facom VP-200 [135]). These systems dominated
the high end of computing for several decades, and machines of this kind are still
deployed. Other platforms were built that simultaneously applied the same oper-
ation to many data objects (e.g. CM2 [80], MasPar [140]). Many systems have
been produced that connect multiple independent computers via a network; both
proprietary and off-the-shelf networks have been deployed. Early products based
on this approach include Intel’s iPSC series [28] and machines built by nCUBE
and Meiko [22]. Memory is associated with each of the individual computers in
the network and is thus distributed across the machine. These distributed-memory
parallel systems are often referred to as massively parallel computers (MPPs) be-
cause very large systems can be put together this way. Information on some of
the fastest machines built during the past decade and the technology used to build
them can be found at http://www.top500.org.

Many MPPs are in use today, especially for scientific computing. If distributed-
memory computers are designed with additional support that enables memory to be
shared between all the processors, they are also SMPs according to our definition.
Such platforms are often called distributed shared-memory computers (DSMs) to
emphasize the distinctive nature of this architecture (e.g., SGI Origin [106]). When
distributed-memory computers are constructed by using standard workstations or
PCs and an off-the-shelf network, they are usually called clusters [169]. Clusters,
which are often composed of SMPs, are much cheaper to build than proprietary
MPPs. This technology has matured in recent years, so that clusters are common
in universities and laboratories as well as in some companies. Thus, although SMPs
are the most widespread kind of parallel computer in use, there are many other kinds
of parallel machines in the marketplace, particularly for high-end applications.

Figure 1.2 shows the difference in these architectures: in (a) we see a shared-
memory system where processors share main memory but have their own private
cache; (b) depicts an MPP in which memory is distributed among the processors,
or nodes, of the system. The platform in (c) is identical to (b) except for the fact
that the distributed memories are accessible to all processors. The cluster in (d)
consists of a set of independent computers linked by a network.

12 Chapter 1

P

Shared Memory

Cache
… …

PP

PP PCache Cache

(a)

(c)

(b)

Memory Memory Memory

(d)

…

Cache-Coherent Interconnect

PP P

Memory Memory Memory

Network

…

Cache-Coherent Interconnect

Distributed Shared Memory

Non-Cache-Coherent Interconnect

Figure 1.2: Distributed- and shared-memory computers – The machine in
(a) has physically shared memory, whereas the others have distributed memory. However,
the memory in (c) is accessible to all processors.

An equally broad range of applications makes use of parallel computers [61].
Very early adopters of this technology came from such disciplines as aeronautics,
aerospace, and chemistry, where vehicles were designed, materials tested, and their
properties evaluated long before they were constructed. Scientists in many dis-
ciplines have achieved monumental insights into our universe by running parallel
programs that model real-world phenomena with high levels of accuracy. Theoret-
ical results were confirmed in ways that could not be done via experimentation.
Parallel computers have been used to improve the design and production of goods
from automobiles to packaging for refrigerators and to ensure that the designs com-
ply with pricing and behavioral constraints, including regulations. They have been
used to study natural phenomena that we are unable to fully observe, such as the
formation of galaxies and the interactions of molecules. But they are also rou-
tinely used in weather forecasting, and improvements in the accuracy of our daily
forecasts are mainly the result of deploying increasingly fast (and large) parallel
computers. More recently, they have been widely used in Hollywood and elsewhere

Introduction 13

to generate highly realistic film sequences and special effects. In this context, too,
the ability to build bigger parallel computers has led to higher-quality results, here
in the form of more realistic imagery. Of course, parallel computers are also used
to digitally remaster old film and to perform many other tasks involving image
processing. Other areas using substantial parallel computing include drug design,
financial and economic forecasting, climate modeling, surveillance, and medical
imaging. It is routine in many areas of engineering, chemistry, and physics, and
almost all commercial databases are able to exploit parallel machines.

1.7 Parallel Programming Models

Just as there are several different classes of parallel hardware, so too are there
several distinct models of parallel programming. Each of them has a number of
concrete realizations. OpenMP realizes a shared-memory (or shared address space)
programming model. This model assumes, as its name implies, that programs
will be executed on one or more processors that share some or all of the available
memory. Shared-memory programs are typically executed by multiple independent
threads (execution states that are able to process an instruction stream); the threads
share data but may also have some additional, private data. Shared-memory ap-
proaches to parallel programming must provide, in addition to a normal range of
instructions, a means for starting up threads, assigning work to them, and coordi-
nating their accesses to shared data, including ensuring that certain operations are
performed by only one thread at a time [15].

A different programming model has been proposed for distributed-memory sys-
tems. Generically referred to as “message passing,” this model assumes that pro-
grams will be executed by one or more processes, each of which has its own pri-
vate address space [69]. Message-passing approaches to parallel programming must
provide a means to initiate and manage the participating processes, along with
operations for sending and receiving messages, and possibly for performing special
operations across data distributed among the different processes. The pure message-
passing model assumes that processes cooperate to exchange messages whenever one
of them needs data produced by another one. However, some recent models are
based on “single-sided communication.” These assume that a process may inter-
act directly with memory across a network to read and write data anywhere on a
machine.

Various realizations of both shared- and distributed-memory programming mod-
els have been defined and deployed. An ideal API for parallel programming is
expressive enough to permit the specification of many parallel algorithms, is easy

14 Chapter 1

to use, and leads to efficient programs. Moreover, the more transparent its imple-
mentation is, the easier it is likely to be for the programmer to understand how to
obtain good performance. Unfortunately, there are trade-offs between these goals
and parallel programming APIs differ in the features provided and in the manner
and complexity of their implementation. Some are a collection of library routines
with which the programmer may specify some or all of the details of parallel execu-
tion (e.g., GA [141] and Pthreads [108] for shared-memory programming and MPI
for MPPs), while others such as OpenMP and HPF [101] take the form of addi-
tional instructions to the compiler, which is expected to utilize them to generate
the parallel code.

1.7.1 Realization of Shared- and Distributed-Memory Models

Initially, vendors of both MPPs and SMPs provided their own custom sets of in-
structions for exploiting the parallelism in their machines. Application developers
had to work hard to modify their codes when they were ported from one machine
to another. As the number of parallel machines grew and as more and more par-
allel programs were written, developers began to demand standards for parallel
programming. Fortunately, such standards now exist.

MPI, or the Message Passing Interface, was defined in the early 1990s by a
group of researchers and vendors who based their work on existing vendor APIs
[69, 137, 147]. It provides a comprehensive set of library routines for managing
processes and exchanging messages. MPI is widely used in high-end computing,
where problems are so large that many computers are needed to attack them. It
is comparatively easy to implement on a broad variety of platforms and therefore
provides excellent portability. However, the portability comes at a cost. Creating
a parallel program based on this API typically requires a major reorganization of
the original sequential code. The development effort can be large and complex
compared to a compiler-supported approach such as that offered by OpenMP.

One can also combine some programming APIs. In particular, MPI and OpenMP
may be used together in a program, which may be useful if a program is to be
executed on MPPs that consist of multiple SMPs (possibly with multiple cores
each). Reasons for doing so include exploiting a finer granularity of parallelism than
possible with MPI, reducing memory usage, or reducing network communication.
Various commercial codes have been programmed using both MPI and OpenMP.
Combining MPI and OpenMP effectively is nontrivial, however, and in Chapter 6
we return to this topic and to the challenge of creating OpenMP codes that will
work well on large systems.

Introduction 15

1.8 Ways to Create Parallel Programs

In this section, we briefly compare OpenMP with the most important alternatives
for programming shared-memory machines. Some vendors also provide custom
APIs on their platforms. Although such APIs may be fast (this is, after all, the
purpose of a custom API), programs written using them may have to be substan-
tially rewritten to function on a different machine. We do not consider APIs that
were not designed for broad use.

Automatic parallelization: Many compilers provide a flag, or option, for auto-
matic program parallelization. When this is selected, the compiler analyzes the
program, searching for independent sets of instructions, and in particular for loops
whose iterations are independent of one another. It then uses this information to
generate explicitly parallel code. One of the ways in which this could be realized is
to generate OpenMP directives, which would enable the programmer to view and
possibly improve the resulting code. The difficulty with relying on the compiler to
detect and exploit parallelism in an application is that it may lack the necessary
information to do a good job. For instance, it may need to know the values that
will be assumed by loop bounds or the range of values of array subscripts: but this
is often unknown ahead of run time. In order to preserve correctness, the compiler
has to conservatively assume that a loop is not parallel whenever it cannot prove
the contrary. Needless to say, the more complex the code, the more likely it is that
this will occur. Moreover, it will in general not attempt to parallelize regions larger
than loop nests. For programs with a simple structure, it may be worth trying this
option.

MPI: The Message Passing Interface [137] was developed to facilitate portable
programming for distributed-memory architectures (MPPs), where multiple pro-
cesses execute independently and communicate data as needed by exchanging mes-
sages. The API was designed to be highly expressive and to enable the creation of
efficient parallel code, as well as to be broadly implementable. As a result of its suc-
cess in these respects, it is the most widely used API for parallel programming in the
high-end technical computing community, where MPPs and clusters are common.
Since most vendors of shared-memory systems also provide MPI implementations
that leverage the shared address space, we include it here.

Creating an MPI program can be tricky. The programmer must create the code
that will be executed by each process, and this implies a good deal of reprogram-
ming. The need to restructure the entire program does not allow for incremental
parallelization as does OpenMP. It can be difficult to create a single program ver-
sion that will run efficiently on many different systems, since the relative cost of

16 Chapter 1

communicating data and performing computations varies from one system to an-
other and may suggest different approaches to extracting parallelism. Care must
be taken to avoid certain programming errors, particularly deadlock where two or
more processes each wait in perpetuity for the other to send a message. A good
introduction to MPI programming is provided in [69] and [147].

Since many MPPs consist of a collection of SMPs, MPI is increasingly mixed
with OpenMP to create a program that directly matches the hardware. A recent
revision of the standard, MPI-2 ([58]), facilitates their integration.

Pthreads: This is a set of threading interfaces developed by the IEEE (Institute of
Electrical and Electronics Engineers) committees in charge of specifying a Portable
Operating System Interface (POSIX). It realizes the shared-memory programming
model via a collection of routines for creating, managing and coordinating a col-
lection of threads. Thus, like MPI, it is a library. Some features were primarily
designed for uniprocessors, where context switching enables a time-sliced execu-
tion of multiple threads, but it is also suitable for programming small SMPs. The
Pthreads library aims to be expressive as well as portable, and it provides a fairly
comprehensive set of features to create, terminate, and synchronize threads and to
prevent different threads from trying to modify the same values at the same time: it
includes mutexes, locks, condition variables, and semaphores. However, program-
ming with Pthreads is much more complex than with OpenMP, and the resulting
code is likely to differ substantially from a prior sequential program (if there is one).
Even simple tasks are performed via multiple steps, and thus a typical program will
contain many calls to the Pthreads library. For example, to execute a simple loop in
parallel, the programmer must declare threading structures, create and terminate
the threads individually, and compute the loop bounds for each thread. If interac-
tions occur within loop iterations, the amount of thread-specific code can increase
substantially. Compared to Pthreads, the OpenMP API directives make it easy to
specify parallel loop execution, to synchronize threads, and to specify whether or
not data is to be shared. For many applications, this is sufficient.

1.8.1 A Simple Comparison

The code snippets below demonstrate the implementation of a dot product in each
of the programming APIs MPI, Pthreads, and OpenMP. We do not explain in detail
the features used here, as our goal is simply to illustrate the flavor of each, although
we will introduce those used in the OpenMP code in later chapters.

Introduction 17

Sequential Dot-Product

int main(argc,argv)

int argc;

char *argv[];

{

double sum;

double a [256], b [256];

int n;

n = 256;

for (i = 0; i < n; i++) {

a [i] = i * 0.5;

b [i] = i * 2.0;

}

sum = 0;

for (i = 1; i <= n; i++) {

sum = sum + a[i]*b[i];

}

printf ("sum = %f", sum);

}

The sequential program multiplies the individual elements of two arrays and saves
the result in the variable sum; sum is a so-called reduction variable.

Dot-Product in MPI

int main(argc,argv)

int argc;

char *argv[];

{

double sum, sum_local;

double a [256], b [256];

int n, numprocs, myid, my_first, my_last;

n = 256;

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD,&numprocs);

MPI_Comm_rank(MPI_COMM_WORLD,&myid);

18 Chapter 1

my_first = myid * n/numprocs;

my_last = (myid + 1) * n/numprocs;

for (i = 0; i < n; i++) {

a [i] = i * 0.5;

b [i] = i * 2.0;

}

sum_local = 0;

for (i = my_first; i < my_last; i++) {

sum_local = sum_local + a[i]*b[i];

}

MPI_Allreduce(&sum_local, &sum, 1, MPI_DOUBLE, MPI_SUM,

MPI_COMM_WORLD);

if (iam==0) printf ("sum = %f", sum);

}

Under MPI, all data is local. To implement the dot-product, each process builds
a partial sum, the sum of its local data. To do so, each executes a portion of the
original loop. Data and loop iterations are accordingly manually shared among
processors by the programmer. In a subsequent step, the partial sums have to be
communicated and combined to obtain the global result. MPI provides the global
communication routine MPI_Allreduce for this purpose.

Dot-Product in Pthreads

#define NUMTHRDS 4

double sum;

double a [256], b [256];

int status;

int n=256;

pthread_t thd[NUMTHRDS];

pthread_mutex_t mutexsum;

int main(argc,argv)

int argc;

char *argv[];

{

pthread_attr_t attr;

Introduction 19

for (i = 0; i < n; i++) {

a [i] = i * 0.5;

b [i] = i * 2.0;

}

thread_mutex_init(&mutexsum, NULL);

pthread_attr_init(&attr);

pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

for(i=0;i<NUMTHRDS;i++)

{

pthread_create(&thds[i], &attr, dotprod, (void *)i);

}

pthread_attr_destroy(&attr);

for(i=0;i<NUMTHRDS;i++) {

pthread_join(thds[i], (void **)&status);

}

printf ("sum = %f \n", sum);

pthread_mutex_destroy(&mutexsum);

pthread_exit(NULL);

}

void *dotprod(void *arg)

{

int myid, i, my_first, my_last;

double sum_local;

myid = (int)arg;

my_first = myid * n/NUMTHRDS;

my_last = (myid + 1) * n/NUMTHRDS;

sum_local = 0;

for (i = my_first; i <= my_last; i++) {

20 Chapter 1

sum_local = sum_local + a [i]*b[i];

}

pthread_mutex_lock (&mutex_sum);

sum = sum + sum_local;

pthread_mutex_unlock (&mutex_sum);

pthread_exit((void*) 0);

}

In the Pthreads programming API, all data is shared but logically distributed
among the threads. Access to globally shared data needs to be explicitly synchro-
nized by the user. In the dot-product implementation shown, each thread builds a
partial sum and then adds its contribution to the global sum. Access to the global
sum is protected by a lock so that only one thread at a time updates this variable.
We note that the implementation effort in Pthreads is as high as, if not higher than,
in MPI.

Dot-Product in OpenMP

int main(argc,argv)

int argc; char *argv[];

{

double sum;

double a [256], b [256];

int status;

int n=256;

for (i = 0; i < n; i++) {

a [i] = i * 0.5;

b [i] = i * 2.0;

}

sum = 0;

#pragma omp for reduction(+:sum)

for (i = 1; i <= n; i++) {

sum = sum + a[i]*b[i];

}

printf ("sum = %f \n", sum);

}

Introduction 21

Under OpenMP, all data is shared by default. In this case, we are able to paral-
lelize the loop simply by inserting a directive that tells the compiler to parallelize it,
and identifying sum as a reduction variable. The details of assigning loop iterations
to threads, having the different threads build partial sums and their accumulation
into a global sum are left to the compiler. Since (apart from the usual variable dec-
larations and initializations) nothing else needs to be specified by the programmer,
this code fragment illustrates the simplicity that is possible with OpenMP.

1.9 A Final Word

Given the trend toward bigger SMPs and multithreading computers, it is vital that
strategies and techniques for creating shared-memory parallel programs become
widely known. Explaining how to use OpenMP in conjunction with the major
programming languages Fortran, C, and C++ to write such parallel programs is
the purpose of this book. Under OpenMP, one can easily introduce threading in
such a way that the same program may run sequentially as well as in parallel. The
application developer can rely on the compiler to work out the details of the parallel
code or may decide to explicitly assign work to threads. In short, OpenMP is a
very flexible medium for creating parallel code.

The discussion of language features in this book is based on the OpenMP 2.5
specification, which merges the previously separate specifications for Fortran and
C/C++. At the time of writing, the ARB is working on the OpenMP 3.0 specifica-
tion, which will expand the model to provide additional convenience and expressiv-
ity for the range of architectures that it supports. Further information on this, as
well as up-to-date news, can be found at the ARB website http://www.openmp.org
and at the website of its user community, http://www.compunity.org. The com-
plete OpenMP specification can also be downloaded from the ARB website.

2 Overview of OpenMP

In this chapter we give an overview of the OpenMP programming interface and
compare it with other approaches to parallel programming for SMPs.

2.1 Introduction

The OpenMP Application Programming Interface (API) was developed to enable
portable shared memory parallel programming. It aims to support the paralleliza-
tion of applications from many disciplines. Moreover, its creators intended to pro-
vide an approach that was relatively easy to learn as well as apply. The API is
designed to permit an incremental approach to parallelizing an existing code, in
which portions of a program are parallelized, possibly in successive steps. This is
a marked contrast to the all-or-nothing conversion of an entire program in a single
step that is typically required by other parallel programming paradigms. It was
also considered highly desirable to enable programmers to work with a single source
code: if a single set of source files contains the code for both the sequential and
the parallel versions of a program, then program maintenance is much simplified.
These goals have done much to give the OpenMP API its current shape, and they
continue to guide the OpenMP Architecture Review Board (ARB) as it works to
provide new features.

2.2 The Idea of OpenMP

A thread is a runtime entity that is able to independently execute a stream of
instructions. OpenMP builds on a large body of work that supports the specification
of programs for execution by a collection of cooperating threads [15]. The operating
system creates a process to execute a program: it will allocate some resources to
that process, including pages of memory and registers for holding values of objects.
If multiple threads collaborate to execute a program, they will share the resources,
including the address space, of the corresponding process. The individual threads
need just a few resources of their own: a program counter and an area in memory
to save variables that are specific to it (including registers and a stack). Multiple
threads may be executed on a single processor or core via context switches; they may
be interleaved via simultaneous multithreading. Threads running simultaneously on
multiple processors or cores may work concurrently to execute a parallel program.

Multithreaded programs can be written in various ways, some of which permit
complex interactions between threads. OpenMP attempts to provide ease of pro-
gramming and to help the user avoid a number of potential programming errors,

24 Chapter 2

Initial Thread

Fork

Join

Team of Threads

Initial Thread

Figure 2.1: The fork-join programming model supported by OpenMP –
The program starts as a single thread of execution, the initial thread. A team of threads
is forked at the beginning of a parallel region and joined at the end.

by offering a structured approach to multithreaded programming. It supports the
so-called fork-join programming model [48], which is illustrated in Figure 2.1. Un-
der this approach, the program starts as a single thread of execution, just like a
sequential program. The thread that executes this code is referred to as the ini-
tial thread. Whenever an OpenMP parallel construct is encountered by a thread
while it is executing the program, it creates a team of threads (this is the fork),
becomes the master of the team, and collaborates with the other members of the
team to execute the code dynamically enclosed by the construct. At the end of
the construct, only the original thread, or master of the team, continues; all others
terminate (this is the join). Each portion of code enclosed by a parallel construct
is called a parallel region.

OpenMP expects the application developer to give a high-level specification of the
parallelism in the program and the method for exploiting that parallelism. Thus it
provides notation for indicating the regions of an OpenMP program that should be
executed in parallel; it also enables the provision of additional information on how
this is to be accomplished. The job of the OpenMP implementation is to sort out
the low-level details of actually creating independent threads to execute the code
and to assign work to them according to the strategy specified by the programmer.

Overview of OpenMP 25

2.3 The Feature Set

The OpenMP API comprises a set of compiler directives, runtime library routines,
and environment variables to specify shared-memory parallelism in Fortran and
C/C++ programs. An OpenMP directive is a specially formatted comment or
pragma that generally applies to the executable code immediately following it in
the program. A directive or OpenMP routine generally affects only those threads
that encounter it. Many of the directives are applied to a structured block of code,
a sequence of executable statements with a single entry at the top and a single
exit at the bottom in Fortran programs, and an executable statement in C/C++
(which may be a compound statement with a single entry and single exit). In other
words, the program may not branch into or out of blocks of code associated with
directives. In Fortran programs, the start and end of the applicable block of code
are explicitly marked by OpenMP directives. Since the end of the block is explicit
in C/C++, only the start needs to be marked.

OpenMP provides means for the user to

• create teams of threads for parallel execution,

• specify how to share work among the members of a team,

• declare both shared and private variables, and

• synchronize threads and enable them to perform certain operations exclusively
(i.e., without interference by other threads).

In the following sections, we give an overview of the features of the API. In
subsequent chapters we describe these features and show how they can be used to
create parallel programs.

2.3.1 Creating Teams of Threads

A team of threads is created to execute the code in a parallel region of an OpenMP
program. To accomplish this, the programmer simply specifies the parallel region
by inserting a parallel directive immediately before the code that is to be executed
in parallel to mark its start; in Fortran programs, the end is also marked by an
end parallel directive. Additional information can be supplied along with the
parallel directive. This is mostly used to enable threads to have private copies of
some data for the duration of the parallel region and to initialize that data. At the
end of a parallel region is an implicit barrier synchronization: this means that no
thread can progress until all other threads in the team have reached that point in

26 Chapter 2

the program. Afterwards, program execution continues with the thread or threads
that previously existed. If a team of threads executing a parallel region encounters
another parallel directive, each thread in the current team creates a new team
of threads and becomes its master. Nesting enables the realization of multilevel
parallel programs.

OpenMP is commonly used to incrementally parallelize an existing sequential
code, and this task is most easily accomplished by creating parallel regions one at
a time.

2.3.2 Sharing Work among Threads

If the programmer does not specify how the work in a parallel region is to be
shared among the executing threads, they will each redundantly execute all of the
code. This approach does not speed up the program. The OpenMP work-sharing
directives are provided for the programmer to state how the computation in a
structured block of code is to be distributed among the threads. Unless explicitly
overridden by the programmer, an implicit barrier synchronization also exists at
the end of a work-sharing construct. The choice of work-sharing method may have
a considerable bearing on the performance of the program.

Work Sharing and Loops Probably the most common work-sharing approach
is to distribute the work in a DO (Fortran) or for (C/C++) loop among the threads
in a team. To accomplish this, the programmer inserts the appropriate directive
immediately before each loop within a parallel region that is to be shared among
threads. Work-sharing directives cannot be applied to all kinds of loops that occur
in C/C++ code. Many programs, especially scientific applications, spend a large
fraction of their time in loops performing calculations on array elements and so this
strategy is widely applicable and often very effective.

All OpenMP strategies for sharing the work in loops assign one or more disjoint
sets of iterations to each thread. The programmer may specify the method used
to partition the iteration set. The most straightforward strategy assigns one con-
tiguous chunk of iterations to each thread. More complicated strategies include
dynamically computing the next chunk of iterations for a thread. If the program-
mer does not provide a strategy, then an implementation-defined default will be
used.

When Can the Work Be Shared? Not every loop can be parallelized in this
fashion. It must be possible to determine the number of iterations in the loop

Overview of OpenMP 27

upon entry, and this number may not change while the loop is executing. Loops
implemented via a while construct, for example, may not satisfy this condition.
Furthermore, a loop is suitable for sharing among threads only if its iterations are
independent. By this, we mean that the order in which the iterations are performed
has no bearing on the outcome. The job of the OpenMP programmer is to determine
whether this is the case, and sometimes a loop needs to be modified somewhat to
accomplish this.

Consider the nested loop in Fortran below which is typical for applications from
the field of computational fluid dynamics.

!$OMP PARALLEL

!$OMP DO

do 10 j = 1, jmax

i = 1

vv (i,j) = v (i,j,m)

do 60 i = 2, imax-1

vv (i,j) = vv (i-1,j) + b(i,j)

60 continue

i = imax

vv (i,j) = vv(i-1,j)

do 100 i = imax-1, 1, -1

vv (i,j) = vv (i+1,j) + a (i,j)

100 continue

10 continue

!$OMP END DO

!$OMP END PARALLEL

Loops 60 and 100 are not suitable for parallelization via work sharing. In loop 60,
the ith iteration writes array element vv(i,j) and in the i+1th iteration this value
is used. Thus iteration i+1 depends on the outcome of iteration i, and the order
in which they are executed must be maintained. A similar situation occurs with
regard to loop 100 where, for example, the second iteration writes vv(imax-2,j).
But this calculation uses the value of vv(imax-1,j) that was computed in the
previous iteration. All is not lost, however. With some thought one can see that
the outermost j loop is independent. Thus we can share the iterations of this loop
among the executing threads. The two comment lines at the start and end of the
example are all that is needed to achieve this in OpenMP.

The data reuse patterns illustrated in the inner loops are examples of data de-
pendence [25]. Data dependences prevent us from parallelizing a loop when a value

28 Chapter 2

that is written in one loop iteration is either written or read in another iteration.
The more complex the loop, the harder it can be to decide whether such depen-
dences exist. Keep in mind that the correct placement of the OpenMP directives
is the user’s responsibility and that on occasion some insight into the application
is needed to decide whether there really is a dependence.

Other Work-Sharing Strategies Other approaches may be used to assign work
to threads within a parallel region. One approach consists of giving distinct pieces
of work to the individual threads. This approach is suitable when independent
computations are to be performed and the order in which they are carried out is
irrelevant. It is straightforward to specify this by using the corresponding OpenMP
directive. Just as before, the programmer must ensure that the computations can
truly be executed in parallel. It is also possible to specify that just one thread
should execute a block of code in a parallel region.

Moreover, the OpenMP API contains a directive for sharing the work in For-
tran 90 array statements among threads. It also works for the Fortran 95 forall

construct. Such operations on an entire array contain considerable exploitable par-
allelism. The method of distributing the work to threads will be determined by the
compiler in this case.

2.3.3 The OpenMP Memory Model

OpenMP is based on the shared-memory model; hence, by default, data is shared
among the threads and is visible to all of them. Sometimes, however, one needs
variables that have thread-specific values. When each thread has its own copy of
a variable, so that it may potentially have a different value for each of them, we
say that the variable is private. For example, when a team of threads executes a
parallel loop, each thread needs its own value of the iteration variable. This case
is so important that the compiler enforces it; in other cases the programmer must
determine which variables are shared and which are private. Data can be declared
to be shared or private with respect to a parallel region or work-sharing construct.1

The use of private variables can be beneficial in several ways. They can reduce
the frequency of updates to shared memory. Thus, they may help avoid hot spots,
or competition for access to certain memory locations, which can be expensive
if large numbers of threads are involved. They can also reduce the likelihood of
remote data accesses on cc-NUMA platforms and may remove the need for some

1OpenMP also allows private data objects to persist between parallel regions.

Overview of OpenMP 29

synchronizations. The downside is that they will increase the program’s memory
footprint.

Threads need a place to store their private data at run time. For this, each thread
has its own special region in memory known as the thread stack. The application
developer may safely ignore this detail, with one exception: most compilers give
the thread stack a default size. But sometimes the amount of data that needs to
be saved there can grow to be quite large, as the compiler will use it to store other
information, too. Then the default size may not be large enough. Fortunately, the
application developer is usually provided with a means to increase the size of the
thread stack (for details, the manual should be consulted). Dynamically declared
data and persistent data objects require their own storage area. For those who
would like to know a little more about this, we describe how data is stored and
retrieved at run time in Chapter 8.

In Section 1.2.1 of Chapter 1, we explained that each processor of an SMP has a
small amount of private memory called cache. In Section 1.2.2 we showed that this
could potentially lead to trouble where shared data is concerned, as the new value
of a shared object might be in a cache somewhere on the system instead of main
memory, where other threads can access it. Fortunately, the OpenMP programmer
does not need to know how a specific system deals with this problem, since OpenMP
has its own rules about when shared data is visible to (or accessible by) all threads.
These rules state that the values of shared objects must be made available to all
threads at synchronization points. (We explain what these are in the next section.)
Between the synchronization points, threads may temporarily keep their updated
values in local cache. As a result, threads may temporarily have different values
for some shared objects. If one thread needs a value that was created by another
thread, then a synchronization point must be inserted into the code.

OpenMP also has a feature called flush, discussed in detail in Section 4.9.2, to
synchronize memory. A flush operation makes sure that the thread calling it has
the same values for shared data objects as does main memory. Hence, new values
of any shared objects updated by that thread are written back to shared memory,
and the thread gets any new values produced by other threads for the shared data
it reads. In some programming languages, a flush is known as a memory fence,
since reads and writes of shared data may not be moved relative to it.

2.3.4 Thread Synchronization

Synchronizing, or coordinating the actions of, threads is sometimes necessary in
order to ensure the proper ordering of their accesses to shared data and to prevent

30 Chapter 2

data corruption. Many mechanisms have been proposed to support the synchro-
nization needs of a variety of applications [51, 50, 81]. OpenMP has a rather small
set of fairly well understood synchronization features.

Ensuring the required thread coordination is one of the toughest challenges of
shared-memory programming. OpenMP attempts to reduce the likelihood of syn-
chronization errors, and to make life easier for the programmer, provides for implicit
synchronization. By default, OpenMP gets threads to wait at the end of a work-
sharing construct or parallel region until all threads in the team executing it have
finished their portion of the work. Only then can they proceed. This is known as
a barrier. Synchronizing the actions of a subset of threads is harder to accomplish
in OpenMP and requires care in programming because there is no explicit support
for this.

Sometimes a programmer may need to ensure that only one thread at a time
works on a piece of code. OpenMP has several mechanisms that support this kind
of synchronization. For example, if a thread attempts to execute code that is
protected by a such a feature, and it is already being executed by another thread,
then the former will have to wait for its turn. Alternatively, it may be possible
for it to carry out other work while waiting. If it suffices to protect updates to an
individual variable (more precisely, a memory location), it may be more efficient to
employ the atomic update feature provided by OpenMP.

Synchronization points are those places in the code where synchronization has
been specified, either explicitly or implicitly. They have an additional function in
OpenMP code, as we have just learned: at these places in the code, the system
ensures that threads have consistent values of shared data objects. OpenMP’s
synchronization points include explicit and implicit barriers, the start and end of
critical regions, points where locks are acquired or released, and anywhere the
programmer has inserted a flush directive.

2.3.5 Other Features to Note

Procedures Subroutines and functions can complicate the use of parallel pro-
gramming APIs. In order to accommodate them, major changes to a program
may sometimes be needed. One of the innovative features of OpenMP is the fact
that directives may be inserted into the procedures that are invoked from within
a parallel region. These have come to be known as orphan directives, a term that
indicates that they are not in the routine in which the parallel region is specified.
(For compiler buffs, this means that they are not within the lexical extent of the
parallel construct.)

Overview of OpenMP 31

Number of Threads and Thread Numbers For some applications, it can be
important to control the number of threads that execute a parallel region. OpenMP
lets the programmer specify this number prior to program execution via an envi-
ronment variable, after the computation has begun via a library routine, or at the
start of a parallel region. If this is not done, then the implementation must choose
the number of threads that will be used. Some programs need to use the number of
threads in a team to set the values of certain variables. Other programs may want
to assign computation to a specific thread. OpenMP assigns consecutive numbers,
starting from 0, to each thread in a team in order to identify them. There are li-
brary routines for retrieving the number of threads as well as for enabling a thread
to access its own thread number.

OpenMP has a couple of features that may affect the number of threads in a
team. First, it is possible to permit the execution environment to dynamically vary
the number of threads, in which case a team may have fewer than the specified
number of threads, possibly as a result of other demands made on the system’s
resources. The default behavior in this regard is implementation defined. Once the
number of threads in a given team has been created, however, that number will not
change. Second, an implementation is permitted to disallow nested parallelism, or
it may be disabled by the programmer.

2.4 OpenMP Programming Styles

OpenMP encourages structured parallel programming and relies heavily on dis-
tributing the work in loops among threads. But sometimes the amount of loop-level
parallelism in an application is limited. Sometimes parallelization using OpenMP
directives leads to unacceptable overheads. Particularly when the application or
the number of threads to be used is relatively large, an alternative method of using
OpenMP may be beneficial. One can also write OpenMP programs that do not
rely on work-sharing directives but rather assign work explicitly to different threads
using their thread numbers. This approach can lead to highly efficient code. How-
ever, the programmer must then insert synchronization manually to ensure that
accesses to shared data are correctly controlled. In this mode, programming errors
such as deadlock (when all threads wait for each other in perpetuity) may occur
and must be avoided via careful code design.

This approach can help solve a broad variety of programming problems. For
instance, it may be used to give threads slightly different amounts of work if one
knows that the operating system will take up some cycles on a processor. A partic-
ularly popular style of programming that can achieve high efficiency based on this

32 Chapter 2

approach is suitable for parallelizing programs working on a computational domain
that can be subdivided. With it, the user explicitly creates the subdomains (a
strategy sometimes called domain decomposition) and assigns them to the threads.
Each thread then works on its portion of the data. This strategy is often referred
to as SPMD (single program muliple data) programming.

Those approaches that require manual assignment of work to threads and that
need explicit synchronization are often called “low-level programming.” This style
of programming can be very effective and it is broadly applicable, but it requires
much more development effort and implies more care on the part of the developer
to ensure program correctness. OpenMP provides sufficient features to permit such
a low-level approach to parallel program creation.

2.5 Correctness Considerations

One of the major difficulties of shared-memory parallel programming is the effort
required to ensure that a program is correct. In addition to all the sources of errors
that may arise in a sequential program, shared-memory programs may contain new,
and sometimes devious, bugs. Fortunately, the use of directives and a structured
programming style is sufficient to prevent many problems; when the programmer
adopts a low-level style of programming, however, more care is needed.

One kind of error in particular, a data race condition,2 can be extremely difficult
to detect and manifests itself in a shared-memory parallel code through silent data
corruption. Unfortunately, the runtime behavior of a program with a data race
condition is not reproducible: erroneous data may be produced by one program
run, but the problem may not show up the next time it is executed. The problem
arises when two or more threads access the same shared variable without any syn-
chronization to order the accesses, and at least one of the accesses is a write. Since
it is relatively easy, for example, to create a parallel version of a loop nest without
noticing that multiple iterations reference the same array element, the programmer
must be aware of the impact that this may have. In general, the more complex the
code, the harder it is to guarantee that no such errors have been introduced.

The order of operations actually observed in a code with a data race condition
depends on the load on a system and the relative timing of the threads involved.
Since threads may execute their instructions at slightly different speeds, and the
work of the operating system sometimes affects the performance of one or more
threads, the order in which they reach certain code is observed to vary from one

2This is sometimes also referred to as “data race” or “race condition.”

Overview of OpenMP 33

run to another. In some instances, the problem occurs only for a specific number
of threads. As a result, a data race bug may escape detection during testing and
even for some time when a program is in production use. Thus, the importance of
avoiding this problem by paying careful attention during program development can
not be overemphasized. Tools may help by pointing out potential problems.

One can identify other potential causes of errors in OpenMP programs. For in-
stance, if the programmer has relied on program execution by a certain number
of threads and if a different number is used to execute the code, perhaps because
insufficient resources are available, then results may be unexpected. OpenMP gen-
erally expects the programmer to check that the execution environment is just what
was required, and provides runtime routines for such queries.

Incorrect use of synchronization constructs leads to problems that may not be
readily apparent. To avoid them, one must carefully think through the logic of
explicit synchronization in a program and must exercise special care with the use
of low-level synchronization constructs, such as locks.

2.6 Performance Considerations

How much reduction of the execution time can be expected from OpenMP paral-
lelization and, indeed, by shared-memory parallelization? If we denote by T1 the
execution time of an application on 1 processor, then in an ideal situation, the
execution time on P processors should be T1/P . If TP denotes the execution time
on P processors, then the ratio

S = T1/TP (2.1)

is referred to as the parallel speedup and is a measure for the success of the par-
allelization. However, a number of obstacles usually have to be overcome before
perfect speedup, or something close to it, is achievable. Virtually all programs
contain some regions that are suitable for parallelization and other regions that are
not. By using an increasing number of processors, the time spent in the parallelized
parts of the program is reduced, but the sequential section remains the same. Even-
tually the execution time is completely dominated by the time taken to compute
the sequential portion, which puts an upper limit on the expected speedup. This
effect, known as Amdahl’s law, can be formulated as

S =
1

(fpar/P + (1 − fpar))
, (2.2)

where fpar is the parallel fraction of the code and P is the number of processors. In
the ideal case when all of the code runs in parallel, fpar = 1, the expected speedup

34 Chapter 2

is equal to the number of processors. If only 80 percent of the code runs in parallel
(fpar = 0.8), the maximal speedup one can expect on 16 processors is 4 and on 32
processors is 4.4. Frustrating, isn’t it? It is thus important to parallelize as much of
the code as possible, particularly if large numbers of processors are to be exploited.

Other obstacles along the way to perfect linear speedup are the overheads intro-
duced by forking and joining threads, thread synchronization, and memory accesses.
On the other hand, the ability to fit more of the program’s data into cache may
offset some of the overheads. A measure of a program’s ability to decrease the
execution time of the code with an increasing number of processors is referred to
as parallel scalability.

Note that if the application developer has a specific goal in terms of required
performance improvement, it may be possible to select several regions for paral-
lelization, and to ignore the rest, which remains sequential. Note, too, that parallel
speedup is often defined as the improvement in performance relative to the “best”
sequential algorithm for the problem at hand. This measure indicates whether
parallelization provides benefits that could not be obtained by choosing a different
approach to solving the problem.

2.7 Wrap-Up

In this chapter, we have given a brief overview of the features that are available in
the OpenMP API. In the following chapters, we discuss each of these features in
detail, giving their purpose, syntax, examples of their use, and, where necessary,
further rules on how they may be applied.

3 Writing a First OpenMP Program

In this chapter, we give a first impression of what it means to use OpenMP to
parallelize an application. We familiarize the reader with the OpenMP syntax and
give a few basic rules. We also explain how OpenMP can be used to parallelize an
existing application in a manner that preserves the original sequential version.

3.1 Introduction

Using OpenMP to parallelize an application is not hard. The impact of OpenMP
parallelization is frequently localized, in the sense that modifications to the original
source program are often needed in just a few places. Moreover, one usually does
not need to rewrite significant portions of the code in order to achieve good parallel
performance. In general, the effort of parallelizing a program with OpenMP goes
mainly into identifying the parallelism, and not in reprogramming the code to
implement that parallelism.

Another benefit of this API is that one can organize the program source in such
a way that the original sequential version is preserved. This is a major advantage
if one or more validation runs of the parallel code should produce a wrong answer.
As a temporary workaround, one can easily have the compiler generate a sequential
version of the suspect parts of the application, while debugging the OpenMP code.
One can also restructure the sequential code for parallelization first, test this ver-
sion (without running it in parallel) and then implement the parallelism through
the control structures provided by OpenMP. This two-phase approach enables a
smoother migration from a sequential to a parallel program than is possible with
an “all or nothing” paradigm such as MPI.

For C and C++ programs, pragmas are provided by the OpenMP API to control
parallelism. In OpenMP these are called directives. They always start with #pragma

omp, followed by a specific keyword that identifies the directive, with possibly one
one or more so-called clauses, each separated by a comma. These clauses are used to
further specify the behavior or to further control parallel execution. The directive
must not be on the same line as the code surrounding it. The general form of a
directive is given in Figure 3.1. The standard continuation symbol (backslash, \) for
pragmas can be used in directives. This helps to improve readability by breaking
up long pragma sequences into smaller blocks, something we highly recommend
for readability and maintenance. White space (spaces and tab characters) can be
inserted before and after the # and should be used between the words. Note that
OpenMP directives in C/C++ are case-sensitive.

36 Chapter 3

#pragma omp directive-name [clause[[,] clause]. . .] new-line

Figure 3.1: General form of an OpenMP directive for C/C++ programs –
The directive-name is a specific keyword, for example parallel, that defines and controls
the action(s) taken. The clauses can be used to further specify the behavior.

In Fortran all OpenMP directives are special comments that must begin with
a directive sentinel. The format of the sentinel differs between fixed- and free-
form source files. In fixed-source format Fortran there are three choices, but the
sentinel must start in column one and appear as a single word with no intervening
characters. Fortran fixed-source form line length, white space, continuation, and
column rules apply to the directive line. The sentinels for fixed-source format are
listed in Figure 3.2.

In free-source format only one sentinel is supported. It can appear in any column
as long as it is preceded only by white space. It must also appear as a single word
with no intervening character. Fortran free-format line length, white space, and
continuation rules apply. Figure 3.3 gives the syntax for free-format source.

!$omp directive-name [clause[[,] clause]. . .] new-line
c$omp directive-name [clause[[,] clause]. . .] new-line
*$omp directive-name [clause[[,] clause]. . .] new-line

Figure 3.2: OpenMP directive syntax for fixed-source format in Fortran –
The directive-name is a specific keyword, for example parallel, that defines and controls
the action(s) taken. The clauses can be used to further specify the behavior. With
fixed-format syntax the sentinel must start in column one.

!$omp directive-name [clause[[,] clause]. . .] new-line

Figure 3.3: OpenMP directive syntax for free-source format in Fortran –
The directive-name is a specific keyword, for example parallel, that defines and controls
the action(s) taken. The clauses can be used to further specify the behavior. With
free-format syntax the sentinel can appear in any column.

With Fortran, initial directive lines must have a space after the sentinel. Contin-
ued directive lines must have an ampersand (&) as the last nonblank character on
the line, prior to any comment placed inside the directive. Note that the sentinel
has to be repeated, as shown in the example in Figure 3.4.

The need in Fortran to repeat the sentinel on continuation lines distinguishes
Fortran from C/C++. A classical beginner’s mistake in Fortran is to forget to

Writing a First OpenMP Program 37

!$OMP PARALLEL PRIVATE(...) &
!$OMP SHARED(...)

Figure 3.4: Example of continuation syntax in free-format Fortran – Note
that the sentinel is repeated on the second line.

start the continued line with the required sentinel, resulting in a syntax error at
compile time. Another difference from C/C++ syntax is that OpenMP Fortran
directives are case-insensitive.

We mostly use the !$omp sentinel throughout this book.1 This has the advantage
that it is supported with both types of Fortran source text formatting.

A word of caution is needed regarding directives. If a syntax error occurs in their
specification (e.g., if a keyword is misspelled in C/C++ or the directive does not
start in the first column in a fixed-format Fortran program), an OpenMP compiler
ignores the directive and may not issue a warning either. This situation can give
rise to some surprising effects at run time. Unfortunately, all we can do here is
advise the programmer to double check the syntax of all directives and to read the
compiler documentation to see whether there is an option for sending warnings on
potential parallelization problems.

3.2 Matrix Times Vector Operation

We now show the use of OpenMP to parallelize a simple operation that realizes
a basic, but important, problem: multiplying an m x n matrix B with a vector c

of length n, storing the result into a vector a of length m: amx1 = Bmxn ∗ cnx1.
This example was chosen because it is straightforward and is likely to be familiar
to most readers, but at the same time it allows us to demonstrate key features
of OpenMP. Moreover, it has been used in OpenMP versions of some important
application codes [139].

Our example codes also illustrate one of the comments made above: one can
take any of the parallelized source codes shown in this chapter, or in the rest of
this book for that matter, compile it with an OpenMP compiler, and link the new
object instead of the sequential one. At that point one has a parallel program.
Typically the same compiler can be used for the sequential and parallel program
versions, but with the appropriate option selected to get the compiler to recognize
OpenMP features.

1We may deviate from this rule when source fragments are taken directly from applications.

38 Chapter 3

3.2.1 C and Fortran Implementations of the Problem

The most straightforward serial implementation of the matrix-vector multiply is
to calculate the result vector a by computing the dot product of the rows of the
matrix B and vector c as shown in Formula (3.1).

ai =
n∑

j=1

Bi,j ∗ cj i = 1, . . . , m (3.1)

In the remainder of this chapter we refer to the algorithm based on Formula (3.1)
as the “row variant.”

3.2.2 A Sequential Implementation of the Matrix Times Vector Oper-
ation

In Figures 3.5 and 3.6 on pages 39 and 40, respectively, we present the complete
Fortran and C source code for a program that calls a matrix times vector routine
with the name mxv. For ease of reference, source line numbers are shown in the
program listings.

The main program code is similar for both languages. In the setup part, the
user is prompted for the matrix dimensions m and n. Next, memory is allocated
that will store the matrix B plus vectors a and c, and the data is initialized. Then,
the mxv routine is invoked. After the computations have finished, the memory is
released, and the program terminates. The source code for the C version is shown
in Figure 3.7; the corresponding Fortran version is shown in Figure 3.8. Note that
in Figure 3.7 the restrict keyword is used in lines 1–2 to notify the C compiler that
pointers a, b, and c are restricted and hence occupy disjoint regions in memory.2

This gives a compiler more possibilities to optimize the code. Another point worth
mentioning is that, for performance reasons in the C version, array b is declared
and used as a linear array, rather than a two-dimensional matrix. We explain this
action in Section 5.2 of Chapter 5.

The source code for the Fortran implementation also closely follows the mathe-
matical description of this operation. In this case, however, one does not need to
specify that a, b, and c are restricted because Fortran does not permit a to overlap
in memory with b or c unless this is specifically declared to be the case.

2This is a feature of the C99 standard. If it is not supported by a compiler, the keyword can
be omitted, but performance may not be optimal. If the compiler provides a flag to indicate the
pointers are restricted, it should then be used.

Writing a First OpenMP Program 39

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 void mxv(int m, int n, double * restrict a,
5 double * restrict b, double * restrict c);
6
7 int main(int argc, char *argv[])
8 {
9 double *a,*b,*c;
10 int i, j, m, n;
11
12 printf("Please give m and n: ");
13 scanf("%d %d",&m,&n);
14
15 if ((a=(double *)malloc(m*sizeof(double))) == NULL)
16 perror("memory allocation for a");
17 if ((b=(double *)malloc(m*n*sizeof(double))) == NULL)
18 perror("memory allocation for b");
19 if ((c=(double *)malloc(n*sizeof(double))) == NULL)
20 perror("memory allocation for c");
21
22 printf("Initializing matrix B and vector c\n");
23 for (j=0; j<n; j++)
24 c[j] = 2.0;
25 for (i=0; i<m; i++)
26 for (j=0; j<n; j++)
27 b[i*n+j] = i;
28
29 printf("Executing mxv function for m = %d n = %d\n",m,n);
30 (void) mxv(m, n, a, b, c);
31
32 free(a);free(b);free(c);
33 return(0);
34 }

Figure 3.5: Main program in C – Driver program for the mxv routine. The user is
prompted for the matrix dimensions m and n. Memory is allocated and initialized prior to
the call to mxv. It is released again after the call.

40 Chapter 3

1 program main
2 interface
3 subroutine mxv(m, n, a, b, c)
4 integer(kind=4), intent(in) :: m, n
5 real (kind=8), intent(in) :: b(1:m,1:n), c(1:n)
6 real (kind=8), intent(inout):: a(1:m)
7 end subroutine mxv
8 end interface
9 real(kind=8), allocatable:: a(:), b(:,:), c(:)
10 integer(kind=4) :: m ,n, i, memstat
11
12 print *, ’Please give m and n:’; read(*,*) m, n
13
14 allocate (a(1:m), stat=memstat)
15 if (memstat /= 0) stop ’Error in memory allocation for a’
16 allocate (b(1:m,1:n), stat=memstat)
17 if (memstat /= 0) stop ’Error in memory allocation for b’
18 allocate (c(1:n), stat=memstat)
19 if (memstat /= 0) stop ’Error in memory allocation for c’
20
21 print *, ’Initializing matrix B and vector c’
22 c(1:n) = 1.0
23 do i = 1, m
24 b(i,1:n) = i
25 end do
26
27 print *, ’Executing mxv routine for m = ’,m,’ n = ’,n
28 call mxv(m, n, a, b, c)
29
30 if (allocated(a)) deallocate(a,stat=memstat)
31 if (allocated(b)) deallocate(b,stat=memstat)
32 if (allocated(c)) deallocate(c,stat=memstat)
33 stop
34 end program main

Figure 3.6: Main program in Fortran – Driver program for the mxv routine. The
user is prompted for the matrix dimensions m and n. Memory is allocated and initialized
prior to the call to mxv. It is released after the call.

Writing a First OpenMP Program 41

1 void mxv(int m, int n, double * restrict a,
2 double * restrict b, double * restrict c)
3 {
4 int i, j;
5
6 for (i=0; i<m; i++)
7 {
8 a[i] = 0.0;
9 for (j=0; j<n; j++)
10 a[i] += b[i*n+j]*c[j];
11 }
12 }

Figure 3.7: Sequential implementation of the matrix times vector product
in C – This source implements the row variant of the problem. The loop at lines 9–10
computes the dotproduct of row i of matrix b with vector c. The result is stored in element
i of vector a. The dotproduct is computed for all rows of the matrix, implemented through
the for-loop starting at line 6 and ending at line 11.

3.3 Using OpenMP to Parallelize the Matrix Times Vector Prod-
uct

We now develop the first OpenMP implementation of our problem, using major
OpenMP control structures to do so. Here, we describe them briefly. Details of
these and other OpenMP constructs are given in Chapter 4.

The row variant of our problem has a high level of parallelism. The dotproduct
implemented in Formula (3.1) on page 38 computes a value ai for each element of
vector a by multiplying the corresponding elements of row i of matrix B with vector
c. This computation is illustrated in Figure 3.9. Since no two dotproducts compute
the same element of the result vector and since the order in which the values for
the elements ai for i = 1, . . . , m are calculated does not affect correctness of the
answer, these computations can be carried out independently. In other words, this
problem can be parallelized over the index value i.

In terms of our implementation this means that we are able to parallelize the
outer loop with iteration variable i in both the C and Fortran versions. We give
the corresponding listings of the OpenMP source code for mxv in Figure 3.10 on page
44 for the C version and in Figure 3.11 on page 45 for the Fortran implementation.

In both program versions, we have inserted a parallel directive at lines 9–10 to
define a parallel region. Three so-called clauses, default, shared, and private,

42 Chapter 3

1 subroutine mxv(m, n, a, b, c)
2
3 implicit none
4 integer(kind=4):: m , n
5 real (kind=8):: a(1:m), b(1:m,1:n), c(1:n)
6
7 integer(kind=4):: i, j
8
9 do i = 1, m
10 a(i) = 0.0
11 do j = 1, n
12 a(i) = a(i) + b(i,j)*c(j)
13 end do
14 end do
15
16 return
17 end subroutine mxv

Figure 3.8: Sequential implementation of the matrix times vector product
in Fortran – This source implements the row variant of the problem. The loop at lines
11–13 computes the dotproduct of row i of matrix b with vector c. The result is stored in
element i of vector a. The dotproduct is computed for all rows of the matrix, implemented
by the do loop starting at line 9 and ending at line 14.

have been added. The meaning of these will be explained shortly. To improve
readability, we use the continuation feature to break the directive into two pieces.

In the C version, the start of the parallel region is marked by the #pragma omp

parallel for directive at line 9 and comprises the block of statements that ends at
line 16. We have added a comment string to indicate the end of the parallel region,
to help avoid the programming error that would arise if the curly braces that define
the extent of the parallel region were incorrectly nested. In this particular case no
ambiguity exists, but in general we have found this strategy to be helpful.

In the Fortran source code, the parallel region also starts at line 9, where the
!$omp parallel do directive has been inserted, and ends at line 17 with the
!$omp end parallel do directive. Fortran programs require an explicit !$omp

end parallel do directive, since the language does not provide the equivalent of
C’s curly braces to define a block of statements. Although this directive is not
actually required in this specific situation, we use it here to clearly mark the end
of the parallel region.

Writing a First OpenMP Program 43

j
row 0

row m-1

i

a B c

*=m
n

row ii

Figure 3.9: Graphical representation of the row variant of the matrix
times vector operation – Element ai is obtained by computing the dot product of
row i of matrix B with vector c.

The directive is somewhat special. Since just one loop needs to be parallelized,
we may use a single directive (the #pragma omp parallel for in C and the !$omp
parallel do construct in Fortran) both to create a parallel region and to specify
that the iterations of the loop should be distributed among the executing threads.
This is an example of a combined parallel work-sharing construct (see Section 4.4.5
in the next chapter).

Data in an OpenMP program either is shared by the threads in a team, in which
case all member threads will be able to access the same shared variable, or is
private. In the latter case, each thread has its own copy of the data object, and
hence the variable may have different values for different threads. The additional
information given in the clauses for the directive in our example code specifies
what data is shared between threads in the parallel region and which variables are
private. Thus, each thread will access the same variable m, but each will have its
own distinct variable i.

OpenMP provides built-in data-sharing attribute rules that could be relied on,
but we prefer to use the default(none) clause instead. This informs the OpenMP
compiler that we take it upon ourselves to specify the data-sharing attributes. This
approach forces us to explicitly specify, for each variable, whether it is shared by
multiple threads, and therefore implies more work on the part of the programmer.
The reward, however, is twofold. First, we must now carefully think about the
usage of variables, and this action helps us to avoid mistakes. Unless one under-
stands the default data-sharing attribute rules very well, it is safer to be explicit

44 Chapter 3

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 void mxv(int m, int n, double * restrict a,
5 double * restrict b, double * restrict c)
6 {
7 int i, j;
8
9 #pragma omp parallel for default(none) \
10 shared(m,n,a,b,c) private(i,j)
11 for (i=0; i<m; i++)
12 {
13 a[i] = 0.0;
14 for (j=0; j<n; j++)
15 a[i] += b[i*n+j]*c[j];
16 } /*-- End of omp parallel for --*/
17 }

Figure 3.10: OpenMP implementation of the matrix times vector product
in C – A single pragma (directive) is sufficient to parallelize the outer loop. We have
also opted here to specify explicitly, for each variable, whether it is shared by all threads
(shared) or whether each thread has a private copy. A comment string is used to clearly
mark the end of the parallel region.

about them. Novice OpenMP programmers in particular may easily fall into the
trap of making incorrect assumptions about the default rules. The second advan-
tage of explicitly specifying the data-sharing attributes is more subtle. For good
performance, one really would like to use private variables as much as possible. By
carefully considering which variables have to be shared and which ones could be
made private, we are sometimes able to create a faster parallel performance. This
topic is discussed in Chapter 5.

Because we have used the default(none) clause, we have to decide on the nature
of the use of variables in our parallel region. This task may seem harder than it
actually is. First, all threads have to be able to access m,n,a,b, and c. Therefore,
they need to be declared as shared. If the reason is not immediately clear, consider
the alternative. If these variables were to be declared private, they would be
uninitialized (by one of the rules of OpenMP). But then we would not know how
many iterations of the loop to perform. Similarly, array b and vector c would
also not be defined, and the computations could not produce meaningful results.

Writing a First OpenMP Program 45

1 subroutine mxv(m, n, a, b, c)
2
3 implicit none
4
5 integer(kind=4):: m , n
6 real (kind=8):: a(1:m), b(1:m,1:n), c(1:n)
7 integer :: i, j
8
9 !$OMP PARALLEL DO DEFAULT(NONE) &
10 !$OMP SHARED(m,n,a,b,c) PRIVATE(i,j)
11 do i = 1, m
12 a(i) = 0.0
13 do j = 1, n
14 a(i) = a(i) + b(i,j)*c(j)
15 end do
16 end do
17 !$OMP END PARALLEL DO
18 return
19 end subroutine mxv

Figure 3.11: OpenMP implementation of the matrix times vector prod-
uct in Fortran – One OpenMP directive is sufficient to parallelize the outer loop.
We have opted here to specify explicitly, for each variable, whether it is shared by all
threads (shared) or whether each thread has a private copy. We have used the !$OMP END

PARALLEL DO directive to mark the end of the parallel region.

Moreover, if made private, the output vector a would not be accessible outside of
the parallel region (another OpenMP rule).3 Therefore, this vector has to be shared
as well. Loop counter variables i and j need to be declared private, however. Each
thread has to have access to a local, unique copy of these variables. Otherwise, a
thread would be able to modify the loop counter of another thread, thereby giving
rise to incorrect and unpredictable runtime behavior.

We can now focus on how our code will be executed. Code outside a parallel
region will be executed sequentially by a single thread. Only the code that is
within a parallel region will be executed in parallel, by a team of threads. Typically,
threads other than the initial thread are created the first time a parallel region is
encountered. They may be reused for subsequent execution of the same parallel
region or a different parallel region. More details can be found in Chapter 8.

3See also Sections 4.5.3 and 4.5.4 on how to initialize and save private variables.

46 Chapter 3

The programmer assigns a portion of the work in the parallel region to each
thread in the team by using one or more worksharing directives. In our case,
we have specified that the loop immediately following the #pragma omp parallel

for or !$omp parallel do construct (with loop variable i) should be distributed
among threads. This means that different threads will execute different iterations
of this loop, and each loop iteration will be performed exactly once. For example,
thread 0 might work on iteration i=5, and iteration i=10 could be assigned to
thread 1. If there are more iterations than threads available, multiple iterations are
assigned to the threads in the team. Distributing loop iterations among threads is
one of the main work-sharing constructs OpenMP offers. By not specifying details
of how the work should be distributed, here we have left it up to the implementation
to decide exactly which thread should carry out which loop iterations. However,
OpenMP also provides a schedule clause to allow the user to prescribe the way in
which the loop iterations should be distributed. Section 4.5.7 goes into more detail
on this.

As each thread in a team completes its portion of the work in a parallel region,
it encounters a barrier. Here, the threads wait until the last one arrives, indicating
that the work inside the parallel region has been completed. Subsequently, only
the master thread (the thread that worked on the code prior to the parallel region)
proceeds with the execution of statements outside the parallel region. More details
on barriers can be found in Section 4.6.1. What happens with the other threads
at the end of the parallel region is implementation dependent. All the OpenMP
standard says is that the threads are forked at the start of the parallel region
and joined at the end. For example, the threads that are no longer needed might
be destroyed and threads recreated when another parallel region is encountered.
Alternatively, they could be parked for later use or kept around in a busy-wait loop
to be available when the program executes the same or another parallel region. It
is worthwhile to check the documentation to find out how this situation is handled
by an implementation and to discover how to change the behavior (if one is allowed
to do so).

The C and Fortran sources listed above also demonstrate the “localized” impact
an OpenMP parallelization often has. All it takes to get a parallel version is to
compile the source with the appropriate OpenMP compiler option and use this
object file to pass on to the linker instead of the original sequential object file.

Writing a First OpenMP Program 47

3.4 Keeping Sequential and Parallel Programs as a Single Source
Code

The parallelized version of mxv in Section 3.3 is fully functional. By compiling with
the appropriate option, the OpenMP directives are translated into the appropriate
multithreaded code, resulting in parallel execution at run time.

One of the powerful features of OpenMP is that one can write a parallel program,
while preserving the (original) sequential source. In a way, the sequential version
is “built-in.” If one does not compile using the OpenMP option (flag), or uses a
compiler that does not support OpenMP, the directives are simply ignored, and
a sequential executable is generated. However, OpenMP also provides runtime
functions that return information from the execution environment. In order to
ensure that the program will still compile and execute correctly in sequential mode
in their presence, special care needs to be taken when using them. For example,
let’s say one wishes to use the omp_get_thread_num() function that returns the
thread number. If the application is compiled without OpenMP translation, the
result will be an unresolved reference at link time. A workaround would be to write
one’s own dummy function, but a better solution exists.

Specifically, the OpenMP runtime functions in both C/C++ and Fortran can be
placed under control of an #ifdef OPENMP, so that they will be translated only
if OpenMP compilation has been invoked. The standard requires that this macro
be set to yyyymm, with yyyy being the year and mm the month when the specific
standard for the OpenMP version was released. For example. for OpenMP 2.5,
OPENMP is set to 200505.

An example of the use of this macro in a C/C++ program is given in Figure 3.12.
Here, the file omp.h will be included only if OPENMP is defined. This header file is
guaranteed to be available if an OpenMP-compliant compiler is used. It includes
the interfaces of the OpenMP runtime functions. To be able to use function omp_-

get_thread_num(), we set its value to zero in sequential mode. This is also the
thread number of the initial thread in an OpenMP code.

Figure 3.13 shows an example of similar functionality in Fortran. Just as in the
C version, we check whether the OPENMP macro is defined. If so, we use the omp_-

lib module, which serves the same purpose as the include file omp.h in C/C++.
Unfortunately, the OpenMP standard does not require this module to be present.
One must therefore check the compiler documentation to find out whether this
module, or a Fortran include file named omp lib.h, or both are provided. Our
Fortran code also sets the thread number (stored in variable TID) to zero if OPENMP

48 Chapter 3

#ifdef OPENMP
#include <omp.h>

#else
#define omp_get_thread_num() 0

#endif
.

int TID = omp_get_thread_num();

Figure 3.12: Example of conditional compilation in C – This mechanism allows
us to maintain a single source for sequential and parallel code even if we use OpenMP
runtime functions.

has not been defined. Otherwise the value returned by the omp_get_thread_num()
function call is assigned to TID.

#ifdef OPENMP
use omp_lib

#endif
.

integer:: TID
.

#ifdef OPENMP
TID = omp_get_thread_num()

#else
TID = 0

#endif

Figure 3.13: Example of conditional compilation in Fortran – This mechanism
allows us to maintain a single source for sequential and parallel code even if we use
OpenMP runtime functions. There is an alternative solution in Fortran.

!$ *$ c$

Figure 3.14: Conditional compilation sentinels in fixed-format Fortran –
At compile time an OpenMP compiler replaces the sentinel by two spaces.

An alternative solution in Fortran uses the conditional compilation sentinel. This
special sentinel is recognized by the OpenMP compiler and at compile time is re-
placed by two spaces; when compiled without OpenMP translation, it is simply a
comment line and will be discarded. The conditional compilation sentinels recog-
nized in fixed-format source files are listed in Figure 3.14. A line with a conditional

Writing a First OpenMP Program 49

compilation sentinel in fixed-format Fortran source will be left unchanged unless it
satisfies the following criteria:

• The sentinel must start in column 1 and appear as a single word with no
intervening space.

• After the sentinel is replaced with two spaces, initial lines must have a space
or zero in column 6 and white space and numbers in columns 1 through 5.

• After the sentinel is replaced with two spaces, continuation lines must have
a character other than a space or zero in column 6 and only white space in
columns 1 through 5.

!$

Figure 3.15: Conditional compilation sentinel in free-format Fortran – At
compile time an OpenMP compiler replaces the sentinel by two spaces.

Free-format source has only one conditional compilation sentinel. The syntax is
shown in Figure 3.15. The sentinel will be replaced by two spaces, and thus enable
conditional compilation, only if the following four criteria are met:

• The sentinel can appear in any column but must be preceded by white space
only.

• The sentinel must appear as a single word with no intervening white space.

• Initial lines must have a space after the sentinel.

• Continued lines must have an ampersand (&) as the last nonblank character
on the line, prior to any comment appearing on the conditionally compiled
line; continued lines can have an ampersand after the sentinel, with optional
white space before and after the ampersand

The conditional compilation mechanism is quite useful. However, one has to be
careful not to make a mistake with the syntax because, otherwise, the sentinel will
be treated as a comment. Unfortunately, a program might have genuine comments
that begin with these characters. If one uses the same style for general documen-
tation of the program (for example !$ This is my comment), many syntax errors
are going to be generated by an OpenMP compiler.

50 Chapter 3

integer:: TID
.

TID = 0
!$ TID = omp_get_thread_num()

Figure 3.16: Example of the use of the conditional compilation sentinel –
At compile time an OpenMP compiler will replace the !$ sentinel by two spaces, changing
the comment line into an executable statement.

The most straightforward (and common) use of the conditional compilation sen-
tinel in Fortran is shown in Figure 3.16. In this example, the program variable
TID contains the thread number. It is initialized to zero, to be consistent with the
thread number of the master thread. If, however, the source has been compiled
with OpenMP enabled, the !$ sentinel will be replaced by two spaces. The effect
is that the “comment” line becomes the executable statement TID = omp_get_-

thread_num(), assigning the runtime thread number to variable TID.
The combination of directive-based syntax and conditional compilation enables

one to write an OpenMP program that preserves the sequential version of the
application and that can be translated into either sequential or parallel code.

3.5 Wrap-Up

In this chapter, we have introduced the basic idea of OpenMP via a simple example
program that has enabled us to demonstrate the use of several of the most common
features of the API. We have explained how OpenMP directives are written.

It is often easy to write an OpenMP program where the sequential version of
the application is “built-in.” A sequential compiler simply ignores the OpenMP
directives, because it does not recognize them. By checking whether the _OPENMP

symbol has been defined or by using Fortran conditional compilation, one can make
a compile-time substitution for the runtime functions to avoid unresolved references
at link time. This feature can also be useful in case of a regression. If the numerical
results are incorrect, for example, one can simply not compile the suspect source
parts under OpenMP. The sequential versions of these sources will then be used as
a (temporary) workaround.

4 OpenMP Language Features

In this chapter we introduce the constructs and user-level functions of OpenMP,
giving syntax and information on their usage.

4.1 Introduction

OpenMP provides directives, library functions, and environment variables to cre-
ate and control the execution of parallel programs. In Chapter 3 we informally
introduced a few of its most important constructs. In this chapter, we give a fairly
extensive overview of the language features, including examples that demonstrate
their syntax, usage, and, where relevant, behavior. We show how these OpenMP
constructs and clauses are used to tackle some programming problems.

A large number of applications can be parallelized by using relatively few con-
structs and one or two of the functions. Those readers familiar with MPI will be
aware that, despite the relatively large number of features provided by that parallel
programming API, just half a dozen of them are really indispensable [69]. OpenMP
is a much smaller API than MPI, so it is not all that difficult to learn the entire
set of features; but it is similarly possible to identify a short list of constructs that
a programmer really should be familiar with. We begin our overview by present-
ing and discussing a limited set that suffices to write many different programs in
Sections 4.3, 4.4, and 4.5. This set comprises the following constructs, some of the
clauses that make them powerful, and (informally) a few of the OpenMP library
routines:

• Parallel Construct

• Work-Sharing Constructs

1. Loop Construct

2. Sections Construct

3. Single Construct

4. Workshare Construct (Fortran only)

• Data-Sharing, No Wait, and Schedule Clauses

Next, we introduce the following features, which enable the programmer to or-
chestrate the actions of different threads, in Section 4.6:

• Barrier Construct

52 Chapter 4

• Critical Construct

• Atomic Construct

• Locks

• Master Construct

The OpenMP API also includes library functions and environment variables that
may be used to control the manner in which a program is executed; these are pre-
sented in Section 4.7. The remaining clauses for parallel and work-sharing con-
structs are reviewed in Section 4.8. In Section 4.9, we complete our presentation of
the API with a discussion of a few more specialized features.

Where relevant, we comment on practical matters related to the constructs and
clauses, but not all details are covered. It is not our objective to duplicate the
OpenMP specification, which can be downloaded from [2]. At times, the wording
in this chapter is less formal than that typically found in the official document. Our
intent is to stay closer to the terminology used by application developers.

4.2 Terminology

Several terms are used fairly often in the OpenMP standard, and we will need
them here also. The definitions of directive and construct from Section 1.2.2 of the
OpenMP 2.5 document are cited verbatim for convenience:

• OpenMP Directive - In C/C++, a #pragma and in Fortran, a comment, that
specifies OpenMP program behavior.

• Executable directive - An OpenMP directive that is not declarative; that is,
it may be placed in an executable context.1

• Construct - An OpenMP executable directive (and, for Fortran, the paired
end directive, if any) and the associated statement, loop, or structured block,
if any, not including the code in any called routines, that is, the lexical extent
of an executable directive.

OpenMP requires well-structured programs, and, as can be seen from the above,
constructs are associated with statements, loops, or structured blocks. In C/C++
a “structured block” is defined to be an executable statement, possibly a compound

1All directives except the threadprivate directive are executable directives.

OpenMP Language Features 53

statement, with a single entry at the top and a single exit at the bottom. In Fortran,
it is defined as a block of executable statements with a single entry at the top and
a single exit at the bottom. For both languages, the point of entry cannot be a
labeled statement, and the point of exit cannot be a branch of any type.

In C/C++ the following additional rules apply to a structured block:

• The point of entry cannot be a call to setjmp().

• longjmp() and throw() (C++ only) must not violate the entry/exit criteria.

• Calls to exit() are allowed in a structured block.

• An expression statement, iteration statement, selection statement, or try
block is considered to be a structured block if the corresponding compound
statement obtained by enclosing it in { and } would be a structured block.

In Fortran the following applies:

• STOP statements are allowed in a structured block.

Another important concept in OpenMP is that of a region of code. This is defined
as follows by the standard: “An OpenMP region consists of all code encountered
during a specific instance of the execution of a given OpenMP construct or library
routine. A region includes any code in called routines, as well as any implicit code
introduced by the OpenMP implementation.” In other words, a region encompasses
all the code that is in the dynamic extent of a construct.

Most OpenMP directives are clearly associated with a region of code, usually the
dynamic extent of the structured block or loop nest immediately following it. A few
(barrier and flush) do not apply to any code. Some features affect the behavior
or use of threads. For these, the notion of a binding thread set is introduced. In
particular, some of the runtime library routines have an effect on the thread that
invokes them (or return information pertinent to that thread only), whereas others
are relevant to a team of threads or to all threads that execute the program. We
will discuss binding issues only in those few places where it is important or not
immediately clear what the binding of a feature is.

4.3 Parallel Construct

Before embarking on our description of the other basic features of OpenMP we
introduce the most important one of all. The parallel construct plays a crucial role

54 Chapter 4

#pragma omp parallel [clause[[,] clause]. . .]
structured block

Figure 4.1: Syntax of the parallel construct in C/C++ – The parallel region
implicitly ends at the end of the structured block. This is a closing curly brace (}) in most
cases.

!$omp parallel [clause[[,] clause]. . .]
structured block

!$omp end parallel

Figure 4.2: Syntax of the parallel construct in Fortran – The terminating
!$omp end parallel directive is mandatory for the parallel region in Fortran.

in OpenMP: a program without a parallel construct will be executed sequentially.
Its C/C++ syntax is given in Figure 4.1; the Fortran syntax is given in Figure 4.2.

This construct is used to specify the computations that should be executed in
parallel. Parts of the program that are not enclosed by a parallel construct will
be executed serially. When a thread encounters this construct, a team of threads
is created to execute the associated parallel region, which is the code dynamically
contained within the parallel construct. But although this construct ensures that
computations are performed in parallel, it does not distribute the work of the
region among the threads in a team. In fact, if the programmer does not use the
appropriate syntax to specify this action, the work will be replicated. At the end
of a parallel region, there is an implied barrier that forces all threads to wait until
the work inside the region has been completed. Only the initial thread continues
execution after the end of the parallel region. For more information on barriers, we
refer to Section 4.6.1 on page 84.

The thread that encounters the parallel construct becomes the master of the new
team. Each thread in the team is assigned a unique thread number (also referred to
as the “thread id”) to identify it. They range from zero (for the master thread) up
to one less than the number of threads within the team, and they can be accessed
by the programmer. Although the parallel region is executed by all threads in
the team, each thread is allowed to follow a different path of execution. One way
to achieve this is to exploit the thread numbers. We give a simple example in
Figure 4.3.

Here, the OpenMP library function omp get thread num() is used to obtain the
number of each thread executing the parallel region.2 Each thread will execute

2We discuss the library functions in Section 4.7; this routine appears in several examples.

OpenMP Language Features 55

#pragma omp parallel
{

printf("The parallel region is executed by thread %d\n",
omp_get_thread_num());

if (omp_get_thread_num() == 2) {
printf(" Thread %d does things differently\n",

omp_get_thread_num());
}

} /*-- End of parallel region --*/

Figure 4.3: Example of a parallel region – All threads execute the first printf

statement, but only the thread with thread number 2 executes the second one.

all code in the parallel region, so that we should expect each to perform the first
print statement. However, only one thread will actually execute the second print
statement (assuming there are at least three threads in the team), since we used
the thread number to control its execution. The output in Figure 4.4 is based on
execution of this code by a team with four threads.3 Note that one cannot make
any assumptions about the order in which the threads will execute the first printf
statement. When the code is run again, the order of execution could be different.

The parallel region is executed by thread 0
The parallel region is executed by thread 3
The parallel region is executed by thread 2

Thread 2 does things differently
The parallel region is executed by thread 1

Figure 4.4: Output of the code shown in Figure 4.3 – Four threads are used
in this example.

We list in Figure 4.5 the clauses that may be used along with the parallel con-
struct. They are discussed in Sections 4.5 and 4.8.

There are several restrictions on the parallel construct and its clauses:

3This is an incomplete OpenMP code fragment and requires a wrapper program before it can
be executed. The same holds for all other examples throughout this chapter.

56 Chapter 4

if(scalar-expression) (C/C++)
if(scalar-logical-expression) (Fortran)
num threads(integer-expression) (C/C++)
num threads(scalar-integer-expression) (Fortran)
private(list)
firstprivate(list)
shared(list)
default(none|shared) (C/C++)
default(none|shared|private) (Fortran)
copyin(list)
reduction(operator:list) (C/C++)
reduction({operator|intrinsic procedure name}:list) (Fortran)

Figure 4.5: Clauses supported by the parallel construct – Note that the
default(private) clause is not supported on C/C++.

• A program that branches into or out of a parallel region is nonconforming.
In other words, if a program does so, then it is illegal, and the behavior is
undefined.

• A program must not depend on any ordering of the evaluations of the clauses
of the parallel directive or on any side effects of the evaluations of the clauses.

• At most one if clause can appear on the directive.

• At most one num threads clause can appear on the directive. The expression
for the clause must evaluate to a positive integer value.

In C++ there is an additional constraint. A throw inside a parallel region must
cause execution to resume within the same parallel region, and it must be caught
by the same thread that threw the exception. In Fortran, unsynchronized use of
I/O statements by multiple threads on the same unit has unspecified behavior.

Section 4.7 explains how the programmer may specify how many threads should
be in the team that executes a parallel region. This number cannot be modified
once the team has been created. Note that under exceptional circumstances, for
example, a lack of hardware resources, an implementation is permitted to provide
fewer than the requested number of threads. Thus, the application may need to
check on the number actually assigned for its execution.

The OpenMP standard distinguishes between an active parallel region and an
inactive parallel region. A parallel region is active if it is executed by a team of

OpenMP Language Features 57

threads consisting of more than one thread. If it is executed by one thread only, it
has been serialized and is considered to be inactive. For example, one can specify
that a parallel region be conditionally executed, in order to be sure that it contains
enough work for this to be worthwhile (see Section 4.8.1 on page 100). If the
condition does not hold at run time, then the parallel region will be inactive. A
parallel region may also be inactive if it is nested within another parallel region and
this feature is either disabled or not provided by the implementation (see Section 4.7
and Section 4.9.1 for details).

4.4 Sharing the Work among Threads in an OpenMP Program

OpenMP’s work-sharing constructs are the next most important feature of OpenMP
because they are used to distribute computation among the threads in a team.
C/C++ has three work-sharing constructs. Fortran has one more. A work-sharing
construct, along with its terminating construct where appropriate, specifies a region
of code whose work is to be distributed among the executing threads; it also specifies
the manner in which the work in the region is to be parceled out. A work-sharing
region must bind to an active parallel region in order to have an effect. If a work-
sharing directive is encountered in an inactive parallel region or in the sequential
part of the program, it is simply ignored. Since work-sharing directives may occur
in procedures that are invoked both from within a parallel region as well as outside
of any parallel regions, they may be exploited during some calls and ignored during
others.

The work-sharing constructs are listed in Figure 4.6. For the sake of readability,
the clauses have been omitted. These are discussed in Section 4.5 and Section 4.8.

Functionality Syntax in C/C++ Syntax in Fortran
Distribute iterations #pragma omp for !$omp do
over the threads
Distribute independent #pragma omp sections !$omp sections
work units
Only one thread executes #pragma omp single !$omp single
the code block
Parallelize array-syntax !$omp workshare

Figure 4.6: OpenMP work-sharing constructs – These constructs are simple, yet
powerful. Many applications can be parallelized by using just a parallel region and one or
more of these constructs, possibly with clauses. The workshare construct is available in
Fortran only. It is used to parallelize Fortran array statements.

58 Chapter 4

The two main rules regarding work-sharing constructs are as follows:

• Each work-sharing region must be encountered by all threads in a team or by
none at all.

• The sequence of work-sharing regions and barrier regions encountered must
be the same for every thread in a team.

A work-sharing construct does not launch new threads and does not have a barrier
on entry. By default, threads wait at a barrier at the end of a work-sharing region
until the last thread has completed its share of the work. However, the programmer
can suppress this by using the nowait clause (see Section 4.5 for more details).

4.4.1 Loop Construct

The loop construct causes the iterations of the loop immediately following it to be
executed in parallel. At run time, the loop iterations are distributed across the
threads. This is probably the most widely used of the work-sharing features. Its
syntax is shown in Figure 4.7 for C/C++ and in Figure 4.8 for Fortran.

#pragma omp for [clause[[,] clause]. . .]
for-loop

Figure 4.7: Syntax of the loop construct in C/C++ – Note the lack of curly
braces. These are implied with the construct.

!$omp do [clause[[,] clause]. . .]
do-loop

[!$omp end do [nowait]]

Figure 4.8: Syntax of the loop construct in Fortran – The terminating !$omp

end do directive is optional, but we recommend using it to clearly mark the end of the
construct.

In C and C++ programs, the use of this construct is limited to those kinds of
loops where the number of iterations can be counted; that is, the loop must have
an integer counter variable whose value is incremented (or decremented) by a fixed
amount at each iteration until some specified upper (or lower) bound is reached.
In particular, this restriction excludes loops that process the items in a list.

The loop header must have the general form shown in Figure 4.9, where init-expr
stands for the initialization of the loop counter var via an integer expression, b is

OpenMP Language Features 59

for (init-expr ; var relop b ; incr-expr)

Figure 4.9: Format of C/C++ loop – The OpenMP loop construct may be applied
only to this kind of loop nest in C/C++ programs.

also an integer expression, and relop is one of the following: <, <=, >, >=. The
incr-expr is a statement that increments or decrements var by an integer amount
using a standard operator (++, –, +=, -=). Alternatively, it may take a form such
as var = var + incr. Many examples of this kind of loop are presented here and in
the following chapters.

We illustrate this construct in Figure 4.10, where we use a parallel directive to
define a parallel region and then share its work among threads via the for work-
sharing directive: the #pragma omp for directive states that iterations of the loop
following it will be distributed. Within the loop, we again use the OpenMP function
omp get thread num(), this time to obtain and print the number of the executing
thread in each iteration. Note that we have added clauses to the parallel construct
that state which data in the region is shared and which is private. Although not
strictly needed since this is enforced by the compiler, loop variable i is explicitly
declared to be a private variable, which means that each thread will have its own
copy of i. Unless the programmer takes special action (see lastprivate in Section
4.5.3), its value is also undefined after the loop has finished. Variable n is made
shared. We discuss shared and private data in Sections 4.5.1 and 4.5.2.

#pragma omp parallel shared(n) private(i)
{

#pragma omp for
for (i=0; i<n; i++)

printf("Thread %d executes loop iteration %d\n",
omp_get_thread_num(),i);

} /*-- End of parallel region --*/

Figure 4.10: Example of a work-sharing loop – Each thread executes a subset of
the total iteration space i = 0, . . . , n − 1.

In Figure 4.11, we also give output produced when we executed the code of
Figure 4.10 using four threads. Given that this is a parallel program, we should
not expect the results to be printed in a deterministic order. Indeed, one can easily
see that the order in which the printf statements are executed is not sorted with
respect to the thread number. Note that threads 1, 2, and 3 execute two loop

60 Chapter 4

Thread 0 executes loop iteration 0
Thread 0 executes loop iteration 1
Thread 0 executes loop iteration 2
Thread 3 executes loop iteration 7
Thread 3 executes loop iteration 8
Thread 2 executes loop iteration 5
Thread 2 executes loop iteration 6
Thread 1 executes loop iteration 3
Thread 1 executes loop iteration 4

Figure 4.11: Output from the example shown in Figure 4.10 – The example
is executed for n = 9 and uses four threads.

iterations each. Since the total number of iterations is 9 and since four threads are
used, one thread has to execute the additional iteration. In this case it turns out
to be thread 0, the so-called master thread, which has done so.

The implementer must decide how to select a thread to execute the remaining
iteration(s), and the choice may even change between various releases of the same
compiler. In fact, if the programmer does not say how to map the iterations to
threads, the compiler must decide what strategy should be used for this. Potentially,
it could even choose a different mapping strategy for different loops in the same
application. Another of the clauses, the schedule clause (see Section 4.5.7 on page
79), is the means by which the programmer is able to influence this mapping. Our
second example in Figure 4.12 contains two work-shared loops, or parallel loops.
The second loop uses values of a that are defined in the first loop. As mentioned
above, the compiler does not necessarily map iterations of the second loop in the
same way as it does for the first loop. But since there is an implied barrier at the
end of a parallel loop, we can be certain that all of the values of a have been created
by the time we begin to use them.

The clauses supported by the loop construct are listed in Figure 4.13.

4.4.2 The Sections Construct

The sections construct is the easiest way to get different threads to carry out dif-
ferent kinds of work, since it permits us to specify several different code regions,
each of which will be executed by one of the threads. It consists of two directives:
first, #pragma omp sections in C/C++ (and !$omp sections in Fortran) to indi-
cate the start of the construct (along with a termination directive in Fortran), and
second, the #pragma omp section directive in C/C++ and !$omp section in For-

OpenMP Language Features 61

#pragma omp parallel shared(n,a,b) private(i)
{

#pragma omp for
for (i=0; i<n; i++)

a[i] = i;

#pragma omp for
for (i=0; i<n; i++)

b[i] = 2 * a[i];
} /*-- End of parallel region --*/

Figure 4.12: Two work-sharing loops in one parallel region – One can not
assume that the distribution of iterations to threads is identical for both loops but the
implied barrier ensures that results are available when needed.

private(list)
firstprivate(list)
lastprivate(list)
reduction(operator:list) (C/C++)
reduction({operator|intrinsic procedure name}:list) (Fortran)
ordered
schedule (kind[,chunk size)]
nowait

Figure 4.13: Clauses supported by the loop construct – They are described in
Section 4.5 and Section 4.8.

tran, respectively, to mark each distinct section. Each section must be a structured
block of code that is independent of the other sections. At run time, the specified
code blocks are executed by the threads in the team. Each thread executes one code
block at a time, and each code block will be executed exactly once. If there are fewer
threads than code blocks, some or all of the threads execute multiple code blocks.
If there are fewer code blocks than threads, the remaining threads will be idle. Note
that the assignment of code blocks to threads is implementation-dependent.

The syntax of this construct in C/C++ is given in Figure 4.14. The syntax for
Fortran is shown in Figure 4.15.

Although the sections construct is a general mechanism that can be used to
get threads to perform different tasks independently, its most common use is prob-
ably to execute function or subroutine calls in parallel. We give an example of this
kind of usage in Figure 4.16. This code fragment contains one sections construct,

62 Chapter 4

#pragma omp sections [clause[[,] clause]. . .]
{
[#pragma omp section]

structured block
[#pragma omp section

structured block]
. . .
}

Figure 4.14: Syntax of the sections construct in C/C++ – The number of
sections controls, and limits, the amount of parallelism. If there are “n” of these code
blocks, at most “n” threads can execute in parallel.

!$omp sections [clause[[,] clause]. . .]
[!$omp section]

structured block
[!$omp section

structured block]
. . .

!$omp end sections [nowait]

Figure 4.15: Syntax of the sections construct in Fortran – The number of
sections controls, and limits, the amount of parallelism. If there are “n” of these code
blocks, at most “n” threads can execute in parallel.

#pragma omp parallel
{

#pragma omp sections
{

#pragma omp section
(void) funcA();

#pragma omp section
(void) funcB();

} /*-- End of sections block --*/

} /*-- End of parallel region --*/

Figure 4.16: Example of parallel sections – If two or more threads are available,
one thread invokes funcA() and another thread calls funcB(). Any other threads are idle.

OpenMP Language Features 63

comprising two sections. The immediate observation is that this limits the paral-
lelism to two threads. If two or more threads are available, function calls funcA

and funcB are executed in parallel. If only one thread is available, both calls to
funcA and funcB are executed, but in sequential order. Note that one cannot make
any assumption on the specific order in which section blocks are executed. Even if
these calls are executed sequentially, for example, because the directive is not in an
active parallel region, funcB may be called before funcA.

The functions are very simple. They merely print the thread number of the
calling thread. Figure 4.17 lists funcA. The source of funcB is similar. The output
of this program when executed by two threads is given in Figure 4.18.

void funcA()
{

printf("In funcA: this section is executed by thread %d\n",
omp_get_thread_num());

}

Figure 4.17: Source of funcA – This function prints the thread number of the thread
executing the function call.

In funcA: this section is executed by thread 0
In funcB: this section is executed by thread 1

Figure 4.18: Output from the example given in Figure 4.16 – The code is
executed by using two threads.

Depending on the type of work performed in the various code blocks and the
number of threads used, this construct might lead to a load-balancing problem.
This occurs when threads have different amounts of work to do and thus take
different amounts of time to complete. A result of load imbalance is that some
threads may wait a long time at the next barrier in the program, which means that
the hardware resources are not being efficiently exploited. It may sometimes be
possible to eliminate the barrier at the end of this construct (see Section 4.5.6), but
that does not overcome the fundamental problem of a load imbalance within the
sections construct. If, for example, there are five equal-sized code blocks and only
four threads are available, one thread has to do more work.4 If a lot of computation

4Which thread does so depends on the mapping strategy. The most common way to distribute

64 Chapter 4

is involved, other strategies may need to be considered (see, e.g., Section 4.9.1 and
Chapter 6).

The clauses supported by the sections construct are listed in Figure 4.19.

private(list)
firstprivate(list)
lastprivate(list)
reduction(operator:list) (C/C++)
reduction({operator|intrinsic procedure name}:list) (Fortran)
nowait

Figure 4.19: Clauses supported by the sections construct – These clauses are
described in Section 4.5 and Section 4.8.

4.4.3 The Single Construct

The single construct is associated with the structured block of code immediately
following it and specifies that this block should be executed by one thread only.
It does not state which thread should execute the code block; indeed, the thread
chosen could vary from one run to another. It can also differ for different single

constructs within one application. This is not a limitation, however, as this con-
struct should really be used when we do not care which thread executes this part
of the application, as long as the work gets done by exactly one thread. The
other threads wait at a barrier until the thread executing the single code block has
completed.

The syntax of this construct in C/C++ is given in Figure 4.20. The syntax for
Fortran is shown in Figure 4.21.

#pragma omp single [clause[[,] clause]. . .] structured block

Figure 4.20: Syntax of the single construct in C/C++ – Only one thread
executes the structured block.

The code fragment in Figure 4.22 demonstrates the use of the single construct
to initialize a shared variable.5

code blocks among threads is a round-robin scheme, where the work is distributed nearly evenly
in the order of thread number.

5The curly braces are not really needed here, as there is one executable statement only; it has
been put in to indicate that the code block can be much more complex and contain any number
of statements.

OpenMP Language Features 65

!$omp single [clause[[,] clause]. . .]
structured block

!$omp end single [nowait,[copyprivate]]

Figure 4.21: Syntax of the single construct in Fortran – Only one thread
executes the structured block.

#pragma omp parallel shared(a,b) private(i)
{

#pragma omp single
{

a = 10;
printf("Single construct executed by thread %d\n",

omp_get_thread_num());
}
/* A barrier is automatically inserted here */

#pragma omp for
for (i=0; i<n; i++)

b[i] = a;

} /*-- End of parallel region --*/

printf("After the parallel region:\n");
for (i=0; i<n; i++)

printf("b[%d] = %d\n",i,b[i]);

Figure 4.22: Example of the single construct – Only one thread initializes the
shared variable a.

The intention is clear. One thread initializes the shared variable a. This variable
is then used to initialize vector b in the parallelized for-loop. Several points are
worth noting here. On theoretical grounds one might think the single construct
can be omitted in this case. After all, every thread would write the same value
of 10 to the same variable a. However, this approach raises a hardware issue.
Depending on the data type, the processor details, and the compiler behavior, the
write to memory might be translated into a sequence of store instructions, each
store writing a subset of the variable. For example, a variable 8 bytes long might
be written to memory through 2 store instructions of 4 bytes each. Since a write

66 Chapter 4

operation is not guaranteed to be atomic,6 multiple threads could do this at the
same time, potentially resulting in an arbitrary combination of bytes in memory.
This issue is also related to the memory consistency model covered in Section 7.3.1.

Moreover, multiple stores to the same memory address are bad for performance.
This and related performance matters are discussed in Chapter 5.

The other point worth noting is that, in this case, a barrier is essential before
the #pragma omp for loop. Without such a barrier, some threads would begin to
assign values to elements of b before a has been assigned a value, a particularly
nasty kind of bug.7 Luckily there is an implicit barrier at the end of the single

construct. The output of this program is given in Figure 4.23. It shows that in this
particular run, thread 3 initialized variable a. This is nondeterministic, however,
and may change from run to run.

Single construct executed by thread 3
After the parallel region:
b[0] = 10
b[1] = 10
b[2] = 10
b[3] = 10
b[4] = 10
b[5] = 10
b[6] = 10
b[7] = 10
b[8] = 10

Figure 4.23: Output from the example in Figure 4.22 – The value of variable
n is set to 9, and four threads are used.

The clauses supported by the single construct are listed in Figure 4.24.
A similar construct, master (see Section 4.6.6), guarantees that a code block is

executed by the master thread. It does not have an implied barrier.

4.4.4 Workshare Construct

The workshare construct is supported in Fortran only, where it serves to enable the
parallel execution of code written using Fortran 90 array syntax. The statements

6Loosely said, if an operation is atomic no other thread can perform the same operation while
the current thread executes it.

7Chapter 7 covers these kinds of problems in depth.

OpenMP Language Features 67

private(list)
firstprivate(list)
copyprivate(list)
nowait

Figure 4.24: Clauses supported by the single construct – These clauses are
described in Section 4.5 and Section 4.8 on page 100. Note that in Fortran the copyprivate
clause (as well as the nowait clause) is specified on the !$omp end single part of the
construct.

in this construct are divided into units of work. These units are then executed
in parallel in a manner that respects the semantics of Fortran array operations.
The definition of “unit of work” depends on the construct. For example, if the
workshare directive is applied to an array assignment statement, the assignment
of each element is a unit of work. We refer the interested reader to the OpenMP
standard for additional definitions of this term.

The syntax is shown in Figure 4.25.

!$omp workshare
structured block

!$omp end workshare [nowait]

Figure 4.25: Syntax of the workshare construct in Fortran – This construct
is used to parallelize (blocks of) statements using array-syntax.

The structured block enclosed by this construct must consist of one or more of
the following.

• Fortran array assignments and scalar assignments

• Fortran FORALL statements and constructs

• Fortran WHERE statements and constructs

• OpenMP atomic, critical, and parallel constructs

The code fragment in Figure 4.26 demonstrates how one can use the workshare

construct to parallelize array assignment statements. Here, we get multiple threads
to update three arrays a, b, and c. In this case, the OpenMP specification states
that each assignment to an array element is a unit of work.

Two important rules govern this construct. We quote from the standard (Section
2.5.4):

68 Chapter 4

!$OMP PARALLEL SHARED(n,a,b,c)
!$OMP WORKSHARE

b(1:n) = b(1:n) + 1
c(1:n) = c(1:n) + 2
a(1:n) = b(1:n) + c(1:n)

!$OMP END WORKSHARE
!$OMP END PARALLEL

Figure 4.26: Example of the workshare construct – These array operations are
parallelized. There is no control over the assignment of array updates to the threads.

• It is unspecified how the units of work are assigned to the threads executing
a workshare region.

• An implementation of the workshare construct must insert any synchroniza-
tion that is required to maintain standard Fortran semantics.

In our example the latter rule implies that the OpenMP compiler must generate
code such that the updates of b and c have completed before a is computed. In
Chapter 8, we give an idea of how the compiler translates workshare directives.

Other than nowait there are no clauses for this construct.

4.4.5 Combined Parallel Work-Sharing Constructs

Combined parallel work-sharing constructs are shortcuts that can be used when a
parallel region comprises precisely one work-sharing construct, that is, the work-
sharing region includes all the code in the parallel region. The semantics of the
shortcut directives are identical to explicitly specifying the parallel construct
immediately followed by the work-sharing construct.

For example, the sequence in Figure 4.27 is is equivalent to the shortcut in Fig-
ure 4.28.

In Figure 4.29 we give an overview of the combined constructs available in
C/C++. The overview for Fortran is shown in Figure 4.30. Note that for readability
the clauses have been omitted.

The combined parallel work-sharing constructs allow certain clauses that are
supported by both the parallel construct and the workshare construct. If the
behavior of the code depends on where the clause is specified, it is an illegal OpenMP
program, and therefore the behavior is undefined.

OpenMP Language Features 69

#pragma omp parallel
{

#pragma omp for
for (.....)

}

Figure 4.27: A single work-sharing loop in a parallel region – For cases like
this OpenMP provides a shortcut.

#pragma omp parallel for
for (.....)

Figure 4.28: The combined work-sharing loop construct – This variant is
easier to read and may be slightly more efficient.

Full version Combined construct
#pragma omp parallel #pragma omp parallel for
{ for-loop

#pragma omp for
for-loop

}
#pragma omp parallel #pragma omp parallel sections
{ {
#pragma omp sections [#pragma omp section]
{
[#pragma omp section] structured block

structured block [#pragma omp section
[#pragma omp section structured block]

structured block] . . .
. . . }

}
}

Figure 4.29: Syntax of the combined constructs in C/C++ – The combined
constructs may have a performance advantage over the more general parallel region with
just one work-sharing construct embedded.

The main advantage of using these combined constructs is readability, but there
can also be a performance advantage. When the combined construct is used, a
compiler knows what to expect and may be able to generate slightly more efficient

70 Chapter 4

Full version Combined construct
!$omp parallel !$omp parallel do
!$omp do do-loop
do-loop !$omp end parallel do

[!$omp end do]
!$omp end parallel
!$omp parallel !$omp parallel sections
!$omp sections [!$omp section]
[!$omp section] structured block

structured block [!$omp section
[!$omp section structured block]

structured block] . . .
. . . !$omp end parallel sections

!$omp end sections
!$omp end parallel
!$omp parallel !$omp parallel workshare
!$omp workshare structured block

structured block !$omp end parallel workshare
!$omp end workshare
!$omp end parallel

Figure 4.30: Syntax of the combined constructs in Fortran – The combined
constructs may have a performance advantage over the more general parallel region with
just one work-sharing construct embedded.

code. For example, it will not insert more than one barrier at the end of the region.

4.5 Clauses to Control Parallel and Work-Sharing Constructs

The OpenMP directives introduced above support a number of clauses, optional
additions that provide a simple and powerful way to control the behavior of the
construct they apply to. Indeed, some of these clauses are all but indispensable
in practice. They include syntax needed to specify which variables are shared and
which are private in the code associated with a construct, according to the OpenMP
memory model introduced in Section 2.3.3 in Chapter 2. We have already indicated
which clauses can be used with these constructs and have informally introduced a
few of them. Let us now zoom in on them. We focus on practical aspects: what
type of functionality is provided, and what are common ways to use them? For

OpenMP Language Features 71

other details, including rules and restrictions associated with specific clauses, we
refer the reader to the OpenMP standard.

In this section, we introduce the most widely used clauses. In Section 4.8 we
introduce the remaining ones. Since the clauses are processed before entering the
construct they are associated with, they are evaluated in this “external” context,
and any variables that appear in them must be defined there. Several clauses can
be used with a given directive. The order in which they are given has no bearing
on their evaluation: in fact, since the evaluation order is considered to be arbitrary,
the programmer should be careful not to make any assumptions about it.

4.5.1 Shared Clause

The shared clause is used to specify which data will be shared among the threads
executing the region it is associated with. Simply stated, there is one unique in-
stance of these variables, and each thread can freely read or modify the values. The
syntax for this clause is shared(list). All items in the list are data objects that
will be shared among the threads in the team.

#pragma omp parallel for shared(a)
for (i=0; i<n; i++)
{

a[i] += i;
} /*-- End of parallel for --*/

Figure 4.31: Example of the shared clause – All threads can read from and write
to vector a.

The code fragment in Figure 4.31 illustrates the use of this clause. In this simple
example, vector a is declared to be shared. This implies that all threads are able to
read and write elements of a. Within the parallel loop, each thread will access the
pre-existing values of those elements a[i] of a that it is responsible for updating
and will compute their new values. After the parallel region is finished, all the
new values for elements of a will be in main memory, where the master thread can
access them.

An important implication of the shared attribute is that multiple threads might
attempt to simultaneously update the same memory location or that one thread
might try to read from a location that another thread is updating. Special care
has to be taken to ensure that neither of these situations occurs and that accesses
to shared data are ordered as required by the algorithm. OpenMP places the

72 Chapter 4

responsibility for doing so on the user and provides several constructs that may
help. They are discussed in Section 4.6.1 and Section 4.6.3. Another construct
ensures that new values of shared data are available to all threads immediately,
which might not otherwise be the case; it is described in Section 4.9.2.

4.5.2 Private Clause

What about the loop iteration variable i in the example in the previous section?
Will it be shared? As we pointed out in Section 4.4.1 on page 58, the answer to
that is a firm “no.” Since the loop iterations are distributed over the threads in
the team, each thread must be given a unique and local copy of the loop variable
i so that it can safely modify the value. Otherwise, a change made to i by one
thread would affect the value of i in another thread’s memory, thereby making it
impossible for the thread to keep track of its own set of iterations.

There may well be other data objects in a parallel region or work-sharing con-
struct for which threads should be given their own copies. The private clause
comes to our rescue here. The syntax is private(list). Each variable in the list
is replicated so that each thread in the team of threads has exclusive access to a
local copy of this variable. Changes made to the data by one thread are not visible
to other threads. This is exactly what is needed for i in the previous example.

By default, OpenMP gives the iteration variable of a parallel loop the private

data-sharing attribute. In general, however, we recommend that the programmer
not rely on the OpenMP default rules for data-sharing attributes. We will specify
data-sharing attributes explicitly.8

#pragma omp parallel for private(i,a)
for (i=0; i<n; i++)
{

a = i+1;
printf("Thread %d has a value of a = %d for i = %d\n",

omp_get_thread_num(),a,i);
} /*-- End of parallel for --*/

Figure 4.32: Example of the private clause – Each thread has a local copy of
variables i and a.

8We do make some exceptions: variables declared locally within a structured block or a routine
that is invoked from within a parallel region are private by default.

OpenMP Language Features 73

A simple example of the use of the private clause is shown in Figure 4.32.
Both the loop iteration variable i and the variable a are declared to be private
variables here. If variable a had been specified in a shared clause, multiple threads
would attempt to update the same variable with different values in an uncontrolled
manner. The final value would thus depend on which thread happened to last
update a. (This bug is a data race condition.) Therefore, the usage of a requires us
to specify it to be a private variable, ensuring that each thread has its own copy.

Thread 0 has a value of a = 1 for i = 0
Thread 0 has a value of a = 2 for i = 1
Thread 2 has a value of a = 5 for i = 4
Thread 1 has a value of a = 3 for i = 2
Thread 1 has a value of a = 4 for i = 3

Figure 4.33: Output from the example shown in Figure 4.32 – The results
are for n = 5, using three threads to execute the code.

Figure 4.33 shows the output of this program. As can be seen, threads 0 and 1
each execute two iterations of the loop, producing a different value for a each time.
Thread 2 computes one value for a. Since each thread has its own local copy, there
is no interference between them, and the results are what we should expect.

We note that the values of private data are undefined upon entry to and exit from
the specific construct. The value of any variable with the same name as the private
variable in the enclosing region is also undefined after the construct has terminated,
even if the corresponding variable was defined prior to the region. Since this point
may be unintuitive, care must be taken to check that the code respects this.

4.5.3 Lastprivate Clause

The example given in Section 4.5.2 works fine, but what if the value of a is needed
after the loop? We have just stated that the values of data specified in the
private clause can no longer be accessed after the corresponding region terminates.
OpenMP offers a workaround if such a value is needed. The lastprivate clause
addresses this situation; it is supported on the work-sharing loop and sections

constructs.
The syntax is lastprivate(list). It ensures that the last value of a data object

listed is accessible after the corresponding construct has completed execution. In a
parallel program, however, we must explain what “last” means. In the case of its
use with a work-shared loop, the object will have the value from the iteration of

74 Chapter 4

the loop that would be last in a sequential execution. If the lastprivate clause is
used on a sections construct, the object gets assigned the value that it has at the
end of the lexically last sections construct.

#pragma omp parallel for private(i) lastprivate(a)
for (i=0; i<n; i++)
{

a = i+1;
printf("Thread %d has a value of a = %d for i = %d\n",

omp_get_thread_num(),a,i);
} /*-- End of parallel for --*/

printf("Value of a after parallel for: a = %d\n",a);

Figure 4.34: Example of the lastprivate clause – This clause makes the sequen-
tially last value of variable a accessible outside the parallel loop.

In Figure 4.34 we give a slightly modified version of the example code from the
previous section. Variable a now has the lastprivate data-sharing attribute, and
there is a print statement after the parallel region so that we can check on the value
a has at that point. The output is given in Figure 4.35. According to our definition
of “last,” the value of variable a after the parallel region should correspond to that
computed when i = n-1. That is exactly what we get.

Thread 0 has a value of a = 1 for i = 0
Thread 0 has a value of a = 2 for i = 1
Thread 2 has a value of a = 5 for i = 4
Thread 1 has a value of a = 3 for i = 2
Thread 1 has a value of a = 4 for i = 3
Value of a after parallel for: a = 5

Figure 4.35: Output from the example shown in Figure 4.34 – Variable n is
set to 5, and three threads are used. The last value of variable a corresponds to the value
for i = 4, as expected.

In fact, all this clause really does is provide some extra convenience, since the
same functionality can be implemented by using an additional shared variable and
some simple logic. We do not particularly recommend doing so, but we demonstrate
how this can be accomplished in the code fragment in Figure 4.36. The additional
variable a shared has been made shared, allowing us to access it outside the parallel

OpenMP Language Features 75

loop. All that needs to be done is to keep track of the last iteration and then copy
the value of a into a shared.

#pragma omp parallel for private(i) private(a) shared(a_shared)
for (i=0; i<n; i++)
{

a = i+1;
printf("Thread %d has a value of a = %d for i = %d\n",

omp_get_thread_num(),a,i);
if (i == n-1) a_shared = a;

} /*-- End of parallel for --*/

Figure 4.36: Alternative code for the example in Figure 4.34 – This code
shows another way to get the behavior of the lastprivate clause. However, we recommend
use of the clause, not something like this.

A performance penalty is likely to be associated with the use of lastprivate,
because the OpenMP library needs to keep track of which thread executes the last
iteration. For a static workload distribution scheme this is relatively easy to do,
but for a dynamic scheme this is more costly. More on the performance aspects of
this clause can be found in Chapter 5.

4.5.4 Firstprivate Clause

Recall that private data is also undefined on entry to the construct where it is spec-
ified. This could be a problem if we need to to pre-initialize private variables with
values that are available prior to the region in which they will be used. OpenMP
provides the firstprivate construct to help out in such cases. Variables that are
declared to be “firstprivate” are private variables, but they are pre-initialized with
the value of the variable with the same name before the construct. The initializa-
tion is carried out by the initial thread prior to the execution of the construct. The
firstprivate clause is supported on the parallel construct, plus the work-sharing
loop, sections, and single constructs. The syntax is firstprivate(list).

Now assume that each thread in a parallel region needs access to a thread-specific
section of a vector but access starts at a certain (nonzero) offset. Figure 4.37
shows one way to implement this idea. The initial value of indx is initialized
to the required offset from the first element of a. The length of each thread’s
section of the array is given by n. In the parallel region, the OpenMP function
omp get thread num() is used to store the thread number in variable TID. The

76 Chapter 4

for(i=0; i<vlen; i++) a[i] = -i-1;

indx = 4;
#pragma omp parallel default(none) firstprivate(indx) \

private(i,TID) shared(n,a)
{

TID = omp_get_thread_num();

indx += n*TID;
for(i=indx; i<indx+n; i++)

a[i] = TID + 1;
} /*-- End of parallel region --*/

printf("After the parallel region:\n");
for (i=0; i<vlen; i++)

printf("a[%d] = %d\n",i,a[i]);

Figure 4.37: Example using the firstprivate clause – Each thread has a pre-
initialized copy of variable indx. This variable is still private, so threads can update it
individually.

start index into the thread-specific section is then given by indx += n*TID which
uses the initial value of indx to account for the offset. For demonstration purposes,
vector a is initialized with negative values. A part of this vector will be filled with
positive values when the parallel region is executed, to make it easy to see which
values have been modified.

We have executed this program for indx = 4 using three threads and with n =

2. The output is given in Figure 4.38. It can be seen that the first four elements of
a are not modified in the parallel region (as should be the case). Each thread has
initialized two elements with a thread-specific value.

This example can actually be implemented more easily by using a shared variable,
offset say, that contains the initial offset into vector a. We can then make indx

a private variable. This is shown in the code fragment in Figure 4.39.
In general, read-only variables can be passed in as shared variables instead of

firstprivate. This approach also saves the time incurred by runtime initialization.
Note that on cc-NUMA systems, however, firstprivate might be the preferable
option for dealing with read-only variables. OpenMP typically offers multiple ways
to solve a given problem. This is a mixed blessing, however, as the performance
implications of the different solutions may not be clearly visible.

OpenMP Language Features 77

After the parallel region:
a[0] = -1
a[1] = -2
a[2] = -3
a[3] = -4
a[4] = 1
a[5] = 1
a[6] = 2
a[7] = 2
a[8] = 3
a[9] = 3

Figure 4.38: Output from the program shown in Figure 4.37 – The initial
offset into the vector is set to indx = 4. Variable n = 2 and three threads are used.
Therefore the total length of the vector is given by vlen = 4 ∗ 2 ∗ 3 = 10. The first
indx = 4 values of vector a are not initialized.

#pragma omp parallel default(none) private(i,TID,indx) \
shared(n,offset,a)

{
TID = omp_get_thread_num();

indx = offset + n*TID;
for(i=indx; i<indx+n; i++)

a[i] = TID + 1;
} /*-- End of parallel region --*/

Figure 4.39: Alternative to the source shown in Figure 4.37 – If variable
indx is not updated any further, this simpler and more elegant solution is preferred.

4.5.5 Default Clause

The default clause is used to give variables a default data-sharing attribute. Its us-
age is straightforward. For example, default(shared) assigns the shared attribute
to all variables referenced in the construct. The default(private) clause, which
is not supported in C/C++, makes all variables private by default. It is applicable
to the parallel construct only. The syntax in C/C++ is given by default (none

| shared). In Fortran, the syntax is default (none | shared | private).
This clause is most often used to define the data-sharing attribute of the majority

of the variables in a parallel region. Only the exceptions need to be explicitly listed:

78 Chapter 4

#pragma omp for default(shared) private(a,b,c), for example, declares all
variables to be shared, with the exception of a, b, and c.

If default(none) is specified instead, the programmer is forced to specify a
data-sharing attribute for each variable in the construct. Although variables with
a predetermined data-sharing attribute need not be listed in one of the clauses,
we strongly recommend that the attribute be explicitly specified for all variables
in the construct. In the remainder of this chapter, default(none) is used in the
examples.

4.5.6 Nowait Clause

The nowait clause allows the programmer to fine-tune a program’s performance.
When we introduced the work-sharing constructs, we mentioned that there is an
implicit barrier at the end of them. This clause overrides that feature of OpenMP;
in other words, if it is added to a construct, the barrier at the end of the associated
construct will be suppressed. When threads reach the end of the construct, they
will immediately proceed to perform other work. Note, however, that the barrier
at the end of a parallel region cannot be suppressed.

Usage is straightforward. Once a parallel program runs correctly, one can try
to identify places where a barrier is not needed and insert the nowait clause. The
code fragment shown in Figure 4.40 demonstrates its use in C code. When a thread
is finished with the work associated with the parallelized for loop, it continues and
no longer waits for the other threads to finish as well.

#pragma omp for nowait
for (i=0; i<n; i++)
{

............
}

Figure 4.40: Example of the nowait clause in C/C++ – The clause ensures
that there is no barrier at the end of the loop.

In Fortran the clause needs to be added to the end part of the construct, as
demonstrated in Figure 4.41.

Some care is required when inserting this clause because its incorrect usage can
introduce bugs. For example, in Figure 4.12 we showed a parallel region with two
parallel loops, where one loop produced values that were used in the subsequent one.
If we were to apply a nowait to the first loop in this code, threads might attempt

OpenMP Language Features 79

!$OMP DO

............

!$OMP END DO NOWAIT

Figure 4.41: Example of usage of the nowait clause in Fortran – In contrast
with the syntax for C/C++, this clause is placed on the construct at the end of the loop.

to use values that have not been created. In this particular case, the application
programmer might reason that the thread that creates a given value a[i] will also
be the one that uses it. Then, the barrier could be omitted. There is, however,
no guarantee that this is the case. Since we have not told the compiler how to
distribute iterations to threads, we cannot be sure that the thread executing loop
iteration i in the first loop will also execute loop iteration i in the second parallel
loop. If the code depends on a specific distribution scheme, it is best to specify it
explicitly.9 In the next section, we show how to do so.

4.5.7 Schedule Clause

The schedule clause is supported on the loop construct only. It is used to control
the manner in which loop iterations are distributed over the threads, which can have
a major impact on the performance of a program. The syntax is schedule(kind

[,chunk_size]).
The schedule clause specifies how the iterations of the loop are assigned to the

threads in the team. The granularity of this workload distribution is a chunk, a
contiguous, nonempty subset of the iteration space. Note that the chunk_size

parameter need not be a constant; any loop invariant integer expression with a
positive value is allowed.

In Figure 4.42 on page 80 the four different schedule kinds defined in the standard
are listed, together with a short description of their behavior. The most straight-
forward schedule is static. It also has the least overhead and is the default on many
OpenMP compilers, to be used in the absence of an explicit schedule clause. As
mentioned in Section 4.4.1, one can not assume this, however. Both the dynamic

and guided schedules are useful for handling poorly balanced and unpredictable
workloads. The difference between them is that with the guided schedule, the size

9This is expected to change in OpenMP 3.0. Under certain conditions the assignment of
iteration numbers to threads is preserved across work-sharing loops.

80 Chapter 4

Schedule kind Description
static Iterations are divided into chunks of size chunk size. The

chunks are assigned to the threads statically in a round-robin
manner, in the order of the thread number. The last chunk
to be assigned may have a smaller number of iterations.
When no chunk size is specified, the iteration space
is divided into chunks that are approximately equal in size.
Each thread is assigned at most one chunk.

dynamic The iterations are assigned to threads as the threads request
them. The thread executes the chunk of iterations (controlled
through the chunk size parameter), then requests another
chunk until there are no more chunks to work on.
The last chunk may have fewer iterations than chunk size.
When no chunk size is specified, it defaults to 1.

guided The iterations are assigned to threads as the threads request
them. The thread executes the chunk of iterations (controlled
through the chunk size parameter), then requests another
chunk until there are no more chunks to work on.
For a chunk size of 1, the size of each chunk is proportional
to the number of unassigned iterations, divided by the number
of threads, decreasing to 1.
For a chunk size of “k” (k > 1), the size of each
chunk is determined in the same way, with the restriction that
the chunks do not contain fewer than k iterations (with a
possible exception for the last chunk to be assigned,
which may have fewer than k iterations).
When no chunk size is specified, it defaults to 1.

runtime If this schedule is selected, the decision regarding scheduling
kind is made at run time. The schedule and (optional) chunk
size are set through the OMP_SCHEDULE environment variable.

Figure 4.42: Schedule kinds supported on the schedule clause – The static

schedule works best for regular workloads. For a more dynamic work allocation scheme
the dynamic or guided schedules may be more suitable.

of the chunk (of iterations) decreases over time. The rationale behind this scheme
is that initially larger chunks are desirable because they reduce the overhead. Load

OpenMP Language Features 81

balancing is often more of an issue toward the end of computation. The system
then uses relatively small chunks to fill in the gaps in the schedule.

All three workload distribution algorithms support an optional chunk size pa-
rameter. As shown in Figure 4.42, the interpretation of this parameter depends on
the schedule chosen. For example, a chunk size bigger than 1 on the static sched-
ule may give rise to a round-robin allocation scheme in which each thread executes
the iterations in a sequence of chunks whose size is given by chunk size. It is not
always easy to select the appropriate schedule and value for chunk size up front.
The choice may depend (among other things) not only on the code in the loop
but also on the specific problem size and the number of threads used. Therefore,
the runtime clause is convenient. Instead of making a compile time decision, the
OpenMP OMP_SCHEDULE environment variable can be used to choose the schedule
and (optional) chunk size at run time (see Section 4.7).

Figure 4.43 shows an example of the use of the schedule clause. The outer
loop has been parallelized with the loop construct. The workload in the inner loop
depends on the value of the outer loop iteration variable i. Therefore, the workload
is not balanced, and the static schedule is probably not the best choice.

#pragma omp parallel for default(none) schedule(runtime) \
private(i,j) shared(n)

for (i=0; i<n; i++)
{

printf("Iteration %d executed by thread %d\n",
i, omp_get_thread_num());

for (j=0; j<i; j++)
system("sleep 1");

} /*-- End of parallel for --*/

Figure 4.43: Example of the schedule clause – The runtime variant of this clause
is used. The OMP SCHEDULE environment variable is used to specify the schedule that should
be used when executing this loop.

In order to illustrate the various workload policies, the program listed in Fig-
ure 4.43 was executed on four threads, using a value of 9 for n. The results are
listed in Table 4.1. The first column contains the value of the outer loop iteration
variable i. The remaining columns contain the thread number (labeled “TID”) for
the various workload schedules and chunk sizes selected.

One sees, for example, that iteration i = 0 was always executed by thread 0,
regardless of the schedule. Iteration i = 2, however, was executed by thread 0

82 Chapter 4

Table 4.1: Example of various workload distribution policies – The behavior
for the dynamic and guided scheduling policies is nondeterministic. A subsequent run
with the same program may give different results.

Iteration TID TID TID TID TID TID
static static,2 dynamic dynamic,2 guided guided,2

0 0 0 0 0 0 0
1 0 0 0 0 0 0
2 0 1 3 3 3 3
3 1 1 2 3 2 3
4 1 2 1 2 1 2
5 2 2 0 2 0 2
6 2 3 3 1 3 1
7 3 3 2 1 2 1
8 3 0 1 0 1 0

with the default chunk size on the static schedule; but thread 1 executed this
iteration with a chunk size of 2. Apparently, this iteration has been executed by
thread 3 for both the dynamic and the guided schedule, regardless of the chunk
size.

To illustrate this further, we executed the above loop for n = 200 using four
threads. The results are shown in Figure 4.44. Three scheduling algorithms—
static, dynamic,7, and guided,7—have been combined into a single chart. The
horizontal axis represents the value of the loop iteration variable i in the range
0,...,199. The vertical axis gives the thread number of the thread that executed
the particular iteration.

The first set of four horizontal lines shows the results for the static scheme. As
expected, thread 0 executes the first 50 iterations, thread 1 works on the next 50
iterations, and so forth. The second set of four horizontal lines gives the results
for the dynamic,7 workload schedule. There are striking differences between this
and the static case. Threads process chunks of 7 iterations at the time, since a
chunk size of 7 was specified. Another difference is that threads no longer work
on contiguous sets of iterations. For example, the first set of iterations executed
by thread 0 is i = 0,...,6, whereas thread 1 processes i = 21,...,27, thread
2 handles i = 7,...,13 and thread 3 executes i = 14,...,20. Thread 0 then
continues with i = 28,...,34 and so on.

The results for the guided,7 schedule clearly demonstrate that the initial chunk
sizes are larger than those toward the end. Although there is no notion of time

OpenMP Language Features 83

� �� �� �� ��� ��� ��� ��� ���

static

dynamic,7

guided,7

2
3

1

0

2
3

1

0

2
3

1

0

T
hr

ea
d

ID

Iteration number

Figure 4.44: Graphical illustration of the schedule clause – The mapping of
iterations onto four threads for three different scheduling algorithms for a loop of length
n = 200 is shown. Clearly, both the dynamic and the guided policy give rise to a much
more dynamic workload allocation scheme.

in Figure 4.44, thread 2 was probably the first one to start. With a total of 25
iterations, it gets the largest chunk of iterations. Thread 1 has the next 21 iterations
to work on. Thread 0 gets 19 iterations, whereas thread 1 works on the next 16
iterations.

We emphasize that, other than for the static schedule, the allocation is nonde-
terministic and depends on a number of factors including the load of the system.
We note, too, that programs that depend on which thread executes a particular
iteration are nonconforming. The static schedule is most efficient from a perfor-
mance point of view, since dynamic and guided have higher overheads. The size of
the penalty for using them depends on the OpenMP implementation.

4.6 OpenMP Synchronization Constructs

In this section, we introduce OpenMP constructs that help to organize accesses
to shared data by multiple threads. An algorithm may require us to orchestrate

84 Chapter 4

the actions of multiple threads to ensure that updates to a shared variable occur
in a certain order, or it may simply need to ensure that two threads do not si-
multaneously attempt to write a shared object. The features discussed here can
be used when the implicit barrier provided with work-sharing constructs does not
suffice to specify the required interactions or would be inefficient. Together with
the work-sharing constructs, they constitute a powerful set of features that suffice
to parallelize a large number of applications.

4.6.1 Barrier Construct

A barrier is a point in the execution of a program where threads wait for each other:
no thread in the team of threads it applies to may proceed beyond a barrier until
all threads in the team have reached that point. We have already seen that many
OpenMP constructs imply a barrier. That is, the compiler automatically inserts a
barrier at the end of the construct, so that all threads wait there until all of the work
associated with the construct has been completed. Thus, it is often unnecessary
for the programmer to explicitly add a barrier to a code. If one is needed, however,
OpenMP provides a construct that makes this possible. The syntax in C/C++ is
given in Figure 4.45. The Fortran syntax is shown in Figure 4.46.

#pragma omp barrier

Figure 4.45: Syntax of the barrier construct in C/C++ – This construct binds
to the innermost enclosing parallel region.

!$omp barrier

Figure 4.46: Syntax of the barrier construct in Fortran – This construct binds
to the innermost enclosing parallel region.

Two important restrictions apply to the barrier construct:

• Each barrier must be encountered by all threads in a team, or by none at all.

• The sequence of work-sharing regions and barrier regions encountered must
be the same for every thread in the team.

Without these restrictions, one could write programs where some threads wait
forever (or until somebody kills the process) for other threads to reach a barrier.
C/C++ imposes an additional restriction regarding the placement of a barrier

OpenMP Language Features 85

construct within the application: The barrier construct may only be placed in the
program at a position where ignoring or deleting it would result in a program with
correct syntax.

The code fragment in Figure 4.47 illustrates the behavior of the barrier construct.
To ensure that some threads in the team executing the parallel region take longer
than others to reach the barrier, we get half the threads to execute the sleep 3

command, causing them to idle for three seconds. We then get each thread to print
out its the thread number (stored in variable TID), a comment string, and the time
of day in the format hh:mm:ss. The barrier is then reached. After the barrier,
each thread will resume execution and again print out this information. (We do
not show the source code of the function called print time that was used to realize
the output.)

#pragma omp parallel private(TID)
{

TID = omp_get_thread_num();
if (TID < omp_get_num_threads()/2) system("sleep 3");
(void) print_time(TID,"before");

#pragma omp barrier

(void) print_time(TID,"after ");
} /*-- End of parallel region --*/

Figure 4.47: Example usage of the barrier construct – A thread waits at the
barrier until the last thread in the team arrives. To demonstrate this behavior, we have
made sure that some threads take longer than others to reach this point.

In Figure 4.48, the output of this program is shown for a run using four threads.
Threads 2 and 3 arrive at the barrier 3 seconds before threads 0 and 1, because the
latter two were delayed by the system call. The subsequent time stamps show that
all threads continue execution once the last two have reached the barrier.

The most common use for a barrier is to avoid a data race condition. Inserting a
barrier between the writes to and reads from a shared variable guarantees that the
accesses are appropriately ordered, for example, that a write is completed before
another thread might want to read the data.

86 Chapter 4

Thread 2 before barrier at 01:12:05
Thread 3 before barrier at 01:12:05
Thread 1 before barrier at 01:12:08
Thread 0 before barrier at 01:12:08
Thread 1 after barrier at 01:12:08
Thread 3 after barrier at 01:12:08
Thread 2 after barrier at 01:12:08
Thread 0 after barrier at 01:12:08

Figure 4.48: Output from the example in Figure 4.47 – Four threads are used.
Note that threads 2 and 3 wait for three seconds in the barrier.

4.6.2 Ordered Construct

Another synchronization construct, the ordered construct, allows one to execute a
structured block within a parallel loop in sequential order. This is sometimes used,
for instance, to enforce an ordering on the printing of data computed by different
threads. It may also be used to help determine whether there are any data races
in the associated code. The syntax of the ordered construct in C/C++ is shown
in Figure 4.49. The Fortran syntax is given in Figure 4.50.

#pragma omp ordered
structured block

Figure 4.49: Syntax of the ordered construct in C/C++ – This construct is
placed within a parallel loop. The structured block is executed in the sequential order of
the loop iterations.

!$omp ordered
structured block

!$omp end ordered

Figure 4.50: Syntax of the ordered construct in Fortran – This construct is
placed within a parallel loop. The structured block is executed in the sequential order of
the loop iterations.

An ordered construct ensures that the code within the associated structured
block is executed in sequential order. The code outside this block runs in parallel.
When the thread executing the first iteration of the loop encounters the construct,
it enters the region without waiting. When a thread executing any subsequent

OpenMP Language Features 87

iteration encounters the construct, it waits until each of the previous iterations in
the sequence has completed execution of the region.

An ordered clause has to be added to the parallel region in which this construct
appears; it informs the compiler that the construct occurs. We defer an example
of the usage of this feature to our discussion of the clause in Section 4.8.3. The
ordered construct itself does not support any clauses.

4.6.3 Critical Construct

The critical construct provides a means to ensure that multiple threads do not
attempt to update the same shared data simultaneously. The associated code is
referred to as a critical region, or a critical section.

An optional name can be given to a critical construct. In contrast to the rules
governing other language features, this name is global and therefore should be
unique. Otherwise the behavior of the application is undefined.

When a thread encounters a critical construct, it waits until no other thread is
executing a critical region with the same name. In other words, there is never a risk
that multiple threads will execute the code contained in the same critical region at
the same time.

The syntax of the critical construct in C/C++ is given in Figure 4.51. The
Fortran syntax is shown in Figure 4.52.

#pragma omp critical [(name)]
structured block

Figure 4.51: Syntax of the critical construct in C/C++ – The structured
block is executed by all threads, but only one at a time executes the block. Optionally,
the construct can have a name.

!$omp critical [(name)]
structured block

!$omp end critical [(name)]

Figure 4.52: Syntax of the critical construct in Fortran – The structured
block is executed by all threads, but only one at a time executes the block. Optionally,
the construct can have a name.

To illustrate this construct, consider the code fragment in Figure 4.53. The for-
loop sums up the elements of vector a. This operation can be readily parallelized.
One approach is to let each thread independently add up a subset of the elements

88 Chapter 4

of the vector. The result is stored in a private variable. When all threads are done,
they add up their private contributions to get the total sum.

sum = 0;
for (i=0; i<n; i++)

sum += a[i];

Figure 4.53: Loop implementing a summation – This operation can be paral-
lelized with some help from the compiler.

Figure 4.54 gives pseudo-code showing how two threads might collaborate to
form the sum if n is even. Variable sumLocal has to be made private to the thread.
Otherwise the statement sumLocal += a[i] would cause a data race condition,
since both threads will try to update the same variable at the same time.

/*-- Executed by thread 0 --*/ /*-- Executed by thread 1 --*/

sumLocal = 0; sumLocal = 0;
for (i=0; i<n/2; i++) for (i=n/2-1; i<n; i++)

sumLocal += a[i]; sumLocal += a[i];

sum += sumLocal;
sum += sumLocal;

Figure 4.54: Pseudo parallel code for the summation – This indicates how the
operations might be split up among two threads. There is no control over accesses to sum,
however, so that there is a data race condition.

However, we still have to deal with the updates to sum. Without special measures,
this also causes a data race condition. We do not need to enforce a certain ordering
of accesses here, but we must ensure that only one update may take place at a time.
This is precisely what the critical construct guarantees.

The corresponding OpenMP code fragment is shown in Figure 4.55. We have
inserted a named critical region (“update sum”) and put a print statement into the
critical region. It prints the thread number (stored in variable TID), the value of
the partial sum that the thread has calculated (stored in variable sumLocal), and
the value of sum so far.

We point out that this example is shown only to illustrate the workings of the
critical construct. The explicit reduction algorithm given here is very naive and

OpenMP Language Features 89

should not be applied as written. For extensive coverage of explicit reduction
algorithms we refer to [123]. OpenMP also provides the reduction clause to have
the compiler handle these kind of cases.

sum = 0;
#pragma omp parallel shared(n,a,sum) private(TID,sumLocal)

{
TID = omp_get_thread_num();
sumLocal = 0;
#pragma omp for

for (i=0; i<n; i++)
sumLocal += a[i];

#pragma omp critical (update_sum)
{
sum += sumLocal;
printf("TID=%d: sumLocal=%d sum = %d\n",TID,sumLocal,sum);
}

} /*-- End of parallel region --*/
printf("Value of sum after parallel region: %d\n",sum);

Figure 4.55: Explicit implementation of a reduction operation – The critical
region is needed to avoid a data race condition when updating variable sum. Note that
the code is shown only for illustration purposes. OpenMP provides a reduction clause to
make it even easier to implement a reduction operation. This should be preferred.

Within the parallel region, each thread initializes sumLocal. The iterations of
the #pragma omp for loop are distributed over the threads. This process results in
each thread computing a partial sum, stored in sumLocal. When the threads are
finished with their part of the for-loop, they enter the critical region. By definition,
only one thread at a time updates sum.

The output of this program is given in Figure 4.56. One can clearly see that
each thread computes its partial sum and then adds this value to sum. Apparently,
thread 0 has entered the critical region first, and thread 1 is the last one to enter.

This functionality is required in many situations. One simple example is the
need to avoid garbled output when multiple threads print messages, as shown in
the code snippet in Figure 4.57.

Another common situation where this construct is useful is when minima and
maxima are formed. The code fragment in Figure 4.58 is similar to code in the
WUPWISE program used in lattice gauge theory (quantum chromodynamics) and
contained in the SPEC OpenMP benchmark suite [16]. It uses a critical region to

90 Chapter 4

TID=0: sumLocal=36 sum = 36
TID=2: sumLocal=164 sum = 200
TID=1: sumLocal=100 sum = 300
Value of sum after parallel region: 300

Figure 4.56: Output from the program shown in Figure 4.55 – Three threads
are used and variable n = 25.

#pragma omp parallel shared(n) private(TID)
{

TID = omp_get_thread_num();
#pragma omp critical (print_tid)
{

printf("I am thread %d\n",TID);
}

} /*-- End of parallel region --*/

Figure 4.57: Avoiding garbled output – A critical region helps to avoid intermin-
gled output when multiple threads print from within a parallel region.

ensure that when one thread performs a comparison of the shared Scale with its
local LScale to find out which value is smaller, no other thread can interfere with
this sequence of operations. Note that the order in which threads carry out this
work is not important here, so that a critical construct is just what is needed.

4.6.4 Atomic Construct

The atomic construct, which also enables multiple threads to update shared data
without interference, can be an efficient alternative to the critical region. In contrast
to other constructs, it is applied only to the (single) assignment statement that
immediately follows it; this statement must have a certain form in order for the
construct to be valid, and thus its range of applicability is strictly limited. The
syntax is shown in Figures 4.59 and 4.60.

The atomic construct enables efficient updating of shared variables by multiple
threads on hardware platforms which support atomic operations. The reason it is
applied to just one assignment statement is that it protects updates to an individual
memory location, the one on the left-hand side of the assignment. If the hardware
supports instructions that read from a memory location, modify the value, and
write back to the location all in one action, then atomic instructs the compiler to

OpenMP Language Features 91

#pragma omp parallel private(ix, LScale, lssq, Temp) \
shared(Scale, ssq, x)

{
#pragma omp for

for(ix = 1, ix<N, ix++)
{
LScale =;

}
#pragma omp critical

{
if(Scale < LScale){

ssq = (Scale/LScale) *ssq + lssq;
Scale = LScale;

}else
ssq = ssq + (LScale / Scale) * Lssq

} /* End of critical region --*/
} /*-- End of parallel region --*/

Figure 4.58: Critical region usage to determine minimum value – The
critical region is needed to avoid a data race condition when comparing the value of the
private variable LSCALE with the shared variable Scale and when updating it and ssq.
The execution order does not matter in the case.

#pragma omp atomic
statement

Figure 4.59: Syntax of the atomic construct in C/C++ – The statement is
executed by all threads, but only one thread at a time executes the statement.

!$omp atomic
statement

Figure 4.60: Syntax of the atomic construct in Fortran – The statement is
executed by all threads, but only one thread at a time executes the statement.

use such an operation. If a thread is atomically updating a value, then no other
thread may do so simultaneously. This restriction applies to all threads that execute
a program, not just the threads in the same team. To ensure this, however, the
programmer must mark all potentially simultaneous updates to a memory location
by this directive. A simple example is shown is Figure 4.61, where multiple threads
update a counter.

92 Chapter 4

int ic, i, n;
ic = 0;
#pragma omp parallel shared(n,ic) private(i)

for (i=0; i++, i<n)
{

#pragma omp atomic
ic = ic + 1;

}
printf("counter = %d\n", ic);

Figure 4.61: Example for the use of atomic – The atomic construct ensures that
no updates are lost when multiple threads are updating a counter value.

The atomic construct may only be used together with an expression statement
in C/C++, which essentially means that it applies a simple, binary operation such
as an increment or decrement to the value on the left-hand side. The supported
operations are: +, *, -, /, &, ^, |, <<, >>. In Fortran, the statement must
also take the form of an update to the value on the left-hand side, which may not
be an array, via an expression or an intrinsic procedure. The operator may be one
of +, *, -, /, .AND., .OR., .EQV., .NEQV., and the intrinsic procedure may
be one of MAX, MIN, IAND, IOR, IEOR. There are a number of restrictions on the
form that the expression may take; for example, it must not involve the variable on
the left-hand side of the assignment statement. We refer the reader to the OpenMP
standard for full details.

int ic, i, n;
ic = 0;
#pragma omp parallel shared(n,ic) private(i)

for (i=0; i++, i<n)
{

#pragma omp atomic
ic = ic + bigfunc();

}
printf("counter = %d\n", ic);

Figure 4.62: Another use of atomic – The atomic construct does not prevent mul-
tiple threads from executing the function bigfunc at the same time.

In our slightly revised example shown in Figure 4.62, the atomic construct does

OpenMP Language Features 93

not protect the execution of function bigfunc. It is only the update to the memory
location of the variable ic that will occur atomically. If the application developer
does not intend to permit the threads to execute bigfunc at the same time, then
the critical construct must be used instead.

4.6.5 Locks

In addition to the synchronization features introduced above, the OpenMP API
provides a set of low-level, general-purpose locking runtime library routines, similar
in function to the use of semaphores. These routines provide greater flexibility for
synchronization than does the use of critical sections or atomic constructs. The
general syntax of the locking library routines is shown in Figures 4.63 and 4.64.

void omp func lock (omp lock t *lck)

Figure 4.63: General syntax of locking routines in C/C++ – For a specific rou-
tine, func expresses its functionality; func may assume the values init, destroy, set,

unset, test. The values for nested locks are init nest, destroy nest, set nest,

unset nest, test nest.

subroutine omp func lock (svar)
integer (kind=omp lock kind) svar

Figure 4.64: General syntax of locking routines in Fortran – For a specific
routine, func expresses its functionality; func may assume the values init, destroy,

set, unset, test.The values for nested locks are init nest, destroy nest, set nest,

unset nest, test nest.

The routines operate on special-purpose lock variables, which should be ac-
cessed via the locking routines only. There are two types of locks: simple locks,
which may not be locked if already in a locked state, and nestable locks, which
may be locked multiple times by the same thread. Simple lock variables are
declared with the special type omp lock t in C/C++ and are integer variables
of kind = omp lock kind in Fortran. Nestable lock variables are declared with
the special type omp nest lock t in C/C++ and are integer variables of kind =

omp nest lock kind in Fortran. In C, lock routines need an argument that is a
pointer to a lock variable of the appropriate type. The general procedure to use
locks is as follows:

1. Define the (simple or nested) lock variables.

94 Chapter 4

2. Initialize the lock via a call to omp init lock.

3. Set the lock using omp set lock or omp test lock. The latter checks whether
the lock is actually available before attempting to set it. It is useful to achieve
asynchronous thread execution.

4. Unset a lock after the work is done via a call to omp unset lock.

5. Remove the lock association via a call to omp destroy lock.

A simple example is shown in Figure 4.65.
...
CALL OMP_INIT_LOCK (LCK)
...

C$OMP PARALLEL SHARED(LCK) PRIVATE(ID)
...

100 CONTINUE
IF (.NOT. OMP_TEST_LOCK(LCK)) THEN

CALL WORK2 ()
GO TO 100

ENDIF
CALL WORK(ID)
CALL OMP_UNSET_LOCK(LCK)

C$OMP END PARALLEL
CALL OMP_DESTROY_LOCK(LCK)

Figure 4.65: Example of lock usage – The example demonstrates how asynchronous
thread execution can be achieved by using explicit locking

Note that special care is needed when the programmer synchronizes the actions
of threads using these routines. If these routines are used improperly, a number of
programming errors are possible. In particular, a code may deadlock. We discuss
parallel programming pitfalls and problems separately in Chapter 7.

4.6.6 Master Construct

The master construct defines a block of code that is guaranteed to be executed
by the master thread only. It is thus similar to the single construct (covered in
Section 4.4.3). The master construct is technically not a work-sharing construct,
however, and it does not have an implied barrier on entry or exit. The syntax in
C/C++ is given in Figure 4.66, and the syntax in Fortran is given in Figure 4.67.

OpenMP Language Features 95

The lack of a barrier may lead to problems. If the master construct is used
to initialize data, for example, care needs to be taken that this initialization is
completed before the other threads in the team use the data. The typical solution
is either to rely on an implied barrier further down the execution stream or to use
an explicit barrier construct (see Section 4.6.1).

#pragma omp master
structured block

Figure 4.66: Syntax of the master construct in C/C++ – Note that there is
no implied barrier on entry to, or exit from, this construct.

!$omp master
structured block

!$omp end master

Figure 4.67: Syntax of the master construct in Fortran – Note that there is
no implied barrier on entry to, or exit from, this construct.

Figure 4.68 shows a code fragment that uses the master construct. It is similar
to the example in Section 4.4.3. The two differences are that the initialization of
variable a is now guaranteed to be performed by the master thread and the #pragma
omp barrier needs to be inserted for correctness.

In this simple case, there is no particular reason to choose this rather than the
single construct. In a more realistic piece of code, there may be additional com-
putation after the master construct and before the first use of the data initialized
by the master thread. In such a situation, or whenever the barrier is not required,
this construct may be preferable.

The output of this program shows that thread 0, the master thread, has per-
formed the initialization of variable a. In contrast to the single construct, where
it is not known which thread will execute the code, this behavior is deterministic.

4.7 Interaction with the Execution Environment

The OpenMP standard provides several means with which the programmer can
interact with the execution environment, either to obtain information from it or to
influence the execution of a program. If a program relies on some property of the
environment, for example, expects that a certain minimum number of threads will

96 Chapter 4

#pragma omp parallel shared(a,b) private(i)
{

#pragma omp master
{

a = 10;
printf("Master construct is executed by thread %d\n",

omp_get_thread_num());
}

#pragma omp barrier

#pragma omp for
for (i=0; i<n; i++)

b[i] = a;

} /*-- End of parallel region --*/

printf("After the parallel region:\n");
for (i=0; i<n; i++)

printf("b[%d] = %d\n",i,b[i]);

Figure 4.68: Example of the master construct – This is similar to the example
shown in Figure 4.22. The difference is that the master thread is guaranteed to initialize
variable a. Note the use of a barrier to ensure availability of data.

Master construct is executed by thread 0
After the parallel region:
b[0] = 10
b[1] = 10
b[2] = 10
b[3] = 10
b[4] = 10
b[5] = 10
b[6] = 10
b[7] = 10
b[8] = 10

Figure 4.69: Output from the example in Figure 4.68 – This clearly demon-
strates that the master thread has performed the initialization.

OpenMP Language Features 97

execute a parallel region, then the programmer must test for its satisfaction explic-
itly. Before we discuss these features, we need to explain just how the environment
can be manipulated.

The OpenMP standard defines internal control variables. These are variables
controlled by the OpenMP implementation that govern the behavior of a program
at run time in important ways. They cannot be accessed or modified directly at
the application level; however, they can be queried and modified through OpenMP
functions and environment variables. The following internal control variables are
defined.

• nthreads-var – stores the number of threads requested for the execution of
future parallel regions.

• dyn-var – controls whether dynamic adjustment of the number of threads to
be used for future parallel regions is enabled

• nest-var – controls whether nested parallelism is enabled for future parallel
regions

• run-sched-var – stores scheduling information to be used for loop regions
using the runtime schedule clause

• def-sched-var – stores implementation-defined default scheduling information
for loop regions

Here, we introduce the library functions and environment variables that can
be used to access or modify the values of these variables and hence influence the
program’s execution. The four environment variables defined by the standard may
be set prior to program execution. The library routines can also be used to give
values to control variables; they override values set via environment variables. In
order to be able to use them, a C/C++ program should include the omp.h header
file. A Fortran program should either include the omp lib.h header file or omp lib

module, depending on which of them is provided by the implementation.
Once a team of threads is formed to execute a parallel region, the number of

threads in it will not be changed. However, the number of threads to be used to
execute future parallel regions can be specified in several ways:

• At the command line, the OMP NUM THREADS environment variable may be set.
The value specified will be used to initialize the nthreads-var control variable.
Its syntax is OMP NUM THREADS(integer), where the integer must be positive.

98 Chapter 4

• During program execution, the number of threads to be used to execute a
parallel region may be set or modified via the omp set num threads library
routine. Its syntax is omp set num threads(scalar-integer-expression),
where the evaluation of the expression must result in a positive integer.

• Finally, it is possible to use the num threads clause together with a parallel

construct to specify how many threads should be in the team executing that
specific parallel region. If this is given, it temporarily overrides both of the
previous constructs. It is discussed and illustrated in Section 4.8.2.

If the parallel region is conditionally executed and the condition does not hold,
or if it is a nested region and nesting is not available, then none of these will have
an effect: the region will be sequentially executed. During program execution, the
number of threads available for executing future parallel regions can be retrieved via
the omp get max threads() routine, which returns the largest number of threads
available for the next parallel region.

One can control the value of dyn-var to permit (or disallow) the system to dy-
namically adjust the number of threads that will be used to execute future parallel
regions. This is typically used to optimize the use of system resources for through-
put. There are two ways to do so:

• The environment variable OMP DYNAMIC can be specified prior to execution to
initialize this value to either true, in which case this feature is enabled, or to
false, in which case the implementation may not adjust the number of threads
to use for executing parallel regions. Its syntax is OMP DYNAMIC(flag), where
flag has the value true or false.

• The routine omp set dynamic adjusts the value of dyn-var at run time. It will
influence the behavior of parallel regions for which the thread that executes
it is the master thread. omp set dynamic(scalar-integer-expression) is
the C/C++ syntax; omp set dynamic(logical-expression) is the Fortran
syntax. In both cases, if the argument of this procedure evaluates to true,
then dynamic adjustment is enabled. Otherwise, it is disabled.

Routine omp get dynamic can be used to retrieve the current setting at run
time. It returns true if the dynamic adjustment of the number of threads is enabled;
otherwise false is returned. The result is an integer value in C/C++ and a logical
value in Fortran.

If the implementation provides nested parallelism, then its availability to execute
a given code can be controlled by assigning a value to the nest-var variable. If the

OpenMP Language Features 99

implementation does not provide this feature, modifications to the nest-var variable
have no effect.

• This variable can be set to either true or false prior to execution by giving
the OMP NESTED environment variable the corresponding value. Note that
the standard specifies that it is initialized to false by default.

• As with the previous cases, a runtime library routine enables the programmer
to adjust the setting of nest-var at run time, possibly overriding the value of
the environment variable. It is omp set nested, and it applies to the thread
that executes it; in other words, if this thread encounters a parallel construct,
then that region will become active so long as the implementation can support
such nesting. The syntax in C/C++ is as follows:

omp set nested(scalar-integer-expression).

The corresponding Fortran is omp set nested(logical-expression). In
both cases, if the argument of this procedure evaluates to true, then nesting
of parallel regions is enabled; otherwise, it is disabled.

The omp get nested routine, whose result is an integer value in C/C++ and a
logical value in Fortran, returns the current setting of the nest-var variable for the
thread that calls it: true if nesting is enabled for that thread and otherwise false.

The OMP SCHEDULE environment variable enables the programmer to set def-
sched-var and thereby customize the default schedule to be applied to parallel
loops in a program. Its value, which is otherwise implementation-defined, will be
used to determine the assignment of loop iterations to threads for all parallel loops
whose schedule type is specified to be runtime. The value of this variable takes the
form type [,chunk], where type is one of static, dynamic or guided. The optional
parameter chunk is a positive integer that specifies the chunk size.

The OpenMP standard includes several other user-level library routines, some of
which we have already seen:

• The omp get num threads library routine enables the programmer to retrieve
the number of threads in the current team. The value it returns has integer
data type. This value may be used in the programmer’s code, for example,
to choose an algorithm from several variants.

• omp get thread num returns the number of the calling thread as an inte-
ger value. We have seen its use in many examples throughout this chapter,
primarily to assign different tasks to different threads explicitly.

100 Chapter 4

• omp get num procs returns, as an integer, the total number of processors
available to the program at the instant in which it is called. The number will
not depend on which thread calls the routine, since it is a global value.

• omp in parallel returns true if it is called from within an active parallel
region (see Section 4.3). Otherwise, it returns false. The result value is of
type integer in C/C++ and logical in Fortran.

The runtime library also includes routines for implementing locks and portable
timers in an OpenMP program. The lock routines are described in Section 4.6.5.

4.8 More OpenMP Clauses

We introduced the most commonly used clauses in Section 4.5. In this section,
we introduce the remaining ones. We remind the reader that no assumptions may
be made about the order in which the clauses are evaluated. Except for the if,
num threads and default clauses, they may occur multiple times on a given con-
struct, with distinct arguments. We give important rules for the use of clauses
here. We refer the reader to the OpenMP standard for other rules and restrictions
associated with specific clauses. The syntax for clauses is similar in Fortran and
C/C++. The two exceptions are the copyprivate (see Section 4.8.6) and nowait

(Section 4.5.6) clauses.

4.8.1 If Clause

The if clause is supported on the parallel construct only, where it is used to
specify conditional execution. Since some overheads are inevitably incurred with
the creation and termination of a parallel region, it is sometimes necessary to test
whether there is enough work in the region to warrant its parallelization. The main
purpose of this clause is to enable such a test to be specified. The syntax of the
clause is if(scalar-logical-expression). If the logical expression evaluates to
true, which means it is of type integer and has a non-zero value in C/C++, the
parallel region will be executed by a team of threads. If it evaluates to false, the
region is executed by a single thread only.

An example is shown in Figure 4.70. It uses the if clause to check whether
the value of variable n exceeds 5. If so, the parallel region is executed by the
number of threads available. Otherwise, one thread executes the region: in other
words, it is then an inactive parallel region. Two OpenMP runtime functions
are used. The function omp get num threads() returns the number of threads

OpenMP Language Features 101

#pragma omp parallel if (n > 5) default(none) \
private(TID) shared(n)

{
TID = omp_get_thread_num();
#pragma omp single
{

printf("Value of n = %d\n",n);
printf("Number of threads in parallel region: %d\n",

omp_get_num_threads());
}
printf("Print statement executed by thread %d\n",TID);

} /*-- End of parallel region --*/

Figure 4.70: Example of the if clause – The parallel region is executed by more
than one thread only if n > 5.

in the current team. As seen before, the thread number is returned by func-
tion omp get thread num(). The value is stored in variable TID. A #pragma omp

single pragma is used (see also Section 4.4.3) as we want to avoid executing the
first two print statements multiple times. Example output for n = 5 and n = 10

is given in Figure 4.71.

Value of n = 5
Number of threads in parallel region: 1
Print statement executed by thread 0
Value of n = 10
Number of threads in parallel region: 4
Print statement executed by thread 0
Print statement executed by thread 3
Print statement executed by thread 2
Print statement executed by thread 1

Figure 4.71: Output from the program listed in Figure 4.70 – Four threads
are used, but when n = 5, only one thread executes the parallel region. For n = 10 all
four threads are active, because the condition under the if clause now evaluates to true.

102 Chapter 4

4.8.2 Num threads Clause

The num threads clause is supported on the parallel construct only and can be
used to specify how many threads should be in the team executing the parallel region
(cf. Section 4.7). The syntax is num threads(scalar-integer-expression). Any
expression that evaluates to an integer value can be used.

Figure 4.72 shows a simple example demonstrating the use of the num threads

and if clauses. To demonstrate the priority rules listed in Section 4.7, we insert a
call to the OpenMP runtime function omp set num threads, setting the number of
threads to four. We will override it via the clauses.

(void) omp_set_num_threads(4);
#pragma omp parallel if (n > 5) num_threads(n) default(none)\

private(TID) shared(n)
{

TID = omp_get_thread_num();
#pragma omp single
{
printf("Value of n = %d\n",n);
printf("Number of threads in parallel region: %d\n",

omp_get_num_threads());
}
printf("Print statement executed by thread %d\n",TID);

} /*-- End of parallel region --*/

Figure 4.72: Example of the num threads clause – This clause is used on the
parallel region to control the number of threads used.

This program has been executed for n = 5 and n = 10. The output is shown in
Figure 4.72. For n = 5, the if clause evaluates to false. As a result, the parallel
region is executed by one thread only. If n is set to 10, however, the if clause is true
and consequently the number of threads is set to 10 by the num threads(n) clause.
In neither of these two cases were four threads used, because of the higher priority
of the if and num threads clauses on the #pragma omp parallel construct.

4.8.3 Ordered Clause

The ordered clause is rather special: it does not take any arguments and is sup-
ported on the loop construct only. It has to be given if the ordered construct (see

OpenMP Language Features 103

Value of n = 5
Number of threads in parallel region: 1
Print statement executed by thread 0
Value of n = 10
Number of threads in parallel region: 10
Print statement executed by thread 0
Print statement executed by thread 4
Print statement executed by thread 3
Print statement executed by thread 5
Print statement executed by thread 6
Print statement executed by thread 7
Print statement executed by thread 8
Print statement executed by thread 9
Print statement executed by thread 2
Print statement executed by thread 1

Figure 4.73: Output of the program given in Figure 4.72 – For n = 5 the
if clause evaluates to false and only one thread executes the parallel region. If n = 10,
however, the if clause is true, and then the num threads clause causes 10 threads to be
used.

Section 4.6.2 on page 86) is used in a parallel region, since its purpose is to inform
the compiler of the presence of this construct.

An example of the usage of this clause and the associated construct is shown
in the code fragment in Figure 4.74. Note that the schedule(runtime) clause is
used (see also Section 4.5.7) to control the workload distribution at run time. The
ordered clause informs the compiler of the ordered construct in the #pragma omp

parallel for loop, which is used here on a print statement to ensure that the
elements a[i] will be printed in the order i = 0, 1, 2, ..., n-1. The updates
of the elements a[i] of array a can and might be processed in any order.

In Figure 4.75 the output obtained using four threads and n = 9 is shown. En-
vironment variable OMP_SCHEDULE is set to guided to contrast the dynamic work-
load distribution for the #pragma omp for loop with the ordered section within
the loop. One clearly sees that the second printf statement (the one within the
ordered construct) is printed in sequential order, in contrast to the first printf

statement.
We note that the ordered clause and construct come with a performance penalty

(see also Section 5.4.2). The OpenMP implementation needs to perform additional
book-keeping tasks to keep track of the order in which threads should execute the

104 Chapter 4

#pragma omp parallel for default(none) ordered schedule(runtime) \
private(i,TID) shared(n,a,b)

for (i=0; i<n; i++)
{

TID = omp_get_thread_num();

printf("Thread %d updates a[%d]\n",TID,i);

a[i] += i;

#pragma omp ordered
{printf("Thread %d prints value of a[%d] = %d\n",TID,i,a[i]);}

} /*-- End of parallel for --*/

Figure 4.74: Example of the ordered clause – Regardless of which thread executes
which loop iteration, the output from the second printf statement is always printed in
sequential order.

Thread 0 updates a[3]
Thread 2 updates a[0]
Thread 2 prints value of a[0] = 0
Thread 3 updates a[2]
Thread 2 updates a[4]
Thread 1 updates a[1]
Thread 1 prints value of a[1] = 2
Thread 3 prints value of a[2] = 4
Thread 0 prints value of a[3] = 6
Thread 2 prints value of a[4] = 8
Thread 2 updates a[8]
Thread 0 updates a[7]
Thread 3 updates a[6]
Thread 1 updates a[5]
Thread 1 prints value of a[5] = 10
Thread 3 prints value of a[6] = 12
Thread 0 prints value of a[7] = 14
Thread 2 prints value of a[8] = 16

Figure 4.75: Output from the program listed in Figure 4.74 – Note that the
lines with “prints value of” come out in the original sequential loop order.

OpenMP Language Features 105

corresponding region. Moreover, if threads finish out of order, there may be an
additional performance penalty because some threads might have to wait.

4.8.4 Reduction Clause

sum = 0;
for (i=0; i<n; i++)

sum += a[i];

Figure 4.76: Summation of vector elements – This operation can be parallelized
with the reduction clause.

In Section 4.6.3 on page 87, we used a critical construct to parallelize the sum-
mation operation shown in Figure 4.76. There is a much easier way to implement
this, however. OpenMP provides the reduction clause for specifying some forms
of recurrence calculations (involving mathematically associative and commutative
operators) so that they can be performed in parallel without code modification.
The programmer must identify the operations and the variables that will hold the
result values: the rest of the work can then be left to the compiler. The results will
be shared and it is not necessary to specify the corresponding variables explicitly
as “shared.” In general, we recommend using this clause rather than implementing
a reduction operation manually. The syntax of the reduction clause in C/C++ is
given by reduction(operator :list). In Fortran, certain intrinsic functions are
also supported. The syntax is as follows:
reduction({operator | intrinsic procedure name}:list).
The type of the result variable must be valid for the reduction operator (or intrinsic
in Fortran).

We now show how easily the example given in Section 4.6.3 on page 87 can be
implemented using the reduction clause. In Figure 4.77, this clause has been used
to specify that sum will hold the result of a reduction, identified via the + operator.
Based on this, an OpenMP compiler will generate code that is roughly equivalent
to our example in Section 4.6.3, but it may be able to do so more efficiently. For
example, the final summation could be computed through a binary tree, which
scales better than a naive summation. Output of this program from a run using
three threads is given in Figure 4.78.

Reductions are common in scientific and engineering programs, where they may
be used to test for convergence or to compute statistical data, among other things.
Figure 4.79 shows an excerpt from a molecular dynamics simulation. The code

106 Chapter 4

#pragma omp parallel for default(none) shared(n,a) \
reduction(+:sum)

for (i=0; i<n; i++)
sum += a[i];

/*-- End of parallel reduction --*/
printf("Value of sum after parallel region: %d\n",sum);

Figure 4.77: Example of the reduction clause – This clause gets the OpenMP
compiler to generate code that performs the summation in parallel. This is generally to
be preferred over a manual implementation.

Value of sum after parallel region: 300

Figure 4.78: Output of the example shown in Figure 4.77 – Three threads
are used. The other values and settings are also the same as for the example output given
in Figure 4.56 on page 90.

collects the forces acting on each of the particles as a result of the proximity of
other particles and their motion and uses it to modify their position and velocity.
The fragment we show includes two reduction operations to gather the potential
and kinetic energy.

We note that, depending on the operator or intrinsic used, the initial value of the
shared reduction variable (like sum in our example) may be updated, not overwritten.
In the example above, if the initial value of sum is, for example, 10 prior to the
reduction operation, the final value is given by sum = 10 +

∑n−1
i=0 a[i]. In other

words, for this operator the original value is updated with the new contribution,
not overwritten.

The order in which thread-specific values are combined is unspecified. Therefore,
where floating-point data are concerned, there may be numerical differences between
the results of a sequential and parallel run, or even of two parallel runs using the
same number of threads. This is a result of the limitation in precision with which
computers represent floating-point numbers: results may vary slightly, depending
on the order in which operations are performed. It is not a cause for concern if the
values are all of roughly the same magnitude. The OpenMP standard is explicit
about this point: “There is no guarantee that bit-identical results will be obtained
or that side effects (such as floating-point exceptions) will be identical” (see Section
2.8.3.6 of the 2.5 standard). It is good to keep this in mind when using the reduction
clause.

OpenMP Language Features 107

! The force computation for each particle is performed in parallel
!$omp parallel do
!$omp& default(shared)
!$omp& private(i,j,k,rij,d)
!$omp& reduction(+ : pot, kin)

do i=1,nparticles
! compute potential energy and forces
f(1:nd,i) = 0.0
do j=1,nparticles

if (i .ne. j) then
call distance(nd,box,pos(1,i),pos(1,j),rij,d)
! result is saved in variable d
pot = pot + 0.5*v(d)
do k=1,nd

f(k,i) = f(k,i) - rij(k)*dv(d)/d
enddo

endif
enddo
! compute kinetic energy
kin = kin + dotprod(nd,vel(1,i),vel(1,i))

enddo
!$omp end parallel do

kin = kin*0.5*mass

return
end

Figure 4.79: Piece of a molecular dynamics simulation – Each thread computes
displacement and velocity information for a subset of the particles. As it is doing so, it
contributes to the summation of potential and kinetic energy.

The operators supported (plus the intrinsic functions available in Fortran for this
clause) are given in the first column of Figures 4.80 (C/C++) and 4.81 (Fortran).
Each operator has a specific initial value associated with it, listed in the second
column. This is the initial value of each local copy of the reduction variable.

OpenMP defines which type of statements are applicable to the reduction clause.
In Figure 4.82 all the reduction statements supported in C/C++ are listed. The
statements and intrinsic functions available in Fortran are given in Figure 4.83.
In Fortran, the array reduction is also supported, which permits the reduction

108 Chapter 4

Operator Initialization value
+ 0
* 1
- 0
& ~0
| 0
^ 0
&& 1
|| 0

Figure 4.80: Operators and initial values supported on the reduction
clause in C/C++ – The initialization value is the value of the local copy of the
reduction variable. This value is operator, data type, and language dependent.

Operator Initialization value
+ 0
* 1
- 0
.and. .true.
.or. .false.
.eqv. .true.
.neqv. .false.
.neqv. .false.

Intrinsic Initialization value
max Smallest negative machine representable

number in the reduction variable type
min Largest negative machine representable

number in the reduction variable type
iand All bits on
ior 0
ieor 0

Figure 4.81: Operators, intrinsic functions, and initial values supported
on the reduction clause in Fortran – The initialization value is the value of the
local copy of the reduction variable. This value is operator, data type, and language
dependent.

“variable” to be an entire array; see the example in Figure 4.84, where array a is
updated in parallel in a manner that is similar to the scalar case. Each thread
computes a partial update by calculating a(1:n) = a(1:n) + b(1:n,j)*c(j) for

OpenMP Language Features 109

specific values of j, storing the result in a private array. This partial solution is
then added to the global solution, the (shared) result array a. The details of the
implementation depend on the specific OpenMP compiler.

x = x op expr
x binop = expr
x = expr op x (except for subtraction)
x++
++x
x--
--x

Figure 4.82: Typical reduction statements in C/C++ – Here, expr has scalar
type and does not reference x, op is not an overloaded operator, but one of +, *, -, &,

,̂ |, &&, or ||, and binop is not an overloaded operator, but one of +, *, -, &, ^, or |.

x = x op expr
x = expr op x (except for subtraction)
x = intrinsic (x, expr_list)
x = intrinsic (expr_list, x)

Figure 4.83: Typical reduction and intrinsic statements in Fortran – Here,
op is one of the operators from the list +, *, -, .and., .or., .eqv., or .neqv.. The
expression does not involve x, the reduction op is the last operation performed on the
right-hand side, and expr list is a comma-separated list of expressions not involving x.
The intrinsic function is one from the list given in Figure 4.81.

!$OMP PARALLEL DO DEFAULT(NONE) PRIVATE(j) SHARED(n,b,c) &
!$OMP REDUCTION(+:a)

do j = 1, n
a(1:n) = a(1:n) + b(1:n,j)*c(j)

end do
!$OMP END PARALLEL DO

Figure 4.84: Example of an array reduction – This type of reduction operation
is supported in Fortran only.

We note that there are some further restrictions on both the variables and the
operators that may be used. In C/C++ the following restrictions apply:

110 Chapter 4

• Aggregate types (including arrays), pointer types, and reference types are not
supported.

• A reduction variable must not be const-qualified.

• The operator specified on the clause can not be overloaded with respect to
the variables that appear in the clause.

In Fortran there are some restrictions as well:

• A variable that appears in the clause must be definable.

• A list item must be a named variable of intrinsic type.

• Fortran pointers, Cray pointers, assumed-size array and allocatable arrays are
not supported.

4.8.5 Copyin Clause

The copyin clause provides a means to copy the value of the master thread’s
threadprivate variable(s) to the corresponding threadprivate variables of the other
threads. As explained in Section 4.9.3, these are global variables that are made
private to each thread: each thread has its own set of these variables. Just as with
regular private data, the initial values are undefined. The copyin clause can be
used to change this situation. The copy is carried out after the team of threads is
formed and prior to the start of execution of the parallel region, so that it enables
a straightforward initialization of this kind of data object.

The clause is supported on the parallel directive and the combined parallel
work-sharing directives. The syntax is copyin(list). Several restrictions apply.
We refer to the standard for the details.

4.8.6 Copyprivate Clause

The copyprivate clause is supported on the single directive only. It provides a
mechanism for broadcasting the value of a private variable from one thread to the
other threads in the team. The typical use for this clause is to have one thread read
or initialize private data that is subsequently used by the other threads as well.

After the single construct has ended, but before the threads have left the asso-
ciated barrier, the values of variables specified in the associated list are copied to
the other threads. Since the barrier is essential in this case, the standard prohibits
use of this clause in combination with the nowait clause.

OpenMP Language Features 111

The syntax is of this clause is: copyprivate (list). In Fortran this clause is
added to the end part of the construct. With C/C++, copyprivate is a regular
clause, specified on the single construct.

4.9 Advanced OpenMP Constructs

We have covered the most common features of the API. These are sufficient to paral-
lelize the majority of applications. Here, we complete our overview of the OpenMP
API by covering a few remaining, specialized constructs. These are considered
special-purpose because the need to use them strongly depends on the application.
For example, certain recursive algorithms can take advantage of nested parallelism
in a natural way, but many applications do not need this feature.

4.9.1 Nested Parallelism

If a thread in a team executing a parallel region encounters another parallel con-
struct, it creates a new team and becomes the master of that new team. This is
generally referred to in OpenMP as “nested parallelism.”

In contrast to the other features of the API, an implementation is free to not
provide nested parallelism. In this case, parallel constructs that are nested within
other parallel constructs will be ignored and the corresponding parallel region seri-
alized (executed by a single thread only): it is thus inactive. Increasingly, OpenMP
implementations support this feature. We note that frequent starting and stopping
of parallel regions may introduce a non-trivial performance penalty.

Some care is needed when using nested parallelism. For example, if the function
omp get thread num() is called from within a nested parallel region, it still returns
a number in the range of zero up to one less than the number of threads of the cur-
rent team. In other words, the thread number may no longer be unique. This situa-
tion is demonstrated in the code fragment in Figure 4.85, where omp get nested()

is used to test whether nested parallelism is available. The num threads clause is
used (see Section 4.8.2 on page 102) to specify that the second level parallel region
should be executed by two threads.

The output obtained when using three threads to execute the first, “outer,” par-
allel region is given in Figure 4.86. We have used indentation to see that a message
comes from the inner parallel region, but it is no longer possible to distinguish
messages from the individual threads that execute this region.

The code fragment from Figure 4.87 shows one way to address the problem for
this specific case. Here, variable TID is used to store the number of the thread at

112 Chapter 4

printf("Nested parallelism is %s\n",
omp_get_nested() ? "supported" : "not supported");

#pragma omp parallel
{

printf("Thread %d executes the outer parallel region\n",
omp_get_thread_num());

#pragma omp parallel num_threads(2)
{

printf(" Thread %d executes inner parallel region\n",
omp_get_thread_num());

} /*-- End of inner parallel region --*/
} /*-- End of outer parallel region --*/

Figure 4.85: Example of nested parallelism – Two parallel regions are nested.
The second parallel region is executed by two threads.

Nested parallelism is supported
Thread 0 executes the outer parallel region

Thread 0 executes the inner parallel region
Thread 1 executes the inner parallel region

Thread 2 executes the outer parallel region
Thread 0 executes the inner parallel region

Thread 1 executes the outer parallel region
Thread 0 executes the inner parallel region
Thread 1 executes the inner parallel region
Thread 1 executes the inner parallel region

Figure 4.86: Output from the source listed in Figure 4.85 – Three threads
are used. The values returned by the OpenMP function omp get thread num() do not
reflect the nesting level. It is not possible to use the thread number to uniquely identify
a thread.

the outer level. This variable is then passed on to the inner level parallel region by
means of the firstprivate clause. Thus, each thread has a local copy of variable
TID that is initialized with the value it had prior to entering the inner parallel
region. This is exactly what is needed.

The output from the code fragment in Figure 4.87 is shown in Figure 4.88. As
before, three threads execute the outer parallel region. One can now determine
which inner level thread has executed the printf statement within the inner parallel

OpenMP Language Features 113

printf("Nested parallelism is %s\n",
omp_get_nested() ? "supported" : "not supported");

#pragma omp parallel private(TID)
{

TID = omp_get_thread_num();

printf("Thread %d executes the outer parallel region\n",TID);

#pragma omp parallel num_threads(2) firstprivate(TID)
{

printf("TID %d: Thread %d executes inner parallel region\n",
TID,omp_get_thread_num());

} /*-- End of inner parallel region --*/
} /*-- End of outer parallel region --*/

Figure 4.87: Modified version of nested parallelism example – A thread at
the first parallel level stores the thread number and passes it on to the second level.

Nested parallelism is supported
Thread 0 executes the outer parallel region
TID 0: Thread 0 executes inner parallel region
Thread 1 executes the outer parallel region
TID 1: Thread 0 executes inner parallel region
Thread 2 executes the outer parallel region
TID 2: Thread 0 executes inner parallel region
TID 2: Thread 1 executes inner parallel region
TID 0: Thread 1 executes inner parallel region
TID 1: Thread 1 executes inner parallel region

Figure 4.88: Output from the source listed in Figure 4.87 – At least one can
now distinguish at what nesting level the message is printed.

region.
Where nested parallelism is concerned, it is not always obvious what region a

specific construct relates to. For the details of binding rules we refer to the standard.

114 Chapter 4

4.9.2 Flush Directive

We have seen that the OpenMP memory model distinguishes between shared data,
which is accessible and visible to all threads, and private data, which is local to an
individual thread. We also explained in Chapter 2 that, where the sharing of values
is concerned, things are more complex than they appear to be on the surface. This
is because, on most modern computers, processors have their own “local,” very high
speed memory, the registers and cache (see Fig. 1.1). If a thread updates shared
data, the new values will first be saved in a register and then stored back to the local
cache. The updates are thus not necessarily immediately visible to other threads,
since threads executing on other processors do not have access to either of these
memories. On a cache-coherent machine, the modification to cache is broadcast to
other processors to make them aware of changes, but the details of how and when
this is performed depends on the platform.

OpenMP protects its users from needing to know how a given computer handles
this data consistency problem. The OpenMP standard specifies that all modifi-
cations are written back to main memory and are thus available to all threads,
at synchronization points in the program. Between these synchronization points,
threads are permitted to have new values for shared variables stored in their local
memory rather than in the global shared memory. As a result, each thread exe-
cuting an OpenMP code potentially has its own temporary view of the values of
shared data. This approach, called a relaxed consistency model, makes it easier for
the system to offer good program performance.

But sometimes this is not enough. Sometimes updated values of shared val-
ues must become visible to other threads in-between synchronization points. The
OpenMP API provides the flush directive to make this possible.

The purpose of the flush directive is to make a thread’s temporary view of
shared data consistent with the values in memory. The syntax of the directive in
C/C++ is given in Figure 4.89.

#pragma omp flush [(list)]

Figure 4.89: Syntax of the flush directive in C/C++ – This enforces shared
data to be consistent. Its usage is not always straightforward.

The syntax in Fortran is shown in Figure 4.90.
The flush operation applies to all variables specified in the list. If no list is

provided, it applies to all thread-visible shared data. If the flush operation is
invoked by a thread that has updated the variables, their new values will be flushed

OpenMP Language Features 115

!$omp flush [(list)]

Figure 4.90: Syntax of the flush directive in Fortran – This enforces shared
data to be consistent. Its usage is not always straightforward.

to memory and therefore be accessible to all other threads. If the construct is
invoked by a thread that has not updated a value, it will ensure that any local copies
of the data are replaced by the latest value from main memory. Some care is required
with its use. First, this does not synchronize the actions of different threads:
rather, it forces the executing thread to make its shared data values consistent with
shared memory. Second, since the compiler reorders operations to enhance program
performance, one cannot assume that the flush operation will remain exactly in the
position, relative to other operations, in which it was placed by the programmer.
What can be guaranteed is that it will not change its position relative to any
operations involving the flushed variables. Implicit flush operations with no list
occur at the following locations.

• All explicit and implicit barriers (e.g., at the end of a parallel region or work-
sharing construct)

• Entry to and exit from critical regions

• Entry to and exit from lock routines

This design is to help avoid errors that would probably otherwise occur frequently.
For example, if flush was not implied on entry to and exit from locks, the code in
Figure 4.91 would not ensure that the updated value of count is available to
threads other than the one that has performed the operation. Indeed, versions of
the OpenMP standard prior to 2.5 required an explicit flush(count) before and
after the update. The implied flushing of all shared variables was introduced to
ensure correctness of the code; it may, however carry performance penalties.

The following example demonstrates how to employ flush to set up pipelined
thread execution. We consider the NAS Parallel Benchmark LU from the NPB
version 3.2.1. This is a simulated computational fluid dynamics application that
uses a symmetric successive overrelaxation method to solve a seven-band block-
diagonal system resulting from finite-difference discretization of the 3D compressible
Navier-Stokes equations. The OpenMP parallelization of the code is described in
[90] and is summarized below. All of the loops involved carry dependences that
prevent straightforward parallelization. A code snippet is shown in Figure 4.92.

116 Chapter 4

!$omp parallel shared (lck, count)
...
call omp_set_lock (lck)
count = count + 1
call omp_unset_lock (lck)
...

!$omp end parallel

Figure 4.91: A lock implies a flush – The example uses locks to increment a shared
counter. Since a call to a lock routine implies flushing of all shared variables, it ensures
that all threads have a consistent view of the value of variable count.

do k=2,nz
do j = 2, ny

do i = 2, nx
v(i,j,k) = v(i,j,k) + v(i-1,j,k)

+ v(i,j-1,k) + v(i,j,k-1)
...

end do
end do

end do

Figure 4.92: Code snippet from a time consuming loop in the LU code
from the NAS Parallel Benchmarks – Dependences in all three dimensions prevent
straightforward parallelization of the loop.

A certain amount of parallelism can be exploited by setting up pipelined thread
execution. The basic idea is to enclose the outer loop in a parallel region but share
the work on the next inner level. For our example, an !$omp parallel do directive
is placed on the k-loop, and the !$omp do work-sharing directive is placed on the
j-loop. On entry to the parallel region, the team of threads is created and starts
executing. Since the work in the k-loop is not parceled out, all threads will execute
all iterations of it.

For a given iteration of the k-loop, each thread will work on its chunk of iterations
of the j-loop. But because of data dependences, the threads cannot all work on
the same iteration of the k-loop at the same time. Each thread needs data that will
be updated by another thread, with the exception of the thread that receives the
first chunk of iterations. If we explicitly schedule this code so that thread 0 receives
the first chunk, thread 1 the second, and so forth, then thread 0 can start to work

OpenMP Language Features 117

!$OMP PARALLEL PRIVATE(k, iam)

iam = OMP_GET_THREAD_NUM()
isync(iam) = 0 ! Initialize synchronization array

! Wait for neighbor thread to finish

!$OMP BARRIER
do k = 2, nz

if (iam .gt. 0) then
do while(isync(iam-1) .eq. 0)

!$OMP FLUSH(isync)
end do
isync(iam-1) = 0

!$OMP FLUSH(isync,v)
end if

!$OMP DO SCHEDULE(STATIC, nchunk)
do j = 2, ny; do i = 2, nx

v(i,j,k) = v(i,j,k) + v(i-1,j,k) +
end do; end do

!$OMP END DO NOWAIT

! Signal the availability of data to neighbor thread

if (iam .lt. nt) then
!$OMP FLUSH(isync,v)

do while (isync(iam) .eq. 1)
!$OMP FLUSH(isync)

end do
isync (iam) = 1

!$OMP FLUSH(isync)
end if

end do

!$OMP END PARALLEL

Figure 4.93: One-dimensional pipelined thread execution in the NAS
Parallel Benchmark LU – The flush directive is used several times here. Note that
ny is assumed to be a multiple of the number of threads nt.

118 Chapter 4

immediately on its first chunk of data in the j direction. Once thread 0 finishes,
thread 1 can start on its chunk of the j-loop for iteration k=2 and, in the meantime,
thread 0 moves on to work on iteration k=3. Eventually, all threads will be working
on their chunk of data in the j dimension, but on different iterations of the k-loop.
Implementing this kind of pipelined thread execution is a more challenging problem
for the programmer because it requires synchronization of individual threads, rather
than global barrier synchronization. A thread has to wait for the availability of the
data it needs before it can start on a new chunk, and it must signal the availability
of updated data to the thread that is waiting for that data. The flush directive
can be used for this purpose, as shown in Figure 4.93.

The code invokes OpenMP runtime library routines omp get thread num, to ob-
tain the current thread identifier, and omp get num threads for the total number
of threads. The shared array isync is used to indicate the availability of data
from neighboring threads. Static scheduling has to be specified for this technique.
In addition, loop lengths are assumed to be a multiple of the number of threads,
thereby eliminating unpredictable behavior introduced by compiler-specific treat-
ment of end cases. Thread 0 can start processing right away. All other threads have
to wait until the values they need are available. To accomplish this, we place the
flush directive inside two subsequent while-loops. The first flush ensures that
the array isync is read from memory, rather than using a value stored locally in
a register or cache. The second flush ensures that the updated value of isync is
visible to other threads and that array v is read from memory after the while-loop
has exited.

After processing its chunk of the j-loop, a thread needs to signal the availability
of the data to its successor thread. To this end we use two flush directives, one of
which is placed in a while-loop. The first flush ensures that the updated values
of array v are made visible to the successor thread before the synchronization takes
place. The second flush ensures that the synchronization array isync is made
visible after it has been updated.

4.9.3 Threadprivate Directive

We have seen clauses for declaring data in parallel and work-sharing regions to be
shared or private. However, we have not discussed how to deal with global data
(e.g., static in C and common blocks in Fortran). By default, global data is shared,
which is often appropriate. But in some situations we may need, or would prefer
to have, private data that persists throughout the computation. This is where

OpenMP Language Features 119

the threadprivate directive comes in handy.10 The effect of the threadprivate

directive is that the named global-lifetime objects are replicated, so that each thread
has its own copy. Put simply, each thread gets a private or “local” copy of the
specified global variables (and common blocks in case of Fortran). There is also a
convenient mechanism for initializing this data if required. See the description of
the copyin clause in Section 4.8.5 for details.

The syntax of the threadprivate directive in C/C++ is shown in Figure 4.94.
The Fortran syntax is given in Figure 4.95.

#pragma omp threadprivate (list)

Figure 4.94: Syntax of the threadprivate directive in C/C++ – The list
consists of a comma separated list of file-scope, namespace-scope, or static block scope
variables that have incomplete types. The copyin clause can be used to initialize the data
in the threadprivate copies of the list item(s).

!$omp threadprivate (list)

Figure 4.95: Syntax of the threadprivate directive in Fortran – The
list consists of a comma-separated list of named variables and named common blocks.
Common block names must appear between slashes, for example, !$omp threadprivate

(/mycommonblock/). The copyin clause can be used to initialize the data in the thread-
private copies of the list item(s).

Among the various types of variables that may be specified in the threadprivate
directive are pointer variables in C/C++ and Fortran and allocatables in Fortran.
By default, the threadprivate copies are not allocated or defined. The programmer
must take care of this task in the parallel region. The example in Figure 4.96
demonstrates this point.

In order to exploit this directive, a program must adhere to a number of rules and
restrictions. For it to make sense for global data to persist, and thus for data created
within one parallel region to be available in the next parallel region, the regions need
to be executed by the “same” threads. In the context of OpenMP, this means that
the parallel regions must be executed by the same number of threads. Then, each
of the threads will continue to work on one of the sets of data previously produced.
If all of the conditions below hold, and if a threadprivate object is referenced in
two consecutive (at run time) parallel regions, then threads with the same thread

10Technically this is a directive, not a construct.

120 Chapter 4

number in their respective regions reference the same copy of that variable.11 We
refer to the OpenMP standard (Section 2.8.2) for more details on this directive.

• Neither parallel region is nested inside another parallel region.

• The number of threads used to execute both parallel regions is the same.

• The value of the dyn-var internal control variable is false at entry to the first
parallel region and remains false until entry to the second parallel region.

• The value of the nthreads-var internal control variable is the same at entry
to both parallel regions and has not been modified between these points.

1 int *pglobal;
2
3 int main()
4 {
5
6
7 for (i=0; i<n; i++)
8 {
9 if ((pglobal=(int *) malloc(length[i]*sizeof(int))) != NULL) {
10
11 for (j=sum=0; j<length[i]; j++) pglobal[j] = j+1;
12 sum = calculate_sum(length[i]);
13 printf("Value of sum for i = %d is %d\n",i,sum);
14 free(pglobal);
15
16 } else {
17 printf("Fatal error in malloc - length[%d] = %d\n",
18 i,length[i]);
19 }
20 }
21
22

Figure 4.96: Program fragment – This program uses a global pointer pglobal to
allocate, initialize, and release memory.

11Section 4.7 on page 95 defines and explains these control variables.

OpenMP Language Features 121

The need for and usage of the threadprivate directive is illustrated by a some-
what elaborate example in Figure 4.96, where the fragment of a sequential program
is listed. At line 1 a global pointer pglobal to an int is defined. The main for-
loop spans lines 7 through 20. In this loop, storage is allocated at line 9. Pointer
pglobal is used to point to this block of memory, which is initialized in the for-loop
(line 11). At line 12 function calculate_sum is called; it sums up the elements of
pglobal. At line 13 the checksum called sum is printed. At line 14 the memory
block is released again through the call to the free function. If the memory al-
location should fail, the code block under the else branch is executed. Function
calculate_sum is given in Figure 4.97. It simply adds up all the elements pointed
to by global, using parameter length as an argument to the function.

1 extern int *pglobal;
2
3 int calculate_sum(int length)
4 {
5 int sum = 0;
6
7 for (int j=0; j<length; j++)
8 sum += pglobal[j];
9
10 return(sum);
11 }

Figure 4.97: Source of function calculate sum – This function sums up the
elements of a vector pointed to by the global pointer pglobal.

The main loop over i at line 7 in Figure 4.96 can be easily parallelized with
a #pragma omp parallel for combined work-sharing construct. However, this
requires care when using pointer pglobal in particular. By default, pglobal is
a shared variable. This creates various (related) problems. In the parallelized
loop over i, multiple threads update pglobal simultaneously, creating a data race
condition. If we do not find a way to overcome this, we already have a fatal error
of course. But on top of that, the size of the memory block depends on i and is
therefore thread-dependent. As a result, some threads access memory outside of the
area that has been allocated, another fatal error. The third problem encountered
is that one thread may release memory (through the call to free) while another
thread or multiple threads still need to access this portion of memory. This results
in undetermined runtime behavior, leading to a wrong answer (because of the data

122 Chapter 4

race condition) or a segmentation violation caused by the out-of-bounds access or
premature release of memory. Luckily, the threadprivate directive helps out. The
OpenMP version of the code fragment using this is shown in Figure 4.98.

1 int *pglobal;
2
3 #pragma omp threadprivate(pglobal)
4
5 int main()
6 {
7
8
9 #pragma omp parallel for shared(n,length,check) \
10 private(TID,i,j,sum)
11 for (i=0; i<n; i++)
12 {
13 TID = omp_get_thread_num();
14
15 if ((pglobal=(int *) malloc(length[i]*sizeof(int))) != NULL) {
16
17 for (j=sum=0; j<length[i]; j++) pglobal[j] = j+1;
18 sum = calculate_sum(length[i]);
19 printf("TID %d: value of sum for i = %d is %d\n",
20 TID,i,sum);
21 free(pglobal);
22
23 } else {
24 printf("TID %d: fatal error in malloc - length[%d] = %d\n",
25 TID,i,length[i]);
26 }
27 } /*-- End of parallel for --*/
28
29

Figure 4.98: OpenMP version of the program fragment – The threadprivate

directive is used to give each thread a private copy of the global pointer pglobal. This is
needed for the parallel loop to be correct.

The source code changes needed to parallelize this loop are minimal. A #pragma

omp threadprivate directive is used at line 3 to give each thread a local copy of our
pointer pglobal. At line 9 the #pragma omp parallel for directive is inserted

OpenMP Language Features 123

to parallelize the main loop over i. For diagnostic purposes the thread number is
stored in variable TID at line 13. This identifier is used in the print statements.
The output is given in Figure 4.99.

TID 0: value of sum for i = 0 is 55
TID 0: value of sum for i = 1 is 210
TID 2: value of sum for i = 4 is 1275
TID 1: value of sum for i = 2 is 465
TID 1: value of sum for i = 3 is 820

Figure 4.99: Output of the program listed in Figure 4.98 – Variable n is set
to 5, and three threads are used.

Sometimes a private variable, such as a pointer with the private data-sharing
attribute, can be used to achieve the same result. In the example here, this is not
possible without modifying the source of function calculate_sum and all the places
in the source program where it is called. Since this requires more work, and most
likely additional testing, the threadprivate directive is more convenient to use.

4.10 Wrap-Up

In the early sections of this chapter, we introduced some terminology and then
presented and discussed a basic set of OpenMP constructs, directives, and clauses.
This set is more than sufficient to parallelize many different applications. We next
introduced synchronization constructs and explained how to influence and exchange
information with the execution environment. We then showed some slightly less
common clauses and, finally, some advanced features.

OpenMP is straightforward to use. The programmer’s time is often spent think-
ing about where the parallelism is in the application. Once this has been identified,
implementing it using the features provided by OpenMP is often straightforward.
Challenges may arise if an algorithm implies tricky synchronization or if additional
performance is needed.

What helps when parallelizing an application is to have a clean sequential version
to start with. In particular, the control and data flow through the program should
be straightforward. Use of global data that is modified should be minimized to
reduce the chance of introducing a data race condition. Something else that helps
when parallelizing loops is to avoid a bulky loop body, which makes the specification
of data-sharing attributes tedious and error prone. If the loop body performs a
substantial amount of work, one should push it into a function. All variables local

124 Chapter 4

to the function are private by default, often dramatically reducing the data-sharing
list. This is not only more pleasing to the eye but also easier to maintain. The use
of block scoping in C can also help in this respect.

5 How to Get Good Performance by Using OpenMP

In this chapter, we give an overview of major performance considerations with
respect to OpenMP programming and explain how to measure performance. We
give tips on how to avoid common performance problems. Much of this chapter
is taken up with a case study that illustrates a number of the points made, as
well as providing insight into the process of exploring and overcoming performance
problems.

5.1 Introduction

The relative ease of parallel programming with OpenMP can be a mixed blessing.
It may be possible to quickly write a correctly functioning OpenMP program, but
not so easy to create a program that provides the desired level of performance.
When performance is poor, it is often because some basic programming rules have
not been adhered to.

Programmers have developed some rules of thumb on how to write efficient se-
quential code. If these rules are followed, a certain base level of performance is
usually achieved. This can often be gradually improved by successive fine tuning
aspects of this program. The same is true for OpenMP programs. As we explain
below, following some basic guidelines can help avoid first-level performance prob-
lems. For good performance, especially with a larger numbers of threads, more
work may be required.

Our goal in this chapter is to give the programmer enough information to get
things right from the start and to have the insight needed to improve a code’s
performance.

Chapter 6 expands on this goal. Several case studies are discussed in detail
there. The aim is to show not only how to apply the basic performance rules to
real-world applications but also how to use more advanced strategies to obtain good
performance, scalable to a high number of threads.

5.2 Performance Considerations for Sequential Programs

One may be surprised to find a discussion of sequential performance in a book on
OpenMP. We have good reason for covering this topic, however. Scalar performance
is still a major concern when creating a parallel program.

These days, poor single-processor (“sequential”) performance is often caused by
suboptimal usage of the cache memory subsystem found in contemporary comput-
ers. In particular, a so-called cache miss at the highest level in the cache hierarchy

126 Chapter 5

is expensive because it implies the data must be fetched from main memory before it
can be used. That is typically at least 5–10 times more expensive than fetching data
from one of the caches. If this situation happens frequently on a single-processor
system, it can severely reduce program performance.

On a shared-memory multiprocessor system, the adverse impact is even stronger:
the more threads involved, the bigger the potential performance problem. The
reason is as follows. A miss at the highest cache level causes additional traffic on the
system interconnect. No matter how fast this interconnect is, parallel performance
degrades because none of the systems on the market today have an interconnect
with sufficient bandwidth to sustain frequent cache misses simultaneously by all
processors (or cores) in the system.

We briefly discuss the memory hierarchy and its impact, since this is so important
for OpenMP programs. The programmer can adopt many strategies, in addition to
those discussed here, to improve sequential performance. The extent to which the
user is willing and able to tune the sequential program before inserting OpenMP
constructs will vary, as will the performance gains that can be achieved by doing so.
We highly recommended, however, that the programmer consider sequential per-
formance when creating OpenMP code, especially if the goal is a scalable OpenMP
application.

5.2.1 Memory Access Patterns and Performance

A modern memory system is organized as a hierarchy, where the largest, and also
slowest, part of memory is known as main memory. Main memory is organized
into pages, a subset of which will be available to a given application. The memory
levels closer to the processor are successively smaller and faster and are collectively
known as cache. When a program is compiled, the compiler will arrange for its
data objects to be stored in main memory; they will be transferred to cache when
needed. If a value required for a computation is not already in a cache (we call this
a cache “miss”), it must be retrieved from higher levels of the memory hierarchy, a
process that can be quite expensive. Program data is brought into cache in chunks
called blocks, each of which will occupy a line of cache. Data that is already in
cache may need to be removed, or “evicted”, to make space for a new block of data.
Different systems have different strategies for deciding what must go.

The memory hierarchy is (with rare exceptions) not explicitly programmable by
either the user or the compiler. Rather, data are fetched into cache and evicted from
it dynamically as the need arises. Given the penalty paid whenever values must
be retrieved from other levels of memory, various strategies have been devised that

How to Get Good Performance by Using OpenMP 127

can help the compiler and the programmer to (indirectly) reduce the frequency
with which this situation occurs. A major goal is to organize data accesses so
that values are used as often as possible while they are still in cache. The most
common strategies for doing so are based on the fact that programming languages
(including both Fortran and C) typically specify that the elements of arrays be
stored contiguously in memory. Thus, if an array element is fetched into cache,
“nearby” elements of the array will be in the same cache block and will be fetched
as part of the same transaction. If a computation that uses any of these values can
be performed while they are still in cache, it will be beneficial for performance.

In C, a two-dimensional array is stored in rows. For instance, element [0][2]

follows element [0][1], which in turn follows element [0][0] in memory. Element
[1][1] is followed by [1][2], and so forth. This is often referred to as “rowwise
storage.” Thus, when an array element is transferred to cache, neighbors in the
same row are typically also transferred as part of the same cache line. For good
performance, therefore, a matrix-based computation should access the elements of
the array row by row, not column by column. Figures 5.1 and 5.2 illustrate both
types of memory access.

for (int i=0; i<n; i++)
for (int j=0; j<n; j++)

sum += a[i][j];

Figure 5.1: Example of good memory access – Array a is accessed along the
rows. This approach ensures good performance from the memory system.

The loop in Figure 5.1 exhibits good memory access. When data has been brought
into the cache(s), all the elements of the line are used before the next line is refer-
enced. This type of access pattern is often referred to as “unit stride.”

for (int j=0; j<n; j++)
for (int i=0; i<n; i++)

sum += a[i][j];

Figure 5.2: Example of bad memory access – Array a is accessed columnwise.
This approach results in poor utilization of the memory system. The larger the array, the
worse its performance will be.

In contrast, the loop in Figure 5.2 is not cache friendly. Each reference to a[i][j]
may bring a new block of data into the cache. The next element in the line it

128 Chapter 5

occupies is not referenced until the next iteration of the outer loop is begun, by
which time it might have been replaced in cache by other data needed during
the execution of the inner loop. Hence, the execution time of this loop may be
dominated by the time taken to repeatedly copy data into cache. This situation is
especially likely if variable n is fairly large (relative to the cache size).

The storage order is different in Fortran: entire arrays are stored contiguously
by column. This means that for an m x n array a, element a(1,1) is followed
by element a(2,1). The last element a(m,1) of the first column in followed by
a(1,2), etc. This is called “columnwise storage.” Just as in C, it is critical for
performance that a Fortran array be accessed in the order in which the elements
are stored in memory.

5.2.2 Translation-Lookaside Buffer

We have skipped one important detail about the memory system. On a system
that supports virtual memory, the memory addresses for different applications are
“virtualized”: they are given logical addresses, arranged into virtual pages. The
size of a page is determined by the size(s) the system supports, plus the choice(s)
offered by the operating system. A typical page size is 4 or 8 KByte, but much
larger ones exist. In fact, the physical pages that are available to a program may
be spread out in memory, and so the virtual pages must be mapped to the physical
ones. The operating system sets up a special data structure, called a page table,
that records this mapping. It is used to locate the physical page corresponding to a
virtual page when it is referenced during execution. The page table resides in main
memory, however, and this procedure is time-consuming. In order to alleviate the
expense of looking up page addresses, a special cache was developed that stores
recently accessed entries in the page table. It is known as the translation-lookaside
buffer , or TLB, and may considerably improve the performance of the system and
of individual applications.1

The TLB is on the critical path for performance. Whenever data is needed for
a calculation and the information needed to determine its physical location is not
in the TLB, the processor waits until the requested information is available. Only
then is it able to transfer the values and resume execution. Therefore, just as with
data cache, it is important to make good use of the TLB entries. We would like a
page to be heavily referenced while its location is stored in the TLB. Whenever a
program does not access data in storage order (as shown in Figure 5.2, for example),
frequent cache reloads plus a large number of TLB misses may result.

1There can be a hierarchy of TLBs similar to that of data (and instruction) caches.

How to Get Good Performance by Using OpenMP 129

5.2.3 Loop Optimizations

Both the programmer and the compiler can improve the use of memory. To show
how, we first note that the difference between the two code fragments in Figures 5.1
and 5.2 is minor. If we were to encounter the latter loop in a piece of code, we
could simply exchange the order of the loop headers and most likely experience a
significant performance benefit. This is one way in which loops can be restructured,
or transformed, to improve performance. This particular strategy is called loop
interchange (or loop exchange).

Since many programs spend much of their time executing loops and since most
array accesses are to be found there, a suitable reorganization of the computation
in loop nests to exploit cache can significantly improve a program’s performance.
A number of loop transformations can help achieve this. They can be applied if
the changes to the code do not affect correct execution of the program. The test
for this is as follows:
If any memory location is referenced more than once in the loop nest and if at least
one of those references modifies its value, then their relative ordering must not be
changed by the transformation.

Although this is often intuitive, the loop’s code must be carefully examined to be
sure this is the case for all data accesses. A compiler is not always able to determine
whether this property holds, which is why the application developer can sometimes
do a better job of optimizing loops. This is most likely to be the case if pointers
are used or array subscripts refer to variables or other arrays.

A programmer should consider transforming a loop if accesses to arrays in the
loop nest do not occur in the order in which they are stored in memory, or if a loop
has a large body and the references to an array element or its neighbors are far
apart. A simple reordering of the statements inside the body of the loop nest may
make a difference. Note that loop transformations have other purposes, too. They
may help the compiler to better utilize the instruction pipeline or may increase the
amount of exploitable parallelism. They can also be applied to increase the size
of parallel regions. Here we describe some of the most important transformations.
We refer to [181, 178] for a deeper discussion. Some of these transformations are
used in the case study in Section 5.6.

Loop unrolling is a powerful technique to effectively reduce the overheads of loop
execution (caused by the increment of the loop variable, test for completion and
branch to the start of the loop’s code). It has other benefits, too. Loop unrolling can
help to improve cache line utilization by improving data reuse. It can also help to
increase the instruction-level parallelism, or ILP (see also Section 1.1). In order to

130 Chapter 5

accomplish all of this, the transformation packs the work of several loop iterations
into a single pass through the loop by replicating and appropriately modifying the
statements in the loop.

for (int i=1; i<n; i++) {
a[i] = b[i] + 1;
c[i] = a[i] + a[i-1] + b[i-1];

}

Figure 5.3: A short loop nest – Loop overheads are relatively high when each
iteration has a small number of operations.

The loop in Figure 5.3 loads four array elements, performs three floating-point
additions, and stores two values per iteration. Its overhead includes incrementing
the loop variable, testing its value and branching to the start of the loop. In
contrast, the unrolled loop shown in Figure 5.4 loads five values, carries out six
floating-point additions, and stores four values, with the same overheads. The
overall overhead of executing the loop nest has been roughly halved. The data
reuse has improved, too. When one is updating c[i+1], the value of a[i] just
computed can be used immediately. There is no risk that the reference to a[i]

might force new data to be brought into cache. The newly computed value is still
in a register and hence available for use.

for (int i=1; i<n; i+=2) {
a[i] = b[i] + 1;
c[i] = a[i] + a[i-1] + b[i-1];
a[i+1] = b[i+1] + 1;
c[i+1] = a[i+1] + a[i] + b[i];

}

Figure 5.4: An unrolled loop – The loop of Figure 5.3 has been unrolled by a factor
of 2 to reduce the loop overheads. We assume the number of iterations is divisible by 2.

In this example, the loop body executes 2 iterations in one pass. This number is
called the “unroll factor.” The appropriate choice depends on various constraints.
A higher value tends to give better performance but also increases the number of
registers needed, for example.

How to Get Good Performance by Using OpenMP 131

Nowadays, a programmer seldom needs to apply this transformation manually,
since compilers are very good at doing this. They are also very good at determining
the optimal unroll factor.

A downside of loop unrolling is that the performance of the resulting code may
vary somewhat as a function of the iteration count. If the unroll factor does not
divide the iteration count, the remaining iterations must be performed outside this
loop nest. This is implemented through a second loop, the “cleanup” loop. By
definition it is a short loop and somewhat reduces potential performance gains.

Loop unrolling usually is not a good idea if the loop already contains a lot of
computation or if it contains procedure calls. The former situation is likely to mean
that this will make cache use less efficient, and the latter introduces new overheads
that are likely to outweigh the savings. If there are branches in the loop, the benefits
may also be low.

Unroll and jam is an extension of loop unrolling that is appropriate for some
loop nests with multiple loops. We consider only the case here with two loops that
are tightly nested, as illustrated in Figure 5.5.

for (int j=0; j<n; j++)
for (int i=0; i<n; i++)

a[i][j] = b[i][j] + 1;

Figure 5.5: A loop that does not benefit from inner loop unrolling – In
this case, unrolling the loop over i results in poor cache utilization. It is assumed the
iteration count is divisible by 2.

This loop nest is a prime candidate for unrolling because there is not much
computation per iteration. Unfortunately, unrolling the inner loop over i results in
strided access to elements of arrays a and b. If, however, we unroll the outer loop,
as in Figure 5.6, then we have the desired rowwise array access.

for (int j=0; j<n; j+=2){
for (int i=0; i<n; i++)

a[i][j] = b[i][j] + 1;
for (int i=0; i<n; i++)

a[i][j+1] = b[i][j+1] + 1;
}

Figure 5.6: Outer loop unrolling – The outer loop of the code in Figure 5.5 has
been unrolled by a factor of 2.

132 Chapter 5

We can do better than this, however, since we can reduce the loop overhead by
“jamming” the replicated inner loops to recreate a single inner loop, as shown in
Figure 5.7 for our example loop nest. Since the resulting loop includes work from
several iterations of the outer loop, it has more computation and reduces the overall
overhead.

for (int j=0; j<n; j+=2)
for (int i=0; i<n; i++) {

a[i][j] = b[i][j] + 1;
a[i][j+1] = b[i][j+1] + 1;

}

Figure 5.7: Unroll and jam – The bodies of the two inner loops have been “jammed”
into a single inner loop that performs the work of two iterations of the outer loop, reducing
the overall overhead.

Loop interchange exchanges the order of loops in a nest. The example in Sec-
tion 5.2.1 showed how this transformation can be applied to improve memory access.
It can also be profitably used to increase the amount of work inside a loop that will
be parallelized, by moving loops inside the parallel loop.

Code between the loop headers, a function call, a data dependence, or branches
within the loop are some of the possible reasons a compiler may not be able to
apply this optimization. An example of such an inhibitor is shown in Figure 5.8.

for (int j=0; j<n; j++)
for (int i=0; i<m; i++)

a[i][j+1] = a[i+1][j] + b;

Figure 5.8: Loop with complex array access pattern – Array a is updated in
column order here. This is not good for performance, but the compiler cannot improve
this by exchanging the loop headers.

Since it involves strided access to elements of a, swapping the loop headers might
lead to a substantial speedup. To see why we cannot do so here, consider how this
change affects the value of just one array element. In the original loop, a[2][2] is
computed in iteration j=1,i=2. It is subsequently used to assign a new value to
a[1][3] in iteration j=2,i=1.

In the loop given in Figure 5.9, where the loop headers are swapped, these iter-
ations are executed in the opposite order. As a result, when the value of a[1][3]

How to Get Good Performance by Using OpenMP 133

is computed, the old value of a[2][2] will be taken instead and a different result
produced.

The problem here is that we have swapped the order in which a value is computed
and then used, thereby violating our test for a legal loop transformation. Careful
reasoning is needed by the compiler or programmer to determine whether this can
happen: fortunately it is not all that common.

for (int i=0; i<n; i++)
for (int j=0; j<m; j++)

a[i][j+1] = a[i+1][j] + b ;

Figure 5.9: Illegal loop interchange – This loop has improved memory access,
but the values it computes for array a are not the same as those produced by the loop of
Figure 5.8.

Loop fusion merges two or more loops to create a bigger loop. This might en-
able data in cache to be reused more frequently or might increase the amount of
computation per iteration in order to improve the instruction-level parallelism (see
Section 1.1), as well as lowering loop overheads because more work gets done per
loop iteration. Sometimes a reordering of loops beforehand, or of statements inside
one or more loops, may enhance the results.

For example, consider the pair of loops in Figure 5.10. Especially if n is large,
values of a accessed in the first loop will no longer be in cache when they are needed
in the second loop. Loop fusion enables us to rewrite this computation as a single
loop, given in Figure 5.11. Some care may be needed to ensure that the result does
not violate the test for a legal transformation.

for (int i=0; i<n; i++)
a[i] = b[i] * 2;

for (int i=0; i<n; i++)
{

x[i] = 2 * x[i];
c[i] = a[i] + 2;

}

Figure 5.10: A pair of loops that both access array a – The second loop reuses
element a[i], but by the time it is executed, the cache line this element is part of may no
longer be in the cache.

134 Chapter 5

for (int i=0; i<n; i++)
{

a[i] = b[i] * 2;
c[i] = a[i] + 2;
x[i] = 2 * x[i];

}

Figure 5.11: An example of loop fusion – The pair of loops of Figure 5.10 have
been combined and the statements reordered. This permits the values of array a to be
immediately reused.

Loop fission is a transformation that breaks up a loop into several loops. Some-
times, we may be able to improve use of cache this way or isolate a part that inhibits
full optimization of the loop. This technique is likely to be most useful if a loop
nest is large and its data does not fit into cache or if we can optimize parts of the
loop in different ways.

Figure 5.12 shows a loop nest which first assigns a value to an element of array
c and then updates a column of array a. The accesses to arrays a and b in the
inner loop imply poor cache locality and bad memory access, but the assignment
to array c prevents us from simply applying loop interchange. Loop fission solves
this problem. It results in two different loops: we can swap the loop headers in the
second of them to get the desired effect. Moreover, the first loop is amenable to
further optimization, like replacement by a vectorized version of the exp intrinsic
function, if available. We show the result of the loop fission in Figure 5.13.

for (int i=0; i<n; i++)
{
c[i] = exp(i/n) ;
for (int j=0; j<m; j++)

a[j][i] = b[j][i] + d[j] * e[i];
}

Figure 5.12: A loop with poor cache utilization and bad memory access –
If we can split off the updates to array c from the rest of the work, loop interchange can
be applied to fix this problem.

Loop tiling or blocking is the last loop transformation presented and discussed
here. It is a powerful transformation designed to tailor the number of memory
references inside a loop iteration so that they fit into cache. If data sizes are large

How to Get Good Performance by Using OpenMP 135

for (int i=0; i<n; i++)
c[i] = exp(i/n) ;

for (int j=0; j<m; j++)
for (int i=0; i<n; i++)

a[j][i] = b[j][i] + d[j] * e[i];

Figure 5.13: Loop fission – The loop nest of Figure 5.12 has been split into a pair of
loops, followed by loop interchange applied to the second loop to improve cache usage.

and memory access is bad, or if there is data reuse in the loop, chopping a loop
into chunks (tiles) may make this possible.

Loop tiling replaces the original loop by a pair of loops. This may be done for
as many different loops in a loop nest as appropriate. It may be necessary to
experiment with the size of the tiles. Note that if we spread the work of a loop nest
among threads via an OpenMP work-sharing directive, then each thread receives
a portion of the overall computation. That will have an impact on the number of
memory references in that loop and has to be taken into account when tiling.

We now show the use of this transformation for a related, but slightly different,
purpose. We cannot ensure that the values of both arrays a and b will be in cache
in the code of Figure 5.14, which transposes a. If the values of b are used in cache
order, we end up with strided access to the elements of a (as shown) and vice versa.

for (int i=0; i<n; i++)
for (int j=0; j<m; j++)

b[i][j] = a[j][i];

Figure 5.14: A nested loop implementing an array transpose operation –
Loop interchange does not improve its use of cache or TLB. A fresh approach is needed.

The penalty incurred for the strided accesses to a can be reduced by improving
locality in terms of memory pages used. This should lower the number of TLB
misses. The modified code is shown in Figure 5.15, where the inner loop is replaced
by a pair of loops with loop variables j1 and j2. Here, we update rows of array b

in segments of length nbj, which is called the “blocking size.” If we choose this size
carefully, we can keep data from b in cache and reuse a set of pages of data from a

before moving on to the next set of elements of b.

136 Chapter 5

for (int j1=0; j1<n; j1+=nbj)
for (int i=0; i<n; i++)
for (int j2=0; j2 < MIN(n-j1,nbj); j2++)

b[i][j1+j2] = a[j1+j2][i];

Figure 5.15: Loop tiling applied to matrix transpose – Here we have used loop
tiling to split the inner loop into a pair of loops. This reduces TLB and cache misses.

We illustrate the change in the way that a and b are accessed in Figure 5.16.

i

j i

j

j2i

nbj

j1

=

=
j2

i

j1 nbj

b a

b a

Figure 5.16: Array access pattern – Here we see how arrays a and b are accessed
before and after loop tiling. The revised version accesses fewer pages per outer loop
iteration.

5.2.4 Use of Pointers and Contiguous Memory in C

Pointers are commonly used in C applications, but they pose a serious challenge
for performance tuning. The memory model in C is such that, without additional
information, one must assume that all pointers may reference any memory address.
This is generally referred to as the pointer aliasing problem. It prevents a compiler
from performing many program optimizations, since it cannot determine that they

How to Get Good Performance by Using OpenMP 137

are safe. As a result, performance will suffer. But if pointers are guaranteed to point
to portions of nonoverlapping memory, for example because each pointer targets
memory allocated through a distinct call to the “malloc” function, more aggressive
optimization techniques can be applied. In general, only the programmer knows
what memory locations a pointer may refer to. The restrict keyword used in the
example of Section 3.2.2 is provided in C99 to inform the compiler that the memory
referenced by one pointer does not overlap with a memory section pointed to by
another pointer. Some compilers also provide options to specify this information.
Note that even though the Fortran standard does not permit such “aliasing” except
in a restricted context, some programs violate the standard, and compilers may
take this into account. It can be worth checking the compiler’s documentation for
information and options related to aliasing in Fortran programs also.

The example in Section 3.2.2 also declares a linear array to represent array b

in the implementation, rather than a two-dimensional array. This is a technique
specific to C. If b is declared and used as an array of pointers, not all rows of
the matrix need to be equal in length. As a result, the compiler has to make a
more conservative assumption regarding the memory layout. This has a negative
impact on the compiler’s ability to optimize code. The linearization of the matrix
ensures that a contiguous block of memory is used, and this helps the compiler to
analyze and optimize loop nests to improve memory usage. It is also likely to result
in fewer memory accesses and might enhance software-controlled data prefetch, if
supported.

5.2.5 Using Compilers

Modern compilers implement most, if not all, of the loop optimizations presented
in Section 5.2.3. They perform a variety of analyses to determine whether they
may be applied (the main one is known as data dependence analysis). They also
apply a variety of techniques to reduce the number of operations performed and
reorder code to better exploit the hardware. The amount of work they carry out
can be influenced by the application developer. Once correctness of the numerical
results is assured, it is worthwhile to experiment with compiler options to squeeze
the maximum performance out of the application. These options (or flags) differ
a good deal from one compiler to another, so they must be explored afresh for
each compiler. Recall that the compiler’s ability to transform code is limited by its
ability to analyze the program and to determine that one can safely modify it. We
have just seen that this may be hindered by the presence of pointers, for example
(Section 5.2.4). A different kind of problem arises when the compiler is not able

138 Chapter 5

to improve memory usage because that involves changing the structure of nonlocal
data. Here the programmer has to take action: some rewriting of the source code
may lead to better results.

5.3 Measuring OpenMP Performance

Before considering how to achieve good OpenMP performance, we need to dis-
cuss how it can be measured and identify what factors determine overall program
performance. With a serial program, timing how long the program takes is straight-
forward. Common practice is to use a standard operating system command. For in-
stance, an application might be executed under control of the /bin/time command
available on Unix systems (for example /bin/time ./a.out). The “real,” “user,”
and “system” times are then printed after the program has finished execution. An
example is shown in Figure 5.17.

$ /bin/time ./program.exe

real 5.4
user 3.2
sys 1.0

Figure 5.17: Example output from the /bin/time command – These three
numbers can be used to get a first impression on the performance. For a deeper analysis
a more sophisticated performance tool is needed.

This output contains some useful information. The first number tells us that
the program took 5.4 seconds from beginning to end. Next we see that it spent
3.2 seconds in user mode; this is the time the program spent executing outside
any operating system services. The last number is the time spent on operating
system services, such as input/output routines. Generally, the sum of the user and
system time is referred to as the CPU time. The “real” time is also referred to
as wall-clock time, or elapsed time.2 We observe a difference between the elapsed
time of 5.4 seconds and the CPU time. There can be several reasons for this, but a
common cause is that the application did not get a full processor to itself, because
of a high load on the system.

The same timing mechanism can be used to measure the performance of (shared
memory) parallel programs. If sufficient processors are available, the elapsed time

2The omp get wtime() function provided by OpenMP is convenient for measuring the elapsed
time of blocks of source code.

How to Get Good Performance by Using OpenMP 139

should be less than the CPU time. But, we didn’t get the parallelism for free. An
OpenMP program has additional overheads. After all, something has to happen
to make the sequential program run in parallel. These overheads are collectively
called the parallel overhead It includes the time to create, start, and stop threads,
the extra work needed to figure out what each task is to perform, the time spent
waiting in barriers and at critical sections and locks, and the time spent computing
some operations redundantly. Hence, the total CPU time is likely to exceed the
CPU time of the serial version.

In Section 2.6 on page 33, Amdahl’s law was discussed. This is used as a basis
for the simple performance model given in Formulas (5.1) and (5.2) below. The
difference here is that the effect of parallel overhead is accounted for.

TCPU (P) = (1 + Op · P) · Tserial (5.1)

TElapsed(P) = (
f

P
+ 1 − f + Op · P) · Tserial (5.2)

In this model, Tserial is the CPU time of the original serial version of the appli-
cation. The number of processors is given by P . The parallel overhead is denoted
by Op ·P , with Op assumed to be a constant percentage (this is a simplification, as
the overheads may well increase as the number of processors grows).

The fraction of execution time that has been parallelized is specified by f ∈ [0, 1].
Both f = 0 and f = 1 are extreme cases. A value of zero for f implies that
application is serial. A perfectly parallel application corresponds to f = 1.

In Table 5.1 we see what happens if the original program takes Tserial = 10.20
seconds to run and code corresponding to 95% of the execution time has been
parallelized. In this case, f = 0.95. It is also assumed that each additional processor
adds a 2% overhead to the total CPU time (Op = 0.02).

The parallel speedup, or just “speedup” for short, is calculated by taking the ratio
of the elapsed time on P processors and the elapsed time of the serial version.3 The
parallel efficiency, or simply “efficiency”, is obtained by dividing the speedup by
the number of processors. The combination of the increased parallel overhead and
the fact that 5% of the execution time is serial quickly limits scalability. The
performance on four processors is already far from optimal. There are clearly
diminishing returns on adding even more processors, given that the speedup on 8
processors is just a little over three.

3It is implicitly assumed that all processors requested are available to the application through-
out the execution of the program.

140 Chapter 5

Table 5.1: Parallel performance and speedup for f=0.95 and 2% overhead
– The elapsed time goes down, whereas the total CPU time goes up. Parallel speedup is
calculated from the elapsed time, using the serial version as the reference.

Version Number of CPU time Elapsed time Speedup Efficiency
Processors (seconds) (seconds) (%)

Serial 1 10.20 10.20 1.00 100
Parallel 1 10.40 10.40 0.98 98

2 10.61 5.76 1.77 88
4 11.02 3.75 2.72 68
8 11.83 3.35 3.04 38

The performance information obtained from an external timer is useful for a
first diagnosis. For a deeper analysis of the inhibitor(s) to scalable performance,
sophisticated tools are needed. In the remainder of this section, we give an overview
of the factors that influence the performance of OpenMP code and offer tips on how
to gather performance information. In Section 6.6 on page 228 we dig deeper into
the topic of performance tuning, including performance analysis tools and their use.

5.3.1 Understanding the Performance of an OpenMP Program

We have seen in earlier sections that memory behavior is critical for the perfor-
mance of sequential applications, and we noted that this also holds for an OpenMP
code. The relevance of Amdahl’s law for the performance improvement that can
be obtained by creating a parallel program has also been discussed. In this section,
an overview of the kinds of overheads that may be incurred is given.

The observable performance of OpenMP programs is influenced by at least the
following factors, in addition to those that play a role in sequential performance:

• The manner in which memory is accessed by the individual threads. This
has a major influence on performance, as seen later. If each thread accesses
a distinct portion of data consistently throughout the program, it probably
makes excellent use of the memory hierarchy, including the thread-local cache.
In such cases, the performance improvement obtained by the larger fraction
of data references that can be served by cache might more than offset the
total overheads.

• The fraction of the work that is sequential, or replicated. By the latter,
we mean the computations that occur once in the sequential program, but

How to Get Good Performance by Using OpenMP 141

are performed by each thread in the parallel version. Some amount of such
sequential overheads are inevitable in almost all parallel programs.

• The amount of time spent handling OpenMP constructs. Each of the di-
rectives and routines in OpenMP comes with some overheads. For example,
when a parallel region is created, threads might have to be created, or woken
up and some data structures have to be set up to carry information needed by
the runtime system. When a work-sharing directive is implemented, the work
to be performed by each thread is usually determined at run time. Since
this work is not needed in the sequential code, it is an additional perfor-
mance penalty introduced by the OpenMP translation. We collectively call
these the (OpenMP) parallelization overheads. Different constructs inherently
incur different overheads. They can be measured (see Section 5.3.2).

• The load imbalance between synchronization points. If threads perform dif-
ferent amounts of work in a work-shared region, the faster threads have to
wait at the barrier for the slower ones to reach that point. Similarly, threads
might have to wait for a member of their team to carry out the work of a
single construct. When threads are inactive at a barrier, they are not con-
tributing to the work of the program. During this time, the other threads are
idle. If they are actually busy on some other work for part of that time, there
is no performance hit. We might call the corresponding penalty the load im-
balance overheads. (Note that if the operating system uses one of the threads
to carry out an operation, this can lead to idle time at the next barrier that
is not caused by a load imbalance in the application itself.)

• Other synchronization costs. Threads typically waste time waiting for access
to a critical region or a variable involved in an atomic update, or to acquire a
lock. If they are unable to perform useful work during that time, they remain
idle. These are collectively the synchronization overheads.

With a parallel program, there can also be a positive effect, offsetting some of
the performance loss caused by sequential code and the various overheads. This
is because a parallel program has more aggregate cache capacity at its disposal,
since each thread will have some amount of local cache. This might result in a
superlinear speedup: the speedup exceeds the number of processors used. In this
chapter several examples of this are shown (see also Sections 5.6.3, 5.6.4, and 5.7).

A programmer can exploit knowledge of these basic performance considerations
in many ways. In the remainder of this chapter, we explore some of them. We
show, in particular, how memory usage influences performance.

142 Chapter 5

5.3.2 Overheads of the OpenMP Translation

A cost is associated with the creation of OpenMP parallel regions, with the sharing
of work among threads, and with all kinds of synchronization. The actual over-
heads experienced by an application depend on the OpenMP translation strategy
used by the compiler, characteristics of the runtime library routines and the way
they are used, the target platform, and the way the compiler otherwise optimizes
code. The sources of overheads include the cost of starting up threads and creat-
ing their execution environment, the potential additional expense incurred by the
encapsulation of a parallel region in a separate function, the cost of computing the
schedule, the time taken to block and unblock threads, and the time for them to
fetch work and signal that they are ready. Minor overheads also are incurred by
using firstprivate and lastprivate. In most cases, however, these are relatively
modest compared to the cost of barriers and other forms of thread synchronization,
as well as the loss in speedup whenever one or more threads are idle. Dynamic
forms of scheduling can lead to much more thread interaction than do static sched-
ules, and therefore inevitably incur higher overheads: on the other hand, they may
reduce thread idle time in the presence of load imbalance. A good OpenMP imple-
mentation takes care to use the most efficient means possible to create, deploy, and
synchronize threads.

The EPCC microbenchmarks were created to help programmers estimate the
relative cost of using different OpenMP constructs [30]. They are easy to use and
provide an estimate of the overheads each feature causes. SPHINX [47] is another
set of microbenchmarks, which also considers the cost of using OpenMP constructs
in conjunction with MPI. Sphinx provides a powerful environment that helps the
user obtain more accurate measurements, but it requires a little more effort [150].

Figure 5.18 shows overheads for major OpenMP constructs as measured by the
EPCC microbenchmarks for the first version of the OpenUH compiler [112]. A
few results are striking here. First, the overheads for the for directive and for the
barrier are almost identical. Indeed, the overheads for the parallel loop consist
of calling the static loop schedule and the barrier. So this is not such a surprising
result. Overheads for the parallel for are just slightly higher than those for
parallel, a result that can be accounted for by the overheads of sharing the work,
which is negligible for the default static scheduling policy. The single directive
has higher overheads than a barrier. This is also not surprising, as the overheads
consist of a call to a runtime library routine that ensures that one thread executes
the region, and then a barrier at the end. In this implementation, the reduction

clause is costly because it is implemented via a critical region. This was a simple,

How to Get Good Performance by Using OpenMP 143

 0

 20

 40

 60

 80

 100

 120

 140

 160

 1 2 3 4 5 6 7 8

O
v
e
r
h
e
a
d

(
m
i
c
r
o
s
e
c
o
n
d
)

Number of Threads

PARALLEL
FOR

PARALLEL FOR
BARRIER

SINGLE
REDUCTION

Figure 5.18: Overheads of some OpenMP directives – The overhead of several
common directives and constructs is given in microseconds.

portable way to achieve the required functionality, but it is not an efficient way to
realize this construct. Most implementations will be more efficient.

Overheads for the different kinds of loop schedules are given in Figure 5.19.
They clearly show the performance benefits of a static schedule, and the penalties
incurred by a dynamic schedule, where loops must grab chunks of work—especially
small chunks—at run time. The guided schedule, where chunk sizes are gradually
reduced, may be a good alternative in this region. Note that the scale to the left is
logarithmic.

5.3.3 Interaction with the Execution Environment

When one is measuring and analyzing performance, it is important to be able to
control the execution environment. To start with, one has to make sure that,
when running the parallel application, the load on the system does not exceed the
number of processors. If it does, the system is said to be oversubscribed. This
not only degrades performance but also makes it hard to analyze the program’s
behavior. On an SMP system we strongly recommend that a program use fewer
than the total number of processors, even if the system is dedicated to a single
application. The reason is that the operating system daemons and services need

144 Chapter 5

 10

 100

 1000

1 2 4 8 16 32 64 128 256

O
v
e
r
h
e
a
d
(
m
i
c
r
o
s
e
c
o
n
d
)

Chunksize

Static
Static,n

Dynamic,n
Guided,n

Figure 5.19: Overhead of OpenMP scheduling – The overheads for the different
kinds of loop schedules are shown. Note that the scale to the left is logarithmic.

to run on a processor, too. If all processors are in use by the application, even a
relatively lightweight daemon disrupts the execution of the user program, because
one thread has to give way to this process. This might delay all other threads at
the next synchronization point. Even for a scalable code, the speedup curve may
then flatten out for the run that used all processors in the system.

In an ideal scenario, the system is dedicated to the application. This strategy
avoids possible negative interference from the other program(s) running on the
system. If this is not the case, process context switches may reduce performance.
After such a switch, the cache contents of the previously running thread may be
invalidated by the other program that is scheduled to run. Even if the previous
thread is rescheduled onto the same processor, the data will most likely have to
be reloaded into the cache(s). Things are worse if the thread is rescheduled onto a
different processor after a context switch.

Even on modest-sized SMPs, the performance of an application could be influ-
enced by the way its data has been stored in physical memory. The reason is that
some real-world systems have cc-NUMA memory. As a result, timings of a pro-
gram with the same data set may vary considerably. OpenMP does not provide
any features to bind threads to processors or to specify the placement of data in

How to Get Good Performance by Using OpenMP 145

a cc-NUMA memory. If available, such a feature is part of the interface with the
operating system. For example, some systems provide command line controls to
specify the placement of threads across a system, as well as a means to request that
data be placed in the vicinity of a given thread. This kind of feature and its use is
discussed in Chapter 6.

5.4 Best Practices

The flexibility and convenience of OpenMP as a programming model come with
a risk. One may often be able to come up with several different parallelization
strategies, all of which deliver a correct OpenMP program. But the performance of
these versions can be vastly different. The most intuitive implementation is often
not the best one when it comes to performance, but the parallel inefficiency is not
directly visible simply by inspecting the source. In part, this is an unfortunate
side-effect of a programming model that does not require the user to specify all
details of parallel execution. It sometimes occurs because the programmer did not
follow the basic rules for obtaining OpenMP performance. On other occasions,
additional problems must be overcome. In this section, we provide some general
recommendations on how to write an efficient OpenMP program.

5.4.1 Optimize Barrier Use

No matter how efficiently barriers are implemented, they are expensive operations.
It is always worthwhile to reduce their usage to the minimum required by the code.
Fortunately, the nowait clause (see also Section 4.5.6 on page 78) makes it easy to
eliminate the barrier that is implied on several constructs.

One of the simplest cases is shown in Figure 5.20. The #pragma omp for loop
construct has an implied barrier. Since the second parallel loop is back to back
with the end of the parallel region, we can safely omit the implied barrier for the
second loop. (A compiler might do this anyway.)

A recommended strategy is to first ensure that the OpenMP program works
correctly and then use the nowait clause where possible, carefully inserting explicit
barriers (see also Section 4.6.1 on page 84) at specific points in the program as
needed. When doing this, one needs to take particular care to identify and order
computations that write and read the same portion of memory.

This is demonstrated in Figure 5.21. Here vectors a and c are independently
updated. There is no reason why a thread that has finished its work in the first
loop should not enter the second loop. This is enabled by adding the nowait clause

146 Chapter 5

#pragma omp parallel
{

.........
#pragma omp for

for (i=0; i<n; i++)
.........

#pragma omp for nowait
for (i=0; i<n; i++)

} /*-- End of parallel region - barrier is implied --*/

Figure 5.20: A construct with one barrier less – The nowait clause is used to
omit the implied barrier at the end of the second loop.

#pragma omp parallel default(none) \
shared(n,a,b,c,d,sum) private(i)

{
#pragma omp for nowait
for (i=0; i<n; i++)

a[i] += b[i];

#pragma omp for nowait
for (i=0; i<n; i++)

c[i] += d[i];

#pragma omp barrier

#pragma omp for nowait reduction(+:sum)
for (i=0; i<n; i++)

sum += a[i] + c[i];
} /*-- End of parallel region --*/

Figure 5.21: A reduced number of barriers – Before reading the values of vectors
a and b all updates on these vectors have to be completed. The barrier ensures this.

to the first loop. Since the new values of a and c are subsequently used to calculate
sum, we can either retain the implied barrier on the second #pragma omp for loop
or remove it and insert an explicit #pragma omp barrier as shown. The version
presented reflects the dependences clearly; however, the choice is largely a matter

How to Get Good Performance by Using OpenMP 147

of taste and style. Either way, a barrier must be present before the last loop. The
third nowait clause is applied to the loop with the reduction clause. As before,
this is safe because the parallel region ends with a barrier anyhow and the value of
sum is not used before the end of the region.

5.4.2 Avoid the Ordered Construct

As explained in Section 4.6.2 on page 86, the ordered construct ensures that the
corresponding block of code within a parallel loop is executed in the order of the
loop iterations. It is expensive to implement. The runtime system has to keep track
which iterations have finished and possibly keep threads in a wait state until their
results are needed. This inevitably slows program execution.

The ordered construct can often (perhaps always) be avoided. It might be better,
for example, to wait and perform I/O outside of a parallelized loop. We do not
claim that other solutions are always trivial to implement, but they are certain to
be rewarding from a performance point of view.

5.4.3 Avoid Large Critical Regions

A critical region is used to ensure that no two threads execute a piece of code
simultaneously. It can be used when the actual order in which threads perform
the computation is not important. The more code contained in the critical region,
however, the greater the likelihood that threads have to wait to enter it, and the
longer the potential wait times. Therefore the programmer should minimize the
amount of code enclosed within a critical region. If a critical region is very large,
program performance might be poor.

For example, in the code in Figure 5.22, each thread updates the shared vari-
able a. However, the second statement assigns a new value to a private variable,
and hence there is no chance of a data race. This second statement unnecessarily
increases the amount of work in the region and potentially extends the amount of
time threads must wait for each other. It should thus be removed from the criti-
cal region. A more likely scenario occurs when the critical region contains a loop
with some computation that requires exclusive access by a single thread at a time
and some computation that does not. Since the latter could considerably degrade
performance, it is usually worthwhile rewriting the portion of code to minimize the
amount of work contained in the critical region.

We recall that whereas a critical region forces threads to perform all of the code
enclosed within it one at a time, an atomic update enforces exclusive access to just
one memory location. If the work to be performed only occasionally leads threads

148 Chapter 5

#pragma omp parallel shared(a,b) private(c,d)
{

......
#pragma omp critical

{
a += 2 * c;
c = d * d;

}
} /*-- End of parallel region --*/

Figure 5.22: A critical region – Without the critical region, the first statement
here leads to a data race. The second statement however involves private data only and
unnecessarily increases the time taken to execute this construct. To improve performance
it should be removed from the critical region.

to access the same data, a critical region might be an expensive choice. If at all
possible, an atomic update is to be preferred. An alternative is to rewrite the piece
of code and separate, as far as possible, those computations that cannot lead to
data races from those operations that do need to be protected.

5.4.4 Maximize Parallel Regions

Indiscriminate use of parallel regions may give rise to suboptimal performance.
Overheads are associated with starting and terminating a parallel region. Large
parallel regions offer more opportunities for using data in cache and provide a bigger
context for other compiler optimizations. Therefore it is worthwhile to minimize
the number of parallel regions.

For example, if we have multiple parallel loops, we must choose whether to en-
capsulate each loop in an individual parallel region, as sketched in Figure 5.23, or
to create one parallel region encompassing all of them.

The alternative is outlined in Figure 5.24. It has fewer implied barriers, and
there might be potential for cache data reuse between loops. The downside of this
approach is that one can no longer adjust the number of threads on a per loop
basis, but this is often not a real limitation.

5.4.5 Avoid Parallel Regions in Inner Loops

Another common technique to improve performance is to move parallel regions
out of innermost loops. Otherwise, we repeatedly experience the overheads of the

How to Get Good Performance by Using OpenMP 149

#pragma omp parallel for
for (.....)
{

/*-- Work-sharing loop 1 --*/
}

#pragma omp parallel for
for (.....)
{

/*-- Work-sharing loop 2 --*/
}

.........

#pragma omp parallel for
for (.....)
{

/*-- Work-sharing loop N --*/
}

Figure 5.23: Multiple combined parallel work-sharing loops – Each par-
allelized loop adds to the parallel overhead and has an implied barrier that cannot be
omitted.

#pragma omp parallel
{

#pragma omp for /*-- Work-sharing loop 1 --*/
{ }

#pragma omp for /*-- Work-sharing loop 2 --*/
{ }

.........

#pragma omp for /*-- Work-sharing loop N --*/
{ }

}

Figure 5.24: Single parallel region enclosing all work-sharing for loops –
The cost of the parallel region is amortized over the various work-sharing loops.

150 Chapter 5

parallel construct. For example, in the loop nest shown in Figure 5.25, the overheads
of the #pragma omp parallel for construct are incurred n2 times.

for (i=0; i<n; i++)
for (j=0; j<n; j++)

#pragma omp parallel for
for (k=0; k<n; k++)

{}

Figure 5.25: Parallel region embedded in a loop nest – The overheads of the
parallel region are incurred n2 times.

A more efficient solution is indicated in Figure 5.26. The #pragma omp parallel

for construct is split into its constituent directives and the #pragma omp parallel

has been moved to enclose the entire loop nest. The #pragma omp for remains at
the inner loop level. Depending on the amount of work performed in the innermost
loop, one should see a noticeable performance gain.

#pragma omp parallel
for (i=0; i<n; i++)

for (j=0; j<n; j++)
#pragma omp for
for (k=0; k<n; k++)

{}

Figure 5.26: Parallel region moved outside of the loop nest – The parallel
construct overheads are minimized.

5.4.6 Address Poor Load Balance

In some parallel algorithms, threads have different amounts of work to do. Trans-
posing a triangular matrix is a standard example. It is natural to assign each
thread the work associated with a consecutive block of rows or columns. But since
these are not equal in length, the workload is different for each thread, resulting
in a load imbalance. When this occurs, the threads wait at the next synchroniza-
tion point until the slowest one completes. One way to overcome this problem is
to use the schedule clause covered in Section 4.5.7 on page 79 with a nonstatic
schedule. The caveat here is that the dynamic and guided workload distribution

How to Get Good Performance by Using OpenMP 151

schedules have higher overheads than does the static scheme. If the load imbal-
ance is severe enough, however, this cost is offset by the more flexible allocation
of work to threads. It might be a good idea to experiment with these schemes, as
well as with various values for the chunk size parameter. Here the runtime clause
comes in handy, as it allows easy experimentation without the need to recompile
the program.

For example, the code in Figure 5.27 reads, writes, and processes data in chunks.
A substantial amount of performance is lost if the parallel version does not overlap
reading the data, processing it, and writing the results. The idea here is to read in
a new data set, while at the same time processing the previous set and writing out
results from the one before that.

for (i=0; i<N; i++) {
ReadFromFile(i,...);
for (j=0; j<ProcessingNum; j++)

ProcessData(); /* lots of work here */
WriteResultsToFile(i);

}

Figure 5.27: Pipelined processing – This code reads data in chunks, processes each
chunk and writes the results to disk before dealing with the next chunk.

The resulting code is shown in Figure 5.28. To minimize the overheads of setting
up parallel regions, the entire computation is enclosed in a single parallel region.

The code first reads in the chunk of data needed for the first iteration of the
i loop. Since execution cannot proceed until this data is available, the implicit
barrier is not removed. Next, one of the threads starts to read the next chunk of
data. Because of the nowait clause, the other threads immediately begin to execute
the processing loop.

If a static schedule was used here, the thread performing the read operation
would have had the same amount of work to do as the other threads. All other
threads then effectively wait for about as long as the read operation takes. The
dynamic schedule overcomes this problem and leads to a significant speedup: the
thread performing I/O joins the others once it has finished reading data, and shares
in any computations that remain at that time. But it will not cause them to wait
unless they have, in fact, performed all of the work by the time the I/O is done.
After this, one thread writes out the results. Since there is a nowait clause, the
other threads move on to the next iteration. Again, another thread starts reading
while the others can immediately move on to the computation.

152 Chapter 5

#pragma omp parallel
{

/* preload data to be used in first iteration of the i-loop */
#pragma omp single

{ReadFromFile(0,...);}

for (i=0; i<N; i++) {

/* preload data for next iteration of the i-loop */
#pragma omp single nowait

{ReadFromFile(i+1...);}

#pragma omp for schedule(dynamic)
for (j=0; j<ProcessingNum; j++)

ProcessChunkOfData(); /* here is the work */
/* there is a barrier at the end of this loop */

#pragma omp single nowait
{WriteResultsToFile(i);}

} /* threads immediately move on to next iteration of i-loop */
} /* one parallel region encloses all the work */

Figure 5.28: Parallelized pipelined processing – This code uses a dynamic work-
sharing schedule to overlap I/O and computation.

The dynamic schedule used here not only provides the overlap of computation and
I/O that is required in many codes; it also provides the necessary, but minimum,
amount of synchronization needed by the computation. The barrier at the end
of the j loop ensures that data for the next loop iteration is available and that
the results of the previous iteration have been written out before work proceeds.
Assuming that the j loop contains sufficient work, all but the first read and the
final write of data are fully overlapped in this code.

5.5 Additional Performance Considerations

Unfortunately, situations also arise where it is harder to give rules of thumb how
to get the best performance out of an OpenMP application. The best approach

How to Get Good Performance by Using OpenMP 153

might depend not only on the application but also on the system and OpenMP
implementation. We discuss some of these situations next.

5.5.1 The Single Construct Versus the Master Construct

The functionality of the single and master constructs is similar. The difference is
that a single region can be executed by any thread, typically the first to encounter
it, whereas this is not the case for the master region. The former also has an implied
barrier, although it can be omitted through a nowait clause.

Which construct is more efficient? The answer unfortunately depends on the
details. In general, one should expect the master construct to be more efficient,
as the single construct requires more work in the OpenMP library. The single

construct might be more efficient if the master thread is not likely to be the first one
to reach it and the threads need to synchronize at the end of the block. However,
the relative performance difference is implementation and application dependent.

On a cc-NUMA architecture it might even get more complicated. See also Sec-
tion 6.2.3 on page 199 for a discussion on this.

5.5.2 Avoid False Sharing

One of the factors limiting scalable performance is false sharing. It is a side effect
of the cache-line granularity of cache coherence implemented in shared-memory
systems (see also Section 1.2 on page 3). The cache coherence mechanism keeps
track of the status of cache lines by appending “state bits” to the line that indicate
whether the data on the cache line is still valid or is “stale”, that is, has been
invalidated. Any time a cache line is modified, cache coherence starts to do its
work. It notifies other caches holding a copy of the same line that the line has
been modified elsewhere.4 At such a point, the copy of the line on other processors
is invalidated. If the data in the line is still needed, a new, up-to-date copy of it
must be fetched. Depending on the implementation, the data might be fetched
from main memory or from the cache of another processor. One of the problems
with this mechanism is that the state bits do not keep track of the cache line state
on a byte basis, but at the line level instead. As a result, a processor is not able
to detect that individual bytes in a line have not been modified and can still be
safely read. Instead, an entire new line has to be fetched. Consequently, when two

4A write-back cache design is assumed here, as is common for at least certain levels of the
cache hierarchy.

154 Chapter 5

threads update different data elements in the same cache line, they interfere with
each other. This effect is known as false sharing.

We note that a modest amount of false sharing does not have a significant impact
on performance. If, however, some or all of the threads update the same cache line
frequently, performance degrades. The coherence transactions take time, and the
cache line hops from one cache to the other. An extreme case of false sharing is
illustrated by the example shown in Figure 5.29. To simplify our explanation of
what happens at run time, we assume that a cache line contains eight elements of
vector a. Furthermore, we assume that element a[0] is the first item in the cache
line, all threads have a copy of a in their cache prior to the update, and Nthreads is
eight. In the loop, thread P updates a[P]. If sufficient processors are available, the
threads are likely to execute this update simultaneously. In this case, false sharing
substantially degrades performance.

#pragma omp parallel for shared(Nthreads,a) schedule(static,1)
for (int i=0; i<Nthreads; i++)

a[i] += i;

Figure 5.29: Example of false sharing – Nthreads equals the number of threads
executing the for-loop. The chunk size of 1 causes each thread to update one element of
a, resulting in false sharing.

The explanation is as follows. Assume thread 0 first updates a[0]. This update
invalidates the other copies of the cache line containing a[0]. Since a[1] through
a[7] are in the same line, this single invalidation also impacts threads 1 through
7. All of them find out that the element to be updated is part of a line that has
just been invalidated, forcing them to get a new copy even though their respective
elements have not been modified yet. This effect is then repeated each time one
of the other threads updates its element. For instance, when thread 1 modifies
element a[1], it invalidates the copies of the cache line containing a[0] and a[2],

..., a[7] in the caches of the processors the other threads are running on.
In this case, array padding can be used to eliminate the problem. Under the as-

sumptions made, extending, or “padding,” the array by dimensioning it as a[n][8]
and changing the indexing from a[i] to a[i][0] eliminates the false sharing. Ac-
cesses to different elements a[i][0] are now separated by a cache line. As a result,
the update of an element no longer affects the state bits of the lines other elements
are part of.

How to Get Good Performance by Using OpenMP 155

Although array padding works well, it is a low-level optimization. Given that
the size of a cache line needs to be taken into account, it is also potentially non-
portable: the performance benefit on a different system may be reduced, or even
be nonexistent.

False sharing is likely to significantly impact performance under the following
conditions:

1. Shared data is modified by multiple threads.

2. The access pattern is such that multiple threads modify the same cache line(s).

3. These modifications occur in rapid succession.

All of these conditions need to be met for the degradation to be noticeable. There
is no false sharing with read-only data, because the cache lines are not invalidated.

In general, using private data instead of shared data significantly reduces the risk
of false sharing. In contrast with padding, this is also a portable optimization.

The exception is a situation where different private copies are held in the same
cache line or where the end of one copy shares a cache line with the start of another
copy. Although this might occasionally occur, the performance impact is not likely
to be significant. The compiler may have a minor effect on false sharing, depending
on how it allocates data and where the object code stores data in registers back in
cache. If it has reduced the number of times a variable is written, it can (slightly)
reduce the occurrence of false sharing.

#pragma omp parallel shared(a,b)
{

a = b + 1;
......

}

Figure 5.30: An initialization that causes false sharing – This statement
meets the first two criteria for false sharing. If multiple threads execute it at the same
time, performance is degraded. Note that there could even be another runtime error in
this example. Depending on the data type and hardware details, the write operation
to memory might be broken into several smaller stores, corrupting the result. For more
details we refer to page 65.

In our example of Figure 5.30, the executing threads all evaluate b+1 and assign
the result to variable a. Since b is not modified, this does not cause false sharing.

156 Chapter 5

However, variable a does. If there are a number of such initializations, they could
reduce program performance. In a more efficient implementation, variable a is
declared and used as a private variable instead. Assuming the various copies of a
are part of different cache lines, false sharing no longer occurs.

5.5.3 Private Versus Shared Data

The programmer may often choose whether data should be shared or private. Either
choice might lead to a correct application, but the performance impact can be
substantial if the “wrong” choice is made.

For example, if threads need unique read/write access to a one dimensional array,
one could declare a two-dimensional shared array with one row (in C/C++) or
column (in Fortran) per thread. Alternatively, each thread might allocate a one-
dimensional private array within the parallel region. In general, the latter approach
is to be preferred over the former. When modifying shared data, a data element
might be in the same cache line as data that is to be modified by another thread.
If this is the case and if modifications are frequent, performance degrades because
of false sharing (see also Section 5.5.2). With private data there is much less risk
of such interference.

Accessing shared data also requires dereferencing a pointer, which incurs a per-
formance overhead.

If data is read but not written in a parallel region, it could be shared, ensuring
that each thread has (read) access to it. But it could also be privatized so that
each thread has a local copy of the data, using the firstprivate clause (see Sec-
tion 4.5.4) to initialize it to the values prior to the parallel region. Both approaches
work, but the performance could be different. Sharing the data seems the most
reasonable choice here. There is no risk of false sharing because the data is not
modified, memory usage does not increase, and there is no runtime overhead to
copy the data. This may not be the case on a cc-NUMA architecture though. See
also Section 6.2.3 on this topic.

5.6 Case Study: The Matrix Times Vector Product

In this section, we revisit the parallel version of the matrix times vector product. We
first consider the performance of a slightly modified version of the code introduced
in Section 3.3. We then show how OpenMP features can be used to improve the
performance. At that point a distinction needs to be made between the C and
Fortran implementations of this problem. We show that the behavior of this code

How to Get Good Performance by Using OpenMP 157

is significantly affected by the way in which it uses memory. We also show that
a compiler could be able to overcome some performance problems. Moreover, we
give some insight into the process of studying the behavior of a parallel program.

5.6.1 Testing Circumstances and Performance Metrics

In general, performance results are significantly influenced by the following factors.

• The coding style used by the application developer

• The compiler, the choice of compiler options used, and its runtime libraries

• Relevant features of the operating system, including its support for memory
allocation and thread scheduling

• Characteristics of the hardware, including its memory hierarchy, cache coher-
ence mechanisms, support for atomic operations, and more

All results given here were obtained on a Sun FireTM E6900 SMP system with
the dual-core UltraSPARC r© IV [132] processor. The system had 24 processors (48
cores) and was running the SolarisTM 9 operating system in multiuser mode. No
special precautions were taken to tune the system for these tests.

We emphasize that the results presented are system-dependent and that this is
no more than a case study. The behavior of the code shown here might be different
on another platform and under another compiler, or even with a different release
of the same compiler and libraries. Our purpose here is to shed some light on the
process of studying the performance of a multithreaded program.

In all the graphs, the performance is shown over a range of square matrix sizes.
The amount of memory required for a given matrix size is referred to as “the
memory footprint.” The smallest matrix size tested is 5 x 5. This corresponds
to a memory footprint of just (m + m x n + n) ∗ 8 = (5 + 5 x 5 + 5) ∗ 8 = 280
bytes. The largest matrix is 2000 x 2000. The memory footprint for this problem
is a little over 3 GByte. The parallel performance is given in million floating-point
operations per second (Mflop/s). In some cases, we also report on the parallel
efficiency. Formula (2.1) in Section 2.6 is used to calculate the parallel speedup.
For T1, the elapsed time for the OpenMP code on one thread is used. The efficiency
is obtained by dividing the speedup by the number of threads. OpenMP code has
unavoidable overheads that do not exist in a sequential program. Nevertheless,
although the overheads depend largely on the compiler, libraries, and hardware, a
well-parallelized OpenMP application can be nearly as efficient on a single thread

158 Chapter 5

as its sequential counterpart. It is good practice to compare the performance for
both versions, and we do so. In practice, sequential results are often obtained by
compiling without the OpenMP option, effectively deactivating the parallelism.

To measure the effectiveness of the parallel version executed on one thread, we
compute the single thread overhead by subtracting 1 from the ratio of the per-
formance of the sequential version and the OpenMP version executed on a single
thread. This metric is given in Formula (5.3). Note that the value is computed as
a percentage.

Overheadsingle thread = 100 ∗ (
ElapsedT ime(OpenMPsingle thread)

ElapsedT ime(Sequential)
− 1) % (5.3)

In the ideal case, the elapsed time of the OpenMP version is equal to the se-
quential version. This corresponds to an overhead value of 0. If the sequential
version is faster, the overhead is strictly positive. There is always a chance that
the OpenMP version on a single thread might be faster because of a difference in
compiler optimizations. If so, the overhead is strictly negative.

5.6.2 A Modified OpenMP Implementation

We have adapted the OpenMP implementations of the matrix times vector problem
given in Figures 3.10 and 3.11 in Chapter 3. The sources are listed in Figures 5.31
and 5.32. In this version, the #pragma omp parallel for directive in C/C++, and
the !$omp parallel do directive in Fortran are used to replace the parallel region
with only one work-sharing #pragma omp for or !$omp do construct, respectively.
The initialization of the result vector a has also been optimized for sequential
execution. A common approach is to set the elements to zero first. But why
initialize the value of ai to zero, only to immediately add Bi,j ∗ cj to it for j = 0
in C and j = 1 in Fortran? These redundant instructions can be eliminated by
pre-initializing element ai to the result of the first computation. Consequently, the
inner loop starts with a value of 1 instead of 0 for j in the C version and with j = 2
in the Fortran implementation. There is a second reason not to initialize elements
of vector a to zero. When values are assigned to variables that are needed later on,
they are written back to cache, where they might displace other data. Although the
impact may not be measurable here, it is always a good idea to reduce the number
of stores as well as the total number of instructions.

Admittedly, the compiler does not have to store ai until all computations on this
element have completed, and the effect is probably very minor in this case anyhow,

How to Get Good Performance by Using OpenMP 159

1 void mxv(int m, int n, double * restrict a,
2 double * restrict b, double * restrict c)
3 {
4 int i, j;
5
6 #pragma omp parallel for default(none) \
7 shared(m,n,a,b,c) private(i,j)
8 for (i=0; i<m; i++)
9 {
10 a[i] = b[i*n]*c[0];
11 for (j=1; j<n; j++)
12 a[i] += b[i*n+j]*c[j];
13 } /*-- End of parallel for --*/
14 }

Figure 5.31: OpenMP version of the matrix times vector product in C –
The result vector is initialized to the first computed result here.

but it is a simple example of a sequential optimization (see also Section 5.2) that
improves the cache utilization and reduces the number of instructions executed.

5.6.3 Performance Results for the C Version

In Figure 5.33, the single thread overheads are given as a function of the memory
footprint for the C version of the matrix times vector product. The smallest matri-
ces (starting with a 5 x 5 matrix) have a significant overhead. Although not easy
to derive from the graph, the overhead for a 200 x 200 matrix (corresponding to a
memory footprint of 0.3 MByte) is 2%. It is less for larger matrices. Although the
actual numbers are specific to the application, implementation, compiler, and sys-
tem, we recall that an OpenMP application executed using one thread inherently
has overheads that do not exist in a pure sequential version.

In Figure 5.34, the performance in Mflop/s for 1, 2, 4, and 8 threads is plotted
as a function of the memory footprint. The curves reveal several interesting facts:

• If the memory footprint is less than 0.05 MByte, the performance on 2, 4,
and 8 threads is below single-thread performance. This threshold value cor-
responds to m = n = 80.

• For a certain range of problem sizes, superlinear speedup is observed. The
range depends on the number of threads.

160 Chapter 5

1 subroutine mxv(m, n, a, b, c)
2
3 implicit none
4 integer(kind=4) :: m , n
5 real (kind=8) :: a(1:m), b(1:m,1:n), c(1:n)
6
7 integer :: i, j
8
9 !$OMP PARALLEL DO DEFAULT(NONE) &
10 !$OMP SHARED(m,n,a,b,c) PRIVATE(i,j)
11 do i = 1, m
12 a(i) = b(i,1)*c(1)
13 do j = 2, n
14 a(i) = a(i) + b(i,j)*c(j)
15 end do
16 end do
17 !$OMP END PARALLEL DO
18
19 return
20 end subroutine mxv

Figure 5.32: The OpenMP version of the matrix times vector product in
Fortran – The result vector is initialized to the first computed result here.

• For the largest problem sizes tested, the performance for 2 threads scales quite
well. For higher thread counts this gets progressively worse.

The superlinear speedup is a pleasant performance bonus. With a superlinear
speedup, the performance on P threads is more than P times higher than the single-
thread performance. This can be attributed mainly to the fact that more aggregate
cache space is available when using more than one processor.

This effect is more clearly seen in the parallel efficiency chart given in Figure 5.35.
In this chart, perfect (100%) efficiency is used as a reference. This line corresponds
to linear scaling. A value below this line indicates the scaling is less than linear. If
the value exceeds the line, superlinear speedup is realized.

For a given number of threads, the efficiency improves as the matrix gets larger,
but only up to a given point. After that, the efficiency decreases. The extent of the
decrease depends on the number of threads used. Typically, the higher the number

How to Get Good Performance by Using OpenMP 161

S
in

gl
e

Th
re

ad
O

ve
rh

ea
d

(%
)

Memory Footprint (MByte)

0.000 0.001 0.010 0.100 1.000 10.000 1000.000
0

50

100

150

200

250

300

350

Figure 5.33: Single-thread overheads for the matrix times vector product
in C – Formula (5.3) has been used to compute the overhead for a wide range of matrix
sizes. For a matrix of size 200 x 200 the overhead is 2%. It is less for larger matrices.

of threads, the more substantial the degradation is. This behavior is consistent
with Amdahl’s law.

For a memory footprint on the order of 1 MByte, the efficiency for 2 threads is
95%. For 8 threads this threshold is at around 4 MByte. At 8 MByte something
interesting happens: the implementation exhibits a superlinear speedup of up to
450%. The higher the number of threads, the longer this behavior lasts. For
example, if the memory footprint is 30 MByte, the efficiency using 2 threads drops
back to 98%, but it is over 400% for 4 and 8 threads. For a 70 MByte memory
footprint, the efficiency for 8 threads is over 200% but drops to around 95% for 4
threads. These numbers should not really come as a surprise. The processor used in
our experiments has a level-2 cache of 8 Mbyte per core. If, for example, 8 threads
are used, a problem size corresponding to a memory footprint of 64 MByte fits into
the aggregated level-2 caches. If, however, 4 threads are used for the same problem
size, only half of the data is cache-resident on average.5 As a result, many more

5Because of cache mapping effects and cache line invalidations, lines may be evicted prema-
turely. This is why “half” is approximate only.

162 Chapter 5

0.000 0.001 0.010 0.100 1.000 10.000 1000.000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

P
er

fo
rm

an
ce

(M
flo

p/
s)

�������	

������	�

�������	�

������	�

Memory Footprint (MByte)

Figure 5.34: OpenMP performance of the matrix times vector product
in C – If the memory footprint is less than 0.05 MByte, the single thread performance is
higher than the performance for multiple threads. For a certain range of problem sizes, a
superlinear speedup is realized. For problem sizes exceeding this range, the performance
curves follow Amdahl’s law.

of the array references come out of the slower main memory, not from the faster
cache memory.

The reduced efficiency for a larger memory footprint can be explained by Am-
dahl’s law. There is still some benefit from the aggregated cache space available;
but as the problem size increases, the relative benefit decreases. This is illustrated
in Table 5.2. If we measure one efficiency value, Amdahl’s law can be used to
estimate the other values. For our data point, we determine that the parallel effi-
ciency for 2 threads on the largest matrix (20, 000 by 20, 000) used is 96.3%. The
table shows that our estimates for 4 and 8 threads using Amdahl’s law are quite
accurate. It also demonstrates how ruthless this law is. A fairly respectable 96.3%
efficiency on 2 threads is not sufficient to scale to a large number of threads. Based
on these numbers, the efficiency for 16 threads drops to 63%. Using 32 threads, the
efficiency drops further to 45%. In other words, more than half of the threads are
effectively not used in this case.

The performance degradation for small matrices can be avoided by using an if-
clause (see also Section 4.8.1) on the parallel region, as shown in Figure 5.36. In

How to Get Good Performance by Using OpenMP 163

0.000 0.001 0.010 0.100 1.000 10.000 1000.000
0

50
100
150
200
250
300
350
400
450
500

P
ar

al
le

lE
ffi

ci
en

cy
(%

)

�������	
�����

�������	

�������	

�������	

Memory Footprint (MByte)

�������	

�������	

Figure 5.35: Parallel efficiency of the matrix times vector product in C –
Several interesting effects are observed. Up to a specific memory footprint, the efficiency
increases as the matrix gets larger. A superlinear speedup is even observed. The higher
the number of threads, the longer this lasts. At a certain point, however, the efficiency
drops, basically following Amdahl’s law.

Table 5.2: Estimated parallel efficiency for the OpenMP version in C
– The measured efficiency of 96.3% for the largest, 20, 000 by 20, 000, matrix using 2
threads serves as the basis to estimate the efficiencies for 4 and 8 threads. The measured
values are in good agreement with these estimates.

Threads Amdahl’s Law Measured
(%) (%)

2 96.3 96.3
4 89.7 89.4
8 78.8 75.6

order to avoid changing the interface of the matrix times vector routine, a global
integer variable with the name threshold_omp is used to control the parallel exe-
cution. It is included in file globals.h.

The program has been rerun with a value of 100 for threshold_omp. This is a
higher value than strictly needed, but it means we can safely use more than eight

164 Chapter 5

1 #include "globals.h"
2
3 void mxv(int m, int n, double * restrict a,
4 double * restrict b, double * restrict c)
5 {
6 int i, j;
7
8 #pragma omp parallel for if (m > threshold_omp) \
9 default(none) \
10 shared(m,n,a,b,c) private(i,j)
11 for (i=0; i<m; i++)
12 {
13 a[i] = b[i*n]*c[0];
14 for (j=1; j<n; j++)
15 a[i] += b[i*n+j]*c[j];
16 } /*-- End of parallel for --*/
17 }

Figure 5.36: Second OpenMP version of the matrix times vector product
in C – Compared to the source listed in Figure 5.31, the if-clause has been included.
The threshold omp variable can be used to avoid a performance degradation for small
matrices. If the clause evaluates to false, only one thread executes the code.

threads. Some of the overhead, especially for the barrier, may increase as a function
of the number of threads.6 The results given in Figure 5.37 show that the threshold
value enables us to avoid performance degradation. The parallel performance is now
either equal to or higher than the single-thread performance.

5.6.4 Performance Results for the Fortran Version

The Fortran version of the matrix times vector product is discussed next. Just
as for the C version, the single thread overhead is shown first, followed by the
parallel performance results. The single-thread overhead is given as a function of
the memory footprint in Figure 5.38 for the implementation listed in Figure 5.32.
Similar to the C version, the single-thread overhead is 2% for a 200 by 200 matrix
and less for larger matrices. A comparison of the graphs in Figures 5.33 and 5.38
shows that the single-thread overhead is approximately the same for both the C
and Fortran versions.

6A more elegant solution is to make the threshold a function of the number of threads.

How to Get Good Performance by Using OpenMP 165

0.000 0.001 0.010 0.100 1.000 10.000 1000.000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

P
er

fo
rm

an
ce

(M
flo

p/
s)

�������	

������	�

�������	�

������	�

Memory Footprint (MByte)

Figure 5.37: OpenMP performance of the matrix times vector product in
C – The performance is now either equal to or higher than single-thread performance.

0.000 0.001 0.010 0.100 1.000 10.000 1000.000
0

50

100

150

200

250

300

350

S
in

gl
e

Th
re

ad
O

ve
rh

ea
d

(%
)

Memory Footprint (MByte)

Figure 5.38: Single-thread overhead for the row implementation in For-
tran – Formula 5.3 has been used to compute the overhead for a wide range of matrix
sizes. For a matrix of size 200 x 200 the overhead is 2% and less for larger matrices.

166 Chapter 5

0.000 0.001 0.010 0.100 1.000 10.000 1000.000
0

1000

2000

3000

4000

5000

6000

P
er

fo
rm

an
ce

(M
flo

p/
s)

�������	

������	�

�������	�

������	�

Memory Footprint (MByte)

Figure 5.39: OpenMP performance of the matrix times vector product in
Fortran – If the memory footprint is less than 0.1 MByte, the single-thread performance
is higher than the performance for multiple threads. For a certain range of problem sizes,
a superlinear speedup is realized. For problem sizes exceeding this range, the performance
curves follow Amdahl’s law.

In Figure 5.39 the performance in Mflop/s is plotted as a function of the memory
footprint using 1, 2, 4, and 8 threads. The shapes of the performance curves are
similar to those shown in Figure 5.34:

• For problem sizes exceeding 0.10 MByte, the multithreaded performance ex-
ceeds the single-thread performance. This corresponds to a matrix of size 120
by 120. This threshold is only slightly higher than for the C version.

• For a memory footprint in the 10–70 MByte range, a superlinear speedup is
observed. The extent also depends on the number of threads used.

• For large problem sizes, the performance follows Amdahl’s law. On the largest
matrix size tested, the efficiency for 2 threads is 96.1%, very close to the 96.3%
measured for the C version. The performance using 4 and 8 threads can be
explained by this efficiency.

As with the C version, the if-clause is used to avoid performance degradation
when the matrix is too small. The source of this version is listed in Figure 5.40.

How to Get Good Performance by Using OpenMP 167

1 subroutine mxv(m, n, a, b, c)
2
3 use globals
4
5 implicit none
6 integer(kind=4) :: m, n
7 real (kind=8) :: a(1:m), b(1:m,1:n), c(1:n)
8
9 integer :: i, j
10
11 !$OMP PARALLEL DO DEFAULT(NONE) IF (m > threshold_omp) &
12 !$OMP SHARED(m,n,a,b,c) PRIVATE(i,j)
13 do i = 1, m
14 a(i) = b(i,1)*c(1)
15 do j = 2, n
16 a(i) = a(i) + b(i,j)*c(j)
17 end do
18 end do
19 !$OMP END PARALLEL DO
20
21 return
22 end subroutine mxv

Figure 5.40: Second OpenMP version of the matrix times vector product
in Fortran – Compared to source listed in Figure 5.32, the if-clause has been included.
The threshold omp variable can be used to avoid a performance degradation if the matrix
is too small. In cases when the clause evaluates to true, only one thread executes the code.

We avoid having to change the interface of the routine by using a Fortran module
called globals to pass in the threshold_omp. In Figure 5.41 the performance is
given for a threshold value of 100, meaning that it will be executed by a single
thread if m ≤ 100. The threshold has the desired effect on performance.

5.7 Fortran Performance Explored Further

The results given in the previous section warrant some deeper analysis. In partic-
ular, the following is observed:

• If more than one thread is used, the absolute performance for the Fortran ver-
sion is lower than for the C version in certain ranges of the memory footprint.

168 Chapter 5

0.000 0.001 0.010 0.100 1.000 10.000 1000.000
0

1000

2000

3000

4000

5000

6000

P
er

fo
rm

an
ce

(M
flo

p/
s)

�������	

������	�

�������	�

������	�

Memory Footprint (MByte)

Figure 5.41: OpenMP performance of the second version of the matrix
times vector product in Fortran – The performance of the implementation is now
either equal to or higher than the single-thread performance.

• Compared to the results for the C version, the curves for 2, 4, and 8 threads
are more “spiky” for a specific part of the memory footprint. The size of this
region is approximately in the 1–18 MByte range.

To make these differences clear, Figure 5.42 plots the performance for both C
and Fortran versions, using 1 and 2 threads. The single-threaded performance of
the C version is up to 20% higher than the Fortran version for a memory footprint
that does not exceed 8 MByte. The biggest differences are in the 70 KByte to 8
MByte range. This corresponds to matrix sizes that no longer fit in the level-1
data cache (64 KByte) but do fit into the level-2 unified cache (8 MByte). There
is no difference for a footprint exceeding 8 MByte. On 2 threads, the performance
is the same for very small matrices, but as soon as the memory footprint is about
5 KByte or more, the C version is faster. For a footprint of around 30 MByte, the
performance is equal again.

In fact, the Fortran performance is quite remarkable. The implementation of
the C version was straightforward. The matrix times vector product has a natural
level of parallelism at the outer loop level, and the data is accessed in the most
suitable way for performance. But in the Fortran version, access to elements of the

How to Get Good Performance by Using OpenMP 169

0.000 0.001 0.010 0.100 1.000 10.000 1000.000
0

250

500

750

1000

1250

1500

1750

2000

2250

P
er

fo
rm

an
ce

(M
flo

p/
s)

�������	����

Memory Footprint (MByte)

����	
������

����	
��
���	�	���

����	
��
���	�	���

Figure 5.42: Performance comparison using 1 and 2 threads in C and
Fortran – The performance of the C version is either equal to or better than the Fortran
version. Given that the latter suffers from a bad memory access pattern, this is rather
remarkable.

two-dimensional array b is by row. This is very bad for performance, especially for
larger matrices, as Fortran stores arrays by column. Why does the Fortran version
perform quite well, then? One should not expect the single-thread performance
to be so close, especially for large matrices, where excessive data and TLB cache
misses dominate the performance.

This gives rise to an interesting dilemma. The natural level of parallelism for
this algorithm is at the row level, but this is bad from a memory access point of
view in Fortran. Apparently, something is done to give us the best of both worlds.

Although it is compiler specific, let us examine this case a little further. Essen-
tially, the compiler breaks the i loop into chunks and assigns one chunk to each
thread as indicated below, where the values of i_start and i_end depend on the
thread number:

do i = i_start, i_end

a(i) = b(i,1)*c(1)

do j = 2, n

a(i) = a(i) + b(i,j)*c(j)

170 Chapter 5

end do

end do

This is, however, only a first step. Next the compiler begins to optimize. Among
other actions, it splits the loop over i into two loops. The pair of loops surrounding
the second assignment statement are then interchanged, resulting in code like the
following:

do i = i_start, i_end

a(i) = b(i,1)*c(1)

end do

do j = 2, n

do i = i_start, i_end

a(i) = a(i) + b(i,j)*c(j)

end do

end do

The resulting program structure obtained by manually applying similar trans-
formations to the source code is represented in Figure 5.43. Not shown here is the
unroll-and-jam optimization applied by the compiler to all three loops. As shown
in Section 5.2.3, unrolling the j loop creates multiple copies of the innermost loop
over i. Next these loops are then fused (or “jammed”) back into a single loop over
i. This new innermost loop is further unrolled.

At source lines 10 and 11 the number of threads and thread number are stored
in variables nthreads and tid, respectively. These are used to calculate how many
iterations each thread has to execute. Hence the computation of the values for
i_start and i_end in lines 12 to 23. The loop at lines 25–27 initializes a portion of
the result vector a. The crucial part of the optimized code is shown at lines 28–32.
The loops over i and j have been interchanged to eliminate the bad memory access.
As a result, array b is accessed by column.

This idea can be implemented in other ways. If the number of threads is known
in advance, for example, the call to omp_get_num_threads() is not needed. Note,
however, that the use of the if-clause may complicate the situation. We could have
gotten one thread to retrieve the number of threads and pass this on to the other
threads as a shared variable. But this requires an explicit barrier before line 12,
which we have avoided here. The solution chosen has the advantage of forming an
independent block of OpenMP code. It can be used “as is” instead of the source
given in Figure 5.40.

How to Get Good Performance by Using OpenMP 171

1 subroutine mxv(m, n, a, b, c)
2 use globals
3 use omp_lib
4 <declarations omitted>
5 !$OMP PARALLEL DEFAULT(NONE) IF (m > threshold_omp) &
6 !$OMP SHARED(m,n,a,b,c) &
7 !$OMP PRIVATE(i,j,i_start,i_end,nthreads,mrem,mchunk) &
8 !$OMP PRIVATE(mrem,tid,incr,offset)
9
10 nthreads = OMP_GET_NUM_THREADS()
11 tid = OMP_GET_THREAD_NUM()
12 mrem = mod(m,nthreads)
13 mchunk = (m-mrem)/nthreads
14
15 if (tid < mrem) then
16 incr = mchunk + 1
17 offset = 1
18 else
19 incr = mchunk
20 offset = mrem + 1
21 end if
22 i_start = tid*incr + offset
23 i_end = i_start + incr - 1
24
25 do i = i_start, i_end
26 a(i) = b(i,1)*c(1)
27 end do
28 do j = 2, n
29 do i = i_start, i_end
30 a(i) = a(i) + b(i,j)*c(j)
31 end do
32 end do
33
34 !$OMP END PARALLEL
35
36 return
37 end subroutine mxv

Figure 5.43: Explicitly optimized version of the Fortran implementation
– This code has one parallel region only. It mimics the optimizations applied by the
compiler to the code of Figure 5.40.

172 Chapter 5

Just to demonstrate how close the manually parallelized version given in Fig-
ure 5.43 is to what the compiler generates, the performance curves for this version
are shown in Figure 5.44.

0.000 0.001 0.010 0.100 1.000 10.000 1000.000
0

1000

2000

3000

4000

5000

6000

P
er

fo
rm

an
ce

(M
flo

p/
s)

����	
��

���	
���

����	
���

���	
���

Memory Footprint (MByte)

Figure 5.44: Performance for the source given in Figure 5.43 – The perfor-
mance is virtually identical to the results shown in Figure 5.41.

The loop interchange at lines 28–29 eliminates an important performance bottle-
neck, but it still has its drawbacks:

1. The optimized Fortran version has three memory references: For each value
of the loop variable i, elements b(i,j) and a(i) are loaded, and the result
value a(i) has to be stored. In the C implementation there are two loads
only. The fewer loads and stores there are, the less risk there is of premature
cache evictions. Fortunately, the references have unit stride, so the impact
is limited here. In this particular case, the unroll-and-jam transformation
reduces the number of loads and stores of a(i).

2. In the C version, the length of the innermost loop is the same, regardless of
the number of threads used. This is not the case for the Fortran version,
where the chunk size is a decreasing function of the number of threads. A
short innermost loop is in general not good for performance. The loop over-

How to Get Good Performance by Using OpenMP 173

head dominates, and the processor pipeline might stall as results may not be
available soon enough.

3. The Fortran version is more sensitive to false sharing. Although in both the
C and Fortran implementations, multiple threads update a portion of the
same vector a, the update in the Fortran version is performed O(n) times:
for every iteration of the j-loop, the same section of a is read and written.
In the C version, false sharing is at the outer loop level only. The impact of
false sharing is reduced by the unroll and jam transformation performed by
the compiler, because this reduces the number of loads and stores of a(i).
Still, this implementation inherently suffers more from false sharing than the
C version.

Figure 5.42 shows that for sufficiently large matrix sizes, the performance of the
C and Fortran versions are equal. For small matrix sizes the last two factors in
particular degrade the performance of the Fortran version. One might be tempted to
use the if-clause to prevent this from occurring. Figure 5.42 shows that, although
the performance on 2, 4, and 8 threads is lower than for the C version, it is still
higher than single-threaded code. In other words, although not as fast as the C
version, it still pays to execute the code in parallel if m > 100.

This section concludes with a detailed investigation of the performance spikes
observed for the Fortran version. In particular for a certain range of the memory
footprint, the performance changes noticeably from one matrix size to another. The
C version does not exhibit this kind of pronounced fluctuation.

Figure 5.45 zooms in on the performance for values of variable m between 300 and
500. Square matrices have been used throughout (m = n). These detailed results
reveal interesting behavior. For a certain relatively small subset of the values for
m, the performance drops, or peaks. The location of peaks depends on the number
of threads used. We now examine two of these outliers, a dip and a peak, in detail.
In both cases, a “good” and a “bad” value for m have been selected. By comparing
their performance characteristics, we hope to obtain more insight into the behavior.

Figure 5.3 lists the performance for m=381 and m=385. Speedup is based on the
single-thread performance. The way to interpret the results is that a dip in the
performance occurs on a single thread. This dip does scale with the number of
threads though. The speedup values even suggest the performance catches up for
an increasing number of threads.

In order to explore how this performance dip arises, the Sun Performance An-
alyzer [128] was used to obtain timing information at the level of the hardware

174 Chapter 5

300 325 350 375 400 425 450 475 500
0

1000

2000

3000

4000

5000

P
er

fo
rm

an
ce

(M
flo

p/
s)

����	
��

���	
���

����	
���

���	
���

Value of M

Figure 5.45: Detailed performance results for the source given in Figure
5.43 – The performance for all values of m in the range [300, 500] is plotted. For very
specific values of m, the performance exhibits a dip or peak. The peaks are also a function
of the number of threads used.

Table 5.3: Performance and speedup for m = 381 and m = 385 – The
performance difference for these nearby values of m is remarkable. Although still much
lower in absolute performance, on 4 and 8 threads a higher speedup is realized for
m = 385. This suggests the performance catches up for an increasing number of threads.

Threads M = 381 Speedup M = 385 Speedup
(Mflop/s) (Mflop/s)

1 834.4 1.00 440.6 1.00
2 1638.7 1.96 767.1 1.74
4 2369.4 2.84 1341.2 3.04
8 3353.8 4.02 2384.7 5.41

counters in the processor. Such counters are system specific and are typically doc-
umented in the reference manual for the processor.7 We report the counter data
for m=381 and m=385 in Figures 5.46 and 5.47.

7Performance counter details for the UltraSPARC IV processor can be found in [131, 132].

How to Get Good Performance by Using OpenMP 175

Excl. CPU Excl. D$ and Excl. E$ Name
Cycles E$ Stall Cycles Stall Cycles
sec. % sec. % sec. %
17.583 100.00 6.404 100.00 0. 0. <Total>
17.417 99.05 6.379 99.62 0. 0. mxv_ -- OMP parallel

region from line 12
[_$p1A12.mxv_]

0.133 0.76 0.016 0.25 0. 0. <OMP-overhead>
0.033 0.19 0.004 0.07 0. 0. mxv_
0. 0. 0.002 0.03 0. 0. <OMP-implicit_barrier>

Figure 5.46: Single-thread profile for m = 381 – The CPU cycles, as well as the
stall times for the L1 data cache (“D$”) and L2 unified cache (“E$”), are shown. The
timings are given in seconds and as a percentage of the total.

Excl. CPU Excl. D$ and Excl. E$ Name
Cycles E$ Stall Cycles Stall Cycles
sec. % sec. % sec. %
33.892 100.00 24.166 100.00 0. 0. <Total>
33.550 98.99 24.089 99.68 0. 0. mxv_ -- OMP parallel

region from line 12
[_$p1A12.mxv_]

0.250 0.74 0.060 0.25 0. 0. <OMP-overhead>
0.025 0.07 0.006 0.02 0. 0. <OMP-implicit_barrier>
0.017 0.05 0.003 0.01 0. 0. mxv_

Figure 5.47: Single-thread profile for m = 385 – The CPU cycles, as well as the
stall times for the L1 data cache (“D$”) and L2 unified cache (“E$”), are shown. The
timings are given in seconds and as a percentage of the total.

In both figures, the name of the function or subroutine to which the data applies
is given on the right. The timings and percentages for the entire application are
summarized under “<Total> .” Subsequent lines give the numbers for the various
user and system functions. The leftmost pair of columns (“Excl. CPU Cycles”)
shows the number of CPU cycles for the program unit, converted to seconds. This
figure is also given as a percentage of the total CPU time. Under the heading “Excl.
D$ and E$ Stall Cycles” the number of seconds the processor waits (“stalls”) for
data to arrive out of the cache subsystem is shown. “D$” stands for the L1 data
cache. The unified L2 cache is called “E$.” The percentage of the total stall time

176 Chapter 5

this corresponds to is also given. The numbers are for the D$ and E$ cache stalls
combined. The third pair of columns lists the stall times for the L2 E$ cache only.

As expected, 99% of the time is spent in the parallel region shown in Figure 5.43.
There are two OpenMP-related entries in the profiles (“<OMP-overhead>” and
“<OMP-implicit-barrier>”). These are present because even on a single thread, the
underlying OpenMP infrastructure is executed. Their contributions are negligible
though.

There are no E$ Stall Cycles, indicating the program did not spend any time
waiting for data to be copied from main memory into the L2 cache. For both values
of m, the memory footprint is on the order of 1.1 MByte. Since the L2 cache on this
processor is 8 MByte per core, the matrix and vectors easily fit in. In general this
does not automatically imply there are no cache misses in the L2 cache. Because
of cache mapping conflicts, cache lines could be evicted prematurely. Apparently
that is not the case here.

What is striking is the difference in the combined cache stall time. Indeed, if
we subtract this time from the total, we see that the CPU time spent other than
waiting is about 17.4− 6.4 = 11.0 seconds for m=381 and 33.6− 24.1 = 9.5 seconds
for m=385. In other words, the main cause for the performance difference lies in the
time spent waiting for data to arrive in the L1 data cache. For m=381 this is 36.7%
of the total time, whereas it doubles to 71.7% for m=385. Now we must find out
why this has increased so dramatically.

As mentioned earlier, this implementation has three memory references in the
innermost loop, including a store. The compiler applies the unroll-and-jam opti-
mization to the nested loop, unrolling the outer loop to a depth of 8. The cor-
responding pseudocode is listed in Figure 5.48. This optimization has a definite,
positive impact on the overall performance. The downside is that more elements of
b and c are read, increasing the chances of cache conflicts.

The performance dip seems to be caused by the combination of the unroll factor
chosen for this particular loop and the L1 data cache characteristics. This causes
premature cache line evictions for specific value(s) of variable m. Theoretically, the
other dips in performance could be caused by something quite different. But this
is not very likely.

Next, we investigate the program’s behavior for m=479, where there is a peak
in performance, when using 2, 4, and 8 threads. Here, we compare data for two
different values of m. Table 5.4 gives the performance for m=476 and m=479. The
relative speedup is based on single-thread performance. Given that the number
of threads doubles each time, perfect scaling corresponds to an entry of 2.00. In

How to Get Good Performance by Using OpenMP 177

do j = 2, n-mod(n-1,8), 8
do i = i_start, i_end

a(i) = a(i) + b(i,j)*c(j) + b(i,j+1)*c(j+1) &
+ b(i,j+2)*c(j+2) + b(i,j+3)*c(j+3) &
+ b(i,j+4)*c(j+4) + b(i,j+5)*c(j+5) &
+ b(i,j+6)*c(j+6) + b(i,j+7)*c(j+7)

end do
end do
do j = mod(n-1,8)+1, m

do i = i_start, i_end
a(i) = a(i) + b(i,j)*c(j)

end do
end do

Figure 5.48: Pseudocode fragment after the unroll-and-jam optimization
– The outer level loop unrolling reduces the number of loads and stores for element a(i).

the last column the relative difference between the results for m=479 and m=471 is
shown.

Table 5.4: Performance and speedup for m = 476 and m = 479 – As the
number of threads increases, the performance gap between the two increases to 29%.
Going from one to two threads, the performance scales superlinearly for m=479.

Threads M = 476 Relative M = 479 Relative Relative
(Mflop/s) Speedup (Mflop/s) Speedup Difference

1 874.8 1.00 859.5 1.00 -1.7%
2 1736.5 1.99 1847.6 2.15 6.4%
4 2665.4 1.53 3448.3 1.87 29.4%
8 3768.7 1.41 4866.4 1.41 29.1%

In contrast with the results for m=381 and m=385, the single-thread performance
is nearly identical. The performance for m=479 is even slightly less than for m=476.
When two or more threads are used however, the results for m=479 quickly exceed
those for m=476; the relative speedup is higher. On two threads, a small superlinear
speedup is even realized. This actually turns out to provide the answer to our
question.

In Table 5.5 we give the hardware performance counter data obtained for the two
different values of m on 1 and 2 threads using the Sun Performance Analyzer [128].

178 Chapter 5

Table 5.5: Hardware performance counter data for m = 476 and m = 479
– All values are in seconds and per thread, except for the last one, which shows the
“Total” values aggregated over the 2 threads.

Threads/ CPU sec. D$+E$ stalls E$ stalls
Number m=476 m=479 m=476 m=479 m=476 m=479

1/0 207.4 214.0 76.9 76.3 0.00 0.00
2/0 102.8 95.5 36.2 28.5 6.27 0.00
2/1 103.5 96.7 41.2 28.3 5.83 0.15

Total 206.3 192.2 77.4 56.8 12.10 0.15

All values are in seconds and are given on a per thread basis. The first column
contains two numbers, separated by a slash. The first is the number of threads
used, the second one is the OpenMP thread number. The second column gives the
CPU time in seconds for each value of m. The next one contains the number of
seconds the CPU stalls while waiting for data from the cache subsystem. The last
column gives the stall data for the E$ cache only. The line labeled “Total” shows
the values aggregated over the 2 threads for the parallel run. The total number of
CPU cycles for 2 threads is about 10% less than for the single thread for m=479.
This is not what one would expect because usually the number of CPU cycles goes
up if the number of threads increases. The key data is found in the remaining
columns. When only one thread is used, the time spent servicing cache misses is
about 76 seconds for both values of m. Given that there are no stalls at the E$ L2
unified cache level for both values of m, it is clear that all misses come from the D$
L1 data cache. On two threads the situation is different. First, the total stall time
is reduced by 76.3− 56.8 = 19.5 seconds for m=479, whereas it goes up a little (77.4
versus 76.9) for m=476. Second, for m=476 the E$ stall time is no longer zero. Each
of the two threads waits for about 6 seconds, whereas the number is negligible for
m=479. There are several possible explanations. Cache mapping effects might play
a role. Another factor could be false sharing. Depending on the value of m and the
number of threads used, the same cache line(s) might be modified simultaneously
by multiple threads. If this situation happens, there are more premature cache line
evictions.

We also see that for m=479 the D$ cache waiting time is lower than for m=476.
Therefore, the peak in performance for m=479 is mostly explained by a decrease in
the number of cache misses at both the D$ L1 and E$ L2 cache level. This difference
in cache behavior gives rise to the modest (15%) superlinear speedup observed on

How to Get Good Performance by Using OpenMP 179

2 threads. This behavior is continued when 4 and 8 threads are utilized, resulting
in the peak observed.

Although the details differ, both the dip and peak can be largely explained by
cache effects. We emphasize that these special values for m are the exceptions.
Similar behavior is likely to be observed on other cache-based systems and for
other compilers, although the specific values of m for which these dips and peaks
occur are likely to be different.

for (i=0; i<m; i++)
a[i] = b[i*n]*c[0];

for (i=0; i<m-m%8; i++)
{

for (j=1; j<n; j++)
{

a[i] += b[(i)*n+j]*c[j];
a[i+1] += b[(i+j)*n+j]*c[j];
a[i+2] += b[(i+2)*n+j]*c[j];
a[i+3] += b[(i+3)*n+j]*c[j];
a[i+4] += b[(i+4)*n+j]*c[j];
a[i+5] += b[(i+5)*n+j]*c[j];
a[i+6] += b[(i+6)*n+j]*c[j];
a[i+7] += b[(i+7)*n+j]*c[j];

}
}
for (i=m-m%8; i<m; i++)

for (j=1; j<n; j++)
a[i] += b[i*n+j]*c[j];

Figure 5.49: Pseudocode fragment of the compiler optimized C version –
The compiler applies loop splitting and unroll and jam to enhance the performance of the
original code.

To show why the performance curves for the C version are much smoother, we ob-
serve that the memory access pattern is different. The pseudocode for the compiler-
optimized C version is listed in Figure 5.49. Similar to the Fortran case, the C
compiler performs loop fission, followed by an unroll and jam to a depth of 8. Not
shown here is the subsequent unrolling performed on the three innermost loops.
Other than for very small values of m, most of the execution time is spent in the
second, nested loop. The loads and stores of elements of a in the j loop are loop
invariant. The absence of stores is good, especially as this avoids false sharing.

180 Chapter 5

Thanks to the unroll and jam, element c[j] is reused seven more times, but it
also results in eight different references to the elements of b. However, all these
nine elements are accessed with unit stride. From a memory access point of view,
this is optimal. Cache conflicts might arise only if there are collisions between
c[j] and one or more of the elements of b, or between the various elements of
b themselves. Whether the former occurs depends on the difference between the
starting addresses of b and c, as well as the values of m and n. Although one
cannot exclude this possibility, cache collisions between b and c are expected to be
rare. Conflicts between individual elements of b are more likely. Depending on the
cache characteristics, the compiler optimizations, and the value of n, dips in the
performance may occur as a result. In particular, if n is a power of 2, or close to
such a number, the performance should be expected to drop significantly.8

5.8 An Alternative Fortran Implementation

The performance of the row-oriented strategy has been discussed extensively. For-
tran developers familiar with the basic concepts of memory access patterns probably
would have used a column-based version from the outset. In this section, several
OpenMP variants of such an implementation are discussed. Where relevant, a
comparison with the results obtained in Section 5.6 is made.

From a performance point of view, the implementation indicated by Formula
(5.4) is more suitable for Fortran. Here, a refers to the entire vector; cj denotes
the jth element of vector c and Bj is used to refer to column j of matrix B. The
solution is reached by accumulating the partial products Bj ∗ cj into vector a. As
the memory access on matrix B is over the columns, we will refer to this as the
“column variant.”

a = a + Bj ∗ cj j = 1, . . . , n (5.4)

We again optimize the initialization of the result vector a (see also Figure 5.32 on
page 160). Lines 9–11 implement the incremental update. Mainly for demonstration
purposes, array syntax is used to update all elements of a.

As written, the column implementation cannot be parallelized over the j loop in
Figure 5.50 because then multiple threads simultaneously update the same vector
a, resulting in a data race. If the update at line 10 were to be put into a critical
region, the computation is effectively serialized, defeating the whole purpose of
parallelization. An alternative is to parallelize the work of line 10, so that each

8Additional experiments not reported upon here confirm this to be the case.

How to Get Good Performance by Using OpenMP 181

1 subroutine mxv(m, n, a, b, c)
2
3 implicit none
4 integer(kind=4) :: m, n, i, j
5 real (kind=8) :: a(1:m), b(1:m,1:n), c(1:n)
6
7 a(1:m) = b(1:m,1)*c(1)
8
9 do j = 2, n
10 a(1:m) = a(1:m) + b(1:m,j)*c(j)
11 end do
12
13 return
14 end subroutine mxv

Figure 5.50: Column-oriented sequential implementation of the matrix
times vector product in Fortran – The result vector a is built up step by step. For
each value of the loop variable j a new contribution is added.

thread updates a unique subset of the elements of a. As array syntax is used, a
!$omp workshare directive is required to do so. The initialization at line 7 can be
similarly parallelized. The OpenMP code is given in Figure 5.51. In order to use
as few parallel regions as possible, two workshare directives within one enclosing
parallel directive are applied. The !$omp workshare directive embedded in the
j loop requires some explanation. The entire do-loop at line 16 is executed by all
threads. For the same value of j, each thread then updates a subset of the elements
of a, after which execution proceeds to the next value of j. This is correct, but
inefficient. In particular, the OpenMP overheads associated with the second !$omp

workshare directive are incurred n − 1 times, each time the j-loop is executed.
Moreover, for a fixed value of m, increasing the number of threads also increases the
occurrences of false sharing in the parallel loop.

The poor performance for this version is demonstrated in Figure 5.52. The first
point to note is the much higher threshold needed to amortize the parallel overhead.
There are benefits in using multiple threads only for a memory footprint exceeding
8 MByte (corresponding to m = n = 1, 000). Although the performance scales
reasonably beyond this point, in absolute terms it is very poor compared to the
row version. Another difference is that the performance using 4 and 8 threads does
not stabilize. This problem has been investigated further. It turns out that the

182 Chapter 5

1 subroutine mxv(m, n, a, b, c, threshold_omp)
2
3 implicit none
4 integer(kind=4) :: m, n, threshold_omp
5 real (kind=8) :: a(1:m), b(1:m,1:n), c(1:n)
6
7 integer :: j
8
9 !$OMP PARALLEL DEFAULT(NONE) &
10 !$OMP SHARED(m,n,a,b,c) PRIVATE(j)
11
12 !$OMP WORKSHARE
13 a(1:m) = b(1:m,1)*c(1)
14 !$OMP END WORKSHARE
15
16 do j = 2, n
17 !$OMP WORKSHARE
18 a(1:m) = a(1:m) + b(1:m,j)*c(j)
19 !$OMP END WORKSHARE
20 end do
21
22 !$OMP END PARALLEL
23
24 return
25 end subroutine mxv

Figure 5.51: Column-oriented OpenMP implementation of the matrix
times vector product in Fortran – A single parallel region is used to enclose both
work-sharing directives. Although technically correct, this is a very inefficient parallel
implementation of the problem.

performance continues to increase as a function of the memory footprint. Only for
a footprint in the order of 10 GByte and above is the performance more or less
constant. This situation is clearly not practical.

But this is not the end of the story. In fact, the column version of this problem
actually performs an array reduction (see also Section 4.8.4 on page 105). Source
code that makes this explicit is shown in Figure 5.53. The array reduction is im-
plemented in lines 17–23. The array operations are rewritten to use the reduction

clause on the work-sharing DO-loop. At run time, the threads compute a partial

How to Get Good Performance by Using OpenMP 183

0.000 0.001 0.010 0.100 1.000 10.000 100.000
0

100

200

300

400

500

600

700

P
er

fo
rm

an
ce

(M
flo

p/
s)

����	
��

���	
���

����	
���

���	
���

Memory Footprint (MByte)

����	
��

���	
���

���	
���

����	
���

Figure 5.52: Performance of the Fortran column OpenMP implementation
– These results clearly demonstrate this is not an efficient implementation. Overheads
are high. The performance does not stabilize using 4 and 8 threads. Although it scales
reasonably well beyond the threshold point, the absolute performance is disappointing.

reduction in the iterations of the j-loop assigned to them. The values are stored
in a local copy of vector a. The partial contributions are then merged to form the
final result. The performance results and parallel efficiency of this variant are given
in Figures 5.54 and 5.55 respectively. For values up to the threshold (m = 600 in
this case), the parallel efficiency on P threads is 100/P %.

In general, we recommend use of the (array) reduction clause, both for conve-
nience and for readability of the code.

We note the following substantial performance improvements over the results
reported in Figure 5.52:

• The threshold value is reduced from m = 1, 000 to m = 600. The latter
corresponds to a memory footprint of 2.8 MByte.

• Absolute performances for the smallest, 5 x 5, and the largest matrices tested
are slightly lower for the new version. Otherwise, it is considerably faster.

• The parallel efficiency is much higher.

184 Chapter 5

1 subroutine mxv(m, n, a, b, c)
2 use globals
3
4 implicit none
5 integer(kind=4) :: m, n, threshold_omp
6 real (kind=8) :: a(1:m), b(1:m,1:n), c(1:n)
7
8 integer :: i, j
9
10 !$OMP PARALLEL DEFAULT(NONE) IF (n > threshold_omp) &
11 !$OMP SHARED(m,n,a,b,c) PRIVATE(i,j)
12
13 !$OMP WORKSHARE
14 a(1:m) = b(1:m,1)*c(1)
15 !$OMP END WORKSHARE
16
17 !$OMP DO REDUCTION(+:a)
18 do j = 2, n
19 do i = 1, m
20 a(i) = a(i) + b(i,j)*c(j)
21 end do
22 end do
23 !$OMP END DO
24
25 !$OMP END PARALLEL
26
27 return
28 end subroutine mxv

Figure 5.53: Array reduction implementation of the matrix times vector
product in Fortran – The reduction clause is used to compute the result vector a.
This type of reduction is supported in Fortran only. The if-clause is used to avoid a
performance degradation if m is too small.

• For a certain range of the memory footprint, a superlinear speedup is realized.

• Although the curves are not entirely smooth, the performance appears to
stabilize somewhat for the largest matrix sizes tested.

Although the performance has improved substantially, this version is still not as
fast as the code in Figure 5.43 that the Sun compiler generated from the original

How to Get Good Performance by Using OpenMP 185

0.000 0.001 0.010 0.100 1.000 10.000 1000.000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

P
er

fo
rm

an
ce

(M
flo

p/
s)

�������	

�������	

Memory Footprint (MByte)

�������	

������	

Figure 5.54: Performance of the array reduction version – Results here are
much better than those in Figure 5.52, for a wide range of matrix sizes. Only for the
smallest and largest matrices is the array reduction marginally slower.

code shown in Figure 5.32.
The third version of the problem is partially given in Figure 5.56. As before,

the initialization of vector a has been parallelized through a !$omp workshare

directive (lines 5–7). We make use of an allocatable array col_sum. This is private
to a thread and used to store the partial results. If the memory allocation on line
9 succeeds, col_sum is initialized to zero. In case of a failure, the shared counter
ier, initialized to zero prior to the parallel region, is incremented by one. In order
to ensure the correct count is obtained, this update is guarded through the critical
region at lines 27–31. As ier is a shared variable, it is accessible and can be tested
outside the parallel region: if it is nonzero, an error has occurred, and appropriate
action can be taken. Note that simply setting this variable to one in case of an
error is often sufficient. The solution given here may serve as a template for other,
more sophisticated scenarios. For example, with some additional bookkeeping, and
by recording the thread number(s) in case of a failure, one can compute the result
for the remaining loop iterations postmortem (either in parallel again or on a single
thread) and proceed with the execution of the program.

The main computational part is found at lines 13–17. Each thread is assigned

186 Chapter 5

0.000 0.001 0.010 0.100 1.000 10.000 1000.000
0

50

100

150

200

250

300

350

400

P
ar

al
le

lE
ffi

ci
en

cy
(%

)

�������	
�����

�������	

�������	

Memory Footprint (MByte)

�������	

�������	

�������	

Figure 5.55: Parallel efficiency of the array reduction version – For matrix
sizes up to the threshold value (m = 600 in this case), the efficiency on P threads is
100/P %. For a memory footprint in the 10–100 MByte range a superlinear speedup is
realized. As observed before, this range depends on the number of threads used. For large
matrices the efficiency is good, but not perfect.

a number of iterations of the j loop, effectively computing a partial result. This
result is accumulated into the private vector col_sum. In the critical section at
lines 21–23 the partial results are merged to form the final result vector a. Finally,
at line 25, the temporary storage is released again.

We have inserted nowait clauses at source lines 7 and 17 in order to reduce the
number of barriers. As a result, threads do not synchronize until they reach the
explicit !$omp barrier directive at line 19. This barrier is needed to ensure that
both the initial values of a and the partial results stored in col_sum are available
before entering critical section “update a.” The alternative to the barrier is to rely
on the implied barrier that is part of the !$omp end do directive by omitting the
nowait clause at line 17. Our version makes the synchronization point explicit.

In Figure 5.57 the performance of this version is given. It performs better than
the previous one. Although not easily visible from the chart, the threshold value is
further reduced from m = 600 to m = 500. For larger matrix sizes, the performance
is higher and constant. For instance, on 8 threads the performance is flat for a
memory footprint of 122 MByte and beyond. This crossover point corresponds

How to Get Good Performance by Using OpenMP 187

1 ier = 0
2 !$OMP PARALLEL DEFAULT(NONE) IF (n > threshold_omp) &
3 !$OMP SHARED(m,n,a,b,c,ier) PRIVATE(i,j,memstat,col_sum)
4
5 !$OMP WORKSHARE
6 a(1:m) = b(1:m,1)*c(1)
7 !$OMP END WORKSHARE NOWAIT
8
9 allocate (col_sum(1:m), STAT=memstat)
10 if (memstat == 0) then
11 col_sum(1:m) = 0.0
12
13 !$OMP DO
14 do j = 2, n
15 col_sum(1:m) = col_sum(1:m) + b(1:m,j)*c(j)
16 end do
17 !$OMP END DO NOWAIT
18
19 !$OMP BARRIER
20
21 !$OMP CRITICAL(UPDATE_A)
22 a(1:m) = a(1:m) + col_sum(1:m)
23 !$OMP END CRITICAL(UPDATE_A)
24
25 if (allocated(col_sum)) deallocate(col_sum)
26 else
27 !$OMP CRITICAL(ERROR_FLAG)
28 ier = ier + 1
29 !$OMP END CRITICAL(ERROR_FLAG)
30 end if
31
32 !$OMP END PARALLEL

Figure 5.56: Third implementation of the column oriented version – After
initializing the result vector a, the vector col sum is allocated. This vector is local to the
thread and is used to store a partial result. The update a critical region is used to merge
the partial results into result vector a. This implementation has been optimized to reduce
the number of barriers. The program exits gracefully in case of a memory allocation
failure.

188 Chapter 5

0.000 0.001 0.010 0.100 1.000 10.000 1000.000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

P
er

fo
rm

an
ce

(M
flo

p/
s)

�������	

�������	

Memory Footprint (MByte)

�������	

������	

Figure 5.57: Performance of the third version – The performance curves are very
similar to those for the array reduction version shown in Figure 5.54. The main difference
is observed for larger matrices. The performance remains constant, whereas this is not
the case for the previous version.

to a matrix of size m = n = 4, 000. For the array reduction version a similar
crossover point is observed, but the performance continues to degrade somewhat
as the matrix gets larger. To magnify the differences, the speedup of the version
shown in Figure 5.56 over the version given in Figure 5.53 is plotted in Figure 5.58.

Up to their respective threshold value, both implementations execute on a single
thread only. Thus the speedup is independent of the number of threads up to this
point. On small matrices, the third version performs better than the second, array
reduction-based, version, but the benefit decreases as the matrix increases in size.
At a certain point the array reduction is up to 10% faster. Eventually, however,
the third version outperforms the second version again. The memory footprint for
which this occurs also depends on the number of threads used. For the largest
matrix size tested, the performance gain is in the 50–70% range.9

An intriguing point is that, if we compare Figures 5.41 on page 168 and Fig-
ure 5.54, we see that their performance is quite similar. Although not easy to derive

9A brief analysis of the compiler generated code indicates this cannot be attributed to differ-
ences in the optimizations performed at the thread level.

How to Get Good Performance by Using OpenMP 189

0.000 0.001 0.010 0.100 1.000 10.000 1000.000
0.80
0.90
1.00
1.10
1.20
1.30
1.40
1.50
1.60
1.70
1.80

S
pe

ed
-u

p

�������	

�������	

Memory Footprint (MByte)

�������	

������	

Figure 5.58: Speedup of the third version over the second column version
– Outside a relatively small region of the memory footprint, the explicitly parallelized
version outperforms the version using the array reduction.

from the charts, the row implementation is actually somewhat faster or about equal
in performance for all matrix sizes tested.

5.9 Wrap-Up

In the first part of this chapter, we presented simple guidelines on how to write
an efficient OpenMP application. Compilers are sometimes able to make up for
suboptimal code. They might be capable of performing optimizations such as those
described in Section 5.4.5. However, a compiler is always limited by its ability to
analyze a program and if for no other reason, it is good practice to write efficient
OpenMP code from the start. There is also some debate over the question how much
optimization a compiler should be permitted to perform at the OpenMP level, and a
pragmatic answer may depend on the context. For example, a redundant, explicitly
parallelized initialization loop might be put in by the programmer to ensure first
touch data placement on a cc-NUMA architecture (see also Chapter 6). If the
compiler eliminates such a redundant operation, performance may suffer.

190 Chapter 5

Performance is always affected by a number of factors that include the compiler,
the compiler options selected, libraries, operating system features, the coding style,
and the system state at run time. In the second part of this chapter, we have used
the simple matrix times vector product to investigate parallel program behavior.

The implementation is fairly straightforward in C. Other than using the if-
clause, there is not much need to further optimize the implementation. In Fortran
the situation is different. The row-oriented implementation was expected to perform
poorly, because the memory access pattern is bad. Instead, it performs surprisingly
well. Through code transformations the compiler is able to overcome the poor
memory access, while preserving the parallelization at the outermost loop level.

It was then observed that for very specific matrix sizes, performance dips or
peaks occur. Our exploration showed that these are related to cache effects. As
such, they can be expected to show up on other cache-based systems, too, although
the matrix size(s) for which these occur and the performance impact are likely to
be different.

Fortran developers probably would have started out using the column version of
the problem instead. After all, that gives the optimal memory access pattern for
single-processor performance. It turns out that a naive OpenMP implementation
performs poorly. Once it is realized that an array reduction is performed, the
reduction clause can be used to get significantly better performance. Next, a
handcrafted version of this approach was shown. Although this version gives an
improvement, the first row version in Fortran performs just as well and sometimes
even better. This somewhat surprising result is of course specific to the algorithm,
implementation, system, and software used and would not be possible if the code
were not so amenable to compiler analysis.

The lesson to be learned from this study is that, for important program regions,
both experimentation and analysis are needed. We hope that the insights given
here are sufficient for a programmer to get started on this process.

6 Using OpenMP in the Real World

Up to this point we have discussed the most common usage of OpenMP, namely,
to parallelize loops by incrementally inserting compiler directives into the code.
This approach offers the benefit of ease of use, but in certain situations it may
also have its limitations when it comes to the efficient use of a large number of
CPUs. The purpose of this chapter is to show that OpenMP is not limited to loop-
level parallelism and to demonstrate how OpenMP supports scalability to a large
number of threads. We also discuss performance analysis techniques applicable to
large-scale OpenMP programs.

6.1 Scalability Challenges for OpenMP

As the number of processors in a shared-memory system increases, the scalability
of an OpenMP program becomes a greater concern. To create a parallel program
that scales to a large number of threads, a programmer must carefully consider the
nature of the parallelism that can be exploited. Assuming that there is enough
parallelism to keep the machine busy, the next step is to express the parallelism
identified in a suitable manner.

As we have seen, OpenMP is well suited for expressing loop-level parallelism. One
might therefore conclude that OpenMP is limited to fine-grained parallelism, but
this is not true. Coarse-grained parallelism, in which very large program regions are
parallelized, can also be achieved. Indeed, an entire program can be enclosed in one
large parallel region and the work divided up explicitly between the threads. We will
discuss this approach to OpenMP parallelism in Section 6.3. We briefly discussed
MPI programming for distributed-memory architectures in Section 1.8. Combining
MPI and OpenMP is a software trend to support parallelization for clusters of SMP
processors. This hybrid programming model , which offers the potential to increase
the scalability of large-scale applications, will be discussed in Section 6.4. Nested
OpenMP, which was discussed in Section 4.9.1, offers a way to exploit multiple
levels of parallelism in order to increase the parallel scalability. Examples will be
provided in Section 6.5.

The challenge of creating a parallel application begins with a program’s data. If
this data set can be logically partitioned in such a way that a portion of the data
is associated with each thread, this might form the basis of the parallelization. In
the corresponding parallel program, each thread will be responsible for performing
computations that update the data assigned to it. Each thread essentially carries
out the same work, but on its own portion of the data set. Data updated by one
thread and used by another must be handled carefully: synchronization must be

192 Chapter 6

inserted to ensure that the correct ordering of accesses is enforced. This approach is
well suited to applications such as computational fluid dynamics codes that find the
discrete solution of partial differential equations. Characteristic is that the same
computations are performed on a large number of points of a computational grid.
This parallelization strategy, often termed data parallelism because the partition
of the data is at the heart of the approach, can be realized in several different
ways with OpenMP. It has the specific benefit of providing good data locality for
many programs, since threads consistently access the same portions of the data
set. This potentially enables a high level of data cache reuse, which can be partic-
ularly important on cc-NUMA systems, where data is physically distributed across
a network. Data at “remote” locations on a network is generally more expensive
to access, and frequent remote accesses can lead to network congestion. One can
think of this as adding another level of memory to the hierarchy. Since a strategy
based on data parallelism also generally leads to a program that is identical for each
thread (other than the data used), it is also known as the single program multiple
data, or SPMD, approach to parallel programming.

Another approach for keeping a machine busy with useful work is to give the
threads different kinds of work to do. This may be natural for computations where
two or more different kinds of tasks interact with each other. However, it is inher-
ently more difficult to scale programs of this type to a large number of threads,
unless there are sufficient tasks to be distributed. This, too, has many natural
applications. In quite a few programs, a number of essentially independent, but
similar, tasks must be performed. These may be farmed out to the threads. For
example, if a large number of input images must be variously analyzed and trans-
formed in a given sequence, it may be easier to have each process or thread do its
piece of this work for all images rather than to divide out the images. A drawback
of this kind of parallelism is that it tends to lead to a fixed structure, and if the
number of available processors varies, it may not be easy to adjust the code to
match. Moreover, some computations may dynamically create tasks that can be
mapped to the threads. Parallelization strategies that parcel out pieces of work to
different threads are generally referred to as task parallelism. It, too, can be used
as the basis for creating an OpenMP program. Moreover, it may be combined with
a data-parallel approach to create scalable code.

Many books on parallel programming describe different ways to parallelize pro-
grams for distributed memory [152] and discuss programming patterns that may
help determine how best to exploit concurrency in an application [123]. We refer
the reader to these for more information on this topic. The point here is that the
programmer needs to determine a strategy for creating a parallel program that

Using OpenMP in the Real World 193

considers both, the data as well as the work of the entire program.
The OpenMP programming model not only assumes a globally shared address

space for all threads but also assumes that the cost of accessing a memory loca-
tion is uniform across the system. In practice, however, memory access latency is
often not uniform. Although non-uniform memory access (NUMA) is most com-
monly associated with large platforms with hundreds or thousands of CPUs, even
small SMPs may be NUMA. Large-scale cc-NUMA (cache-coherent NUMA) shared-
memory multiprocessor systems consist of processors and memory connected via a
network. Any memory location can be read from or written to, but the access time
could differ. Memory that is at the same node within the network as a processor
is considered to be local to it; memory that is accessed across a network is remote.
It is not unusual that remote memory latency is three to five times the latency to
local memory on such platforms. Recent efforts have sought to provide the ben-
efits of cache coherence to networks of workstations and PCs at the cost of even
higher differences in remote access latency. Since this enables system-wide global
addressing, OpenMP can similarly be deployed on them.

Given the large remote-access latencies of these cc-NUMA architectures, obtain-
ing a program with a high level of data locality is potentially the most important
challenge for performance. In addition to making suitable modifications to a code,
the programmer may be able to exploit features of the architecture and its oper-
ating system, such as the ability to bind threads to particular CPUs, arrange for
the placement and dynamic migration of memory pages, and use page replication
to substantially increase application performance.

6.2 Achieving Scalability on cc-NUMA Architectures

OpenMP does not provide a direct means of optimizing code for cc-NUMA systems
and therefore we can only indirectly influence the performance of a program on
such a platform. To make clear the specific challenges posed by these machines, we
first give a general discussion of data placement and then discuss some ways to run
an OpenMP job on them.

6.2.1 Memory Placement and Thread Binding: Why Do We Care?

Data allocation—or, more accurately, page allocation—is under control of the op-
erating system. On a cc-NUMA architecture, the pages of data belonging to a
given program may, for example, be distributed across the nodes of the system.
A commonly used allocation policy is called First Touch. Under this policy, the

194 Chapter 6

thread initializing a data object gets the page associated with that data item in
the memory local to the processor it is currently executing on. First Touch is an
approximate strategy that works surprisingly well, especially for programs where
the updates to a given data element are typically performed by the same thread
throughout the computation. Things are harder if the data access pattern is not
uniform throughout the code. Several operating systems provide features that give
the user a certain level of control over the placement and movement of pages. It
is a good investment of time to study the documentation to find out what features
are available and how to use them.

The challenge on a cc-NUMA platform is not simply to appropriately map data to
the distributed memory; the placement of threads onto the compute nodes requires
care. To explain why this is the case, we make our discussion more concrete by using
a hypothetical cc-NUMA architecture with 8 processors (P1-P8), 2 processor boards
(B1 and B2) and 2 memory modules (M1 and M2), shown in Figure 6.1. We will
assume that it is used to execute an OpenMP application with 8 OpenMP threads.
In an ideal situation, each OpenMP thread would run on the same processor for
the duration of the program: thread T1 on processor P1, T2 on P2, and so on. The
data for the threads running on P1, P2, P3, P4 would be placed in M1, and the
data for threads running on P5, P6, P7, P8 would be placed on M2. In real life this
usually is not the case, partly because of the nature of the application and its use
of data, and partly because of the way the runtime library and operating system
work in a typical multiuser environment.

Here are some example scenarios that may lead to inefficient thread and memory
placement while an OpenMP code is executed:

Unwanted thread migration. Given a system such as the one depicted in
Figure 6.1 where 8 OpenMP threads are spread across the 8 processors, and
assume that, when the first parallel region is encountered, the data needed by
the threads is placed in memory according to the First Touch policy described
above. The operating system (OS for short) might decide, particularly when
running in multiuser mode, to suspend the program’s execution so that the
CPUs are available to execute some other task. When the threads are placed
back onto the processors, there is no guarantee that they will end up on the
same CPU. The data, however, will remain on the same memory module.
In such a situation threads that started out running on processor board B1
might end up running on B2, but the data they need to access remains on
memory module M1. The remote memory accesses introduced by this effect

Using OpenMP in the Real World 195

on-board
interconnect

on-board
interconnect

P3 P4

P1 P2

P7 P8

P5

off-board interconnect

Processor Board B1 Processor Board B2

Memory Module M1 Memory Module M2

P6

Figure 6.1: A generic cc-NUMA architecture – Processor P1, P2, P3, P4 can
access memory module M1 with a low latency, while the access time from these processors
for data on M2 is high.

can greatly increase the execution time of the program. We discuss possible
solutions to this problem below.

The application requires irregular or changing memory access patterns.
If the threads access data on different pages in an unpredictable or highly
irregular fashion, the First Touch policy may not work well. Here it may
be advantageous to select a policy that places the pages of data across the
memory modules in a round robin fashion. Although this might lead to
a larger number of remote memory accesses, the strategy is probably less
susceptible to bottlenecks. As an added benefit, performance problems as the
result of relocation of threads are less likely. A similar situation arises if the
memory access pattern changes during the programs execution. In this case
the First Touch policy may result in long memory access times for later phases
of the program. An example for such a scenario is adaptive mesh refinement,
which requires dynamic load-balancing when implemented using OpenMP
[144]. If the system provides an interface for migrating memory pages between
the different program phases, exploiting it might be advantageous. Examples
are migrate-on-next-touch support via library routines or compiler directives,

196 Chapter 6

such as those provided on the HP Compaq Alpha GS-series [26] and Sun
FireTM Servers [127]. Note, however, that a penalty is associated with the
migration, so this feature should be used sparingly.

Inefficient thread placement for hybrid codes. Additional problems may
arise if a hybrid program consisting of multiple MPI processes, each with
several OpenMP threads, is launched. The runtime system might decide to
map the MPI processes onto adjacent CPUs, which is a sensible strategy when
they are single-threaded but potentially problematic if they employ multiple
OpenMP threads. As an example we consider the hypothetical architecture
depicted in Figure 6.1. If a hybrid code consists of 2 MPI processes with 4
threads each, the runtime system may decide to place the 2 MPI processes on
adjacent CPUs on processor board B1. When the time comes to create the
OpenMP threads for both processes, some of them will end up running on
processor board B2, thereby introducing remote memory access to the data of
their master threads. This might lead to frequent remote memory accesses for
some of the threads. In the worst case, data in cache may “ping-pong” (i.e.,
move frequently) between two different nodes of the machine. This situation
could be avoided by placing one of the MPI processes on P1 and the other
MPI process on P5, allowing each of them to use 4 adjacent CPUs for their
work.

Changing thread team compositions in nested OpenMP codes. The
programmer cannot assume that the same resources will be used to execute
two different inner parallel regions when nested parallelism is employed. At
the beginning of a nested parallel region, a new team of threads is created,
and the encountering thread becomes the master of the new team. If this
situation happens multiple times in a program, the OpenMP 2.5 standard
does not require that the threads be started in the same location each time.
Thus, the first time a nested parallel region is encountered, the program might
be executed by threads running on processors P1, P2, P3, and P4, but the
next time it might be carried out by threads running on P1, P4, P5, and
P7. If these teams work on the same chunks of data, many remote memory
accesses can result.

6.2.2 Examples of Vendor-Specific cc-NUMA Support

To achieve scalability of OpenMP codes on large-scale cc-NUMA architectures, one
may wish to bind threads explicitly to specific processors so that they remain close

Using OpenMP in the Real World 197

to the memory where their data has been stored. Using appropriate methods to
bind threads to specific CPUs, to allocate data pages, and to migrate data according
to access patterns can substantially improve the performance of an application. To
show what kind of support for such features may be provided, we give examples
from two distinct vendor platforms. The purpose of the discussion is to give the
reader an idea of what to look for on a system; other systems also provide similar
features. For more details on the features introduced here, and those on other
platforms, we refer the user to the documentation.

SGI Origin and SGI AltixTM [160] systems employ the concept of CPU sets.
This allows the user to run an application on a restricted set of processors and
associated memory. The CPU sets are created by the super user, invoking the
cpuset command, or automatically by the batch scheduling system. The dplace
command allows a user to bind an application to a particular set of processors at
start up time. The default strategy for memory allocation is the First Touch policy
described earlier.

For example, if P1, P2, P3, and P4 in Figure 6.1 form a CPU set, then the
commands

setenv OMP_NUM_THREADS 4

dplace -c0-3 a.out

can be used to execute a.out on processors P1,P2,P3, and P4.
For the Origin systems the MIPSProTM compiler provided informal extensions

that permitted a higher-level user description of the strategy for distributing data,
as well as for instructing the compiler to assign work to threads based on the data
locality [165]. These directives are now outmoded. There are also OS commands to
place and migrate data that may be invoked while the code is running. The latter
may help if a program has distinct computational phases.

When hybrid MPI/OpenMP programs are run on an SGI AltixTM or Origin
system, special memory placement features are available to ensure that OpenMP
threads run on processors close to the parent MPI process. That is, the MPI pro-
cesses must be spread out across the processors. To achieve this behavior, the user
must indicate to the runtime system that a hybrid program is being run by set-
ting the environment variable MPI_OPENMP_INTEROP. MPI reserves nodes for this
hybrid placement model based on the number of MPI processes and the number
of OpenMP threads per process. For example, if 2 MPI processes with 4 OpenMP
threads per MPI process are used on the platform in Figure 6.1, MPI will request
a placement for 2x4 processes at startup time. The MPI processes will be spread
out such that there is one per node and the corresponding threads share the same

198 Chapter 6

memory. All MPI processes are assumed to start with the same number of OpenMP
threads, as specified by the OMP_NUM_THREADS environment variable. The SGI Ori-
gin supports an additional environment variable, MPI_DSM_PLACEMENT. If this is set
to threadroundrobin, the runtime system attempts to satisfy requests for new
memory pages for the MPI process in a round-robin fashion. Additional environ-
ment variables MPI_DSM_CPULIST and MPI_DSM_MUSTRUN are available to place MPI
processes onto particular processors and to ensure that they are bound to them.

For example, to run a hybrid MPI/OpenMP code on the architecture in Figure
6.1, the user could specify the following.

setenv OMP_NUM_THREADS 4

setenv MPI_OPENMP_INTEROP

setenv MPI_DSM_PLACEMENT threadroundrobin

setenv MPI_DSM_CPULIST 1,5

setenv MPI_DSM_MUSTRUN TRUE

mpirun -np 2 a.out

For more detailed documentation of these features, the reader is referred to [162]
and [161].

The Sun Microsystems SolarisTM operating system provides the pbind com-
mand to bind or unbind processes or threads to physical processors. It can also be
used to query the binding policy in effect. The command takes the processor id,
plus one or more processes IDs, with or without thread IDs.

In the example shown in Figure 6.2, the two threads (or “lightweight processes”,
lwp, in Solaris terminology) of an OpenMP program with process id 704 are first
bound to processor 1. Next we query what processes are specifically bound to
this processor and then release the binding of the second thread again. To verify
this, we check what processes are bound to processor 1 and 0, respectively. The
processor bind system call provides similar functionality at the source level. This
type of control may be necessary in the case of hybrid MPI/OpenMP or nested
OpenMP codes.

The Sun OpenMP implementation provides the SUNW_MP_PROCBIND environment
variable to bind the threads to physical processors, or cores in case of a multicore
architecture.

Since Version 9, the Solaris operating system has provided a way to optimize
memory placement. By default, the operating system attempts to place memory
pages according to the First Touch policy described earlier. The policy can be
changed by using the madvise system call. The pmadvise tool provides similar

Using OpenMP in the Real World 199

pbind -b 1 704/1 704/2
lwp id 704/1: was 1, now 1
lwp id 704/2: was not bound, now 1
pbind -Q 1
lwp id 704/1: 1
lwp id 704/2: 1
pbind -u 704/2
lwp id 704/2: was 1, now not bound
pbind -Q 1
lwp id 704/1: 1
pbind -Q 0
#

Figure 6.2: Examples of binding on the Solaris operating system – The
pbind command is used to bind the threads to a specific processor first; the binding is
verified and then released again for the second thread. The last two commands verify the
binding again.

functionality at the command line level. The meminfo system call can be used
to obtain more information about the virtual and physical memory behavior, for
example, which locality group the page is part of. Commands such as lgrpinfo,
plgrp, and pmap are useful to query the topology, policies, and mappings in effect.

This is by no means a comprehensive collection of the available support on all
cc-NUMA architectures. For example, the IBM AIXTM operating system provides
the bindprocessor command and a runtime library routine with the same name to
bind threads to processors [86]. Under the Linux operating system, various system
calls as well as the taskset and numactl commands may be used to query and
control the placement of data and threads.

We recommend that the programmer check the availability of environment vari-
ables, system calls, runtime library routines, or command line tools to control data
placement, data movement, and thread binding on a cc-NUMA platform.

6.2.3 Implications of Data and Thread Placement on cc-NUMA Per-
formance

The relative placement of data and threads may significantly influence the perfor-
mance of certain OpenMP constructs. This was not considered when discussing the
behavior of some features in Chapter 5. For example, in Section 5.5.1 the perfor-
mance differences between the single and master constructs were discussed. Even

200 Chapter 6

on a relatively simple SMP architecture there is no uniform best choice. If data has
been carefully mapped to a cc-NUMA system (e.g., via First Touch placement),
then it may not be a good idea to permit an arbitrary thread to update the data
via the single construct. Not only might this result in a general performance loss,
but it might also give rise to large performance variations, depending on which
thread executes the region. If the data was previously initialized by the master
thread, then the master construct is likely to work better. Otherwise, it might be
beneficial to explicitly map the corresponding work to individual threads based on
the location of the data.

The use of private data can be beneficial on such systems. Typically, private
data is allocated on the stack (see Chapter 8 for a brief discussion of the stack). In
a cc-NUMA aware OpenMP implementation, the stack should be in memory local
to the thread. With shared data, this configuration cannot always be ensured, even
when First Touch is appropriately used. When shared data is fetched from remote
memory, the data cache(s) local to the processor will buffer it, so that subsequent
accesses should be fast. However, data may be displaced from the cache in order
to make way for another block of data. If so, another relatively expensive transfer
from remote memory will occur the next time it is needed. As a result, privatizing
data often pays off on a cc-NUMA platform.

6.3 SPMD Programming

While OpenMP is well suited for realizing fine-grained parallelization, one also
can use it to accomplish very coarse-grained parallelism. To do so, one creates
code that encloses a program’s entire computation in one large parallel region.
This approach typically involves a higher programming effort but can provide high
levels of scalability. It requires the programmer to assign data and work explicitly
to threads. The most typical usage is to employ data parallelism, where some or all
of the data is partitioned so that each thread receives its own portion. The threads
will work on their part of the data. Shared data structures are created to hold those
values that are shared in the resulting program; in many cases, this is just a small
fraction of the total amount of program data. This is the SPMD (single program
multiple data) programming style. Note that the availability of shared memory
permits variants of this idea to be used. For example, it is possible that a major
part of the program is an SPMD code while other parts are not. Likewise, some
of the data structures might be distributed among the threads while others remain
shared. In reality, SPMD style programs are examples of a low-level thread-specific
programming style that has the following characteristics:

Using OpenMP in the Real World 201

• The code contains a small number of large parallel regions.

• Work sharing is controlled by the user, based on the thread identifier (ID).

• For true SPMD codes, work sharing is based on distributing major data struc-
tures among threads. Usually, most of the data is private.

Figures 6.3 and 6.4 demonstrate a directive-based code fragment and an equiv-
alent SPMD style code.

!$OMP PARALLEL DO PRIVATE(i,j), SHARED(a, b, n, m)
do i = 1, n

do j = 1, m
a(i,j) = a(i,j) + 0.25 * (b(i-1, j) + b(i+1, j) &

+ b(i,j-1) + b(i,j+1))
end do

end do

Figure 6.3: Parallelization of a stencil operation – The parallelism is imple-
mented by applying the parallel loop directive to the outer loop.

The simple example shows that the SPMD programming style requires more user
effort than simply inserting directives into the code. So, what is the advantage?
Why would the code shown in Figure 6.4 perform better than that from Figure 6.3?
For this code fragment alone, it might not—unless the data size is large [35] or there
are more threads available than there are iterations in either of the loops. Assume,
for example, that n=m=32 and that 64 threads are available. In the code in
Figure 6.3 the work is distributed in one dimension. There will not be any speedup
beyond 32, since 32 threads will not have any work to do. The code in Figure 6.4
divides the work in two dimensions. This way, there is work for all of the 64 threads,
each one working on a 4x4 chunk of iterations. The true strength of the SPMD
style becomes apparent when it is applied to large applications. It permits the
user to precisely control details of work assignment and thus to ensure that threads
consistently update specific parts of the data, which may substantially reduce the
cost of memory accesses even on small SMPs. This increases the potential for
scalability.

Case Study 1: A CFD Flow Solver

An example of a successful OpenMP parallelization is flowCart, a solver for the
inviscid steady-state Euler equations in compressible fluids [24]. The solver is in-

202 Chapter 6

!$OMP PARALLEL PRIVATE(i, j, iam, low_i, low_j, up_i, up_j) &
!$OMP SHARED(nt, nti, ntj, a, b)

!$OMP SINGLE
nt = OMP_GET_NUM_THREADS()
nti = int(sqrt(real(nt)))
ntj = int(sqrt(real(nt)))

!$OMP END SINGLE

iam = OMP_GET_THREAD_NUM()
low_i = n * iam/nti + 1
up_i = n * (iam+1)/nti
low_j = m * iam/ntj + 1
up_i = m * (iam+1)/ntj

!$OMP DO
do i = low_i, up_i

do j = low_j, up_j
a(i,j) = a(i,j) + 0.25 * (b(i-1, j) + b(i+1, j) &

+ b(i,j-1) + b(i,j+1))
end do

end do
!$OMP END DO

!$OMP END PARALLEL

Figure 6.4: SPMD style parallelization of a stencil operation – The example
assumes that a square number of threads is available. Loop bounds are explicitly calculated
based on the thread ID. This allows the programmer to control the assignment of work
precisely.

tegrated into the Cart3D [7] package, a high-fidelity inviscid analysis package for
conceptual and preliminary aerodynamic design developed at NASA Ames Research
Center. The flowCart solver employs a finite-volume discretization scheme, where
the flow quantities are stored at the centroid of each cell. An explicit Runge-Kutta
iteration scheme is used to reach a steady state. OpenMP and MPI versions of
flowCart are available and use the same command line arguments.

The following design decisions made during the development of the OpenMP
version of the flowCart application were critical to achieving high performance
and ensuring scalability to hundreds of threads.

Using OpenMP in the Real World 203

Domain Decomposition Approach: Each thread is assigned its own subdo-
main with a certain number of cells. The thread is responsible for updating its set
of cells, an action referred to as the owner computes rule. There are a number of
cells in surrounding subdomains whose values are needed in order to perform the
stencil operations for all cells within the subdomain. These are referred to as over-
lap cells, and their values must be obtained from the thread responsible for them.
The code fragment in Figure 6.5 shows the overall structure of the application.

The domain decomposition happens on the fly, in that the number of subdomains
is determined at run time based on the value of the OMP_NUM_THREADS environment
variable. The number of cells per thread is calculated by using a workload balancing
scheme. The cells are assigned sequentially to the threads, until each thread has
reached its quota. The threads responsible for updating each subdomain allocate
and then immediately touch every element of their own arrays. This approach is
taken to achieve data locality via the First Touch policy. Each thread operates on
its own private data. The only shared data structure is a small array of pointers
to the subdomain structures. If there are N subdomains, this will be an array of N
pointers to the N subdomain structures on the different processors.

Note that the code shown in Figure 6.5 has no explicitly declared private vari-
ables. Instead, the variables, such as pMyGrid, are declared within the parallel
region and are private by default. Only a small array of pointers to the chunks of
privately allocated arrays, pGrid, is declared outside of the parallel region and is
explicitly shared.

The calculations within each subdomain can proceed fairly independently from
each other. The threads do not update their overlap cells, but they receive updated
values from their neighbors. At this point, information needs to be exchanged
among neighboring subdomains, requiring synchronization.

Explicit Data Exchange: After performing each chunk of computation within
each subdomain, the updated values of the overlap cells need to be exchanged.
Rather than making calls to a communication library as required in a message-
passing implementation, here the data exchange is implemented by directly taking
advantage of shared memory. For each overlap cell, the location of the updated
values is computed once and saved. A pointer into the corresponding subdomain
is used to access the values. The code fragment in Figure 6.6 outlines the basic
structure of the loop implementing the exchange of values for overlap cells.

Note that most MPI implementations on shared-memory systems leverage the
available shared address space for efficiency. Using nonblocking communication
may allow overlapping of calculation and communication. Nevertheless, the MPI-
based approach requires matching send and receive pairs as well as the packing

204 Chapter 6

//
// pGrid is a small shared array of pointers to each
// subdomain structure for a particular thread.
//

struct subdomain pGrid[MaxNumThreads];
int N = omp_get_num_threads();
pGrid = (subdomain *) malloc (N * sizeof(double *));

#pragma omp parallel shared(pGrid, N)
{
//
// pMyGrid is a pointer to a chunk of data that holds the
// subdomain for a particular thread. The memory is allocated
// within a parallel region and therefore private to each thread.
//

struct subdomain pMyGrid;
//
// perform the domain decomposition
//
#pragma omp parallel

iam = omp_get_thread_num();
pMyGrid = (subdomain) malloc(sizeof(subdomain));
initSubdomain(pMyGrid);
pGrid[iam] = pMyGrid;

//
// Time step iteration to compute the solution
//

for (i=0; i<itmax; i++) {
computeGradient(pMyGrid);
copyGradient(pNeighborGrid);
computeResiduals(pMyGrid);
updateCells(pMyGrid);
copyOverlapCells(pMyNeigborGrid);

}
}

Figure 6.5: Structure of the flowCart solver – Basic code structure outlining the
decomposition approach used in the highly scalable flow solver flowCart of Cart3D.

Using OpenMP in the Real World 205

#pragma omp barrier
for (k=0; k<Neighbors; k++){

for (j = 0; j < overlapCells; j++) {
set_pointers (pNeighborGrid);
XchangeIndex = pNeighborGrid->index;

/*
actual copying takes place here
*/

pMyGrid->a[j] = pNeighborGrid->a[XchangeIndex];
}

}
#pragma omp barrier

Figure 6.6: OpenMP-based boundary exchange in Cart3D – The code frag-
ment shows the structure of the OpenMP-based implementation of the exchange of values
for overlap cells in the flowCart solver of Cart3D.

and unpacking of message buffers. The corresponding loop implemented in MPI is
outlined in Figure 6.7.

Data Replication: In order for the calculations on the cells within each sub-
domain to proceed independently for some time, a number of overlap cells are
replicated on neighboring subdomains. Traditionally, shared-memory implemen-
tations would define one large array of cells. Each thread is assigned a range of
indices to work on, using the neighboring cells as needed. This approach does
not require explicit communication. However, it does not leave the opportunity to
control memory locality for each subdomain.

Both the OpenMP and MPI implementations of flowCart show excellent scal-
ability on a variety of hardware platforms. On some large-scale shared memory
systems, the OpenMP version outperforms the MPI implementation. For example,
on an SGI Origin 3600, the speedup for a problem size of 4.7 million cells on 512
CPUs is about 450 for OpenMP versus 350 for MPI. Running the OpenMP-based
implementation on a larger problem (25 million cells) employing 496 CPUs of a
single node of an SGI AltixTM system showed a speedup of 400 and a performance
of 0.63 TFlop/s. Most recent performance results can be obtained from the Cart3D
website [7], and considerable information on the scalability of the code is contained
in [124]. Figure 6.8 shows an example Cartesian mesh and the corresponding pres-
sure contours of the solution for a Cart3D application.

The lesson learned from this case study is that OpenMP can achieve scalability

206 Chapter 6

/* allocate send and receive buffers */
malloc(sbuf);
malloc(rbuf);
/* fill up the send buffers */
for (k=0; k<Neighbors; k++){

ncount = 0;
for (j=0; j < overlapCells; j++) {

set_pointers (pMyGrid, k);
XchangeIndex = pMyGrid->index
sbuf[ncount]= pMyGrid->a[XchangeIndex];
ncount++;

}
/* send buffer */
Size = ncount;
MPI_Isend(sbuf, Size, Type,

recvID, Tag, MPI_COMM_WORLD, &(rbuf[k]));
}
for (k=0; k<Neighbors; k++){
/* receive data from any source that has sent data */

MPI_Recv(rbuf, Size, Type, MPI_ANY_SOURCE,
MPI_COMM_WORLD, &status);

ncount = 0;
/* unpacking data */
for (j=0; j < overlapCells; j++) {

pMyGrid->a[j] = rbuf[ncount];
ncount++;

}
}
if (Neighbors > 0) {

MPI_Waitall(Neighbors);
}

Figure 6.7: MPI-based boundary exchange in Cart3D – The code fragment
shows the structure of the MPI-based implementation of the exchange of values for overlap
cells in the flowCart solver of Cart3D.

that meets or even exceeds that of message passing, if the user is willing to invest
a similar amount of programming effort into parallelizing the application. The
resulting code is generally easier to maintain.

Using OpenMP in the Real World 207

Figure 6.8: Example application of Cart3D – The image on the left depicts a
Cartesian mesh around a full space shuttle launch vehicle configuration including orbiter,
external tank, solid rocket boosters, and fore and aft attach hardware. The image on the
right shows the computed pressure contour lines for the same configuration. The OpenMP-
based implementation of the application shows excellent performance and scalability on
large shared-memory systems. (The figure has been provided courtesy of Michael Aftosmis
and Marsha Berger from NASA Ames Research Center.)

6.4 Combining OpenMP and Message Passing

Message-passing-based parallelization has the potential for high performance and
good scalability because communication of data and synchronization of processes
are completely under user control. The message-passing model supported by MPI
provides a portable way to create parallel programs on distributed as well as shared-
memory architectures. Some discussion of MPI can be found in Section 1.8. We
assume that the reader of this section is familiar with it. We will occasionally
describe certain features of MPI that are relevant for OpenMP programming here.
For more details, please refer to the MPI-1 and MPI-2 standard [58]. A good
introduction to MPI is provided in [69].

208 Chapter 6

Combining MPI and OpenMP offers an approach to exploit hierarchical paral-
lelism inherent in the application or the underlying hardware. The hybrid pro-
gramming style is most efficient when MPI processes work on a coarse level of
parallelism, taking advantage of the user-controlled data distribution and work
scheduling. Parallelization based on OpenMP is used within the shared address
space of each process for additional fine-grained parallelization. The situation is
depicted in Figure 6.9.

Hybrid MPI/OpenMP programming has the potential to increase the scalability
of an application, but there are drawbacks. The following is a list of issues that
should be considered when using hybrid parallelism.

Reasons to Combine MPI and OpenMP:

1. This software approach matches the hardware trend toward clusters of SMPs
by using MPI across nodes and OpenMP within nodes. Hybrid code offers
the possibility of reducing MPI communication overhead by using OpenMP
within the node and by taking advantage of the shared memory, such as de-
picted in Figure 6.9. By exploiting shared data, parallelizing parts of the ap-
plication with OpenMP improves performance, without noticeably increasing
the memory requirements of the application.

2. Some applications expose two levels of parallelism: coarse-grained parallelism,
implemented by using MPI, where a large amount of computation can be
performed independently, with only the occasional exchange of information
between different processes; and fine-grained parallelism, which may be avail-
able at the loop level. The hybrid programming may be suitable for exploiting
such multiple levels of parallelism.

3. Application requirements or system restrictions may limit the number of MPI
processes that can be used. In this case using OpenMP in addition to MPI
can increase the amount of parallelism.

4. Some applications show an unbalanced work load at the MPI level that might
be hard to overcome. In this case, OpenMP provides a convenient way to
address the imbalance, by exploiting extra parallelism on a finer granularity
and by assigning a different number of threads to different MPI processes,
depending on the workload.

Using OpenMP in the Real World 209

OpenMP

Shared Memory

OpenMP

Shared Memory

Message Passing
(network)

Figure 6.9: Combining MPI and OpenMP – Hybrid programming offers a natural
match on a software level with respect to the concept and architecture of SMP clusters.

Reasons Not to Combine MPI and OpenMP:

1. Introducing OpenMP into an existing MPI code also means introducing the
drawbacks of OpenMP, such as the following.

• Limitations when it comes to control of work distribution and synchro-
nization

• Overhead introduced by thread creation and synchronization

• Dependence on the quality of compiler and runtime support for OpenMP

• Dependence on the availability of shared memory and related issues such
as data placement.

2. The interaction of MPI and OpenMP runtime libraries may have negative side
effects on the program’s performance, depending on the support (or rather
the lack thereof) on a particular system.

3. Some applications naturally expose only one level of parallelism, and there
may be no benefit in introducing hierarchical parallelism.

If, after considering all the issues above, one decides that hybrid parallelism is
the way to go, here are some rules of thumb how to go about it.

Starting from an existing sequential code, the first step usually consists of de-
composing the problem for MPI parallelization, adding the OpenMP directives later
on. This way only the master thread will perform communication between MPI
tasks. The simplest and least error-prone way is to use MPI only outside of parallel

210 Chapter 6

regions. If the program is parallelized in such a way that MPI calls are issued from
within parallel regions, then several threads may call the same routines from the
MPI library at the same time, and a thread-safe MPI library is needed.

MPI support for OpenMP: There are no special requirements for OpenMP
support if calls to the MPI library are always made outside of parallel regions. If this
is the case, keep in mind that only the master thread is active during communication
and the remaining threads are not used, as in the sequential sections of the code.
Calling MPI from within parallel regions may enable overlapping communication
and computation, but it requires paying a lot more attention to the interaction of
MPI and OpenMP. In this case, the MPI library has to be aware of the fact that it
can be called by different threads of the same program. The MPI-1 standard does
not provide any support for multithreading. The MPI-2 [58] standard does include
several levels of thread support. This needs to be specified in a call to MPI_Init_-

thread, rather than just using MPI_Init, which is equivalent to initializing with no
thread support. Many MPI implementations now support the MPI_Init_thread

call, even if full MPI-2 support is lacking. The syntax in C is as follows.

int MPI_Init_thread(int *argc,

char *((*argv)[]), int required, int *provided)

The syntax in Fortran is as follows.

MPI_INIT_THREAD(required, provided, ierr)

integer required, provided, ierr

The call to MPI_Init_thread initializes MPI in the same way that a call to
MPI_init would. In addition, it initializes the thread support level. The argument
required is used to specify the desired level of thread support. The argument
provided is returned as output, indicating the actual level provided by the system.
Possible values are listed below in increasing order of thread support.

• MPI_THREAD_SINGLE: Only one thread will execute. This is the same as ini-
tializing with MPI_init.

• MPI_THREAD_FUNNELED: Process may be multithreaded, but only the master
thread will make MPI calls.

• MPI_THREAD_SERIALIZED: Multiple threads may make MPI calls, but only
one at a time.

Using OpenMP in the Real World 211

• MPI_THREAD_MULTIPLE: Multiple threads may make MPI calls with no restric-
tions.

Thread support at levels MPI_THREAD_FUNNELED or higher allows potential over-
lap of communication and computation. For example, in an SPMD style of pro-
gramming, certain threads can perform communication while others are computing.
This is outlined in Figure 6.10.

!$OMP PARALLEL
if (thread_id .eq. id1) then

call mpi_routine1()
else if (thread_id .eq. id2) then

call mpi_routine2()
else

do_compute()
end if

!$OMP END PARALLEL

Figure 6.10: Example of overlapping computation and communication –
The code fragment illustrates how this could be implemented in an MPI application.

6.4.1 Case Study 2: The NAS Parallel Benchmark BT

The following example demonstrates how the choice of domain decomposition af-
fects the interaction between MPI and OpenMP. The code is derived from the NAS
Parallel Benchmarks. The benchmarks are described in [20] and [21] and can be
downloaded from [154]. We discuss the BT benchmark, which is a simulated CFD
application using an ADI (alternating directions iteration) method to solve the dis-
cretized Navier Stokes Equations in three dimensions. The three spatial dimensions
are decoupled, and a tridiagonal system of equations is solved in each dimension.
The flow of the program is depicted in Figure 6.11. We consider two different
approaches to hybrid parallelization of the application.

Three-dimensional domain decomposition: In this approach, the MPI par-
allelization is based on a 3D domain decomposition. Each MPI process is assigned
a number of 3D blocks. Data dependences in each of the spatial dimensions require
an exchange of boundary values after updating a block. Figure 6.12 shows, as an
example, the structure of the loop in routine z_solve. It is easy to exploit loop
level parallelism via the OpenMP !$omp parallel do directive. The most suit-
able loop for parallelization in routine z_solve is the j-loop, since data dependences

212 Chapter 6

�������	
��

������

�	�����

�	�����

�	�����

Figure 6.11: The NAS Parallel Benchmark BT – The basic computational flow
through the various phases is shown.

prevent parallelization of the k-loop. Parallelization of the i-loop would result in
unfavorable memory access, giving rise to false sharing of data. The hybrid parallel
version of routine z_solve is shown in Figure 6.13. No special thread support is
required so that it is sufficient to use the regular MPI_init.

One-dimensional domain decomposition. OpenMP is applied in the prior
approach to a dimension that is distributed for the MPI parallelization. Another
strategy is to parallelize using MPI in one spatial dimension and OpenMP in an-
other. In this variant, each MPI process is responsible for one slice of the decom-
posed domain, rather than a number of 3D cubes. Data dependences require that
boundary values have to be exchanged before and after updating the slice. OpenMP
is now employed to parallelize one of the nondistributed dimensions. The 1D do-
main decomposition requires MPI thread support of level MPI_THREAD_MULTIPLE
because all threads associated with an MPI process issue MPI calls. Figure 6.14
depicts the structure of routine z-solve if the data is distributed in the k di-
mension. The rank ID in MPI_send and MPI_receive identifies the MPI process,
not a particular thread. Distinct message tags are used to avoid conflicts in the
communication calls issued by different threads within the same process.

Using OpenMP in the Real World 213

call MPI_init(...)

do ib = 1, nblock
call mpi_receive

do j = j_low, j_high
do i = i_low, i_high

do k = k_low, k_high
rhs(i,j,k,ib) = rhs(i, j, k-1, ib) + ...

end do
end do

end do
call mpi_send

end do

Figure 6.12: Structure of the MPI-based solver routine – MPI implemen-
tation of routine z-solve in the NAS Parallel Benchmark BT based on a 3D domain
decomposition.

call MPI_init(...)

do ib = 1, nblock
call mpi_receive

!$OMP PARALLEL DO
do j = j_low, j_high

do i = i_low, i_high
do k = k_low, k_high

rhs(i,j,k,ib) = rhs(i, j, k-1, ib) + ...
end do

end do
end do

!$OMP END PARALLEL DO
call mpi_send

Figure 6.13: Structure of the MPI/OpenMP based solver routine – Hybrid
parallelization of routine z-solve in the NAS Parallel Benchmark BT based on a 3D domain
decomposition. The OpenMP directive is placed on the outermost loop, in this case the
second spatial dimension j. Data dependences prevent OpenMP parallelization of the
k-loop and require communication between neighboring MPI processes.

214 Chapter 6

call MPI_init_thread(MPI_THREAD_MULTIPLE,...)
...
!$OMP PARALLEL DO
do j = 1, ny

call mpi_receive(pid_1, tag_rec_tid, ...)
do k = k_low, k_high

do i = 1, nx
rhs(i, j, k) = rhs(i, j, k-1) + ...

end do
end do
call mpi_send(pid_2, tag_my_tid, ...)

end do
!$OMP END PARALLEL DO

Figure 6.14: Hybrid parallelization based on 1D domain decomposition –
OpenMP directives are placed on loops over unpartitioned dimensions. This requires calls
to the MPI library from within the parallel regions.

Which of these strategies is preferable? The 3D domain decomposition employs
OpenMP on the same dimension as MPI, which is in a sense redundant. However,
it requires very little interaction between MPI and OpenMP. Furthermore, if the
MPI code already exists, one can easily develop the hybrid code by simply inserting
OpenMP directives. In some situations, the hybrid implementation can outperform
the pure MPI code, such as when the number of MPI processes is limited because of
system restrictions or when using MPI introduces a high communication overhead.
The 1D domain decomposition approach applies MPI and OpenMP to different
dimensions. It requires tight interaction between MPI and OpenMP and it is a lot
harder to implement, with plenty of opportunity to introduce errors. However, this
approach requires MPI communication with only 2 neighbor processes, as opposed
to 6 neighbors in the 3D domain decomposition approach. This can potentially be
advantageous on slow networks. A detailed case study of the example above with
performance results is given in [93].

6.4.2 Case Study 3: The Multi-Zone NAS Parallel Benchmarks

The application discussed in Section 6.4.1 does not expose multiple levels of paral-
lelism: parallelization occurs along the 3 spatial dimensions, which are all equal, in
the sense that there is no natural hierarchy between them.

Using OpenMP in the Real World 215

Applications that exposes a natural hierarchical parallelism include multi-zone
computational fluid dynamics codes [52] and climate models such as the ocean
circulation model POP version 2.0.1 [103]. In these applications a geometrically
complex domain is covered by sets of partially overlapping discretization grids,
called zones. The solution within each zone can be calculated fairly independently,
requiring only an occasional update of boundary values. This gives rise to coarse-
grained parallelism. The solver routines invoked for the discretization grids within
each zone offer the possibility for loop-level parallelization. The Multi-zone NAS
Parallel Benchmarks are a set of benchmarks that capture the behavior of multi-
zone codes from the area of computational fluid dynamics. They are described in
[49] and are publicly available [154]. A hybrid MPI/OpenMP implementation of
the benchmarks is part of the distribution package.

The benchmarks LU-MZ, SP-MZ, and BT-MZ are multi-zone versions of the well-
known single-zone NAS Parallel Benchmarks [20] LU, SP, and BT. They compute
solutions of unsteady, compressible Navier-Stokes equations in three spatial dimen-
sions. The LU benchmark uses a lower-upper symmetric Gauss-Seidel algorithm, SP
employs a scalar pentadiagonal solver, and BT a block tridiagonal algorithm. The
program flow of the benchmarks is shown in Figure 6.15. The structure of the pro-
gram is given in Figure 6.16. The fragment of the z_solve subroutine, parallelized
with OpenMP, is listed in Figure 6.17.

The benchmarks are categorized in classes according to the problem size. In this
example we consider the benchmarks for problem size B, which implies a domain of
304 by 208 by 17 grid points, divided into 64 zones. The test cases require about 200
MByte of memory. The major difference between the benchmarks, which is relevant
for hybrid programming, is the workload distribution. In the LU-MZ benchmark,
the number of zones is 16, which limits the number of MPI processes that can be
employed to 16. The number of zones for SP-MZ and BT-MZ is 64. For SP-MZ all
zones are of equal size. For BT-MZ the size of the zones varies widely, with a ratio
of about 20 between the largest and the smallest zone. Figures 6.18 and 6.19 show
the effects of varying the number of MPI processes on a fixed number of CPUs.

The timings were obtained by using a total of 128 threads on an SGI Origin
3000 and 64 threads on an UltraSPARC IV+ based Sun Fire E25K. The charts
compare the timings obtained on n MPI processes versus 64 MPI processes, which
is the maximum number of MPI processes that can be employed. On both archi-
tectures SP-MZ fares best when using as many MPI processes as possible to exploit
coarse-grained parallelism. Using multiple OpenMP threads per MPI process was
advantageous only when more CPUs than zones were available. The situation is
different for BT-MZ. Because of the large difference in the number of grid points per

216 Chapter 6

Loop Zones

�������	
������
�����

������
��
����
��������

����
�����

����
��������������

���� ������

Loop Zones
MPI Parallel

Loop Time
Steps

Figure 6.15: The NAS Parallel Benchmark BT-MZ – The basic computational
flow through the various phases is shown.

zone, good load-balance cannot be achieved for BT-MZ on MPI-level. In this case
the load must be balanced at the fine-grained level of parallelism, which means we
should use fewer processes with multiple threads each. For LU-MZ, the outer level
of parallelism is limited to 16. In this case, one must use multiple threads per
MPI process to exploit a higher number of available CPUs. For all benchmarks,
proper thread binding and memory placement, such as discussed in Section 6.2, were
necessary to achieve good performance. A detailed discussion of the performance
characteristics of the benchmarks can be found in [89].

6.5 Nested OpenMP Parallelism

The previous section described how to employ a combination of MPI and OpenMP
to exploit multiple levels of parallelism. Another approach is to use nested OpenMP
parallelism. Recall that the OpenMP standard allows the nesting of parallel regions,
although an implementation need not support this feature (see also Sections 4.9.1

Using OpenMP in the Real World 217

program bt-mz-mpi-openmp

call mpi_init()
C
C Apply load-balancing heuristics to determine
C zones and threads per MPI processes
C

call get_zones_threads(my_zones, my_nt)
C
C Each process sets number of threads.
C

call omp_set_num_threads (my_nt)
C

do step = 1, niter
C

call exch_boundary ! Boundary data exchange
! using MPI

do zone = 1, my_zones
...
call z_solve(zone) ! Solver within zone

end do
end do
end

Figure 6.16: Structure of the Multi-Zone NAS Parallel Benchmark BT-MZ
– The code outlines the structure of an implementation employing hybrid parallelism.

and 4.7). When a thread in the outer parallel region encounters the inner !$omp

parallel, it becomes the master thread of a new team of threads. If nested par-
allelism is supported and enabled, the new team will consist of multiple threads.
There is an implicit barrier synchronization at the end of an inner parallel region.
Only the master thread of the inner team continues execution after the barrier.
There is also an implicit barrier synchronization point at the end of the outer
parallel region. This is illustrated in Figure 6.20.

Work-sharing directives cannot be tightly nested; hence, there cannot be nested
#pragma omp for (in C) or nested !$omp do (in Fortran), without introducing
nested #pragma omp parallel or !$omp parallel constructs. This implies the
introduction of barrier synchronization points at the end of inner parallel regions,
in addition to the barrier synchronization points at the outer parallel regions. Fig-

218 Chapter 6

subroutine z_solve(zone, ...)
C
C Fine grain parallelization
C
!$OMP PARALLEL DO PRIVATE(m, i, j, k)

do j = 2, nz-1
do i = 2, ny-1

do k = 2, ny-1
do m = 1, 5

rhs(m,i,j,k) = rhs(m,i,j,k-1) + ...
end do

end do
end do

end do
!$OMP END PARALLEL DO

return
end

Figure 6.17: Solver used by the Multi-Zone NAS Parallel Benchmark
BT-MZ – This routine has been parallelized with OpenMP.

ure 6.21 demonstrates this issue. The barrier synchronization points introduced
by !$omp do can be removed by using the NOWAIT clause. The implicit barriers
introduced by !$omp parallel cannot be removed. This restriction introduces a
high synchronization overhead and may have bad effects on the program flow, as
we describe later.

The default data-sharing attributes for nested regions are as follows:

• If a variable is shared in the outer region, it is shared by all threads in the
teams of the inner regions.

• If a variable is private in the outer region and accessible by a thread that
becomes the master thread of the team executing the inner parallel region,
then this variable is by default shared by all threads executing the inner
region.

We now describe some situations suitable for employing nested OpenMP paral-
lelism.

Overlapping I/O and computation. For many codes, reading and writing
of data can be overlapped with computation. For example, seismic applications

Using OpenMP in the Real World 219

 0

 0.5

 1

 1.5

 2

 10 20 30 40 50 60

S
pe

ed
up

 v
s

64
 M

P
I P

ro
ce

ss
es

MPI processes

NPB-MZ Class B 128 threads SGI Origin 3000

BT-MZ
SP-MZ

Figure 6.18: Timing comparisons for BT-MZ and SP-MZ on SGI Origin
3000 – The timings were obtained for runs of Class B on 128 CPUs on an SGI Origin
3000. Displayed is the speedup compared to a run employing 64 MPI processes. The charts
show that SP-MZ runs fastest using the maximum number of MPI processes, which is 64
for Class B. BT-MZ fares best using 16 MPI processes, each employing multiple threads.

process large amounts of data, and overlapping may improve performance. If the
input data is read in chunks, one chunk may be processed while the next one is
read. These chunks are processed by fast Fourier transform computations, and the
results are written to an output file. The amount of seismic data typically is rather
large, and overlapping I/O and computation is therefore beneficial. This can be
accomplished by creating three parallel sections, one to read the input, one to do
the computations, and one to write output data. Additional data parallelism can
be exploited by parallelizing the computationally intensive loops, as shown in the
code example in Figure 6.22. The chunks of data are processed in a pipelined
fashion. This requires point-to-point synchronization between the threads execut-
ing the outer level of parallelism, which can be accomplished by synchronization
mechanisms such as those described in Section 4.9.2. The flow of the program is

220 Chapter 6

 0

 0.5

 1

 1.5

 2

 2.5

 3

 10 20 30 40 50 60

S
pe

ed
up

 v
s

64
 M

P
I P

ro
ce

ss
es

MPI processes

NPB-MZ Class B on 64 threads Sun Fire 25K

BT-MZ
SP-MZ
LU-MZ

Figure 6.19: Timing comparisons for BT-MZ, LU-MZ, and SP-MZ on Sun
Fire – The timings are obtained for runs of Class B on 64 CPUs of a 72 UltraSPARC
IV+ processor Sun Fire E25K. Displayed is the speedup compared to a run employing 64
MPI processes. The charts show that SP-MZ runs fastest using 64 the number of MPI
processes, each running on 1 thread. BT-MZ runs best running on 16 MPI processes,
each on multiple threads. For LU-MZ the number of MPI processes is limited to 16. The
speedup for a higher number of MPI processes is set to 1 in the chart.

depicted in Figure 6.23. For more details on this technique see [36].
Overlapping functional parallelism. The previous example can be extended

to a general overlap of functional parallelism. Examples are multimedia applications
such as discussed in [174]. Task parallelism can be exploited by breaking the input
stream into chunks and having them processed by different parallel sections in
a pipelined fashion: once the audio processing is done for the first chunk, the
video work can begin to work on it while the audio work continues to the second
chunk, and so on. This requires synchronization between the threads executing
the two parallel sections. Synchronization mechanisms such as those described in
Section 4.9.2 can be used for this purpose. Further parallelism can be exploited

Using OpenMP in the Real World 221

Outer Parallel Region

Join Join

Fork Fork

Join

Inner Parallel Regions

Implicit Barriers
at Inner Regions

Implicit Barrier
at Outer Region

Fork

Figure 6.20: Nested OpenMP parallel regions – Inner parallel regions introduce
implicit synchronization points in addition to the barrier synchronization points at the
outer parallel regions.

at the loop level within the parallel sections. If the video processing, for example,
is a lot more expensive than the audio processing, more threads can be assigned
to work on the video part’s computationally intensive loops in order to achieve a
balanced workload between the two parallel sections.

6.5.1 Case Study 4: Employing Nested OpenMP for Multi-Zone CFD
Benchmarks

Nested OpenMP can be employed to handle multiple levels of data parallelism, as
demonstrated in the following case study.

The benchmarks described in Section 6.4.2 can be parallelized by using nested
OpenMP rather than MPI/OpenMP hybrid programming. On shared-memory sys-
tems with a large number of processors, nested OpenMP is a feasible alternative
to the hybrid approach. Rather than using MPI for the coarse-grained part and

222 Chapter 6

#pragma omp parallel
{
#pragma omp for private(i, j)

for (i=0; i <n; i++) {
#prgama omp parallel <= required

{
#pragma omp for private(j)

for (j=0; i<n; j++) {
do_work(i,j)

}
} <= required implicit barrier

} <= required implicit barrier

Figure 6.21: Synchronization within a nested parallel region – When using
nested OpenMP directives there are implicit barrier synchronization points at the end
of outer as well as the inner parallel regions. Work-sharing directives cannot be tightly
nested: An inner !$omp for requires an inner !$omp parallel.

OpenMP on the fine-grained level, OpenMP can be used on both levels. The code
fragments in Figures 6.24 and 6.25 outline such an implementation based on nested
OpenMP directives.

A comparison of the code to the hybrid implementation in Figure 6.16 shows
that the structure of both implementations is very similar. Differences between the
nested OpenMP and the hybrid code are as follows:

• Startup. The hybrid code contains a call to mpi_init to set up the execution
environment, and the number of MPI processes is specified by the user. For
example, assume the name of the program is bt-mz-mpi, and mpirun is the
command used to execute MPI-based programs. The following two commands
cause this hybrid program to use 32 CPUs, distributed over 8 MPI processes,
each using 4 OpenMP threads each on average:1

setenv OMP_NUM_THREADS 4

mpirun -np 8 ./bt-mz-mpi

The nested OpenMP code needs a mechanism to allow the user to specify the
number of outer parallel regions. This can be accomplished in several ways.

1Note that this application employs load-balancing heuristics to calculate the appropriate num-
ber of threads for the inner-level parallel loop.

Using OpenMP in the Real World 223

...
#pragma omp parallel sections
#pragma omp section
for (i=0; i < N; i++) {

read_input(i);
signal_read(i);

}
#pragma omp section
for (i=0; i < N; i++) {

wait_read(i);
process_data(i);
signal_processed(i);

}
#pragma omp section
for (i=0; i < N; i++) {

wait_processed (i)
write_output(i);

}
...

void process_data(i)
{
...
#prgama omp parallel for num_threads(4)
for (j=0; j<M; j++) {

do_compute(i,j)
}
}

Figure 6.22: Overlapping computation and I/O with nested OpenMP –
The code demonstrates how to employ nested parallelism to overlap I/O and computation.
Functional parallelism is exploited by creating different parallel sections for reading input
data, performing the computation, and writing the results. Additional data parallelism
is exploited within the computationally intensive section that processes the data. In the
example a total of 6 threads are being used, with 4 threads involved in producing the
results.

For example, we can introduce the environment variable MY_OUTER_LEVEL to
specify the number of outer-level threads. If we want to use 8 such threads,
plus 4 threads at the second level, the nested OpenMP version of the code
would be executed as follows.

224 Chapter 6

compute chunk 1
thread 0

read chunk 1 read chunk 2

compute chunk 2

read chunk 3

write chunk 1 write chunk 2

thread 1

thread 2

thread 3

thread 4

thread 5

Figure 6.23: Pipelined flow of the thread execution – Nested parallelism is
employed to overlap computation and I/O.

setenv OMP_NUM_THREADS 32; setenv MY_OUTER_LEVEL 8

./bt-mz-nested-omp

• Outer-level parallelism. In the hybrid version of the code, outer-level
parallelism is based on MPI processes updating a subset of the zones. In the
nested OpenMP version, outer-level parallelism is achieved by inserting an
!$omp parallel directive for the loop over the zones. Note that there is no
work-sharing directive for the outer parallel region. The work is shared in an
SPMD-style fashion, by explicit use of the thread ID.

• Boundary exchange. Data exchange at the boundaries is done by reading
from and writing to the data structures as defined in the sequential version
of the code.

• Inner-level parallelism. Just as in the hybrid version, inner-level paral-
lelism is achieved by placing an !$omp parallel do directive on the loops
within the solver routines. A difference in the nested OpenMP code is that
the number of threads working on the inner region has to be specified for each
team via the num_threads clause. This makes it necessary that the mapping
of zones onto threads be visible within the solver routines. In our example
this is achieved by the use of the common block thread_info.

A problem with this sort of nested parallelism is that the OpenMP 2.5 standard
does not provide a way for the user to specify that the same team of OpenMP

Using OpenMP in the Real World 225

program bt-mz-nested-omp
common/thread_info/nt_inner(1:nt_outer)

C
C The user specifies the number of outer parallel
C regions. Load-balancing heuristics are applied
C to assign zones to outer parallel regions and determine
C the number of inner level threads per outer parallel regions.

call get_zones_threads (my_zones, nt_outer, nt_inner)
C

do step = 1, niter
C
C Copying data between zones as in sequential code
C

call exch_boundary
C
C Create parallel regions for coarse grain parallelism.
C
!$OMP PARALLEL PRIVATE(iam, zone,..)
!$OMP& NUM_THREADS(nt_outer)
C

iam = omp_get_thread_num ()
C
C SPMD style explicit user controlled work sharing:
C

do zone = 1, zones
if (my_zones(zone) .eq. iam) then

...
call z_solve(zone, iam)

end if
end do

end do
end

Figure 6.24: The Multi-Zone NAS Parallel Benchmark BT-MZ – The exam-
ple outlines the structure of the code when coarse-grained parallelism is based on (nested)
OpenMP.

226 Chapter 6

subroutine z_solve(zone, iam, ...)
common/thread_info/nt_inner(1:nt_outer)

C
C Inner parallel region
C
!$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(m, i, j, k)
!$OMP& NUM_THREADS(nt_inner(iam))

do j = 2, nz-1
do i = 2, ny-1

do k = 2, ny-1
do m = 1, 5

rhs(m, i, j, k) =
rhs(m, i, j, k-1) + ...

end do
end do

end do
end do

!$OMP END PARALLEL DO
return
end

Figure 6.25: Source of subroutine z solve – This routine is called from within a
parallel region. Nested OpenMP directives are used to exploit fine-grained parallelism.

threads should be working together in subsequent inner parallel regions. A typical
OpenMP implementation of nested parallelism requests threads for inner parallel
regions from a pool of available threads. This has the effect that the composition
of the inner thread teams could change between different instances of the inner
parallel region, which makes efficient thread binding and memory placement very
hard, if not impossible. Some research compilers, such as the NanosCompiler [66],
provide extended support for nested parallelism and allow fixed thread teams to
be created. A study [18] has shown that with this extra support, nested OpenMP
can be a feasible alternative to employing MPI/OpenMP for the parallelization of
multi-zone CFD codes. For the example of the benchmark BT-MZ run on an SGI
Origin 3000 and using the NanosCompiler for nested OpenMP parallelization, the
chart in Figure 6.26 shows little performance difference between the two different
implementations.

Nested OpenMP parallelization can be an alternative to employing hybrid par-
allelism on large shared-memory architectures, but a number of performance con-

Using OpenMP in the Real World 227

Figure 6.26: Performance comparison of MPI/OpenMP and nested
OpenMP – The chart compares the performance, measured in Mflop/s per thread
and run on an SGI Origin 3000, of the MPI/OpenMP-based multi-zone NAS Parallel
Benchmark BT-MZ to its counterpart implemented using nested OpenMP and additional
support provided by the NanosCompiler. Thread binding was applied for both versions.
There is little performance difference between the different implementations across the
various combinations of outer- and inner-level parallelization.

siderations must be taken into account:

1. Increased demand for forking and joining of threads at inner parallel regions
requires an extremely efficient thread runtime library and operating system
support.

2. Synchronization overhead will increase because of the implicit barrier syn-
chronization at inner parallel regions.

3. Point-to-point synchronization between threads from different inner parallel
regions is problematic because of implicit barrier synchronization at the end
of inner parallel regions.

4. Thread pool-based implementations of nested parallelism may lead to loss of
data locality and increased memory access on cc-NUMA architectures.

228 Chapter 6

6.6 Performance Analysis of OpenMP Programs

Assuming that the performance of an application is satisfactory in single-threaded
mode, the most likely performance question is ”Why does my application not get the
expected speed-up when running on multiple threads?” The performance of large-
scale parallel applications depends on many factors, including sequential perfor-
mance (Section 5.2), load imbalance (Section 5.4.6), and parallelization overheads
(Section 5.3).

Section 5.3.1 lists additional factors that influence OpenMP programs. The issue
of replicated work is of particular interest for SPMD programs, which contain very
large parallel regions. For hybrid codes it is of interest to examine the interaction of
the OpenMP runtime library with the MPI communication library. Careful perfor-
mance analysis is required if an application does not show the expected scalability.

6.6.1 Performance Profiling of OpenMP Programs

Profile data from a representative run of the application will show where the pro-
gram spends most of its time and what resources are being used. Programmer
effort can then concentrate on the particularly time-consuming routines. The ba-
sic components of most performance analysis tools consist of a module to record
the performance-related information and a module to examine the results. These
either can be separate components or can be integrated in one tool. Depending on
the profiling technology used, the program may have to be specifically prepared to
record the information.

The application has to be executed to collect the performance data. Typically,
the recorded information is stored on disk and can be subsequently examined to
detect potential performance problems. In those cases where the production run
takes a long time to execute and requires a large amount of memory, a test case
that makes fewer demands on resources should be selected.

There is a risk with this approach, though. The parameters that define the prob-
lem to be solved may have a profound effect on the profile. It is therefore important
to choose a reduced test case that has the same computational characteristics as the
production workload. When one is in doubt whether the selected problem reflects
the targeted job, we recommend making a profile of the production run as well and
ensuring that the profiles are similar. If they are, the performance analysis can
focus on the smaller test case, but it is still good practice to occasionally verify
whether the performance gains apply to the production job as well.

Using OpenMP in the Real World 229

Several approaches can be used to obtain performance data. One of these is
called sampling , which is based on periodic clock-based OS interrupts or hardware
counter traps, such as the overflow hardware counter registers. At these sampling
points, the values of performance data, such as the program counter, the time, call
stacks, and hardware-counter overflow data are collected and recorded. Examples
of sampling-based profiling tools are the UnixTM gprof tool, the Sun Performance
Analyzer [128], and oprofile [3].

An alternative approach is to collect data by code instrumentation rather than
interrupting execution. In this approach, calls to a tracing library are inserted in
the code by the programmer, the compiler, or a tool. These library calls will write
performance information into a performance profile file during program execution.
An advantage of this approach is that the user has control over when and where
information is collected. Moreover, the trace data represents a true time line of the
flow of the program. The disadvantage is that modification of the source code and
recompilation are required, which is not always an option. Also, the instrumen-
tation can affect the compiler optimizations and therefore performance behavior,
and it can be very costly in terms of additional resources needed, in particular
with respect to disk and memory consumption. Some packages support dynamic
instrumentation of the executable program, thereby eliminating the need for re-
compilation. An example is the ompitrace module, which is part of the Paraver
[56] Performance Analysis System.

Regardless of the recording technology, examples of pertinent performance infor-
mation are as follows:

• The state of a thread at given times, such as waiting for work, synchronizing,
forking, joining, or doing useful work

• Time spent in parallel regions and work-sharing constructs

• Time spent in user and system level routines

• Hardware counter information such as CPU cycles, instructions, and cache
misses

• Time spent in communication, message length, and the number of messages

Performance data is usually recorded as a series of events tagged with a thread ID,
a process ID (in case of MPI programs), a CPU ID, a timestamp, and—depending
on the recording method—a call stack. The event data is used to compute perfor-
mance metrics which are then mapped onto, for example, source or assembly code,

230 Chapter 6

thread IDs, and process IDs. The more flexibility the tracing and analysis packages
provide in calculating, mapping, and comparing these metrics, the more insight one
will be able to obtain into the nature of the obstacles to perfect scalability.

The performance data collected, whether it is based on statistical sampling or on
instrumentation-based tracing, contains a huge amount of information. The chal-
lenge in analyzing the performance lies in the meaningful interpretation of collected
data. Some useful features to have in a tool are the ability to:

• Map performance metrics onto source code, assembler code, threads, and
processes;

• Observe the behavior of metrics over time; and

• Calculate user defined performance metrics.

In the following we discuss a number of performance metrics and give suggestions
on how to determine them. We use the OpenMP versions of the NAS Parallel
Benchmarks version 3.2 and the Multi-zone NAS Parallel benchmarks version 3.1
as example codes, which are freely available and can be downloaded at [154].

6.6.2 Interpreting Timing Information

When obtaining timing profiles for parallel programs, one has to distinguish between
wall-clock time and CPU time. As explained in Section 5.3, wall-clock time is the
actual time that passes between the beginning and the end of a timing interval. It is
also referred to as the elapsed time. The CPU time is the time the program spends
in user mode. For a sequential program, the wall-clock time is typically the sum of
CPU time and system time. CPU time is usually reported as the sum of the CPU
times over all threads. Because of the overhead introduced by the parallelization,
the CPU time will not decrease with an increasing number of threads. At best, it
will be stationary, but in many cases an increase will be observed. A profiling tool
helps to understand where this additional cost comes from.

Timing information can be used to obtain the following metrics:

• Parallelization coverage. In view of Amdahl’s law (see also Formula (2.2)
in Section 2.6), it is important to know how much of an application actually
runs in parallel. The ratio of the total execution time spent outside of parallel
regions versus the total execution time provides a rough idea of what to expect
of the scalability of the application. As will be explained in Section 8.3.4, most
compilers put parallel regions into separate routines, a technique often referred

Using OpenMP in the Real World 231

to as outlining . The naming convention for these compiler-generated routines
will usually be such that it can be associated with the original function from
which it was extracted. Depending on the system, it may even be possible
to determine the line number and the loop identifier. If the parallel program
is run on a single thread, one can determine the percentage of time spent in
parallel regions and work-sharing constructs versus the time spent outside of
parallel regions. This will provide an upper bound on the scaling that can be
expected when increasing the number of threads.

To demonstrate this, we ran the NAS Parallel Benchmark BT of problem size
Class A on a Sun Fire E6900 system with 24 UltraSPARC IV processors. The
benchmark reports the following information.

BT Benchmark Completed.

Class = A

Size = 64x 64x 64

Iterations = 200

Time in seconds = 418.82

Total threads = 1

Avail threads = 1

Mop/s total = 401.80

Mop/s/thread = 401.80

Operation type = floating point

Verification = SUCCESSFUL

Version = 3.2

The gprof output for a run on a single thread looks like the following.

% cumulative total

time seconds calls ms/call name

16.4 73.10 201 590.56 _$d1A40.y_solve_

16.3 145.54 201 587.28 _$d1A40.z_solve_

15.7 215.59 201 575.39 _$d1A43.x_solve_

14.6 280.54 146029716 0.00 binvcrhs_

8.2 316.91 146029716 0.00 matmul_sub_

7.4 349.71 146029716 0.00 matvec_sub_

5.8 383.51 202 82.82 _$d1I67.compute_rhs_

3.7 400.06 202 81.93 _$d1H176.compute_rhs_

232 Chapter 6

3.1 413.74 202 67.72 _$d1G298.compute_rhs_

1.7 421.36 202 37.72 _$d1E380.compute_rhs_

1.3 427.23 202 29.06 _$d1A23.compute_rhs_

0.9 435.92 202 20.00 _$d1B48.compute_rhs_

0.9 439.78 201 19.20 _$d1A18.add_

0.5 442.17 2317932 0.00 lhsinit_

0.4 444.13 202 9.70 _$d1C423.compute_rhs_

0.1 444.43 2317932 0.00 binvrhs_

...

The routines with names starting with a _$ sign are the outlined routines
generated by the compiler to execute parallel loops and parallel regions. The
name indicates the subroutine name as well as the line number of the parallel
construct. For example, _$d1A40.y_solve_ refers to a parallel construct in
routine y_solve in line 40. Note that this is just an example and that the
nomenclature depends on the particular compiler and system that is being
used. Routines binvcrhs, matmul_sub, matvec_sub, lhsinit, and binvrhs

are called within parallel regions, so we can count them as being executed
in parallel. Adding up the percentage contributions of the routines that are
executed in parallel shows 98 percent of the total execution time is spent in
parallel regions. According to Amdahl’s law an upper bound for the speedup
when running, for example, on 4 threads is given by

S =
1

(0.98/4 + 0.02)
= 3.8. (6.1)

Running the same application on 4 threads yields the following benchmark
information.

BT Benchmark Completed.

Class = A

Size = 64x 64x 64

Iterations = 200

Time in seconds = 123.32

Total threads = 4

Avail threads = 4

Mop/s total = 1364.60

Mop/s/thread = 341.15

Using OpenMP in the Real World 233

Operation type = floating point

Verification = SUCCESSFUL

Version = 3.2

The profile information looks like this.

% cumulative total

time seconds calls ms/call name

16.6 87.27 804 164.81 _$d1A40.y_solve_

16.5 174.19 804 164.38 _$d1A40.z_solve_

15.9 257.69 804 160.12 _$d1A43.x_solve_

13.6 329.31 146029716 0.00 binvcrhs_

6.9 365.62 146029716 0.00 matmul_sub_

4.8 390.80 146029716 0.00 matvec_sub_

3.0 428.35 808 19.55 _$d1H176.compute_rhs_

2.9 443.65 808 18.94 _$d1I67.compute_rhs_

2.8 458.26 808 18.08 _$d1G298.compute_rhs_

2.6 471.91 tree_barrier_and_reduction

1.6 489.81 804 10.71 _$d1A18.add_

1.5 497.70 808 9.76 _$d1E380.compute_rhs_

1.1 503.55 mt_nop

1.1 509.37 808 7.20 _$d1B48.compute_rhs_

1.1 515.02 808 6.99 _$d1A23.compute_rhs_

0.4 522.10 2317932 0.00 lhsinit_

0.4 523.99 808 2.34 _$d1C423.compute_rhs_

0.1 524.35 808 0.45 _$d1F356.compute_rhs_

0.1 524.69 2317932 0.00 binvrhs_

0.1 524.99 4195072 0.00 exact_solution_

...

The overall execution time decreased from 419 seconds to 123 seconds, result-
ing in a speedup of 3.4. As mentioned in Section 5.3, Amdahl’s law ignores
the overhead introduced by parallel execution. As in this case, it tends to
predict a more optimistic speedup than that observed in reality.

• Useful parallel time. Not all time spent in parallel regions will decrease
linearly as the number of threads increases. For example, threads may be
in a parallel region but spend time waiting for work or at synchronization

234 Chapter 6

points. Notice that in the profiling output above, additional time is reported
for tree_barrier_and_reduction in the profile for 4 threads, an item that
is not present in the profile listing for 1 thread. This is a routine from the
specific OpenMP library used. It is part of the implementation of the barrier
construct and can be considered to be part of the parallel overhead.

Determining how much time is spent in performing useful work and how
much time is spent in synchronization may or may not be easy, depending
on the system and performance analysis tool. Below is the output of the Sun
Performance Analyzer [128] for the example of the NAS parallel benchmark
BT for a run using 4 threads. The profile information indicates for each
routine how much time is spent in actual work.

Incl. Incl. Incl. Name

User CPU OMP Work OMP Wait

sec. sec. sec. sec.

577.424 522.906 165.826 <Total>

101.811 0. 165.316 <OMP-implicit_barrier>

159.341 146.442 41.279 _$d1A40.y_solve_

167.707 151.436 53.668 _$d1A40.z_solve_

147.903 136.616 31.272 _$d1A43.x_solve_

71.440 77.274 0. binvcrhs_

34.414 35.785 0. matmul_sub_

26.829 32.002 0. matvec_sub_

23.286 17.492 12.529 _$d1H176.compute_rhs_

15.671 17.492 0. _$d1I67.compute_rhs_

20.464 17.732 10.367 _$d1G298.compute_rhs_

14.330 10.517 8.456 _$d1A18.add_

7.996 9.537 0. _$d1E380.compute_rhs_

8.076 6.204 2.212 _$d1B48.compute_rhs_

5.704 5.844 0. _$d1A23.compute_rhs_

2.212 2.212 0. lhsinit_

1.871 1.871 0. _$d1C423.compute_rhs_

0.390 0. 0.390 <OMP-idle>

0.280 0.280 0. _$d1F356.compute_rhs_

0.260 0.260 0. exact_solution_

To detect, for example, load imbalance between the threads, one must see the
value of the metric not only for each routine but also for each thread. To this

Using OpenMP in the Real World 235

end, we use a two-dimensional display such as that provided by the Paraver
Performance Analysis system [56]. An example is shown in Figure 6.27, which
displays the CPU time in micro-seconds per thread for the four most time
consuming parts of the BT benchmarks. The timings were obtained using 4
threads on an SGI Origin 2000.

Figure 6.27: Paraver view of CPU time per thread per parallel region –
A two-dimensional view of CPU time per thread and per parallel region as displayed by
the Paraver performance analysis system.

• Estimating the parallel efficiency. The parallel efficiency is defined as
the speedup divided by the number of threads. To determine the speedup,
one must measure the execution time for a single-threaded run, a task that
could be prohibitively expensive. The concept of useful parallel time can be
used to estimate the parallel efficiency from just one run on multiple threads,

236 Chapter 6

Figure 6.28: Paraver histogram of the distribution of OpenMP workshare
durations – The histogram shows the distribution of OpenMP workshare durations in
routine compute rhs of NAS Parallel Benchmark BT as displayed by the Paraver Perfor-
mance Analysis System. The timings were obtained on a SGI Origin 2000 employing 4
threads. The OpenMP workshare constructs are sorted by duration in bins of 0.18 sec-
onds. The overview shows that for all threads the majority of the durations are shorter
than 0.18 seconds.

without needing to execute on a single thread. The following equation can be
used for this purpose:

EstParEfficiency =
ElapsedT ime

MasterSeqT ime +
∑P

j=1 ParT imej

, (6.2)

where

– ElapsedT ime is the elapsed execution time,

Using OpenMP in the Real World 237

– MasterSeqT ime is the time the master thread spends outside of parallel
regions,

– ParT imej is the useful parallel time of thread j, and

– P is the number of threads.

• The workshare duration. This is the time between entry and exit of
one chunk of work within a work-sharing construct. Measuring this requires
instrumentation-based profiling. The metric can provide insight into various
performance metrics. For one, it serves as a measure of the granularity of
the parallelization. Executing a large number of very small chunks introduces
more overhead than the execution of fewer, but larger, chunks of work. The
quantification of large and small depends on the particular system. There-
fore, the comparison between different durations is more interesting than the
absolute value. A suitable way to display this metric is in the form of his-
tograms. For each thread the execution times of the work-sharing constructs
are sorted by duration into bins. This approach not only indicates the distri-
bution of long and short work-sharing constructs, but also differences between
the individual threads. An example of this type of information is given in
Figure 6.28.

Comparing histograms of workshare durations for different parallel regions
helps to identify areas with inefficient fine grained parallelization. Comparing
the workshare duration between threads can help to spot areas where high la-
tencies introduced by the memory subsystem cause increased execution times
for some threads. If certain threads take considerably longer to execute their
chunks of work and the workload is balanced, nonoptimal memory placement
could be the reason on a cc-NUMA architecture.

• Thread synchronization. The impact of this on the execution time can be
determined by analyzing the following timing information:

– Time spent within MASTER, SINGLE, and CRITICAL regions

– Time spent in atomic operations

– Time spent handling locks, such as setting, testing, and waiting to ac-
quire them

– Time spent in array reduction operations

238 Chapter 6

• Load balancing. Poor scalability could be caused because of the work not
being equally spread over the number of threads or because of other asym-
metries. Profile information can be used to diagnose the following possible
causes for this behavior:

– Per thread barrier synchronization time at the end of parallel loops

– Per thread useful time

– Per thread number of instructions executed by each thread during the
useful time in parallel regions

– Time per chunk of a work sharing construct

• Work scheduling. Dynamic scheduling (see Section 4.5.7) provides for a
well-balanced workload distribution. It should be used with care, however,
since it introduces inefficiencies. First, the overhead of assigning chunks to
threads is higher than with static scheduling, where the distribution of work is
determined at the beginning of the loop and remains fixed during the whole
execution. Second, dynamic scheduling may lead to a loss of data locality
because the threads will possibly work on different chunks of data during the
execution of the loops. As an example we consider the NAS BT benchmark
of class A, executed by using 16 threads on a Sun Fire E6900 system with
24 UltraSPARC IV processors. If static scheduling is applied, the profile for
some of the most time-consuming parallel loops looks like the following:

Excl. Incl. Incl. Name

User CPU User CPU OMP Work OMP Wait

sec. sec. sec. sec.

81.817 143.420 136.616 6.845 _$d1A40.z_solve_

79.205 122.426 117.312 5.164 _$d1A43.x_solve_

79.095 125.368 119.794 5.574 _$d1A40.y_solve_

...

15.871 17.132 15.871 1.261 _$d1G298.compute_rhs_

...

The same code when executed on the same system but using dynamic schedul-
ing yields the following.

Using OpenMP in the Real World 239

Excl. Incl. Incl. Name

User CPU User CPU OMP Work OMP Wait

sec. sec. sec. sec.

80.186 139.588 132.753 6.865 _$d1A40.z_solve_

80.146 138.997 133.233 5.764 _$d1A43.x_solve_

79.786 126.398 121.165 5.324 _$d1A40.y_solve_

...

64.485 70.920 64.485 6.435 _$d1G298.compute_rhs_

...

While the parallel loops in the routines x_solve, y_solve, and z_solve are
not affected by the scheduling policy, the loop in compute_rhs shows a signif-
icant performance decrease when dynamic scheduling is used. There is some
increase in the time waiting for work and a huge increase in the time actually
performing the calculations, most likely due to loss of data locality.

6.6.3 Using Hardware Counters

In addition to execution time-related information, hardware counter data provides
important means to understand the performance of the parallel program. What
hardware counters are available and how to read them depend on the processor
and system used. In this section we discuss a small set of counters that are most
commonly available and useful to measure.

• The number of executed instructions per thread provides various interesting
insights. Comparing this metric between threads can point to a workload
imbalance within parallel regions. Keep in mind, though, that threads may
execute instructions while they are idle or during synchronization2. In order
to determine workload differences between threads it is therefore important
to consider only the instructions executed while performing useful work.

Consider, for example, the NAS Parallel Benchmark LU. As discussed in Sec-
tion 4.9.2, this application uses a pipelined thread execution model, imple-
mented via explicit point-to-point synchronization. Counting the instructions
during one of the solver routines may indicate that some threads are executing
many more instructions than others. This does not necessarily indicate a work

2Be aware that the OpenMP 2.5 specifications leave it up to the implementation what idle
threads should do. It is best to check the documentation to find out what the specific environment
used supports, as well as what the default is.

240 Chapter 6

load imbalance, however. Depending on the thread, idle policy instructions
could be issued while a thread is waiting for work.

The number of executed instructions can show an excessive amount of repli-
cated work . If the number of instructions performed during the useful parallel
time increases considerably when increasing the number of threads, it could
be an indication of replicated work, a problem that is particularly prone to
arise in SPMD programs. Recall that the characteristic for SPMD program-
ming, which was discussed in Section 6.3, is a small number of large parallel
regions. This might result in large sections of identical code being executed
by all of the threads, thereby limiting the scalability.

• It is often useful to correlate certain metrics, such as time and the value of
hardware counters. The number of instructions per second during the thread
useful time is an indicator of how well the processor pipelines are being used.
If the ratio is low for certain routines, one might want to check whether
threads spend their time waiting for work, are waiting in a synchronization
phase or are waiting for the cache and memory system.

• The number of data cache and translation-lookaside buffer (TLB) misses are
important metrics to consider. Both provide measures for the efficiency of
memory accesses. Details are given in Chapter 5.

Just as in the case of instructions, the actual value of the hardware counter
is hard to interpret. Insight is gained by comparing values between threads,
observing the behavior over a period of time or by combining the values with
other metrics. For example, an interesting statistic is the ratio of cache or
TLB misses per instruction. If this ratio is high for certain routines or threads,
it is worth trying to change the memory access pattern, as was discussed by
way of an example in Section 5.6.

• The cost per cache miss can provide a measure for the impact of remote
memory access on a cc-NUMA architecture or DSM system. An estimate for
this metric can be obtained by combining the time, the number of instructions,
and the number of cache misses, as shown in the following formula:

EstCacheMissCost =
ElapsedT ime − NumInsts

IdealMIPS

NumCacheMisses
, (6.3)

where

– ElapsedT ime is the elapsed execution time;

Using OpenMP in the Real World 241

– NumInsts is the number of instructions executed during the useful par-
allel time;

– IdealMIPS is the number of millions of instructions per second that
could be obtained if the cost for a cache miss were zero (this is a machine-
specific constant, for example, the inverse of the clock rate); and

– NumCacheMisses is the number of cache misses that occurred during
the useful parallel time.

More interesting than the absolute value of this metric is how it compares
between threads. If the cost per cache miss for certain routines varies widely
between the threads, some data could be stored in such a way that it causes
remote memory access for some threads, thereby increasing the overall execu-
tion time. The metric was used to detect inefficient memory placement when
executing a hybrid MPI/OpenMP application in [94].

• On some systems, the counters can be used to detect false sharing , described
in Section 5.5.2. Unfortunately, it is very hard to give general recommenda-
tions. If cache coherency related counters are available, their values can be
monitored as a function of the number of threads used. If false sharing occurs,
they tend to increase exponentially. The same is true for cache misses at the
outermost level.

6.7 Wrap-Up

Writing an OpenMP application that performs well is often fairly straightforward,
but there are exceptions worth considering

On cc-NUMA architectures, the placement of data can critically affect perfor-
mance. By exploiting the First Touch placement policy, most or all of the data
often can be placed close to the threads that need it most. In those cases where this
policy is not sufficient, system-specific support may be needed to further enhance
performance.

Using OpenMP in an SPMD style requires more programming effort but can
achieve performance and scalability comparable to that of message passing code.

On a cluster of SMP, or multicore, nodes, the hybrid MPI/OpenMP model can be
an attractive solution to exploit the two levels of parallelism this kind of architecture
offers. The downside of this approach is that one needs to master and combine two
different parallel programming paradigms. Nested parallelism applied in an SPMD
style can be a feasible alternative. In view of the rising importance of multicore

242 Chapter 6

technology, one can expect that in the near future shared-memory systems will
support a large number of processing nodes, tied together by using a two-level
interconnect topology. The SPMD programming style maps nicely onto this.

Performance analysis tools are indispensable for identifying and addressing per-
formance bottlenecks. The two most common techniques are sampling and tracing,
each with their pros and cons. A high-quality tool allows the user to derive a wealth
of information to guide the tuning process.

7 Troubleshooting

One of the toughest problems facing an OpenMP programmer is to learn how to
avoid introducing bugs into a program as part of the parallelization process. The
desire to avoid bugs in any program seems obvious, but bugs in shared-memory
parallel programs tend to be very subtle and harder to find than in sequential
programs. This chapter discusses the most typical kinds of errors that occur in
OpenMP programs, as well as some more complicated cases.

7.1 Introduction

Up to now the emphasis has been on the ease with which OpenMP can be used
to create parallel programs. Indeed, this was one of the primary goals of the
OpenMP designers. It still remains the programmer’s responsibility to identify and
properly express the parallelism. Unfortunately, errors made while expressing the
parallelism can lead to incorrect code. The details of implementing the parallelism
are handled implicitly by the compiler and the runtime library and are transparent
to the programmer. This situation can make debugging an OpenMP code difficult.
In this chapter, we discuss common and fairly straightforward errors as well as some
more complicated cases. We also describe good practices to help avoid problems,
and we outline some debugging strategies.

7.2 Common Misunderstandings and Frequent Errors

In this section we describe concepts, constructs, and programming techniques that
are most likely to introduce (subtle) errors. We also provide recommendations on
how these errors can be avoided.

7.2.1 Data Race Conditions

One of the biggest drawbacks of shared-memory parallel programming is that it
might lead to the introduction of a certain type of bug that manifests itself through
silent data corruption. To make matters worse, the runtime behavior of code with
this kind of error is also not reproducible: if one executes the same erroneous
program a second time, the problem might not show up.

OpenMP has several safety nets to help avoid this kind of bug. But OpenMP
cannot prevent its introduction, since it is typically a result of faulty use of one of
the directives. For example it may arise from the incorrect parallelization of a loop
or an unprotected update of shared data. In this section we elaborate on this type

244 Chapter 7

of error, commonly known as a data race condition. This is sometimes also referred
to simply as a data race or race condition.

A data race condition exists when two threads may concurrently access the same
shared variable between synchronization points, without holding any common locks
and with at least one thread modifying the variable. The order of these accesses
is nondeterministic. The thread reading the value might get the old value or the
updated one, or some other erroneous value if the update requires more than one
store operation. This usually leads to indeterministic behavior, with the program
producing different results from run to run.

Consider the following for-loop:

for (i=0; i<n-1; i++)

a[i] = a[i] + b[i];

The iterations of this loop are independent. The order in which they are executed
does not affect the result. If, for example, we were to run the loop backwards, the
results would be the same. What about the following loop, then?

for (i=0; i<n-1; i++)

a[i] = a[i+1] + b[i];

The only change is that we now use a[i+i] to update a[i]. This is called a loop-
carried dependence: the loop iterations are dependent on each other. This minor
change in the indexing destroys the parallelism. As written, the above loop can
no longer be executed in parallel. The explanation is the following. When we
update a[i], we read the old value of a[i+1]. In the next iteration, a[i+1] is
then updated. Of course, this is a small change to the loop, but it is not a minor
change in the algorithm at all.

If we do go ahead and execute the second loop in parallel, different threads will
simultaneously execute the statement a[i] = a[i+1] + b[i] for different values
of i. Thus there arises the distinct possibility that for some value of i, the thread
responsible for executing iteration i+1 does so before iteration i is executed. At this
point we have an error in our program. When the statement is executed for iteration
i, the new value of a[i+1] is read, leading to an incorrect result. Unfortunately,
there is no easy way to detect that this has occurred. This is an example of a data
race condition introduced by the inappropriate parallelization of a loop.

Generally speaking, whether a data race condition affects a program’s numerical
results depends on various factors:

• Load on the system. The relative timing between the threads matters.

Troubleshooting 245

• Input data set. This might, for instance, lead to some load imbalance that af-
fects the speed with which individual threads reach the incorrectly parallelized
code.

• Number of threads used. In some cases the problem shows up only for a
specific number of threads.

Therefore, a bug caused by a data race condition leads to nondeterministic be-
havior.1 A bug clearly exists in the parallel application, but one might not notice it
during the test phase or even in production mode, for example because the number
of threads used has been such that the problem was not exposed. Changing the
number of threads or some other aspect of its execution could cause the bug to
(re)surface.

To demonstrate the typical behavior of a data race condition, we have executed
the second loop above in parallel, and observe the impact of its deliberate bug. We
use integer values for vectors a and b. Our measure of correctness is the checksum
of the relevant values of a, defined as checksum ≡ ∑n−2

i=0 ai. The correct result is
printed together with the actual value, computed after vector a is updated in the
parallel loop. The program has been executed using 1, 2, 4, 32, and 48 threads.
These runs are performed four times each to see whether the error surfaces. We
have set n to a value of 64. The results are listed in Figure 7.1. The second column
gives the number of threads used. Column four contains the value of the checksum
that is computed after the parallel loop. The last column has the correct value
of the checksum. Note that we used the same binary program for all these runs.
To change the number of threads, we modified the value for the OMP_NUM_THREADS

environment variable only.
As to be expected, the single thread results are correct. Surprisingly, the results

on two threads are all correct, too. On four threads, the results are wrong in
three out of the four cases. Two of the incorrect results are the same. For 32
and 48 threads none of the results are correct, and they are always different. This
unpredictable runtime behavior is typical for a data race condition.

At the OpenMP level, data race conditions could also be introduced as the result
of missing private clauses, missing critical regions, or incorrectly applied nowait

clauses. Because of the lack of a barrier, the master construct can also introduce a
data race if not used carefully. Other potential sources of data race conditions are
the SAVE and DATA statements in Fortran and static or extern in C. Throughout
this chapter, examples of these kinds of error are given.

1A data race also implies that false sharing occurs, possibly degrading performance. See also
Section 5.5.2 on page 153.

246 Chapter 7

threads: 1 checksum 1953 correct value 1953
threads: 1 checksum 1953 correct value 1953
threads: 1 checksum 1953 correct value 1953
threads: 1 checksum 1953 correct value 1953

threads: 2 checksum 1953 correct value 1953
threads: 2 checksum 1953 correct value 1953
threads: 2 checksum 1953 correct value 1953
threads: 2 checksum 1953 correct value 1953

threads: 4 checksum 1905 correct value 1953
threads: 4 checksum 1905 correct value 1953
threads: 4 checksum 1953 correct value 1953
threads: 4 checksum 1937 correct value 1953

threads: 32 checksum 1525 correct value 1953
threads: 32 checksum 1473 correct value 1953
threads: 32 checksum 1489 correct value 1953
threads: 32 checksum 1513 correct value 1953

threads: 48 checksum 936 correct value 1953
threads: 48 checksum 1007 correct value 1953
threads: 48 checksum 887 correct value 1953
threads: 48 checksum 822 correct value 1953

Figure 7.1: Output from a loop with a data race condition - On a single
thread the results are always correct, as is to be expected. Even on two threads the results
are correct. Using four threads or more, the results are wrong, except in the third run.
This demonstrates the non-deterministic behavior of this kind of code.

7.2.2 Default Data-Sharing Attributes

We think it is good practice (although arguably a matter of personal preference
and style) to explicitly specify the data-sharing attributes of variables and not rely
on the default data-sharing attribute. Doing so reduces the possibility of errors.
Moreover, for good performance, it is often best to minimize sharing of variables
(see also Sections 5.5.2 and 5.5.3).

Probably the most important rule to watch out for is that, in many cases, vari-
ables are shared by default. This is illustrated in Figure 7.2. The variable Xshared

is shared by default. If multiple threads execute the parallel region, they all try to

Troubleshooting 247

simultaneously write a different value into the same variable Xshared. This is an
example of a data race.

#pragma omp parallel
{

int Xlocal = omp_get_thread_num();
Xshared = omp_get_thread_num(); /*-- Data race --*/

printf("Xlocal = %d Xshared = %d\n",Xlocal,Xshared);

} /*-- End of parallel region --*/

Figure 7.2: Example of implied sharing – By default, variable Xshared is shared.
The assignment to Xshared causes a data race: if multiple threads are used, they simul-
taneously store a different value in the same variable.

Errors like this can easily sneak in. The code example in Figure 7.3 shows a data
race condition introduced by the fact that variable x is shared by default, rather
than having been explicitly declared private.

void compute(int n)
{

int i;
double h, x, sum;

h = 1.0/(double) n;
sum = 0.0;

#pragma omp for reduction(+:sum) shared(h)
for (i=1; i <= n; i++) {

x = h * ((double)i - 0.5);
sum += (1.0 / (1.0 + x*x));

}
pi = h * sum;

}

Figure 7.3: Data Race Condition due to missing private declaration – The
variables i and x are not explicitly declared as private. Variable i is implicitly declared
to be private according to the OpenMP default data-sharing rules. Variable x is shared
by default. It is written to by multiple threads, leading to a race condition.

248 Chapter 7

In the example in Figure 7.4, multiple threads update elements of the shared
data structure material. In order to ensure deterministic results, the update loop
over i in the parallel region should be enclosed by a critical region.

integer ind (1:numt)
....
allocate (material(1:numt), istat)
do i = 1, numt

material(i) = 0.
material(i)%x = val1

end do
...

!$OMP PARALLEL DO DEFAULT(PRIVATE) SHARED(material,plq,ind, numt)
do n = 1, numt

mid = ind(i)
qm = material(mid)%x * plq(n)
do i = 1, 4

material(mid)%x = material(mid)%x + qm * px(i)
end do

end do
!$OMP END PARALLEL DO

Figure 7.4: Data race condition due to missing critical region – The value
of the private variable mid could be the same for different threads, causing the shared
variable material(mid)%x to be updated by multiple threads at the same time. In order
to guarantee predictable output, the i-loop in the parallel region must be enclosed by a
critical region.

A subtle distinction exists between Fortran and C/C++ regarding the default
data-sharing rules. In Fortran, loop index variables are private by default. In C,
the index variables of the parallel for-loop are private by default, but this does
not extend to the index variables of loops at a deeper nesting level. An example is
shown in Figure 7.5. Loop variable j is shared by default, resulting in undefined
runtime behavior. It is another example of a data race.

The error is easy to avoid through an explicit private clause for the loop vari-
ables, or by using a local variable instead. For example loop variable k is private
by default if used as follows: for (int k=0; ...).

Our recommendation to be specific on the data-sharing attributes is also language
dependent. Fortran has more need of this approach than does C/C++. The main

Troubleshooting 249

int i, j;
#pragma omp parallel for
for (i=0; i<n; i++)

for (j=0; j<m; j++) {
a[i][j] = compute(i,j);

}

Figure 7.5: Example of a loop variable that is implicitly shared – Loop
variable i is private by default, but this is not the case for j: it is shared by default. This
results in undefined runtime behavior.

reason is that in Fortran, variables cannot be declared locally in a code block, such
as a loop.

7.2.3 Values of Private Variables

One of the most important decisions to be made when developing a shared memory
parallel program is what data should be shared between threads and what should
be local to a thread.

Whenever each thread requires its own “local” copy of a variable in a calculation,
this variable needs to be listed in a private clause.

One can avoid errors that result from not adding variables to the private clause.
The key is to use the default(none) clause, thereby forcing all data sharing at-
tributes to be specified explicitly rather than by relying on defaults. Additionally,
one should keep in mind two points:

• The value of the private copy is uninitialized on entry to the parallel region.

• The value of the original variable is undefined on exit from the parallel region.2

An example of using an uninitialized private variable is given in Figure 7.6. The
programmer uses variable b without realizing that it does not have an initial value
within the parallel loop, despite the fact it has a value prior to the loop. As a
result, the variable is undefined and can take any value. If the intent is to initialize
b with the value it had before the parallel region, then the firstprivate clause
achieves exactly this. Alternatively, it can be made shared, since it is not modified
in the parallel loop. There is also a problem with variables a and b, both of which
are undefined after the parallel loop. The lastprivate clause is a convenient

2This will probably not be true in OpenMP 3.0.

250 Chapter 7

feature to make the last value of a private list item available after the parallel
region terminates, so this problem can easily be avoided as well. As explained in
Section 4.5.3 the interpretation of “last” depends on the construct. There is also a
(modest) performance penalty when using this construct. A correct version of this
code is shown in Figure 7.7.

void main ()
{

.............
#pragma omp parallel for private(i,a,b)
for (i=0; i<n; i++)
{

b++;
a = b+i;

} /*-- End of parallel for --*/
c = a + b;
.............

}

Figure 7.6: Incorrect use of the private clause – This code has two problems.
First, variable b is used but not initialized within the parallel loop. Second, variables a

and b should not be used after the parallel loop. The values after the parallel loop are
undefined and therefore implementation dependent.

7.2.4 Problems with the Master Construct

Whenever a piece of work within a parallel region needs to be performed by only
one thread, either the single or the master construct can be used. For many
tasks involving reading, writing or general control, the master construct is the
natural choice. Unfortunately, the master construct does not have an implied
barrier. Figure 7.8 shows a simple, but erroneous, example of its use. Not only is
there no synchronization, but there is also no guaranteed flushing of any modified
data upon completion of this construct (see also Section 7.3.1). As a result, a
potential problem arises if data is read in, initialized, or updated in this construct
and subsequently used by other threads. For correct results, a barrier must be
inserted before any accesses to the variables modified in the master construct. In
many cases, the simplest solution is to use the single construct, because it implies
a barrier at the end of the construct.

Troubleshooting 251

void main ()
{

.............
#pragma omp parallel for private(i), firstprivate(b) \

lastprivate(a,b)
for (i=0; i<n; i++)
{

b++;
a = b+i;

} /*-- End of parallel for --*/
c = a + b;
.............

}

Figure 7.7: Corrected version using firstprivate and lastprivate vari-
ables – This is the correct version of the code in Figure 7.6.

#include <stdio.h>
#include <stdlib.h>

void main()
{

int Xinit, Xlocal;

#pragma omp parallel shared(Xinit) private(Xlocal)
{

#pragma omp master
{Xinit = 10;}

Xlocal = Xinit; /*-- Xinit might not be available yet --*/

} /*-- End of parallel region --*/
}

Figure 7.8: Incorrect use of the master construct – This code fragment implicitly
assumes that variable Xinit is available to the threads after initialization. This is incorrect.
The master thread might not have executed the assignment when another thread reaches
it, or the variable might not have been flushed to memory.

252 Chapter 7

7.2.5 Assumptions about Work Scheduling

Earlier we saw (for example, in Section 5.4.1) that the nowait clause can help to
increase performance by removing unnecessary barriers at the end of work-sharing
constructs for example. In such a case, however, care must be taken not to rely
on assumptions about which thread executes which loop iterations. An example
of such an incorrect assumption is shown in Figure 7.9. If the loop bound n is
not a multiple of the number of threads, then, according to the OpenMP 2.5 spec-
ifications, there are several compliant algorithms for distributing the remaining
iterations. As of OpenMP 2.5 there is no requirement that the same algorithm has
to be used in different loops. A compiler may choose to employ different strategies
for dealing with remainder iterations in order to take advantage of memory align-
ment. Therefore, the second loop in Fig. 7.9 might read values of array b that have
not yet been written to in the first loop. This action, however, results in a data
race condition.

#pragma omp parallel
{

#pragma omp for schedule(static) nowait
for (i=0; i<n; i++)

b[i] = (a[i] + a[i-1]) / 2.0;
#pragma omp for schedule(static) nowait

for (i=0; i<n; i++)
z[i] = sqrt(b[i]);

}

Figure 7.9: Example of incorrect assumptions about work scheduling in
the OpenMP 2.5 specifications – The nowait clause might potentially introduce a
data race condition, even with static work scheduling, if n is not a multiple of the number
of threads.

7.2.6 Invalid Nesting of Directives

In many programs it may seem natural to further subdivide the work that has
been handed out to the threads in a team. For example, if a number of different
sections have been defined, one or more of them might contain enough work for
multiple threads. Indeed, the computation can be further distributed in this way.
Before doing so, however, the programmer must take care to create a new team of
threads to carry out this work. The way to do so is to introduce a new parallel

Troubleshooting 253

region. A common cause of error is to nest work-sharing directives in a program,
without providing a new parallel region. An example of such incorrect use is given
in Figure 7.10.3

#pragma omp parallel shared(n,a,b)
{

#pragma omp for
for (int i=0; i<n; i++)
{

a[i] = i + 1;
#pragma omp for // WRONG - Needs a new parallel region
for (int j=0; j<n; j++)

b[i][j] = a[i];
}

} /*-- End of parallel region --*/

Figure 7.10: Example of incorrectly nested directives – Nested parallelism is
implemented at the level of parallel regions, not work-sharing constructs, as erroneously
attempted in this code fragment.

#pragma omp parallel shared(n,a,b)
{

#pragma omp for
for (int i=0; i<n; i++)
{

a[i] = i + 1;
#pragma omp parallel for // Okay - This is a parallel region
for (int j=0; j<n; j++)

b[i][j] = a[i];
}

} /*-- End of parallel region --*/

Figure 7.11: Example of correctly nested directives – This is correct use of
nested parallelism. This code fragment has two nested parallel regions.

However, nested work-sharing constructs without nested parallel regions cannot
work. The threads in the current team have already been assigned their portion
of the work by the existing work-sharing directive, and no idle threads are waiting

3Compilers will probably flag this kind of incorrect use and issue a warning.

254 Chapter 7

for more work. The new parallel region must supply the new threads. The correct
code is shown in Figure 7.11.

This kind of error may also inadvertently occur if orphan directives are used.
There are other ways in which invalid nesting of directives can lead to unexpected

program behavior. The following are examples of the erroneous use of directives:

• A barrier is in a work-sharing sharing construct, a critical section, or a
master construct.

• A master construct is within a work-sharing construct.

• An ordered directive is within a critical section.

• The barrier is not executed by all threads in the team.

Another example of an error in the use of a barrier is illustrated in the code
fragment in Figure 7.12. According to the OpenMP 2.5 specifications, one of the
restrictions on the barrier is as follows: “Each barrier region must be encountered
by all threads in a team, or none at all” (Section 2.7.3 in [2]). This rule is violated
in the code fragment shown here.

#pragma omp parallel // Incorrect use of the barrier
{

if (omp_get_thread_num() == 0)
{

.....
#pragma omp barrier

}
else
{

.....
#pragma omp barrier

}
} /*-- End of parallel region --*/

Figure 7.12: Illegal use of the barrier – The barrier is not encountered by all
threads in the team, and therefore this is an illegal OpenMP program. The runtime
behavior is undefined.

The example in Figure 7.12 could have an interesting side effect. The pragma
translates to a function call that implements the barrier functionality. An optimiz-

Troubleshooting 255

ing compiler might potentially detect that in this case the barrier function can be
called unconditionally, effectively executing the following code fragment.

if (omp_get_thread_num() == 0)

{ }

else

{ }

#pragma omp barrier

This use of the barrier no longer violates the specifications. The question is, of
course, whether a compiler is able to perform this transformation. This would
require it to be able to analyze and transform parallel code, an area of active
research.

Another illegal use of a barrier in a work-sharing construct is demonstrated in
the example in Figure 7.22 in Section 7.3.5 on page 269. This is erroneous because
all threads in the team must encounter the barrier.

7.2.7 Subtle Errors in the Use of Directives

Errors in the directives can have subtle undesired effects. Section 3.1 describes
the OpenMP directive syntax and cautions that not all errors in the directives are
detected at compile time. In the example in Figure 7.13, the continuation line with
the private declaration of variables i and cl contains an extra exclamation mark.
As a result, the compiler no longer recognizes this as an OpenMP directives, and
the private clause is ignored. Following the default data-sharing rules in OpenMP,
loop variable i is private. This is exactly what was intended, but by virtue of these
rules variable cl is shared, thereby introducing a data race. This error is caught
by the compiler if the default(none) clause is used.

In C, curly brackets are used to define a parallel region that spans more than a
single statement. If these brackets are not placed correctly or are left out entirely,
unexpected runtime behavior may occur, ranging from a reduced speedup to an
incorrect result. The code fragment in Figure 7.14 illustrates such a situation. In
the first parallel region, both functions work1 and work2 are executed in parallel,
but in the second parallel region, only function work1 is.

7.2.8 Hidden Side Effects, or the Need for Thread Safety

Using libraries can potentially introduce side effects if they are not thread-safe. The
terminology thread-safe refers to the situation that, in a multithreaded program, the

256 Chapter 7

subroutine dot(n, a, b, c)
implicit none

integer(kind=4):: n
real (kind=8):: a(1:n), b(1:n), c, cl
integer :: i

!$OMP PARALLEL SHARED(n,a,b,c)
!!$OMP& PRIVATE(i,cl)
!$OMP DO

do i = 1, n
cl = cl + b(i)*a(i)

end do
!$OMP END DO
!$OMP CRITICAL

c = c + cl
!$OMP END CRITICAL
!$OMP END PARALLEL

return
end

Figure 7.13: Example of an error in the OpenMP directive – The continuation
contains an extra exclamation mark. As a result the compiler ignores the private clause.
Loop variable i is private by default, as intended, but variable cl is shared. This introduces
a data race. If the default(none) clause is used, the compiler catches this kind of error.

main()
{
#pragma omp parallel

{
work1(); /*-- Executed in parallel --*/
work2(); /*-- Executed in parallel --*/

}

#pragma omp parallel
work1(); /*-- Executed in parallel --*/
work2(); /*-- Executed sequentially --*/

}

Figure 7.14: Example of the impact of curly brackets on parallel execution
– It is very likely an error was made in the definition of the second parallel region: function
work2 is executed by the master thread only.

Troubleshooting 257

same functions and the same resources may be accessed concurrently by multiple
flows of control. The use of global data is not thread-safe. For example, library
routines for multithreaded programs that make use of global data must be written
such that shared data is protected from concurrent writes.

The code in Figure 7.15 shows a global variable being incremented every time
a library routine is executed. If the library is called from within a parallel region,
multiple threads may try to access variable icount concurrently. Because the
increment ++ is not an atomic operation, it can be interrupted before completion.
This constitutes a data race condition and might yield indeterministic results, as
discussed in Section 7.2.1. In order to make the routine thread-safe, access to
variable icount has to be protected by a lock, an atomic construct or a critical
section.

int icount;

void lib_func()
{

icount++;
do_lib_work();

}

main ()
{

#pragma omp parallel
{

lib_func();
} /*-- End of parallel region -- */

}

Figure 7.15: Example of a function call that is not thread-safe – The library
keeps track of how often its routines are called by incrementing a global counter. If
executed by multiple threads within a parallel region, all threads read and modify the
shared counter variable, leading to a race condition.

Library routines written in Fortran should be built such that all local data is
allocated on the stack for thread-safety. This could be a problem in cases where
the SAVE statement is used. Originally introduced for sequential processing, the
SAVE statement has an unpleasant side effect in a parallel context.

258 Chapter 7

According to Section 2.8.1.2 in the OpenMP 2.5 specifications [2], a local variable
that is used in a SAVE statement changes from private to shared. If multiple threads
update such a variable, the risk of a data race arises.

An example of this kind of use can be found in the linear algebra library package
LAPACK [13].4 A number of its auxiliary library routines contain SAVE statements
on some or all of the variables. An example is routine dlamch, which is called to
determine double precision machine parameters. A number of variables are listed in
a SAVE statement, for example to indicate the first usage of the routine to perform
certain initializations. A code snippet is provided in Figure 7.16.

DOUBLE PRECISION FUNCTION DLAMCH(CMACH)
* .. Local Scalars ..
LOGICAL FIRST
* .. Save statements ..
SAVE FIRST
* .. Data statements ..
DATA FIRST / .TRUE. /
* ..
...
IF(FIRST) THEN

FIRST = .FALSE.
CALL DLAMC2(BETA, IT, LRND, EPS, IMIN, RMIN, IMAX, RMAX)
...

ENDIF

Figure 7.16: Example of a Fortran library call that is not thread-safe –
The library routine performs certain initializations the first time it is called. When it
is called from within a parallel region, access to variable FIRST has to be protected to
avoid data race conditions.

One possibility to make such a routine thread-safe is to serialize access to the
shared data. Most vendors provide thread-safe implementations of important li-
braries, such as LAPACK. It is good practice, however, to check the documentation
when in doubt.

Another source of hidden side effects is shared class objects and methods in C++.
When class objects with methods defined on them are used as shared variables
within OpenMP parallel regions, race conditions can result. An example is shown
in Figure 7.17. In order to make the code thread-safe, the invocation of the method

4The Fortran source code can be downloaded at [14].

Troubleshooting 259

should be enclosed in a critical region, or the update of the shared variable within
the method should be enclosed by a critical region.

class anInt {
public:

int x;
anInt(int i = 0){ x = i; };
void addInt (int y){ x = x + y; }

};
main()
{

anInt a(10);
#pragma omp parallel
{

a.addInt(5);
}

}

Figure 7.17: Example of unsafe use of a shared C++ object – When exe-
cuted on 2 threads, the expected result is 20. However, data race conditions may yield
indeterministic results.

7.3 Deeper Trouble: More Subtle Problems

Classifying bugs is risky, but the ones discussed next are probably harder to find
than those presented so far. The reason is that their occurrence depends on a
combination of factors. The bug manifests itself only if a set of conditions is met.

7.3.1 Memory Consistency Problems

Various memory models have been proposed for shared-memory parallel program-
ming. What they regulate is, from the viewpoint of the programmer, the point
at which new values of shared data (are guaranteed to) become available to those
threads that did not perform the update. They therefore dictate when the updat-
ing thread must write its new values back to memory or otherwise invalidate other
copies of data, and enable their update. The reason for the potential difference is
clear: data may initially be in the local memory only (registers or cache). They
should also regulate the order in which updates should be performed, if there is one.
One possible model is called sequential consistency . This is based on our intuitive

260 Chapter 7

notion of what happens on a uniprocessor system and requires that the values of
shared data be available just as they would be in some sequential execution of the
code. Lamport [105] has defined this as follows:

”A multiprocessor system is sequentially consistent if the result of any execution is
the same as if the operations of all the processsors were executed in some sequential
order, and the operations of each individual processor appear in this sequence in
the order specified by its program.”

A sequentially consistent model of memory requires that values of shared data
be uniformly consistent among the executing threads. In other words, if one thread
creates a new value and this value is immediately used in a subsequent statement,
then the thread that executes this second statement must make use of the new
value. This is good news for the programmer, who does not need to worry about
coordinating access to data, but it is bad news for the performance of the resulting
program. It would require a memory update after each operation that modifies a
shared variable and, potentially, before each use of a shared variable. This might
well negate the performance benefit offered by shared-memory machines. Because
it is hard to write efficient programs in this way, OpenMP does not provide a
sequentially consistent memory model.

Many other shared-memory consistency models have been proposed. The choices
are collectively known as relaxed consistency models. The good point about such
models is that they make it easier for the system to provide high performance;
the bad point is that they make programming harder. The programmer has to
consider when data will be available and, if this is not sufficient for the purposes of
a code, explicitly introduce language features to enforce availability of data, such
as synchronizing the actions of two or more threads. The more flexible the memory
model, the more freedom given to the compiler to reorder operations, but the more
effort potentially required from the programmer.

OpenMP has attempted to balance the ease of programming with the need to
provide adequate levels of performance. It defines points in the program at which
data in shared memory must be made current and at which each thread must make
its modifications available to all other threads. The threads do not need to update
data in any specific order. And, as long as there are no data race conditions, there
should be no impact on the resulting values. Issues of consistency most commonly
arise in OpenMP is when a barrier is executed. It does not matter whether this
was explicitly programmed or implied by another construct.

One can explicitly require that memory be made consistent by inserting a flush
directive (see also Section 4.9.2 on page 114) into the code. If this style of program-
ming is employed, however, the programmer must determine the points at which

Troubleshooting 261

memory needs to be made consistent and then insert any necessary operations to
enforce such consistency. These points are ordered with respect to one another in
the code—with the exception of flush operations that have disjoint sets of variables
to be flushed. Many consider the explicit flush directive in OpenMP to be too low
level, and we recommend either avoiding explicit use of flush or exercising great
care when using it. Indeed, the goal for OpenMP is to take care of such situations
behind the scenes, for example with the implied flush on a barrier.

On very large machines, new values of shared data might be transferred to other
threads through messages. Potentially, one message might be transmitted faster
than another one (perhaps because it is very small), and the messages may arrive
out of order. Even in such cases, the original order of memory updates must be
preserved if there is any overlap in the memory locations being modified.

Note that the OpenMP model is distinct from any hardware realization of con-
sistency. Different machines have different ways of enforcing memory consistency:
they may write blocks of data back to main memory and require a replacement
of that block in any other caches that store it, or they may transfer data between
different caches directly. Such differences need not bother the programmer. How-
ever, the cost of this operation may well be of interest: the more expensive it is
on a given machine, the more one will want to avoid having too many points in
the program requiring consistency, and the higher the pay-off for privatizing data.
Thus OpenMP provides the portability and the ability to reason about correctness
without the need to know how an architecture implements consistency, but it does
not necessarily provide full performance portability (although the vendors make ev-
ery attempt to do so). For those who wish to pursue this topic further, an excellent
discussion of memory consistency models for shared-memory machines is given in
[6].

So where is the problem? The memory consistency model adopted by OpenMP
implies that each thread has its own temporary view of the values of shared data
between explicit or implicit barrier synchronization points. If shared variables are
accessed between these points, care has to be taken to keep the temporary memory
view of the threads consistent. Making false assumptions about the behavior of
OpenMP programs in this respect is another potential source of error.

A common misconception is that cache coherence is sufficient to avoid data races.
The aspect overlooked is the memory consistency model. Cache coherence is a
protocol to ensure cache lines are correctly updated, but it does not specify when
and in what order the results are written back to memory. That is the responsibility
of the memory consistency model. If a relaxed model is used, for example, there
is no guarantee that the write operation of a thread has finished before another

262 Chapter 7

thread performs a read operation on the same address in memory. As a result, the
value of the variable stored at that address gets corrupted, leading to a data race.

7.3.2 Erroneous Assumptions about Memory Consistency

We illustrate the kind of problem that may arise if a programmer is not aware of the
memory consistency model adopted by OpenMP. In the example the programmer
has chosen to use shared variables to implement point-to-point thread synchroniza-
tion. Such a case is discussed in Section 4.9.2. The source in Figure 7.18 is the
naive, and incorrect, version. The correct code fragment is shown in Figure 4.93
on page 117.

Implementing the communication as shown most likely yields unexpected behav-
ior during execution. This program is intended to work as follows: each thread,
except the master, requires data from the thread with a thread id (stored in variable
iam) that is one less than its own. We call this the “predecessor” thread. Similarly,
we use the notion of a “successor” thread to indicate the thread that will use the
new data the current thread produces. The issue is that threads need some way
to determine whether the data from the predecessor thread is available. They also
need to be able to signal their successor thread that updated data is available.

The programmer has arranged for threads to use the values of array isync to al-
low threads to synchronize with their “neighbors” to accomplish this. Array element
isync(iam) contains the status of the thread with identifier iam, isync(iam-1)
thus contains the status of its predecessor. The check of the values of isync is
carried out in a while-loop.

The problem with this strategy is that the values are most likely read from
registers. An optimizing compiler tries hard to optimize the use of registers and
minimize the number of load and store instructions. Cache coherence triggers on a
store instruction. As a result, if a value is changed in a register but is not stored
back, the modification is not propagated up the memory chain.

In this case changes in array isync are not necessarily seen by all threads. Unfor-
tunately, the changes in this array are used to notify the other threads of a change
in the situation. Therefore, they keep waiting indefinitely, causing the program to
hang.5

To ensure that values are written back to shared memory and the updated val-
ues are used in a subsequent read, flush directives need to be inserted in the
while-loops, as well as after the write to an element of array isync.

5This is a special case of a deadlock and is referred to as livelock.

Troubleshooting 263

!$OMP PARALLEL PRIVATE(K, IAM, NT)
C
C Initialize a synchronization array isync
C

iam = OMP_GET_THREAD_NUM()
nt = OMP_GET_NUM_THREADS()
isync(iam) = 0

C
C Wait for predecessor thread to finish
C
!$OMP BARRIER

do k = 2,nz
if (iam .gt. 0) then

do while(isync(iam-1) .eq. 0)
end do
isync(iam-1) = 0

end if
C
!$OMP DO SCHEDULE(STATIC)

do j = 2, ny
do i = 2, nx

v(i,j,k) = v(i,j,k) + v(i-1,j,k)
+ v(i,j-1,k) + v(i,j,k-1)

...
end do

end do
!$OMP END DO NOWAIT
C
C Signal the availability of data to the successor thread
C

if (iam .lt. nt) then
do while (isync(iam) .eq. 1)
end do
isync (iam) = 1

end if
end do

Figure 7.18: Point-to-point thread communication implemented using
shared variables – This code contains several memory consistency problems. The
correct code fragment is shown in Figure 4.93 on page 117.

264 Chapter 7

Doing so is not sufficient, however. Array v is modified. Values are obtained from
a predecessor thread and passed to a successor thread. To guarantee that the correct
values (just updated by the predecessor) are read before the next computation
starts, and to make newly updated values available to the successor thread, one
should flush array v before and after the update.

We note that the LU code of the NAS Parallel Benchmark Version 3.2 (and
prior versions) does not contain an explicit flush of array v, but only of array
isync. Nevertheless, the code has executed correctly on most hardware platforms
for many years. The reason is most likely that the compiler ignores the explicit list
in the flush, thereby forcing all shared variables to be synchronized in memory.
In the example, array v is also synchronized, and the bug in the program is not
exposed.

7.3.3 Incorrect Use of Flush

The flush directive is provided to enable the programmer to ensure that values
of certain (or all) shared data are available between synchronization points if that
is required by the algorithm. Unfortunately, incorrect assumptions about the use
of this directive may result in another kind of programming error. Here is why
(we discuss this again briefly in Chapter 8). First, the compiler is at liberty to
reorder the instructions in a program, as long as this does not lead to an incorrect
program. In the case of flush operations, this means the compiler is permitted to
move a flush operation relative to code that does not affect the variable(s) being
flushed: “Implementations must not reorder the code for a memory operation for
a given variable, or the code for a flush operation for the variable, with respect to
a flush operation that refers to the same variable.” (Section 1.4.2 in [2]).

To see the impact, consider the program fragment in Figure 7.19. The code shown
implements the following idea. Thread 0 initializes some data, represented by the
assignment to newdata. Variable signal is used to notify the other thread(s)
the data has been modified. The change in signal is monitored by the other
thread(s). Once this variable has been modified, the thread reads the updated value
of newdata and uses it for some local computations, symbolized by the assignment
to localdata. This type of communication resembles the example discussed in
Section 7.3.2.

Here, however, the programmer has added flush directives to ensure that the
changes in variables newdata and signal are made visible to the other thread(s).

The problem is that nothing prevents the compiler from moving the flush oper-
ations with respect to each other. In particular, the compiler may move the two

Troubleshooting 265

signal = 0
!$omp parallel default(none) shared(signal,newdata) &
!$omp private(TID,localdata)

TID = omp_get_thread_num()
if (TID == 0) then

newdata = 10
!$omp flush(newdata)

signal = 1
!$omp flush(signal)

else
!$omp flush(signal)

do while (signal == 0)
!$omp flush(signal)

end do
!$omp flush(newdata)

localdata = newdata
end if

!$omp end parallel

Figure 7.19: Wrong use of the flush directive to synchronize access to
shared data – Wrong assumptions about the reordering the compiler is permitted to
perform lead a programmer to incorrectly assume that all threads but 0 do not access
variable newdata until after it has been updated by thread 0.

statements that update and flush signal in thread 0’s code so that they are exe-
cuted before the update and flush of newdata. If that happens, the other thread
may pick up the change in signal before newdata has been modified.

The situation is remedied in Figure 7.20, where signal has been added to the list
of items in the first flush directive for the code executed by thread 0. The addition
ensures that this flush operation may not be moved relative to the surrounding
code for this thread, thereby preventing the compiler from changing signal before
newdata has been modified. Variable signal now indeed acts as a flag that the
update has occurred.

Whether the compiler is allowed to move instructions past a flush has been a
matter of some debate. Not only did some implementations previously not do so:
even the examples in earlier releases of the OpenMP specification assumed that
this did not occur. The OpenMP 2.5 specification clarifies this matter. As a result,
compilers may move operations that do not affect the flushed variables relative to
the flush operations.

266 Chapter 7

signal = 0
!$omp parallel default(none) shared(signal,newdata) &
!$omp private(TID,localdata)

TID = omp_get_thread_num()
if (TID == 0) then

newdata = 10
!$omp flush(newdata,signal)

signal = 1
!$omp flush(signal)

else
!$omp flush(signal)

do while (signal == 0)
!$omp flush(signal)

end do
!$omp flush(newdata)

localdata = newdata
end if

!$omp end parallel

Figure 7.20: Correct use of the flush directive to synchronize access to
shared data – The only change is the addition of variable signal to the first flush

directive, preventing the compiler from interchanging the order of the two assignments in
thread 0. Now it is guaranteed that newdata is modified before signal changes value.

7.3.4 A Well-Masked Data Race

The example discussed next is derived from a real application. The program spo-
radically crashed. The error turned out to be a data race, but a very subtle one. It
is similar to the example given in Figure 7.16, but it turns out to have an additional
problem. The code is listed in Figure 7.21.

This program uses a classical Fortran method to minimize the amount of work
performed. Apparently, variable a needs to be initialized only once. This is imple-
mented in lines 16–19. An initial value of .true. is given to variable first. The
first time the if-statement on line 16 is encountered, the condition is true, and
statements 17–18 are executed. Variable a is initialized to 10 on line 17. By setting
first to .false. and by preserving this value through the SAVE attribute (line
13), the next time this code block is encountered it will be skipped.

This subroutine is executed in parallel (lines 3–5), thereby introducing two bugs.
It might happen that the compiler interchanges the assignments to a (line 17) and

Troubleshooting 267

1 program main
2
3 !$OMP PARALLEL DEFAULT(NONE) PRIVATE(...)
4 call mysubroutine()
5 !$OMP END PARALLEL
6
7 stop
8 end
9 subroutine mysubroutine()
10 implicit none
11 real, save :: a
12 real :: a_inv
13 logical, save:: first
14 data first /.true./
15
16 if (first) then
17 a = 10.0
18 first = .false.
19 end if
20 a_inv = 1.0/a
21
22 return
23 end

Figure 7.21: A very subtle data race – If the compiler interchanges the assignments
to variables a and first and the thread executing the if-statement first is context switched
out before a is initialized, the other thread(s) use an undefined value for a in the division.
This example is not far fetched: it is derived from a real application.

first (line 18). If so, the following scenario may occur. The thread that encounters
the if-statement first changes first to .false.; but before the assignment a =

10.0 is executed, it is context switched out by the operating system. Another
thread that encounters the if-statement shortly afterwards skips it because first

is already set to .false. by the other thread. As a result, it uses an uninitialized
value of a in the division on line 20. If the system pre-initializes variables to zero,
a division by zero results, causing the second thread to crash. A second bug is the
implied assumption that both variables a and first are immediately visible after
a thread has changed their value. As discussed in Section 7.3.2, this is incorrect.

Fortunately, both bugs can be fixed with one change in the source.

268 Chapter 7

!$omp single

if (first) then

a = 10.0

first = .false.

end if

!$omp end single

By enclosing lines 16–19 in a single work-sharing construct, the work is still per-
formed only once, but the implied barrier ensures that no thread uses variable a

before it is initialized, and the implied flush ensures that both a and first are
made visible to the other threads executing the subroutine.

7.3.5 Deadlock Situations

The term deadlock refers to the runtime situation that occurs when a thread is
waiting for a resource that is never going to be available. Various actions can create
a deadlock situation in an OpenMP program. A typical example is to incorrectly
insert a barrier that is not encountered by all threads of the same team. This is
demonstrated in the code fragment in Figure 7.22.

The explicit barrier in function work1 is erroneous, causing the program to dead-
lock if more than one thread is used. In such a case, one thread of the team executes
this barrier. After another thread has executed function work2, it waits in the im-
plied barrier at the end of the parallel sections construct. The other thread
does not arrive at this point, however, because it waits in the explicit barrier. As
a result, no progress is made.

Not surprisingly, erroneous use of the OpenMP locking routines can also lead to
deadlocks. A common error is to forget to release a lock, as demonstrated in the
source fragment in Figure 7.23.

As long as function work1 does not return a nonzero value of variable ierr, all is
well. If it does so, however, lock variable lck is not released. If the thread executing
this code section acquired the lock first, the thread executing the second section
waits forever for the lock to become available. Hence, the program hangs.

Another type of error made relatively frequently is to incorrectly nest locks. The
code fragment in Figure 7.24 shows such an example.

If the thread executing the first section acquires lock variable lck1 first and the
thread executing the second section acquires lck2 before the other thread does so,
a deadlock situation has occurred.

Troubleshooting 269

work1()
{

/*-- Some work performed here --*/

#pragma omp barrier
}

work2()
{

/*-- Some work performed here --*/
}

main()
{
#pragma omp parallel sections

{
#pragma omp section

work1();
#pragma omp section

work2();
}

}

Figure 7.22: Example of a deadlock situation – If executed by two threads, this
program never finishes. The thread executing work1 waits forever in the explicit barrier.
The other thread waits in vain for the other thread to arrive in the implicit barrier at
the end of the parallel sections construct.

The first thread waits for lck2 to become available, but meanwhile the second
thread waits for the first thread to release lck1. As a result, no progress will be
made, and the program hangs.

270 Chapter 7

call OMP_INIT_LOCK(lck)
!$OMP PARALLEL SECTIONS
!$OMP SECTION

call OMP_SET_LOCK(lck)
call work1(ierr)
if (ierr .eq. 0) then

call OMP_UNSET_LOCK(lck)
else

print*,"Error"
endif

!$OMP SECTION
call OMP_SET_LOCK(lck)

call work2()
call OMP_UNSET_LOCK(lck)

!$OMP END PARALLEL SECTIONS

Figure 7.23: Example of a deadlock situation due to an unreleased lock –
If lck is set in the first section and routine work1 returns a nonzero value for ierr, the
lock is not released. The thread executing the second section may then wait forever.

call OMP_INIT_LOCK(lck1)
call OMP_INIT_LOCK(lck2)

!$OMP PARALLEL SECTIONS
!$OMP SECTION

call OMP_SET_LOCK(lck1)
call OMP_SET_LOCK(lck2)

call work1(lck1,lck2)
call OMP_UNSET_LOCK(lck2)

call OMP_UNSET_LOCK(lck1)
!$OMP SECTION

call OMP_SET_LOCK(lck2)
call OMP_SET_LOCK(lck1)

call work2 (lck1,lck2)
call OMP_UNSET_LOCK(lck1)

call OMP_UNSET_LOCK(lck2)
!$OMP END PARALLEL SECTIONS

Figure 7.24: Example of a possible deadlock situation caused by incor-
rectly nested locks – A deadlock arises if lck1 is set by one thread and lck2 by
another.

Troubleshooting 271

7.4 Debugging OpenMP Codes

Even if all the rules on safe programming have been taken into account, an occa-
sional error may still sneak its way into the code. How should one proceed when
an OpenMP code crashes, produces wrong results, or exhibits nondeterministic
behavior? This section presents techniques for debugging OpenMP programs.

We strongly encourage the use of tools (e.g., a debugger or a tool to detect
data races) for debugging. This topic is covered in Section 7.4.3. Before using
these tools, however, one may want to spend some time isolating the nature and
(possibly) location of the bug. Especially if the bug is expected to be hard to find,
tools can help speed troubleshooting. For example, if the error has its roots in a
data race, a standard debugger may not be very helpful because the behavior is not
reproducible.

7.4.1 Verification of the Sequential Version

Parallel execution of the code may expose problems in the sequential code that
have not manifested themselves earlier. Therefore, the first step when debugging a
parallel application should always be the verification of the sequential version.

To this end, the programmer should disable the OpenMP directives. To do so
requires no source code changes, but it does require a recompilation without the
option that enables the recognition of the directives. If care has been taken when
inserting OpenMP runtime functions (through the appropriate use of #ifdef, for
example), this is probably a relatively simple effort.

Next, the programmer should verify the behavior of this version under the fol-
lowing circumstances:

• Run the source code through syntax checking tools such as lint or ftncheck.

• Enable as many compiler diagnostic options as possible.

• Try different compiler optimizations. The bug might already show up for a
specific set of options applied to the sequential version.

• For Fortran, check what happens if all local data is allocated on the stack (in
case this is not the default).

• Run the loops parallelized with OpenMP backwards. If the result is wrong,
the loop(s) cannot be executed in parallel. The reverse is not true. If the
result is okay, it does not automatically mean the loop can be parallelized.

272 Chapter 7

7.4.2 Verification of the Parallel Code

Once the correctness of the sequential version has been established beyond a reason-
able doubt, it is time to move on to investigate the specific effects of the OpenMP
parallelization.

At this point it can be helpful to consider the nature of the runtime behavior.
For example, if the bug is predictable and does not seem to depend on the number
of threads used, a data race is less likely.

It is also good practice to find the lowest compiler optimization level for which
the bug occurs. As explained in Section 7.3.3 for example, a bug in the use of the
flush directive may show up only if the compiler reorders the statements.

The program should be compiled such that all local data is allocated on the stack.
For most compilers this task is done automatically when enabling the OpenMP
directives, but one should check the documentation to be sure.

Several scenarios are now worth exploring:

• Run the OpenMP version of the program on one thread. If the error shows
up then, there is most likely a basic error in the code.

• Selectively enable/disable OpenMP directives to zoom in on the part of the
program where the error originates.

• If a data race is suspected:

– Use as many threads as possible. The higher the number of threads, the
more likely the data race is to show up.

– DATA and SAVE statements in Fortran programs and the use of static
and external variables in C/C++ might cause data to be shared unin-
tentionally.

• Check that the libraries used are thread-safe in case one or more of their
functions are called within a parallel region.

7.4.3 How Can Tools Help?

Some compilers support a static analysis of the OpenMP program. This goes
beyond syntax checks, which all compilers report on. At compile time, an attempt
is made to detect possible runtime errors, for example, a shared variable being
updated simultaneously by multiple threads.

Troubleshooting 273

Such an analysis may not be sufficient, though. While the code may have no
semantic errors, the program may still fail to deliver the correct results. In this
case the use of a dynamic tool is the logical next step.

Some compilers and OpenMP libraries also support runtime checking for erro-
neous usages of OpenMP directives. This feature can be very helpful for detecting
errors caused by the incorrect use of an orphan directive, such as a barrier within a
work-sharing construct. This might not be detectable by a compiler’s static analysis
since it requires insight into the program’s runtime behavior.

For example, the Sun Studio C and Fortran compilers [129] support an option
to statically detect errors in an OpenMP program. The OpenMP runtime library
supports the SUNW MP WARN environment variable. If set to TRUE, runtime error
checking in the library is activated. We strongly recommend checking the docu-
mentation of the specific OpenMP compiler one uses for features like this. They
can save a significant amount of time and frustration.

But, even this may not be sufficient to find the cause of the error. Two tools to
consider next are a debugger and a data race detection tool.

Most people are familiar with a debugger. This is a tool that allows the user
to stop a running program more or less at any point in the source and, at that
point, examine and also change variables to do a “what if” kind of analysis. Some
debuggers also support a “watch” function to monitor the change of a specific
memory location.

A number of debuggers also provide support for multithreaded programs. Exam-
ples are the Berkeley UNIXTM symbolic debugger dbx, DDTTM by Allinea [166], the
public domain GNU gdb [151] debugger, Sun Studio [129] from Sun Microsystems,
and TotalViewTM by Etnus [54].

The major additional feature of a parallel debugger is that the typical debugging
functionality is supported at the thread level. A thread can be stopped, its variables
and call stack can be examined, and so forth. In addition, there are commands that
perform a specific action (like setting a breakpoint) for all threads. We now give
some examples of this type of functionality.

Setting breakpoints and stepping through parallel regions – The majority
of OpenMP compilers apply procedure outlining when transforming parallel regions.
This is discussed in more detail in Section 8.3.4. In a nutshell, the compiler pushes
the body of a parallel region into a function.

Outlining offers advantages to the compiler implementation. The downside is
that it may not be possible to step into or out of a parallel region. A standard
method for dealing with this is to let the user set the breakpoint inside the parallel

274 Chapter 7

region. Once the breakpoint is hit, single stepping can proceed, as shown in Figure
7.25. This example is based on the Sun Studio dbx debugger applied to the code
shown in Figure 7.6 when run on 4 threads.

(dbx) stop at 8
dbx: Line "trouble1.c":8 maps to 2 addresses in "trouble1.o"
dbx: Line "trouble1.c":8 maps to 2 addresses in "trouble1.o"
dbx: Line "trouble1.c":8 maps to 2 addresses in "trouble1.o"
dbx: Line "trouble1.c":8 maps to 2 addresses in "trouble1.o"
(dbx) run
5 100 100
Before parallel loop: a = 5, b = 100
t@1 (l@1) stopped in _$d1A7.main at line 8 in file "trouble1.c"

8 for (i=0; i<n; i++)
t@2 (l@2) stopped in _$d1A7.main at line 8 in file "trouble1.c"

8 for (i=0; i<n; i++)
t@3 (l@3) stopped in _$d1A7.main at line 8 in file "trouble1.c"

8 for (i=0; i<n; i++)
t@4 (l@4) stopped in _$d1A7.main at line 8 in file "trouble1.c"

8 for (i=0; i<n; i++)

Figure 7.25: Example of setting a breakpoint within a parallel region –
The code from Figure 7.6 is run on 4 threads using the dbx debugger. A breakpoint is set
at the entry to the parallel region. All four threads stop execution at this point.

When single stepping through a parallel region in an OpenMP program, the
execution sequence may not correspond to the actual source code sequence because
the compiler has transformed the code. This is similar to single stepping through
sequential code optimized by the compiler.

State examination of individual threads – When execution is stopped in a
parallel region, the stack trace usually contains the outlined routine plus several
OpenMP runtime library calls6. The stack trace may look different for master and
worker threads, as shown in Figure 7.26.

Most OpenMP compilers transform private variables to local variables within
the outlined routine(s). Shared variables are typically kept in the master thread’s
original stack frame and their address passed to the outlined routine as parameters.
The stack context of the master thread can thus be used to display the variables
for the worker threads.

6The library function names differ across the various OpenMP implementations.

Troubleshooting 275

(dbx) threads
* t@1 breakpoint in _$d1A7.main()

t@2 slave_startup_function() running in run_my_job()
* t@3 slave_startup_function() breakpoint in _$d1A7.main()
*> t@4 slave_startup_function() breakpoint in _$d1A7.main()
where
current thread: t@4
=>[1] _$d1A7.main() (line ~8) in "trouble1.c"

[2] run_job_invoke_mfunc_once
[3] run_my_job
[4] slave_startup_function

(dbx) thread t@1
t@1 stopped in _$d1A7.main at line 8 in file "trouble1.c"

8 for (i=0; i<n; i++)
(dbx) where
current thread: t@1
=>[1] _$d1A7.main() at 0x108c4 (line ~8) "trouble1.c"

[2] run_job_invoke_mfunc_once
[3] __mt_MasterFunction_rtc_
[4] main() at 0x10884 (line ~7) in "trouble1.c"

Figure 7.26: Call stacks for a worker and master thread – When stopped
at the breakpoint as shown in Figure 7.25, the stack trace for thread 4 contains different
runtime library calls than the stack trace for thread 1, the master thread.

Besides symbolic debuggers, tools are available that help with the detection of
race conditions. Examples of commercially available tools are Assure, developed by
KAI [167], the Sun Studio Thread Analyzer [130], and the IntelTM Thread Checker
[87]. These tools trace memory references during a program execution in order to
detect possible data races. There is definitely a need for this kind of assistance.
Recall that a data race is almost always not reproducible, so that a traditional
debugger will not be of much help in finding them.

These tools have several drawbacks, however. The execution time increases no-
ticeably, the memory requirements go up, and “false positives” may be reported.

A false positive is like a false alarm. On closer inspection (by the user) the data
race is not real. Examples are user-defined synchronizations, where the tool may not
be able to analyze the use of low-level primitives such as compare-and-swap (CAS)
functions. Another reason for a false positive to be generated could be a memory

276 Chapter 7

block that is reused by various threads. There might not be any simultaneous use
of the same memory location, but the tool may not be able to detect this.

These restrictions should not, however, keep one from using this kind of tool on a
regular basis. Data races are easy to create, but hard to find—especially by hand.

7.5 Wrap-Up

Compared to sequential program development, writing a correct OpenMP shared
memory parallel application introduces a new set of important considerations for
the programmer.

Choosing which variables to make private, firstprivate, lastprivate, or shared
presents major difficulties for the novice that can lead to serious problems if done
incorrectly. While there are default rules for scoping these data-sharing attributes,
caution must be observed because it is easy to make a mistake.

Data races must be avoided because they result in silent data corruption, and—
to make matters worse—they may not be easily reproducible. Moreover, while
OpenMP has several constructs to avoid a data race, knowing how to use them is
critical.

Another factor to take into consideration is the memory consistency model. For
performance reasons, OpenMP uses a relaxed consistency model. The downside
of this choice is that the programmer needs to be aware of the place(s) in an
application where a consistent view of memory is required. OpenMP provides well-
chosen defaults, however, and in general there is little or no need to worry about
this. In situations calling for explicit control, the flush directive provides a means
with which the programmer can enforce a consistent view of memory.

Tools for OpenMP are a must. An often-overlooked fact is that compilers may
provide support to help detect errors in an early phase of program development.
Their static (compile time) as well as dynamic runtime support can greatly help
in finding and fixing bugs. But sometimes, more extensive help is needed. Several
parallel debuggers with support for OpenMP are available. Such tools can be very
useful and save a lot of time in finding bugs. However, debuggers are not capable of
finding data races. A tool to detect these should be part of the standard software
development toolkit of any OpenMP programmer.

8 Under the Hood: How OpenMP Really Works

The way OpenMP is implemented has a nontrivial influence on program perfor-
mance. Here we give a brief overview of the translation process, and describe
some of the ways in which its actions may have an impact on the behavior of an
application.

8.1 Introduction

An OpenMP compiler must recognize OpenMP directives and library routines in
a program and translate both them and the source code into an explicitly mul-
tithreaded object program. In such a program, threads are started and assigned
computations; individual threads may be put to sleep at different times during a
program’s execution, or they may busy-wait until they are permitted to continue
on their work. The job of the application developer is to specify the paralleliza-
tion strategy; the role of the compiler and its runtime system is to implement that
strategy. The OpenMP specification was designed to make this translation to a mul-
tithreaded program a very reasonable proposition. As a result, many commercial
compilers for Fortran and C/C++ have been extended to handle it.

Since an OpenMP implementation is typically built on top of a conventional com-
piler for Fortran, C, or C++, the programmer must usually specify an OpenMP
option, or flag, on the command line to get it to recognize and translate OpenMP
constructs. Otherwise, OpenMP directives, and any other code that is to be com-
piled by an OpenMP compiler only, will be ignored and sequential object code gen-
erated, as indicated in Figure 8.1. (In Section 3.4 of Chapter 3 we explained how the
programmer can ensure that correct code results from the sequential translation.)
Since there is no standard way to invoke the OpenMP translation, the application
developer should consult a compiler manual for details of the option (or options)
that must be given for this translation to be applied.

Most often, the target of the translation is an object program that invokes the
compiler’s runtime library routines to manage threads and assign work to them.
Some research compilers [157, 29, 134] instead translate OpenMP code to a modified
source code that makes calls to Pthreads or another thread-based library. For
example, the Omni compiler [1] has two versions of its runtime library, one based
on Pthreads and another based on Solaris threads. The Nanos OpenMP compiler’s
NthLib [120] runtime library is based on QuickThreads [99], The output can then be
compiled by a native compiler that does not need to know about OpenMP. Several
research compilers are freely available in addition to the vendor products (see the
cOMPunity website [40] for more information).

278 Chapter 8

Fortran/C/C++
Compiler

OpenMP
Source Code

Sequential
Object Code

Parallel
Object Code

OpenMP Compilation
(OpenMP Options Selected)

Sequential Compilation
(OpenMP Options Not Selected)

Figure 8.1: Sequential or parallel compilation – Depending on the compiler
options chosen, a program may be translated into a single-threaded (sequential) or a
multithreaded executable.

Most aspects of an OpenMP program’s performance can be reasonably well un-
derstood with a little background information on the target platform, some un-
derstanding of the way the memory hierarchy works, and basic knowledge of the
compilation process. However, experience with a given implementation and archi-
tecture will help in fine-tuning a program for a specific machine.

In the following section, we give a brief overview of standard compilation tech-
niques for sequential programming languages such as Fortran and C and then ex-
plain how this process is adjusted to enable the translation of OpenMP constructs.
Since each compiler is different, we can give here only a general idea of how pro-
grams are processed. To illustrate our description, we give examples that show
how the OpenUH compiler [112] carries out some of the major translation steps.
OpenUH is based upon the Open64 compiler infrastructure [5] and uses a runtime
library derived from one developed for another Open64-based compiler [39].

8.2 The Basics of Compilation

Compilers are large, complex software packages that convert legal programs written
in a given computer programming language into the corresponding object code for
a particular target machine. Many compilers are able to handle multiple source
languages and may also generate code for more than one target architecture. Since
this process is complex, it is broken into several phases. During the first phase,
known as the front end, an application program is read in, checked for correctness,
and converted into an intermediate format suitable for further processing. The
format is specific to a given compiler.

During the remainder of the compilation, often simply referred to as the back
end, although in reality it consists of multiple steps, the intermediate code is suc-

Under the Hood: How OpenMP Really Works 279

cessively modified and simplified until it is converted into machine code for the
target platform. Initially, the intermediate code might look a lot like the original
source. Eventually, however, it will most likely contain many simple instructions
that represent operations that can be performed by the machine.

8.2.1 Optimizing the Code

Compilers have a whole range of optimizations that they may attempt to use on a
program in order to reduce the overall amount of work required at run time, reduce
the amount of memory needed, or make better use of the memory hierarchy. For
instance, they may look for opportunities to move operations to positions where
they are less frequently executed, attempt to find variables that have constant
values, and detect and eliminate code that does not contribute to the result of the
program. Recently, compilers have also begun to incorporate techniques to reduce
the power consumed during execution of a program. Most optimizations are “local”;
that is, they rely on the compiler’s knowledge of short instruction sequences, of code
in a loop nest or in a procedure; but some optimizations may involve analyzing and
improving sequences of instructions that span multiple procedures in a program.
The best opportunities for program improvement are typically to be found in loops
and in long sequences of operations that do not contain branches or procedure calls.
In Chapter 5 we showed how loop nests can be optimized (see Section 5.2.3). The
compiler may apply the loop transformations shown to rearrange computations if it
expects that they will improve performance and it can prove such transformations
are safe. Such an approach may work well if the compiler is able to understand
the pattern of accesses to arrays. If it cannot, however, the programmer should
consider applying them manually.

Unfortunately, the optimization process can be hampered if important informa-
tion is missing. For instance, if the compiler does not know what memory location
a pointer will be associated with at run time, then it may not know whether a
variable is modified by an instruction. Such a situation might prevent all manner
of program improvements. For example, the code in Figure 8.2 updates p twice.
However, the second update cannot be removed without more information. If the
compiler is able to determine that procedure somestuff does not change the value
of either a or p, and if it is also able to find out the memory locations to which
q might point, then such an action might be possible. It is generally worthwhile
to use any language features (for instance C’s restrict or a noalias pragma) or
compiler flags that give the compiler more information on how how pointers are
being used.

280 Chapter 8

int main(void)
{

int a, p ;
extern int *q ;
. . .
p = a + 5 ;
somestuff (a, &p) ;
*q = 13 ;
p = a + 5 ; /* can this be eliminated? */
. . .
return 0;

}

Figure 8.2: A difficult program to optimize – This program contains two identical
assignment statements. However, the compiler cannot simply eliminate the second one,
since it does not know whether q may point to a or p. Moreover, the function somestuff

may potentially modify their values.

As part of the optimization process, the compiler may change the order of in-
structions in the code. There are several reasons for this action. The reordering
might help reduce the amount of time spent waiting for data to be fetched from
main memory or higher levels of cache, or it might lead to a more efficient use of
functional units in the hardware. It could also help reduce the number of cycles
wasted when setting up and executing branches in a program. As a result, the
programmer cannot rely on operations being performed in precisely the order they
were specified in a program (see Figure 8.3).

8.2.2 Setting Up Storage for the Program’s Data

As part of its work, the compiler must also allocate space in memory for a program’s
code and data. It usually stores global and persistent data (for example, common
blocks and SAVE variables in Fortran, static or file scope variables in C) in a specific
region of memory. These objects require storage for the duration of the program’s
execution. It is often possible to ensure that they are accessed with great efficiency.

Variables that are dynamically allocated at run time will be stored in a different
area, called the heap. Since these objects may potentially be allocated and deallo-
cated at different times during a run, heap memory can become fragmented. Thus,
some extra support is usually needed to manage it.

Under the Hood: How OpenMP Really Works 281

p = a * b ;
q = x * y ;
r = p + q ; /* the value of q is not yet available */
s = p + a ;
go to next ;
nop

may be reordered thus:

p = a * b ;
q = x * y ;
s = p + a ;
go to next ;
r = p + q ; /* this has been moved to fill the delay slot */

Figure 8.3: Compiler reordering of instructions – The simplified instructions
generated by the compiler may be reordered to improve performance. Here, reordering
reduces the likelihood that the code must wait for the value of q to become available and
fills the delay slot while the branch is being set up with useful work.

Local variables (automatic variables in C, for example) are stored in another
area of memory, using a special structure called the stack. New data is always put
(or pushed) onto the top of a stack; and when data is removed, or “popped,” it
is invariably the most recent data.1 It turns out that the stack is a convenient
place to store information needed to execute an instance of a procedure in the
program. At any given time, the stack will hold data, including local variables, for
each instance of each procedure that has begun and has not yet terminated. The
values of arguments to procedures (or their addresses) and of results are also saved
on the stack. Especially in the case of C, the space needed to hold arguments could
be quite large. When a procedure terminates, its data is simply popped off the top
of the stack.

In Figure 8.4, we see one way in which a compiler might organize data in memory.
In addition to reserving space for the object code, there is a fixed area for static and
global data. Both the stack and the heap require varying amounts of space during
execution. The approach shown provides maximum flexibility because it allows
each of them to grow (and shrink) over time. Many good books on compilers are
available [8, 138, 41], to which the interested reader is referred for further details.

1This is like putting a book on top of or taking the topmost book off a pile of books on a desk.

282 Chapter 8

Object code

Static data

Stack

Heap

Figure 8.4: Organizing data in memory – This is one of several possible strategies
for assigning memory to a program’s objects.

8.3 OpenMP Translation

An OpenMP compiler must recognize, validate, and translate OpenMP directives
according to their semantics in order to obtain the desired multithreaded object
program. Of course, it must also compile the associated Fortran or C/C++ code.
The process of replacing OpenMP constructs by explicitly multithreaded code and
calls to runtime library routines is sometimes known as lowering them. The com-
plexity of lowering is significantly reduced by the use of a compiler-specific runtime
library. The library typically includes routines to start up threads, to help deter-
mine the work that each will perform, to pass this work to them, and to synchronize
their actions. One of the design decisions that must be made by the compiler writer
is to decide what functions to include in the runtime library. Its efficiency is critical
because the object code typically makes many calls to its routines.

The overall structure of the OpenUH compiler is reproduced in Figure 8.5. It
recognizes OpenMP constructs in its front ends as discussed in Section 8.3.1 and
lowers OpenMP in two phases. The first of these is a preparatory phase called
OMP PRELOWER that standardizes its constructs, as described in Sections 8.3.2 and
8.3.3, and performs some semantic checks. The second phase, called LOWER MP,
performs the actual lowering. It carries out all of the other translations described
in this section. OpenUH generates object code for Itanium systems. For other
systems, it generates explicitly multithreaded code, where the parallelism is encap-
sulated in its library routines. Once this output has been translated by a native
compiler, it will run in parallel on other platforms too.

Since each compiler has its own strategy for handling OpenMP, we can only give

Under the Hood: How OpenMP Really Works 283

IPA
(Inter-procedural analyzer)

Native
compilers

Source code with
OpenMP directives

A portable OpenMP
runtime library

Source code with
runtime library calls

Executables

Linking

T
h

e
co

m
p

ile
r

in
fr

as
tr

u
ct

u
re

WHIRL2C & WHIRL2F
(IR-to-source for non-Itanium)

CG
(Code generator for Itanium)

WOPT
(Global scalar optimizer)

Object files

LOWER_MP
(Transformation of OpenMP)

FRONTENDS
(C/C++,Fortran77/90,OpenMP)

OMP_PRELOWER
(Preprocess OpenMP)

LNO
(Loop nest optimizer)

Figure 8.5: Structure of the OpenUH compiler – The compiler recognizes
OpenMP constructs in the front end.

an idea of how it is translated here. Providing a good implementation of some
features can be tricky. The compiler and runtime library writers must be careful to
ensure that they do not introduce any performance problems that were not present
in the original program (for example, this means that the runtime library routines
should not suffer from false sharing as described in Section 5.5.2, or require large
amounts of synchronization). Another challenge is to make sure that the translation
does not unduly interfere with the rest of the compiler’s work. The implementation
strategy may depend in part on the hardware and on the operating system routines
available for manipulating threads.

8.3.1 Front-End Extensions

The first step in processing OpenMP occurs in the front end. A Fortran, C, or
C++ front end is extended to recognize OpenMP constructs and represent them
in the compiler’s intermediate code. For this to work, the compiler must be able
to figure out the start and end of the region of code that an OpenMP construct
(such as a parallel region or work-sharing directive) applies to. The OpenMP syntax
makes it quite easy to do so. The front end will most likely also look for a variety of
syntactic errors in the use of OpenMP, such as incorrect nesting of constructs, illegal

284 Chapter 8

constructs or directives (with the proper sentinel), or attempts to use a directive in
a context where it is not permitted. For example, it should detect the improper use
of a for directive with a loop nest that does not conform to OpenMP restrictions
(see Section 4.4.1), and it may detect a barrier that has been incorrectly inserted
into a critical region.

Some compilers will output warnings and OpenMP-specific error messages if con-
structs are used inappropriately or if it thinks there may be a problem. For example,
the OpenUH compiler generated warnings for the code in Figure 8.6, where the de-
veloper had wrongly assumed that the iteration variables for loops inside a parallel
loop were private by default. This is not the case for C or C++ programs. The code
was easily fixed, as shown in Figure 8.7. This compiler also outputs messages if, for
example, it detects reductions that have not been declared via the corresponding
clause by the programmer.

#pragma omp for private(ii,jj,kk,if,kf,nf)
for (m = 0; m < m_blk(myproc); m++)

for (k = 0; k < nk(m); k++) // k is shared by default
for (j = 0; j < nj(m); j++) // j is shared by default

for (i = 0; i < ni(m); i++) // i is shared by default
{
res_xi[i,j,k,m] = 0.0
...........
}

Figure 8.6: Error in data sharing attributes – The programmer has assumed
that the inner loop variables are private by default. Since this is a common error, the
compiler emitted a warning that made the programmer aware of the default attribute.

8.3.2 Normalization of OpenMP Constructs

Compilers will usually put some program constructs into a standard format and
eliminate others altogether by converting them into a different, but equivalent, con-
struct. The purpose of this normalization is to simplify subsequent work. OpenMP
work-sharing constructs are typically put into a standard form in this way. In par-
ticular, parallel sections are often converted into parallel for or do loops where
each section corresponds to one loop iteration. The loop’s schedule will be set up
so that each thread executes a single iteration at a time, either statically or dy-
namically; the latter is beneficial if there are more sections than threads and they

Under the Hood: How OpenMP Really Works 285

#pragma omp for private(i, j, k, ii,jj,kk,if,kf,nf)
for (m = 0; m < m_blk(myproc); m++)

for (k = 0; k < nk(m); k++) // k is now private
for (j = 0; j < nj(m); j++) // j is now private

for (i = 0; i < ni(m); i++) // i is now private
{
res_xi[i,j,k,m] = 0.0
...........
}

Figure 8.7: Data-sharing attributes fixed – The programmer has corrected the
error in the above loop by declaring i, j, and k to be private. As explained in Chapter
3, it is safer to explicitly declare these attributes for all variables.

may take different amounts of time to complete. A single work-sharing directive
might even be turned into a loop with just one iteration and a dynamic schedule.
Directives that combine the creation of a parallel region and a work-sharing con-
struct (such as parallel for) might be split into the two constructs at this stage,
possibly in a specialized way to avoid multiple barriers.

#pragma omp sections
{

#pragma omp section
section1();
#pragma omp section
section2();
#pragma omp section
section3();

}

Figure 8.8: Program with a parallel sections construct – This might be
converted into a parallel loop by the compiler to simplify its work.

The sections construct shown in Figure 8.8 is translated by the OpenUH com-
piler into a parallel loop with one iteration per section of the original code. In order
to accomplish this, a switch has been inserted that branches to the code for a given
section. The loop’s iterations will be shared among the threads in chunks of one
iteration. This means that each thread will be given one of the original sections to
compute until there are no more remaining sections.

286 Chapter 8

#pragma omp for
for(omp_section0 =0; omp_section0 <= 2; omp_section0 ++)
{
switch(omp_section0) {

case 0 : section1(); break;
case 1 : section2(); break;
case 2 : section3(); break;
}

}

Figure 8.9: Normalized sections construct – The sections construct of Fig. 8.8
has been converted into a parallel loop by the compiler for more convenient handling.

8.3.3 Translating Array Statements

Fortran 90 array statements are converted into equivalent Fortran loops before they
are further compiled. Hence, any workshare constructs associated with them must
be turned into work-sharing directives for those loops. In Figure 8.10, we show the
conversion of a workshare construct that relies on the default schedule for parallel
loops to assign work to threads. This must be done in a coordinated manner if
the loop nests are to perform well. If the Fortran 90 version of a code does not
provide the expected level of performance, the compiler may have been unable to
do so efficiently. Unfortunately, this situation may require the user to rewrite some
array statements as loops.

8.3.4 Translating Parallel Regions

At the start of a parallel region, threads must be created (or made available) and
computation assigned to them. Most compilers arrange for threads to be created
when the first parallel region is encountered, by inserting appropriate calls to the
compiler’s runtime library into the code; then they put all but the master thread
to sleep when the parallel region ends. When a new parallel region is begun, the
remaining threads are woken up, a process that is much faster than creating new
threads.

Routines for starting up threads typically also pass their work to them in the form
of a procedure. In order to support this, the compiler must turn the code lexically
contained in a parallel region into a new procedure. It will then convert the parallel
directive into a call to the appropriate runtime library routine and pass the new
procedure as an argument. (If one uses an OpenMP-aware debugger, one might see

Under the Hood: How OpenMP Really Works 287

real a(n,n), b(n,n), c(n,n), d(n,n)
...
!$omp parallel
!$omp workshare

a = b
c = d

!$omp end workshare
!$omp end parallel

is converted, prior to any further translation, to

real a(n,n), b(n,n), c(n,n), d(n,n)
...
!$omp parallel
!$omp do

do j = 1, n, 1
do i = 1, n, 1

a(i,j) = b(i,j)
end do

end do

$omp do
do j = 1, n, 1

do i = 1, n, 1
c(i,j) = d(i,j)

end do
end do

!$omp end parallel

Figure 8.10: Compiler conversion of OpenMP workshare directive to paral-
lel loop directives – This conversion is needed because array statements are converted
to loop nests at an early stage of compilation.

this routine in its output. It might be identified by the procedure that contained it
in the original program, and possibly a line number.) This process has come to be
known as outlining, in an analogy to the inverse strategy named inlining, where a
procedure call is replaced by the body of that call. The compiler will implement a
barrier, usually by inserting an appropriate function in the runtime library, at the
end of a parallel region.

Some work is needed to ensure that outlined procedures are able to access the

288 Chapter 8

data they need. Shared data that is local to the procedure containing the parallel
construct has to be passed as an argument to the outlined procedure. All threads
must be given the address of any such object, so that they may access the original
data and not local copies. References to the shared data in the outlined code may
need to be modified to take into account the fact that it is the address that has
been passed in. Private data is easily translated, as such objects simply become
local variables of the outlined routine.

int main(void)
{

int a,b,c;
#pragma omp parallel private(c)

do_something(a,b,c);
return 0;

}

Figure 8.11: Program with a parallel region – This program contains a parallel
region that performs some work encapsulated within a procedure.

We illustrate the creation of parallel regions by showing the strategy implemented
in the freely available Omni compiler [1]. The code fragment in Figure 8.11 shows a
program with a parallel region containing the procedure do something. Variables
a and b are shared between the threads that execute the parallel region, whereas c
is private.

The translated program is displayed in Figure 8.12. The outlined routine that
will be executed by each thread in the team comes first. The compiler has given
it the name ompc func 0. It has an argument that is used to pass the addresses
of the shared variables a and b to the procedure. As we have already stated, each
thread must be able to directly access the shared objects so we cannot simply copy
them in. Their addresses are unpacked and assigned to two pointers that enable
access to b and a, respectively. Then, the function do something is invoked. Its
argument list has been modified to ensure that it accesses the shared variables a

and b via their addresses. Since c is private, each thread will have its own local
copy. Hence, we do not need to pass in an address in this case.

The second part of the code is the modified main program. It first retrieves the
addresses of the shared data to construct the argument for the outlined routine. It
is then ready to begin parallel execution. In order to accomplish this, the compiler
has inserted a call to the runtime library routine ompc do parallel. This routine
will start up the default number of threads to execute the parallel code. It has two

Under the Hood: How OpenMP Really Works 289

arguments: the outlined procedure and its argument. These are used to hand off
the required computation to each thread. Note that the initial thread will also be
given the outlined function to execute.

/* Outlined function has an extra argument for passing addresses*/
static void __ompc_func_0(void **__ompc_args){

int *_pp_b, *_pp_a, _p_c;

/* need to dereference addresses to get shared variables a and b*/
_pp_b=(int *)(*__ompc_args);
_pp_a=(int *)(*(__ompc_args+1));

/*substitute accesses for all variables*/
do_something (*_pp_a,*_pp_b,_p_c);
}

int _ompc_main(void){
int a,b,c;
void *__ompc_argv[2];

/*wrap addresses of shared variables*/
*(__ompc_argv)=(void *)(&b);
*(__ompc_argv+1)=(void *)(&a);

/*OpenMP runtime call must pass the addresses of shared variables*/
_ompc_do_parallel(__ompc_func_0, __ompc_argv);
. . .
}

Figure 8.12: A parallel region is outlined – A function has been created to
encapsulate the work of the parallel region. It will be passed to all the threads in the
team for execution. Threads are created to execute the parallel region by a call to a
runtime library routine that also passes the threads their work.

This approach incurs a few overheads that are not present in the corresponding
sequential program: they include the cost of setting up the new procedure, and
of passing local variables to it. It may be slightly more expensive to access the
shared objects. Moreover, some optimizations may suffer as a result of the need
to pass addresses rather than values. An alternative strategy [173, 39] has been
developed that uses a special technique that essentially allows a block of code to be

290 Chapter 8

passed to the threads for execution rather than outlining the parallel region. The
benefit of this approach is that the local shared data can be directly accessed and
the associated overheads are at least partly avoided.

If nested parallelism is disabled or not provided by the implementation, then a
parallel region may be serialized. This might also occur if the application developer
has used an if clause along with the parallel directive, and the clause evaluates
to false at run time. If the compiler cannot determine whether a parallel region will
be executed by more than one thread, or if both single-threaded and multithreaded
execution may occur, then it might generate two different code versions to enable
each case to be translated as efficiently as possible. If nested parallelism is not
enabled, the compiler must also insert code to test whether the executable is already
within a parallel region. If it is, both the parallel region construct and any work-
sharing directives it contains will be ignored.

#pragma omp parallel
printf("Hello,world!\n");

Figure 8.13: Implementing potential serial execution – If this parallel region
may sometimes be inactive, the compiler must ensure that both parallel and sequential
execution is possible.

We illustrate this situation by showing how the parallel region in Figure 8.13 may
be handled if serial execution is possible. Runtime routines are extensively used in
the translation performed by OpenUH (see Figure 8.14) when nested parallelism
is disabled. The compiler has given the name ompregion main1 to the outlined
procedure because it is the first parallel region encountered in the main program.
The main program invokes the routine ompc in parallel to find out whether this
is an attempt to start a parallel region from within a parallel portion of the code:
if so, the function will return a value of true and the subsequent test will ensure
that this region is inactive. Next the compiler checks whether additional threads
can be created. If these functions confirm that parallel execution is possible, the
condition in the if statement will hold, and the ompc do parallel runtime library
routine will be called to implement the parallel directive. It will ensure that each
of the threads is passed the procedure ompregion main1 for execution. Otherwise,
the else branch will be taken and the original, sequential code executed. This
translation strategy ensures that no unnecessary overheads are incurred when the
sequential version is selected.

Under the Hood: How OpenMP Really Works 291

{
/* outlined function generated from parallel region */
void __ompregion_main1()
{

printf("Hello,world!\n");
return;

} /* end of __ompregion_main1 */
..
/* Implement multithreaded model, one level of parallelism only */

__ompv_in_parallel = __ompc_in_parallel();
__ompv_ok_to_fork = __ompc_can_fork();
if(((__ompv_in_parallel == 0) && (__ompv_ok_to_fork == 1)))
{

/* Parallel version: create multiple threads, execute in parallel */
__ompc_do_parallel(__ompregion_main1);

}
else
{ /* Perform sequential version */
printf("Hello,world!\n");
}

}

Figure 8.14: A parallel region that may be executed sequentially or in
parallel – This region will be executed sequentially if the program is already in a parallel
region or if the system does not support the creation of additional threads.

8.3.5 Implementing Worksharing

If a parallel region has no work-sharing constructs, then each thread will perform all
of its computation (possibly skipping parts that are explicitly assigned to a thread
with a given threadid). Typically, however, the programmer will have inserted
one or more work-sharing directives to assign portions of the calculation to each
participating thread. Each such directive is separately translated by the compiler.
At the end of a work-sharing construct, a barrier is also inserted to ensure that the
threads wait for each other to complete. Since compilers typically convert other
kinds of work-sharing directives to parallel loops, we focus exclusively on loops in
the following.

The compiler evaluates the loop schedule in order to determine the strategy for
assigning sets of iterations to individual threads. Each kind of schedule must be

292 Chapter 8

translated in a manner that allows a thread to compute its own iteration set or
grab its share of the work.

For example, OpenUH has different strategies for handling static schedules with-
out a chunk size, other static schedules, dynamic, guided, and runtime schedules
(see Figure 8.15), as well as their ordered variants. The static schedule can be
implemented by getting each thread to compute its own loop bounds. The loop
header (bounds and stride) is modified to ensure that only the required iterations
are carried out. When the static schedule comes with a chunk size, each thread may
have several sets of iterations. Since the threads must compute bounds multiple
times, the overheads are slightly higher. Dynamic and guided schedules require
threads to fetch chunks of iterations at run time; in the latter case, the size of the
chunk also decreases. As a result, a queue of available chunks must be maintained,
and chunk sizes computed via a potentially expensive algorithm, so that the over-
heads are higher than for static schedules. However, if the loop iterations contain
varying amounts of work, it may be worthwhile to use one of these schedules.

t=3 Threads: 0 1 2

schedule (static)

schedule(static,2)

schedule(dynamic,2)

schedule(guided,2)

Number of loop Iterations n = 18
Chunk size: c=2 if specified Legend:

Figure 8.15: Different kinds of loop schedules – OpenUH has different strategies
for handling static, dynamic, and guided schedules.

The programmer has not specified a schedule for the parallel loop given in Fig-
ure 8.16, so the compiler is free to choose one. In Figure 8.17 we indicate the
code that will be generated by OpenUH. Like most other compilers, it uses a static

Under the Hood: How OpenMP Really Works 293

static double a[1000];
int i;

#pragma omp for
for (i=0;i<1000;i++)
a[i]=(double)i/2.0;

Figure 8.16: Loop with default schedule – This loop nest will be translated using
the compiler’s implementation-dependent default schedule. Most often, this will be a
static schedule with one chunk per thread.

schedule with one chunk of roughly equal size per thread in such situations. A
typical strategy for computing the chunk size is

chunksize = �loopiters/p� , (8.1)

where loopiters is the total number of loop iterations and p is the number of threads.
This formula computes the smallest integer greater than or equal to the expression.
It ensures that all threads except possibly the last one will be assigned the same
number, chunksize, of consecutive iterations. The last thread may receive fewer
than the others. Occasionally, in fact, it may receive none at all. For example,
if there are 27 iterations and 6 executing threads, then each except the last will
receive 5 iterations. If there are 16 iterations and 5 executing threads, then the
first 4 threads will perform 4 iterations, and the last will have none.

The code shown in Figure 8.17 will be executed by each thread in the current
team. In the first statement, a thread retrieves its threadid. It next invokes
the runtime library routine for this kind of scheduling. The routine will use the
threadid and the loop bounds and stride to compute the set of iterations the thread
must perform. Formula 8.2 shows how easy it is to determine the local lower bound
for the case where the stride is 1, where lowerbd is the original lower bound of the
loop and mytid is the thread’s id.

mylower = lowerbd + chunksize ∗ mytid (8.2)

Since there is just one chunk of iterations, the local bounds are immediately
derived from these and the chunksize. The compiler has modified the loop header
so that these values will be exploited. Similarly, the original loop variable i has
been replaced by the new loop variable myloci wherever it occurs in the body of
the loop. Once a thread has completed its share of the loop, it must potentially
wait at a barrier for the remaining threads to complete. In order to achieve this,

294 Chapter 8

a call to the runtime library routine that implements a barrier synchronization is
inserted after the loop body.

If a static schedule is chosen that may require a thread to execute multiple
chunks, this process has to be slightly modified. In this case, when a thread has
finished a chunk of iterations, it will test whether it has more work to do. If so, it
will compute the bounds of its next chunk of iterations in a similar manner. The
process is repeated until all of the chunks assigned to it have been completed.

mytid = __ompc_get_thread_num(); /* get threadid */
. . . .
/* invoke static scheduler */
__ompc_static_init(mytid, mylower, myupper,

mystride);

/* execute loop body using assigned iteration space */
for(myloci = mylower;

myloci<= myupper);myloci=myloci+1)
{ a[myloci] = myloci * 2;
}

__ompc_barrier(); /* Implicit barrier after worksharing */

Figure 8.17: Implementing static worksharing – Here, the program has been
modified so that each thread computes its schedule and then executes the appropriately
modified loop. A barrier is entered at the end.

Sometimes, data created or used in a parallel loop is also accessed in the next
parallel loop. Some of the corresponding values may be in the caches corresponding
to different threads at the end of the first loop. With some care, it might be possible
to assign work to threads in a manner that allows it to be reused.

8.3.6 Implementing Clauses on Worksharing Constructs

Some variations on the strategies introduced above are needed to implement the
other clauses that may be appended to directives. It is particularly easy to imple-
ment the nowait clause. When it is specified at the end of a work-sharing directive,
the only difference is that no code is generated for the barrier at the end.

We have already seen that shared variables in a parallel region are implemented
by passing the address of the variable to the outlined procedure as an argument.

Under the Hood: How OpenMP Really Works 295

Private variables are even easier to support because they simply become local vari-
ables in the outlined routine: each thread automatically has its own copy. It is
also fairly straightforward to implement firstprivate. If a parallel region has a
firstprivate variable, then this private variable must be initialized using a value
available prior to the parallel region. In order to achieve this, an additional argu-
ment containing this value might have to be passed to the outlined procedure. Each
thread can then assign the value of that variable to the local copy of the private
variable.

The translation of a lastprivate clause is a little more complex, because it
may have to detect which value of the variable would be final in a sequential run.
As noted in Section 4.5.3, the compiler will most likely have to insert code that
will check for the “last” definition of the variable; this process may incur some
overheads. Once this is done, this value may be assigned to a variable that is
visible to the master thread.

static double a[1000], b[1000], k, m;
void update_a(void)
{ int i;
#pragma omp parallel for firstprivate(k) \

lastprivate(m)
for (i=0;i<1000;i++) {

m = k * (double)i/2.0;
a[i]= b[i] + m ; }

}

Figure 8.18: Firstprivate and lastprivate variables – Here, the omp parallel

for directive in function update a has two clauses, declaring k to be firstprivate and m

to be lastprivate, respectively. Both of these require minor modifications to the basic
translation strategy.

The parallel region in Figure 8.18 specifies that the private variable k is to be
initialized with the value of the variable with the same name prior to the parallel
region. Moreover, the value of m in the final iteration is required after the parallel
region terminates and is therefore declared to be lastprivate. The corresponding
code produced by the compiler is given in Figure 8.19. In this case, both k and m

are static variables, which means that their values are visible to the code that will
be executed by the team of threads. So here, no extra work is needed to pass the
values to and from the parallel region.

296 Chapter 8

/* outlined function generated from parallel region */
static void __ompdo_update_a1()
{

double myloc_m, myloc_k; /* private copies of m, k */
int mytid, mylower, myupper, myloc_i; /* private copy of i*/
myloc_k = k; /* initialize local k with global value of k */

mytid = __ompc_get_thread_num(); /* get threadid */
__ompc_static_init(mytid, mylower, myupper); /* scheduler */

/* execute loop body using assigned iteration space */
for(myloc_i =mylower; myloc_i <= myupper; myloc_i = myloc_i+1)
{

myloc_m = myloc_k*(double)myloc_i/2.0;
a[myloc_i] = b[myloc_i] + myloc_m;

}

if(myloc_i > 999) /* pass the sequentially last value */
m = myloc_m;
__ompc_barrier(); /* Implicit barrier after worksharing */
return;

} /* end of __ompdo_update_a1 */

Figure 8.19: Implementing firstprivate and lastprivate – Here, the gen-
erated outlined region has been modified to include private variables that will hold the
threads’ local copies of k and m. In order to implement the latter clause, it must also
add code to identify the last value of m. Since m is static, the corresponding local value
of myloc m is simply assigned to it. Since k is also static, the firstprivate clause is
implemented by a simple copy of its value to myloc k.

Reductions are relatively common in technical computations. In order to im-
plement them, the compiler creates and initializes a private variable as well as
the shared result variable. The work of combining data according to the specified
operation is then shared among the threads so that each of them independently
computes a roughly equal portion of the result. The result value is created by
accumulating the individual threads’ partial results, for which an atomic update,
critical region, or lock is required to ensure that their accesses to this memory lo-
cation do not overlap. Reduction operations can be implemented in a number of
different ways. They may potentially be handled very efficiently, possibly using fast

Under the Hood: How OpenMP Really Works 297

hardware-specific atomic operations. We remind the programmer that, as a result,
no assumptions can be made on the order in which updates are performed – and
that the original order is also essentially arbitrary.

8.3.7 Dealing with Orphan Directives

OpenMP permits the use of work-sharing constructs and synchronization operations
in a different procedure from the one in which the corresponding parallel region was
created. This makes it easier for the application developer to create large parallel
regions without unnecessary program modification. However, a procedure contain-
ing orphan directives may potentially be invoked from within multiple different
parallel regions, as well as in a sequential part of the code, at run time (see the
example in Figure 8.20). Consequenly, the constructs may be active in some execu-
tion instances and ignored in others. The implementation must ensure that these
cases are distinguished and dealt with appropriately.

static double a[1000], b[1000];
void update_a(void)
{ int i;
#pragma omp for

for (i=0;i<1000;i++)
a[i]= b[i] + (double)i/2.0;

}

int main(void){
#pragma omp parallel
{ init_all();

compute_b();
update_a();

}
}

Figure 8.20: Orphan directives – Here, the omp for directive in function update a

is an orphan directive. If this function is invoked from outside a parallel region, the omp

for directive is ignored. Note that the use of orphan directives can help maximize the
size of the parallel region.

In Figure 8.21, we show how this can be achieved. The compiler has inserted
an instruction that tests whether or not it is being executed in parallel. If so, the
code to implement the for directive is performed: each thread obtains its set of

298 Chapter 8

iterations and carries out its share of the work. If, however, the test shows that the
instruction is in a sequential part of the code, the original loop is executed in full
by the thread that encounters it. Since a routine that computes a thread’s share
of loop iterations should also work when only one thread is executing the loop,
an alternative is to simply apply the same translation strategy for both sequential
and parallel execution. This approach may have slightly higher overheads for the
sequential case.

. . . .
__ompv_in_parallel = __ompc_in_parallel();
if((__ompv_in_parallel == 1))
{

/* We are in parallel region: execute for loop in parallel */
mytid = __ompc_get_thread_num(); /* get threadid */
/* next invoke static scheduler */
__ompc_static_init(mytid, STATIC, mylower, myupper,

mystride,);

/* execute loop body using assigned iteration space */
for(myloci = mylower; myloci<= myupper ;myloci++)
{ a[myloci]= b[myloci] + (double)myloci/2.0;
}
__ompc_barrier(); /* Implicit BARRIER after worksharing */
}
else
{ /* Perform sequential version */
for (i=0;i<1000;i++)

a[i]= b[i] + (double)i/2.0;
}

Figure 8.21: Implementation of orphan directive – Here, we show how the omp

for directive in function update a has been translated by generating two versions of the
code. If it is invoked from outside a parallel region, the omp for directive is ignored.

8.3.8 OpenMP Data Environment

OpenMP extends the set of data storage attributes of Fortran and C by introduc-
ing the concepts of shared and private data (as well as threadprivate, firstprivate,
lastprivate, and reduction variables). In order to implement these attributes, an

Under the Hood: How OpenMP Really Works 299

OpenMP compiler must expand a sequential compiler’s strategies for allocating
data.

In Section 8.2.2, we discussed how a compiler sets up storage for the data of a
(sequential) program. As part of this process, it uses a stack to hold the local data
for different procedures while they are being executed. This does not suffice for
an OpenMP program, since each thread can independently execute procedures in
a parallel region. In other words, each thread in an OpenMP program will need
a stack of its own. This stack is also the ideal place for it to save its own private
data. Therefore, the compiler’s strategy for allocating storage is modified as shown
in Figure 8.22. The “main process stack” holds data for the initial thread.

Since local data in routines invoked within a parallel region are private by default,
they are also stored on a thread’s stack. Firstprivate and lastprivate variables are
private variables for which a small amount of extra work is needed to initialize or
to determine and transfer the final value, respectively. Thus they are also allocated
on each thread’s stack.

Note that each thread’s stack has a fixed amount of space. If the programmer
does not specify its size, the compiler will arrange for an implementation-dependent
default amount of memory to be allocated per thread when they are started up.
Since it may need to hold copies of a considerable amount of data including the
private variables of all the procedures active at any given time, the stack can grow
quickly and may exceed the space reserved for it. As a result, it may be necessary to
increase the thread stacksize. The programmer should consult the documentation
to find out how to do so.

Allocating memory on the heap is relatively expensive under OpenMP because
care must be taken to ensure that two different threads do not simultaneously
allocate the same space. Thus, this operation needs to be protected by a critical
region. All threads must be made aware of any such allocations for shared data.

The values of threadprivate objects in an OpenMP program may persist across
multiple parallel regions, so this data cannot be stored in the same place as other
private variables. Some compilers implement this by reserving space for them right
next to a thread’s stack. Others put them on the heap, which is otherwise used
to store dynamically allocated objects. Depending on its translation, the compiler
may need to set up a data structure to hold the start address of threadprivate data
for each thread: to access this data, a thread would then use its threadid and this
structure to determine its location, incurring minor overheads.

OpenUH stores threadprivate data on the heap. In order to translate the code
fragment illustrated in Figure 8.23, the compiler will declare an array of pointers
to integers. There will be one pointer for each of the threads that executes the

300 Chapter 8

Thread 0 stack
_pp_a, _pp_b, _p_c

Main process stack
a, b, c

Heap

…

Code
__ompc_ main()

__ompc_func_0()

Threadprivate

Stack

Thread 1 stack
_pp_a, _pp_b, _p_c Threadprivate

Local data

pointers to shared variables

Arg. Passed by value

….

Static
data

Figure 8.22: Storing an OpenMP program’s objects in memory – Each
thread has its own stack for storing its private data, including local data in procedures
invoked from within parallel regions. We have indicated two places in which threadprivate
data might be saved. The actual location is implementation-dependent. We indicate where
objects from the program shown in Figure 8.11 will be stored.

parallel region. Inside the parallel region, memory will be dynamically allocated on
the heap to store the integers pointed to by this array. Each thread will retrieve its
own threadprivate variable via the corresponding pointer and its threadid. The
address it computes is used thereafter in the code. In Figure 8.24, we give an
excerpt from the translated code fragment. Recall that this construct requires that
the number of threads used to execute parallel regions does not change for the
duration of the program.

8.3.9 Do Idle Threads Sleep?

When threads are not working, perhaps because a parallel region has terminated
or because there is an imbalance in the workload between different threads, they
may need to wait. The waiting may be realized in two different ways: idle threads
may busy-wait (or spin-wait) or they may be put to sleep (or be suspended). In the
former case, the threads actively continue to check for new work. They will begin
this work without delay when it is available. Unfortunately, however, busy-waiting
threads also consume resources and may interfere with the work of other threads.
The alternative strategy is to put threads to sleep. This removes the problem of

Under the Hood: How OpenMP Really Works 301

#include <omp.h>
static int sum0=0;
#pragma omp threadprivate (sum0)
int main()
{ int sum = 0;

int i ;
. . .
for (. . .)

#pragma omp parallel
{
sum0 = 0;
#pragma omp for

for (i = 0; i <= 1000; i++)
sum0 = sum0 + . . .

#pragma omp critical
sum = sum + sum0 ;

} /* end of parallel region */

Figure 8.23: Threadprivate directive – Here, each thread has its own copy of sum0,
updated in a parallel region that is called several times. The values for sum0 from one
execution of the parallel region will still be available when it is next started.

/* get address of threadprivate variable for current thread */
myloc_ppthd_sum0 = thdprv_sum0 + mytid ;

/* use it as usual */
* myloc_ppthd_sum0 = 0;
__ompc_static_int(mytid,) ;
for (myloci = mylower ; myloci<= myupper ;myloci++)

* myloc_ppthd_sum0 = * myloc_ppthd_sum0 +
__ompc_barrier();
__ompc_critical (...) ;

sum = *myloc_ppthd_sum0 + sum ;
__ompc_end_critical (...) ;

Figure 8.24: Translation of threadprivate directive – In order to access and use
its own persistent variable myloc ppthd sum0 in multiple parallel regions, an individual
thread computes its address as an offset from the shared variable thdprv sum0 here.

resource consumption by otherwise idle threads. However, they must be woken up
and this introduces a delay before they do useful work.

302 Chapter 8

The best choice may depend in part on the target platform and in part on the
amount of time the threads are likely to spend waiting, which is hard for the
compiler to determine. Some implementations will allow threads to busy-wait for
a certain time period and then, if they are still idle, they will be put to sleep.
Sometimes the user might have been able to provide a default behavior to influence
this decision. Most systems provide some way for the application developer to
specify whether an idle thread should be put to sleep.

8.3.10 Handling Synchronization Constructs

Many different constructs have been designed to enable thread synchronization.
OpenMP provides a modest set of them. Generally the compiler can easily translate
its implicit and explicit barrier, atomic and flush directives, since they normally
have one or more equivalents in the OpenMP runtime library. Thus the compiler
must simply select the desired routine and replace the directive by a call to it.
Any further complexity involved is dealt with in the runtime system. For some
synchronization constructs, there may be direct support in the hardware. Since
the cost of different synchronization operations may vary significantly, it can be
worthwhile to use microbenchmarks to evaluate their overheads ([30, 47]).

Most synchronization features can be implemented in a number of ways [15]. For
instance, a straightforward way to implement a barrier is to use a variable as a
barrier flag and have a shared counter that is initialized to reflect the number of
threads in a team. When a thread reaches the barrier, it will decrement the counter
atomically and wait until the counter is set to 0 by the last thread to arrive. Then
the barrier flag is reset via an atomic update, and all threads can proceed. (How
they are made aware of the update will depend on whether they are busy-waiting
or have been suspended.) This process will deadlock if one or more threads does
not encounter the barrier construct, which is, however, prohibited by the standard.
Some systems provide hardware support for barriers.

The flush directive can usually be implemented by a single operation that com-
mits variables to memory and fetches new values of data as required. The tricky
part in dealing with this is deciding how it can be moved relative to other in-
structions during the instruction scheduling phase. We remind the reader that its
location may move with respect to instructions that do not involve flushed data
(see Chapter 7).

Under the Hood: How OpenMP Really Works 303

8.4 The OpenMP Runtime System

Most compilers have a runtime library that implements some standard operations
(starting up execution, terminating a program, performing I/O, etc.). This can
simplify the code generation process and reduce the size of the resulting object
code.

The OpenMP compilation process can also be streamlined by using suitable run-
time routines. Each compiler has its own library of supporting routines that are
tailored to the translation strategy it has adopted. Its functionality and the ef-
ficiency of its individual functions will have a big impact on the performance of
OpenMP code on the target platform. Indeed, the functions of the OpenMP run-
time library typically play a significant role in the translation process. The example
translations in this chapter include many such calls.

Typically, library routines will take care of interactions with the system, such as
those required to start up and manage the system threads that execute the code.
There are also routines to implement OpenMP user-level library functions such as
omp get num threads, but also including the lock routines. Some operations, such
as determining the OpenMP threadid, will be frequently performed and must be
made as efficient as possible. Others require a careful implementation to avoid high
overheads: for example, the implementer must avoid introducing false sharing.

Extensive runtime support is needed to realize dynamic and guided loop sched-
ules. These may require runtime routines to initialize the loop, to enable threads
to request chunks of loop iterations, and to terminate the loop. Additional routines
might be needed to compute the next chunk size for guided scheduling: the size
chosen may depend on a number of different factors, including the thread count and
number of remaining iterations. If information needs to be generated for external
tools, the work of gathering it is also likely to be carried out in the runtime system.
Run-time routines will also take care of a variety of book-keeping and management
tasks. The compiler writer may choose to deploy library routines in other places
too, in order to reduce the amount of work required of the compiler.

There is no standard way in which implementations create threads to execute the
OpenMP code. As stated in Section 8.3.4, some implementations will do so when
the first parallel region is encountered, setting up exactly the number the region
needs. Additional threads will subsequently be created on demand. Other imple-
mentations create the maximum number of threads, or the user-specified number
if this is known, at the outset and do not dynamically set up any others. There
is also no standard way of dealing with threads that are idle. As we pointed out
in Section 8.3.9, different schemes may be chosen to handle this situation. Other

304 Chapter 8

implementation-defined behavior includes the default loop schedule, and the num-
ber of threads used, if the user does not specify this.

As we described in Section 5.3.2, a cost is associated with most OpenMP con-
structs that is not present in the original, sequential program. These overheads
are a result of the extra computation inserted by the compiler, to compute thread-
specific loop bounds for instance, and the time taken by the runtime library routines
used to perform the associated tasks.

8.5 Impact of OpenMP on Compiler Optimizations

One of the challenges for OpenMP compiler developers is to ensure that the transla-
tion of OpenMP does not unduly affect the compiler’s ability to carry out traditional
optimizations. If the OpenMP code were not optimized as well as the sequential
code, this would offset some of the benefits of parallelization. But it is much trickier
to analyze and optimize parallel programs than their sequential counterparts.

One reason optimization may be difficult is that the power of some optimiza-
tions lies in their ability to recognize and exploit relationships between different
instructions: the longer the region of code that they may analyze and reorganize,
the more opportunities they are likely to find. It is hard for compilers to optimize
code across procedure boundaries. But the outlining strategy not only introduces
new procedures, it may lead to an increased use of pointers, which also inhibit some
optimizations. As a general rule, instructions are not moved past a synchroniza-
tion point in the program (although this may be unnecessarily strict). Fortunately,
OpenMP semantics otherwise permit a variety of traditional optimizations to be
applied as usual to the code within parallel regions. Note, too, that a sophisticated
compiler (e.g., [173]) may perform some kinds of optimization prior to the OpenMP
lowering process.

Recent platforms may provide features for achieving additional levels of paral-
lelism, such as SIMD or vector extensions. These may interact with OpenMP and
may sometimes be used to improve translation of OpenMP constructs [173]. In
general, however, the interactions between different kinds of parallelism is a matter
to be explored.

8.6 Wrap-Up

In this chapter, we have described how a compiler is extended to enable it to turn
a program with OpenMP constructs into an explicitly multithreaded program. We
have presented code fragments to illustrate the kind of code that will be generated,

Under the Hood: How OpenMP Really Works 305

but we remind the reader that each compiler has its own strategy and details will
differ. OpenMP directives are usually translated fairly early on during compilation.
The multithreaded code can be optimized: the compiler may do a considerable
amount of work behind the scenes to overcome performance problems. Several
OpenMP constructs, and the user-level library routines, are likely to have one or
more direct equivalents in the runtime library. But most of them require some effort
from the compiler. As a result, overheads are introduced into the program. The
relative cost of features differs considerably. The reader is encouraged to determine
them for the compiler and target systems of interest (see Section 5.3.2).

As platforms evolve, and OpenMP is used in an increasing variety of programs,
research and development continues to explore alternative compilation strategies
and runtime techniques. For instance, an alternative translation of OpenMP to a
collection of tasks is considered in [176, 177]. This approach attempts to deter-
mine the dependences between the chunks of work executed by different threads
and to remove any synchronizations that are not actually required. Wide-area
privatization of shared data is proposed and evaluated in [117, 118].

A number of studies have been done on runtime systems. Researchers have
designed, extended, and explored the use of runtime systems that can support
languages such as OpenMP [119, 17]. Some researchers [179, 180, 45] have proposed
adaptive methods for dynamically choosing an appropriate number of threads and
scheduling policies according to the execution behavior of a code on multithreading
platforms, which includes new kinds of hardware that enable a single processor to
execute more than one thread. Run-time optimizations and overheads have been
explored in [32, 33].

Energy efficiency [70, 109, 110] will need to be taken into account when translating
OpenMP programs in the future, and we can expect to see more work on this. Some
researchers [111, 115] have attempted to do so by dealing with the idle time caused
by imbalanced barriers. Controlling the number of threads is a natural way to
regulate energy efficiency on some kinds of multithreading computers [46].

Transactional memory (TM) [76], based on the concept of transactions [68] in the
database community, has shown some promise as a means to reduce synchroniza-
tion overheads. It could be used to provide essentially the functionality of critical
regions, potentially at a lower cost in situations where different threads are unlikely
to update the same data. As a result it could be interesting to explore the use
of TM software [164, 73, 75, 63] or hardware [76, 153, 12, 71] in the context of
OpenMP.

9 The Future of OpenMP

Many factors are likely to influence the further development of OpenMP. We discuss
some of them briefly in this chapter.

9.1 Introduction

OpenMP was carefully designed to be a “lean,” or minimal, shared-memory parallel
API. Having relatively few features makes it easier for a programmer to learn the
constructs; it also reduces the amount of work for the compiler writer.

But naturally a modest feature set has a downside. Sometimes, it is not easy to
express exactly the desired parallelism; it may be necessary to modify a program
in some way to enable the use of OpenMP. For example, we may parallelize only
a single level of a loop nest (unless we use nested parallel regions). This can lead
to load imbalance, or it might simply not provide enough exploitable parallelism.
To overcome this problem, the application developer can rewrite the loop nest to
turn several dimensions into a single larger one. But making such a change is not
necessarily easy, and requiring it is not truly in the spirit of OpenMP.

With an increasing reliance on shared-memory parallelism in the hardware being
designed and brought onto the market, the providers of OpenMP must consider
whether the language requires extensions, or its implementation nontrivial adapta-
tion, to improve its ability to target new kinds of architectures. By the same token,
more and more different kinds of programs are being parallelized to run on shared-
memory systems. OpenMP was primarily (although not exclusively) designed to
exploit concurrency in structured loop nests. However, many applications are not
based on this kind of loop. Additional directives might make it easier to exploit
other kinds of parallel patterns.

Increasingly large SMPs and distributed shared-memory systems are being con-
structed, so that the size of problem that may be tackled by an OpenMP program-
mer is growing. More data may be processed by an OpenMP application; more
threads may need to access shared memory simultaneously, meet at a barrier, or
wait to execute a critical region; and sequential code regions and load imbalances
may severely impact performance. Systems that execute programs with large num-
bers of threads may potentially stress all aspects of the application’s parallelization
as well as the performance characteristics of an OpenMP implementation. We have
already seen that approaches that work well when a program is run on two or four
CPUs may no longer be appropriate for larger computations. Clearly, one topic for
the future of OpenMP is to make it easier to exploit large numbers of threads well.

308 Chapter 9

Several efforts have been undertaken to provide OpenMP on MPPs and clusters
where there is no shared memory. Success in this respect would provide a high-level
API for such platforms while increasing the portability of OpenMP programs. This
is a difficult problem but a desirable goal, and efforts to improve this technology
are likely to continue.

One of the best features of OpenMP is that it is actively maintained and that
the organizations responsible for it are concerned about these matters. In order
to ensure that the language remains relevant, the OpenMP Architecture Review
Board (ARB) has set up a language committee that actively debates proposals to
extend OpenMP and attempts to find solutions to programming problems that are
acceptable to all vendors and on all platforms. Anyone may submit a proposal
by writing to the ARB (see http://www.openmp.org), and many of those under
discussion have come from users or researchers.

Ensuring that OpenMP continues to provide the right set of features for shared-
memory parallel programming in the light of so much innovation is not just a matter
of getting the ARB to agree on new language and runtime library features. For
example, operating system help may be needed to schedule threads appropriately
across some systems, just as it can help to distribute data across the fragmented
memory of a large DSM platform. Satisfying performance constraints as well as
meeting security concerns is difficult on some kinds of chip multithreading plat-
forms. It is hard to implement locks and barriers in software in a manner that
scales: hardware support may be able to help. New compiler strategies may be
needed to take different architectural characteristics into account, and dynamic
compilers might be capable of improving some aspects of a program’s performance
at run time. Fortunately, a good deal of today’s research and development in oper-
ating systems, compilers and other system software addresses the challenges posed
by new kinds of shared-memory platforms.

All of the above—problems with expressivity, new kinds of shared-memory ar-
chitectures, new kinds of algorithms that must be supported, greater emphasis on
scalability, and support for distributed-memory machines and clusters—must be
debated and may in some cases lead to the addition of features to the API. Yet it is
not unreasonable to hope that a small set of extensions may solve many program-
ming problems. In the remainder of this chapter, we discuss a few of these topics
in more depth and consider their implications for the future of OpenMP.

The Future of OpenMP 309

9.2 The Architectural Challenge

When OpenMP was first introduced, most of its developers expected that it would
be used to create programs that would run on a “flat” uniform-memory-access
computer, where all threads have equal access to shared memory. It was also
assumed that one thread would be executed per processor. The purveyors of DSM
systems, and those engaged in building software for them, considered language
and operating system support to help place the threads and data suitably across a
platform that did not conform to these characteristics (see, for example, [165, 126,
26]). These features did not become part of the OpenMP API.

Recent and emerging computer platforms increasingly rely on chip multithreading
(CMT) [168] to provide support for the execution of multiple threads on a single
chip. In fact, CMT is now the dominant trend in general-purpose processor design.
But it comes in many different forms and implies some amount of resource-sharing
by threads that share the same core or same processor.

Some implementations provide a very fast context switch and replicate registers so
that several threads may be ready to issue instructions at a given time. Interleaved
Multithreading (for example, Intel’s Montecito [125]) interleaves instructions from
different threads in the pipeline in order to obtain high utilization of the processor’s
resources. Simultaneous MultiThreading (SMT) [175] permits several independent
threads to issue instructions each cycle. If their instructions use different functional
units, they will execute concurrently. If they require the same units, however, they
may compete for access to them.

Chip multiprocessing (CMP, also known as multicore) [145] integrates multiple
processor cores on a single chip. Each core is able to execute one or more threads
independently. Here too, however, some chip-level resources will be shared, or
partially shared, by multiple threads. Early designs show a variety of schema
for sharing resources, including scalar and floating-point units (such as the IBM
Cyclops [9]). The two cores of the Sun Microsystems UltraSPARC IV processor
are almost completely independent except for the shared off-chip data paths [88],
while the Power4 [172] processor has two cores with shared L2 cache to facilitate
fast interchip communication between threads. Thus, CMP reduces but does not
eliminate competition for access to some resources. Figure 9.1 shows the structure
of a CMP processor, an SMT processor, and the combination of these technologies.

The nature of resource sharing among threads has clear implications for appli-
cation performance (see, for example, [107, 45, 113]). It is fairly hard to exploit
current SMT capabilities in an application ([38]). Interference between different
threads can also affect program performance on a CMP platform. For instance,

310 Chapter 9

ALU’s

Arch. states

L1/L2 Caches

Arch. states

System Bus
Memory

US-III
Cu core

US-III
Cu core

L2 Tag

L2

MEMMCU

L2 Tag

Fireplane Bus

4 75 6

CMP processors

SMT processors

2 31

memory

0

0 31 2

(a) a CMP processor: UltraSPARC IV (b) a SMT processor: Xeon-HT

(c) a Hierarchical SMP(HSMP) using CMP/SMT processors

L2

Figure 9.1: CMP, SMT, and hierarchical SMP architectures – Figures (a)
and (b) show the difference in design between multicore and simultaneous multithreading
platforms. In (c) we show the hierarchical parallelism that may be present in a system. It
may lead to a complex relationship between threads as a result of the way in which they
may share some resources.

Frumkin [64] showed that optimizing use of the shared L2 cache for data locality
is important for scalability. Lee et al. [107] demonstrated the negative effect of the
shared bandwidth to memory for memory-intensive applications.

When these technologies are combined and used in SMPs, the resulting system
(such as IBM’s Power5 [96]), is likely to have an even deeper memory hierarchy and
a more complex relationship between threads. Cores within one chip may exchange
data faster than cores crossing processor boundaries. Some threads will compete
with each other for resources while others do not.

In order to better support such platforms, it may be necessary to permit the
application developer to give some additional scheduling information to the imple-
mentation, for example to “spread” threads across the different cores or processors
or, alternatively, keep them as closely together as possible. The operating system
may be able to help by making good default choices, but finer tuning seems to rest
with the application developer. If applications are not to be hard-wired to a specific
machine, language support must be carefully designed.

The Future of OpenMP 311

9.3 OpenMP for Distributed-Memory Systems

Massively parallel processing systems and clusters [4] are widely used for scientific
computing. Unfortunately, it is not a simple proposition to implement OpenMP on
such platforms. Several research systems and one product [82] have done so by re-
lying on software distributed shared memory (software DSM) (such as TreadMarks
[11], Omni/SCASH [156], ParADE [98], NanosDSM [42], and FDSM [121]), which
emulates shared memory on platforms where there is none. Under this approach, a
compiler translates OpenMP constructs to the software DSM’s API, possibly per-
forming special optimizations to improve the resulting code. As there is no standard
API for software DSM, most compilers work with a specific implementation. The
software DSM will manage the OpenMP program’s shared data at run time: it will
allocate space for this data across the system, will handle read and write accesses
to shared objects, and will ensure that their values are kept consistent according
to the OpenMP memory model. It can be expensive to maintain data consistency,
since the executing processes must share their updates with other processes at each
synchronization point in the program, including (explicit and implicit) barriers, the
start and end of critical regions, points where locks are acquired or released, and
anywhere that the programmer has inserted a flush directive. Since software DSMs
usually manage data in pages, the modification of a single byte on a page can cause
other processes to fetch the entire page of data again at the next synchronization
point. Nevertheless, programs that have been written to take data locality into
consideration and that do not have too much synchronization may perform well.

Given the benefits of the shared-memory model, it is not surprising that re-
search [42, 121, 133, 83, 157, 43] is being carried out to improve the quality of this
translation, develop relevant compiler optimizations [143, 158, 116], and look for
alternative strategies. One such alternative is to translate OpenMP to a distributed
memory programming model. So far, MPI [137] and Global Arrays [141] have been
considered. It is quite difficult to translate some kinds of code to MPI, so a trans-
lation to MPI that uses software DSM as needed has been proposed [53]. The
translation to Global Arrays [84] is somewhat simpler because this API provides
an abstraction of shared memory. However, tough problems remain: sequential
regions must be carefully translated if they are not to be a bottleneck, and critical
sections and ordered regions are likely to degrade performance significantly.

Language extensions proposed to help translate OpenMP to distributed memory
include data distribution notation that could guide the compiler and software DSM
in their choice of a suitable layout of data across the nodes of a cluster [156], and
point-to-point synchronization features that could be used to reduce the overheads

312 Chapter 9

of synchronization. Another is to let the user state explicitly which data may be
shared between threads on multiple nodes of the system.

9.4 Increasing the Expressivity of OpenMP

OpenMP could be enhanced in a number of ways to make it easier to obtain per-
formance, exploit higher thread counts, or parallelize new applications. Certain
extensions could further improve the ease of migrating programs to parallel plat-
forms. We briefly consider some features that might support one or more of these
desirable goals.

9.4.1 Enhancing OpenMP Features

A number of suggestions have been put forward to extend the functionality of
existing features of OpenMP, improve its support for Fortran 90 and C++ [97],
and achieve a greater uniformity of implementation.

Several means have been developed to allow the programmer to share the work
of several loops in a nest (rather than the current single level) among threads. In
its implementation of OpenMP for DSMs, SGI permits the programmer to specify
which levels of a loop nest are to be parallelized by listing the corresponding loop
variables in an additional clause on the do directive. Other ideas are to list the
nesting depth of the loop levels that should be parallelized or to apply some form of
collapse directive, which would require the implementation to transform multiple
adjacent loop levels into a single loop (see Figure 9.2). This can be performed
manually but is rather messy. One of the problems with providing features to share
the work of multiple loops in a nest among threads is that it is difficult to implement
them for arbitrary loop nests.

Since loop schedules are important for performance, it could be worthwhile to
provide a more extensive set of static schedules. Suggestions on this topic include
giving threads chunks of iterations that have different sizes. Another proposal
would permit schedules that are provided indirectly via a list of array values. In
other words, in order to determine the set of iterations for a thread, the contents
of a sequence of array elements would be evaluated. Such iterations would not
be consecutive, nor would they necessarily follow any other regular pattern. One
option would be to let a schedule of this kind be named and reused, potentially
with lower overheads on subsequent uses [142]. Another idea is to permit schedules
to be used with parallel sections.

The Future of OpenMP 313

!$omp parallel do collapse(2) schedule (guided)
do j = 1, n, p

do i = m1, m2, q
call dosomething (a, i, j)

end do
enddo

Figure 9.2: A collapse clause might be added to a loop nest to enable par-
allelization of multiple loop levels – Factors to consider include deciding whether
the loop levels must be consecutive for this to work and whether loops that are not tightly
nested can be parallelized. The syntax might specify the number of loop levels to be
collapsed or indicate which loops are involved in some other way.

Other ideas proposed include letting threads steal iterations from other threads
if they have completed their own iteration set ahead of time, and getting the im-
plementation to choose a suitable schedule dynamically (which need not be one of
the predefined ones). An advanced strategy for scheduling might permit work to
be shared among a subset of the threads in a team rather than all of the threads.
Then, different subteams could perform different tasks simultaneously with low
programming overhead [37, 36].

One of the other places where there is scope for enhancement of the current API
is in its support for nested parallelism [66]. This language feature can facilitate high
levels of scalability, by enabling the specification of multiple levels of parallelism in
an application [91]. It might also enable a program’s structure to match hierarchical
parallelism in hardware. It would be useful to allow different teams of threads to
have their own runtime settings, for example for the default number of threads
or runtime schedule. New runtime library routines might allow the program to
test the nesting level at any given place, or to find out how many threads there
are in a team at a given nesting level. More sophisticated ideas including allowing
interaction between threads in different, concurrently executing parallel regions, and
allowing for a predetermined mapping of the threads in different parallel regions to
the system’s threads.

Researchers have also expressed an interest in reducing the work of the appli-
cation developer even further. One popular idea is to get the compiler to decide
which variables should be shared and which should be private (or firstprivate, or
lastprivate) in a parallel region. If the region contains many different variables, it
can be annoying to list all of the private variables at the start of the construct (and
it can be easy to forget one or more of them). It is not always straightforward for

314 Chapter 9

the compiler to decide which option is appropriate, and it is not clear whether this
kind of support should be part of the API or could be provided in a separate tool.
Nevertheless, some vendors have already implemented the idea.

9.4.2 New Features and New Kinds of Applications

Researchers have expressed the desire to have OpenMP support a wider variety
of parallel program patterns [123]. OpenMP has so far been successful principally
when applied to array-based computations, for which its loop parallelization fea-
tures are particularly well suited. An increasing number of applications (especially
those written in C or C++) rely on other kinds of data structures, however, and
may have other kinds of exploitable parallelism. For them, a fresh approach is
needed.

Enhancements to existing features may enable or greatly facilitate the paral-
lelization of some kinds of problems. However, researchers have also proposed new
features that might substantially improve the ability of OpenMP to support large
problems and different application areas. Recurring themes are a desire to be able
to express data and work locality, the need to support recursive and list-based
parallelism, and the usefulness of a bigger variety of synchronization options. A
possible Java binding and implementation [31, 100] have been explored.

Synchronization Synchronization constructs that could be added to OpenMP
range from condition variables and other means to enable individual threads to
coordinate their work all the way to monitors and transactions. Particularly as
the number of threads grows, global synchronizations such as barriers will become
increasingly expensive. Despite a number of different suggestions, considering po-
tential additions to the current set of synchronization features is a matter for future
discussion.

Data Locality Remote data accesses on large DSM platforms and clusters can be
expensive. Better performance could be achieved if one could allocate most of the
objects used by a thread in memory that is local to the thread. But this approach
makes sense only if the data objects and array elements are primarily accessed by
just one thread. The easiest way to achieve this kind of data locality in OpenMP
is to declare as much data as possible to be private. Where this wholesale priva-
tization is inconvenient, some way of mapping data across a distributed memory
system might help. Syntax borrowed from High Performance Fortran [57] has been
used to achieve this [67, 26, 156]. The merits of providing syntax for data mapping

The Future of OpenMP 315

in the API itself are contentious [143], since many believe that it is best dealt with
by the system. We note that on page-based systems, data mappings must suggest
a strategy for spreading pages of data, rather than individual objects, across the
memories. For a cluster, it may be desirable to specify the distribution of data
objects precisely.

A simpler approach has been implemented that relies on storing data so that
it is local to the thread that accesses it: this relies on directives that allow the
programmer to mark the access to (“next touch” of) an object that will be used to
determine its storage. Other features debated in this context are means to specify
a logical thread structure or even the hierarchical parallelism in a machine. The
question of how best to achieve data locality in an API such as OpenMP remains
an important topic.

Tasks and Queues of Tasks OpenMP’s for pragma can be applied to C/C++
loop nests with an integer loop counter that monotonically increases or decreases.
But many more kinds of loops may be encountered in C or C++ programs. Fig-
ure 9.3 gives one such example. Here, a pointer is used to traverse a list of objects.
For each of them, some work is performed on its local data. Often, each of these
computations is independent of the others, implying that there is considerable par-
allelism in the loop. Unlike the loops that can be parallelized with today’s OpenMP
constructs, however, the amount of work involved is unknown at the start of the
loop. Indeed, the number of individual computations will be apparent only when
the last pointer is reached. Considerable rewriting of code is necessary if such loops
are to be implemented in parallel in OpenMP. The same holds for most recursive
algorithms. Indeed, given the variety of loops that may occur in C/C++ codes, the
range of loops that the #pragma omp for directive may be applied to is severely
limited.

To support applications with a variety of loops that traverse lists or other pointer-
based structures, one OpenMP compiler has implemented a task queue construct
[163, 170] partly inspired by the Cilk programming language and its implementation
[27]. Two new pragmas were added to OpenMP, one to create an empty queue
of tasks and one to specify the single-threaded tasks, or pieces of work, to be
executed by a thread. (This is somewhat analogous to the section pragma within
a sections construct, although it follows different rules.)

Various strategies have been proposed for describing and implementing such
tasks, not all of which are based on the creation of task queues. We show one
way in which the loop in Figure 9.3 might be described in the form of tasks in
Figure 9.4. For maximum expressivity, tasks might be generated in different places

316 Chapter 9

node *list, *p;
...
for (p = list; p!= NULL; p = p-> next) {

if (p -> left)
doworkon (p -> left.data) ;
if (p -> right)
domoreworkon (p -> right.data) ;

}

Figure 9.3: Pointer-chasing loop – This simple loop cannot be parallelized by using
an OpenMP for construct.

in the code, including within other tasks. In the OpenMP context, some of the
questions that arise are how best to fit this into the notion of worksharing, and
how flexible the rules for task execution may be. For instance, an implementation
might let a thread suspend execution on one task while it works on another one.
This raises the interesting question of what happens if it is then completed by an-
other thread. In particular, this does not fit in well with the idea that threads have
private variables: to permit this, some variables would have to belong to the task
rather than the thread. The functionality provided by this kind of language feature
would appear to be important for the future of OpenMP.

%node *list, *p;
%...
#pragma omp taskgroup
{
for (p = list; p!= NULL; p = p-> next) {
if (p -> left)
#pragma omp task
doworkon (p -> left.data) ;
if (p -> right)
#pragma omp task
domoreworkon (p -> right.data) ;
}

}

Figure 9.4: Specifying tasks – Tasks can be dynamically generated and will be
executed by threads as they become available. In this example, we see a structured
approach to the creation of tasks that can deal with our example in Figure 9.3.

The Future of OpenMP 317

9.5 How Might OpenMP Evolve?

Most of the existing features of OpenMP are based on features designed for small-
scale SMPs in the late 1980s. They have been surprisingly useful. Larger numbers
of threads are becoming the norm, however, and the range of applications being
parallelized is vastly greater than that of a few decades ago. A good number of pro-
posals for extending OpenMP have been submitted to the ARB for consideration;
the examples in the preceding section are based on such proposals.

But extending OpenMP is not just a matter of technical feasibility. Compilers
and their runtime libraries are large, complex software systems that are expensive
to develop and maintain. Each new feature increases the complexity; its impact
on optimization strategies must be considered. The more evidence there is that
a given extension will meet a variety of important programming needs, the more
likely are its chances of being included.

The OpenMP ARB’s language committee has been actively considering a wide
variety of language features, and several of these are almost certain to be included
in the next revision, OpenMP 3.0, in the reasonably near future. These range from
minor tweaks, such as revising the standard to allow unsigned integers to be used
as parallel loop iteration variables in C/C++, to major extensions, such as adding
a task extension to broaden the range of programs that it can support.

A couple of the other features that we have discussed in the preceding sections
appear likely to make it to the next version of OpenMP. Among those is notation
to allow multiple loops in a loop nest to be collapsed. As a result, the combined
iteration spaces of the loops specified would be shared among the executing threads.
Additional support for nested parallelism will probably also be provided. The
features most likely to make it in this context are the ability to set different control
values for different, concurrent teams of threads, and user-level routines to obtain
information on the depth of nesting of parallel regions and the numbers of threads
in different teams.

The ARB strives to harmonize the implementation of OpenMP wherever possible.
As we saw in the preceding chapter, the implementation must set up stacks for
each of the threads in a team. Since the default stack size may not be sufficient,
implementations typically provide the programmer with a means to influence it.
A future version of the API is likely to provide a standard means for requesting a
given stack size, possibly in the form of an environment variable. Note that this
would not control the size of the initial thread’s stack.

In Chapter 8, we noted that it may be hard for the implementation to decide
how best to deal with idle threads. In order to let the programmer influence this

318 Chapter 9

important aspect of runtime behavior, future versions of OpenMP are likely to
allow the user to specify whether the implementation should select an active default
policy or a passive one. The former would mean that threads mostly busy-wait for
an opportunity to perform more work, whereas the latter would mean that they
should yield resources or be put to sleep.

Another probable change is a minor modification to the rules governing the im-
plementation of static schedules. The idea is to guarantee the uniform assignment
of loop iterations to threads when the same schedule is used. It would permit the
use of a nowait on the example in Figure 4.41.

The current language is ambiguous on a few points. One of those is the relation-
ship between variables in sequential code and the master thread’s private variables
of the same name in a parallel region. Future specifications are expected to clarify
this to ensure that these are kept strictly separate: implementations will probably
be required to store them in distinct locations. This change also means that we
might be able to continue to use the sequential object after the parallel region has
terminated, in contrast to current rules.

Several other matters are receiving attention from the ARB. There is a perceived
need to better handle situations when the resources required for a job are not
available. It should be easier to write libraries and modular code (or to integrate
components). The memory model is still hard to understand. Tools for analyzing
and tuning performance [78, 79, 148, 92, 77, 136], and for debugging [54, 122, 166]
exist. But more are sorely needed, as are tools to help identify possible sources of
data races, and interfaces to enable tools to receive program information from the
implementation. Some of these topics will undoubtedly receive focused attention
by the ARB and its members and may influence future versions of the API.

9.6 In Conclusion

OpenMP was designed in an industry-wide collaboration. It is now available in
most standard Fortran and C compilers, and several public-domain systems. Tools
are available. In this respect, OpenMP has been a resounding success.

Providing a parallel programming API that combines expressivity and high per-
formance with ease of use is one of the holy grails of parallel language design. The
current OpenMP specification represents real progress in this respect. Among its
innovations are the separation of thread creation from work distribution, introduc-
tion of orphan directives to facilitate the creation of large parallel regions, support
for nested parallelism, and explicit specification of a relaxed consistency memory
model.

The Future of OpenMP 319

Given the strong growth in systems that support shared-memory parallel appli-
cations, and the steady increase in the number of threads they can support, we
expect similar growth in the development of algorithms that expose considerable
exploitable parallelism, in compiler technology to help optimize such codes for a
variety of target architectures, and in the run time and operating system support.
OpenMP will need to continue to evolve to meet new user needs and will exploit
new techniques to help do so.

OpenMP is relatively easy to learn. Sometimes, it is also easy to use this API to
create a parallel program that provides the desired level of performance. Sometimes
it is surprisingly hard, especially when an algorithm requires non-trivial interactions
between threads. It can be particularly difficult to find bugs that arise as the result
of race conditions or improperly implemented thread synchronization. The memory
hierarchy and the operating system support for OpenMP on the target architecture
may have considerable influence on the performance of an application: but this is
not apparent from a study of the OpenMP specification alone.

In this book, we have therefore not simply introduced the features of OpenMP:
we have explained the most important factors that influence the performance of an
OpenMP program, and we have discussed some of the ways in which a program-
mer can deal with the problems that arise. We have given some insight into the
manner in which OpenMP is implemented in the hope that this provides a deeper
understanding of the factors that influence an OpenMP program’s performance.

OpenMP is still under active development, and we have mentioned a few of the
concerns that may shape future additions to the API. With its particular blend
of simplicity and its high-level support for creating threads and exploiting shared
memory, we are confident that OpenMP will be the API of choice for shared-memory
parallel programming on a diverse variety of computer systems for the foreseeable
future.

A Glossary

Address space The set of all legal addresses in memory for a process, it
constitutes the amount of memory available to it. The OpenMP programming
model assumes a shared address space for all threads in a process.

API Application Programming Interface. An API consists of a well-defined
set of language features, library routines, annotations, or directives that may
be employed by a programmer to solve a programming problem, often in
a system-independent manner. An API often serves to hide lower-level im-
plementation details from the user. OpenMP is an API for shared memory
parallel programming.

Bandwidth For memory system transfer rates, the peak speed expressed in
the number of bytes that can be transferred per second. There are different
bandwidth rates between different parts of the memory system. For example,
the transfer rate between a cache and CPU may be higher than the bandwidth
between main memory and the cache. There may be multiple caches and
paths to memory with different rates. The peak memory bandwidth quoted by
vendors is usually the speed between the data cache and the memory system.
However, the peak transfer rate may be encountered only in programs with
highly suitable memory access patterns and then not for very long. The data
rate that is actually measured over a period of code, or time, is the sustained
transfer rate and is often much lower than the peak transfer rate. When
running an OpenMP code on a system with a shared path to the memory
subsystem, multiple threads may compete for the same fixed bandwidth. This
could result in a performance degradation.

Barrier A synchronization point in the code where all threads in a team have
to wait. No thread reaching the barrier can continue until all threads have
reached the barrier. OpenMP provides explicit barriers as well as implicit
barriers at the end of parallel loops, sections, single constructs, and parallel
regions. The user has the option of removing barriers at the end of work-
sharing constructs to achieve better performance. Barriers at the end of
parallel regions cannot be removed.

Cache A relatively small, very high speed memory buffer between main memory
and the processor. Data is copied from main memory to cache and back in
blocks of contiguous data, whose size depends on the machine. A block of
data is stored in a line of cache and may be evicted from cache if another data

322 Appendix A

block needs to be stored in the same line. The strategy for replacing data in
cache is system-dependent. Since cache is usually built from very expensive
memory components, it is substantially smaller than main memory. However,
cache sizes are growing and on some platforms, small data sets might fit
entirely into cache. Without cache, a program would spend the vast majority
of its execution time waiting for the arrival of data, since CPU speeds are
significantly faster than memory access times. Computers may have several
levels of cache, with those closest to the CPU being smaller, faster, and more
expensive than those closer to main memory. Data is copied between levels.
There may be separate caches for data, instructions, and addresses (TLB).

Cache coherence The ability of a multiprocessor system to maintain the in-
tegrity of data stored in local caches of shared memory. On uniprocessor
systems, data written into cache typically remains there until the cache line
is replaced, at which point it is written back to main memory. Multiprocessor
systems share memory and caches. Without a mechanism for maintaining co-
herency between memory and cache, code executing on one processor might
not have access to values recently updated by other processors. With cache
coherency, a processor is informed that data it needs is in a cache line that is
stale or invalid, requiring a fetch of the updated value. The cache coherency
mechanism is implemented in various ways on different systems.

Cache line A level of cache is subdivided into lines, each of which may be filled
by a block of data from main memory. The cache line size thus determines
the unit of data transfer between the cache and memory, as well between the
various levels of a specific cache type. The size of the line is system dependent
and may differ from one level to another. For instance, a level-1 cache line
could be smaller than a level-2 cache line. There is no unique best size for a
cache line. A long line, for example, increases bandwidth but also increases
the chance that false sharing will occur.

cc-NUMA Cache-coherent NUMA. These are NUMA systems where coherence
is maintained across the local caches of the individual processors. Maintaining
cache coherence across shared memory is costly, but NUMA systems without
this feature are extremely difficult to program. Therefore, shared memory
NUMA systems available today generally provide some form of cache coher-
ence. Note that the existence of cache coherence does not prevent the user
from introducing race conditions into OpenMP programs as a result of faulty
programming.

Glossary 323

Compiler directive A source-code comment in Fortran or pragma in C/C++
that provides the compiler with additional information and guidance.
OpenMP directives identify parts of the code the compiler should parallelize,
and indicate shared and private data, thread synchronization, and more.

Core A component of a microprocessor that is able to load/store data and
execute instructions. Beyond this generic description there are significant im-
plementation differences. Depending on the architecture, hardware resources,
and components may be shared among, or specific to, a core. Examples are
the register file, caches (for both data and instructions), functional units, and
paths to other components. In some designs, an individual core is able to
execute multiple independent threads.

CPU Central processing unit, also referred to as the processor. The circuitry
within a computer that executes the instructions of a program and processes
the data. Recent designs may contain multiple cores.

Deadlock A situation where one or more threads are waiting for a resource
that will never become available. There are various ways to introduce such
deadlock situations into an OpenMP application. For example, a barrier in-
serted at a point not encountered by all threads, or improper calls to OpenMP
locking routines, will result in deadlocks.

Directive sentinel A special sequence of characters that indicates that the line
is to be interpreted as a compiler directive. OpenMP directives in Fortran
must begin with a directive sentinel. The format of the sentinel differs between
fixed and free-form source files.

DSM Distributed shared memory. A DSM system provides a shared-memory
model in a physically distributed-memory system. The shared-memory ab-
straction may be realized via hardware, software, or a combination of the two.
DSM platforms may differ in the way in which the distributed shared data
is managed. By providing a shared address space, DSM systems have the
potential to make the OpenMP programming model applicable to distributed
memory systems.

Environment variable A Unix shell variable that may be set by the user to
influence some aspect of a program’s execution behavior. The OpenMP API
includes a set of environment variables to control aspects of the program’s
execution, including the number of threads to use, the default work schedule,
and the use of nested parallelism.

324 Appendix A

False sharing A situation where multiple threads update different values in
the same cache line. Since the granularity of information used by cache coher-
ence mechanisms is a cache line, it cannot distinguish between the individual
locations updated by the threads. False sharing results in poor performance,
but it is not an error.

Latency Time spent waiting for a response. Memory latency is the time it
takes for data to arrive after the initiation of a memory reference. A data
path with high memory latency would be inappropriate for moving small
amounts of data.

Livelock A situation where a thread is waiting for a resource that will never
become available. A livelock is similar to a deadlock, except that the state of
the processes involved in the livelock constantly changes with regards to each
other, none progressing. Livelock is a special case of resource starvation.

Lock A mechanism for controlling access to a resource in an environment where
there are multiple threads of execution. Locks are commonly used when
multiple threads need to perform some activity, but only one at a time is
allowed to do so. Initially, all threads contend for the lock. One thread gets
exclusive access to the lock and performs the task. Meanwhile, the other
threads wait for the lock to be released. When that happens, a next thread
takes ownership of the lock, and so forth. There may be a special data type
for declaring locks. In a C/C++ OpenMP program, this is the omp_lock_t

type. In Fortran, it must be an integer variable of kind=omp_lock_kind.

Memory fence A set of instructions that cause the processor to enforce an
ordering constraint on memory operations issued before and after the bar-
rier instruction. The exact nature of the ordering constraint is hardware
dependent and is defined by the architecture’s memory model.

Mflop/s Million floating-point operations per second. Mflop/s is a performance
metric that can be calculated if the number of floating-point operations is
known. Except for certain algorithms, computing the Mflop/s for an entire
application could be extremely complicated. Hardware counters on some
processors can be used to measure the number of floating-point operations
(flops) executed. Dividing flops by execution time in seconds and scaling by
by 10−6 gives Mflop/s. Related metrics are Gflop/s (gigaflop/s) and Tflop/s’
(teraflop/s).

Glossary 325

MPI Message Passing Interface. This is a de facto standard API that was de-
veloped to facilitate programming for distributed-memory architectures. MPI
consists of a collection of library routines. In an MPI program, multiple pro-
cesses operate independently and communicate data via messages that are
inserted by the programmer. The MPI API specifies the syntax of the func-
tions and format of the messages. MPI is increasingly mixed with OpenMP
to create a program that is tailored to exploit both the distributed memory
and shared memory, as supported in a cluster of shared-memory nodes. This
model can also be used to take advantage of hierarchical parallelism inherent
in an application.

MPI Forum An open group with representatives from many organizations
that define and maintain the MPI standard. Their official website is at
http://www.mpi-forum.org.

MPP Massively parallel processor. MPPs are multiprocessing architectures
that use a very large number (such as thousands) of processors.

Multicore A microprocessor design with multiple cores integrated onto a single
processor die. Just as with the individual cores, there are vast differences
between the various designs available on the market. Among others, there are
differences in cache access and organization, system interface, and support for
executing more than one independent thread per core.

NUMA Non-uniform memory access. Typically, individual processors in small
shared memory machines can access any memory location with the same
speed. This is not necessarily the case for larger systems, and is also not
true for all small platforms. One way to enable many CPUs to share a large
amount of memory is to connect clusters of CPUs with a fast network (for
example, a shared-memory bus) to a certain chunk of memory while these
clusters are connected by a less costly network. The effect of such a structure
is that some memory may be nearer to one or more of the processors and thus
accessed faster by them. The difference in memory access time may affect the
performance of an OpenMP program.

OpenMP Architecture Review Board (ARB) An organization created to
maintain the OpenMP specifications and keep OpenMP relevant to evolving
computer architectures, programming languages, and multiprocessing para-
digms. Members of the ARB are organizations, not individuals. The website
is at http://www.openmp.org.

326 Appendix A

Parallel programming model A conceptual system to express parallel pro-
cessing algorithms and map them onto underlying multiprocessor systems.
The model engages programming languages, compilers, libraries, communi-
cation systems, parallel I/O, and applications. One such model that is well
suited for developing parallel applications on shared-memory platforms is the
shared memory model realized by the OpenMP API.

Parallel scalability The behavior of an application when an increasing number
of threads are used to solve a problem of constant size. Ideally, increasing the
number of threads from 1 to P would yield a parallel speed-up of P.

Parallel speedup The ratio of the wall-clock time measured for the execution
of the program by one thread to the wall-clock time measured for execution
by multiple threads. Theoretically, a program run on P threads should run
P times as fast as the same program executed on only one thread.

Peak performance The maximum performance of a processor or system, often
measured in Mflops/s, Gflop/s, or Tflop/s. At the processor level, this value
is obtained by assuming that the maximum number of the fastest floating-
point instructions (typically the multiply and add) are executed without any
delay (caused by a cache miss for example). For an entire system, the single-
processor, or core, peak performance is multiplied by the number of processors
or cores. The actual performance observed depends on many factors, includ-
ing the processor and system characteristics, the algorithm used, and the
compiler.

Process An entity created by the operating system code and data. At run
time, it will have its own set of registers, address space, program counter, and
stack pointer. A process can have multiple threads of control and instructions,
which is the basis for the OpenMP programming model.

Processors A physical resource that may be used to execute programs. Many
different processors have been built, some of which are designed for a special
purpose. A general-purpose processor is typically able to execute multiple
instructions simultaneously since it has functional units that can operate in-
dependently. A conventional processor executes multiple processes via time
slicing, in which each gets some share of the overall CPU time. To achieve
this, the state of a program including the values in its registers, is saved and
the state of another process loaded. This is known as context switching. Con-
text switching is considerably faster for threads, as they share some of their

Glossary 327

state. The processes or threads appear to be executing in parallel. A single
processor may also be able to execute multiple instruction streams simultane-
ously by interleaving their instructions or by permitting two or more threads
to issue instructions. Machines with this capability appear to the user to be
a shared memory parallel computer.

Pthreads Thread implementations that adhere to the IEEE POSIX standard.
Pthreads are an effort to standardize the programming interface for the use
of threads. The interface defines a set of C language programming types,
procedure calls, and a thread library. As a library, the Pthreads standard
does not fully address such important matters as memory consistency.

Race condition A programming fault that produces unpredictable program
behavior due to unsynchronized concurrent executions. Race conditions are
hard to find with conventional debugging methods and tools. Most common
is the data race condition that occurs when two or more threads access the
same shared variable simultaneously with at least one thread modifying its
value. Without the appropriate synchronization to protect the update, the
behavior will be indeterminate, and the results produced by the program will
differ from run to run. Other, more general race conditions are also possible.

Sequential consistency Defined by Leslie Lamport [104], a (shared memory)
parallel program implementation conforms to this property if it guarantees
that “the result of any execution is the same as if the operations of all the
processors were executed in some sequential order, and the operations of
each individual processor appear in this sequence in the order specified by its
program.” If applied to an OpenMP program, this would require a memory
update after each operation that modifies a shared variable and, potentially,
before each use of a shared variable. This would obviously make if extremely
difficult to write efficient code, which is the reason OpenMP does not provide
a sequentially consistent memory model.

SMP A Shared Memory Parallel or Symmetric MultiProcessor system whose
individual processors share memory in such a way that each of them can
access any memory location in the same amount of time. While many small
shared-memory machines are symmetric in this sense, larger systems do not
necessarily satisfy this definition. On non-symmetric systems, the physical
distance between a CPU and a memory store will determine the length of
time it takes to retrieve data from memory. Memory access times do not

328 Appendix A

affect the OpenMP programming model, but can have a significant impact
on the performance of the application. The term can also refer to other kinds
of shared-memory computers. In this book, we use the the acronym SMP
broadly to refer to all platforms where multiple processes share memory.

SPMD programming A single program multiple data programming style in
which a number of different processes or threads perform essentially the same
computation but on different sets of data. The user has to explicitly assign
subdomains of the data to the threads. OpenMP can be used to write SPMD-
style programs. Ideally, such a program would consist of one large parallel
region, within which each thread would use its own thread ID to determine its
share of the work, such as computing individual loop bounds. Explicit syn-
chronization must be inserted by the programmer. While more cumbersome
to program than simple loop-level parallelism, this approach usually achieves
better scalability.

Structured block For C/C++ programs, an executable statement with a
single entry at the top and a single exit at the bottom. In Fortran code, it
refers to a block of executable statements with a single entry at the top and
a single exit at the bottom.

Superlinear speedup Performance of more than a factor of P over the single
thread execution when using P threads, for example, a speedup of 5 on 4
threads. One reason this might occur is that a program may have access
to more cache and it is possible that less data must be fetched from main
memory at run time. If each thread had its own processor or core to run on,
the aggregate cache may be considerably larger than that of a single processor.
For example, assume that a processor is equipped with a 1 MByte cache. If
a single-threaded program updates an array that requires 4 MByte storage,
75% of the array does not fit in cache. If, however, 4 threads on 4 processors
are used, where each thread operates on a subset of the array, it is possible
that all accesses are satisfied directly from cache. Since this is much faster
than main memory, superlinear speedup will be observed.

Synchronization Any mechanism that coordinates the actions of multiple
threads. Synchronization is generally essential in order to ensure correctness
of the application. By default, an OpenMP program has barrier synchro-
nization points at the end of parallel work-sharing constructs and parallel
regions, where all threads have to wait until the last thread has finished its

Glossary 329

work. Synchronization may be expressed in many ways. OpenMP provides
several constructs for explicit thread synchronization that should be used if
accesses to shared data need to be ordered or if interference between multiple
updates is to be avoided. These include critical regions, atomic updates, lock
routines, and barriers. Memory synchronization, where thread-local shared
data is made consistent with the process-wide values, is achieved via flushing.

Thread An operating system entity that executes a stream of instructions. A
process is executed by one or more threads and many of its resources (e.g.,
page tables, address space) are shared among these threads. However, a
thread has some resources of its own, including a program counter and an
associated stack. Since so few resources are involved, it is considerably faster
to create a thread or to context switch between threads than it is to perform
the same operation for processes. Sometimes threads are known as lightweight
processes. In Unix environments, a thread is generally the smallest execution
context.

Thread ID A means to identify a thread. In OpenMP the thread IDs are
consecutive integer numbers. The sequence starts at zero, which is reserved
for the master thread, and ends with P − 1, if P threads are used. The
omp_get_thread_num() function call enables a thread to obtain its thread
ID. This can be used, for example, to compute a thread-specific workload in
an SPMD type of algorithm, to determine an index into an array, or to label
printed messages with a thread-specific number.

Thread safe A property that guarantees software will execute correctly when
run on multiple threads simultaneously. Programs that are not thread safe
can fail due to race conditions or deadlocks when run with multiple parallel
threads. Particular care has to be taken when using library calls or shared
objects and methods within OpenMP parallel regions.

TLB Translation-lookaside buffer. TLB is an important part of the memory
system. It is a relatively small cache that maintains information on the phys-
ical pages of memory associated with a running process. If the address of
data needed by a thread is loaded but not covered through the TLB, a TLB
miss occurs. Setting up a new entry in the TLB is an expensive operation
that should be avoided where possible.

Wall-clock time A measure of how much actual time it takes to complete
a task, in this case a program or part of a program. Wall-clock time is

330 Appendix A

an important metric for parallel programs. Although the aggregate CPU
time most likely goes up, the wall clock time of a parallel application should
decrease when an increasing number of threads is used to execute it. Care
needs to be taken when measuring this value. If there are more threads than
processors or cores on the system, or if the load is such that a thread will
not have a processor or core to itself, there may be little or no reduction in
wall-clock time when adding a thread.

References

[1] Omni OpenMP compiler project. http://phase.hpcc.jp/Omni/.

[2] OpenMP website. http://www.openmp.org.

[3] OProfile. http://oprofile.sourceforge.net/about/.

[4] The Beowulf Cluster website. http://www.beowulf.org, 2006.

[5] The Open64 compiler. http://open64.sourceforge.net, 2006.

[6] S. V. Adve and K. Gharachorloo. Shared Memory Consistency Models. IEEE
Computer, 29(12):66–76, 1996.

[7] M. J. Aftosmis. Cart3d v1.3. http://people.nas.nasa.gov/~aftosmis/

cart3d/, 2007.

[8] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,
techniques, and tools. Addison-Wesley Longman Publishing Co., Boston, MA,
1986.

[9] George Almasi, Calin Cascaval, Jose G. Castanos, Monty Denneau, Derek
Lieber, Jose E. Moreira, and Henry S. Warren Jr. Dissecting Cyclops: A
detailed analysis of a multithreaded architecture. SIGARCH Comput. Archit.
News, 31(1):26–38, 2003.

[10] G.S. Almasi and A. Gottlieb. Highly Parallel Computing. Ben-
jamin/Cummings, Menlo Park, CA, 1994.

[11] Cristinana Amza, Alan L. Cox, Sandhya Dwarkadas, Pete Keleher, Honghui
Lu, Ramakrishnan Rajamony, Weimin Yu, and Willy Zwaenepoel. Tread-
marks: Shared memory computing on networks of workstations. IEEE Com-
puter, 29(2):18–28, Feburary 1996.

332 References

[12] C. Scott Ananian, Krste Asanovic, Bradley C. Kuszmaul, Charles E. Leiser-
son, and Sean Lie. Unbounded transactional memory. In Proceedings of the
Eleventh International Symposium on High-Performance Computer Architec-
ture, pages 316–327. Feb 2005.

[13] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen.
LAPACK Users’ Guide. Society for Industrial and Applied Mathematics,
Philadelphia, PA, third edition, 1999.

[14] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen.
LAPACK – Linear Algebra PACKage Version 3.0. http://www.netlib.org/
lapack/index.html, 2000.

[15] G. R. Andrews. Foundations of Multithreaded, Parallel, and Distributed Pro-
gramming. Addison-Wesley, Reading, MA, 2000.

[16] Vishal Aslot, Max J. Domeika, Rudolf Eigenmann, Greg Gaertner, Wesley B.
Jones, and Bodo Parady. SPEComp: A New Benchmark Suite for Measuring
Parallel Computer Performance. In WOMPAT ’01: Proceedings of the Inter-
national Workshop on OpenMP Applications and Tools, pages 1–10, London,
UK, 2001. Springer-Verlag.

[17] E. Ayguadé, M. Gonzàlez, X. Martorell, J. Oliver, J. Labarta, and N. Navarro.
NANOSCompiler: A research platform for OpenMP extensions. In The First
European Workshop on OpenMP, pages 27–31, Lund, Sweden, October 1999.

[18] E. Ayguad, M. Gonzalez, X. Martorell, and G. Jost. Employing Nested
OpenMP for the Parallelization of Multi-Zone Computational Fluid Dynamics
Applications. In Proceedings of the 18th International Parallel and Distributed
Processing Symposium (IPDPS’2004), 2004.

[19] ed. B. Leasure. Parallel processing model for high level programming lan-
guages. Draft Proposed American National Standard for Information Pro-
cessing Systems, 1994.

[20] D. Bailey, E. Barscz, J. Barton, D. Browning. R. Carter, L. Dagum, R. Fa-
toohi, S. Fineberg, P. Frederickson, T. Lasinski, R. Schreiber, H. Simon,
V. Venkatakrishnan, and S. Weeratunga. The NAS Parallel Benchmarks.
NAS Technical Report RNR-94-007, 1994.

References 333

[21] D. Bailey, T. Harris, W. C. Saphir, R. F. Van der Wijngaart, A. C. Woo,
and M. Yarrow. The NAS Parallel Benchmarks 2.0. NAS Technical Report
NAS-95-020, 1995.

[22] E. Barton, J. Cownie, and M. McLaren. Message Passing on the Meiko CS-2.
Parallel Computing, 20(4):497–507, 1994.

[23] BBN. Butterfly Parallel Processor Overview. Technical report, BBN Labo-
ratories Inc., 1986. BBN Report No. 6149, version 2.

[24] M. J. Berger, M. J. Aftosmis, D. D. Marshall, and S. M. Murman. Per-
formance of a new CFD flow solver using a hybrid programming paradigm.
Journal of Parallel and Distributed Computing, 65:414–423, 2005.

[25] A.J. Bernstein. Analysis of programs for parallel processing. IEEE Transac-
tions on Computers, EC-15(5):757–762, 1966.

[26] John Bircsak, Peter Craig, RaeLyn Crowell, Zarka Cvetanovic, Jonathan Har-
ris, C. Alexander Nelson, and Carl D. Offner. Extending OpenMP for NUMA
Machines. In Proceedings of the 2000 ACM/IEEE conference on Supercom-
puting (CDROM), Dallas, TX, November 2000. IEEE Computer Society.

[27] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E.
Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: An Efficient Multithreaded
Runtime System. Journal of Parallel and Distributed Computing, 37(1):55–69,
1996.

[28] L. Bomans and D. Roose. Benchmarking the iPSC/2 Hypercube Multipro-
cessor. Concurrency: Practice and Experience, 1(1):3–18, 1989.

[29] Christian Brunschen and Mats Brorsson. OdinMP/CCp – a portable im-
plementation of OpenMP for C. Concurrency – Practice and Experience,
12(12):1193–1203, 2000.

[30] J. M. Bull and D. O’Neill. A Microbenchmark Suite for OpenMP 2.0. In
Proceedings of the Third European Workshop on OpenMP (EWOMP’01),
Barcelona, Spain, September 2001.

[31] J. M. Bull and M. D. Westhead. Towards OpenMP for Java. In in Proceedings
of the Second European Workshop on OpenMP, pages 98–105, Edinburgh,
UK, 2000.

334 References

[32] Mihai Burcea and Michael Voss. A runtime optimization system for OpenMP.
In WOMPAT ’03, pages 42–53, 2003.

[33] Mihai Burcea and Michael Voss. Managing Compilation Overheads in a Run-
time Specializer for OpenMP. In IASTED PDCS, pages 181–186, 2005.

[34] K.M. Chandy and J. Misra. Parallel Program Design: A Foundation.
Addison-Wesley, Reading, MA, 1988.

[35] B. Chapman, F. Bregier, A. Patil, and A. Prabhakar. Achieving high perfor-
mance under OpenMP on ccNUMA and software distributed shared memory
systems. Concurrency and Computation Practice and Experience, 14:1–17,
2002.

[36] Barbara M. Chapman, Lei Huang, Haoqiang Jin, Gabriele Jost, and Bro-
nis R. de Supinski. Toward Enhancing OpenMP’s Work-Sharing Directives.
In Europar 2006, pages 645–654, 2006.

[37] Barbara M. Chapman, Lei Huang, Gabriele Jost, Haoqiang Jin, and Bro-
nis R. de Supinski. Support for flexibility and user control of worksharing
in OpenMP. Technical Report NAS-05-015, National Aeronautics and Space
Administration, October 2005.

[38] Y.-K. Chen, M. Holliman, E. Debes, S. Zheltov, A. Knyazev, S. Bratanov,
R. Belenov, and I. Santos. Media applications on hyperthreading technology.
Intel Technology Journal, 1, 2002.

[39] Yongjian Chen, Jianjiang Li, Shengyuan Wang, and Dingxing Wang. ORC-
OpenMP: An OpenMP compiler based on ORC. In International Conference
on Computational Science, pages 414–423, 2004.

[40] cOMPunity – the community of OpenMP users. http://www.compunity.

org/.

[41] Keith D. Cooper and Linda Torczon. Engineering a Compiler. Morgan Kauf-
mann Publishers, Inc., SanFrancisco, 2004.

[42] J. J. Costa, T. Cortes, X. Martorell, E. Ayguade, and J. Labarta. Running
OpenMP Applications Efficiently on an Everything-Shared SDSM. In Pro-
ceedings of the 18th International Parallel and Distributed Processing Sympo-
sium (IPDPS ’04). IEEE, 2004.

References 335

[43] Alan L. Cox, Eyal de Lara, Charlie Hu, and Willy Zwaenepoel. A performance
comparison of homeless and home-based lazy release consistency protocols in
software shared memory. In HPCA ’99: Proceedings of the 5th International
Symposium on High Performance Computer Architecture, page 279, Wash-
ington, DC, 1999. IEEE Computer Society.

[44] D.E. Culler, J.P. Singh, and A. Gupta. Parallel Computer Architecture, A
Hardware/Software Approach. Morgan Kaufmann Publishers, Inc., San Fran-
cisco, CA, 1999.

[45] Matthew Curtis-Maury, Xiaoning Ding, Christos D. Antonopoulos, and Dim-
itrios S. Nikolopoulos. An Evaluation of OpenMP on Current and Emerging
Multithreaded/Multicore Processors. In Proceedings of the 1st International
Workshop on OpenMP (IWOMP), Eugene, OR, June 2005.

[46] Matthew Curtis-Maury, James Dzierwa, Christos D. Antonopoulis, and Dim-
itros S. Nikolopoulos. Online Strategies for High-Performance Power-Aware
Thread Execution on Emerging Multiprocessors. In Parallel and Distributed
Processing Symposium, 2006 (IPDPS 2006), page 8, April 2006.

[47] Bronis R. de Supinski. The Sphinx Parallel Microbenchmark Suite. http:

//www.llnl.gov/CASC/sphinx/sphinx.html, 2001.

[48] J. B. Dennis and E. C. Van Horn. Programming semantics for multi-
programmed computations. Comm. ACM, 9(3):143–155, 1966.

[49] R. Van der Wijngaart and H. Jin. NAS Parallel Benchmarks, Multi-Zone
Versions. NAS Technical Report NAS-03-010, 2003.

[50] E. W. Dijkstra. Cooperating sequential processes. In F. Genuys, editor,
Programming Languages, pages 43–112. Academic Press, New York, 1968.

[51] E.W. Dijkstra. Solution of a problem in concurrent programming control.
Comm. ACM, 8(9):569, 1965.

[52] M. Jahed Djomehri and Rupak Biswas. Performance enhancement strategies
for multi-block overset grid CFD applications. Parallel Computing, 29:1791–
1810, 2003.

[53] Rudolf Eigenmann, Jay Hoeflinger, Robert H. Kuhn, David Padua, Ayon
Basumallik, Seung-Jai Min, and Jiajing Zhu. Is OpenMP for Grids? In In-
ternational Parallel and Distributed Processing Symposium (IPDPS’02), Fort
Lauderdale, FL, April 2002.

336 References

[54] Etnus. TotalviewTM. http://www.etnus.com/.

[55] M. J. Flynn. Some Computer Organizations and Their Effectiveness. IEEE
Transactions on Computing, C-21:948–960, 1972.

[56] European Center for Parallelism of Barcelona. The Paraver Performance
Analysis System. http://www.cepba.upc.edu/paraver/.

[57] High Performance Fortran Forum. High Performance Fortran Language Spec-
ification. Scientific Programming, 2(1):1 – 270, 1993.

[58] MPI Forum. MPI-2: Extensions to the Message-Passing Interface. http:

//www.mpi-forum.org/docs/mpi-20-html/mpi2-report.html, 1997.

[59] Parallel Computing Forum. PCF Parallel Fortran Extensions, V5.0. ACM
Sigplan Fortran Forum, 10(3):1–57, 1991.

[60] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker. Solving
Problems on Concurrent Processors , volume 1. Prentice Hall, Englewood
Cliffs, 1988.

[61] G. C. Fox, R. D. Williams, and P. C. Messina. Parallel Computing Works!
Morgan Kaufmann Publishers, Inc., 1994.

[62] S. Frank, H. Burkhardt, and J. Rothnie. The KSR1: Bridging the Gap
between Shared Memory and MPPs. In Proceedings of the COMPCON Digest
of Papers, pages 285–294, 1993.

[63] K. Fraser. Practical lock-freedom. PhD thesis, University of Cambridge, 2003.

[64] M. Frumkin. Efficiency and Scalability of an Explicit Operator on an IBM
POWER4 System. Technical Report NAS-02-008, NASA Ames Research
Center, August 2002.

[65] M. Galles and E. Williams E. Performance Optimizations, Implementation
and Verification of the SGI Challenge Multiprocessor. In Proceedings of the
27th Hawaii International Conference on System Sciences Vol 1: Architec-
ture, 1993.

[66] M. Gonzalez, E. Ayguade, X. Martorell, J. Labarta, N. Navaro, and
J. Oliver. NanosCompiler: Supporting Flexible Multilevel Parallelism in
OpenMP. Concurrency: Practice and Experience, Special Issue on OpenMP,
12(12):1205–1218, 2000.

References 337

[67] Silicon Graphics. MIPSPro 7 Fortran 90 Commands and Directives Reference
Manual 007-3696-03. Reference manual, Silicon Graphics Inc., 2002.

[68] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Tech-
niques. Morgan Kaufmann Publishers, Inc., San Francisco, CA, 1993.

[69] W. Gropp, E. Lusk, and A. Skjellum. Using MPI. Portable Parallel Program-
ming with the Message-Passing Interface. MIT Press, Cambridge, MA, 2nd
edition, 1999.

[70] S. Gunther, F. Binns, D. M. Carmean, and J. C. Hall. Managing the impact
of increasing microprocessor power consumption. Intel Technology Journal,
Q1, 2001.

[71] Lance Hammond, Vicky Wong, Mike Chen, Brian D. Carlstrom, John D.
Davis, Ben Hertzberg, Manohar K. Prabhu, Honggo Wijaya, Christos
Kozyrakis, and Kunle Olukotun. Transactional Memory Coherence and Con-
sistency. In Proceedings of the 31st Annual International Symposium on Com-
puter Architecture, page 102. IEEE Computer Society, Jun 2004.

[72] P. Brinch Hansen. Studies in Computational Science. Prentice-Hall, Engle-
wood Cliffs, NJ, 1995.

[73] Tim Harris and Keir Fraser. Language support for lightweight transactions.
In Proceedings of the 2003 ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages and Applications, OOPSLA, pages 388–
402, 2003.

[74] J.L. Hennessy and D.A. Patterson. Computer Architecture: A Quantita-
tive Approach. Morgan Kaufmann Publishers, Inc., San Francisco, CA, 2nd
edition, 1996.

[75] M. Herlihy, V. Luchangco, M. Moir, and W.N. Scherer. Software transactional
memory for dynamic-sized data structures. In Twenty-Second Annual ACM
SIGACT-SIGOPS Symposium on Principles of Distributed Computing, 2003.

[76] Maurice Herlihy, J. Eliot, and B. Moss. Transactional memory: Architec-
tural support for lock-free data structures. In ISCA ’93: Proceedings of the
20th Annual Intl. Symposium on Computer Architecture, pages 289–300, New
York, NY, 1993. ACM Press.

338 References

[77] O. Hernandez, F. Song, B. Chapman, J. Dongarra, B. Mohr, S. Moore,
and F. Wolf. Performance Instrumentation and Compiler Optimizations for
MPI/OpenMP Applications. In Proceedings of the 2nd International Work-
shop on OpenMP (IWOMP), 2006.

[78] Oscar Hernandez, Chunhua Liao, and Barbara Chapman. Dragon: A static
and dynamic tool for OpenMP. In Workshop on OpenMP Applications and
Tools (WOMPAT ’04), Houston, TX, 2004. University of Houston.

[79] Oscar Hernandez, Chunhua Liao, and Barbara Chapman. A tool to display
array access patterns in OpenMP programs. In PARA’04 Workshop On State-
Of-The-Art In Scientific Computing. Springer, 2004.

[80] D. Hillis. The Connection Machine. MIT Press, Cambridge, MA, 1985.

[81] C.A.R. Hoare. Monitors: An operating system structuring concept. Comm.
ACM, 17(10):549–557, 1974.

[82] Jay P. Hoeflinger. Extending OpenMP to Clusters. White paper, Intel Cor-
poration, 2006.

[83] Y. Charlie Hu, Honghui Lu, Alan L. Cox, and Willy Zwaenepoel. OpenMP
for networks of SMPs. Journal of Parallel and Distributed Computing,
60(12):1512–1530, 2000.

[84] Lei Huang, Barbara Chapman, and Zhenying Liu. Towards a more efficient
implementation of OpenMP for clusters via translation to Global Arrays.
Parallel Computing, 31(10-12), 2005.

[85] K. Hwang. Advanced Computer Architecture: Parallelism, Scalability, Pro-
grammability. McGraw-Hill, New York, 1993.

[86] IBM. Processor affinity on AIX. http://www-128.ibm.com/

developerworks/aix/library/au-processinfinity.html.

[87] Intel. IntelTM thread checker and thread profiler. http://www.intel.com/

software/products/threading, 2003.

[88] Q. Jacobson. UltraSPARC IV processors. In Microprocessor Forum, 2003.

[89] H. Jin and R. Van der Wijngaart. Performance Characteristics of the multi-
zone NAS Parallel Benchmarks. Proceedings of the International Parallel and
Distributed Processing Symposium (IPDPS), 2004.

References 339

[90] H. Jin, M. Frumkin, and J. Yan. The OpenMP Implementation of NAS
Parallel Benchmarks and Its Performance. NAS Technical Report NAS-99-
011, 1991.

[91] H. Jin, G. Jost, J. Yan, E. Ayguade, M. Gonzalez, and X. Martorell. Au-
tomatic Multilevel Parallelization using OpenMP. Scientific Programming,
11(2):177–190, 2003.

[92] S. P. Johnson, Emyr Evans, Haoqiang Jin, and Cos S. Ierotheou. The Para-
Wise Expert Assistant – Widening Accessibility to Efficient and Scalable Tool
Generated OpenMP Code. In WOMPAT ’04, pages 67–82, 2004.

[93] Gabriele Jost, Haoqiang Jin, Dieter an Mey, and Ferhat Hatay. Comparing
the OpenMP, MPI, and Hybrid Programming Paradigm on an SMP Cluster.
Proceedings of the 5th European Workshop on OpenMP, 2003.

[94] Gabriele Jost, Jesús Labarta, and Judit Gimenez. What Multilevel Parallel
Programs Do When You Are Not Watching: A Performance Analysis Case
Study Comparing MPI/OpenMP, MLP, and Nested OpenMP. In WOM-
PAT ’04, volume 3349 of Lecture Notes in Computer Science, pages 29–40.
Springer, 2004.

[95] N.P. Jouppi and D. Wall. Available instruction-level parallelism for super-
scalar and superpipelined machines. In Proceedings of ASPLOS III, pages
272–282, 1989.

[96] R. Kalla, B. Sinharoy, and J. Tendler. IBM POWER5 chip: a dualcore
multithreaded processor. IEEE Micro, 24(2):40–47, 2004.

[97] Shi-Jung Kao. Managing C++ OpenMP Code and Its Exception Handling. In
OpenMP Shared Memory Parallel Programming: International Workshop on
OpenMP Applications and Tools (WOMPAT ’03), pages 227–243. Springer-
Verlag Heidelberg, 2003.

[98] Y.-S. Kee, J.-S. Kim, and S. Ha. ParADE: An OpenMP programming envi-
ronment for SMP cluster systems. November 15–21, 2003.

[99] David Keppel. Tools and Techniques for Building Fast Portable Threads
Packages. Technical Report 93-05-06, Department of CS&E, University of
Washington, Seattle, WA, May 1993.

340 References

[100] Michael Klemm, Ronald Veldema, Matthias Bezold, and Michael Philippsen1.
A Proposal for OpenMP for Java. In Proceedings of the 2nd International
Workshop on OpenMP (IWOMP), 2006.

[101] C. H. Koelbel, D. B. Loveman, R. S. Schreiber, Guy L. Steele Jr., and M. E.
Zosel. The High Performance Fortran Handbook. MIT Press, Cambridge,
MA, 1993.

[102] V. Kumar, A: Grama, A. Gupta, and G. Karypis. Introduction to Paral-
lel Computing: Design and Analysis of Algorithms. Benjamin/Cummings
Publishing Company, 1994.

[103] Los Alamos National Laboratory. The Parallel Ocean Program (POP). http:
//climate.lanl.gov/Models/POP/, 2004.

[104] L. Lamport. How to make a multiprocessor computer that correctly executes
multiprocess programs. IEEE Trans. on Software Engineering, C-28(9):690–
691, 1979.

[105] Leslie Lamport. How to make a correct multiprocess program execute cor-
rectly on a multiprocessor. IEEE Trans. Comput., 46(7):779–782, 1997.

[106] J.P. Laudon and D. Lenoski. The SGI Origin: A ccNUMA highly scalable
server. In Proceedings of the 24th Int. Symposium on Computer Architecture,
1997.

[107] M. Lee, B. Whitney, and N. Copty. Performance and Scalability of OpenMP
Programs on the Sun FireTM E25K Throughput Computing Server. In WOM-
PAT ’04, pages 19–28, Houston, TX, 2004.

[108] B. Lewis and D. Berg. Multithreaded Programming with Pthreads. Sun Mi-
crosystems Press, Mountain View, CA, 1998.

[109] J. Li and J. F. Martinez. Dynamic power-performance adaptation of parallel
computation on chip multiprocessors. In Intl. Symp. on High-Performance
Computer Architecture, Feb. 2006.

[110] J. Li and J. F. Martnez. Power-performance implications of thread-level
parallelism in chip multiprocessors. In Intl. Symp. on Performance Analysis
of Systems and Software(ISPASS), 2005.

References 341

[111] Jian Li, Jose F. Martinez, and Michael C. Huang. The Thrifty Barrier:
Energy-Aware Synchronization in Shared-Memory Multiprocessors. In HPCA
’04: Proceedings of the 10th International Symposium on High Performance
Computer Architecture, page 14, Washington, DC, 2004. IEEE Computer
Society.

[112] Chunhua Liao, Oscar Hernandez, Barbara Chapman, Wenguang Chen, and
Weimin Zheng. OpenUH: An optimizing, portable OpenMP compiler. In 12th
Workshop on Compilers for Parallel Computers, 2006.

[113] Chunhua Liao, Zhenying Liu, Lei Huang, and Barbara Chapman. Evalu-
ating OpenMP on chip multithreading platforms. In Proceedings of the 1st
International Workshop on OpenMP (IWOMP), Eugene, OR, June 2005.

[114] N.R. Lincoln. Technology and design tradeoffs in the creation of a modern su-
percomputer. In Supercomputers. Class VI Systems: Hardware and Software,
pages 83–111. North-Holland, Amsterdam, 1986.

[115] Chun Liu, Anand Sivasubramaniam, Mahmut Kandemir, and Mary Jane Ir-
win. Exploiting Barriers to Optimize Power Consumption of CMPs. In IPDPS
’05: Proceedings of the 19th IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS’05) - Papers, page 5.1, Washington, DC, 2005.
IEEE Computer Society.

[116] Zhenying Liu, Barbara Chapman, Yi Wen, Lei Huang, and Oscar Hernandez.
Analyses for the translation of OpenMP codes into SPMD style with array
privatization. In OpenMP Shared Memory Parallel Programming: Interna-
tional Workshop on OpenMP Applications and Tools, WOMPAT ’03, June
26-27, 2003. Proceedings, volume 2716 of Lecture Notes in Computer Science,
pages 26–41. Springer-Verlag, Heidelberg, June 2003.

[117] Zhenying Liu, Barbara Chapman, Tien-Hsiung Weng, and Oscar Hernandez.
Improving the performance of OpenMP by array privatization. In OpenMP
Shared Memory Parallel Programming: International Workshop on OpenMP
Applications and Tools (WOMPAT ’03), pages 244–259. Springer-Verlag Hei-
delberg, 2003.

[118] Ami Marowka, Zhenying Liu, and Barbara Chapman. OpenMP-Oriented
applications for distributed shared memory architectures. Concurrency and
Computation: Practice and Experience, 16(4):371–384, April 2004.

342 References

[119] X. Martorell, J. Labarta, N. Navarro, and E. Ayguade. Nano-threads library
design, implementation and evaluation. Technical Report UPC-DAC-1995-33,
Universitat Politecnica de Catalunya, 1995.

[120] Xavier Martorell, Jesus Labarta, Nacho Navarro, and Eduard Ayguade. A
Library Implementation of the Nano-Threads Programming Model. In Euro-
Par, Vol. II, pages 644–649, 1996.

[121] H. Matsuba and Y. Ishikawa. OpenMP on the FDSM Software Distributed
Shared Memory. In Fifth European Workshop on OpenMP, EWOMP’03,
Aachen, Germany, September, 2003.

[122] G. Matthews, R. Hood, H. Jin, S. P. Johnson, and C. S. Ierotheou. Automatic
relative debugging of OpenMP programs. In European Workshop of OpenMP
(EWOMP’03), 2003.

[123] Timothy G. Mattson, Berverly A. Sanders, and Berna Massingill. Patterns
for Parallel Programming. Addison-Wesley Professional, 2004.

[124] D. J. Mavriplis, M. J. Aftosmis, and M. Berger. High Resolution Aerospace
Applications Using the NASA Columbia Supercomputer. International Jour-
nal of High Performance Computing Applications, 21:106–126, 2007.

[125] Cameron McNairy and Rohit Bhatia. Montecito: A Dual-Core, Dual-Thread
Itanium Processor. IEEE Micro, 25(2):10–20, 2005.

[126] J. Merlin. Distributed OpenMP: Extensions to OpenMP for SMP clus-
ters. In 2nd European Workshop on OpenMP (EWOMP’00), Edinburgh,
UK, September, 2000.

[127] Sun Microsystems. Solaris Memory Placement Optimization and Sun Fire
Servers. http://www.sun.com/servers/wp/docs/mpo_v7_CUSTOMER.pdf.

[128] Sun Microsystems. Sun Studio 11 Performance Analyzer. http://docs.sun.
com/app/docs/doc/819-3687.

[129] Sun Microsystems. Sun Studio Compilers and Tools. http://developers.

sun.com/sunstudio.

[130] Sun Microsystems. Sun Studio Thread Analyzer. http://developers.sun.
com/sunstudio/.

References 343

[131] Sun Microsystems. UltraSPARC r© III Cu User’s Manual. http://www.sun.
com/processors/manuals/USIIIv2.pdf.

[132] Sun Microsystems. UltraSPARC r© IV Processor User’s Manual Supplement.
http://www.sun.com/processors/manuals/USIV_v1.0.pdf.

[133] Seung-Jai Min, Ayon Basumallik, and Rudolf Eigenmann. Optimizing
OpenMP programs on software distributed shared memory systems. Inter-
national Journal of Parallel Programming, 31(3):225–249.

[134] Seung Jai Min, Seon Wook Kim, Michael Voss, Sang Ik Lee, and Rudolf
Eigenmann. Portable compilers for OpenMP. In WOMPAT ’01: Proceedings
of the International Workshop on OpenMP Applications and Tools, pages
11–19. Springer-Verlag, 2001.

[135] K. Miura and K. Uchida. FACOM vector processor VP-100/VP-200. In J.S.
Kowalik, editor, High-Speed Computation, volume 7 of NATO ASI Series F:
Computer and System Sciences, pages 127–138. Springer, Berlin, 1984.

[136] B. Mohr and F Wolf. KOJAK - A Tool Set for Automatic Performance
Analysis of Parallel Applications. In Proceedings of the European Conference
on Parallel Computing (EuroPar), pages 1301–1304, 2003.

[137] MPI Forum. MPI: A Message Passing Interface. Int. Journal of Supercom-
puting Applications, 8(3/4), 1994.

[138] Steven S. Muchnick. Advanced compiler design and implementation. Morgan
Kaufmann Publishers, Inc., San Francisco, CA, 1997.

[139] Kengo Nakajima. Three-Level Hybrid vs. Flat MPI on the Earth Simulator:
Parallel Iterative Solvers for Finite-Element Method. RIST/Tokyo GeoFEM
Report 2002-007, 2003.

[140] J.R. Nickolls. The Design of the MasPar MP-1: A Cost-Effective massively
parallel computer. In Proceedings COMPCON Digest of Paper, pages 25–28,
1990.

[141] J. Nieplocha, R.J. Harrison, and R.J. Littlefield. Global arrays: A non-
uniform memory access programming model for high-performance computers.
The Journal of Supercomputing, (10):197–220, 1996.

344 References

[142] D. Nikolopoulos, E. Artiaga, E. Ayguade, and J. Labarta. Scaling non-regular
shared-memory codes by reusing custom loop schedules. Scientific Program-
ming, 11(2):143–158, 2003.

[143] Dimitrios S. Nikolopoulos, Theodore S. Papatheodorou, Constantine D. Poly-
chronopoulos, Jesus Labarta, and Eduard Ayguadé. Is data distribution nec-
essary in OpenMP? In Proceedings of Supercomputing ’00. IEEE Computer
Society, 2000.

[144] M. Norden, H. Löf, J. Rantakokko, and S. Holmgren. Geographical Local-
ity and Dynamic Data Migration for OpenMP Implementations of Adaptive
PDE Solvers. In Proceedings of the 2nd International Workshop on OpenMP
(IWOMP), 2006.

[145] K. Olukotun. The Case for a Single-Chip Multiprocessor. In Intl. Conf. on
Architectural Support for Programming Languages and Operating Systems,
pages 2–11, 1996.

[146] A. Osterhaug, editor. Guide to Parallel Programming on Sequent Computer
Systems. Prentice-Hall, Englewood Cliffs, NJ, 2nd edition, 1989.

[147] P. Pacheco. Parallel Programming with MPI. Morgan Kaufmann Publishers,
Inc., San Francisco, CA, 1996.

[148] P. Petersen and S. Shah. OpenMP Support in the Intel Thread Checker.
Proceedings of WOMPAT ’03 (Workshop on OpenMP Programming, Appli-
cations and Tools) 2003, Springer Lecture Notes in Computer Science, 2716:1
– 12, 2003.

[149] G.F. Pfister, W.C. Brantley, D.A. George, S.L. Harvey, W.J. Klienfelder,
K.P. McAuliffe, E.A. Melton, V.A. Norton, and J. Weiss. An introduction
to the IBM research parallel processor prototype (RP3). In Experimental
Parallel Computing Architectures, volume 1, pages 123–140. North-Holland,
Amsterdam, 1987.

[150] A. Prabhakar, V. Getov, and B. Chapman. Performance comparisons of basic
OpenMP constructs. Lecture Notes in Computer Science, 2327:413–424, 2002.

[151] The GNU Project. GDB: The GNU Project Debugger version 6.4. http:

//www.gnu.org/software/gdb/, 2004.

References 345

[152] M.J. Quinn. Parallel Computing: Theory and Practice. McGraw-Hill, New
York, NY, 1994.

[153] Ravi Rajwar and James R. Goodman. Transactional lock-free execution of
lock-based programs. In Proceedings of the Tenth Symposium on Architectural
Support for Programming Languages and Operating Systems, pages 5–17, Oct
2002.

[154] NASA Ames research Center. NAS Parallel Benchmarks. http://www.nas.

nasa.gov/Resources/Software/npb.html.

[155] R.M. Russell. The CRAY-1 computer system. Comm. ACM., 21:63–72, 1978.

[156] M. Sato, H. Harada, A. Hasegawa, and Y. Ishikawa. Cluster-enabled
OpenMP: An OpenMP compiler for the SCASH software distributed shared
memory system. Scientific Programming, Special Issue: OpenMP, 9(2,3):123–
130, 2001.

[157] Mitsuhisa Sato, Shigehisa Satoh, Kazuhiro Kusano, and Yoshio Tanaka. De-
sign of OpenMP compiler for an SMP cluster. In the 1st European Workshop
on OpenMP(EWOMP’99), pages 32–39, September 1999.

[158] S. Satoh, K. Kusano, and M. Sato. Compiler optimization techniques
for OpenMP programs. Scientific Programming, Special Issue: OpenMP,
9(2,3):131–142, 2001.

[159] Clark Scheffy. Multi-Core Processing for Dummies. Wiley Publishing, Hobo-
ken, NJ, 2006.

[160] SGI. SGI Altix Family. http://www.sgi.com/products/servers/altix.

[161] SGI. Message Passing Toolkit (MPT) User’s Guide (IRIX). http://http:

//techpubs.sgi.com, 2003.

[162] SGI. Message Passing Toolkit (MPT) User’s Guide (Linux). http://http:

//techpubs.sgi.com, 2005.

[163] Sanjiv Shah, Grant Haab, Paul Petersen, and Joe Throop. Flexible control
structures for parallelism in OpenMP. Concurrency: Practice and Experience,
12(12):1219–1239, October 2000.

346 References

[164] Nir Shavit and Dan Touitou. Software transactional memory. In Proceedings
of the 14th ACM Symposium on Principles of Distributed Computing, pages
204–213, Aug 1995.

[165] Silicon Graphics Inc. MIPSpro 7 FORTRAN 90 Commands and Directives
Reference Manual, 2002.

[166] Allinea Software. Distributed Debugging Tool (DDT). http://www.allinea.
com/.

[167] KAI Software. KAP/ProTM Toolset Reference Manual Version 4.0. http:

//developer.intel.com/software/products/kappro, 2001.

[168] Lawrence Spracklen and Santosh G. Abraham. Chip multithreading: Op-
portunities and challenges. In 11th International Conference on High-
Performance Computer Architecture, pages 248–252, 2005.

[169] T. L. Sterling, J. Salmon, D. J. Becker, and D. F. Savarese. How to Build a
Beowulf. MIT Press, Cambridge, MA, 1999.

[170] Ernesto Su, Xinmin Tian, Milind Girkar, Grant Haab, Sanjiv Shah, and Paul
Petersen. Compiler support of the workqueuing execution model for Intel
SMP architectures. In The Fourth European Workshop on OpenMP, 2002.

[171] Herb Sutter. A Fundamental Turn toward Concurrency in Software. http:

//www.ddj.com/dept/architect/184405990, February 2005.

[172] Joel M. Tendler, J. Steve Dodson, J. S. Fields Jr., Hung Le, and Balaram
Sinharoy. POWER4 system microarchitecture. IBM Journal of Research and
Development, 46(1):5–26, 2002.

[173] Xinmin Tian, Aart Bik, Milind Girkar, Paul Grey, Hideki Saito, and Ernesto
Su. Intel OpenMP C++/Fortran Compiler for Hyper-Threading Technology:
Implementation and Performance. Intel Technology Journal, 6(1):36–46, 2002.

[174] Xinmin Tian, Yen-Kuang Chen, Milind Girkar, Steven Ge, Rainer Lienhart,
and Sanjiv Shah. Exploring the Use of Hyper-Threading Technology for Mul-
timedia Applications with the Intel OpenMP Compiler. Proceedings of the
International Parallel and Distributed Processing Symposium (IPDPS), 2003.

[175] Dean M. Tullsen, Susan Eggers, and Henry M. Levy. Simultaneous Mul-
tithreading: Maximizing On-Chip Parallelism. In Proceedings of the 22th

References 347

Annual International Symposium on Computer Architecture, pages 392–403,
1995.

[176] Tien-Hsiung Weng and Barbara Chapman. Implementing OpenMP using
dataflow execution model for data locality and efficient parallel execution. In
Proceedings of the 7th workshop on High-Level Parallel Programming Models
and Supportive Environments (HIPS-7). IEEE Press, 2002.

[177] Tien-Hsiung Weng and Barbara Chapman. Toward optimization of OpenMP
codes for synchronization and data reuse. In The 2nd Workshop on Hard-
ware/Software Support for High Performane Scientific and Engineering Com-
puting (SHPSEC-03), in conjunction with the 12th International Conference
on Parallel Architectures and Compilation Techniques (PACT-03), 2003.

[178] Michael Wolfe. High-Performance Compilers for Parallel Computing.
Addison-Wesley, 1995.

[179] Y. Zhang, M. Burcea, V. Cheng, R. Ho, and M. Voss. An Adaptive OpenMP
loop Scheduler for Hyperthreaded SMPs. In Proceeding of the Intl. Conf. on
Parallel and Distributed Systems (PDCS-2004), San Francisco, CA, Septem-
ber 2004.

[180] Yun Zhang and Michael Voss. Runtime Empirical Selection of Loop Sched-
ulers on Hyperthreaded SMPs. In IPDPS, 2005.

[181] Hans Zima and Barbara Chapman. Supercompilers for parallel and vector
computers. ACM Press, New York, NY, 1991.

Index

Symbols

#ifdef OPENMP, 47
OPENMP
value of, 47

atomic construct
performance, 147

critical region
performance, 147

nowait clause
performance, 145

ordered construct
performance, 147

parallel region
performance, 148

#pragma omp flush, 114
#pragma omp for, 58
#pragma omp master, 94
#pragma omp ordered, 86
#pragma omp parallel, 53
#pragma omp section 61
#pragma omp sections, 60
#pragma omp single, 64
#pragma omp threadprivate, 118
!$omp do, 58
!$omp flush, 114
!$omp master, 94
!$omp ordered, 86
!$omp parallel, 53
!$omp section 61
!$omp sections, 60
!$omp single, 64
!$omp threadprivate, 118
!$omp workshare, 66
barrier construct, 302
firstprivate, 295
flush, 302
lastprivate, 295
nowait clause, 294

A

Active parallel region, 56, 99
Amdahl’s law, 33, 139, 161, 162, 230
ARB, 8
Array padding, 154
Atomic construct, 90, 91, 92
Atomic operation, 66
Automatic parallelization, 15
Autoscoping, 314

B

Barrier, 84, 85
incorrect use of, 254
restrictions on use of, 84

Binding thread set, 53

C

Cache coherence, 6, 153, 261
Cache memory, 4, 29, 125, 126, 128
Cache miss, 126
Cart3D application, 202
cc-NUMA, 4, 192, 193
timings, 144

Chip multithreading (CMT), 309
chunk size, 81
Clauses, 35, 70
copyin, 110, 119
copyprivate, 110
default, 77
firstprivate, 75
if, 100, 101
lastprivate, 73
nowait, 78
num threads, 98, 102, 102, 111
ordered, 102–104
private, 72
processing of, 71
reduction, 105–107
schedule, 79
shared, 71

Cluster, 11
Columnwise storage, 128
Combined parallel work-sharing constructs
as shortcuts, 68
benefits of, 69
clauses for, 68

Computational fluid dynamic applications,
192

Conditional OpenMP compilation, 47
sentinel in Fortran, 48, 49, 50

Constructs, 52
Copyin clause, 110, 119
Copyprivate clause, 110
CPU time, 138
Critical construct, 87, 88, 89
name for, 87

Critical section, 87

350 Index

D

Data dependence, 27
Data dependence analysis, 137
Data distribution language extensions, 312,

314
Data parallelism, 192
Data race, 244
condition, 32, 73, 122, 244, 245
debugging, 275
detection, 275

Data replication, 205
Data reuse pattern, 27
Data-sharing attributes, 43, 72
default rules, 43, 44
default rules for nested regions, 218

Deadlock, 268
examples, 268

Debugging, 271
data race detection, 275
example session, 273
sequential version, 271
tool support, 272
verification parallel version, 272

def-sched-var, 97, 99
Default clause, 77, 78
Default schedule, 97
directive
implementation of, 302

Directives, 9, 25, 35, 52
executable, 52
fixed-source format in Fortran, 36
free-source format in Fortran, 36
sentinel in Fortran, 35, 36
subtle errors, 255
syntax, 35, 36

Distributed shared memory (DSM), 11
Distributed-memory computers, 11
Domain decomposition, 203, 203, 211
dyn-var, 97, 98, 120
Dynamic number of threads, 97
Dynamic schedule, 79, 238
implementation of, 292, 303

E

Efficiency, 139
Elapsed time, 138, 230
Environment variables, 97
OMP DYNAMIC, 98
OMP NESTED, 99
OMP NUM THREADS, 97
OMP SCHEDULE, 99, 103

EPCC microbenchmarks, 142
Execution environment, 95

F

False sharing, 153, 241, 245
First Touch, 193
Firstprivate clause, 75, 76
flowCart application, 201
Flush directive, 29, 114, 114, 115–118
incorrect use of, 264

for loops
extending range of C/C++ loops covered,

317
Fork-join programming model, 24
Fortran array statements, 67, 68

G

gprof, 229
Guided schedule, 79

H

Hardware counter, 239
cache miss, 240
instructions, 239
TLB miss, 240

Heap storage, 280, 299
Hybrid programming, 191, 208, 221

I

I/O, 56, 89, 103
Idle threads
implementation of, 301
language extension, 318

If clause, 100, 101
Implementation of OpenMP
on clusters, 311

Inactive parallel region, 56, 98, 100, 111
Incremental parallelization, 10
Initial thread, 24
Instruction Level Parallelism, 1
ILP, 1
superscalar architecture, 1

Instruction reordering, 279
Internal control variables, 97

Index 351

L

Language extensions, 317
automatic scoping, 314
data distribution features, 312, 314
data locality, 314
for loop variables, 317
idle threads, 318
loop nest collapsing, 312
loop schedules, 312, 317, 318
nested parallelism, 313, 317
next touch, 314
task queues, 315
tasks, 315, 316
threadstack, 317

Lastprivate clause, 73, 74, 75
Library routines, 97
omp get dynamic, 98
omp get max threads, 98
omp get nested, 99
omp get num procs, 100
omp get num threads, 99
omp get thread num, 99, 111
omp in parallel, 100
omp set dynamic, 98
omp set nested, 99
omp set num threads, 98

Livelock, 262
Load imbalance, 63, 81, 150, 151, 238
Lock variables, 93
declaration of, 93

Locks, 93, 94
caution with, 94
nestable locks, 93
simple locks, 93

Loop
Fission, 134, 179
Fusion, 133
Interchange, 129, 132
Tiling, 134
Blocking, 134
Blocking size, 135
Unroll and jam, 131, 170, 176, 179
Unrolling, 129
Cleanup loop, 131
Unroll factor, 130

Loop construct, 58, 59
clauses for, 60
mapping iterations to threads, 60
restrictions on use of, 58

Loop iteration variable
default attribute, 72

Loop nest language extensions, 312

Loop schedules
implementation of, 292
language extensions, 312, 317, 318

Loop-carried dependence, 244
Lowering of OpenMP, 282

M

Master construct, 66, 94, 95
special care with, 250

Master thread, 54, 95
Memory consistency, 6, 29, 30, 114, 259
incorrect assumptions, 262

Memory fence, 29
Memory footprint, 157
Memory hierarchy, 4, 125–128
Memory model, 6, 28, 114, 259
OpenMP, 260, 261
thread stack, 29

Message passing, 13
Microbenchmarks, 302
MPI, 14–18, 203, 205, 207
MPI Init thread, 210
MPI OPENMP INTEROP, 197
mpirun, 222
MPPs, 11
Multi-zone NAS Parallel Benchmarks, 230
BT-MZ, 215, 226
LU-MZ, 215
SP-MZ, 215

Multicore, 3

N

Named critical region, 88
NanosCompiler, 226
NAS Parallel Benchmarks, 211
BT, 215
LU, 215, 239
Multi-zone, 215
SP, 215

nest-var, 97, 98
Nestable locks, 93
Nested OpenMP, 216, 221
Nested parallelism, 97, 111, 111, 112, 113
language extensions, 313, 317

Nowait clause, 78, 79
position in Fortran, 78

nthreads-var, 97, 97, 120
NUMA, 4, 193
numactl, 199
Number of threads, 31, 97

352 Index

O

omp.h, 47, 97
OMP DYNAMIC, 98
omp get dynamic, 98
omp get max threads, 98
omp get nested, 99
omp get num procs, 100
omp get num threads, 99
omp get thread num, 47, 48, 54, 99, 111
omp in parallel, 100
omp lib, 47, 97
omp lib.h, 97
OMP NESTED, 99
OMP NUM THREADS, 97
OMP SCHEDULE, 81, 99, 103
omp set dynamic, 98
omp set nested, 99
omp set num threads, 98
OpenMP 2.5, 21, 47
OpenMP 3.0, 21
OpenMP Architecture Review Board (ARB),

8
Operations on atomic construct, 91
oprofile, 229
Ordered clause, 87, 102, 103, 104
Ordered construct, 86, 102–104
Orphan directives, 30, 297
Outlining, 231, 287
outlined routines, 232

Overheads
load imbalance, 141
parallel, 139, 141
sequential, 141
single thread, 158
synchronization, 141

Overlap cells, 203
Oversubscribed system, 143
Owner computes rule, 203

P

Parallel computer architectures, 11
Parallel construct, 53, 54–57
active, 56
clauses for, 55
data sharing attributes with, 59
implementation of, 286
implicit barrier, 54
inactive, 56
number of executing threads, 56
restrictions on use of, 56

Parallel efficiency, 235

Parallel loops, 26, 27, 58
iteration variable, 72
permissible forms in C and C++, 59
schedule, 79, 81

Parallel overhead., 139
Parallel program design, 10
Parallel program overheads, 34, 140
Parallel region, 24, 25
active, 99
inactive, 98, 100, 111
number of threads in, 56

Parallel scalability, 34
Parallel sections, 60
implementation of, 284

Parallel speedup, 33
Paraver Performance Analysis System, 235
PCF, 7, 8
Performance
array reduction, 182
false sharing, 154, 178, 181
private data, 155
private versus shared data, 156

Performance Analyzer, 229
Performance profile, 229
Pipelined processing, 151
Pointer aliasing problem, 136
POP Ocean Circulation Model, 215
Preserving sequential execution, 47
Private clause, 72, 73
loop iteration variable, 72

Private data, 28, 72
special care with, 249
undefined on entry to and exit from con-

struct, 73
Private variable
broadcasting value, 110

Private variables
reducing number of, 124

Process, 23
Pthreads, 16, 18, 20

R

Race condition, 32
Real time, 138
Reduction clause, 105, 105, 106
array reductions in Fortran, 107, 109
rules on use of, 109
supported operators, 106–108

Reduction operation, 88, 105, 106
explicitly programmed, 89

Reduction variable, 106
Region of code, 53
Remote memory access, 240

Index 353

Replicated work, 240
Restrict keyword, 38
restrict keyword, 137
Rowwise storage, 127
run-sched-var, 97
Run-time schedule, 81, 97
Runtime library, 243, 277, 303, 305

S

Sampling, 229
Schedule clause, 79, 81–83
Schedule kinds, 79
default, 97
dynamic, 79
guided, 79
runtime, 81, 97
static, 79

Sections construct, 60, 61–63, 63, 64
clauses for, 64

Sentinel, 36
Sequential consistency, 259
Sequential performance, 125
Shared clause, 71, 72
Shared data, 71
special care with, 246

Shared-memory model, 13
Simple locks, 93
Single construct, 64, 65, 66
barrier at end of, 64
clauses for, 66
implementation of, 285

SMP, 3, 4–8, 11
Software Distributed Shared Memory, 311
Software pipelining, 1
Speedup, 139
superlinear, 141, 160, 161, 166, 177

SPMD, 32, 192, 200
Stack, 29, 200
Static schedule, 79
implementation of, 292

Structured block, 25, 52
rules in C/C++, 53
rules in Fortran, 53

Superlinear speed-up, 328
Synchronization, 29, 83, 237
Synchronization points, 30, 114, 115

T

Task parallelism, 192
Taskset, 199
Team of threads, 25
Thread, 3, 13, 23
Thread creation, 286
Thread migration, 194
Thread number, 31
Thread synchronization, 302
Thread-safe, 255
Class objects and methods in C++, 258
Fortran SAVE, 257
Library functions, 258

Threadid, 54
Threadprivate, 110
Threadprivate data, 299
Threadprivate directive, 118, 119–123
Threadstack, 299, 317
TLB, 4, 128
Translation-lookaside buffer, 128

U

UMA, 3
Unit stride, 127
Useful parallel time, 233

W

Wall-clock time, 138, 230
Work-sharing, 26
Work-sharing constructs, 26, 57, 57, 58
implementation of, 291
incorrect assumptions, 252
incorrect nesting, 253

Workshare construct, 66, 67, 68
implementation of, 286

Workshare duration, 237

X

X3H5 committee, 7, 8

	Contents
	Series Foreword
	Foreword
	Preface
	1 Introduction
	2 Overview of OpenMP
	3 Writing a First OpenMP Program
	4 OpenMP Language Features
	5 How to Get Good Performance by Using OpenMP
	6 Using OpenMP in the Real World
	7 Troubleshooting
	8 Under the Hood: How OpenMP Really Works
	9 The Future of OpenMP
	Glossary
	References
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 15%)
 /CalRGBProfile (ColorMatch RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

