


Science in the Age of  
Computer Simulation





Science in the Age of 
Computer Simulation

E r i c  B .  W i n s B E r g

The University of Chicago Press Chicago and London



E R I C  B .  W I N S B E R G  is associate professor of philosophy at the 

University of South Florida. 

The University of Chicago Press, Chicago 60637

The University of Chicago Press, Ltd., London

© 2010 by The University of Chicago 

All rights reserved. Published 2010

Printed in the United States of America

19 18 17 16 15 14 13 12 11 10  1 2 3 4 5

ISBN-13: 978-0-226-90202-9 (cloth)

ISBN-13: 978-0-226-90204-3 (paper)

ISBN-10: 0-226-90202-1 (cloth)

ISBN-10: 0-226-90204-8 (paper)

Library of Congress Cataloging-in-Publication Data

Winsberg, Eric B.

Science in the age of computer simulation / Eric B. Winsberg.

p. cm.

Includes bibliographical references and index.

ISBN-13: 978-0-226-90202-9 (cloth : alk. paper)

ISBN-13: 978-0-226-90204-3 (pbk. : alk. paper)

ISBN-10: 0-226-90202-1 (cloth : alk. paper)

ISBN-10: 0-226-90204-8 (pbk. : alk. paper) 1. Science—Data  

processing—Philosophy. 2. Knowledge, Theory of. 3. Science— 

Experiments—Computer simulation. 4. Science—Methodology.  

5. Science—Philosophy.  I. Title. 

Q175.32 .K46W56 2010

507.2—dc22 2010013703

a The paper used in this publication meets the minimum requirements 

of the American National Standard for Information Sciences— 

Permanence of Paper for Printed Library Materials, ANSI Z39.48–1992.



This book is dedicated to the memory of

S u z a n n e  G .  a .  W i n S b e r G

and

Fred WinSberG





Contents

Acknowledgments ix

1	 Introduction 1

2 Sanctioning Models: Theories and Their Scope 7

3 Methodology for a Virtual World 29

4 A Tale of Two Methods 49

5 When Theories Shake Hands 72

6 Models of Climate: Values and Uncertainties 93

7 Reliability without Truth 120

8 Conclusion 135

References 139

Index 147





ix

Acknowledgments

I want to begin by thanking those people who encouraged 
and mentored my early work on the subject of this book: 
Stephen Kellert, Michael Friedman, and Frederick Suppe at 
Indiana University. My first work on material that is incor-
porated in this book was supported by a postdoctoral fellow-
ship in the History and Philosophy of Science program at 
Northwestern University, where I had the privilege to work 
with Arthur Fine. This was a wonderful, intellectually stim-
ulating environment in which much of the philosophical 
framework of this book emerged. For this, I have not only 
Arthur Fine to thank, but also Mathias Frisch, with whom I 
shared then, and have since, numerous conversations and 
debates that have shaped many of my philosophical intu-
itions over the years.

Work on this manuscript began in earnest while I was a 
fellow at the Zentrum für interdisziplinäre Forschung (ZiF) 
at the University of Bielefeld in the research group Science 
in the Context of Application. I am extremely grateful for 
their financial support. I am also grateful for the hospitality, 
generosity, and intellectual camaraderie of the organizers, 
Martin Carrier and Alfred Nordmann. I also want to thank 
Torsten Wilholt, Justin Biddle, Johannes Lehnard, Felicitas 
Krämer, and too many other people to mention, mostly 
postdocs and graduate students, for making my time in 
Bielefeld fun and intellectually productive. My work on the 
manuscript continued while I was a fellow of the Institute of 
Advanced Study (IAS) at Durham University. While working 
at the IAS, I was hosted by University College, Durham. I 
am grateful to both of these institutions for supporting my 



x

work. I am also grateful to all the other IAS fellows who shared my time 
there, especially the statisticians: Peter Challenor and John Hasslet, who 
shared with me some of their expertise on the estimation of uncertain-
ties associated with climate models. And, of course, much of the work on 
this book was completed while I have been a professor in the philosophy 
department at the University of South Florida. I want to thank all of my 
colleagues in the department for their support and conversations, espe-
cially Daniel Weiskopf. I also want to thank Wendy Parker, with whom I  
have been exchanging manuscript drafts via e-mail for years. Finally, I 
want to thank three senior philosophers of science with whom I have 
never shared residence, but who have supported me and my work vir-
tually since I left graduate school: Margaret Morrison, Paul Teller, and 
Ronald Giere.

Some of this book is based on work that has appeared elsewhere. This 
includes “Sanctioning Models: The Epistemology of Simulation,” which 
appeared in Science in Context; “Simulated Experiments: Methodology 
for a Virtual World” and “Simulations, Models and Theories: Complex 
Physical Systems and Their Representations,” both of which appeared in 
Philosophy of Science; “A Tale of Two Methods,” which appeared in Syn-
these;1 “Handshaking Your Way to the Top: Simulation at the Nanoscale,” 
which appeared in Philosophy of Science; “A Function for Fictions: Expand-
ing the Scope of Science,” which appeared in Fictions in Science: Philo-
sophical Essays on Modeling and Idealization, edited by Mauricio Suarez 
and published by Routledge; and “Models of Success vs. the Success of 
Models: Reliability without Truth,” which was published in Synthese.2 
Chapter 6 contains material from two papers that were coauthored. One 
is the not-yet-published “Holism and Entrenchment in Climate Models,” 
which I wrote with Johannes Lenhard. The other is “Value Judgments 
and the Estimation of Uncertainty in Climate Modeling,” which I wrote 
with Justin Biddle, and which appeared in New Waves in the Philosophy of 
Science, edited by P. D. Magnus and J. Busch, published by Palgrave Mac-
Millan. I want to thank Johannes and Justin both very much for allowing 
me to borrow freely from those two papers for this book.

I also want to thank all of the people who were directly involved with 
making this book come into being at the University of Chicago Press. 
Three different reviewers made helpful comments on earlier drafts of the 

1. With kind permission from Springer Science+Business Media: Eric Winsberg, “A Tale of Two 
Methods,” Synthese 169 (2009): 575–92. © Springer Science+Business Media B. V. 2008.

2. With kind permission from Springer Science+Business Media: Eric Winsberg, “Models of Suc-
cess vs. the Success of Models: Reliability without Truth,” Synthese 152 (2006): 1–19. © Springer 
2006.

AcknoWlEdgmEnts



xi

manuscript. Two of them were anonymous, but the one who gave the 
most detailed and helpful suggestions was not: Robert Rosner, a physicist 
and the director of the Argonne National Laboratory. All three of them 
have my thanks for making this a better book. Thanks especially to Karen 
Darling, my editor, who has been extremely helpful and supportive all 
the way through the process, to my copy editor, Nick Murray, and to the 
rest of the staff at the University of Chicago Press. 

Most important, I want to thank Laura, who has tirelessly supported 
me in this work all the way from the beginning.

AcknoWlEdgmEnts





�

O N E

Introduction

Major developments in the history of the philosophy of sci-
ence have always been driven by major developments in 
the sciences. The most famous examples, of course, are the 
revolutionary changes in physics at the beginning of the 
twentieth century that inspired the logical positivists of  
the Vienna Circle. But there are many others. Kant’s con-
ception of synthetic a priori knowledge was originally in-
tended to address the new mechanics of Newton. The rise 
of non-Euclidean geometries in the nineteenth century led 
to Helmholtz’s revised formulation of transcendentalism, 
as well as, more famously, to Poincaré’s defense of con-
ventionalism. The rise of atomic theory in the nineteenth 
century and the ensuing skepticism about the genuine exis-
tence of atoms, to raise one final example, played a large 
role in igniting and fueling debates about scientific realism 
that continue to rage today.

Over the last fifty years, however, there has been a revo-
lutionary development affecting almost all of the sciences 
that, at least until very recently, has been largely ignored 
by philosophers of science. The development I am speaking 
of is the astonishing growth, in almost all of the sciences, 
of the use of the digital computer to study phenomena of 
great complexity—the rise of computer simulations. More 
and more scientific “experiments” are, to use the vernacular 
of the day, being carried out “in silico.”

It is certainly true that, historically, most of the famous 
scientific developments that have had an impact on the 
philosophy of science have involved revolutionary changes 
at the level of fundamental theory. It is also true that the 
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use of computer simulation to study complex phenomena usually occurs 
against a backdrop of well-established basic theory, rather than in the 
process of altering, let alone revolutionizing, such theory. But surely there 
is no reason to think that it is only changes in basic theory that should 
be of interest to philosophers. Surely there is no reason to think that new 
experimental methods, new research technologies, or innovative ways 
of solving new sets of problems within existing theory could not have 
a similar impact on philosophy. It is not altogether unlikely that some 
of the major accomplishments in the physical sciences to come in the 
near future will have as much to do with modeling complex phenomena 
within existing theories as with developing novel fundamental theories.

That, in a nutshell, is the basic sentiment that motivates this book: 
that the last part of the twentieth century has been, and the twenty-first 
century is likely to continue to be, the age of computer simulation. This 
has been an era in which, at least in the physical sciences, and to a large 
degree elsewhere, major developments in fundamental theory have been 
slow to come, but there has been an avalanche of novel applications of 
existing theory—an avalanche aided in no small part by our increasing 
ability to use the digital computer to build tractable models of greater 
and greater complexity, using the same available theoretical resources. 
The book is motivated as well by the conviction that the philosophy of 
science should continue, as it always has in the past, to respond to the 
character of the science of its own era. This book, therefore, is about com-
puter simulation and the philosophy of science; and it is as much about 
what philosophers of science should learn in the age of simulation as it is 
about what philosophy can contribute to our understanding of how the 
digital computer is transforming science.

Science and Its Applications

General philosophy of science concerns itself with a diverse set of issues: 
the nature of scientific evidence, the nature and scope of scientific theo-
ries; the relations between theories at different levels of description; the 
relationship between theories on the one hand and local descriptions of 
phenomena on the other; the role that various kinds of models play in 
mediating those relationships; the nature of scientific explanation; and 
the issue of scientific realism, just to name a few. Our understanding of 
these topics, I will argue in this book, could greatly profit from a close 
look at examples of scientific practice where computer simulation plays 
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a prominent role. There are also new topics that can arise for the philoso-
phy of science, topics that have specifically to do with simulation but are 
of a distinctly philosophical character. I will tackle some of these in this 
book: What is the relationship between computer simulation, or simula-
tion generally, and experiment? Under what conditions should we expect 
a computer simulation to be reliable? How can we evaluate a simulation 
model when the predictions made by such a model are precisely about 
those phenomena for which data are sparse? What role do deliberately 
false assumptions play in the construction of simulation models?

Let us begin with one of the oldest topics in the philosophy of  
science—the nature of scientific evidence. Computer simulations are in-
volved in the creation and justification of scientific knowledge claims, 
and the problem of the nature of scientific evidence in the philosophy of 
science is precisely the concern with saying when we do, or don’t, have 
evidence that such claims to knowledge are justified. But simulations 
more often involve the application rather than the testing of scientific 
theories. And so the epistemology of simulation is a topic that is quite 
unfamiliar to most philosophy of science, which has traditionally con-
cerned itself with the justification of theories, not with their application. 
An appropriately subtle understanding of the epistemology of simulation 
requires that we rethink the relationship between theories and local de-
scriptions of phenomena.

The rethinking required dovetails nicely, moreover, with recent de-
bates in the philosophy of science about the scope of theories. Accord-
ing to one side in this debate, laws and theories in science are tightly 
restricted with respect to the features of the world that fall under their 
domain. The other side maintains that fundamental theories by their 
nature have universal domains. Few of the simulations considered in 
this book have much to do with fundamental theory, and so that precise 
debate will not concern us directly. But there is a related question that the 
epistemology of simulation must confront: Does the principled scope of 
every theory extend as far as all of its less-than-principled applications? 
More concretely, when simulationists use a particular theory to guide 
the construction of their simulations, is it necessarily the case that their 
results are, properly speaking, part of the “empirical content” of those 
theories? This is an important question both for the general philosopher 
of science interested in the nature of scientific theories and, as we shall 
see, for anyone interested in the epistemology of simulation. To get a 
clearer view of these issues, we must look at some of the details of com-
puter simulation methods.
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A Brief History

Computer simulation is a method for studying complex systems that has 
had applications in almost every field of scientific study—from quantum 
chemistry to the study of traffic-flow patterns. Its history is as long as the 
history of the digital computer itself, and it begins in the United States 
during the Second World War. When the physicist John Mauchly visited 
the Ballistic Research Laboratory at Aberdeen and saw an army of women 
calculating firing tables on mechanical calculators, he suggested that the 
laboratory begin work on a digital computer. The Electrical Numerical In-
tegrator and Computer (ENIAC), the first truly programmable digital com-
puter, was born in 1945. John von Neumann took an immediate interest 
in it and, encouraged by fellow Hungarian-American physicist Edward 
Teller, he enlisted the help of Nicholas Metropolis and Stanislaw Ulam to 
begin work on a computational model of a thermonuclear reaction.

Their effort was typical of computer simulation techniques. They be-
gan with a mathematical model depicting the time-evolution of the sys-
tem being studied in terms of equations, or rules-of-evolution, for the 
variables of the model. The model was constructed (as is typical in the 
physical sciences) from a mixture of well-established theoretical prin-
ciples, some physical insight, and some clever mathematical tricks. They 
then transformed the model into a computable algorithm, and the evolu-
tion of the computer was said to “simulate” the evolution of the system 
in question.

The war ended before von Neumann’s project was completed, but its 
eventual success persuaded Teller, von Neumann, and Enrico Fermi of 
the feasibility of a hydrogen bomb. It also convinced the military high 
brass of the practicability of electronic computation. Soon after, meteo-
rology joined the ranks of weapons research as one of the first disciplines 
to make use of the computer. Von Neumann was convinced early on that 
hydrodynamics was very important to physics and that its development 
would require vast computational resources. He also became convinced 
that it would be strategic to enlist meteorologists, with the resources at 
their disposal, as allies. In 1946, he launched the Electronic Computer 
Project at the Institute for Advanced Study at Princeton University and 
chose numerical meteorology as one of its largest projects. While working 
on the problem of simulating simplified weather systems, meteorologist 
and mathematician Edward Lorentz discovered a simple model that dis-
played characteristics now called “sensitive dependence on initial condi-
tions” and “strange attractors,” the hallmarks of a system well described 
by “chaos theory,” a field he helped to create.
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In the last forty-some years, simulations have proliferated in the sci-
ences, and an enormous variety of techniques have been developed. In 
the physical sciences, two classes of simulations predominate: continuum 
methods and particle methods. Continuum methods begin by describing 
their object of study as a medium described by fields and distributions—a 
continuum. The goal is then to give differential equations that relate the 
rates of change of the values for these fields and distributions, and to use 
“discretization” techniques to transform these continuous differential 
equations into algebraic expressions that can be calculated step-by-step 
by a computer. Particle methods describe their objects of study either as 
a collection of nuclei and electrons or as a collection of atoms and mol-
ecules—the former only if quantum methods are employed.1

From a certain point of view, these are methods for overcoming merely 
practical limitations in our abilities to solve the equations provided by 
our best theories—theories like fluid mechanics, quantum mechanics, 
and classical molecular dynamics. Why should methods for overcoming 
practical limitations be of interest to philosophers? Philosophers of sci-
ence are accustomed to centering the attention they devote to scientific 
theories on a cluster of canonical issues: What are theories? How are they 
confirmed? How should we interpret them? They tend to think that all 
of the philosophically interesting action takes place around that cluster—
that what matters to philosophy is the nature of theories in principle, not 
what we are merely limited to doing with them in practice. The practi-
cal obstacles that need to be overcome when we work with theories can 
strike the philosopher as mundane.

This is as good a place as any to point out a methodological presup-
position that prevails in most of this book. As I said above, I believe 
that philosophers of science have missed an opportunity to contribute 
to this explosive area of modern science precisely because they have had 
a prejudice for being concerned with what is possible in principle rather 
than with what we can achieve in practice. Accordingly, I focus on the 
current state of practice of computer simulation, rather than on what 
we might think might, in principle, someday be possible. When I say in 
what follows, for example, that we cannot do P, I often mean that the 

1. Particle methods often make use of “Monte Carlo” algorithms. Such methods use random 
sampling algorithms, where the randomness of the algorithm need not correspond to an underlying 
indeterminism in the system. Outside of physics, it is common to encounter “cellular automata.” 
These are simulations that assign a discrete state to each node of a network of elements and assign 
rules of evolution for each node based on its local environment. Such simulations are especially 
common in the social sciences, where each node can be thought of as an “agent” reacting to its 
local environment.
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prospect of doing P is presently intractable, not that proofs exist of the 
fact that P is impossible in principle. One might wonder whether or not 
it is sensible to draw philosophical conclusions from present practical 
difficulties—and the methods by which they are overcome—instead of 
focusing on what is possible or impossible in principle.

This is indeed a worry, but I do not believe it should prevent us from 
getting started on the difficult philosophical work of examining the pres-
ent state of the art. It is true that some of the practical obstacles I discuss 
in what follows may someday be overcome. We may find more prin-
cipled solutions to some of the problems for which we now apply less 
principled approaches. But I doubt this will mean that the lessons we 
draw from studying those less principled approaches will lose their take-
home value when they are replaced. That is because I doubt we will ever 
reach a point where all scientific problems will have theoretically prin-
cipled solutions. Scientific practice will surely evolve, but we will always 
be pushing the envelope of the set of problems we want to tackle with 
existing theory, and new practical difficulties will arise as old ones disap-
pear. More important, philosophers should not allow the present state 
of flux in the computationally intensive sciences to prevent them from 
paying close enough attention to where most of the action has been in 
recent science: the unprincipled solutions of just these sorts of practical 
difficulties. This is a part of scientific practice that is responsible for more 
and more of the creation of knowledge in science and one that is ripe for 
philosophical attention.

And we should make no mistake about it—simulation is a process of 
knowledge creation, and one in which epistemological issues loom large. 
So the first thing that I want to do here is to convince you that simulation 
is in fact a deeply creative source of scientific knowledge, and to give a 
taste of its complex and motley character.

The second thing I want to do is to argue that the complex and motley 
nature of this epistemology suggests that the end results of simulations 
often do not bear a simple, straightforward relation to the theoretical 
backgrounds from which they arise. Accordingly, I want to urge philoso-
phers of science to examine more carefully the process by which general 
theories are applied. It is a relatively neglected aspect of scientific prac-
tice, but it plays a role that is often as crucial, as complex, and as creative 
as the areas of science philosophers have traditionally studied: theorizing 
and experimenting.
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Sanctioning Models:  
Theories and Their Scope

Let us suppose that we are confronted with a physical sys-
tem of which we would like to gain a better understanding: 
a severe storm, a gas jet, or the turbulent flow of water in 
a basin.� The system in question is made up of certain un-
derlying components that fall under the domain of some 
basic theoretical principles. We begin by making two as-
sumptions: we know what the physical components of the 
system are and how they are arranged, and we have great 
confidence in those principles.

The assumptions we have made so far about our sys-
tem often allow us to write down a set of partial differ-
ential equations. In principal, such differential equations 
give us a great deal of information about the system. The 
problem is that when these underlying components of the 
system—whether they be solid particles, parcels of fluid, or 
other constitutive features—interact as we suppose they do 
in our physical system, the differential equations take on an 
unfortunate property. In the types of systems with which 
the simulation modeler is concerned, it is mathematically 
impossible to find an analytic solution to these equations—
the model given by the equations is said to be analytically 
intractable. In other words, it is impossible to write down a 
set of closed-form equations. A closed-form solution to a set 

�. See Wilhelmson �989 on the simulation of a severe storm; Smarr �985 and 
Kaufmann and Smarr �993 on the simulation of intergalactic gas jets; and Moin 
and Kim �997 on computer simulation in the study of turbulence.
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of differential equations is a set of equations that are given in terms of 
known mathematical functions and whose partial derivatives are exactly 
the set of differential equations we are interested in.

These problems are not new to the computer age, nor are attempts 
to overcome them. In the past, modelers have focused their attempts 
on analytic techniques for finding approximate solutions to the differ-
ential equations in question. In many instances, they have successfully 
used these techniques to generate closed-form functions that are ap-
proximately valid. That is, for problem situations such as the three-body 
problem, modelers have found functions that can be shown to have the 
same qualitative character as the unknown solution to the equations to 
be solved.

But there are vast regions of possible solutions to interesting equations 
that are qualitatively different from any known closed-form function. To 
overcome this problem, the simulationist “discretizes” the equations and 
“solves” them by brute force. Discretization, in this case, is the process by 
which simulationists turn differential equations, which relate continu-
ous rates of change over infinitesimal intervals, into difference equations, 
which relate rates of change over finite, or discrete, intervals. The values 
that these difference equations give can then be calculated by a digital 
computer, from one discrete moment in time to the next. This technique 
of simulation is often called “finite differencing.”

Finite differencing is a discretization of both space and time. But dis-
cretization can occur in time but not in space: in this latter case, one uses 
a set of (complete in some norm) basis functions to transform the spatial 
part of the equations, so that the partial differential equation is turned 
into a set of (coupled) ordinary differential equations for the coefficients 
of the basis functions. This latter approach underlies methods, such as 
the finite element method, which are in common use in engineering 
applications.

Of course, the transformation of the differential equations into differ-
ence equations, or from partial differential equations to ordinary differ-
ential equations, constitutes an approximation. In principal, by choosing 
an appropriately “fine grid,” that is, by using discrete intervals of space 
and time (or just of space) that are sufficiently small, simulationists can 
reduce the “damage” done by the approximation as much as they want. 
Unlike analytic techniques, which often require symmetry assumptions 
or the assumption of time independence, in principle, the simulationist 
using such methods need not necessarily impose such assumptions.

In practice, however, the amount of computer time and memory re-
quired to do these computations rapidly increases as the simulationist 
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chooses smaller grids. To achieve results that are accurate enough to meet 
the needs of the simulation study, the problem posed frequently requires 
a grid that is too small for any reasonable allocation of computer time 
and memory. In such a case, the equations are said to be not only analyti-
cally unsolvable but also to be computationally intractable.

Simulationists deal with the problem of computational intractability 
by deviating from the most principled model suggested by theory. This 
can work in one of two ways. They can develop a model that is simplified 
and hence computationally cheaper than the theoretically principled 
one. This can allow for a finer grid. But in many cases a fine enough 
computational approximation is vastly out of reach or may not really 
even exist in principle. In such a case, they can supplement the model 
with features that have nothing to do with theory at all but are designed 
to compensate for the errors that the coarseness of the approximation is 
found to create. Either way, depending on what aspect of the solution the 
simulationist is interested in resolving, it is often advantageous to trade 
away theoretical rigor for expediency. The deciding factor is not which 
approach is most true to theory but which approach will produce the 
best solution set as the outcome of the simulation. The best solution set 
is the one that will best uncover or reveal the features of the system that 
are important for understanding it. 

Keeping the existence of such strategies in mind, a number of interest-
ing and interrelated issues arise. The first is the basic epistemological issue 
I raised earlier. Simulations are often used to reveal features of phenom-
ena for which data are sparse. And so the theoretical ancestry of a simula-
tion assumes a heavy duty in credentialing its results. How, then, do we 
evaluate the trustworthiness of simulations in such contexts when they 
tend to be so theoretically unprincipled? How do we tell, in other words, 
that the simulation is appropriately informative about the phenomena it 
is meant to investigate? This problem, which simulationists refer to as the 
problem of “validating” a simulation, is often kept conceptually distinct 
from the problem of verification. To verify a simulation, in the vernacu-
lar, is a mathematical issue. It means to establish that the results of the 
simulation really are informative about the mathematical solutions to 
the original model equations.�

�. There is a huge literature underlying verification and validation (V&V) in the engineering 
community, especially in areas that involve formal licensing requirements, such as in the nuclear 
engineering community; and there is a growing literature in areas such as the nuclear weapons stock-
pile program, where simulations are used to guarantee safety and functionality. For two extremely 
influential documents in this sphere, see Committee on the Evaluation of Quantification of Margins 
and Uncertainties Methodology for Assessing and Certifying the Reliability of the Nuclear Stock-
pile �008 and American Institute of Aeronautics and Astronautics �998. Many in the engineering  
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It is worth asking, however, if verification is really properly part of the 
activity of validation. Is it really the job of simulationists, in other words, 
to insure that their results conform to theory? So the epistemology of 
simulation is closely connected to a second question that I raised earlier. 
That question has to do with the relationship that the results of such 
simulations have to their theoretical ancestors. Should we think of them, 
as I asked above, as revealing the empirical content of those theories, or as 
something else entirely? How we answer the second question may have 
some bearing on our thinking about the first because it speaks directly 
to the question of whether or not verification and validation really are 
related in the way we often assume.

An Ideal Model and Its Limits

The first step in getting a handle on what an epistemology of simula-
tion might be is to highlight and characterize the different inferential 
steps that take place during the process of simulation—those that might 
be subject to epistemic scrutiny. So I will make the point that a simula-
tion study embodies a rich inferential process by outlining the essential 
steps involved in the study of complex phenomena using computational 
techniques.

If we look in a textbook on computer simulation, we are likely to find 
something like the conception of the steps involved that is illustrated in 
figure �.�.

The idea is rather simple. We can illustrate it with a simple example: 
the pendulum. We begin with a theory that governs the phenomenon of 
interest. For a pendulum, that would be Newtonian mechanics. A basic 
understanding of the system suggests to us a model of the pendulum. 
Such a model would consist of an abstract description of the physical sys-
tem (a point mass on the end of a massless string) and some differential 
equations, provided by theory, that describe the evolution of the values 
of the variables in the abstract model. The treatment consists of assigning 
values to basic parameters—in this case the length of the string, the mass 
of the bob, and the acceleration of gravity—and assigning initial values 
to the variables, which in this case would be an initial value for the angle 
of the pendulum and its angular velocity. Next, model and treatment are 

community consider the latter of these to be the bible on V&V. Similar literature for the basic sci-
ence community does not exist.
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combined to create a solver—a step-by-step computable algorithm that 
is designed to be an approximate, discrete substitute for the continuous 
differential equations of the model—and the solver is run on a computer 
to produce results.

Despite the simplicity of the example, this schema captures a great deal 
about many computer simulations of physical systems. But there are also 
several ways in which this ideal story of the construction of a simulation 
can and should be complicated. To gain some appreciation for this, let’s 
look at a more complex and realistic example—a now famous project led 
by meteorologist Robert Wilhelmson: a computer simulation of a severe 
thunderstorm. The purpose of the simulation, wrote Wilhelmson, was to 
provide “improved understanding of severe storm structure and evolu-
tion” (Wilhelmson et al. �990, �0). The simulation generated a four-hour 
period of “solution space” for a system of nine partial differential equa-
tions that describe the time evolution of the dependent variables of the 
model. The discrete data comprising this solution were then subjected to 
a variety of techniques of data visualization in order to resolve the water 
and ice structure inside of a storm, to be able to see how air moves and 
rotates in and around a storm, and to discern various physical processes 
that influence storm rotation near the ground.

Wilhelmson’s simulation model was based on a system of nine par-
tial differential equations. For initial conditions, the researchers used 
observed conditions from one vertical column of air in an actual pre-
storm environment. The model was then initialized using horizontally 
homogeneous values for each of the nine variables of the simulations, 
with a temperature perturbation at the horizontal center of the storm to 
get things started.

In the language introduced above, what we have so far is a model, con-
sisting primarily of the nine differential equations, and a treatment. The 
model, at least in part, is inspired by some basic physics of atmospheric 
dynamics. Next comes a “solver.” I use scare quotes here because this is a 
somewhat misleading term. It implies that we should conceive of the sim-
ulationist as being able to do something directly akin to finding solutions  
to the differential equations of the model for the values specified in the 
treatment. In practice, the situation is far more complicated.

Theory Model Treatment Solver Results

2.1 From theory to data in simulation.
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There are in fact two aspects to creating a computable algorithm out of 
the model and treatment. The first is the transformation of the continu-
ous differential equations into discrete difference equations. But doing 
this in the most straightforward possible way can lead to an algorithm 
that is either too computationally expensive; worse, it can lead to an al-
gorithm in which the approximations that constitute the transformation 
from continuous to discrete equations cause instabilities, serious round-
off errors, or other liabilities that make the output unreliable.

As a consequence—and here we come to the second point—simula-
tionists must often create algorithms that deviate substantially from the 
those that follow most straightforwardly from the theoretically princi-
pled model. There are two ways they can do this. If the problem is merely 
computational tractability, that can be overcome by simplifying the 
model: simulationists will ignore factors or influences from their compu-
tational models because limitations of computational power make their 
inclusion impractical. Similarly, they might remove degrees of freedom 
from the model, or make what are known to be unrealistic symmetry 
assumptions.

The second course of action is slightly more surprising. Often, the 
question of whether some particular aspect of a system under study 
is crucial to the system’s dynamics is not even the issue. At times the 
simulationist is acutely aware of the important influence of one compo-
nent of the dynamics, and yet it is simply impractical to include it in a 
full-blown simulation. In such situations the simulationist will resort to 
adding mathematical relationships to the solver that have no direct con-
nection to the original differential equations of the model. These rough-
and-ready, theoretically unprincipled model-building tools typically 
involve relatively simple mathematical relationships that are designed 
to approximately capture some physical effect in nature that may have 
been left out of the simulation for the sake of computational tractability. 
When coupled to the more theoretical equations of a simulation, they 
allow the simulation to produce results that are more realistic than they 
could have been without some consideration of that physical effect.

For example, here is Wilhelmson’s description of his simulation: “A 
very simple model is used to account for the development of rain. In 
many studies such simple models are sufficient for studying storm dy-
namics. Although simple, they provide the key storm-driving forces, 
namely, warming due to the release of latent heat as water vapor con-
denses and cooling due to evaporation of cloud and rain drops in un-
saturated regions” (Wilhelmson et al. �990, ��). Even further from the 
ideal of figure �.�, perhaps, is the fact that simulation models sometimes 
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incorporate mathematical features that are cooked up to overcome what 
trial and error reveals to be problems with the discretization schemes of 
their original models. There are many examples. One rather well-known 
one occurs frequently in simulations involving the turbulent flow of flu-
ids. It is sometimes referred to as eddy viscosity.

Again, the idea is rather simple. In turbulent fluids, vortices, also called 
eddies, form at an astonishing range of scales, from the very large, to the  
very small. These vortices play an important role in the transport and dis-
sipation of energy and other physically meaningful variables. And they 
do so at all scales—from the scale of the system as whole all the way 
down to scales comparable to intermolecular distances. It is virtually im-
possible to create a discretization scheme that is fine enough to capture 
vortices, or eddies, all the way down to these smallest scales. So what a 
good simulation needs to do is to add a cooked-up piece of mathematics 
to the model that will do the same work that one imagines these eddies 
would do if they were being resolved at the finest scales. One such cooked 
up piece of mathematics is called eddy viscosity.

A nice example of the use of eddy viscosity is a simulation designed to 
study the convective properties of red giant stars (Porter, Anderson, and 
Woodward �998; Jacobs, Porter, and Woodward �998). A red giant star 
has a hot, dense stellar core that is surrounded by a very large and very 
rarified envelope. A typical red giant envelope is as large as the orbital 
radius of Jupiter. The stellar core of a red giant generates heat, which 
then moves to the surface primarily by means of convection. Since the 
diffusion of heat via radiation of light is not nearly as efficient at moving 
heat through the envelope as is convection, heat is moved through the 
system primarily by the process of gas being heated by contact with the 
hot core, which then becomes buoyant and rises upward.

Such stars are of special interest to nonlinear scientists because they 
are convectively unstable almost all the way through to the core. In 
younger stars, heat from nuclear fusion finds its way to the surface pri-
marily through radiative diffusion. Only during the cooler last third of 
their journey is this heat transported by convective motions of stellar gas. 
In red giants, however, the complex and turbulent process of convection 
begins much nearer to the core, and so these stars exhibit particularly 
complex and unstable motions of fluid.

Modeling the convective movement of energy through this system is 
correspondingly difficult. Very small changes in temperature, pressure, 
and density in one part of the system may lead to turbulent vortices else-
where, and small surface eddies can lead to large convective flows. Even 
the tiniest eddies, however, play a role in transporting these quantities 
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around the system. Thus, if the model is to capture large-scale effects with 
any degree of accuracy, it must take into account the effects that take 
place on small scales—without requiring computations that overwhelm 
the computing system.

The basic equations that govern the model are the Euler equations 
for fluid dynamics. These are a relatively simple form of fluid dynamical 
equations. They are based on the laws of conservation of mass, momen-
tum, and energy. They ignore viscosity but include the effects of com-
pressibility (Porter and Woodward �994). The use of the inviscid Euler 
equations is an ordinary idealization. Every fluid has some viscosity, but 
some fluid-flow problems can be treated inviscidly. In fact, viscosity con-
tributes to the dynamics of the star in crucial ways. It does so, however, at 
length scales that are far too small to be tracked by a reasonable computer 
program. Researchers deal with this problem using eddy viscosity:

Viscous effects, which act only on tiny scales unresolvable by the computational grid, 

were approximated by a carefully formulated [eddy]� viscosity. This viscosity of the 

numerical scheme dissipates kinetic energy of fluid motion into heat, like the real vis-

cosity of the gas, but on the much larger scales of the computational grid. This [eddy] 

viscosity was carefully designed to restrict its dissipative effects to the shortest length 

scales possible, consistent with accurate representation of the nearly inviscid flow on 

the longer length scales. (porter,  anderson,  and woodward 1998)

Eddy viscosity is a nice example of what is often called a parameter-
ization scheme. Such schemes are elements of a simulation’s algorithm 
that are designed to capture effects that slip between the cracks of the 
discretization grid. Parameterization schemes are extremely common in 
climatology, especially in global climate models.

Sub-grid processes are represented by parameterisation schemes describing their aggre-

gated effect over a larger scale. These schemes are often referred to as “model physics” 

but are really based on physics-inspired statistical models describing the mean quantity 

in the grid box, given relevant input parameters. The parameterisation schemes are 

usually based on empirical data (e.g., field measurements making in-situ observations), 

and a typical example of a parameterisation scheme is the representation of clouds. 

(benestad 2007)

3. In this quotation I have used the term eddy viscosity to replace their use of the term numeri-
cal viscosity because I think this is the now more standard use of the term. Numerical viscosity more 
standardly refers to a viscous-like effect that arises as an artifact of a poorly chosen numerical solver. 
Neither of these should be confused with artificial viscosity, which I discuss in later chapters.
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The model of the star also needs to track how heat moves through the 
system via conduction. The modelers assume that the rate of thermal dif-
fusivity depended only on the gas pressure, and could therefore be treated 
with relative simplicity. Finally, the model needs to account for how en-
ergy is lost from the surface of the star. The actual physics of this process 
are quite complicated, but the researchers were able to argue for a much 
simpler treatment of the problem. They simply used the standard for-
mula for the radiation of a black body, and applied it exclusively to those 
parcels of fluid that, based on their calculated pressures, were likely to be 
found close enough to the surface to be able to efficiently radiate heat.

What this example illustrates quite nicely is the difference between the 
model you would write down from theory if you had no limitations to 
your computational power and the model you end up discretizing into an 
algorithm. And the difference does not just consist in the use of ordinary 
idealizations, at least as we ordinarily conceive of them. It also involves 
the substitution of phenomenological relationships for “real physics”—
for example, substituting black-body radiation for the real physics of en-
ergy dissipation—and also the inclusion of cooked-up techniques like 
eddy viscosity to mitigate limitations in the differencing scheme.

Another nice example, again from climate science, of the kind of mod-
eling methods I have in mind is the famous “Arakawa operator,” which 
has been discussed by Johannes Lenhard (�007). In the �950s, Norman 
Phillips built one of the first simulations of the circulation of the earth’s 
atmosphere. The simulation was very successful for the first few weeks 
of simulation time, but after that it began to exhibit instabilities and 
eventually “blew up.” In other words, it was an artifact of the numerical 
scheme that the amount of energy stored in the system began to grow 
exponentially after a certain period of time. This frustrated climate scien-
tists for several years. A climate scientist named Akio Arakawa eventually 
arrived at the solution to the problem. Arakawa replaced the mathemati-
cally principled discretization of the basic equations of Phillips’s model 
with his own technique. I quote Lenhard:

arakawa did not follow the common practice of replacing the Jacobi operator with 

the discrete Jacobi operator, but used his own specially constructed arakawa operator. 

What is decisive is that the arakawa operator overcame the nonlinear instability and 

permitted a long-term stable integration. . . .

To achieve the stabilization of the simulation procedure, arakawa had to introduce 

additional assumptions, some of which ran directly counter to experience and to the laws 

underlying the theoretical model. (188 ;  my emphasis)
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The point of these examples is to begin to complicate somewhat the 
ideal of simulation construction depicted in figure �.�. According to that 
ideal, we have theory, or basic physics, guiding a choice of model, and 
then the selection of a numerical scheme to find solutions to the equa-
tions of the model. In these examples, however, we see two complica-
tions. The first is that theory is at best guiding, rather than determining, 
the choice of model. In fact, we can clearly see three distinct kinds of 
sources for the bits of mathematics that go into these models. The first is 
theory. The theory of fluid dynamics provides the Euler equations that 
go into the model of the star. The second we might call something like 
“physical intuition.” It is not high theory but something more akin to 
physical intuition that guides Wilhelmson in his choice of mathematics 
for rain development. The same should be said of the choice of the stan-
dard black-body radiation formula for the dissipation of heat in Porter 
and Woodward’s simulation of the star.

Finally, a third kind of consideration altogether guides the choice of a 
scheme like eddy viscosity or the Arakawa operator. We will discuss such 
techniques in greater detail in what follows, but for now let us simply 
remark that they come neither from theory nor from physical intuition, 
but from attempts to respond to the constraints imposed by the limita-
tions of our computational abilities—often as those limitations are ob-
served to emerge through trial and error. And this highlights a second 
fairly straightforward way in which the ideal of figure �.� is too simple. 
The arrows that point in the direction of determination in that figure all 
point to the right. But the choice of the Arakawa operator was guided by 
what was observed in the output of Phillips’s original simulation. It is 
only after simulationists observe the artifacts generated by their original 
choices that they go back and tinker with their choice of the model to be 
discretized, attempting to get better results the next time. There is much 
more significant feedback from left to right than the ideal of figure �.� 
suggests.

There is at least one other respect in which figure �.� needs to be com-
plicated that deserves mention. This has to do with the rightmost part 
of the figure. Once a simulation model is implemented on a computer in 
the form of a particular algorithm, the algorithm produces results in the 
form of a data set, often a very large one. But users of the simulation are 
rarely interested in this pile of numbers in such a form. And it is equally 
rare that they have confidence in this pile of numbers in all of its gory, 
undifferentiated detail. There is usually still much work to be done.

The data set requires interpretation. It can be visualized, subjected to 
mathematical analysis, and used in conjunction with other sources of 
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knowledge, including observation, in order to arrive at the final goal of a 
simulation study—what I call a model of the phenomena. This, rather than 
a pile of numbers, is what a simulationist generally aims to produce.

A model of the phenomena is a picture of the phenomenon of interest 
that embodies all of the relevant knowledge about it, gathered from all 
the relevant sources (of which the simulation may be only one source). It 
can comprise mathematical relations and laws, images (both moving and 
still), and textual descriptions. Particularly in the sciences of complex 
nonlinear systems, the model of the phenomena is rarely a quantitative 
description of a single system under a single set of initial conditions. 
Rather, it represents an attempt to summarize the basic qualitative fea-
tures of a whole class of structurally similar phenomena—and to single 
out the trustworthy ones from those that may be artifacts of the simula-
tion. It might include such features as the following:

an emergent, high-level mathematical relationship among certain aspects of the 

system, such as a scaling law.

a transport mechanism: any effect, such as diffusion, turbulence, an instability, or 

viscosity, that explains the movement of some entity or quantity, such as mass, 

energy, or angular momentum, through a particular system.

Threshold values of parameters; for example a reynolds number at which a system 

undergoes the transition from soft to hard turbulence.

characteristic coherent structures (like the red spot of Jupiter).

characteristic geometries of flow.

patterns of interaction and competition among coherent structures.

In Wilhelmson’s simulation of the severe storm, the data set generated 
by the simulation was composed of values for each of the nine dependent 
parameters at each of the points on the space time grid of the simulation. 
This data set was then subjected to a variety of complicated and labor- 
intensive visualization techniques designed to “reveal the inner dynam-
ics” (Wilhelmson et al. �990, �0) of the phenomena.

The ultimate goal was to produce a visual record of how the basic, 
internal, stable structural features of the storm evolve and to understand 
the internal mechanisms that are at work in creating and preserving 
the stability of these structures. The researchers generated images cor-
responding to naked-eye observations of the simulated storm as well as 
images corresponding to those generated by surface reflectivity radar. 
The visual viewpoint was generated by rendering images of the surfaces 
that enclose regions of cloud (small water droplets and ice particles) and 
regions of rain within the storm. This created a time series of images that 

•

•

•

•

•

•
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depicted what the storm cloud would look like to the naked eye from 
some particular vantage point. Images traditionally generated from re-
flectivity radar are two-dimensional cross sections that are color-coded to 
graph the concentration of raindrops at every point in the cross section 
of the storm. The simulationists recreated these images from the data set 
generated by the model.

Next, they used imaging techniques to study the patterns and mech-
anisms of airflow inside the storm. Wilhelmson’s team used the com-
puted velocity field data in order to simulate the trajectories of imaginary 
“weightless tracer particles” through the storm environment. The team 
also used long streamers to display the trajectories of selected air particles 
inside the storm. These streamers allowed the researchers to view the 
major, stable, long-lived air currents.

Another important aspect of the flow is the vorticity. In particular, re-
searchers are especially interested in depicting the patterns of streamwise 
vorticity, the rotation of air around an axis parallel to the direction of 
flow. For this purpose they used differently colored ribbons whose degree 
of twist is in proportion to the quantity of streamwise vorticity in that 
region of the flow line. All of these visualizations were preserved as both 
still images and full-motion video.

Once the researchers succeeded in visualizing these aspects of the 
flow, they were able to make use of these visual representations to iden-
tify some of the key structures and trajectories in the inner dynamics 
of the flow of air, ice, and water through the storm system. They were 
able to use this knowledge to construct “a model of storm evolution and 
persistence”(Wilhelmson et al. �990)—a model of the phenomena for se-
vere storms. Meteorologists researching storm dynamics are particularly 
interested in the question of how severe storms maintain their longevity 
and develop and maintain their rotational character. The researchers seek 
an answer to these questions by analyzing how the basic geometry of 
the main flow features works to create the features of the storm that are 
known to be important in preserving its basic structure.

A good example of this kind of explanation involves the updrafts in 
the storm and the vorticity of this flow. Wilhelmson and his colleagues 
were able to show that an updraft with a high degree of streamwise vortic-
ity will become helical in character, and they have argued that this type 
of flow is essential for reducing the energy dissipation in a severe storm, 
thus prolonging its life. They identified four processes in the storm that 
contribute to vertical vorticity: advection (horizontal transport of air due 
to temperature variation), convergence of air, tilting of horizontal vortex 
lines into the vertical, and dissipation.
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All of these remarks and examples are by way of complicating the ideal 
of figure �.�, in which model construction is governed by theory. But in 
our examples, model construction is guided not only by theory, but also 
by physical intuitions, and by model-building tricks like eddy viscosity  
or the Arakawa operator that are tinkered into being through subtle  
feedback and interplay with the limitations of computational schemes 
that are revealed through trial and error.

In figure �.�, the output of a simulation is a pile of unquestioned 
numbers. But in real examples of simulation, the numbers are only the 
first step in generating a model of the phenomenon. Wilhelmson’s storm 
team could not begin to investigate the results of their simulations with-
out first using the simulation’s output to recreate images that are familiar 
to the meteorologist. The process of generating a model of the phenom-
enon involves sorting through the pile of numbers, trying to integrate it 
with other sources of knowledge, and determining which, if any, of the 
features revealed in that pile of numbers are trustworthy and reliable.

While figure �.� appears to be a fairly epistemologically straightfor-
ward process, the actual process that I have been describing is ripe with 
all sorts of uncertainties that need to be managed. The project of an epis-
temology of simulation is the study of the means by which we sanction 
belief in the outcome of simulation studies, despite this motley method-
ology. I want to argue, furthermore, that in order really to understand 
the relationship between models of phenomena and scientific theories—
that is to say, broadly speaking, if we want to understand the relation-
ship between scientific theories and their applications in contemporary  
science—we need to understand the processes by which these results get 
sanctioned.

Verification and Validation

If we turn once again to the kinds of remarks we are likely to find in 
the introduction of a textbook on computer simulation, or even to the  
technical literature of verification and validation, the following con-
ception of the epistemology of simulation accompanies the ideal of fig-
ure �.�. On this conception, the epistemology of simulation can be cleanly 
divided into two components: so-called verification and validation.  
Verification, on this conception, is the process of determining whether 
or not the output of the simulation approximates the true solutions to 
the differential equations of the original model. Validation, on the other 
hand, is the process of determining whether or not the chosen model is a 
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good enough representation of the real-world system for the purpose of 
the simulation. Here is a characteristic passage: “Verification deals with 
mathematics and addresses the correctness of the numerical solution to 
a given model. Validation, on the other hand, deals with physics and 
addresses the appropriateness of the model in reproducing experimen-
tal data. Verification can be thought of as solving the chosen equations 
correctly, while validation is choosing the correct equations in the first 
place” (Roy �005).

It is clear that this two-step conception of the epistemology of simula-
tion fits nicely with the ideal of figure �.�. In figure �.�, first you choose 
a model on a principled basis, and then you try to solve the equations of 
that model. According to the conception embodied in V&V, the episte-
mology of simulation is cleanly divided along those lines. In validation, 
you have to determine whether you have chosen the right model. Since 
the model has been chosen in a principled way, you are supposed to be 
able to do this independently of the results you get out of your solver. In 
verification you have to determine whether you have found good solu-
tions to that model. This is supposed to be principally a mathematical or 
computer science question. The question of the appropriateness of the 
model is conceptualized as being independent of the question of the fit-
ness of the solver.

What I would like to argue here is that the epistemology of simulation 
does not divide as cleanly into verification and validation as this picture 
suggests. I would argue, that is, that simulationists are rarely in the posi-
tion of being able to establish that their results bear some mathemati-
cal relationship to an antecedently chosen and theoretically defensible 
model. And they are also rarely in a position to give grounds that are 
independent of the results of their “solving” methods for the models they 
eventually end up using.

I think this claim is important for two reasons. The first reason is that 
when we look past the V&V model of the epistemology of simulation, 
we find an epistemology that is much closer to the epistemology of ex-
periment than the V&V conception can really account for. I explore the 
consequences of this in detail in the following chapter. The second rea-
son is that this issue of verification and validation dovetails nicely with 
the recent debates in the philosophy of science I discussed earlier about 
the scope of theories. The connection to this debate will become clear in 
what follows.

Let us first examine the claim that the epistemology of simulation di-
vides cleanly into verification and validation. To do this, we have to look 
carefully at the epistemological strategies that are available to simulation-
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ists. What should be clear is that we should not expect to find anything 
like a logic of the epistemology of simulation modeling. What we can 
offer, instead, is something akin to what Allan Franklin provided in The 
Neglect of Experiment (Franklin �986). Franklin asks, “How do we come to 
believe rationally in an experimental result?” His answer is that scientists 
use various strategies that philosophers ought to be able to see as provid-
ing grounds for rational belief in experimental results. While Franklin 
provides a list of twelve or so such strategies, he is careful to note that his 
list is neither exclusive nor exhaustive, and that no subset of the list is 
a necessary or sufficient condition for rational belief. He also notes that 
grounds for rational belief do not guarantee certain knowledge. Some-
times we may rationally believe something that we all later regard as 
wrong (Franklin �986, �90–9�).

The epistemology of simulation is an analogous project, but with an 
added benefit. Once we underscore the various strategies that simula-
tionists use to provide grounds for belief in their results, we will not also 
gain a better understanding of what makes belief in the results of (some) 
simulations rational; we can only gain a better understanding of the rela-
tion between theories and their applications.

One of the central themes of Franklin’s work is that experimenters are 
constantly preoccupied with scrutinizing experimental setups to uncover 
possible sources of artifact. Then they can work to eliminate the impact 
of these disturbances on experimental results. The same is certainly true 
of simulationists.

In what follows, I outline some of the strategies available to simula-
tionists to argue for the reliability of their results. A central conclusion 
that I would like to draw from what follows is that these strategies are best 
understood as being aimed at providing grounds for belief that a simu-
lation provides reliable information about the real-world system being 
simulated. They are not aimed at providing grounds that the computer 
is providing solutions to the original equations of the theoretically moti-
vated model—at uncovering the empirical content of some theory.

To be sure, one of the principle kinds of arguments that the proponent 
of a simulation model offers in support of its adequacy is that the reli-
ability of the computational techniques she has used are underwritten 
by sound mathematical theory and analysis. The simulationist, in other 
words, will certainly mount the best argument she can that the math-
ematical techniques used to turn the original model equations into the 
final algorithm are sound. But these arguments are invariably terribly 
weak. The history of computer simulations is littered with examples of 
computational methods that should have worked but did not because the 
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numerical methods failed. So these kinds of arguments—the ones that are 
entirely mathematical in character—would never by themselves provide 
much rational ground for believing in the results of simulations. And 
there are good reasons for this—the arguments themselves often depend 
on linearity conditions that do not in fact apply to the conditions that 
are of interest to the simulationist.

Rather, a host of other strategies are required and in fact predominate. 
The most important strategy available to the simulationist, sometimes 
called “benchmarking” or “calibration,” is to show that relevant output 
of the simulation matches what is known about the phenomena. Simula-
tion models can be benchmarked in three different ways: by comparing 
their results to experiments, to analysis, and to other simulations. The 
first criterion that a simulation must meet is that it be able to reproduce 
known analytical results. Even for complex systems, there sometimes 
exist, under highly constrained conditions, limited analytical results for 
the full equations of a mechanical model. Typically, these results apply 
to highly symmetrical, equilibrium-state instances of the system, or to 
instances that can be studied as small deviations, or perturbations, of 
such instances.

Results can also be compared to the output of another simulation if it 
uses a different algorithm, or, even better, if it is of a small local region 
within the broader system and makes use of a more complete or refined 
model.

But the most important way in which simulation results are bench-
marked is against real-world data. Simulationists expend a great deal of 
effort gathering data from experimental sources in order to benchmark 
their models. This kind of comparison is often not as easy as it might 
seem, since data from these different sources are hard to come by and 
may come in different forms. For example, simulation data and experi-
mental data are not always obtained at the same spatial position within 
a system; the grid points of the simulation do not often correspond to 
the locations of probes within the experimental setup. Moreover, it is 
typically less interesting to compare detailed data—piece by piece—than 
it is to compare the characteristic features of the simulation results and 
empirical results, especially when the empirical results come in the form 
of flow visualization (Shirayama and Kuwahara �990, 67).

Good benchmarking, therefore, requires the skilled judgment of a 
good observer; absent an observer who can compare images against im-
ages, there is no metric of similarity between the different data sets that 
need to be compared. Visualization is by far the most effective means of 
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identifying characteristic features within complex dynamical data sets, 
and so it is the most effective means of judging the degree of benchmark-
ing success a simulation enjoys against real data.

Besides benchmarking, there are other strategies available for sanction-
ing simulation results. One can check to make sure that, when simulated, 
the system responds as expected to changes in values of the parameters—
a fluid-flow problem that becomes more laminar, for example, when vis-
cosity is decreased, might not be being properly simulated, since we have 
systematic background knowledge that leads us to expect the opposite. 
One can also check to see if the simulation is capable of reproducing 
basic functional relationships that are predicted by higher level, or more 
phenomenological theories and laws.

I take it then, that we have found two important facts about simula-
tions. The first is that simulationists often settle on models that they 
could never justify on a purely theoretically principled basis. There are, 
in the end, at best very weak theoretical arguments to be given for the 
ultimate choice of model. The second is that there are also, at best, weak 
mathematical arguments that can be given to support the claim that the 
output of a simulation approximates the mathematical content of those 
models. The sanctioning of simulations does not cleanly divide into veri-
fication and validation. In fact, simulation results are sanctioned all at 
once: simulationists try to maximize fidelity to theory, to mathematical 
rigor, to physical intuition, and to known empirical results. But it is the 
simultaneous confluence of these efforts, rather than the establishment of 
each one separately, that ultimately gives us confidence in the results. 
When simulationists argue for the trustworthiness of the models of phe-
nomena they create under the guidance of theory, they offer no rea-
sonably strong arguments that those models approximate the principled 
content of any particular theory.

It is true, of course, that simulationists do their best to show that their 
results are as close as possible to the real solutions of the equations that 
form the basis of their original models, and often they can offer very 
strong arguments to this affect for limited regions of solution space. The 
problem is that, in practice, the models they begin with are so complex, 
and rely so heavily on nonlinear equations, that the arguments they can 
offer for such conclusions are incredibly weak when they are applied to 
the entirety of the solution space. When models are sufficiently complex 
and nonlinear, it is rarely possible to offer mathematical arguments that 
show, with any degree of force, that verification is being achieved. What 
simulationists are forced to do is to focus, instead, on establishing that 
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the combined effect of the models they begin with and the computational 
methods they employ provide results that are reliable enough for their 
intended purposes. This, of course, is hard. And it requires more finesse 
than we would expect if we thought that the activities of verification and 
validation could be kept entirely conceptually separate.

One can think of this, in a sense, as a kind of a Duhem problem. The 
Duhem problem is that when a prediction fails to match observed data, 
we do not know whether to blame the theory we were testing or an aux-
iliary hypothesis. Similarly, when a computational model fails to account 
for real data, we do not know whether to blame the underlying model 
or to blame the modeling assumptions used to transform the underly-
ing model into a computationally tractable algorithm. But to the extent 
that the Duhem problem is a problem about falsification—about where 
to assign blame when things go wrong—the present problem is more 
than a Duhem problem. When a computational model succeeds—when 
it provides results that are adequate for a particular purpose—it might 
not in fact be because either the underlying model is ideal or because the 
algorithm in question finds solutions to that underlying model. It might 
rather be because of what simulationists sometimes call a “balance of 
approximations.” This is likely the case when a model is deliberately tai-
lored to counterbalance what are known to be limitations in the schemas 
used to transform the model into an algorithm. When success is achieved 
by virtue of this kind of back-and-forth, trial-and-error, piecemeal adjust-
ment, it is hard even to know what it means to say that a model is sepa-
rately verified and validated.

I should be clear about one thing here: I am not arguing that verifica-
tion and validation are not separable activities in practice. I am not urg-
ing practitioners of simulation-model evaluation to abandon this useful 
conceptual distinction. Rather, I would prefer to be read as urging philos-
ophers not to overinterpret the fact that this pragmatic distinction exists 
among practitioners. I do not want philosophers to conclude from the 
fact that practitioners distinguish validations and verification that the 
principal work of evaluating a simulation is a mathematical, as opposed 
to an empirical matter—at least not in all cases. What is a pragmatically 
useful distinction for practitioners can be misleading to philosophers if 
it is taken to be more conceptually clear than it is.

And the apparent conceptual clarity afforded by keeping these two 
activities distinct is misleading. It can make it seem, for example, that 
it is precisely the activity of verification that is unique to simulation, 
as opposed to other modeling activities where the conclusions one can 
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draw from the model can be inferred analytically. And finally, it might 
seem that questions of verification are entirely mathematical questions, 
without philosophical meat. When, for example, Roman Frigg and Julien 
Reiss (�009) argue that simulation is epistemologically uninteresting pre-
cisely because its only epistemologically unique feature is entirely math-
ematical in nature, they are making just this mistake.

Uncovering the Content of Theories

If verification and validation are often carried in tandem, rather than 
being clearly conceptually distinguishable, then this raises a deep ques-
tion about the relation of models of phenomena to theories: Should we 
indeed think of the models of phenomena that simulationists provide 
as approximate qualitative characterizations of the empirical content of 
some theory—as the ideal, undisplayable “solutions” of the theoretical 
principled equations? Or is it possible, on the other hand, that theories 
can be used to guide the creation of representations of phenomena that 
are not, properly speaking, part of the “content”4 of those theories? This 
question is of course closely intertwined with the epistemological conclu-
sion above.

Closely intertwined, but not identical. If we are interested, after all, 
in the relation that models of phenomena have to theories, we need to 
distinguish two different issues. The first is whether simulationists offer 
direct arguments that their models of phenomena approximate the prin-
cipled content of some theory. And the second is whether those models 
actually approximate that content. In fact, one could very well argue 
that when simulationists argue for the trustworthiness of their models of 
phenomena—when they argue that those models approximately depict 
the behavior of some real-world system—they are providing an indirect 
argument that the models approximately uncover the content of the 
best theory of that real-world system. After all, if the theories that guide 
the construction of the simulation model are empirically adequate, in 
the way that philosophers traditionally understand that term,5 then an 
argument for agreement with real-world behavior would be a de facto 

4. In the sense, for example, that participants in the debates on the structure of theories in-
tended (see, e.g., Suppes �96�; Suppe �974, ���–30; Van Fraassen �970 and �980, 64–70).

5. For Van Fraassen (�970), for example, a theory is empirically adequate if one of the family 
of models that the theory comprises is isomorphic to all possible observations that fall under the 
purported domain of the theory.
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argument for agreement with the empirical content of any relevant em-
pirically adequate theory.

But the above argument makes a fairly strong assumption about theo-
ries and their empirical adequacy. It assumes that the theories that guide 
the construction of the relevant models have wide scope. It assumes that, 
despite our own cognitive limitations, in principle, the scope of every the-
ory by itself is always as wide as the scope of the set of models we are 
capable of building under the guidance of that theory.

Specifically, the above argument assumes that simulations can never 
produce good results that fall outside of the principled scope of the theo-
ries that originally guide their construction. This assumption should not, 
I think, be taken for granted. In fact, it is closely connected to the debate 
I mentioned earlier about the scope of theories. The debate, we should 
recall, is about whether laws and theories in science are tightly restricted 
with respect to the features of the world that fall under their domain—or 
whether, on the other hand, it is the nature of fundamental theories that 
they have universal domains.

The question that concerns us here is whether it is possible that simu-
lations can sometimes produce results that fall outside of the principled 
scope of the theories that originally guide their construction. This does 
not speak precisely to the debate between the fundamentalist and the 
pluralist, since the simulations we are looking at are not guided by fun-
damental theory. But it speaks to a very closely related question: whether 
theoretically guided model-building methods sometimes generate genu-
inely novel knowledge—novel in the sense of not being even “implicitly 
contained” in preexisting theory, whether or not it is generally the case 
that the principled scope of every theory extends, even implicitly, as far 
as all of its nonprincipled applications. In fact, since it is not about funda-
mental theory, an affirmative answer to this question would be a weaker 
claim than the one defended by Cartwright.

Still, I do not offer a compelling argument for even the weaker claim 
here. We are talking, after all, about the nature of areas of solution space 
that are, in principle, inaccessible. Compelling arguments for either one 
or the other are probably not forthcoming. Indeed, it is hard to say what 
the criteria ought to be for resolving debates about the scope of theories 
when principled models and their solutions do not exist.

What I do want to urge, however, is that we resist the temptation to 
take the opposite claim for granted: that a simulation can only be useful 
and sanctionable if the systems it represents fall under the principled 
scope of its theoretical ancestors. And there are two reasons to resist that 
temptation.



SancTiOning MOdelS

2�

The first reason is that a dogmatic commitment to this expansive con-
ception of the scope of theories obscures scientific practice. It inhibits 
us from seeing how theory guides but does not determine how the models 
of phenomena for complex systems are constructed. It obscures the rich 
epistemology of simulation and reinforces the misleading conception 
that epistemology can be neatly divided into settled theoretical issues on 
the one hand (validation) and mathematical/computational ones on the 
other (verification). The epistemology of simulation, as we have seen at 
length, is very much an empirical epistemology and not merely a math-
ematical or logical one. When we turn, in the next chapter, to examining 
the epistemological connections between simulation and experiment, it 
will be an impediment if we insist on seeing simulation as the process of 
uncovering the empirical content of theories.

The second reason is that there are principled reasons to doubt the 
claim in the first place. Consider the case of simulations of fluid-flow 
problems, which are generally based on a form of the Navier-Stokes equa-
tions. Analysis of the three-dimensional form of these equations has 
never established the formal uniqueness and existence of the right kinds 
of solutions. There is even some evidence that singularities might almost 
inevitably form, which would imply a breakdown of the equations. Nev-
ertheless, it seems quite clear that, at least for certain kinds of problems, 
these equations can be used to guide the construction of very successful 
simulations.

In later chapters, we take a close look at so-called multiscale simula-
tions. These are simulations that divide and conquer the problem they 
are designed to solve by using different theoretical frameworks to guide 
model construction in different regions of interest. The models of each of 
these separate regions are sewn together into one unified simulation with 
“handshaking algorithms.” It is doubtful, therefore—or at least there is 
no particularly good reason to believe—that the net output of these simu-
lations is an approximate solution to any particular set of theoretically 
motivated equations.

In the end, the debate about the scope of theories is one for which, 
until we reach the end of enquiry, the criteria for its resolution are not 
obvious. But whatever metaphysical position we hold in that debate, 
there are important and challenging epistemological and methodologi-
cal issues in scientific theorizing that will be overlooked if we see theories 
as fully articulated structures and treat calculational problems as merely 
the result of practical limitations.

When it comes to complex systems, we simply cannot bend our theo-
ries to our cognitive will—they will not yield results with any mechanical 
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turn of a crank. The models that we need to construct in order to do our 
science need to be constructed delicately and from as many sources as 
are available. Consequently, these models are best viewed not as mere 
solutions to theoretical equations; they are rich, physical constructs that 
mediate between our theories and the world.
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Methodology for a  
Virtual World

In the last chapter, I argued that we should resist the temp-
tation to view the results of simulations, even theoretically 
motivated simulations, as part of the proper empirical con-
tent of theories. I suggested, furthermore, that one reason 
we should resist that temptation is because it obscures what 
I called the “empirical” character of the epistemology of 
simulation, implying that the latter has close connections 
to the epistemology of experiment. It is time to make some 
of these claims a bit more precise.

One need not look very far into the literature of simula-
tion to find that it is full of language that strongly evokes 
metaphors of experimentation. The interpretation of meta-
phorical language, however, requires some care. It can be 
nothing more than loose metaphor. We have to remember, 
moreover, the important role that well-established theory 
plays in most simulations, especially in the physical sci-
ences. In such contexts, simulation is only possible pre-
cisely because good theories, well confirmed by a history 
of experiments, exist to underwrite them. If the metaphors 
are to be taken seriously, simulations would then seem to 
have the character of both experimentation and theoriz-
ing—two activities that are traditionally taken to occupy 
rather different spheres of scientific activity. Where, then, 
“on the methodological map,”� do techniques of computer 
simulation lie?

�. Galison �996, �20.
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One version of that question that we might ask is whether or not 
simulations are, properly speaking, themselves a class of experiments—or 
if not, what, if any, essential characteristics distinguish simulations and 
experiments. I address such questions in the next chapter. Here I want to 
answer the following questions: What epistemological features do simu-
lations actually share with ordinary laboratory experiments? What can 
we learn from the epistemology of experiment—a more developed area 
of the philosophy of science—that we can apply to the epistemology of 
simulation?

If simulations that are underwritten by well-confirmed theory share 
important and interesting epistemological features with experiments, 
then we may be able to draw on some of the recent interesting work in the 
philosophy of experiment to illuminate our understanding of the appli-
cation of theories to local models. So the question is really this: What can 
we learn about the epistemology of the construction of local models by 
drawing comparisons between the epistemology of experiment and that 
of simulation? That, in turn, could further amplify some of the lessons 
of the last chapter, as well as amplify and illuminate Mary Morgan and 
Margaret Morrison’s recent discussion of the application of theories— 
in particular their characterization of “autonomous models.”

One of the points we want to stress is that when one looks at examples of different ways 

that models function, we see that they occupy an autonomous role in scientific work. 

We want to outline . . . an account of models as autonomous agents, and to show how 

they function as instruments of investigation. . . . It is precisely because the models are 

partially independent of both theories and the world that they have this autonomous 

component and so can be used as instruments of exploration in both domains.

(MORGAN AND MORRISON 1999 ,  10 ;  EMPHASIS  IN ORIGINAL)

For our purposes, the term autonomous models is somewhat mislead-
ing. A better term would be semiautonomous. The claim frequently made 
by Morrison and Morgan that models are autonomous or independent of 
theory is meant to emphasize the fact that there is no algorithm for read-
ing models off from theory. As I have emphasized, this is especially true of 
the models that drive simulations. While these models generally incorpo-
rate a great deal of the theory or theories with which they are connected, 
they are usually fashioned by appeal to, by inspiration from, and with 
the use of material from, an astonishingly large range of sources: empiri-
cal data, mechanical models, calculational techniques (from the exact to 
the outrageously inexact), metaphor, and intuition. In the end, the model 
that is used to run the simulation is an offspring of the theory, but it is a 
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mongrel offspring. It is also substantially shaped by the exigencies of prac-
tical computational limitations and by information from a wide range of 
other sources. Still, to call these models completely autonomous, at least 
in this context, is to deny their obvious and strong connections to theory. 
This feature of simulation models—their semiautonomy—will be crucial to 
keep in mind if we want to understand how simulation can share aspects of 
theorizing and experimenting. And that, in turn, will be crucial if we want 
to better understand how theory guides the construction of local models.

It’s All Metaphorical

We can start by looking at what some recent commenters on simula-
tion have said about the relation between simulation and experiment. 
One view suggests that talk of “simulation” and “numerical experiments” 
is purely hyperbolic or metaphorical—simulation is nothing more and 
nothing less than using brute-force computational means to solve ana-
lytically intractable equations. A second view, in which the terms simu-
lation and numerical experiment are taken quite literally, a simulation is a 
stand-in, or mimic, of a real-world system, and we can therefore perform 
experiments on it just as we can on any other experimental target. Fi-
nally, there is the view that simulation is a brand new “third mode” of 
science, neither experimental nor theoretical. In what follows, I weigh 
the merits of these three views, emphasizing how much each of them can 
contribute to understanding how models are to be evaluated.

Let’s begin with the view that simulation is just a fancy word for using 
brute-force computational means to solve analytically intractable equa-
tions—and that all the experimental metaphors built into the language 
of simulation are nothing but empty metaphor. One perspective from 
which to see clearly that this view is wide of the mark has been offered 
by the philosopher R. I. G. Hughes, who has argued for a distinction be-
tween “the use of computer techniques to perform calculations” on the 
one hand and genuine computer simulation on the other (Hughes �999, 
�28). For Hughes, the distinction hinges on the “thoroughly realist mode 
of description” that is used to describe the results of genuine simulations, 
and on the images that simulation produces, which often resemble pho-
tographs of material physical models. Thus, what distinguishes genuine 
simulations from mere number crunching is that simulations have genu-
inely “mimetic” characteristics.

There is certainly something right about this. The mimetic character-
istics of an algorithm—one that uses sophisticated graphics and that is 
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treated realistically by its users—are surely an important consideration 
that contributes, at the very least, to experimental metaphors concerning 
simulation. So psychologically, at the very least, working with a simula-
tion is much more like doing an experiment if the simulation produces 
lifelike images reminiscent of laboratory photographs.

Of course, we are looking for something deeper than a superficial, 
psychological resemblance. In fact, if this were all that simulations, or 
“numerical experiments,” had in common with experiments, then one 
might indeed be tempted to agree that talk of simulation as numerical 
experimentation was no more than mere hyperbole. To illustrate this 
point, we need look no further than the example of mere number crunch-
ing offered by Hughes; the use of a computer to calculate the orbits of 
planets in a three-body problem.2 In such a case, nothing at all prevents 
creators of such an algorithm from imbuing it with high-quality graphi-
cal output, and from characterizing their results in as realistic a mode of 
description as they like. Since no distinction of great philosophical im-
port could hinge on whether or not “mere” computation is embellished 
with graphic presentation, we must do more than cite the fact that some 
algorithms use graphics and some do not.

There are in fact two characteristics of true simulations, characteristics 
we are familiar with from the last chapter, that meaningfully distinguish 
them from mere brute-force computation in ways that connect them to 
experimental practice in an interesting fashion.

Successful simulation studies do more than compute numbers. They make use of a 

variety of techniques (most of which, pace Hughes, involve imaging in one way or 

another) to draw inferences from these numbers.

Simulations make creative use of calculational techniques that can only be moti-

vated extra-mathematically and extra-theoretically. as such, unlike the results of 

simple computations that can be carried out on a computer, the results of simula-

tions are not automatically reliable. Much effort and expertise goes into deciding 

which simulation results are reliable and which are not.

Let me elaborate on these two themes. First, simulations are interest-
ingly like experiments because they involve data analysis. Suppose that 
we are confronted with a difficult fluid-flow problem. In such a case, 

2. It is worth noting that the problem of calculating the orbits of multiple massive bodies mutu-
ally interacting via the force of gravity is highly nontrivial, and it is a mistake, in any case, to view 
it as mere number crunching. There are basic questions one can ask about solar systems (e.g., about 
their stability) for which it is not at all clear that any particular simulation method guarantees cor-
rect results.

•

•
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we think that we know the governing principles (in this case, a form of 
the Euler equations), but we still do not know what kind of local behav-
ior these principles predict. One approach would be to use a tractable, 
approximative, analytical technique. For example, analysts might use a 
series expansion, truncate all but two or three of the terms, and end up 
with an equation for which one can write a solution. Or one might use a 
finite-difference simulation technique. Both of these techniques employ 
approximations, both involve creative work, and both will, in turn, give 
rise to issues of justification.

One important difference between the two methods, however, is this: 
the analytic method will produce, as its result, an algebraic expression. 
That expression, in turn, can represent the behavior of a general class of 
systems. Various functional dependencies and patterns of behavior can 
easily be read off from a closed-form expression.

Numerical methods, on the other hand, provide as their results a big 
pile of numbers. If simulationists want to learn about the general quali-
tative features of a class of systems, then they must apply all the usual 
tools of experimental science for analyzing data: visualization, statistics, 
data mining, and so on. If they want to discover functional dependen-
cies, they must also run a barrage of trials, looking at the results across 
a wide range of parameters. This aspect of simulation certainly carries 
the most obvious methodological characteristics of experimental work. 
It is the need, furthermore, to draw inferences from these piles of data 
that brings about what Hughes calls the “mimetic” aspects of simula-
tion—their “thoroughly realistic mode of description.”

In a review article on computational methods, a group of researchers 
describe the situation this way:

The most common method for observing the behavior of laboratory flows is to make 

photographs using a variety of techniques that bring out specific features. . . . com-

putational fluid dynamicists naturally want to use similar techniques to display their 

results. displays not only make comparisons with laboratory data much easier, but also 

are useful at getting at the fundamental physics of wave interactions, surface instabili-

ties, vortex generation and other phenomena that may be involved in the flow. 

(wINkLER Et  AL.  1987 ,  29)

Recall Hughes’ insistence that genuine simulations be distinguished 
from mere step-by-step calculations on the basis of the former’s mimetic 
qualities. It seems to me that what underlies this distinction is really the 
difference between computational methods that are used to make spe-
cific quantitative predictions (for example, where will the fourth planet 
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in a five-body system be after 72 days?) on the one hand and computa-
tional methods used to “get at the fundamental physics”� on the other. It 
is only in the latter case that imaging techniques become necessary and 
that the computational model takes on a mimetic quality, so that tech-
niques familiar to the laboratory observer can be applied. But whether 
or not imaging techniques per se are used, simulations that aim to get at 
global, diachronic features of the systems they model will invariably not 
only produce numbers but also draw inferences from those numbers in a 
manner that is richly analogous to experimental data analysis.

The second feature of simulations with respect to which they have a 
great deal in common with experimental practice is the constant con-
cern with uncertainty and error. As I have already emphasized, although 
simulation often is initially motivated by well-established theory, the 
end model that drives the computations generally incorporates modeling 
assumptions that are not theoretically motivated. The results of the simu-
lation, therefore, do not automatically come with a stamp of approval 
that carries the full faith and credit of the governing theory’s epistemic 
credentials. According to Winkler, “Unless uncertainties are kept under 
control, the computational approach cannot uncover new physical phe-
nomena” (�987, 29; emphasis in original).

That simulations and laboratory experiments both require the man-
agement of uncertainties is perhaps interesting in and of itself. But if we 
are interested in epistemological issues surrounding autonomous models, 
the really interesting question is whether or not they do so in analogous 
ways. If they do, then perhaps some of the insights from recent work in 
the philosophy of experiment will shed some light on the sanctioning 
of models.

I return to these questions later on. For now it is enough to address 
the challenge of this section with the following point. While having a 
mimetic quality is not in itself what gives a simulation interesting meth-
odological and epistemological features, it is an important sign of other 
features that do. The extensive use of realistic images in simulation is a 
stepping stone that simulationists use in order to make inferences from 
their data. It is also a tool they use in order to draw comparisons between 
simulation results and real systems, which is part of the process of sanc-

�. Obviously, Winkler et al. are using the expression fundamental physics in a manner that is 
quite different than the one to which philosophers might be accustomed. I take it that they are us-
ing the expression to signify not the fundamentals laws or theories of the system but the emergent 
structural features of the dynamics like vortices, waves, and surfaces and their interactions—the 
important, dynamically significant, long-term and long-range features of the dynamics that give 
insight into its time-evolution. 
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tioning their results. It is the drawing of inferences and sanctioning of 
results that give rise to interesting philosophical connections between 
simulation and experimental practice.

The Computer as Experimental Target

Another view on how to locate simulation methodologically has been 
to interpret expressions like simulation and numerical experiment liter-
ally. The idea here is to interpret the simulation algorithm as literally 
“mimicking” the system or systems of interest and to understand what 
scientists do as performing experiments on the computer or computer 
algorithm, which acts as a stand-in for, or probe of, the system in ques-
tion. Computer simulations are experiments, and the computer is the 
target of the experiment.

Practitioners of simulation often emphasize this point of view them-
selves, especially in popular or semipopular presentations that are geared 
toward expounding the virtues of numerical methods. For example,

a simulation that accurately mimics a complex phenomenon contains a wealth of 

information about that phenomenon. Variables such as temperature, pressure, humid-

ity, and wind velocity are evaluated at thousands of points by the supercomputer as it 

simulates the development of a storm, for example. Such data, which far exceed any-

thing that could be gained from launching a fleet of weather balloons, reveals intimate 

details of what is going on in the storm cloud. (kAufMANN AND SMARR 1993 ,  4)

The germ of this idea probably comes from the father of computational 
methods himself, John von Neumann—although he actually expressed 
the idea in reverse. Working on highly intractable fluid dynamical prob-
lems at Los Alamos, von Neumann lamented the fact that he and his 
colleagues often had to perform difficult experiments just to determine 
facts that should, in principle, be derivable from well-known underlying 
principles and governing equations: “The purpose of the experiment is 
not to verify a proposed theory but to replace a computation from an 
unquestioned theory by direct measurement. . . . Thus wind tunnels are 
used . . . as computing devices . . . to integrate the nonlinear partial dif-
ferential equations of fluid dynamics” (quoted in Winkler et al. �987, 28). 
Once von Neumann’s dream became ostensibly realized, and the wind 
tunnel was replaced by the computer, it is not altogether unnatural to 
view the resulting activity as performing experiments in a virtual wind 
tunnel.
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Something like this view of computer simulation has received most 
attention from philosophers of science. This is principally a metaphysi-
cal claim about the relation between simulation and experiment—it is 
the claim that simulations are experiments—and we give this issue more 
attention in the next chapter. Here we are interested in epistemological 
connections. But it will help us to take a preliminary look at the view, 
since it sometimes takes on, or at least flirts with, an epistemological 
formulation.

Several philosophers have argued that simulations are experiments. 
Paul Humphreys (�994), for example, argued for a view like this vis-à-vis 
Monte Carlo simulations, on the grounds that when a program runs on 
a digital computer, the resulting apparatus is a physical system. Any runs 
of the algorithm, therefore, are just experimental trials on a physical tar-
get. This is also roughly the view that is espoused by Hughes. According 
to Hughes, there is no reason to resist thinking of computer simulations 
as experiments, since they lie on a “slippery slope” that makes them 
conceptually inseparable from experiment. The slope looks something 
like this:

We experiment on a model water wheel in order to learn about water wheels in 

general.

We experiment on an electrical damped harmonic oscillator in order to learn about 

mechanical damped harmonic oscillators that are governed by a structurally identi-

cal equation.

We run experiments on cellular automata machines in order to learn about systems 

with identical “symmetries and topologies”

Why not also say, then, that we perform experiments on computers running algo-

rithms designed to simulate complex physical systems? (HuGHES 1999 ,  138)

It is not clear what exactly the epistemological content of these claims 
is meant to be. But Steve Norton and Frederick Suppe have explicitly 
argued that we can best understand the epistemological foundations of 
simulation by seeing it as a form of experiment—where the computer 
is the physical object being experimented on. According to Norton and 
Suppe, a valid simulation is one in which certain formal relations hold 
between a base model, the modeled physical system itself, and the com-
puter running the algorithm. (See Norton and Suppe 200� for details.) 
The relation in question is that of realization, where a system S� realizes a 
system S2 just in case there is a many-one, behavior-preserving mapping 
from the states of S2 onto the states of S�. When the proper conditions are 
met, a simulation “can be used as an instrument for probing or detect-

1.

2.

3.

4.
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ing real world phenomena. Empirical data about real phenomena are 
produced under conditions of experimental control” (Norton and Suppe 
200�, 89). “Simulation modeling is just another form of experimentation, and 
simulation results are nothing other than models of data” (92; emphasis in 
original).

In general then, the claim being made by Hughes and by Norton and 
Suppe is that the methodological structure of simulation is like that of 
experimentation because simulation proceeds in the following way:

create an algorithm that accurately mimics a physical system of interest.

Implement the algorithm on a digital computer.

perform experiments on the computer, which will tell us about the system in  

question—in the same way that experiments on an electrical damped harmonic 

oscillator tell us about mechanical damped harmonic oscillators.

Here we need to carefully distinguish two separate issues. The first is 
the extent to which, following Hughes, simulation can be seen as con-
tinuous with experiment. We address this issue in the next chapter. The 
second is the extent to which we can use what we know about the epis-
temology of experiment to understand the epistemology of simulation. 
The real problem with this sort of story, from the point of view of the 
latter issue—from the point of view of the project of this chapter—is that 
it begs the question of whether or not, to what extent, and under what 
conditions a simulation reliably mimics the physical system of interest. 
We are interested in applying some of the insights of the philosophy of 
experiment to methodological and epistemological issues vis-à-vis simu-
lations. But to identify the methods of simulation with the methods of 
experiment in this way is to tuck away all of these important questions 
into step � and then to focus exclusively on step � as the step where the 
connection lies between simulation and experiment.

Hughes himself at least partially recognizes this problem. His solution 
is to say that computer “experiments” reveal information about actual, 
possible, or impossible worlds. To know that we are finding out about 
actual worlds, according to Hughes, requires an extra step. “Lacking other 
data, we can never evaluate the information that these experiments pro-
vide” (Hughes �999, �42). This is not so much a problem for Hughes 
since his analysis is not intended to be epistemological. In fact, in the 
last quoted passage, Hughes is essentially disavowing any epistemologi-
cal force to his analogy. But we must face this issue if we want to offer the 
analogy between simulation and experiment as a way of understanding 
what makes simulation results reliable. One of the central epistemological  

1.

2.

3.
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questions about simulation is “How do we evaluate the information that 
these simulations provide when other data are lacking?”

This state of affairs is reminiscent of a passage of Wittgenstein’s, in 
which he is criticizing Ramsey’s theory of identity:

Ramsey’s theory of identity makes the mistake that would be made by someone who 

said that you could use a painting as a mirror as well, even if only for a single posture. If 

we say this, we overlook that what is essential to a mirror is precisely that you can infer 

from it the posture of a body in front of it, whereas in the case of the painting you have 

to know that the postures tally before you can construe the picture as a mirror image. 

(wIttGENStEIN,  quOtED IN MARION 1998 ,  70)

To adopt, without further comment, the analogy between simulation 
and experiment would be to make the same mistake as the one identi-
fied by Wittgenstein. Simulation is a technique that begins with well- 
established theoretical principles and, through a carefully crafted process,  
creates new descriptions of the systems governed by those principles. 
It is a technique that, when properly used, provides information about 
systems for which previous experimental data is scarce. Paraphrasing 
Wittgenstein, “What is essential to a [simulation] is precisely that you 
can infer from it” what some system in the real world is like, even when 
other data are lacking. If our analysis of simulation takes it to be a method 
that essentially begins with an algorithm antecedently taken to accu-
rately mimic the system in question, then we have begged the question 
as to whether and how simulations can, and often do, provide us with 
genuinely new, previously unknown knowledge about the systems being 
simulated. It would be as mysterious as if we could use portraits in order 
to learn new facts about the postures of our bodies in the way that Witt-
genstein describes. We need to understand how, as Kaufmann and Smarr 
(�99�) suggest, we can reliably learn about storms from simulations, even 
when data about such storms are conspicuously sparse.

There is another deep problem with the emphasis on the mimetic 
qualities of simulation. Simulations often yield sanctioned and reliable 
new knowledge of systems even when nothing like the stringent con-
ditions required by Norton and Suppe are in place. In practice, simu-
lationists need not suppose—nor even begin to suppose—that their 
simulations perfectly mimic any particular physical system in order to 
convince themselves that certain qualitative properties of their results 
can reliably be attributed to the system being studied. So, while it is true 
that simulations are used to stand in for the systems they simulate, the 
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relation between the simulation and the system is far more complicated 
than mimicry.

If there is a useful analogy to be made by philosophers between simula-
tion and experiment, then that analogy ought to help make methodolog-
ical and epistemological connections. These connections, in turn, should 
help us to apply some of the insights of recent work in the philosophy of 
experiment in order to gain an understanding of the conditions under 
which we should take simulation results to be accurate representations 
of real systems. Thus far, this proposal fails to do this because it assigns 
experimental qualities only to those aspects of simulation reasoning that 
occur after it is assumed that the simulation algorithm “realizes” the sys-
tem of interest.

A Third Mode

A third view on simulation’s methodological geography is that simu-
lation represents an entirely new mode of scientific activity—one that 
lies between theory and experiment. For example, according to Fritz 
Rohrlich, a physicist and philosopher of science, “Computer simulation 
provides . . . a qualitatively new and different methodology for the physi-
cal sciences. . . . This methodology lies somewhere intermediate between 
traditional theoretical physical science, and its empirical methods of ex-
perimentation and observation” (�99�, 507).

Historians, sociologists, and leading practitioners of the techniques 
themselves have expressed this view. In an introductory essay for a special 
issue of Physics Today on the subject of computational physics, Norman 
Zabusky wrote, “Supercomputers with ultrafast, interactive visualization 
peripherals have come of age and provide a mode of working that is 
coequal with laboratory experiments and observations, and with theory 
and analysis” (�987, 25).

Deb Dowling, a sociologist of science, has suggested a similar interpre-
tation of simulation. She observes that simulation is like theory in that 
it involves “manipulating equations” and “developing ideas” but is like 
experiment in that it involves “fiddling with machines,” “trying things 
out,” and “watching to see what happens” (Dowling �999, 264). The 
historian Peter Galison takes a similar view: “[Simulation] ushered phys-
ics into a place paradoxically dislocated from the traditional reality that 
borrowed from both the experimental and theoretical domains, bound 
these borrowings together, and used the resulting bricolage to create a 
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marginalized nether land that was at once nowhere and everywhere on 
the usual methodological map” (Galison �996, �20).

Locating simulation as lying between theory and experiment provides 
a natural perspective for both historians and sociologists. In Galison’s 
case, it is a useful way of expressing how simulation could provide a 
trading zone between experimentalists and theoreticians and across dis-
ciplines. Dowling, in turn, has argued that simulation’s ambiguity with 
respect to the experiment/theory dichotomy can play important social 
and rhetorical functions.

From the point of view of the project of this chapter, however, it is not 
clear what we gain by saying that simulation “lies between theory and 
experiment.” What is of interest philosophically is to understand exactly 
what epistemological features of experimentation are shared by simula-
tion and to use that to gain an understanding of the construction of local 
models. For these purposes, making simulation out to be an entirely new 
methodology and urging that it lies between theory and experiment is, 
at best, a good place to start.

Speculation versus Calculation

One way in which we might be able to make this approach do more work 
for us is to be clearer about the concept of “theorizing” when we say, for 
example, that simulation is an activity that lies between theorizing and 
experimenting. A good place to start is with Ian Hacking’s repudiation 
of the traditional dichotomy of theory and experiment. He urges that we 
replace it with a tripartite division: speculation, calculation, and experi-
mentation: “[By calculation] I do not mean mere computation, but the 
mathematical alteration of a given speculation, so that it brings it into 
closer resonance with the world” (Hacking �98�, 2��–�4).

The point that Hacking is making with his neologisms is that there are 
really two quite distinct activities that we often naively lump together 
under the label of “theorizing.” The first activity is that of laying out 
basic theoretical principles: Maxwell’s equations, Newton’s laws of mo-
tion, Einstein’s field equations, and so on. This is the activity Hacking 
calls “speculation.” The second activity is what Thomas Kuhn long ago 
called “theory articulation.” This is the hard work of making the afore-
mentioned theoretical principles apply to the local, concrete systems that 
make up the real world. Hacking calls this activity “calculation,” but I 
prefer the simple expression “model building” to Hacking and Kuhn’s 
phrases because it emphasizes that this is an activity that often brings 
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us beyond the original theoretical principles themselves. The expression 
“model building” also is meant to emphasize that the model being built is 
not properly seen as a component of the theory proper. The models con-
structed are offspring of theories, but they emerge as semiautonomous 
agents. In this respect, Hacking’s pair of terms, speculation and calculation, 
are misleading, since in conjunction they suggest that there is nothing 
speculative about the process of building models under the guidance of 
theory —and nothing could be further from the truth.

The word theorizing, as it is naively used, expresses some amalgam of 
these two distinct activities, and it effectively collapses a valuable distinc-
tion. This sloppiness of language has persisted, in no small part, because 
most commentators on science, especially philosophers, have woefully 
underestimated the importance of theory articulation, or model building.

It is this inadequate appreciation of the importance of model building 
that Nancy Cartwright has labeled the “vending machine view of theo-
ries” (Cartwright �999, �79–8�). On this view, criticized by Cartwright, 
the ability of a theory to represent the world is captured precisely by the 
set of those conclusions that can be drawn deductively from the theory—
drawn, moreover, with the ease with which we can extract candy from 
a vending machine. For Cartwright, theories do not by themselves have 
the power necessary to represent real, local states of affairs. Only what 
she calls “representative models” are fully able to “represent what hap-
pens, and in what circumstances” (�80). It is these models that represent 
“the real arrangements of affairs that take place in the world” (�80). On 
her view, the process of creating representative models from theory is 
complex and creative.

Widening the field to three activities instead of the traditional two 
makes it easy to argue that simulation is a form of theory articulation, or 
“model building.” The models of phenomena that are the end products 
of simulation are strongly influenced by theory, but they are not part 
of the proper content of any theory. The fact that simulation work is 
such a creative and such an epistemologically delicate process is grist for 
Cartwright’s mill. The difficulty of obtaining reliable simulation results 
testifies to the claim that theories do not dispense representative models 
as easily and conveniently as a vending machine dispenses candy.

Nevertheless, I do not want simply to make the point that simula-
tion—rather than being either theorizing, or experimenting, or occupy-
ing some midway point between the two—is actually a form of what 
Hacking calls “calculation.” Even with a tripartite distinction in hand, 
there are still aspects of simulation that, both methodologically and epis-
temologically, seem to have characteristics more commonly associated 
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with experimental practice than with the pencil-and-paper varieties of 
model building. Nevertheless, I think it is very important to keep a keen 
eye on the distinction between the laying out of theoretical principles 
and the construction of local models when we throw around the word 
theorizing.

In fact, I would argue, something like what Hacking and Cartwright 
say about theories and models must be true if anything at all can be a 
significant hybrid of experiment and theory. In order to avoid the appear-
ance of there being anything strange or paradoxical about a practice that 
straddles the terrain between the theoretical and the experimental, we 
need to recognize that while simulation is, in the general sense, a form of 
what we once naively called “theorizing,” it is the kind of “theorizing” 
that has only recently begun to attract philosophical attention—the con-
struction of local, representative models.

In the end, the point is simply this: philosophers like Hacking, Cart-
wright, and Giere4 have afforded us the insight that we can have good, 
reliable theoretical knowledge in a particular domain and still have a 
lot of difficult, creative work to do in building local models under that 
domain. This insight is crucial if we are going to understand what goes 
on in simulation.

The Experimental Qualities of Simulation

Hacking, Cartwright, Giere, Morrison and Morgan, and others have 
shown how models can function semiautonomously from theory. What 
has perhaps been lacking in their analysis is an understanding of where 
semiautonomous models get their credentials. There is an enormous and 
controversial philosophical literature on how theories get credentialed. 
But even when it is established that the theory for a given domain is 
credible and reliable, how do we come to the conclusion that the local, 
semiautonomous models of the phenomena in that domain are reliable? 
As we have seen, it is not simply a matter of the model’s fidelity to theory, 
since, in simulation, model construction often involves steps that go be-
yond, or even contradict, theory. It is also not simply a matter of fidelity 
to real-world data, since we often run simulations in order to learn more 
about the world than our observations will allow. Insights from the phi-
losophy of experiment may help with these questions.

4. See, for example, Giere �999.
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A starting point for this project is to point out that simulationists 
and experimenters both need to engage in error management. In simula-
tions, errors can arise as a result of transforming continuous equations 
into discrete ones and of transforming a mathematical structure into a 
computational one. All discretization techniques present the possibil-
ity that roundoff errors or instabilities may create undetected artifacts 
in simulation results. At a deeper level, any modeling assumption that 
goes into the creation of a simulation algorithm can have unintended 
consequences. Developing an appreciation for what sorts of errors are 
likely to emerge under what circumstances is an important part of the 
craft of both simulationists and experimenters. Precision, accuracy, error 
analysis, and calibration are concepts that we typically associate with 
experimentation and not with theorizing, but they are also very much a 
part of the vocabulary of the simulationist. There is indeed a great deal of 
similarity and analogy between the actual techniques that experimenter 
and simulationist each use to manage uncertainty.

In the last chapter I compared the project of the epistemology of simu-
lation to Allan Franklin’s work on the epistemology of experiment, in 
which he outlines a list of commonsense techniques that experimenters 
use to augment our reasonable belief in the results of their work. In fact, 
we can push the point a bit further. It is a fairly straightforward exercise 
to go through this list and see that many, if not all, of these techniques 
apply directly or by analogy to the sanctioning of simulation results.5

I will give a small sample here. First, Franklin argues that confidence 
in a piece of experimental apparatus can increase if we can use the appa-
ratus to produce results in situations where we know what to expect, and 
the apparatus produces the expected results. Microscopists, for example, 
place known objects under their microscopes to determine if they will 
see what they expect. Simulationists employ similar strategies. They try 
to show that the simulation is capable of producing output that matches 
known analytic solutions to theoretically principled equations, or that 
the simulation can produce results that match real-world data from ex-
periments or observations. Second, Franklin points to the strategy of 
showing that the apparatus will respond as expected when we intervene 
on the system that the apparatus is in contact with. If we double the size 
of an object under a microscope, we expect a properly functioning mi-
croscope to reveal an image twice as large. Similarly, simulationists will 
often vary the parameters and initial conditions of their models to see 

5. See Winsberg �999b or Weissert �997, �22–24, for more details.
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whether the simulation responds as expected. If it does, this builds confi-
dence in the techniques being used. Another of Franklin’s strategies is to 
show that an experimental result can be replicated with a different type 
of apparatus. If the optical microscope produces the same images as the 
electron microscope, we gain confidence in the reliability of both instru-
ments. Simulationists also try to show that independently constructed 
simulation algorithms produce the same results. Depending, of course, 
on how different the algorithms are and on much they do or do not rely 
on the same sort of assumptions, this can increase confidence in the al-
gorithms if they produce similar results. Finally, according to Franklin, 
experimenters try to show that the results they observe are consistent 
with their best theories of the systems they are studying. When experi-
mental particle physicists uncover theoretically predicted results, we gain 
confidence in their methods. The situation is a bit more complicated for 
simulationists; since they often use the best theories of the system they 
study to construct their algorithms. But an analogous strategy is avail-
able if there are, in addition to the theoretical principles that guide the 
construction of the simulation, also more phenomenological laws (such 
as perhaps a scaling law) against which the simulation results can be 
compared.

There are other lessons from the philosophy of experiment that we 
can bring to bear here. In particular, I would like to examine the claim—
found in the writings of Hacking and in Galison (�997)—that  various 
experimental techniques and instruments develop a tradition that gives 
them their own internal stability, or, put most provocatively, that “ex-
periments have a life of their own” (Hacking �988).

A Life of Their Own

“I [once] wrote that experiments have a life of their own. I intended partly 
to convey the fact that experiments are organic, develop, change, and yet 
retain a certain long-term development which makes us talk about re-
peating and replicating experiments. . . . I think of experiments as having 
a life: maturing, evolving, adapting, being not only recycled, but quite 
literally, being retooled” (Hacking �992, �07). This passage comes from a 
piece in which Hacking explains what it means for experiments to have 
“lives of their own.” There are two related claims that we find being de-
fended under that slogan by Hacking and by Galison.

The first claim is that experiments evolve and mature. Rather than be-
ing exactly replicated, experiments and instruments get adjusted to adapt 
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to new circumstances and to incorporate new techniques for measuring 
and intervening. The second claim is that experiments and instruments 
have their own sets of credentials that they bring to scientific practice, 
and that these credentials develop over an extended period of time and 
become deeply tradition bound. This, I believe, is what Hacking intended 
when he said that experimental practice is “self-vindicating.”

I want to argue here that both of these claims are also true of simula-
tions. Simulation practices have their own lives: they evolve and mature 
over the course of a long period of use, and they are “retooled” as new 
applications demand more and more reliable and precise techniques and 
algorithms. We have only to think of simulations of the earth’s climate, 
which have evolved over decades, to see that this claim is true. But simu-
lations also, like experiments, gain their own credentials over time.

When I speak of “simulations” having their own lives, I am referring to 
the whole host of activities, practices, and assumptions that go into car-
rying out a simulation. This includes assumptions about what parameters 
to include or neglect, rules of thumb about how to overcome computa-
tional difficulties—what model assumptions to use, what differencing 
scheme to employ, what symmetries to exploit—graphical techniques 
for visualizing data, and techniques for comparing and calibrating simu-
lation results to known experimental and observational data. Thus, it is 
probably most clear to say that simulation tasks, or projects, have lives of 
their own, and the various techniques that feature prominently in those 
lives carry with them their own credentials.

Whenever these techniques are employed successfully—that is, when-
ever they produce results that fit well into the web of our previously 
accepted data, our observations, the results of our paper-and-pencil 
analyses, and our physical intuitions; whenever they make successful 
predictions or produce engineering accomplishments—their credibility 
as reliable techniques or reasonable assumptions grows.

In other words, the next time simulationists build a model, the cred-
ibility of that model comes not only from the credentials supplied to it 
by the governing theory, but also from the antecedently established cre-
dentials of the model-building techniques developed over an extended 
tradition of employment. That is what I mean when I say that simulation 
practices have their own lives; and the techniques that figure prominently 
in those lives are self-vindicating. As simulation practices evolve and are 
retooled, the techniques they employ carry with them their own his-
tory of prior successes and accomplishments, and, when properly used, 
they can bring to the table independent warrant for belief in the models 
they are used to build. In this respect, simulation techniques, and indeed 



cHapTER THREE

46

many precomputer calculational modeling techniques as well, are much 
like microscopes and bubble chambers as Hacking and Galison describe 
them (Hacking �988; Galison �997).

Consider, as an example, a particular computational technique now 
commonly known as the “piecewise parabolic method” (PPM). The PPM 
is an algorithm that has been shown to be well suited to simulating fluid 
flows that contain significant shock discontinuities, such as the example 
given at the beginning of this chapter. Different versions of the algorithm 
have been used to simulate a wide variety of physical phenomena, rang-
ing from simple laboratory setups like the one described above to such 
complex astrophysical systems as supernova explosions, heat convection 
in red-giant stars, gas accretion disks, supersonic jets, and models of the 
development of the entire cosmos.

The PPM begins as a discretization of the Euler equations, but we 
should not think of it simply as a purely mathematical transformation 
of those equations. Recall that the primary difficulty in modeling su-
personic fluids is in dealing with shock discontinuities. The difficulty 
arises because real fluids do not have discontinuities. In other words, 
the fundamental theories of fluid dynamics always describe continuous 
variables. Instead of discontinuities, there are very thin regions of very 
steep gradients.

In principle, these thin regions could be accurately modeled by includ-
ing terms for viscosity and heat conduction in the principle equations. 
In practice, however, viscous momentum transport and molecular heat 
transport take place on extremely small length scales. No computer algo-
rithm that is computationally tractable could ever hope to capture effects 
on these scales.

The earliest approach to solving this problem was suggested by von 
Neumann and Richtmyer (�950). Their solution was to artificially in-
crease the coefficients of viscosity and heat conduction until the point at 
which the effects manifest themselves at length scales sufficiently large to 
be resolved on a reasonable computer grid. The flow can then be tweaked 
in just the right way to spread the shocks over a few grid cells.

The von Neumann-Richtmyer method represents the earliest attempt 
at overcoming these difficulties, and it is relatively simple and easy to 
describe. Other methods that have emerged over the last fifty years have 
become progressively more complex and elaborate. The PPM represents 
one of a broad class of state-of-the-art methods. It differs fundamentally 
from its predecessors in the following way. Most differencing methods 
are derived from Taylor series expansions of the terms in the differential 
equations. This move essentially assumes that the solution is smooth. 
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While so-called shock discontinuities are not truly discontinuous in the 
theory of fluids, it is nevertheless not a good assumption to treat them 
as smooth when you are going to discretize. So the PPM abandons this 
assumption, and instead of continuously piecing together linear solu-
tions, it pieces together, in a discontinuous fashion, nonlinear, smooth 
solutions. Since superposition fails to apply to these nonlinear terms, this 
technique requires a special solver to compute the nonlinear interactions 
between the discontinuous states. The construction of this solver requires 
outside knowledge of the propagation and interaction of nonlinear waves 
(Winkler et al. �987).

Exactly how all of these methods are achieved is a subject that is more 
than a little arcane, and the details are not that important here. What is 
important to note are some of the features of these methods and their 
development.

Perhaps most important, the presence of shocks in the flow of a sys-
tem prevents any straightforward attempt to hammer the Euler equations 
into discrete form from being effective. Thus, there is nothing in the 
Euler equations or in the fundamental theory of fluids that tells you how 
to proceed if you are unable to capture the steep gradients in the flow 
that the theory predicts. The theory of fluids has been a useful guide in 
the development of these methods, but it has not come anywhere close 
to sufficing on its own, nor has it certified the end product.

Another interesting observation arises from tracing the history of 
these methods from von Neumann’s time to the present. The history 
of a simulation technique is very much like the history of a scientific 
instrument. It begins with a relatively crude and simple technique for 
attacking a relatively small set of problems. Over time, the instrument or 
technique is called upon to attack a larger set of problems or to achieve 
a higher degree of accuracy. To accomplish this, the technique must be 
improved upon, reconfigured, and even radically revised. In each case, 
the knowledge relied upon to devise and sanction the tool or method can 
come from a wide variety of domains.

The PPM has gained recognition as a reliable method for simulating 
discontinuous flows over a fairly long history of use. The results of simu-
lations making use of this technique have been evaluated and found to 
be reliable in a wide variety of applications. Just like scientific instru-
ments and experimental techniques, the PPM has “matured, evolved, 
been adapted and not only recycled but [not quite literally] retooled” 
(Hacking �992, �07). And just like instruments and techniques of their 
use, the trust that we place in the PPM as a reliable method has grown 
with every maturation, evolution, and retooling in which it has been  
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successfully applied. Just like the microscope and the bubble chamber, 
the simulation practices for calculating discontinuous compressible 
flows, in which the PPM has figured prominently, has had its own inde-
pendent history. Beginning with the von Neuman-Richtmyer method, it 
has matured, evolved, been adapted, recycled, and retooled. It has had a 
life of its own.
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A Tale of Two Methods

Imagine two physicists interested in studying the interaction 
of a pair of fluids at supersonic speeds. Each of them uses 
sophisticated technological artifacts to generate images of 
the flow structures that are generated as a shock wave propa-
gates through a fluid. Each of them manipulates the equip-
ment so as to be able to investigate their phenomenon of 
interest at a variety of values of basic parameters—different  
relative speeds, different densities of fluid, different geomet-
rical configurations, different boundary conditions, and so 
on. And each of them analyzes the data and images they 
generate in order to try to discern fundamental patterns, 
scaling relations, and other features of interest in the flow.

The first physicist’s equipment is a laboratory setup con-
sisting of a tank of fluid containing simple spherical and  
cylindrical shapes, bubbles of gas, and a physical mechanism  
for causing a shock wave to propagate through the tank. 
The second physicist’s only piece of equipment is a digital 
computer. Using models from the theory of fluid dynamics  
as a rough starting point, the second physicist builds an al-
gorithm suitable for simulating the relevant class of flow 
problems and transforms that algorithm into a computer 
program that runs on her computer. The computer outputs 
data, including perhaps graphical output depicting flow 
patterns.

In the last chapter, we noted that simulations have epis-
temological features in common with experiments. But is 
there a fundamental difference—a difference of kind—be-
tween these two activities? And if so, how should we char-
acterize it? How can we make precise what distinguishes  
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activities of the kind we traditionally call “experiments” from activities 
of the kind we usually call “simulations.” And are there, in particular,  
fundamental respects in which the nature of the epistemological rela-
tionship between the artifact and nature—those that involve our abilities 
to use the artifact to learn about nature—differs in the two cases?

One obvious difference is the special role of the computer in the sec-
ond example. But there is reason to think that, at least in one respect, 
this difference is not entirely fundamental. It is useful here to remember 
that, at least on one common understanding of the notion of simula-
tion, not all simulations are computer simulations. There is also a class of 
techniques for investigating nature involving something we would natu-
rally call simulation that have nothing to do with computers. There are 
plenty of paradigmatic examples. Here is an amazing one: cosmologists 
and students of fluid dynamics can use fluids to simulate the dynamics 
of black holes. Here is the basic idea: We call black holes black because 
they have an event horizon that is, in part, a consequence of the fact that 
you cannot go faster than the speed of light. Many years ago, a physicist 
by the name of Bill Unruh noted that in certain fluids, something akin 
to black hole would arise if there were regions of the fluid that were 
moving so fast that waves would have to move faster than the speed of 
sound (something they cannot do) in order to escape from them (Unruh 
1981). Such regions would in effect have sonic event horizons. Unruh 
called such a physical setup a “dumb hole” (“dumb” as in “mute”) and 
proposed that they could be studied in order to learn things we do not 
know about black holes. For some time, this proposal was viewed as noth-
ing more than a clever idea, but physicists have recently come to realize 
that, using Bose-Einstein condensates, they can actually build and study 
dumb holes in the laboratory. It is clear why we should think of such a 
setup as a simulation: the dumb hole simulates the black hole. Instead of 
finding a computer program to simulate the black holes, physicists find 
a fluid dynamical setup for which they believe they have a good model 
and for which that model has fundamental mathematical similarities to 
the model of the systems of interest. They observe the behavior of the 
fluid setup in the laboratory in order to make inferences about the black 
holes.

Unruh describes the idea very nicely:

[there are] similarities between the equations of motion obeyed by sound waves in a 

background flow, and the equations of motion of, say, a scalar field in the space-time 

near a black hole. Just as in the case of [a] scalar field around a black hole, the equation 
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of motion of the linearized sound waves is a hyperbolic equation. the background 

time- and space-dependent fluid flow then acts like an effective metric for the field. . . . 

Given the difficulties of finding small black holes to observe, [one] hope for the useful-

ness of such sonic analogues is in experimental tests of black hole evaporation.

(UnrUh 2002 ,  110–12)

Or as another author in the same volume puts it, “Even non- 
relativistic fluid dynamics has a Lorentzian spacetime hiding inside it” 
(Visser 2002, 28).

Such investigations are sometimes called “proxy experiments” (the 
word proxy having obvious connections to the idea of simulation); Unruh 
himself calls them “analog models,” and they are sometimes just called 
“simulations.” To distinguish them from computer simulations, I will 
call them “analog simulations,” and hope that the reader will not mistake 
what I mean for computer simulations carried out on analog computers. 
But whether we use a term like analog simulation, which contains the 
word simulation, or the term proxy experiments, which does not, it should 
be clear that these are no ordinary experiments. Something like simula-
tion seems to be involved. So perhaps there is some fundamental qual-
ity that analog simulations share with computer simulations and that 
jointly distinguishes them from ordinary “experiments.” To repeat the 
question, then: is this so? And if so, what is that fundamental quality? 
If analog simulations count as simulations, then it cannot be the special 
role of the computer that is fundamental. So what, if anything, is?

Competing Intuitions

Intuitions here can tug in opposite directions. On the one hand, we are 
inclined to think that the first two physicists’ activities—from a funda-
mentally metaphysical point of view—could not possibly differ from 
each other more. The first physicist, so this way of thinking suggests, is 
generating novel empirical knowledge about fluids by manipulating an actual 
fluid. The other physicist is doing no such thing. She is merely explor-
ing the consequences of manipulating existing knowledge—in this case the  
Navier-Stokes equations—by using brute-force methods to crank out so-
lutions to those equations that are, merely because of practical difficul-
ties, difficult to generate by more traditional paper-and-pencil means. 
The following quotation encapsulates this intuition rather succinctly: 
“The major difference is that while in an experiment, one is controlling 
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the actual object of interest (for example, in a chemistry experiment, 
the chemicals under investigation), in a simulation one is experimenting 
with a model rather than the phenomenon itself” (Gilbert and Troitzsch 
1999, 13).

The opposite intuition fixates on the experimental qualities of simu-
lations—even, and perhaps especially, on computer simulations—and 
finds no fundamental difference. Why, its proponents ask, does the 
second physicist often refer to what she does as conducting “numerical  
experiments”? Why does she call what she generates “data”? Why does 
simulation practice resemble experimental practice in so many obvious 
respects?1 Must we dismiss all this as just loose metaphor?

Perhaps more significantly, there are troubling questions we can 
raise about some of the assumptions that lie behind the first intuition— 
assumptions that play a crucial role in painting such a stark contrast be-
tween the activities of the two physicists. The most troubling assumption, 
I think, is that experimenters control “the actual object of interest.”

More often than not, this is simply not true. What if we were to find 
out that both of our original pair of physicists’ primary area of interest is 
astrophysics? The systems that actually interest them both are the super-
sonic gas jets that are formed when gasses are drawn into the gravitational 
well of a black hole. Neither physicist, then, is actually manipulating his 
or her actual system of interest. Neither one is even manipulating a sys-
tem of the same type, on any reasonably narrow sense of the term. Each 
one is manipulating something that stands in for the real class of systems 
that interest them. In one case, that stand-in is a tank of fluid. In the 
other, it is a digital computer. In both cases, the actual systems of inter-
est are vastly different from the system being manipulated—in scale, in 
composition, and in many other respects.

This is a fairly common feature of experimental work of all kinds. 
Laboratory setups often differ in substantial respects from the classes of 
natural systems for which they are intended to speak. Think of Galileo  
watching the chandelier swing to learn about how all bodies fall, or  
Mendel manipulating his pea-plants to learn how traits are passed on 
from parent to offspring throughout the plant and animal kingdoms.

It might be argued, of course, that Mendel’s peas and Galileo’s chande-
lier are instances of the systems of interest, and the physicist’s tank is not, 
but this would be begging the question. In some respects, the physicist’s 
tank is an instance of the system of interest, since it is in fact an instance 
of a supersonic interaction of a pair of fluids. And few of Galileo’s con-

1. See Dowling 1999 for examples.
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temporaries would have thought of his chandelier as a “freely falling 
object.” Some, conceivably, might have doubted that cultivated plants 
are an instance of natural heredity. The point is that what all of these 
examples have in common is that the object being manipulated or ob-
served speaks for more than itself, and it takes an argument (even if that 
argument turns out to use, as its major premise, that one is an instance 
of the other) to show that it can validly do so.

So both of our physicists, and indeed almost all scientists, it turns out, 
rely in the end on arguments—either explicit or implicit—that the results 
obtained from manipulating their respective pieces of equipment are ap-
propriately probative concerning the class of systems that interest them. 
The same, it seems appropriate to say, is true of almost all experimental 
work. And of course it is not quite correct to say (at least in the sense 
that Gilbert and Troitzsch intend) that anyone is “experimenting with a 
model.” The models Gilbert and Troitszch are speaking of—the models 
that inspire the computer programs in computer simulations—are ab-
stract entities,2 and we cannot experiment with them. What simulation-
ists manipulate is a physical entity: either a digital computer or some sort 
of analog device.

Of course, it could be objected that this line of reasoning does not 
properly distinguish between a computer program, which might be said 
to be the basis of a simulation, and the underlying hardware, which 
might be said to be accidental. On the view of such an objector, it is 
not a computer that a simulationist manipulates, but the computer  
program—an abstract entity.

It is certainly true that computer programs are multiply realizable, and 
what seems most salient about a computer, when it runs a simulation, 
is the program that it runs, and not the particular hardware that runs it. 
But I want to resist this objection for three reasons. The first is that, while 
it is tempting and indeed useful, in many contexts, to think of computa-
tion in abstract terms, there can be no real-world computation without 
some physical system to implement the computer. A computer program, 
corollarily, cannot be manipulated without manipulating the physical 
system that implements it—not necessarily by changing the hardware 

2. Some commenters take the view that the “object” (in the sense I define below) of an experi-
ment is a model. So, on this way of thinking, Mendel’s peas were model organisms, and Galileo’s 
pendulum is a concrete model of the freely falling object. And of course these kinds of models and 
many others are not abstract. I am perfectly sympathetic to this kind of talk, but notice that if we 
adopt it, Gilbert and Troitzsch’s claim is still false—since it then becomes wrong to say that only 
the simulationist manipulates a model. In any case, I do not think this is the kind of model that 
they had in mind.
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connections in the computer, but certainly by effecting some physical 
changes. The second reason is that if we hope to get clear on the funda-
mental relationships between experiment and simulation—where simu-
lation is explicitly taken to be a kind that includes both analog and digital 
cases—then we are forced to take seriously the material characteristics of 
computation.

There is a third reason to take seriously the physical character of the 
computer in computer simulation. A number of philosophers have ar-
gued for continuity between simulation and experiment by explicitly 
conceiving of the computer in computer simulation as a physical object 
that is experimentally manipulated (see, for example, Humphreys 1995; 
Hughes 1999; Norton and Suppe 2001; and, to a limited extent, Parker 
2009). To simply assert that the physical characteristics of the computer 
are incidental would be to beg the question against these claims. I prefer 
to follow all of these commenters—to take seriously the idea that com-
puter simulationists use computers as physical stand-ins and to locate the 
special characteristics of simulation elsewhere.

The other problematic assumption in the line of reasoning typified 
by Gilbert and Troitzsch is that the physicist using the computer is not 
generating new knowledge but merely exploring the consequences of 
existing knowledge in the form of the Navier-Stokes equation. This is 
obviously not true in the case of analog simulations, and I hope that 
the arguments of chapter 2 have convinced us that it is not true in the 
case of computer simulations either. To think it is true is to assume that 
anything you learn from a computer simulation t based on a theory of 
fluids is somehow already “contained” in that theory. But to hold this 
is to exaggerate the representational power of unarticulated theory. It is 
a mistake to think of simulations simply as tools for unlocking hidden 
empirical content.

So the intuition that seems to lie behind, for example, the view articu-
lated by Gilbert and Troitzsch, appears to be on shaky ground. Let us see 
if we can make the reasons for that more precise. Following the literature 
on this issue,3 let us call the class of systems in which the physicists are 
interested (in our case, gas jets) the “target” of their investigations. And 
let us call the artifact that they intervene on and observe the “object” of 
their investigations. What Francesco Guala, Wendy Parker, and others 
have made perfectly clear is that both of our physicists have to establish 
what is sometimes called the “external validity” of the conclusions they 
draw from their activities.

3. See especially Guala 2002 and Parker 2009.
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An experimental result is internally valid when the experimenter is 
genuinely learning about the actual system he or she is manipulating—
when, that is, the system is not being unduly disturbed by outside inter-
ferences. An experimental result is externally valid when the information 
learned about the system being manipulated is relevantly probative about 
the class of systems that are of interest to the experimenters.� So each of 
our two physicists has the nontrivial task of establishing that what they 
learn about the behavior of the object of their investigations can be ap-
propriately informative about their targets. This makes it naive to think 
that there is an uncomplicated sense in which the first physicist is study-
ing nature directly, while the second one is studying only a model.

One is still bound to sense, however, that there is some kernel of truth 
to the first intuition. The above arguments, in other words, are unlikely to 
shake many from at least the suspicion, if not the conviction, that there 
is still something fundamentally different, something fundamentally 
epistemologically different, about the two kinds of activities described 
above. That suspicion (or conviction) is likely to be that, all of the above 
notwithstanding, the experimenter simply has more direct epistemic ac-
cess to her target than the simulationist does. How could we try to salvage 
that kernel of truth?

Material versus Formal Similarity

One suggestion on how to go about this comes originally from Herbert 
Simon (1969), but has been made more explicit by Francesco Guala 
(2002). Guala is acutely aware that both experiments and simulations 
have objects on the one hand and targets on the other, and that, in each 
case, one has to argue that the object is suitable for studying the target. 
Despite this similarity, Guala thinks there is still a profound difference. 
The difference, Guala argues, is that two fundamentally different kinds of 
relationships can exist between an object being investigated on the one 
hand, and the target of that investigation on the other.

The difference, according to both Simon and Guala, is this: In an ex-
periment, the relationship between object and target is that they share 
a “deep, material” similarity. In a simulation, the similarity between the 
object and the target systems is only abstract and formal. In the first case, 
“the same material causes” are at work in the object as in the target, but 
not in the second case. To make Guala’s proposal somewhat more precise,  

�. Parker (2009) cites Campbell 1957 as the original source of this conceptual distinction.
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“experiment” and “simulation” are really two-place predicates: we should 
count an investigation as an “experiment” just in case the object of the 
investigation bears a deep material similarity to its intended target and 
if the same material causes are at work, and we should call it a “simula-
tion” if the object bears only an abstract, formal similarity to its intended 
target.

Mary Morgan (2002; 2003) has argued for a similar view. She goes 
further and urges that this difference between what she calls “material” 
experiments and simulations is precisely what makes experiments epis-
temically privileged compared to simulations. The fact that the object 
of a simulation bears only a formal similarity to its target, according to 
her, makes the task of establishing a simulation’s external validity—of 
establishing that the object is a suitable sort of entity for studying the 
target—that much more difficult than in the case of an experiment.

These suggestions are fairly compelling, and our example seems to 
support them. After all, the first physicist’s apparatus, despite bearing 
some significant dissimilarities to an intergalactic gas jet, is still, after all, 
primarily composed of fluids.5 These fluids really have different densities, 
and they really flow past each other at supersonic speeds. The second 
physicist’s apparatus is made out of silicon and wire. It has none of the 
significant material properties of a gas jet. There is indeed an appealing 
sense in which the first pair shares a “material similarity” that the second 
pair lacks; that the same material causes (conservation of momentum, 
viscous forces, advection, etc.) are at work in one case but not the other. 
Furthermore, we have the general impression that the material similarity 
between object and target—the fact that the same material causes are at 
work; the fact that both are fluids—in the first case guarantees that there 
will automatically be at least some respects in which the results will be 
informative about the target. In the second case, the impression urges 
us, the computer can only be informative about a gas jet in virtue of be-
ing suitably programmed; the reliability of the results depends entirely 
on having chosen the right model and the right algorithm. Thinking of 
analog simulations, a fluid can only be informative about black holes if a 
fairly substantial assumption turns out to be correct: that there is indeed 
relevant formal similarity between a good model of black holes and a 
good model of fluids. One cannot help but be struck by this difference 
and find it significant, and perhaps even conclude, with Morgan, that this 

5. I should note, moreover, that the claim that intergalactic gas jets are made up of “fluids” is 
nontrivial. See the end of the chapter for more discussion of this.
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difference results in a significant disparity between the epistemic power 
of the simulation and that of the experiment. But despite the appeal of 
these suggestions, there are some obstacles that they need to overcome.

In particular, I think there are two problems with this account. Take 
first the claim that simulations and experiments can be distinguished by 
the type of similarity that obtains between the object and the target of 
the investigation—whether it is deep and material, or merely abstract and 
formal. The notion of material similarity here is too weak, and the notion 
of mere formal similarity too vague, to do the required work. Consider, 
for example, the fact that it is not uncommon, in the engineering sci-
ences, to use simulation methods to study the behavior of systems fabri-
cated out of silicon. The engineer wants to learn about the properties of 
different design possibilities for a silicon device (often a computing or a 
communications device), so she develops a computational model of the 
device and runs a simulation of its behavior on a digital computer. We 
examine one such example in the next chapter. Naturally, there are deep 
material similarities between, and some of the same material causes are 
at work in, the central processor of the computer and the silicon device 
being studied. Should we therefore conclude that the nature of this in-
vestigation is more like that of our first physicist then our second? Prob-
ably not. One problem is that, in this case, it seems clear that the relevant 
similarities are not material. This is easy to tell in this case because we 
know that the simulation would run equally well if the computer were 
made out of gallium arsenide.

The peculiarities of this example illustrate the problem rather starkly, 
but the problem is quite general: any two systems bear some material 
similarities to each other and some differences. The clear lesson of the 
gallium arsenide processor is that what Guala, Morgan, and Simon must 
have had in mind was that the relevant similarity between the two sys-
tems be either a material or a formal one. But this idea might be difficult 
to spell out in detail in a way that works. Indeed, once we put it in its 
proper context, the whole idea of two material entities having formal 
similarities becomes rather obscure. We will return to this point shortly.

The second thing that we need to recognize is that on the Simon/
Guala definitions of simulation and experiment, they are both success 
terms. An investigation will count as an experiment only if it is suc-
cessful in the sense that the relevant material similarity between object 
and target actually obtains, and a simulation will be successful only if 
the relevant formal similarity between object and target actually obtains. 
But this seems wrong. Surely there can be failed experiments and failed 
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simulations. That is, surely there can be examples of experiments and 
simulations that fail, in the end, to be externally valid. But on the kinds 
of accounts offered by Guala, Morgan, and Simon, there cannot be.

There is a related worry: if experiment and simulation are success 
terms, then investigators may never be in a position to know if they are 
conducting a simulation or an experiment, since they may not know if 
the relevant similarity they have established is material or merely formal. 
Think about Galileo’s famous example of dropping a mass from the mast 
of a moving ship. What Galileo wanted to show, of course, was that the 
mass would fall at the bottom of the mast and that, by extension, a mass 
dropped from the top of a tower would fall at the base of a tower on a 
rotating earth. But a critic of Galileo’s argument could presumably have 
doubted whether the extension was legitimate. He could have doubted, 
as I assume some did, whether the same causes are at work when a ship 
is in motion as when the entire world rotates. And so according to the 
material similarity criterion, Galileo and his critics would have disagreed 
about whether the ship study was an experiment or a simulation. But this 
seems troubling. True, not all semantic categories need to be epistemi-
cally accessible. It does not seem to be the case, however, that we should 
need a God’s-eye perspective to know whether something is an experi-
ment or a simulation. It would be especially peculiar for Morgan if this 
were so, since she thinks that experiments are more epistemically power-
ful than simulations. But what good is knowing that if we can never be 
sure if something is an experiment or a simulation?

Simulation as Activity and as Representation

What should we conclude? One possibility is to give up on drawing a 
conceptual distinction between computer simulation and analog simu-
lations on the one hand, and experiments on the other. Parker, for ex-
ample, can be read as being skeptical of attempts to distinguish the kinds 
of activities in which our first two physicists are engaged by saying that 
one is doing an experiment, and the other a simulation. Instead, she 
argues that the distinction between the terms simulation and experiment 
should not be drawn in anything like the way that we have so far been 
inclined to draw it. In fact, I would argue that on Parker’s view the two 
terms refer, roughly speaking, to two ontological sides of the same coin. 
Here is what I mean by that.

Parker defines a simulation as “a time-ordered sequence of states that 
serves as a representation of some other time-ordered sequence of states; 
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at each point in the former sequence, the simulating system’s having 
certain properties represents the target system’s having certain proper-
ties.” An experiment, for Parker, is “an investigative activity that involves 
intervening on a system and observing how properties of interest of the 
system change, if at all, in light of that intervention” (Parker 2009, �–5).

I say that, on these definitions, the terms refer to two ontological sides 
of the same coin because the distinction is roughly analogous to the 
distinction between a car and driving. For example, according to Parker’s 
definitions, both of our physicists introduced at the beginning of this 
chapter are engaged in activities that involve both simulation and experi-
ment; each term merely emphasizes different aspects of their activities. 
For the first physicist, the tank can serve as a simulation of the intergalactic 
gas jet, insofar as the tank undergoes a time-ordered sequence of states, 
and the physicist believes that the tank in each of these states is repre-
sentative of what state the intergalactic gas jet would be in. What the 
physicist is doing with the tank is an experiment in so far as he intervenes on 
the tank in order to investigate its properties in light of that intervention. 
Symmetrically, for the second physicist, the computer serves as a simula-
tion of the gas jet as it moves through a series of computational states, and 
what the physicist is doing with the computer is an experiment, in so far as 
she intervenes on the computer by putting it in a particular initial state 
and observes its subsequent states to learn about its properties in light of 
that intervention.

It is clear that on Parker’s definitions there are examples of experiment 
that do not involve simulation (such as when I intervene on an object 
in order to learn only about that very object in particular). And there are 
also examples of simulations that are not used for experimenting (I might 
build an orary that simulates the solar system just to display the motions 
of the planets, or program a computer simulation for educational pur-
poses). But these examples are exceptional, just as are examples of driving 
without a car, or using a car without driving it.

In principle, I have no problem with using these two terms in this way. 
The definitions are clear and useful. They are, no doubt, actually used 
that way in ordinary scientific parlance in some contexts.6 Indeed, on the 

6. It is interesting to note, however, that there are examples of computer simulation studies 
that do not involve “simulation” as Parker defines it. Many so-called Monte Carlo simulations, for 
example, produce results without doing anything like going through a sequence of states that rep-
resents the sequence of states that the target system goes through. Stop such a simulation halfway 
through its evolution, and the state it is in does not correspond in any way to a state of the target 
system. Perhaps the correct response is to deny that these are genuine simulations. But that seems 
far from common practice.
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view of experiment that Parker and I share, this use of the term simulation 
is particularly useful. The view we share, I take it, is that, in a large class 
of experiments, there is some object involved that stands in for the target 
of interest. And Parker’s definition of simulation is useful for describing, 
for many of those experiments, precisely what kind of “standing in” is 
involved. One could even refer to this view of experiment, using Parker’s 
definition of simulation, as the “simulation account of experiment.”

But I am reluctant to give up trying to draw a clear conceptual dis-
tinction between the kinds of activities that are exemplified by our two 
physicists. And I also think that the two sorts of activities can be use-
fully distinguished by using the pair of terms experiment and simulation. 
I think, indeed, that in most ordinary contexts, the terms are used in op-
position to each other precisely to distinguish the two kinds of activities 
we have been discussing. And using the terms in this way helps to make 
sense of the fact that the word simulation is used to talk about computer 
simulations as well as analog simulations.

So I think it is worth distinguishing two rather different uses of the 
term simulation. In one sense of the word, a simulationR is a kind of rep-
resentational entity. This sense of the word is covered well by Parker’s 
definition. But in the other sense of the word, a simulationA is a kind 
of activity on a methodological par with, but different from, ordinary 
experimentation. This second sense of the word unifies computer simula-
tion and analog simulation. And while simulationR is close to coextensive 
with experiment (many simulationsR are experimented on, and many 
experiments involve representation), simulationA is meant to distinguish 
certain kinds of activities from ordinary experiments (though there may, 
of course, be some rare borderline or hybrid cases). With regard to simu-
lationA, there are ordinary experiments on the one hand, and there are 
computer simulations and analog simulations on the other.7 Whether 
we want to contrast simulations with “experiments” or with “ordinary 
experiments”—that is, whether or not we want to think of simulations 
as a particular kind of experimental activity—seems to be to an issue of 
whether or not to award them an honorific title. And that motivation, it 
seems to me, is grounded in the misguided intuition that “experiments” 
are intrinsically epistemologically superior, which Parker is so keen to 
overthrow. Whenever it is convenient, I try to remember to contrast sim-
ulation with “ordinary experiment” so as not to prejudge this question. 
I avoid the term material experiment because, as should now be clear, I 

7. For the remainder of the chapter, unless I specify otherwise, I will mean simulationA when I 
use the word simulation.
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do not think “materiality” is fundamental to what separates simulation 
from ordinary experiment.

Indeed, I think it is important to clarify the distinction between what 
we traditionally call “experiment” (the kind of activity exemplified by the 
first physicist) and “simulation” (the kind exemplified by the second). Let 
me say first why: One of my principal interests, and one of the core top-
ics of this book, is the epistemology of simulation. And I think that this 
enterprise depends crucially on our ability to sort out the epistemological 
respects in which simulations and experiments resemble each other and 
the respects in which they differ. Recall Morgan’s claim that “traditional 
experiments” have greater epistemic power than simulations, in part be-
cause they “have greater potential to make strong inferences back to the 
world” (2003, 221). Parker, quite correctly I think, disputes this claim. She 
points out that in some circumstances it is substantially easier to establish 
the validity of a traditional experiment, but in others a computer simula-
tion, for example, would provide arguably more reliable results.

The simple point is that the details matter. Consider once again our 
two physicists. If we want to know which physicist has greater poten-
tial to make strong inferences about intergalactic gas jets, we will need 
to know a great deal about the details of their work. How closely do 
the conditions in the tank mirror the conditions in intergalactic space? 
How much “noise” does this kind of apparatus generate? To what extent 
has its credibility been established through past performance? Similar 
questions need to be asked about the computer model. How credible is 
the underlying model? How crude are the approximations used in the 
computing scheme? How fine is the discretization grid? How many fac-
tors (viscosity, compressibility, electromagnetic forces, etc.) have been 
included or omitted?

So it is true that experiments are not intrinsically more epistemically 
powerful than simulations. But there may still be important epistemo-
logical differences between experiments and simulations. Indeed, I think 
there are. Just because experimentalists often face epistemological chal-
lenges that are just as great as those faced by simulationists, it does not 
follow that the kinds of challenges they face do not have fundamental 
differences. And I think they are worth spelling out.

Arguments and Background Knowledge

So let us review where we stand. It was overly simplistic to say that ex-
periments differed from simulations in that the first investigates nature 
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directly, while the second merely investigates a model. Both experiments 
and simulations involve an object and a target. And in both cases, the 
task of establishing the validity of using the object to make inferences 
about the target can be substantial and nontrivial. And in both experi-
ments and simulations, the object of investigation is a material entity.

The material similarity proposal—the idea that the object and target 
of a simulation lack the kind of deep material similarity that one finds in 
experiments—came in response to our recognition of this state of affairs, 
but it was unable to overcome two obstacles. The first obstacle was that 
the distinction between a deep material similarity and a mere formal 
similarity was too vague. We considered refining the proposal to focus on 
the relevant similarities. But then the second obstacle was that it seemed 
wrong to define simulation and experiment in such a way that they are 
both success terms.

What can we do about these problems? Parker offers the helpful sug-
gestion that the following amendments to Guala’s proposal might do 
the trick: that simulation studies are characterized by the fact that the 
investigators aim for their objects to have relevant formal similarities to 
their targets and that ordinary experiments are characterized by the fact 
that the investigators aim for their objects to have relevant material simi-
larities to their targets (2009, �–5). Adding the word relevant is supposed 
to take care of the first obstacle, and saying that the investigators aim for 
the (material or formal) similarity instead of saying that the similarity 
actually obtains is supposed to take care of the second obstacle.

I do not think this works. I think the whole idea of formal vs. material 
similarity is confused, no matter how much it is tempered by “relevant,” 
“aimed for,” or whatever. First, I am puzzled by the idea of two concrete 
entities having objective formal similarities. Give me any two sufficiently 
complex entities, and I can think of ways in which they are formally 
identical, let alone similar. And I can think of ways in which they are for-
mally completely different. This fact is at the heart of one of John Searle’s 
basic complaints about computational theories of mind.8

Now, we can speak loosely and say that two things bear a formal simi-
larity, but what we really mean is that our best formal representations 
of the two entities have formal similarities. Take the case of the use of 
fluids as analog simulators of black holes. What would it mean to say 
that a black hole is formally similar to a lump of fluid? This cannot be 

8. See Chalmers 1996. I happen to think that Searle’s specific worries about CTM have been 
answered by Chalmers, but not in a way that is of any help here.
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a statement about an objective relation between two entities. The only 
thing it could mean is this: We believe that there are formal similarities 
between the mathematical structure of our best models of fluids on the 
one hand and our best models of highly-curved space-time manifolds 
on the other—and that it is this fact, rather than any material similarity 
between the two entities, that is being exploited by the researchers.

Properly speaking, therefore, one who claims that the researchers “aim 
for relevant formal similarities” between two concrete entities must really 
mean that they have a way in mind of modeling their target, and they 
have a way in mind of modeling their object, and what they hope is that 
on that way of thinking about the two entities, formal similarities will ex-
ist between those two models. But when you phrase it like that, what you 
have, in a nutshell, is the claim that simulationists aim for their objects to 
properly stand in for their targets—to be simulationsR of their targets. But 
that is precisely what is aimed for in both cases of simulationA and ordinary 
experiment. At least so says the “simulationR account of experiment” to 
which Parker and Guala presumably subscribe.

What distinguishes simulation from ordinary experiment is what 
forms the basis for that hope. I spell out the details with more care in 
what follows, but roughly, it is this: In one case, we base that hope on 
the fact that we know how to build good models of our target systems, 
and in the other case, we (frequently) base that hope on the fact that 
the object and the target belong to the same kind of system—or in some 
cases, if you prefer, that they are materially similar. It is wrong to say that 
experimenters aim for their objects and targets to have material similari-
ties. They aim for the one to stand in for the other, and (in many cases) 
they rely on the fact that the two belong to the same kind—and hence 
perhaps have material similarities—in order to argue that they are likely 
to achieve that aim.

It might be obvious what is coming next: If we want to characterize 
the difference between an experiment and a simulation, we should not 
focus on what objective relationship actually exists between the object of 
an investigation and its target, nor even on what objective relationship is 
being aimed for. We should focus instead on epistemological features—
on how researchers justify their belief that the object can stand in for the 
target. When we do, here is what we find: What distinguishes simulations 
from experiments is the character of the argument given for the legitimacy 
of the inference from object to target and the character of the background 
knowledge that grounds that argument. Simulations, in particular, are le-
gitimated by a very special kind of argument and background knowledge. 
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In simulation, the argument that the object can be used to stand in for the 
target—that their behaviors can be counted on to be relevantly similar— 
is supported by, or grounded in, certain aspects of model-building prac-
tice. We now need to spell out what those are.

What separates ordinary experiments from simulations are the an-
swers to these questions: Why do the researchers believe the object can 
serve as a good stand-in for the target? What kind of background knowl-
edge do they invoke, implicitly or explicitly—and does their audience 
need to accept—in order to argue persuasively that one can learn about 
the target by studying the object?

In an experiment, the argument that the object can stand in for the 
target can be based on a variety of possible considerations.9 It might, for 
example, be based on something like the belief that the object and target 
are presumed to be members of the same kind or have the same mate-
rial composition—this is the kernel of truth behind Simon’s and Guala’s 
proposals. What then, is the nature of the background knowledge that 
grounds belief in the external validity of a simulation?

The first pass at an answer would be this: In a simulation, the back-
ground knowledge that is required to argue for the external validity of 
the study is trust in a model of the target systems. But this will not work for 
a variety of reasons. The requirement is both too weak and too strong. 
It is too weak because in experiments we also need to trust in a model of 
the target system. For one thing, we need to have some kind of model 
of the target system in order to decide, for example, whether the target 
and object are of a kind, or have material similarities, or whatever. For 
another, in an experiment, when we use an object to study some target 
class of systems, we are holding out the object as a model of the target. 
So on one construal, experiments require us to have trust in model of the 
target systems. But the requirement is also too strong because simulation-
ists often do not begin, by way of background knowledge, with trust in a 
particular model of their target systems. The hard work of simulation in-
volves the construction of such a model. This construction makes use of 
other kinds of background knowledge to sanction the trustworthiness of 
that model. Our job here, therefore, is to clarify what kind of background 
knowledge that is.

So let us return to our second physicist and ask ourselves what kinds of 
background knowledge simulationists bring to the construction of mod-
els in computational fluid dynamics. I would argue that there are three 

9. If there even is such an argument. Recall that in some experiments, the object is not distinct 
from the target, and hence no such argument is required.
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kinds of background knowledge that they can bring to bear. The first is 
knowledge that comes from the theory of fluids. Simulationists will argue 
for the reliability of their simulation, in part, on the basis of the fact that 
the construction of their models has been guided by sound theoretical 
principles from the theory of fluids. Second, they will also rely on the 
soundness of their physical intuitions about the fluids they study. If you 
are simulating the flow of a river, and you are happy to treat it as if its 
flow is simple and laminar, for example, you might rely on the quasi-
equilibrium assumption, which says that the flow of the river does not 
deviate too much from the steady state. How reliable this assumption will 
be depends entirely on how right you turn out to be about your physical 
intuition that the steady-state assumption is a good one. Finally, simula-
tionists will rely, by way of background knowledge, on the soundness of 
the computational tricks they employ.

We could divide these into three groups. First, there are the methods 
by which the computational volume is discretized (e.g., finite volume, 
finite element, spectral, spectral element, etc.). Second, there are the 
methods by which one then tries—if possible—to achieve converged nu-
merical solutions of the (continuum) nonlinear partial differential equa-
tions (i.e., using one of the aforementioned methods). Finally, there are 
the (often physically motivated, or sometimes outright ad hoc) models 
for describing physical processes that are not well described (or not at all 
described) by the combination of differential equations and simulation 
methodology. Simulations in computational fluid dynamics, for exam-
ple, often rely on techniques like artificial viscosity, eddy viscosity, vor-
ticity confinement, and others to increase the accuracy of their results. 
While the first of these are generally well motivated mathematically, 
the latter are not. And so trust, which presumably comes from a history  
of past successes, in these kinds of computational tricks is a third kind of 
background knowledge that grounds the trust in the external validity of 
a simulation.

Let us call these three kinds of background knowledge (and there may 
be other, similar ones) “principles for model building.” More precisely, 
let us say that simulationists argue for the external validity of their simu-
lations on the basis of their belief that they possess reliable principles for 
building models of the targets of their investigations.10

10. The details of the illustrative example that I use may lead some to think this account is a bit 
physics-centric. Perhaps it is. The extent to which basic theory plays a role is almost certainly greater 
in the physical sciences than in other disciplines. But I do think that the construction of most simu-
lation models is guided by some mixture of theory, intuitive or speculative acquaintance with the 
system of interest (what one might, in the case of physical examples, call “physical intuition”), and 
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We can now, I believe, properly distinguish simulation from experi-
ment. It is the nature of a simulation that the argument for the suit-
ability of using the object to stand in for the target depends, by way of 
background knowledge, on the researchers’ belief that they have reliable 
principles for building models (in the sense articulated above) of the very 
features of the target systems they are interested in learning about. Since 
simulations are generally used to study the dynamics of target systems, 
we should say that simulations are investigations in which the choice 
and configuration of the object of the investigation are guided and con-
strained by principles taken to be reliable for building dynamical models 
(abstract models that depict temporal evolution) of the target systems. 
And it is constitutive of simulation that the purported reliability of those 
principles provides the background for belief in the external validity of 
the investigation.

It is true that in a traditional experiment we also make use of various 
modeling principles in selecting/constructing the experimental system 
(e.g., in helping us determine what sorts of things might be confounding 
factors). And those modeling principles can be part of the background 
knowledge that sanctions the results of the experiment. But I think there 
are two features of the background knowledge of simulation that make it 
distinctive. First, the relevant model-building principles are specifically 
principles for building models of the target of the investigation. An ordi-
nary experimentalist worries whether he can suitably control his object. 
For that, he needs to know how to model the object, not the target—and 
he is more interested in how the object is coupled to outside interferences 
than in its internal dynamics. Second, and perhaps more important, in 
simulation the reliability of the model-building principles is invoked in 
arguing for the external validity of the study—whereas when modeling 
principles are invoked in sanctioning an ordinary experiment, they are 
invoked on behalf of the internal validity of the study (for example, in 
arguing that the object has been adequately shielded, etc.).

The conceptual distinction between experiment and simulation is 
now clear: When an investigation fundamentally requires, by way of rel-
evant background knowledge, possession of principles deemed reliable 
for building models of the target systems; and the purported reliability of 
those principles, such as it is, is used to justify using the object to stand 
in for the target; and when a belief in the adequacy of those principles 

tried and true computational methods. In any case, I trust that even if this is not so, the expression 
“model-building principles” can be appropriately fleshed out in a like manner in any discipline one 
is inclined to study.
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is used to sanction the external validity of the study, then the activity in 
question is a simulation. Otherwise, it is an experiment.11 Sometimes, 
especially in the physical sciences, some of the model-building principles 
involved are guided by the theory under whose domain the behavior of 
the target system falls.12

George Platzman, speaking at a famous meteorological conference in 
the 1960s, made a comment that nicely reinforces this view:

I may add to this another point mentioned by dr. charney, a somewhat philosophical 

comment concerning [ordinary] experiments. I think that I agree with dr. charney’s 

suggestion that machines are suitable for replacing [ordinary] experiments. But I think 

it is also necessary to remember that there are in general two types of physical systems 

which one can think of modeling. In one type of system one has a fairly good under-

standing of the dynamical workings of the system involved. Under those conditions 

the machine modeling is not only practical but probably is more economical in a long 

run. . . . But there is another class of problem where we are still far from a good under-

standing of the dynamical properties of the system. In that case [ordinary experiments],  

I think, are very effective and have a very important place in the scheme of things. 

(platzman,  qUoted in s iono 1962 ,  642)13

In fact, Guala makes similar remarks in his essay concerning the nature 
of the methodologies of experiment and simulation. He notes that “the 
knowledge needed to run a good simulation is not quite the same as [that] 
needed to run a good experiment” (2002, 70). This is exactly right. But 
I think of this not as symptomatic of the difference between (ordinary) 
experiment and simulation, but as constitutive of it. Guala also, I think, 
fails to get just right what the knowledge is that one needs. In the case of 
simulation, he says that one needs to know “the relationships describing 
the behavior” of the target systems (70). This is not a very precise claim. 

11. Obviously, there is a small problem here. Since I have characterized “experiment” negatively— 
experiments get picked out by what they do not require—one might worry that I am letting too 
much in. Perhaps washing my car and whistling Dixie count as experiments. But I am just assuming, 
from the point of view of this chapter, that we have a pretty good preanalytic notion of what kinds 
of activities fall under the union of the concepts experiment and simulation, and I am only trying 
to characterize the difference between the two. Presumably, Parker is right that what these activities 
have in common is that some object is carefully set up, intervened on, and then observed in order 
to learn about some target.

12. These two features of computer simulations in the physical sciences—that there is an object 
that stands in for a target on the one hand, and that the relevant model-building principles are close 
to theory on the other—are responsible for motivating the intuition that computer simulation “lies 
somewhere between experiment and theory” that one finds so often in the literature.

13. Thanks to Wendy Parker for pointing me to this quotation. I would not go so far as to argue 
that Platzman is advocating precisely the same view as I am. But I do think it resonates nicely with 
my view.
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But on an ordinary reading of it, it is clearly too much—if we had at our 
disposal all the relationships that described the behavior of a system, we 
would not need to conduct an investigation of it. As I argued above, it is 
too strong to say we need to have a model of the target system’s behav-
iors. What one needs are reliable principles for building models of those 
behaviors. This is a very different requirement, and confusing the two is 
at the heart of lot of misunderstanding about simulation.1�

The confusion is understandable since many computer simulations in 
physics, for example, begin with differential equations. And it is tempt-
ing to think that differential equations perfectly describe the behavior of 
a system. But an unsolved set of coupled, partial differential equations do 
no such thing. They describe how portions of the system would behave 
under counterfactual conditions. But until one has closed-form solutions 
to a set of equations, one has no description of actual behavior.

I agree with Platzman. What we need is “a fairly good understanding 
of the dynamical workings of the system.” I would cash that out by say-
ing that the background knowledge that simulationists need, in sum, is a 
set of reliable principles for building dynamical models. In the case of an 
analog simulation, they need reliable principles for constructing an ab-
stract model of both the object and the target, and an argument—based 
in part on those principles—that the object of the investigation has been 
configured in such a way that the two models of these systems will have 
relevant similarities.

In the case of computer simulation, the object being so configured is 
a stored-program digital computer, and so it is configured by program-
ming. The simulationist uses the principles deemed suitable for building 
models of the target to guide the construction of a computational model 
and uses this model to write the simulation’s computer code. When a 
digital computer is programmed, the computer program—an abstract 
entity—becomes a model of the behavior of the computer qua physical 
system. Since the simulationist has an argument from the fact that the 
computer program’s writing has been guided and constrained by reliable 
principles for building models of his target systems, he has an argument 
that it is also a good model of the target systems. Hence there is an argu-
ment for the external validity of the simulation that is just like the one 
offered for analog simulations—that both object and target have models 
with relevant similarities.

We can now review some of the examples from above with these cri-
teria in mind. We can start with the more obvious ones. Take the two 

1�. See, for example, my discussion of Norton and Suppe’s account of simulation in chapter 2.
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physicists discussed at the beginning of the chapter. The first physicist 
studies tanks of fluid to learn about astrophysical gas jets. What makes 
this an experiment? What is important is the argument and its back-
ground knowledge that legitimate the study. The first physicist does not 
need a toolkit for building dynamical models of her target to sanction 
the external validity of her study. She believes the inferences she will 
make are legitimate because she is prepared to argue that the two systems 
are, in relevant respects, the same kind of system, made out of the same 
material, and can be expected to exhibit relevantly similar behavior. It 
is quite a different situation for the second physicist. He has no commit-
ments whatsoever to the object and target being of a kind, but he must 
be willing to express the non-negligible hope—and to argue that such 
hope is well founded—that the theory of fluids, his physical intuitions 
about the situation of interest, and the model-building methods that 
have worked well in computational fluid dynamics in the past provide 
him with a reliable means of constructing a model of his target system. 
He will want to argue, in other words, that the programming of his com-
puter has been sufficiently guided and constrained by good principles for 
building models of fluids to ensure that the computational model of his 
computer is relevantly similar to a good model of the behavior of the gas 
jets that interest him. And his knowledge of the theory of fluids, along 
with other model-building principles, plays a central role in underwriting 
that argument.

We can make some similar remarks about analog simulations—such as 
the black hole example discussed above. Here, the physicists must believe 
that they have good principles and methods for modeling black holes, 
good principles and methods for modeling fluids, and that these meth-
ods allow them to argue that the setup of the fluids they study has been 
guided and constrained by reliable principles for modeling black holes. 
They can then argue that a relevant similarity exists between a good dy-
namical model of the fluid, and a good dynamical model of the black 
holes that interest them. It is not that there is a (merely) formal similarity 
between black hole and fluid that makes this a simulation rather than 
an experiment. The relevant consideration itself is the need, by way of 
background knowledge, for a commitment to basic principles that guide 
and constrain our reasoning about these models and their similarity in 
the way spelled out above.

Of course, once we have carefully drawn the distinction between an 
experiment and a simulation, it is always possible to muddy it. Here is an 
example. The activity of the first physicist seems to fall squarely in the ex-
perimental camp precisely because she uses a fluid as her object of study 
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and her target is a fluid. But there is a sense in which calling a substance a 
fluid is not informative. Whether or not something counts as a fluid can 
sometimes depend on what one wants to do with that assumption. Take, 
for example, the assumption that laboratory fluids are informative about 
astrophysical fluids. This assumption is not obvious, since astrophysi-
cal fluids are generally noncollisional. The presence of magnetic fields 
in astrophysical fluids, on the other hand, allows us to treat these sub-
stances as fluids despite the absence of substantial collisions. In sum, if 
the first physicist were using a collisional fluid in her laboratory to study 
a noncollisional astrophysical “fluid,” it would not be entirely clear if 
this should count as an experiment or a simulation. We should take it to 
count as an experiment to the extent that we take the claim that they are 
both fluids to be unproblematic. But we should take it as a simulation if 
we think that hydromagnetic “viscosity” is only an analog of real viscos-
ity, and, what is more important, if we think that the external validity 
of such a study depends on our having a dynamical model of how such 
viscosity arises.15 The existence of fuzzy cases, however, does not mean 
that there are not paradigmatic examples of each category.

Conclusion: Epistemic Power

What about the claim that experiments are epistemically privileged rela-
tive to simulations—the claim that they “have greater potential to make 
strong inferences back to the world”? I think it is easy to see, following 
Parker, that this claim is false. A good computer simulation of the solar 
system—one that calculates orbits carefully from Newton’s laws—will 
provide me with better grounds to make inferences back to the world of 
the planets than almost any experimental setup I can imagine because 
in such a case the relevant background knowledge—our ability to build 
good, reliable models—is virtually unassailable. How trustworthy or reli-
able an experiment or simulation is depends on the quality of the back-
ground knowledge and the skill with which it is put to use, not on which 
kind it belongs to.

But there are significant epistemological differences between simu-
lations and experiments, and some of them might help to explain the 

15. Interestingly, once upon a time we did not. It used to be a mystery why the extremely rare 
“gases” had any viscosity at all. Treating them as viscous fluids was justified entirely pragmatically. 
But we now have a detailed dynamical model that explains how magnetically induced instabilities 
give rise to something akin to viscosity.
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appeal of the claim that experiments are intrinsically more epistemo-
logically powerful. Take for example, the role that experiments can 
play in what Hempel would call “hypothesis testing.” Certainly, early 
twentieth-century philosophers of science, both the positivists and the 
Popperians, overstated the importance of hypothetico-deductivism and 
related activities in their foundational accounts of the role of experiment 
in science.16 But experiments do often play the role of providing crucial 
tests for theories, hypotheses, or models. This role cannot ordinarily be 
played by simulation,17 since simulations, as we have noted, assume as 
background knowledge that we already know a great deal about how to 
build good models of the very features of the target system that we are 
interested in learning about.

What this highlights is an important epistemological facet of the dif-
ference between simulation and experiment: for epistemic agents like us, 
experiments are epistemologically prior to simulations. In both simula-
tions and experiments, you need to know something to learn something. 
But the knowledge you need in a simulation is always quite abstract and 
sophisticated, and it usually depends on things you have learned from a 
long history of experiment and observation. That is because we do not 
commit ourselves to the reliability of model-building principles unless 
they have been tested against experiments and observations.

One might be tempted to think that the related claim—that experi-
ments are more epistemically powerful than simulations—follows from 
what I call the epistemological priority of experiments. But I do not think 
this is correct. There may have been a time in the history of science, per-
haps before Newton, perhaps even earlier, when we did not have suffi-
cient systematic knowledge of nature—enough of a toolkit of trustworthy 
model-building principles—to create a simulation that could ever be as 
reliable a source of knowledge as even the crudest experiment, but that 
time has long passed.

16. This is, in part, what the “new experimentalists” like Ian Hacking taught us with such slo-
gans as “experiments have a life of their own.”

17. To be more precise, there can be a role for simulation in the testing of models, but not in 
the same sense that I intend above. That is, we can use computer simulation to calculate what the 
model predicts about a particular situation, and we can compare that prediction with data from 
experiments and observations. But that is not the same as the role that experiments can play as we 
compare their results to the predictions of a model, theory, or hypothesis.
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When Theories  
Shake Hands

In the preceding chapters, we have devoted a fair amount 
of attention to the role of theory in guiding the construc-
tion of simulation models. Most of the examples we have 
been drawing upon, though, have been simulations whose 
theoretical ancestry was limited to a single domain. Some 
simulations, for example, are based on continuum meth-
ods, which begin with a theory that treats their objects of 
study as a medium described by fields and distributions. 
Others describe their objects of study as a collection of  
atoms and molecules and rely on the theoretical framework 
of a classical potential or as a collection of nuclei and elec-
trons, relying on the theoretical background of a quantum 
Hamiltonian. And so, while we have seen that the relation-
ship between simulation and theory is complex, our discus-
sion of that relationship has been simplified in at least one  
respect.

That is because not all simulations work with the frame-
work of a single theoretical background. Indeed, there is a 
class of computer simulation models that are especially im-
portant to philosophers interested in the relations between 
theories at different levels of description. As it turns out, 
certain kinds of phenomena are best studied with simula-
tions based on theoretically hybrid models. Such models are 
constructed under the guidance of theories from a variety 
of domains. These so-called parallel multiscale simulation 
models are cobbled together using the resources of quantum 
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mechanics, classical molecular dynamics, and the linear-elastic theory 
of solids.

I want to argue in this chapter that a close look at such simulation 
methods can offer novel insights into the kinds of relationships that exist 
between theories at different levels of description. Philosophers of science 
often assume that the interesting relationships that exist between theo-
ries at different levels are essentially mereological. But parallel multiscale 
models are precisely the kinds of hybrid models in which the various 
scales are not linked by mereology but are instead sewn together using 
specially constructed algorithms to mediate between otherwise incom-
patible frameworks.

So I need to offer an account of how it is possible for these different 
theoretical frameworks, which provide essentially incompatible descrip-
tions of the underlying structure of the systems they describe, to be sewn 
together. One particularly interesting thing about the process is that it 
sometimes relies on model features that I argue should be properly un-
derstood as fictions. Fictions, according to the account I offer, are repre-
sentations that are not concerned with truth or any of its philosophical 
cousins (approximate truth, empirical adequacy, etc.). This pragmatic 
definition of a fiction places much weaker demands on what constitutes 
a nonfictional representation than one traditionally encounters. Still, I 
argue that fictions can play an important role in science: they can help us 
to sew together inconsistent model-building frameworks and to extend 
those frameworks beyond their traditional limits.

Hybrid Models at the Nanoscale

One of the places where we find the most interesting uses of hybrid simu-
lation models is in the so-called nanosciences. Nanoscience, intuitively, 
is the study of phenomena and structures, and the construction of de-
vices, at a novel scale of description: somewhere between the strictly 
atomic and the macroscopic levels. Theoretical methods in nanoscience, 
therefore, often have to draw on theoretical resources from more than 
one level of description.

Take, for example, the field of nanomechanics, which is the study of 
solid-state materials that are too large to be manageably described at the 
atomic level and too small to be studied using the laws of continuum 
mechanics. As it turns out, one of the methods of studying these nano-
sized samples of solid-state materials is to run simulations of them based 
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on hybrid models constructed out of theories from a variety of levels  
(Nakano et al. 2001). Such models bear interestingly novel relationships 
to their theoretical ancestors. So a close look at simulation methods in 
the nanosciences could offer novel insights into the kinds of relation-
ships that exist between different theories (at different levels of descrip-
tion) and between theories and their models.

For an example of a simulation model likely to stimulate such insights, 
we need look no further than the so-called parallel multiscale methods 
of simulation. These methods were developed by a group of research-
ers interested in studying the mechanical properties (reactions to stress, 
strain, and temperature) of intermediate-sized solid-state materials. The 
particular case that I examine below, developed by Farid Abraham and a 
group of his colleagues, is a pioneering example of this method.1 What 
makes the modeling technique “multiscale” is that it couples together 
the effects described by three different levels of description: quantum 
mechanics, molecular dynamics, and continuum mechanics.

Multiscale Modeling

Modelers of nanoscale solids need to use these multiscale methods—the 
coupling together of different levels of description—because each theo-
retical framework is inadequate on its own at the scale in question. The 
traditional theoretical framework for studying the mechanical behavior 
of solids is continuum mechanics (CM). CM provides a good description 
of the mechanics of macroscopic solids close to equilibrium. But the the-
ory breaks down under certain conditions. CM, particularly the flavor of 
CM that is most computationally tractable—linear-elastic theory—is no 
good when the dynamics of the system are too far from equilibrium. This 
is because linear-elastic theory assumes that materials are homogeneous 
even at the smallest scales, but we know this is far from the truth. It is an 
idealization. When modeling large samples of material, this idealization 
works because the sample is large enough that one can effectively average 
over the inhomogeneities. Linear-elastic theory is in effect a statistical 
theory. But as we get below the micron scale, the fine-grained structure 
begins to matter more. When the solid of interest becomes smaller than 
approximately one micron in diameter, this “averaging” fails to be ad-
equate. Small local variations from mean structure, such as material  

1. Good review literature on parallel multiscale simulation methods for nanomechanics appears 
in Abraham et al. 1998; Broughton et al. 1999; and Rudd and Broughton 2000. 
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decohesions—an actual tearing of the material—and thermal fluctua-
tions begin to play a significant role in the system. In sum, CM cannot be 
the sole theoretical foundation of nanomechanics—it is inadequate for 
studying solids smaller than one micrometer in size (Rudd and Brough-
ton 2000).

The ideal theoretical framework for studying the dynamics of solids 
far from equilibrium is classical molecular dynamics (MD). This is the 
level at which thermal fluctuations and material decohesions are most 
naturally described. But computational issues constrain MD simulations 
to about 107–108 molecules. In linear dimensions, this corresponds to a 
constraint of only about fifty nanometers.

So MD methods are too computationally expensive, and CM methods 
are insufficiently accurate for studying solids that are on the order of one 
micron in diameter. On the other hand, parts of the solid in which the 
far-from-equilibrium dynamics take place are usually confined to regions 
small enough for MD methods. So the idea behind multiscale methods is 
that a division of labor might be possible—use MD to model the regions 
where the real action is, and use CM for the surrounding regions, where 
things remain close enough to equilibrium for CM to be effective.

There is a further complication. The propagation of cracks through a 
solid involves the breaking of chemical bonds. But the breaking of bonds 
involves the fundamental electronic structure of atomic interaction. So 
methods from MD (which uses a classical model of the energetic interac-
tion between atoms) are unreliable right near the tip of a propagating 
crack. Building a good model of bond-breaking in crack propagation re-
quires a quantum mechanical (QM) approach. Of course, QM modeling 
methods are orders of magnitude more computationally expensive than 
MD methods. In practice, these modeling methods cannot model more 
than two hundred and fifty atoms at a time.

The upshot is that it takes three separate theoretical frameworks to 
model the mechanics of crack propagation in solid structures on the or-
der of one micron in size. Multiscale models couple together the three 
theories by dividing the material to be simulated into three roughly con-
centric spatial regions. At the center is a very small region of atoms sur-
rounding a crack tip, modeled by the methods of computational QM. 
In this region, bonds are broken and distorted as the crack tip propa-
gates through the solid. Surrounding this small region is a larger region 
of atoms modeled by classical MD. In that region, material dislocations 
evolve and move, and thermal fluctuations play an important role in the 
dynamics. The far-from-equilibrium dynamics of the MD region is driven 
by the energetics of the breaking bonds in the inner region. In the outer 
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region, elastic energy in dissipated smoothly and close to equilibrium 
on length scales that are well modeled by the linear-elastic, continuum 
mechanical domain. In turn, it is the stresses and strains applied on the 
longest scales that drive the propagation of the cracks on the shortest 
scales (see figure 5.1).

It is the interactions between the effects on these different scales that 
lead students of these phenomena to describe them as “inherently mul-
tiscale” (Broughton et al. 1999, 2391). What they mean is that there is 
significant feedback between the three regions. All of these effects, each 
one of which is best understood at its own unique scale of description, are 
strongly coupled together. Since they all interact simultaneously, all three 
of the different modeling regions must be coupled together and modeled 
simultaneously. The fact that three different theories at three different 
levels of description need to be employed makes the models “multiscale.” 
The fact that these different regions interact simultaneously, that they 

5.1  The three regions of simulation. at the center of action, where the crack propagates, the 
system is simulated using a tight-binding (TB) algorithm based on quantum mechanics. In 
the surrounding area, the far-from-equilibrium disturbances caused by the crack are simu-
lated using molecular dynamics (Md). The elastic waves in the outlying areas are simulated 
using a finite-element (FE) method. reprinted with permission from abraham et al. 1998. 
copyright 1998, american Institute of physics.
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are strongly coupled together, means that the models must be “parallel 
multiscale” models.

An instructive way to think about the meaning of the phrase parallel 
multiscale is to compare two different ways of going about integrating 
different scales of description into one simulation. The first and more 
traditional method is what Abraham’s group label “serial multiscale.” 
The idea of serial multiscale is to choose a region, simulate it at the lower 
level of description, summarize the results into a set of parameters digest-
ible by the higher-level description, and then pass those results up to a 
simulation at the higher level.2

But serial multiscale methods are not effective when the different scales 
are strongly coupled together. There is a large class of problems for which 
the physics is inherently multiscale; that is, the different scales interact 
strongly to produce the observed behavior. It is necessary to know what 
is happening simultaneously in each region since each one is strongly 
coupled to the others (Broughton et al. 1999, 2391).

What seems to be required for simulating an inherently multiscale 
problem is an approach that simulates each region simultaneously, at 
its appropriate level of description, and then allows each modeling do-
main to continuously pass relevant information back and forth between 
regions—in effect, a model that seamlessly combines all three theoreti-
cal approaches. This kind of method is referred to as parallel multiscale 
modeling or as “concurrent coupling of length scales.” What allows the 
integration of the three theories to be seamless is that they overlap at  
the boundaries between the pairs of regions. At these boundary regions, 
the different theories “shake hands” with each other. The regions are 
called “handshaking regions,” and they are governed by “handshaking 
algorithms.” I discuss how this works in more detail in the next section.

The use of these handshaking algorithms is one of the things that 
make parallel multiscale models interesting. Parallel multiscale modeling,  
in particular, appears to be a new way to think about the relationship 

2. Note that the essential idea behind parallel multiscale simulation is not entirely new. It un-
derlies virtually all of the early attempts at subgrid modeling, including the one I discuss at length 
in chapter 6, namely, the original proposal for computing an artificial viscosity (i.e., using global 
information about the gradients of the velocity to compute a local quantity, the artificial viscos-
ity). One fundamental difference between that kind of parallel multiscale modeling and the kind 
discussed here, however, is that artificial viscosity does not come from a basic theory. Indeed most 
subgrid modeling schemes have this relatively ad hoc character. But in the case discussed here, the 
schemes being used at the smallest levels actually come from the most fundamental physics. Thus, 
subgrid schemes like artificial viscosity do not really invoke relations between theories at different 
levels of description as these methods do.
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between different levels of description in physics, chemistry, and engi-
neering. Typically, after all, we tend to think about relationships between 
levels of description in mereological terms: a higher level of description 
relates to a lower level of description more or less in the way that the 
entities discussed in the higher level are composed of the entities found 
in the lower level. That kind of relationship, one grounded in mereology, 
accords well with the relationship that different levels of models bear to 
each other in what the Abraham group calls serial multiscale modeling. 
But parallel multiscale models appear to be a different way of structuring 
the relationship between different levels of description in physics and 
chemistry.

I would like to offer a bit more detail about how these models are put 
together and, in particular, to say a bit more about how the handshak-
ing algorithms work—in effect, to illustrate how one seamless model can 
integrate more than one level of description. To do this, though, I must 
first say a bit more about how each separate modeling level works.

Three Theoretical Approaches

Continuum Mechanics (Linear-Elastic Theory)

The basic theoretical background for the model of the largest scale regions 
is linear-elastic theory, which relates, in linear fashion, stress (a measure 
of the quantity of force on a point in the solid) with strain (a measure of 
the degree to which the solid is deformed from equilibrium at a point). 
Linear-elastic theory, combined with a set of experimentally determined 
parameters for the specific material under study, enables you to calculate 
the potential energy stored in a solid as a function of its local deforma-
tions. Since linear-elastic theory is continuous, it must be discretized in 
order to be used in a computational model. This is done using a “finite-
element” method. This technique involves a “mesh” made up of points 
that effectively tile the entire modeling region with tetrahedral or some 
other tiling. The size of each tetrahedron can vary across the material be-
ing simulated according to how much detail is needed in that area. Each 
mesh point is associated with a certain amount of displacement—the 
strain field. At each time step, the total energy of the system is calculated 
by “integrating” over each tetrahedron. The gradient of this energy func-
tion is used to calculate the acceleration of each grid point, which is in 
turn used to calculate its position for the next time step. And so on.
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Molecular Dynamics

In the medium-scale regions, the basic theoretical background is a clas-
sical theory of interatomic forces. The model begins with a lattice of 
atoms. The forces between the atoms come from a classical potential 
energy function for silicon proposed by Stillinger and Weber (1985). The  
Stillinger-Weber potential is much like the Leonard-Jones potential in 
that its primary component comes from the energetic interaction of  
nearest-neighbor pairs. But the Stillinger-Weber potential also adds a 
component to the energy function from every triplet of atoms, propor-
tional to the degree to which the angle formed by each triplet deviates 
from its equilibrium value. Just as in the finite-element case, forces are 
derived from the gradient of the energy function, which are in turn used 
to update the position of each atom at each time step.

Quantum Mechanics

The very smallest regions of the solid are modeled as a set of atoms whose 
energetic interaction is governed not by classical forces but by a quantum 
Hamiltonian. The quantum mechanical model they use is based on a 
semi-empirical method from computation quantum chemistry known as 
the “tight-binding” method. It begins with the Born-Oppenheimer ap-
proximation, which separates electron motion and nuclear motion, and 
treats the nuclei as basically fixed particles as far the electronic part of the 
problem is concerned. The next approximation is to treat each electron 
as basically separate from the others and confined to its own orbital. The 
semi-empirical part of the method uses empirical values for the matrix 
elements in the Hamiltonian of these orbitals. For example, the model 
system that Abraham’s group has focused on is solid-state silicon. Thus 
the values used for the matrix elements come from a standard reference 
table for silicon—derived from experiment. Again, once a Hamiltonian 
can be written down for the whole system, the motions of the nuclei can 
be calculated from step to step.

Handshaking between Theories

Clearly, these three different modeling methods embody mutually incon-
sistent frameworks. They each offer fundamentally different descriptions 
of matter, and they each offer fundamentally different mathematical 
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functions describing the energetic interactions among the entities they 
describe. The overarching theme is that a single Hamiltonian is defined 
for the entire system (Broughton et al. 1999, 2393).

The key to building a single coherent model out of these three regions 
is to find the right handshaking algorithm to pass the information about 
what is going on in one region that will affect a neighboring region into 
that neighbor. One of the difficulties that beset earlier attempts to ex-
change information between different regions in multiscale models was 
that they failed, badly, to conserve energy. The key to Abraham’s success 
in avoiding this problem is that his group constructs the handshaking 
algorithms in such as way as to define a single expression for energy for 
the whole system. The expression is a function of the positions of the 
various “entities” in their respective domains, whether they be mesh ele-
ments, classical atoms, or the atomic nuclei in the quantum mechanical 
region.

The best way to think of Abraham’s handshaking algorithms then, is 
as an expression that defines the energetic interactions between, for ex-
ample, the matter in the continuum mechanical region with the matter 
in the molecular dynamical regions. But this is a strange idea indeed—to 
define the energetic interactions between regions—since the salient prop-
erty possessed by the matter in one region is a (strain) field value, while in 
the other it is the position of a constituent particle, and in the third it is 
an electron cloud configuration. To understand how this is possible, we 
have to simply look at the details in each case.

Handshaking between CM and MD

To understand the CM/MD handshaking algorithm, first envision a plane 
separating the two regions. Next, recall that in the finite-element method 
of simulating linear-elastic theory, the material to be simulated is covered 
in a mesh that divides it up into tetrahedral regions. One of the original 
strengths of the finite-element method is that the finite-element (FE) 
mesh can be varied in size to suit the simulation’s needs, allowing the 
simulationists to vary how fine or coarse the computational grid is in 
different locations. When the finite-element method is being used in a 
multiscale model, this feature of the FE mesh becomes especially useful. 
The first step in defining the handshake region is to ensure that as you 
approach the plane separating the two domains from the finite-element 
side, the mesh elements of the FE domain are made to coincide with the 
atoms of the MD domain. (Farther away from the plane, the mesh will 
typically get much coarser.)
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The next step is to calculate the energy of the handshake region. This 
is the region between the last mesh point on one side and the first atom 
on the other. The technique that Abraham’s group uses is essentially to 
calculate this energy twice: once from the perspective of FE, and once 
from the perspective of MD, and then average the two. Doing the first 
of these involves pretending that the atoms in the first row are actually 
mesh elements; doing the second involves the opposite—pretending that 
the mesh elements in the last row are atoms (see figure 5.2).

Suppose, for, example that there is an atom on the MD side of the bor-
der. It looks over the border and sees a mesh point. For the purpose of the 
handshaking algorithm, we treat that mesh point as an atom, calculate 
the energetic interaction according to the Stillinger-Weber potential, and 
we divide it by two (remember, we are going to be averaging together the 
two energetics). We do this for every atom/mesh-point pair that spans 
the border. Since the Stillinger-Weber potential also involves triples, we 
do the same thing for every triple that spans the border (again divid-
ing by two). This is one-half of the “handshaking Hamiltonian.” The 
other half comes from the continuum dynamics’ energetics. Whenever a 
mesh point on the CM side of the border looks over and sees an atom, it 
pretends that atom is a mesh point. Thus, from that imaginary point of 
view, there are complete tetrahedra that span the border (some of whose  

5.2  The dots in the handshake region play the role of mesh elements when they look to the left 
and of atoms when they look to the right. reprinted with permission from abraham et al. 
1998. copyright 1998, american Institute of physics.
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vertices are mesh points that are “really” atoms). Treating the position 
of that atom as a mesh-point position, the algorithm can calculate the 
strain in that tetrahedron and integrate over the energy stored in the 
tetrahedron. Again, since we are averaging together two Hamiltonians, 
we divide that energy by two.

We now have a seamless expression for the energy stored in the entire 
region made up of both the continuous solid and the classical atoms. The 
gradient of this energy function dictates how both the atoms and the 
mesh points will move from step to step. In this way, the happenings in 
the CM region are automatically communicated to the molecular dynam-
ics region, and vice versa.

Handshaking between MD and QM

The general approach for the handshaking algorithm between the quan-
tum region and the molecular dynamics region is similar: the idea is to 
create a single Hamiltonian that seamlessly spans the union of the two 
regions. But in this case, there is an added complication. The difficulty 
is that the tight-binding algorithm does not calculate the energy locally. 
That is, it does not apportion a value for the energy for each interatomic 
bond; it calculates energy on a global basis. Thus, there is no straight-
forward way for the handshaking algorithm between the quantum and 
MD regions to calculate an isolated quantum mechanical value for the 
energetic interaction between an outermost quantum atom and a neigh-
boring innermost MD atom. But it needs to do this in order to average it 
with the MD value for that energy.

The solution that Abraham and his group have developed to this prob-
lem is to employ a trick that allows the algorithm to localize that QM 
value for the energy. The trick is to employ the convention that at the 
edge of the QM region, each “dangling bond” is “tied off” with an artifi-
cial univalent atom. To do this, each atom location that lies at the edge of 
the QM region is assigned an atom with a hybrid set of electronic proper-
ties (see figure 5.3). In the case of silicon, what is needed is something 
like a silicon atom with one valence electron. These atoms, called “silo-
gens,” have some of the properties of silicon and some of the properties 
of hydrogen. They produce a bonding energy with other silicon atoms 
that is equal to the usual Si-Si bond energy, but they are univalent like 
a hydrogen atom. This is made possible by the fact that the method is 
semi-empirical, and so fictitious values for matrix elements can simply be 
assigned at will. The result is that the silogen atoms do not energetically 
interact with their silogen neighbors, which means that the algorithm 
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can localize their quantum mechanical energetic contributions. Finally, 
once the problem of localization is solved, the algorithm can assign an 
energy between atoms that span the regional threshold that is the aver-
age of the Stillinger-Weber potential and the energy from the Hamilto-
nian in the tight-binding approximation. Again, this creates a seamless 
expression for energy.

Confronting Some Philosophical Intuitions

In the next section, I suggest that there are features of these multiscale 
models—with their integration of different levels of description, their 
handshaking algorithms, and their silogens—that appear on their face to 
be at odds with some basic philosophical intuitions about the relation-
ships between different theories and between theories and their models. 
But before I begin to draw any philosophical conclusions, I think it is 
important to note that this area of research—nanomechanics in general 
and these multiscale methods in particular—is in its relative infancy. And 
while Abraham and his group have had some success with their models, re-
searchers in these areas are still facing important challenges. It is probably  

5.3  The dots in the middle region act as classical molecules in the contributions to the Md 
hamiltonian and as either silicon or “silogen” atoms in their contributions to the QM hamil-
tonian. reprinted with permission from abraham et al. 1998. copyright 1998, american 
Institute of physics. 
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too early to say whether or not this particular method of simulation 
will turn out, in the great scheme of things, to be the right way to go 
about predicting and representing the behavior of “intermediate-sized” 
samples of solid-state materials. Hence, it is probably also too early to be 
drawing conclusions, methodological or otherwise, from these sorts of 
examples.

It might not be too early, however, to start thinking about what kinds 
of basic philosophical intuitions about science are likely to come under 
pressure—or to be informed in novel ways—if and when these scientific 
domains mature. So we might, at this stage, try to pinpoint some basic 
philosophical questions whose answers are likely to be influenced by 
this kind of work. In other words, what I want to do here is to offer some 
ideas about what kinds of questions philosophers are likely to be able to 
shed light on, prospectively, if they keep an eye on what is going on in 
nanoscale modeling and simulation—especially with regard to multiscale 
methods—and to provide a sneak preview of what we might discover as 
the field progresses.

One issue that has received perennial attention from philosophers of 
science is that of the relationship between different levels of description. 
Traditionally, the focus of this inquiry has been debate about whether 
or not, and to what extent or in what respect, laws or theories at higher 
levels of description are reducible to those at a lower level.

Underlying all of this debate, I believe, has been a common intuition: 
the basis for understanding interlevel interaction—to the extent that it 
is possible—is just applied mereology. In other words, to the extent that 
the literature in philosophy of science about levels of description has 
focused on whether and how one level is reducible to another, it has 
implicitly assumed that the only interesting possible relationships are 
logical ones—that is, intertheoretic relationships that flow logically from 
the mereological relationships between the entities posited in the two 
levels.3

But if methods that are anything like those described above become 
accepted as successful in nanoscale modeling, that intuition is likely to 
come under pressure. The reason is that parallel multiscale modeling 
methods are forced to develop relationships between the different lev-
els that are perhaps suggested, but certainly not logically determined, 
by their mereology. Rather, developing the appropriate relationships, in 
Abraham’s words, “requires physical insight.”

3. An important exception is the recent work of Robert Batterman (2002).
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What this suggests is that there can be a substantial physics of inter-
level interaction—a physics that is guided but not determined by either 
the theories at each level or the mereology of their respective entities. 
Indeed, whether or not the relationships employed by Abraham and 
his group will turn out to be the correct ones is an empirical/physical  
question and not a logical/mereological one.

Another issue that has recently begun to receive attention among  
philosophers of science, particularly in the work of Mathias Frisch (2004), 
is the importance of consistency in a set of laws. Using classical electro-
dynamics (CED) as an example, Frisch has challenged a common philo-
sophical intuition about scientific theories: that the internal consistency 
of their laws is a necessary condition that all successful theories must 
satisfy. I want to make a similar point here. In this case, the example of 
multiscale modeling seems to put pressure on a closely related, if some-
what weaker, intuition: that an inconsistent set of laws can have no  
models.

In a formal setting, this claim is obviously true; indeed, it is true by 
definition. But rarely in scientific practice do we actually deal with mod-
els that have a clear formal relationship to the laws that inspire them. 
Most likely, the intuition that inconsistent laws cannot produce a co-
herent model in everyday scientific practice rests as much on pragmatic 
considerations as it does on the analogy to formal systems: how, in prac-
tice, could mutually conflicting sets of laws guide the construction of 
a coherent and successful model? We can start by looking at what we 
learn from Frisch. In CED the strategy is usually to keep the inconsistent  
subsets of the theory properly segregated for a given model.

The Maxwell-Lorentz equations can be used to treat two types of prob-
lems. We can appeal to the Maxwell equations to determine the fields 
associated with a given charge and current distribution, or we can use 
the Lorentz force law to calculate the motion of a charged particle in a 
given external electromagnetic field (Frisch 2004, 529). In other words, in 
most models of CED, each respective model draws from only one of the 
two mutually inconsistent “sides” of the theory. This technique works 
for most applications, but there are exceptions where the method fails. 
Models of synchrotron radiation, for example, necessarily involve both 
mutually inconsistent parts of the theory.

There are problems, in other words, that require us to calculate the 
field from the charges, as well as to calculate the motion of the charges 
from the fields. But the solution method, even in the synchrotron case 
as Frisch describes it, is still a form of segregation. The segregation is  
temporal. You break the problem up into time steps: in one time step you 
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use the Lorentz equations; in the next you use the Maxwell equations, 
and so on.

A form of segregation is employed in multiscale modeling as well, 
but it is forced to break down at the boundaries. Each of the three theo-
retical approaches is confined to its own spatial region of the system.4 
But the fact that there are significant simultaneous and back-and-forth 
interactions between the physics in each of these regions means that the 
strategy of segregation cannot be entirely effective. Parallel multiscale 
methods require the modeler to apply, in the handshaking region, two 
different sets of laws. The laws in Abraham’s model, moreover, are each 
pair-wise inconsistent. They offer conflicting descriptions of matter and 
conflicting accounts of the energetic interactions between the constitu-
ents of that matter. But the construction of the model in the handshak-
ing regions is guided by both members of the pair. When you include the 
handshaking regions, parallel multiscale models are—all at once—models 
of an inconsistent set of laws.

The methods developed by these researchers for overcoming these in-
consistencies (the handshaking algorithms) may or may not turn out to 
be too crude to provide a reliable modeling approach. But by paying close 
attention to developments in the field of nanoscale modeling, a field in 
which the models are almost certainly going to be required to involve 
hybrids of classical, quantum, and continuum mechanics, philosophers 
are likely to learn a great deal about how inconsistencies are managed. In 
the process, we will be forced to develop richer accounts of the relation-
ships between theories and their models—richer accounts, in any case, 
than the one suggested by the analogy to formal systems.

Finally, these modeling techniques raise a third issue, a variation on 
a perennial theme in the philosophy of science: How do models differ 
from ideal descriptions? In particular, what role can falsehoods play in 
model building?

It has been widely recognized that many successful scientific mod-
els do not represent exactly. A simple example: the model of a simple 
harmonic oscillator can quite successfully predict the behavior of many 
real physical systems, but it provides at best only an approximately ac-
curate representation of those systems. Nevertheless, many philosophers 

4. I should note that multiscale modeling does not necessarily involve coupling spatially disjoint 
regions; it is also possible for a multiscale method to focus on one region, within which the system 
under study is modeled on more than one level of detail (viz., using both MD and continuum de-
scriptions on the very same domain). There are many possible reasons for doing so—one being that 
a problem might call for knowing both the mean behavior (modeled adequately by a continuum 
approach) and the behavior of molecular fluctuations (modeled by MD) in the same region.
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hold to the intuition that successful models differ from ideal descriptions 
primary in that they include idealizations and approximations. Ronald 
Laymon has made this intuition more precise with the idea of “piecewise 
improvability” (Laymon 1985). The idea is that while many empirically 
successful models deviate from ideal description, a small improvement 
in the model (that is, a move that brings it closer to an ideal description) 
should always result in a small improvement in its empirical accuracy.

But what about the inclusion of silogen atoms in multiscale models 
of silicon? Here, piecewise improvability seems to fail. If we make the 
model “more realistic” by putting in more accurate values for the matrix 
elements at the periphery of the QM region, then the resulting calcula-
tion of the energetic interactions in the handshake region will become 
less accurate, not more accurate, and the overall simulation will fail to 
represent accurately at all.

This would suggest that we can add certain sorts of elements to models 
that are different in kind from ordinary idealizations, approximations, 
and simplifications. I suggest that we should call such modeling ele-
ments, such as the silogen atom, fictions.

Fictions in Science

To a first approximation, fictions are representations that do not concern 
themselves with truth. Science, to be sure, is full of representations. But 
the representations offered to us by science, we are inclined to think, 
are supposed to aim at truth (or at least one of its cousins: approximate 
truth, empirical adequacy, reliability). If the proper and immediate object 
of fictions is contrary to the aims of science, what role could there be for 
fictions in science?

I want to use the silogen example to argue for at least one important 
role for fictions in science, especially in computer simulation. Fictions, I 
contend, are sometimes needed for extending the useful scope of theories 
and model-building frameworks beyond the limits of their traditional do-
mains of application. One especially interesting way in which they do this 
is by allowing model builders to sew together incompatible theories and 
apply them in contexts in which neither theory by itself will do the job.

I have already mentioned piecewise improvability as one way in which 
the use of the silogen atom differs from other sorts of modeling assump-
tions like idealizations and approximations. But I would like to clarify 
more precisely what I take it to mean for a representation in science to be 
a fiction. My view differs substantially from those of many others who 
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discuss the role of fictions in science. The history of discussions of fic-
tions in the philosophy of science goes back at least to Hans Vaihinger’s 
famous book, The Philosophy of ‘As If’. On Vaihinger’s view, science is full 
of fictions.5 I believe this view is shared by many who discuss fictions in 
science, including many contributors to a recent volume on the subject 
(Suarez 2009). Vaihinger asserts that any representation that contradicts 
reality is a fiction or, at least, a semifiction. (A full fiction, according to 
Vaihinger, is something that contradicts itself.) Accordingly, most ordi-
nary models in science are a kind of fiction.

“Fictional,” however, is not the same thing as “inexact” or “not ex-
actly truthful.” Not everything, I would argue, that diverges from reality, 
or from our best accounts of reality, is a fiction. Many of the books to be 
found in the nonfiction section of your local bookstore contain claims 
that are inexact or even false. But we do not, in response, ask to have 
them reshelved in the fiction section. An article in this morning’s news-
paper might make a claim, “The green zone is a 10 km2 circular area in 
the center of Baghdad,” that is best seen as an idealization. And though 
I live at the end of a T-intersection, “Google maps” shows the adjacent 
street continuing on to run through my home. Still, none of these things 
are fictions.

I take as a starting point, therefore, the assumption that we ought to 
count as nonfictional many representations in science that fail to repre-
sent exactly; even representations that in fact contradict what our best 
science tells us to be the case about the world. Many of these kinds of rep-
resentations are best captured by our ordinary use of the word “model.” 
The frictionless plane, the simple pendulum, and the point particle all 
serve as good representations of real systems for a wide variety of pur-
poses. All of them, at the same time, fail to represent exactly the sys-
tems they purport to represent or, for that matter, any known part of the 
world. They all incorporate false assumptions and idealizations.

But, contra Vaihinger, I urge that, because of their function (in ordi-
nary contexts), we continue to call these sorts of representations “mod-
els,” and resist calling them fictions. It seems to me to be simply wrong 
to say that ordinary models in science are not concerned with truth or 
any of it cousins. In sum, we do not want to get carried away. We do not 
want all (or almost all) of the representations in science, on maps, and in 

5. See Hans Vaihinger, The Philosophy of ‘As If’: A System of the Theoretical, Practical and Religious 
Fictions of Mankind, trans. C. K. Ogden (New York: Barnes and Noble, 1968); orig. pub. in England 
by Routledge and Kegan Paul, 1924. My understanding of Vaihinger comes almost entirely from 
Fine 1993.
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journalism, and so on to count as fictions. To do so risks not only giving 
a misleading overall picture of science (“all of science is fiction!”) but 
also of weakening to the point of emptiness a useful dichotomy between 
different kinds of representations—the fictional and the nonfictional. If 
only exact representations are nonfictions, then even the most ardent sci-
entific realist will have to admit that there are precious few nonfictional 
representations in the world.

Fictions, then, are more rare in science than are models, because most 
models in science aim at truth or one of its cousins. But fictions do not. 
It might seem then, that on this more narrow conception of what it is 
for a representation to be a fiction, there will probably turn out to be no 
fictions in science. Part of my goal, then, is to show that there are. To do 
this, I must define my more limited conception of what constitutes a fic-
tion. This will involve being more clear about what it means to “aim at 
truth or one of its cousins.”

So how should we proceed in demarcating the boundary between fic-
tions and nonfictions? The truly salient difference between a fictional 
and a nonfictional representation, it seems to me, rests with the proper 
function of the representation. Indeed, I argue that we should count any 
representation—even one that misrepresents certain features of the world 
(as most models do)—as a nonfiction if we offer it for the sort of purpose 
for which we ordinarily offer nonfictional representations.

I offer, in other words, a pragmatic rather than a correspondence con-
ception of fictionality. What, then, is the ordinary function of nonfic-
tional representations? I suggest that, under normal circumstances, when 
we offer a nonfictional representation, we offer it for the purpose of being 
a “good enough” guide to the way some part of the world is, for a partic-
ular purpose. Here, “good enough” implies that the model is accountable 
to the world (in a way that fictions are not) in the context of that purpose. 
On my account, to hold out a representation as a nonfiction is ipso facto 
to offer it for a particular purpose and to promise that, for that purpose, 
the model “won’t let you down” when it comes to offering guidance 
about the world for that purpose. In short, nonfictional representations 
promise to be reliable in a certain sort of way.

But not just in any way. Consider an obvious fiction: the fable of 
the grasshopper and the ant. The fable of the grasshopper and the ant, 
you may recall, is the story of the grasshopper who sings and dances all 
summer, while the ant toils at collecting and storing food for the com-
ing winter. When the winter comes, the ant is well prepared, and the 
grasshopper, who is about to starve, begs for his charity. This is what we 
might call a didactic fiction. The primary function of the fable, one can  
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assume, is to offer us important lessons about the way the world is and 
how we should conduct ourselves in it. For the purpose of teaching chil-
dren about the importance of hard work, planning, and the dangers of 
living for today, it is a reasonably reliable guide to certain features of the 
world (or so one might think).

So why is it a fiction? What is the difference, just for example, between 
didactic fictions and nonfictions if both of them can serve the purpose 
of being reliable guides? To answer this, I think we need to consider the 
representational targets of representations. The fable of the grasshopper 
and the ant depicts a particular state of affairs. It depicts a land where 
grasshoppers sing and dance, insects talk, grasshoppers seek charity from 
ants, and so forth. If you read the fable wrong, if you read it as a nonfic-
tion, you will think the fable is describing some part of the world—its 
representational target. If you read it in this way, then you will think it is 
meant to be a reliable guide to the way this part of the world—this little 
bit of countryside where the grasshopper and the ant live—is. In short, 
the fable is a useful guide to the way the world is in some general sense, 
but it is not a guide to the way its prima facie representational target is. 
And that is what makes it, despite its didactic function, a fiction.

Nonfictions, in other words, are not just reliable guides to the way 
the world is in any old way. They describe and point to a certain part of the 
world and say, “If you want to know about that part of the world I am point-
ing to, for a certain sort of purpose, I promise to help you in that respect 
and not let you down.” The importance of this point about the prima 
facie representation targets of representations will become clear later.

Fictional representations, on the other hand, are not thought to be 
good enough guides in this way. They are offered with no promises of a 
broad domain of reliability. Unlike most models in science, fictions do not 
come stamped with promissory notes that say something like “In these 
respects and to this degree of accuracy (those required for a particular 
purpose), some domain of the world—the domain that I purport to point 
to—is like me, or will behave like me.”

So in order to understand the difference between fictional and non-
fictional representations, it is crucial to understand the different func-
tions that they are intended to serve. But intended by whom? A brief 
note about intentionality is order. It probably sounds, from the above, 
as though in my view whether or not a representation counts as a fiction 
depends on the intention of the author of the representation. Thus, if the 
author intends for the representation to carry with it such a promissory 
note, then the representation is nonfictional. This is close to my view. 
But following Katherine Elgin (2009), I prefer to distinguish fictions from 
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nonfictions without reference to the intention of the author. If we find, 
someday, the secret diaries of James Watson and Francis Crick, and these 
reveal to us that they intended the double helix model as a planned stair-
case for a country estate, this has no bearing on the proper function of 
the model. On my view, what a representation is for depends not on the 
intention of the author, but on the community’s norms of correct use.

Consider the famous tapestry hanging in the Cloisters museum in 
New York, the Unicorn in Captivity. This is a nice example of a representa-
tion. Quite possibly, the artist intended the tapestry be taken as a nonfic-
tional representation belonging to natural history. More important, his 
contemporaries probably believed in unicorns. Had there been museums 
of natural history at the time, this might have been where the tapestry 
would have hung. But today, the tapestry clearly belongs in a museum 
of art. Deciding whether the tapestry is a fiction or a nonfiction does not 
depend on the intention of the author; it depends on what, on the basis 
of the community’s norms, we can correctly take its function to be—on 
what kind of museum the community is likely to display it in. Once upon 
a time, its function might have been to provide a guide to the animal 
kingdom. But it no longer is.

It is clear that science is full of representations that are inexact and of 
representations that contradict what we know or believe to be the case 
about the world. It is clear, that is, that science is full of models. But are 
there fictions in science? If a representation is not even meant to serve as 
a reliable guide to the way the world is, if it is a fiction, wouldn’t it neces-
sarily fall outside of the enterprise of science?

Despite the rather liberal constraints I want to impose on what counts 
as a nonfiction, I believe that fictions can play a variety of roles in science. 
And I believe the example of the silogen atom from nanomechanics il-
lustrates one such role. In that example, the model builders have added 
a fiction to their model—the silogen atom—in order to extend the useful 
scope of the model-building frameworks they employ beyond the limits 
of their traditional domains of application.

Silogen atoms, it should be clear, are fictions. To see this, we need to 
look at their function. But we need to be careful. If we examine the over-
all model that drives the simulation as a whole, it is clearly nonfictional. 
The representational target of the Abraham model is micron-sized pieces 
of silicon. And the Abraham model is meant to be reliable guide to the 
way that such pieces of silicon behave. To endorse such a model in the 
relevant respect is to promise that, for the purpose of designing nano- 
electromechanical systems, the model will not let you down. It will be a 
good enough guide to the way these pieces of silicon behave—accurate 
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to the degree and in the respects necessary for NEMS design. Though it 
contradicts reality in more ways than we could probably even count, 
Abraham’s model is a nonfiction.

But within the simulation, we can identify components of the model 
that, prima facie, play their own local representational role. Each point 
in the QM region appears to represent an individual atom. Each point in 
the MD region, and each tetrahedron in the FE region, has an identifiable 
representational target. Some of these points, however—the ones that 
live in the QM/MD handshaking region—are special. These points, which 
represent their representation targets as silogen atoms, do not function 
as reliable guides to the way the way those atoms behave. Silogens are 
for tying off the energy function at the edge of the QM region. They are 
for getting the whole simulation to work properly, not for depicting the 
behavior of the particular atom being modeled. We are deliberately get-
ting things wrong locally so that we get things right globally. The silogen 
atoms are fictional entities that “smooth over” the inconsistencies be-
tween the different model-building frameworks and extend their scope 
to domains where they would individually otherwise fail. In a very loose 
sense, we can think of them as being similar to the fable of the grasshop-
per and the ant. In the overall scheme of things, their grand purpose is to 
inform us about the world. But if we read off from them their prima facie 
representational targets, we are pointed to a particular domain of the 
world about which they make no promises to be reliable guides.
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Models of Climate:  
Values and Uncertainties

No book on computer simulation in the sciences would 
be complete without some discussion of its application to 
the study of our planet’s climate and its future. In many 
respects, computer models of climate are not that different 
from the other kinds of computer simulations we have seen 
in this book. They are built out of the same motley mixture 
of physical theory, approximation, physical intuition, and 
trial and error as models of stars, thunderstorms, and nano-
materials. It follows then, that many of the philosophically 
interesting features of global climate models are common to 
a wide range of simulation models; those we have discussed 
at length in the previous chapters. But there are at least two 
features of climate models that make them worthy of special 
attention from the point of view of philosophy of science.

The first feature is that the extremely complex modular-
ity of global climate models leads to a novel kind of epis-
temological holism. Recent efforts in the sphere of climate 
model intercomparison reveal that modern, state-of-the-art 
climate models are what I call “analytically impenetrable.” 
I mean by this that it is extremely difficult, if not all but 
impossible, for climate modelers to disentangle the various 
sources of the successes and failures of their models. I argue, 
moreover, that the source of this holism is a kind of genera-
tive entrenchment of various elements of the models. Con-
sequently, climate models are, in interesting ways, products 
of their specific histories.
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The second unique feature of climate models is associated with the 
fact that these simulations and the knowledge we gain from them have 
enormous public policy implications. This, in turn, makes computer sim-
ulations of climate promising vehicles for thinking about connections 
between public policy goals and knowledge assessment; about debates 
in the philosophy of science, in particular, that sometimes fall under the 
label of “science and values.” Somewhat surprisingly, the analytic impen-
etrability of climate models has consequences for how we should think 
about the role of values in climate science. So we should start with a brief 
introduction to the topic of the role of values in science.

It is uncontroversial that scientific research, especially scientific re-
search that has important public policy implications, involves value 
judgments. This is nowhere more evident than in research on the impact 
of carbon emissions upon global climate. The looming prospect of severe, 
anthropogenic climate change is forcing us to make difficult moral and 
political decisions. What kind of action should be taken to curb global 
climate change? How much should we value our own safety, comforts, 
and economic opportunities in comparison to those of future genera-
tions? How much scientific evidence do we need before taking action? 
Should this action be voluntary or legally mandated? The importance of 
these questions for our future is well known, although there is still much 
disagreement over the appropriate way to answer them.

Yet, there are some questions regarding the role of value judgments 
in climate research that are not so well known, even within the climate-
modeling community. In particular, while it is clear that value judgments 
play an important role in deciding how a given area of research should 
lead us to act, it is less clear whether such value judgments should play 
a role in deciding what to believe. In other words, while value judgments 
clearly play a legitimate role in the realm of practice, do they also play a 
legitimate role in the realm of theory?

Philosophers of science are increasingly concerned with issues such 
as this, although, not surprisingly, different philosophers treat these is-
sues in very different ways. The traditional view maintains, first of all, 
that the following two distinctions can be drawn clearly: the distinction 
between theory and practice, and the distinction between so-called epi-
stemic and non-epistemic values.� It then maintains that only epistemic 

�. Throughout this chapter, I employ the traditional terminology of epistemic and non-epistemic 
values. I recognize, however, that the terminology is in many respects problematic. As I will make 
clear, the terminology arose in the context of arguments to the effect that social values, moral 
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values play a legitimate role within the realm of theory; non-epistemic 
values can and should be confined to the realm of practice.� According 
to one influential interpretation, epistemic values—which include such 
values as simplicity, explanatory power, internal consistency, and consis-
tency with surrounding theories—are values that are truth-conducive, in 
the sense that if theory T� exhibits a given epistemic value and theory T� 
does not, then T� is, ceteris paribus, more likely than T� to be true; non-
epistemic values, conversely, are not truth-conducive, and thus should 
be excluded from the realm of theory (McMullin �983).3

At various points during the last century, this traditional view has 
been called into question. In the early and mid-twentieth century, schol-
ars such as C. West Churchman (�948; �956), John Dewey (�9�9), Philip 
Frank (�954), Otto Neurath (�9�3), and Richard Rudner (�953) argued 
that values traditionally thought of as non-epistemic—including, in 
some cases, ethical and political values—play an inevitable role in the 
epistemic evaluation of research. Increasing numbers of contemporary 
philosophers of science are arguing for this same conclusion.4 Despite the 
work of those who question this ideal of value-neutrality, however, the 
traditional view remains the dominant one.

One of my aims in this chapter, therefore, is to investigate the ques-
tion of whether it is reasonable to expect climate modelers to exclude 
non-epistemic values from the “internal” aspects of their research—that 
is, from the realm of theory. I argue that it is not. We begin by discussing 
one of the most influential arguments for the claim that ethical values 
play an ineliminable role in the evaluation of scientific research, namely, 

values, and other broadly practical considerations can and should be excluded from the epistemic 
evaluation of research—hence the label non-epistemic. If it turns out, however, that such values do 
play a legitimate role in the epistemic evaluation of research, then it makes little sense to call them 
“non-epistemic” values. Thus, the arguments presented here—in addition to the literature cited 
in note 4 below—provide strong reasons for abandoning the terminology of epistemic and non-
epistemic values. However, given the entrenched character of this terminology, I have decided for 
convenience to use it here.

�. Defenders of this view include Giere �003; Jeffrey �956; Kitcher �00�; Koertge �003; McMul-
lin �983; and Mitchell �004. 

3. It has not always been standard to allow a role for values of any kind in the appraisal of theo-
ries. One of the primary aims of the neo-positivist movement in post–World War II America was 
to explicate fundamental methodological concepts such as confirmation and explanation in purely 
formal terms (e.g., Hempel �945; Hempel and Oppenheim �948). Had this project succeeded, there 
would be no need for any values—including epistemic values—in the appraisal of theories. The 
project, however, did not succeed, and since the demise of neo-positivism, it has been standard to 
argue that values of some sort play an inevitable role in theory appraisal. For classic expressions of 
this view, see Kuhn �969 and �977;  and McMullin �983. 

4. See, for example, Douglas �000; Howard �006; Longino �990 and �00�; Kourany �003a and 
�003b; Solomon �00�; and Wilholt �009. 
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Richard Rudner’s argument from inductive risk (Rudner �953); and fol-
low this with a discussion of one of the most influential objections to this 
view, that of Richard Jeffrey (�956).5 Jeffrey’s argument is the locus clas-
sicus of the view that one can distinguish clearly between the epistemic 
and the practical appraisal of theories, and that the epistemic appraisal of 
research can and should be neutral with respect to non-epistemic value 
judgments. Jeffrey’s argument, moreover, is followed by many contem-
porary philosophers of science.6

An investigation of climate modeling is a particularly fruitful way to 
test the feasibility of Jeffrey’s argument, because climate modelers, to-
gether with statisticians, attempt to do something very similar to what 
Jeffrey recommends—namely, to assign probabilities to hypotheses con-
cerning the effects of carbon emissions upon global climate change in a 
manner that is free from non-epistemic considerations.

Before we proceed to our discussion of Rudner and Jeffrey, I must make 
one preliminary point. There is a broad consensus within the scientific 
community that carbon emissions are causally related to global climate 
change; I am convinced that this broad consensus is justified, and it is in 
no way my aim to call this consensus into question. I believe this con-
sensus has been reached objectively. As will become apparent, I do not 
believe that the influence of non-epistemic considerations on the estima-
tion of uncertainties implies that climate models are unreliable. What it 
does imply is that, pace Jeffrey, one cannot distinguish sharply between 
the realms of value-neutral theory and value-laden practice. Moreover, it 
highlights the fact that we need to pay more attention to the areas within 
climate modeling in which values play an ineliminable role, to the kinds 
of values or practical considerations that play a role, and to the effect that 
these values have upon the overall performance of our models. None of 
this, however, should be taken as evidence for skepticism about climate 
change. With this preliminary note aside, we can now proceed to our 
discussion of Rudner and Jeffrey.

5. Rudner’s argument from inductive risk is not the only argument for the claim that non-
epistemic values play an ineliminable role in the evaluation of research. Another kind of argument 
stems from the thesis of underdetermination and has been advanced in various forms by Neurath 
�9�3; Howard �006; and Longino �990 and �00�. The focus of this paper, however, is upon Jeffrey’s 
response to Rudner’s argument from inductive risk. 

6. For example, Ron Giere employs a version of this objection in his criticism of Janet Kourany’s 
proposal for a socially responsible philosophy of science (Giere �003; Kourany �003a and �003b), 
and Sandra Mitchell employs it against the arguments of Heather Douglas (Douglas �000 and �004a; 
Mitchell �004).
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Rudner and Jeffrey on the Role of Ethical Values in Science

In an essay entitled “The Scientist Qua Scientist Makes Value-Judgments,” 
Rudner argues that ethical values play an inevitable role in the epistemic 
appraisal of hypotheses. His argument proceeds as follows:

the scientist qua scientist accepts or rejects hypotheses.

No scientific hypothesis is ever confirmed with certainty. In accepting or rejecting 

a hypothesis, there is always the possibility of being wrong.

the decision to accept or reject a hypothesis depends upon whether the evidence 

is sufficiently strong.

Whether the evidence is sufficiently strong is “a function of the importance, in a typi-

cally ethical sense, of making a mistake in accepting or rejecting the hypothesis” 

(rudner 1953, 2; his emphasis).

therefore, the scientist qua scientist makes value judgments.

To illustrate this argument, Rudner considers the evaluation of the fol-
lowing two hypotheses: (�) a given drug, which we know contains a toxic 
ingredient that is lethal to human beings, is safe for human consump-
tion because it does not contain this ingredient in dangerous quantities;  
(�) a given batch of machine-stamped belt buckles is not defective. Rudner 
argues that we require a much higher standard for accepting the former 
hypothesis than the latter, because the moral consequences of wrongly 
accepting the first hypothesis are much more serious than the second. 
“How sure we need to be before we accept a hypothesis will depend on 
how serious a mistake would be” (Rudner �953, �). Given that the degree 
of confirmation that we require in order to accept (or reject) a given hy-
pothesis depends upon an evaluative judgment regarding potential ethi-
cal consequences, ethical considerations play an inevitable role in the 
appraisal of hypotheses. Note that, in drawing this conclusion, Rudner is 
maintaining that value judgments, even in the ideal, play a role in the ap-
praisal of hypotheses. It is not only the scientist qua human being—that 
is, qua individual who is invariably influenced by the prejudices of her 
time—who makes value judgments; it is also the scientist qua scientist.

While Rudner does not spend much time examining the implications 
of this conclusion for a broader theory of science, he does discuss briefly 
its implications for the notion of scientific objectivity. According to a tra-
ditional interpretation, scientific objectivity requires that hypotheses be 
evaluated in a value-neutral fashion—or at least in a fashion that is neu-
tral with respect to ethical values. Rudner does not deny that objectivity  

1.

2.

3.

4.

5.
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is and should be an ideal for scientific inquiry, but he argues that the 
necessarily value-laden character of hypothesis appraisal implies that this 
traditional interpretation of objectivity is misguided: “What seems called 
for . . . is nothing less than a radical reworking of the ideal of scientific 
objectivity” (Rudner �953, 6). Rudner does not undertake the task of 
reworking this ideal; he does, however, argue that objectivity in science 
“lies at least in becoming precise about what value judgments are being 
and might have been made in a given inquiry” (6). In other words, if 
value judgments do play an inevitable role in scientific research, it would 
be in the interests of objectivity to know precisely which value judgments 
are playing a role, where they are playing a role, and the effect that these 
judgments have upon the research in question.7

Many, however, deny that value judgments of an ethical—or, more 
broadly, non-epistemic—character play an inevitable role in the epi-
stemic appraisal of hypotheses, and one of the clearest arguments for 
this view was put forward by Jeffrey, in direct response to Rudner (Jeffrey 
�956). Jeffrey argued that the scientist qua scientist does not accept or 
reject hypotheses but merely assigns probabilities to them: “The scien-
tist’s proper role is to provide the rational agents in the society which 
he represents with probabilities for the hypotheses which on the other 
account he simply accepts or rejects” (�45). Once the scientist has as-
signed probabilities to hypotheses and communicated this information 
to “rational agents” in society, these agents then assign utilities to the 
possible outcomes of accepting/rejecting the hypotheses and determine 
on the basis of a decision-theoretic calculation whether the hypothesis 
in question should be acted upon.

The primary argument that Jeffrey provides for the view that the sci-
entist qua scientist does not accept or reject hypotheses is that the accep-
tance or rejection of a hypothesis per se, independent of a given practical 
context, is incoherent. In support of this, Jeffrey considers the following 
two hypotheses: (�) an entire lot of vaccine is safe, and (�) an entire lot 
of roller skate ball bearings is safe. In certain contexts, he argues, it is le-
gitimate to demand a higher standard for the “acceptance” of (�) than for 
(�)—but only when certain practical contexts are assumed, such as that 
the vaccine will be given to children. If we assume a different practical 
context, such as that the vaccine will be given to monkeys, the standards 
for “acceptance” of the two hypotheses might be the same. Jeffrey sum-

7. See Douglas �004a; Fine �998; and Longino �990 for discussions of the compatibility of values 
and objectivity in science.
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marizes his position by quoting approvingly the following passage from 
Bruno DeFinetti:

I do not deem the usual expression “to accept hypothesis Hr  ,” to be proper. the deci-

sion does not really consist of this “acceptance” but in the choice of a definite action Ar. 

the connection between the action Ar and the hypothesis Hr may be very strong, say 

“the action Ar is that which we would choose if we knew that Hr was the true hypoth-

esis.” Nevertheless, this connection cannot turn into an identification.”

(quoted in Jeffrey 1956 ,  242) .

Thus, when one “accepts” a hypothesis H, one is really choosing to 
act on the basis of H, and to do this requires that we specify a practical 
context in which the action is to occur. Because virtually all hypotheses 
could be acted upon in a multiplicity of different ways—for example, 
the hypothesis that a given vaccine is safe could be used as a basis for 
vaccinating either children or monkeys—the notion of “accepting” a hy-
pothesis H per se is incoherent.  

For our purposes, the primary implications of this view are (�) that 
one can distinguish clearly between the realms of theory and practice, 
or belief and action, and (�) that ethical considerations—or, in Jeffrey’s 
terminology, considerations of utility—can be confined to the realm of 
practice. The scientist, Jeffrey argues, can and should remain in the realm 
of value-neutral theory and leave the ethical questions to “the rational 
agents in the society which he represents.”

As stated earlier, Jeffrey’s objection to Rudner’s argument is still a stan-
dard objection to the view that ethical considerations play an inevitable 
role in the evaluation of research. For example, in response to Heather 
Douglas’s argument that “non-epistemic values are a required part of 
the internal aspects of scientific reasoning” (Douglas �000, 559), Sandra 
Mitchell maintains that this argument involves a “conflation of the do-
mains of belief and action [that] confuses rather than clarifies the appro-
priate role of values in scientific practice” (�004, �50). Moral and political 
values, according to Mitchell, play a legitimate role in the practical, not 
the epistemic, evaluation of research.

In the remainder of the chapter, I argue that in the area of climate 
modeling, the Jeffreyan strategy does not succeed. In recent work, cli-
mate scientists, working alongside statisticians, have begun to attempt 
to do something very similar to what Jeffrey recommends; they attempt, 
that is, to estimate the uncertainties of various predictions made by cli-
mate models, and they attempt to do this in a manner that is free from 
moral, social, or any other kind of non-epistemic value. They then hand 



chapter S IX

100

these predictions and uncertainties over to policymakers, legislators, and 
other representatives of the public who are charged with determining 
how best to act.8 In my view, however, this clean separation of the realms 
of value-neutral theory and value-laden practice is not realistically at-
tainable. I contend that one class of non-epistemic values in particu-
lar—those reflected in deciding that certain types of prediction tasks are 
more important than others—influence the probabilities we assign to 
various possible climate outcomes. In order to argue for this, we need to 
establish a few preliminaries regarding the way in which uncertainties in 
climate modeling are estimated.

Climate Modeling and Uncertainty

Conceptually, we can distinguish three sources of uncertainty regarding 
the predictions of complex climate models. First, there is uncertainty 
about the basic structure that our climate models ought to have. While 
the construction of climate models is guided by basic science, these mod-
els incorporate a plethora of auxiliary assumptions, approximations, and 
parameterizations, all of which contribute to a degree of uncertainty 
about the predictions of these models. We will call this type of uncer-
tainty structural model uncertainty. Second, complex models involve large 
sets of parameters, or aspects of the model that must be quantified before 
we can use it to run a simulation of a climate system. We are often highly 
uncertain about what are the best values for many of these parameters, 
and hence, even if we had at our disposal a model with ideal structure, 
we would still be uncertain about the behavior of the real system we 
are modeling, because the same model structure will make different pre-
dictions for different values of the parameters. We will call uncertainty 
from this source parameter uncertainty. Finally, in evaluating a particular 
climate model, including both its structure and parameters, we compare 
the model’s output to real data. Climate modelers, for example, often 
compare the outputs of their models to records of past climate. These 
records can come from actual meteorological observations or from proxy 
data—inferences about past climate drawn from such sources as tree rings 
and ice-core samples. Both of these sources of data, however, are prone 
to error, and so we are uncertain about the precise nature of the past 
climate. This, in turn, has consequences for our knowledge of the future 
climate. We will call this source of uncertainty data uncertainty.

8. For a clear example of this, see the so-called Stern Review (Stern �007).
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While data uncertainty is a significant source of uncertainty in cli-
mate modeling, I do not discuss this source of uncertainty here. For the 
purposes of this discussion, I make the crude assumption that the data 
against which climate models are evaluated are known with certainty. I 
am interested in arguing that values play an inevitable role in the estima-
tion of uncertainties from the two other sources. How, then, do we esti-
mate structural model uncertainty and parameter uncertainty? In both 
cases, there are, broadly speaking, two methods available to statisticians 
interested in quantifying these uncertainties. The first method uses ob-
servable frequencies, and the second uses expert judgment.

To understand the idea of using observable frequencies, consider the 
example of a simulation model with one parameter and several variables.9 
If we have a data set against which to benchmark the model, we could 
assign a weighted score to each value of the parameter based on how 
well it retrodicts values of the variables in the available data set. On the 
basis of this score, we could then assign a probability to each value of the 
parameter. Crudely speaking, what we are doing in an example like this 
is observing the frequency with which each value of the parameter is suc-
cessful in replicating known data—how many of the variables does it get 
right? with how much accuracy? over what portion of the time history 
of the data set?—and then assigning this observed-frequency value to the 
probability of the parameter taking this value.

Of course, only in specific circumstances are frequencies probabilities. 
Absent other knowledge, it would be naive to think the observed frequen-
cies in an example like the above are the actual probabilities of the values 
of those parameters. For one thing, we are interested in the best value 
of the parameter for predicting the behavior of the system for all times, 
not just the times for which we have sample data. For another, carry-
ing out a procedure like the one above requires us to weight the relative 
importance of the various variables. Hence, while such frequencies can 
be useful guides in assigning probabilities to the values of a parameter, 
they are far from perfect. Some might therefore think it more sensible to 
adopt a broadly subjectivist approach and to assume that the best guide 
to these probabilities is the subjective degree of belief held by the best 
experts. Expert judgment, however, is not perfect either; in fact, expert 

9. A parameter for a model is an input that is fixed for all time, while a variable takes a value that 
varies with time. A variable for a model is thus both an input for the model (the value the variable 
takes at some initial time) and an output (the value the variable takes at all subsequent times.) A 
parameter is simply an input. We do not discuss “input variable uncertainty” because it is usually 
assumed, in climate science, that particular choices of input variables only cause “transients” that 
can be eliminated from model output after the models are “spun up.”
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judgment surely arises, inter alia, though the process of observing the 
degree to which model output matches available sample data. In practice, 
therefore, statisticians typically use some combination of expert judg-
ment and observable frequencies to arrive at probabilities.

Thus, if we are interested in understanding where estimates of the 
degree of uncertainty about future climate come from, and, in particular, 
if we want to know to what degree these estimates are free from, or influ-
enced by, various values, then we need to understand at least four things. 
We need to understand how observable frequencies and expert judgment 
are each used to estimate the degree of both structural model uncertainty 
and parameter uncertainty.

Structural Model Uncertainty

Let us begin with the estimation of structural model uncertainty. Given 
that one common method of estimating the degree of structural uncer-
tainties in the predictions of climate models is to examine the degree of 
variation in the predictions of the existing set of climate models,�0 the 
range of models that happen to be available on the market will clearly 
influence our estimates of the degree of uncertainty contained in them. 
In this section, I argue that climate modelers have emphasized certain 
prediction and retrodiction tasks over others (e.g., they have empha-
sized predictions of global mean surface temperature change over other  
possible predictions, such as predictions of global mean precipitation 
change, ice melting, sea temperatures, etc.), and that these past decisions 
have affected the performance of these models. I then argue that this 
in turn invariably affects the current estimations of uncertainties. The 
decision to emphasize one prediction task over another is a paradigm 
example of a decision that reflects non-epistemic values; that is, the deci-
sion is made not because emphasizing one prediction task over another 
has significant epistemic benefits, but because one set of prediction tasks 
is thought to be more important, in terms of its social, political, or eco-
nomic consequences, than another. These value-laden decisions, I argue, 
invariably affect the estimation of uncertainties of climate models.

�0. See, for example, IPCC �007; or, for a more skeptical position regarding the feasibility of this 
endeavor, Smith �00�. The typical method is simply to take the average and standard deviations of 
the existing predictions and generate uncertainties from these values.
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As a preliminary to this argument, it is worth noting that the size 
of the dispersions of predictions of different climate models depends  
significantly upon the choice of a prediction task. Consider, for example, 
the graphs shown in figure 6.�, which display predictions of temperature 
change and precipitation change made by different climate models.�� For 
our purposes, what is important about these graphs is that the disper-
sion of predictions of mean precipitation change is significantly larger 
than the dispersion of predictions of global mean surface temperature 
change. The reason for this, I hypothesize, is that predictions of global 
mean surface temperature change have been more highly valued than 
other predictions; the climate-modeling community has focused its ener-
gies upon refining and tweaking models in order to predict temperature 
change accurately, rather than precipitation change, sea level change, or 
any of a variety of other prediction tasks.

One might, however, question this hypothesis; after all, tempera-
ture and pressure are highly coupled variables in all of our models. One 
might expect, therefore, that improvement in one should only be able 
to come in tandem with improvement in the other. But this is not the 
case. Members of model intercomparison groups have noted that “ac-
curate simulation of one variable does not in most cases imply equally  
accurate simulation of another” (Gleckler, Taylor, and Doutriaux �008, 8).  
One might wonder what the source of this variation is. Is there further 
evidence that the degree of structural model uncertainty that we get from 
observable frequencies (from looking at the range of available models on 
the market) is affected by past values regarding the importance of various 
prediction tasks?

To answer this question, it is helpful to introduce what one might call 
the “problem of attribution.” Since at least the late �980s, the climate-
modeling community has been attempting to attribute the specific suc-
cesses and failures of different climate models to specific components, 
or modules, of those models, in order to develop models that predict all 
relevant quantities equally well. The thought was that once one under-
stood the sources of disagreements among different climate models, one 
could take steps toward eliminating those disagreements. In �989, a ma-
jor program was founded at the Lawrence Livermore National Laboratory 
called the Program for Climate Model Diagnosis and Intercomparison 
(PCMDI), which had this as its stated goal. A number of projects were 
undertaken under the auspices of the PCMDI, including the Atmospheric 

��. Taken from IPCC �007.



6.1  the first graph shows the predictions of a range of models for global temperature change 
(°c) vs. time (years). the second graph shows the predictions, for the same range of mod-
els, for global precipitation change (%) vs. time (years). reprinted from the Intergovern-
mental panel on climate change, IPCC Third Assessment Report: Climate Change 2001—The 
Scientific Basis:  Contribution of Working Group I to the Third Assessment Report of the Intergov-
ernmental Panel on Climate Change (cambridge: cambridge University press, 2001), 537.
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Intercomparison Project, which began in �990, and the Coupled Model 
Intercomparison Project, which began in �995.��

Despite the optimism that surrounded the founding of the PCMDI, 
however, the project of attribution has been unsuccessful; moreover, 
there are strong reasons for believing that it will continue to be unsuc-
cessful. Because the failure of the project of attribution is highly relevant 
to our argument that non-epistemic values play an ineliminable role in 
the estimation of uncertainties, we must examine in some detail the rea-
sons behind this failure.

One way to think about the failure of the climate intercomparison 
projects is in terms of a form of what philosophers call confirmation ho-
lism. Confirmation holism, as it is traditionally understood, is the thesis 
that a single hypothesis cannot be tested in isolation, but that such tests 
always depend on other theories or hypotheses. It is always this collection 
of theories and hypotheses as a whole, says the thesis, that confront the 
tribunal of experience. But in contrast to the way the problem of confir-
mation holism is typically understood in the philosophy of science, the 
problems faced by climate scientists are not merely logical problems, nor 
are they confined to the role of anything that can suitably be called aux-
iliary hypotheses. Rather, they are deep and entrenched problems that 
confront the scientist who works with models whose component parts in-
teract in such a complex manner, and have such a complex history, that 
the scientist is unable to evaluate the worth of the parts in isolation.

Before returning to the issue of values, I want to argue for two claims 
about climate models. The first claim is about holism. I contend that re-
cent efforts in the sphere of climate model intercomparison reveal that 
modern, state-of-the-art climate models are what I call “analytically im-
penetrable.” I spell out this notion with more care in what follows, but 
the intuitive idea is that, as a practical matter, it has become impossible 
for climate scientists to attribute�3 the various sources of relative successes 
and failures to particular modeling assumptions.

The second claim is about entrenchment. In particular, I argue that en-
trenchment can be identified as one of the principal causes of holism. 
Here, I want to argue that climate models are, in interesting ways, prod-
ucts of their specific histories. Climate models are developed and adapted 
to specific sets of circumstances, and under specific sets of constraints, 

��. For further details, see the PCMDI website: http://www-pcmdi.llnl.gov/about/index.php (ac-
cessed May �3, �008).

�3. A cognate of this word, attribution, occurs in the prominent phrase “attribution of climate 
change,” which stands for the question whether observed climatic change is caused by humans. I 
do not use the word in this way here.



chapter S IX

106

and their histories leave indelible and sometimes inscrutable imprints 
on these models.

To a first approximation, we can think of the validation of a model 
in the following way: A model is validated when we are convinced that 
there is an appropriate fit between the dynamics of the model,�4 on the 
one hand, and the dynamics of the real-world system to be modeled, on 
the other. As we have seen in previous chapters, such a conception of the 
validation of simulation models is somewhat simplified. In particular, 
simulations are often used to generate predictions about phenomena in 
domains where data are sparse. Hence, while appropriate fit is of course 
what we want in a model, we want more than fit with those features of 
the real-world system that are immediately, observationally accessible 
to use. That a model is valid, therefore, is rarely established solely by 
comparing it to the world. As we have seen, the sanctioning of simula-
tion models depends on a number of features in addition to fidelity of 
the simulation’s output to known real-world data. It also depends on 
fidelity to theory, to accepted computation method, and a host of other 
factors. Here though, I want to set these complications aside, and focus, 
in particular, on the role of comparison with data in the validation of 
simulations. I also want to focus, in this chapter, on a particular facet 
of validation. I want, in particular, to think about situations in which 
models fail to be adequately validated—about situations, in other words, 
where the behavior of the model is known not to be close enough to the 
behavior of the world for its intended purpose.

This, after all, is the state of affairs known to obtain with regard to most 
global climate models. Several such models are being run by research 
centers worldwide. Each has its specific strengths and weaknesses in cer-
tain respects. The series of assessment reports of the Intergovernmental 
Panel on Climate Change (IPCC) documents how adequacy of the overall 
picture is thought to be produced by a synopsis of a plurality of models. 
In such cases, the issue of model validation is, in effect, the issue of model 
improvement. To put the central question succinctly: When a complex 
models fails to be adequate, is it possible to identify the various compo-
nents of the model that contribute to its relative successes and failures?

It is precisely in these contexts, however, that a serious form of confir-
mational holism rears its ugly head. On the common understanding of 
this thesis, a result of the so-called Quine-Duhem problem, it is thought 
to have two features. First, the problem of confirmational holism is typi-

�4. “Appropriate” in the sense that, for the intended purpose of the model, the model is close 
enough to the world in the intended respects and to the intended degree of accuracy.
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cally associated with the idea of auxiliary hypotheses having to do with 
observation. Suppose, for example, that we have the hypothesis that all 
metal rods expand when heated. An alleged falsification of this hypothe-
sis comes from the observation of a rod being heated and not expanding. 
Confirmational holism comes from the realization that such an observa-
tion’s credibility depends on a sound understanding, grounded in certain 
theories or hypotheses, of thermometers and measuring instruments. 
Any apparent conflict between our original hypothesis and our data 
could be either the fault of the original hypothesis, or the fault of these 
auxiliary hypotheses—hypotheses associated with measuring instru-
ments. Second, the problem of confirmational holism is often thought 
to be a logical problem. In other words, on a common understanding of 
the Quine-Duhem problem, and of confirmational holism, what we are 
supposed to conclude is that logic alone never dictates whether a single 
hypothesis or theory is confirmed or falsified by a collection of data. But 
it is usually supposed that good judgment (what Duhem called “bon 
sense”) can decide between such rival possibilities. This is often supposed 
on the basis of the belief that auxiliary hypotheses used in observation 
can be independently tested. It is usually supposed, in other words, that 
the Quine-Duhem problem is a philosophical problem without actual 
practical implications for the working scientist.�5

But in contrast to the conventional picture of how Quine-Duhem is 
supposed to operate, the holism that arises in climate modeling is wholly 
independent of whatever hypotheses or theories sanction the reliability 
of the observational base upon which validation occurs. Even when the 
reliability of the data against which simulation output is being compared 
is not in doubt—that is, even if we imagine a situation where, for example, 
the data concerning historical records of ice-ages against which the simu-
lation’s output will be compared are not open to question, where there is 
no concern about the reliability of the auxiliary hypothesis used to gener-
ate these data—there is still a serious problem of confirmational holism.

Kluges, Generative Entrenchment, and the Historical Character  
of Model Performance

The most sophisticated current climate models, Atmosphere-Ocean 
General Circulation Models (AOGCMs), are highly complex computer 

�5. For an excellent discussion of Duhem’s contributions to the philosophy of science, see  
Darling �00�.
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models that are constructed on the basis of both principled science— 
including fundamental partial differential equations from mechanics 
and thermodynamics—and trial-and-error approximations and parame-
terizations, and everything in between. An important feature of these 
models is their modular structure; each model is made up of components, 
or modules, and each module represents a given subsystem of the earth’s 
climate, such as the circulation of the atmosphere, ice formation, ocean 
dynamics, cloud formation, the effects of vegetation, and the dynamics 
of aerosols. Today’s climate models have their roots in the General Circu-
lation Models of the �950s, which described the atmosphere; over time, 
the complexity of these models has increased via the addition of more 
and more modules. The addition of these modules has allowed for bet-
ter predictions of a growing range of phenomena; as already indicated, 
however, the predictions made by different climate models differ from 
one another, in some cases significantly.

An important reason for this variation in predictions is that the mod-
ules that make up a climate model are not mutually independent; rather, 
they interact with one other, so that the overall performance of a model 
depends not simply upon the representational adequacy of each indi-
vidual module, but also upon the way in which the modules are coupled 
together. Thus, if module X is good at predicting phenomenon Y, and 
if module W is good at predicting phenomenon Z, it will not, at least in 
general, be the case that the model consisting of X and W will be good at 
predicting both Y and Z. This overall model might be good at predicting 
one or the other of these phenomena, or neither, depending upon the 
way in which the modules interact with one another.

Moreover, not only does the overall performance of a given climate 
model depend upon the interaction of its modules, but it is also the case 
that the specific ways in which modules interact with one another will de-
pend upon the overall model of which they are parts. The reason for this 
is that the process of coupling modules together relies to a large extent 
upon fitting the module to the overall model—not only to its principled 
structure, but also to its parameterizations.�6 This, in turn relies on trial 
and error, piecemeal, mutual adjustments of parameters and parameter-
ization schemes—adjustments that need to be undertaken in different 
ways, depending upon the details of the model and modules in question. 

�6. Parameterizations, roughly speaking, are correction factors, or attempts to correct for the 
fact that simulation models cannot capture effects that occur at scales below which the models 
are discretized. We discuss parameterizations in much greater detail in the section below entitled 
“Parameter Uncertainty.”
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In order to illuminate the nature of these adjustments, a number of com-
mentators have employed the notion of a kluge, a colloquial term first 
employed by computer programmers to describe sections of code that 
were functional but unprincipled, inelegant, and ill-understood. Accord-
ing to Andy Clark, a kluge is “an inelegant, ‘botched together’ piece of 
program; something functional but somehow messy and unsatisfying” 
(Clark �987, �78). The term describes aptly the process of coupling two 
modules together; while parts of the process might be principled, other 
parts rely to a large extent upon simply “botching” things together.

In my view, the rather messy character of module coupling has im-
portant implications for the development of climate models; it suggests 
that model development is a historical process that depends in important 
respects upon the environment in which that model develops. To see 
this, it is helpful to draw upon William Wimsatt’s notion of “generative  
entrenchment” (Wimsatt �007). According to Wimsatt, “a deeply gen-
eratively entrenched feature of a structure is one that has many other 
things depending on it because it has played a role in generating them” 
(�33). Wimsatt employs this notion in order to explain the relationship 
between biological development and evolution; characteristics that are 
adaptive for one organism will not, in general, be adaptive for another, 
because the different organisms will, in general, have different features 
that are generatively entrenched. Unlike Dumbo, real elephants will 
never be able to fly, because they have particular features—for example,  
bulkiness—that have developed in specific circumstances as a result of 
specific environmental pressures and that make adaptations such as 
wings impossible. Analogously, some climate models will never be suc-
cessful at predicting a particular phenomenon via a particular module, 
because the models have developed in specific circumstances as a result of 
specific “environmental” pressures—for example, pressures to emphasize 
certain predictive tasks over others—that make the successful inclusion 
of a given module impossible.

Consider the following idealized example. Climate Model A is a simple  
General Circulation Model that describes the dynamics of the atmo-
sphere. By building upon A, two further models, B and C, develop, both 
of which describe the following subsystems of the earth’s climate: atmo-
sphere dynamics, ocean dynamics, ice formation, and the effects of vege-
tation. Model B develops from A via the following path: first, a module 
for ocean dynamics is coupled to Model A, followed by a module for 
ice formation, and finally a module for the effects of vegetation. Model 
C takes a slightly different path; first, a module for ocean dynamics is 
coupled to A, followed by a module for the effects of vegetation, and  
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finally a module for ice formation. Because B and C took different de-
velopmental paths, the attempt to couple additional modules to B and 
C—for example, a module for aerosols—will, in general, need to proceed 
along different lines for each model: the piecemeal approximations to 
parameterization schemes that will allow a new module to be coupled to 
B will, in general, not work for C, and vice versa. This does not mean that 
it will be impossible to add an aerosol module to C; however, given the 
ways in which B and C have developed, it might be significantly more 
difficult to add this module to C than to B, and it almost certainly will 
need to be done via a very different coupling process. These difficulties, 
moreover, only increase with the complexity of the model in question. 
Thus, given models of the complexity that we have today, the historical 
development of these models—which, again, has been influenced signifi-
cantly by the “environmental” pressures placed upon them—places con-
straints upon the kinds of modules that can be coupled to them, which 
in turn affects the overall performance of the models.

The preceding discussion should make clear why attribution has been, 
and will in all likelihood continue to be, unsuccessful. One cannot at-
tribute the predictive success or failure of a given model to a particular, 
localized component of that model because the components of models 
are strongly coupled to one another and hence interact with one an-
other in significant fashion. Moreover, the kinds of additions that one 
can make to a climate model—for example, the ways in which we can 
expand the scope of a model—will in general depend upon the way in 
which that model has developed over time, including the approxima-
tions and adjustments that have been made in order to couple new mod-
ules successfully. This, in turn, will depend upon the “environmental” 
pressures to which the model is subject. All of this suggests that previ-
ous decisions to emphasize certain prediction and retrodiction tasks over  
others—for example, predictions of global mean surface temperature 
change over predictions of global precipitation change—have a signifi-
cant effect upon the ways in which these models can be expanded, and 
upon the ways that future expansions of these models will perform.

Values and the Estimation of Structural Model Uncertainty

What does all of this have to do with the debate over the role of values 
in scientific research? According to the preceding discussion, the overall 
performance of a model—its ability to predict and retrodict certain tasks 
well, and its inability to predict and retrodict other tasks well—depends 
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to a significant extent upon the history of that model, which in turn 
depends upon that model’s “environment,” which includes political  
decisions to emphasize certain predictive and retrodictive tasks over oth-
ers. Because the estimation of uncertainties in our knowledge of climate 
change depends upon the performance of our best climate models, and 
because decisions of a non-epistemic character have an ineliminable ef-
fect upon the performance of our best climate models, such non-epistemic  
values invariably influence the estimation of uncertainties. Thus, Jeffrey’s 
claim that we can assign probabilities to hypotheses in a value-neutral 
fashion—or, in the present case, that we can assign uncertainties to pre-
dictions in a value-neutral fashion—is false, at least in the area of climate 
modeling.

One might object to this argument in a few different ways. First of 
all, our argument depends upon the claim that the choice of a predic-
tion task is inevitably influenced by non-epistemic factors; yet one might 
argue that the decision to emphasize temperature predictions over other 
predictions can be explained solely on theoretical, or “purely epistemic,” 
grounds. While one could develop this objection in a variety of ways, per-
haps the most plausible would proceed as follows. Of the candidate pre-
diction tasks that one could choose to emphasize—including global mean 
surface temperature change, ocean heat content change, polar ice cap 
retreat, and so on—temperature is the most significant theoretically, be-
cause all of the other quantities can be derived from it. Without knowing 
how global mean surface temperature will change, so the argument goes, 
one cannot explain or make sense of any other change in global climate; 
therefore, predictions of temperature change should be emphasized.

The objection thus formulated, however, has its problems. It is true 
that CO� and other gases are often called “heat trapping,” but it would 
be more accurate to call them “energy trapping,” and one of the most 
difficult problems within contemporary climate research is determining 
where this energy will go. Will it go toward heating the ocean? melting 
sea ice? or raising temperature? If it goes toward the latter, will it do this 
on the surface of the earth or in other parts of the atmosphere? To main-
tain that all of these other features of the planet’s dynamics can be derived 
from mean global surface temperature is misguided, because it fails to take 
into account the massive and not entirely understood interdependences 
that exist in the climate. All of these interdependencies together react in 
complex fashion to the trapping of additional energy, and it would be a 
mistake to assume that this additional energy will always manifest itself 
as higher surface temperatures. Increased surface temperature is only one 
of many symptoms of global climate change.
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This seems to be the most plausible way of developing this objec-
tion, and yet it still fails. One could, of course, attempt to formulate it in 
another fashion. I am skeptical, however, that such a route will be suc-
cessful. Until this burden is met, therefore, I conclude that the decision 
to emphasize predictions of global mean surface temperature change is 
ineliminably influenced by non-epistemic considerations, such as the 
fact that this prediction task was seen as the most important in terms of 
its social, political, and economic consequences.

A second objection that one might direct against our argument is that 
the way in which values operate in this case is philosophically uninterest-
ing; if scientists decide, for whatever reason, to put more resources into 
the prediction of one task than another, it is hardly novel to maintain 
that the resulting models will be better at predicting the former task than 
the latter. This objection, however, fails for at least two reasons.�7

First of all, the objection obtains its intuitive force via a false presup-
position, namely, that it is realistic to attempt to construct models that 
perform in a manner that is independent of the influence of value judg-
ments. According to the previous discussion, the performance of current 
climate models depends invariably upon the historical development of 
those models, which in turn depends invariably upon decisions of a social 
or political character, including decisions that a given prediction and ret-
rodiction task is more important, from a social, moral, or economic point 
of view, than another. If it were reasonable to expect the performance 
of climate models to be independent of such past judgments, then the 
objection would be a good one; according to our argument, however, this 
expectation is not at all reasonable.

Second, and perhaps more important, the objection misrepresents 
the effects of focusing upon temperature predictions at the expense of 
precipitation predictions. In particular, the objection suggests that the 
primary effect of focusing upon one kind of prediction task rather than 
another is a difference in the actual uncertainties associated with these 
two predictive tasks. Yet, it is not merely the case that a lack of focus upon 
precipitation predictions will result in models that perform poorly with 
respect to this prediction task—and thus lead to higher actual uncertain-
ties about future precipitation; it is also the case that a focus on mean 
global surface temperature predictions at the expense of global precipita-
tion predictions will likely result in a range of models that overstates our 
estimates of the uncertainty of precipitation predictions and understates 

�7. Thanks to James McAllister for encouraging us to think further about this objection. 
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the uncertainty of temperature predictions. This choice of prediction 
tasks, in other words, affects not only the actual uncertainties of the 
models in question, but also the estimations of these uncertainties.

The reason for this pertains to the problems associated with estimat-
ing structural model uncertainty via observable frequencies—or, more 
specifically, via observing the range of predictions generated by our exist-
ing arsenal of models. If there are some particularly bad models on the 
market, we will overestimate the degree of uncertainty that we ought to 
have about our best models. On the other hand, if there is some degree of 
coevolution in our models—that is, if those who make them deliberately 
ensure that the predictions of their models do not deviate too much from 
the herd (a natural thing to do if you do not want the predictions of your 
model to appear unrealistic)—then the range of models on the market 
will underestimate the degree of uncertainty that we ought to attribute 
to them. As Myles Allen, who refers to this method as using “ensembles 
of opportunity,” notes, “If modelling groups, either consciously or by 
‘natural selection,’ are tuning their flagship models to fit the same obser-
vations, spread of predictions becomes meaningless: eventually they will 
all converge to a delta-function” (Allen �008). Thus, by misrepresenting 
the effects of focusing upon temperature predictions at the expense of 
precipitation predictions, the objection obscures the significant impact 
that values have in this situation.

Structural Model Uncertainty and Expert Judgment

Of the four modalities that we discussed earlier (expert judgment versus 
observable frequencies and structural model uncertainty versus param-
eter uncertainty), we have thus far restricted our attention to the esti-
mation of structural model uncertainty via observable frequencies. The 
aforementioned problems with this method, however, lead to a further 
challenge to our claim that non-epistemic considerations play an inelim-
inable role in the estimation of structural model uncertainty—namely, 
that one could perhaps make such estimations via expert judgment rather 
than observable frequencies and do so in a manner that is free from non-
epistemic values. Are there reasons for believing that values play an ine-
liminable role in the case of expert judgment as well?

I believe that there are such reasons, but the question is nevertheless 
rather difficult to answer, primarily because, of the four modalities under 
consideration, the use of expert judgment to estimate structural model 
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uncertainty is the one with the least developed methodology in the lit-
erature.�8 The source of this lacuna is clear; when statisticians solicit the 
opinions of experts regarding the degree of structural uncertainty in a 
model, they often encounter the problem that the experts are either un-
willing or unable to assign subjective degrees of belief to the structure of a 
model. In particular, modelers are extremely reluctant to assign probabil-
ities to the predictions of models that are deterministic, given a particular 
value in parameter space.�9 When statisticians, trying to implement this 
modality, make it clear that what they are after is the modelers’ subjec-
tive degree of belief, the modelers are apt to balk. Thus it is not clear that 
the relevant experts actually possess the subjective degrees of belief, and 
methods need to be created that will reliably elicit these judgments.

The issue that is of interest to us, of course, is the extent to which ex-
perts’ judgments about their subjective degrees of belief, assuming that 
they are willing to make these judgments, are influenced by past decisions 
about prediction tasks. Given, again, that a well-established methodol-
ogy for making these judgments does not yet exist, the issue is difficult to 
resolve. We can, however, make the following preliminary argument. In 
order for expert judgment to overcome the effects that past prediction-
task priorities have had on ensembles of existing models, the experts in 
question must understand exactly what these effects have been. Yet, the 
failure of the project of attribution, discussed above, leads us to be skepti-
cal that one can know what the precise effects of past prioritizations upon 
existing models actually are. This, in turn, makes us doubt that expert 
judgment can be free from non-epistemic considerations, such as the 
choice of one prediction task over another.

Where does this leave us? We have argued that estimations of struc-
tural model uncertainty via observable frequencies cannot be made in a 
value-free way, and we have called into question the claim that expert 
judgment can do so. In order to establish this latter point more firmly, 
more research on the methodology of this modality needs to be done. In 
the meantime, we have to be content with the fact that the predominant 
method in actual use in the scientific community is to look at observable 
frequencies; this method, as we have argued, is not value-free.

Suppose, however, that one is unconvinced by the arguments just 
provided. Even if one continues to maintain that structural model uncer-

�8. For a discussion of these methods, see Goldstein and Rougier �006. For criticism of these 
methods, see Allen �008.

�9. Modelers, in fact, often think statisticians will do that for them. Statisticians, on the other 
hand, clearly (and correctly) view this as a scientific problem whose answer can only be provided by 
those with the best scientific expertise.
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tainty can be estimated independently of non-epistemic considerations—
indeed, even if one assumes that there is no uncertainty whatsoever about 
the structure of a model—there is still significant uncertainty about the 
values of parameters and parameterization schemes. I believe that an 
even stronger case can be made for the claim that non-epistemic con-
siderations affect the estimation of parameter uncertainty. It is to this 
argument that we now turn.

Parameter Uncertainty

To keep the issue of parameter uncertainty conceptually distinct from 
that of structural model uncertainty, let us suppose that we do have a 
structurally perfect model with n parameters and that we are uncertain 
about what the best value is for each of these parameters. We can think 
of the set of n parameters as forming an n-dimensional parameter space. 
If we had a probability density function (PDF) over that n-dimensional 
space, we could easily assign probabilities to the predictions of the model. 
In principle, we would use something like the following Monte Carlo 
method: we could sample from the space of parameters in accordance 
with the given PDF and calculate the output of the model for each of the 
sampled points in the space.�0 The resulting set of outputs would have 
means and variances for each of the variables that would correspond to 
the uncertainties we would assign to the corresponding predictions. If, 
for example, the mean prediction of the probability-weighted sample for 
temperature is x, with standard deviation of s, then we could say that it is 
95 percent likely that the modeled system’s temperature will be x ± �s.

The question, then, is where a PDF over the space of possible parameter 
values can come from. The answer, as noted, is from observed frequen-
cies and expert judgment. We have already seen, in some detail, how the 
former works. Each value in parameter space can be benchmarked; it can 
be scored for its ability, when used as input for a given model structure, 
to reproduce existing data, and probability densities can be assigned in 
proportion to that score. Remember, however, that climate models are 
highly multivariate in their output. Scoring the performance of each 
point in parameter space, therefore, requires us to weight the relative  

�0. I say “in principle” because in practice the situation is more complicated. In practice, it is too 
time-consuming to calculate the outputs of a global climate model for sufficiently many sampled 
points. Statisticians, therefore, use so called “emulators” of the models (in effect, simulations of the 
simulations), to calculate these outputs. While this introduces a large layer of technical difficulties 
to the project, it has no bearing, that we are aware of, on what we discuss here.
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importance of making good predictions of each variable. Such a weight-
ing involves a value decision that involves both epistemic and non- 
epistemic considerations.�� More important, expert judgment might af-
firm that a point in parameter space that is very successful at reproducing 
known, available data will be poor at predicting unknown, unavailable 
data. In practice, therefore, a more common procedure is to use a bench-
marking procedure to rule out certain regions of parameter space (if a 
point in parameter space does a very poor job of reproducing known data, 
then it can be thrown out) and then use expert judgment to assign a PDF 
to the remaining subset of the space.

But what are experts judging when they assign such a PDF? Here, we 
need to keep in mind an important difference between two kinds of pa-
rameters that climate models can take as inputs. So far, I have simply 
defined a parameter of a model as any aspect of the model that has to be 
quantified before the model simulator can be run. But the aspect of the 
model being quantified might or might not correspond to some actual 
quantifiable or measurable property of the physical system being mod-
eled. While some of the parameters of our models are of a kind with 
physical parameters like g, the acceleration due to gravity near the earth’s 
surface (9.8 m/s�), others of them, which result from so-called parameter-
izations in the model, are rather different.

Parameterizations are elements of a simulation model that are de-
signed to capture effects that slip between the cracks of a model’s dis-
cretization grid or are otherwise lost to an approximation of the model. 
Parameterization schemes are extremely common in global climate mod-
els, especially since reductions in discretizations and approximations are 
bought at the price of complexity of computer models, increase of simu-
lation time, and so on.��

In my view, there is an important difference between these two dif-
ferent kinds of parameters. With respect to the first kind of parameter, it 
makes sense to talk about the correct value of the parameter. For example, 
near the surface of the earth, the correct value for g is approximately  
9.8 m/s�. But the value of a parameter associated with a parameterization 
scheme does not have a single correct value. At best, it has a best value 

��. Here, we think, is an interesting example of where the purported distinction between epis-
temic values and non-epistemic values breaks down. Whether or not the value underlying such a 
weighting would count as epistemic or non-epistemic would depend on whether the researchers 
could argue that they made their choice of weighting on the basis of which weighting was the “best 
guide to truth.” But which truth? And how would such an argument be resolved? The distinction 
here becomes a bit confused.

��. See chapter � for more discussion of parameterizations.
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for a particular prediction task—a value which, if used as model input, 
will enable the model to make the best possible predictions for that par-
ticular task.

Goldstein and Rougier highlight the important difference between 
these two kinds of parameters when it comes to estimating uncertainties. 
In their discussion of eliciting expert judgment about appropriate PDFs to 
place on parameter space, they write, “In practice, modellers often seem 
to take two somewhat contradictory positions about the status of the 
simulator’s best input, on the one hand arguing that it is a hypothetical 
construct and on the other hand using knowledge and intuition derived 
from the physical system to set plausible intervals within which such a 
value should lie” (Goldstein and Rougier �009, ���6).

Of course, when it comes to parameterization schemes, there is no 
straightforward relation between the values of the inputs to the simulator 
and any measurable corresponding physical values for the system. If ex-
pert judgment is to be relied upon in assigning probabilities to parameter 
values, therefore, it has to come not from knowledge and intuition of the 
physical system alone, but from knowledge and intuition of the behavior 
of the model vis-à-vis the system. In that regard, one more passage from 
the Goldstein and Rougier piece is especially striking: “In particular, there 
was strong disagreement [among statistically numerate system experts] 
with [the following:] that there exists an input x* such that, were it to 
be known, only a single evaluation of the simulator would be necessary” 
to learn everything that the model has to tell us about the system (�009, 
���6). What the statistically numerate system experts are suggesting is 
that the best value from parameter space for one particular prediction task 
is not necessarily the same as the one for another prediction task. Indeed, 
it may even be that for some prediction task, the maximum amount of 
knowledge that can be extracted from a particular model structure might 
come from an ensemble of runs from multiple parameter values. Thus, 
the idea that there is a single “best value” for a parameter in a model is, 
in many cases, not correct.

What is important to note here is that, as emphasized in the previous 
section, climate models can be applied to a variety of prediction tasks. 
While climate modelers have traditionally emphasized predictions of 
global mean surface temperature change, they have more recently begun 
to turn their attention to other prediction tasks, such as the probability 
of so-called abrupt climate changes, including the collapse of the ther-
mohaline circulation, the drying of the Amazon, and the disappearance 
of Arctic summer sea ice. What we do not know for a particular climate 
model with all of its parameterizations, is whether the best parameter 



chapter S IX

118

value for predicting mean surface temperature is also the best parameter 
value for predicting, say, the extent of thermohaline circulation. But if 
the claim made by Rougier and Goldstein’s statistically numerate system 
experts is right (and I think it is), and they are not always the same, then 
the following suspicion arises.

Suppose we are confronted by a novel prediction task, such as esti-
mating the probability of thermohaline collapse. And suppose that, for a 
particular model structure, we want to estimate the degree of parameter 
uncertainty about such predictions. To do this, as we have discussed, 
would require us to use expert judgment to assign a PDF to the parameter 
space for that model. If what experts are judging is where, in parameter 
space, the “best” value of parameters can be found, and if the best value 
for predicting mean surface temperature is not necessarily the best value 
for predicting thermohaline circulation, then the suspicion is that expert 
judgment about parameter space PDFs will be influenced, to some degree 
or other, by the intended purposes for which these experts have been 
constructing and testing their models during the period in which they 
have acquired their expertise. Again, when it comes to judgment about 
parameterizations, the relevant expertise is not about the system itself, 
but about the behavior of the model vis-à-vis the system.

Values and the Estimation of Parameter Uncertainty

At this point, we are in a position to state the argument for the inelim-
inability of non-epistemic considerations in the estimation of parameter 
uncertainty. Suppose that we have a particular model structure about 
which there is no uncertainty, and suppose furthermore that we want to 
employ this model in order to estimate the probability of thermohaline 
collapse given a doubling of atmospheric carbon dioxide. To estimate 
this, we have to elicit expert opinion regarding an appropriate PDF to 
assign to the space of parameters. But the best value(s) of parameters for 
predicting thermohaline circulation is not necessarily the same as the 
best value(s) for other prediction tasks, such as predicting mean surface 
temperature. If the experts whose opinion we elicit have predominantly 
acquired experience with their models in predicting mean surface tem-
perature, then this will affect their judgment about where the best value 
for parameters can be found.

But the particular set of prediction tasks that have played a role in shap-
ing our experts’ judgments have been the product of a set of choices—for 
example, the choice to focus on predicting mean surface temperature 
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rather than mean global precipitation. And these choices, in turn, reflect 
a set of values—namely, the set of social, economic, or other consider-
ations that have historically led us to believe that predicting temperature 
is more important than predicting precipitation. These values, in other 
words, are ones that are traditionally regarded as being non-epistemic in 
character. Thus, non-epistemic values play an ineliminable role in the 
estimation of parameter uncertainty.

Conclusion

Jeffrey argues that the task of the scientist can and should be limited to 
the assignment of probabilities to hypotheses, and that this task can be 
carried out in a manner that is free from practical, non-epistemic consid-
erations. Once the task of assigning probabilities to hypotheses has been 
completed, the scientist can then hand these hypotheses and probabili-
ties over to policymakers, who are responsible for deciding upon a course 
of action. On this picture, there is a clean separation between the realms 
of theory and practice, and a clear line that divides the spaces where val-
ues play a legitimate role (the realm of practice) and where they do not 
(the realm of theory). As noted earlier, Jeffrey’s line of reasoning is still 
very commonly followed today.

If our argument is sound, however, Jeffrey’s line of reasoning fails, at 
least in one very important area of contemporary scientific research—
namely, climate modeling. Scientists cannot assign probabilities to 
hypotheses about climate change—or, more specifically, estimate the 
uncertainties of climate predictions—in a manner that is free from non- 
epistemic considerations, because non-epistemic considerations invari-
ably influence the choices of prediction tasks, and the choices of predic-
tion tasks invariably influence the estimation of both structural model 
uncertainty and parameter uncertainty.

Again, I do not believe that this result in any way implies that the con-
sensus that has been formed regarding the causal connection between 
fossil-fuel emissions and global climate change is problematic. I am not 
a skeptic regarding the fundamental claim of anthropogenic climate 
change. I do, however, believe that this conclusion suggests that more 
attention should be paid to the spaces within climate modeling where 
values play a role, to the kinds of values or non-epistemic considerations 
that play a role, and to the effects that these values have upon the overall 
performance of our models.
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Reliability without Truth

One of the principal lessons of this book has been that the 
mathematical models that drive many computer simula-
tions of complex physical systems have complex ancestries. 
On the one hand, the basic features of these models are mo-
tivated by fundamental theory. On the other hand, in order 
to produce a model that is computationally tractable, simu-
lationists also craft their models using a motley assortment 
of other components, incorporating many assumptions that  
are not sanctioned by high theory. Despite their mixed an-
cestries, many of these simulations are trusted in making 
predictions and building representations of phenomena, 
and they are often successfully used in engineering applica-
tions. Indeed, researchers run simulations of systems about 
which data from real experiments is difficult or impossible 
to get—the simulations take the place of experiments and 
observations—and so they are trusted even in circumstances 
where they cannot be evaluated by comparing their results 
with the world.

Given that the construction of these models is guided 
but not determined by theory, what is the source of the 
credibility of these models? In preceding chapters, I have 
argued that the credibility of a simulation model must come 
not only from the credentials supplied to it by its theoreti-
cal ancestors, but also from the antecedently established 
credentials of the model-building techniques employed in 
its construction. There are, in other words, model-building 
techniques that are taken, in and of themselves, to be suit-
able for building credible models. Some of these techniques, 
moreover, go beyond idealization or approximation and 
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involve incorporating what can be best described as fictions. These are 
submodels that are included in a simulation model; their inclusion is 
taken to increase the trustworthiness of the simulation’s output, but their 
function is not thought to be to offer a reliable account of the bits of the 
world they purport to model.

The practice of using fictions in building credible simulations is wor-
thy of closer scrutiny by philosophers of science interested in the various 
arguments for and against scientific realism. Here, I examine two exam-
ples of fictions from the field of computational fluid dynamics: so-called 
artificial viscosity and vorticity confinement. Both of these techniques 
are successfully and reliably used across a wide domain of fluid dynamical 
applications, but both make use of “physical principles” that do not pur-
port to offer even approximately realistic or true accounts of the nature 
of fluids. I argue that these kinds of model-building techniques, there-
fore, are counterexamples to the doctrine that success implies truth—a 
doctrine at the foundation of scientific realism. I suggest, furthermore, 
that fictions can provide a useful backdrop for thinking more carefully 
about what characteristics we take successful model-building principles 
to have.

Autonomy

We should begin by recalling two important features of simulation re-
search. The first is what I call, following Mary Morgan and Margaret Mor-
rison (1999), their semi-autonomy from theory. While models generally 
incorporate a great deal of the theory or theories with which they are 
connected, they are usually fashioned by appeal to, by inspiration from, 
and with the use of material from an astonishingly large range of sources: 
empirical data, mechanical models, calculational techniques (from the 
exact to the outrageously inexact), metaphor, and intuition.

A second important feature of simulations is that they are often con-
structed precisely because data about the systems they are designed to 
study are sparse. In these circumstances, simulations are meant to re-
place experiments and observations as sources of data about the world. 
Simulation methods, for example, are used to study the inner convective 
structure of stars or to determine the distribution of pressure and wind 
speed inside a super-cell storm. Not all of the results of such simulations 
can be evaluated simply by being compared to the world. If a simulation 
reveals a particular pattern of convective flow inside a star, we must be 
able to assess the trustworthiness of that information without being able 
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to physically probe the inside of the star to check and see whether that 
result is confirmed by observation. In this sense, we can speak of simula-
tions as being independently sanctioned. By this, I simply mean that if 
a simulation is to be useful, it must carry with itself some grounds for 
believing in the results it produces. The process of transformation itself, 
from theoretically given model to computationally tractable model, must 
be sanctioned. This is a feature of simulation that I have previously high-
lighted by talking of its “downward epistemology” (Winsberg 1999).

When these two features of simulations—their semi-autonomy from 
theory and the fact that they are independently sanctioned—are held up 
side by side, it raises an interesting question. If the process of construct-
ing simulation models is at best only guided by theory, then how can 
the simulation be trusted to produce results in situations where data are 
sparse? What, other than the governing theory, could provide the neces-
sary credentials?

Part of the answer, which we saw in chapter 3, is that the techniques 
that simulationists use to construct their models are “self-vindicating” 
in much the same way that Ian Hacking says of instruments and ex-
periments that they are self-vindicating (Winsberg 2003). That is, when 
simulationists build a model, the credibility of that model comes not 
only from the credentials supplied to it by the governing theory, but 
also from the antecedently established credentials of the model-building 
techniques used to make it.

The principle purpose of simulations is to produce “results.” These 
results come in the form of simulated “data” that are expected to, in 
specifiable respects, accurately predict or represent the phenomena to be 
simulated. Whenever these techniques and assumptions are employed 
successfully—that is, whenever they produce results that fit well into the 
web of our previously accepted data, our observations, the results of our 
paper-and-pencil analyses, and our physical intuitions; whenever they 
make successful predictions or produce engineering accomplishments—
their credibility as reliable techniques or reasonable assumptions grows. 
That is what I meant when I said that these techniques have their own 
life; they carry with them their own history of prior successes and ac-
complishments, and, when properly used, they can bring to the table 
independent warrant for belief in the models they are used to build. In 
this respect, simulation techniques are much like experiments and in-
struments as Hacking and Peter Galison describe them (Hacking 1988; 
Galison 1997).

That was the answer I gave to the question, “What makes it possible 
for semi-autonomous simulation models to be credible sources of knowl-
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edge about systems for which data are sparse?” That is an epistemological 
question. Here I want to explore some of the implications of the answer 
to that question for the metaphysics of science. Roughly, I want to ask if 
there are any lessons we can learn from the observation that model build-
ers develop trust in the success of some of their techniques, even when 
their techniques employ contrary-to-fact physical principles.

Asymmetries of Success

Let me begin to motivate the idea that this observation might have some 
interesting implications. Recall the following claim. We sometimes trust 
the results of simulation models because

we place trust in the theories that stand behind these models. we do this, of course, 

because they have been successful in lots of other applications,

and, equally, because we place trust in the model-building techniques that we use 

to transform theoretical models into simulation models. here too, we do this be-

cause those techniques too have been successful in lots of other applications.

This way of putting things makes it seem as though there is a perfectly 
simple symmetry at work here, but the apparent symmetry obscures a 
significant difference. We all know that theories and laws are the sorts 
of the things that are supposed to gain credibility—to be corroborated— 
every time they are applied successfully. But I take it that it might come 
as more of a surprise to some that a model-building technique would be 
the right sort of thing in which to develop confidence. Although a model-
building technique, a particular way of altering a theoretical model so as 
to make it more computationally tractable, may produce good results in 
one particular application, we might be tempted to ask why we should 
expect it to work in another application. Why, in other words, should the 
success of a model-building technique be the sort of thing that is project-
able from one application to another?

The reason I think this is an interesting question is that it is often 
thought that there is only one possible explanation for our confidence in 
the projectability of scientific success. If we ask why we expect scientific 
theories that have been successful in past applications to be successful 
in the future, we often get a response that goes something like this: If a 
proposed theory or law is used successfully in making a variety of predic-
tions and interventions, then it is likely that that theory or law is in some 
way latching on to the real structure of the world—that it is true—and 

•

•
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hence it is only natural that we should expect it to be successful in the 
future. If we did not believe it was latching on to the real structure of the 
world, so the reasoning goes, then we would have no reason to expect it 
to be successful in the future. In short, the success of scientific theories is 
projectable because successful scientific theories are true.

In fact, many think that the truth of scientific theories is the only 
possible explanation of their success in making predictions and interven-
tions. Otherwise, they claim, that success would be a miracle. Many also 
think that our belief in the truth of scientific theories is the only possible 
explanation for our common practice of trusting theories in making pre-
dictions about novel situations. These, of course, are standard arguments 
for scientific realism. But what, then, explains our practice of trusting 
model-building techniques in doing the very same thing?

Arguments for scientific realism, in other words, rest at least in part on 
the conviction that the projectability of the success of scientific theories 
calls for an explanation, and that the only possible or viable explanation 
available is truth. In what follows, I ask whether, in light of the fact that 
some aspects of scientific practice also seem to rely on the projectability of 
the success of model-building techniques, this conviction is warranted.

No Miracles

The idea that the success of scientific theories requires an explanation and 
that the best explanation is truth forms the basis for what Philip Kitcher 
has called the “success-to-truth” rule (Kitcher 2002), which in turn is the 
engine of the “no-miracles” argument for scientific realism. I state the 
rule crudely below. In the next section, following Kitcher, I review some 
considerations that force upon us a more nuanced formulation.

if X plays a role in making successful predictions and interventions, then X is true.

Of course, the no-miracles argument and the rule of inference on 
which it depends have many critics. One kind of criticism questions 
whether correspondence-truth really has any explanatory value to begin 
with (e.g., Horwich 1999). That avenue of criticism will not concern us 
here. Other critics have looked for counterexamples to the principle (e.g., 
Laudan 1981), usually in the form of historical examples of scientific 
theories that were successful but that we no longer hold to be true—such 
as the humoral theory of disease or the wave-in-ether theory of light.
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Defenders of the no-miracles argument have responses to such coun-
terexamples that invoke qualifications to the rule. Take, for example, the 
case of the humoral theory of disease. Examples of this type are often de-
scribed by defenders of the rule as belonging to “immature science.” The 
response, in other words, is that in order for X to be a genuine example 
of something to which the rule ought to apply, it needs to play a role 
in making sufficiently specific and fine-grained predictions and interven-
tions. Because, the argument goes, such theories as the humoral theory 
of disease and the phlogiston theory of combustion never allowed for 
sufficiently specific and fine-grained predictions and interventions, they 
are not good counterexamples to a properly formulated rule. Our first 
modification to the rule, therefore, must accommodate this concern.

Another canonical counterexample to the no-miracles rule is the 
wave-in-ether theory of light. So-called structural realists have taken this 
example to be paradigmatic of a certain kind of counterexample and have 
crafted their version of realism in response. What they have urged is that 
these historical examples of successful but untrue theories can be divided 
into two parts: (a) a part that is no longer taken to be true but that did 
not play a genuinely central role in the relevantly successful predictions 
and interventions, and (b) a part that did play a genuinely central role, 
but that is still taken to be true. In the case of the ether theory, (a) is the 
ontology of the theory (namely, the existence of the ether), which they 
argue did not play a genuinely central role in making predictions or in-
terventions, and (b) is the mathematical form of the theory, which they 
argue can still be regarded as true. So while structural realists admit that 
many scientific theories have been successful without being true in their 
entirety, they argue that the successes of these theories have been due 
entirely to the fact that one component of the theory, its structure, has 
accurately reflected reality. Structural realists, in other words, argue that 
the rule of inference should be modified so that it only applies if X, in its 
entirety, plays a genuinely central role in making the successful predictions 
and interventions.

It has also been widely recognized that many successful theories and 
models, both from the past and present, cannot be held to be literally 
true or to represent exactly. The model of a simple harmonic oscillator 
can quite successfully predict the behavior of many real physical systems, 
but it provides at best only an approximately accurate representation of 
those systems. Newtonian mechanics is a very successful theory, but it is 
at best a limiting case of a true theory. Even maps can be successfully used 
to navigate their intended territories, but they omit many details and 
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distort certain features. Because of these considerations, many defenders 
of the no-miracles rule accept that it needs to be modified so that it guar-
antees not the truth of X tout court but truth in some qualified sense—for 
example, the approximate truth of X, or the fact that X is a limiting case 
of something true. For now, we can rewrite the consequent of the rule to 
read: “X is (in some qualified sense) true.”

Ad hoc hypotheses are another class of obvious exceptions to the no-
miracles rule. In order to qualify for application in the rule, it is widely 
recognized that X must achieve success across a wide range of applica-
tions. It is even better if the success of X is projectible—that is, that we not 
only think X can be used for some domain for which it was designed, but 
that we have the expectation that it will be useful in future domains. In 
short, the success of X has to be systematic (as opposed to ad hoc).

 One final modification to the rule as stated above is required. It is 
fairly obvious that the scope of the variable X in the rule cannot range 
over all entities. No one would deny that a calculator, a triple-beam bal-
ance, and even a high-energy particle accelerator can all play genuinely 
central roles in making specific and fine-grained predictions and inter-
ventions. But no one would want to have to defend the view that any 
of these entities is “true,” even in any qualified sense. So, to be pedantic 
about it, we need to be perfectly clear that the no-miracles rule applies 
only if the X in question is the right sort of entity to be a candidate for 
truth and falsity, or, at the very least (in order to include such things as 
maps and models), to exhibit similarity of structure with the world. In 
short, X should be a representational entity of some sort.

A properly formulated success-to-truth rule of inference thus reads as 
follows:

if . . .

(the right sort of) X (in its entirety) plays a (genuinely central) role in making (sys-

tematic) successful (specific and fine-grained) predictions and interventions.

then . . .

X is (with some qualification) true.

Thus, if some X is going to be offered as a counterexample to the no-
miracles rule in a way that advances the debate about that rule, then it 
had better be the case that

X plays a genuinely central role in making predictions and interventions.

those predictions and interventions are specific and fine-grained.

•

•
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X cannot be separated into a part that is false and a part that does the relevant 

work.

the predictions and interventions we use X to make occur across a wide range of 

domains, and we sometimes confidently apply X in new domains.

X is the relevant sort of representational entity.

X cannot plausibly be described as true, even in some suitably qualified sense.

I want to argue here that the field of computational fluid dynamics 
offers some plausible candidates for counterexamples to the no-miracles 
rule that meet all of the above criteria. In what follows, I discuss two of 
them: “artificial viscosity” and “vorticity confinement.”

The Success of Fictions

One of the earliest uses of finite-difference simulations arose in connec-
tion with the Manhattan Project during World War II. John von Neu-
mann and his group of researchers used finite-difference computations to 
study the propagation and interaction of shock waves in a fluid, a subject 
crucial to the success of the atomic bomb.

We generally think of shock waves as abrupt discontinuities in one 
of the variables describing the fluid, but it was quickly recognized that 
treating them in this way would cause problems for any numerical solu-
tion. The reason is that a shock wave is not a true physical discontinuity, 
but a very narrow transition zone whose thickness is on the order of a 
few molecular mean-free paths. Even with today’s high-speed and high-
memory computers, calculating fluid flow with a differencing scheme 
that is fine enough to resolve this narrow transition zone is wildly im-
practical. However, it is well known that a simulation of supersonic fluid 
flow that does not deal with this problem will develop unphysical and 
unstable oscillations in the flow around the shocks. These oscillations 
occur because of the inability of the basic computational method to deal 
with the discontinuities associated with a shock wave—the higher the 
shock speed, the greater the amplitude of these oscillations becomes. At 
very high speeds, such a simulation quickly becomes useless. To make it 
more useful and accurate, simulationists somehow need to dampen out 
these oscillations.

The generally accepted way to do this, which was originally devised 
by von Neumann and Richtmyer while working at Los Alamos (von Neu-
mann and Richtmyer 1950), is to introduce a new term, an “unphysically 

•

•

•

•
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large value of viscosity” into the simulation, which is called artificial vis-
cosity.1 The inclusion of this term in the simulation is designed to widen 
the shock front and blur the discontinuity over a thickness of two or 
three grid zones. The trick is to apply this viscosity only to those portions 
of the fluid that are close to the shock front. This is achieved by assign-
ing a magnitude to the fake viscosity that is a function of the square of 
the divergence of the velocity field—which happens to be a vanishing 
quantity everywhere but close to the shocks. The end result is that the  
method enables the computational model to calculate certain crucial ef-
fects that would otherwise be lost inside one grid cell—in particular, the 
dissipation of kinetic energy into heat.

Artificial viscosity is not the only nonphysical “effect” used in simula-
tions of physical systems. Another example from computational fluid 
dynamics is what is known as “vorticity confinement” (Steinhoff and 
Underhill 1994). The problem to be overcome in this case arises because 
fluid flows often contain a significant amount of rotational and turbulent 
structure at a variety of scales. When that structure manifests itself at 
scales too small to be resolved on a grid of the size used in the simulation, 
significant flow features can become “damped out.” This undesirable ef-
fect of the differencing scheme is called “numerical dissipation.” The 
solution is to use a technique called vorticity confinement.2 The method 
consists in finding the locations where significant vorticity has been nu-
merically damped out and adding it back in using an artificial “paddle 
wheel” force. Much as in the case of artificial viscosity, this is all done 
by a function that maps values from the flow field onto values for the 
artificial force.

For the rest of the discussion, I confine my remarks to the example of 
artificial viscosity. Most of what I say, however, can be repeated mutatis 
mutandis, about the paddle wheel force, as well as, presumably, about 
a variety of other fictions used in simulation, including, of course, silo-
gen atoms. Artificial viscosity is simply the oldest and most established 
of these techniques. Some remarks about artificial viscosity are now in 
order.

artificial viscosity is clearly a successful tool of scientific investigation, prediction, 

and intervention.

1. For a modern discussion of artificial viscosity and its applications, see Campbell 2000 and 
Caramana, Shashkov, and Whalen 1998. The original presentation appears in von Neumann and 
Richtmyer 1950.

2. See Steinhoff and Underhill 1994.

•
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the success of artificial viscosity, furthermore, is systematic and projectable. it 

is “projectable” in the sense that physicists and engineers use this technique of 

computational fluid dynamics to make novel predictions about flows containing 

shocks—its inclusion in a simulation of flows with strong shocks adds to the confi-

dence that researchers have in their results. the success is “systematic” in the sense 

that its use has been studied extensively, and there is a wide body of knowledge 

about how to use this modeling principle effectively in an off-the-shelf manner. it is 

used, furthermore, in an enormous variety of applications ranging from engineer-

ing applications to astrophysics.

artificial viscosity is not like the humoral theory of disease. it is used to make very 

fine-grained and detailed predictions, descriptions, and interventions. without it, 

the Manhattan project might not have succeeded.

artificial viscosity is not like the claims about the ether. it can perhaps be said of the 

nineteenth-century wave theory of light that the claims it contained about the ether 

were superfluous—that these claims “could be dropped from the theory without 

affecting the success of the practice.” this is clearly not the case with artificial vis-

cosity. artificial viscosity plays a crucial role in damping oscillation instabilities that 

would otherwise render simulation results useless.

i said earlier of simulation techniques that they can bring to the table independent 

warrant for belief in the models they are used to build. there are, in short, such 

things as widely successful model-building techniques. this fact alone, however, 

might not worry the proponent of the no-miracles rule, because techniques are not 

the sort of things that are candidates for being true or false, or for providing ac-

curate representations. but artificial viscosity does take the form of a claim. we can 

easily think of artificial viscosity as the claim made of fluids under its domain that 

they display a viscosity that is proportional to the square of the divergence of their 

velocity field. in this sense, artificial viscosity is indeed a candidate for truth or falsity. 

the same is true of the technique of vorticity confinement. the technique calls for 

the application of the physical principle that certain kinds of fluid flows give rise to 

a paddle wheel force that arises in proportion to certain characteristics of the flow. 

this principle is, as well, a candidate for truth or falsity.

Finally, we need to address the question of whether we can under-
stand X to be (perhaps in a qualified sense) true. To begin to do this, we 
need first to distinguish the model that drives the simulation, the prin-
ciples that go into it, and the results that the simulation produces. Recall 
that we consider a simulation model to be successful if we have reason 
to think that predictions and representations of the phenomena that it 
produces—its results—are accurate in the respects that we expect them to 
be. Nothing whatsoever about my argument should prevent us from un-
derstanding these simulation results in realistic terms if we so choose.

•

•

•

•
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Things are slightly more complicated when we look at the models that 
drive the simulations. Since these models incorporate false assumptions, 
we cannot view in them in literally realistic terms; they surely do not 
offer literally true accounts of the actual functional relationships that 
exist between the various properties of the fluid. But we are concerned 
here not only with literal truth, but with the possibility of approximate 
truth.

I take it, after all, that this is for many philosophers the standard way 
to think about successful contemporary theoretical structures that, for 
whatever reasons, do not seem like plausible candidates for being true  
descriptions of the world. The fact that they are successful is taken to be 
evidence that they must approximate some (perhaps as-yet-undiscovered)  
ideal theory.

Approximate truth is a slippery subject. There is nothing like wide-
spread agreement among philosophers about what a theory of approxi-
mate truth should look like, or even, for that matter, if such a theory 
is even desirable or possible. Luckily, we can set these worries aside for 
our purposes and ask only whether it is even plausible to think that the 
principle of artificial viscosity would come out as approximately true on 
any account of approximate truth. A separate difficulty, on the other 
hand, arises from the fact that there are two different ways to think about 
the question in this case: one that focuses on the models that drive the 
simulations, and the other on the principles that inform the model con-
struction.

One way to ask the question is this: Should we be willing to say that 
there might be some qualified sense in which students of fluid dynam-
ics accept as true (or should accept as true) the claim that certain fluids 
display a viscosity that is proportional to the square of the divergence of 
their velocity field? Here, I think the answer is clearly no.

Viscosity, in fluid dynamics, is the measure of how resistive the fluid 
is to flow. Most fluids can be well modeled by assuming that the sheer 
stress between parcels of fluid is proportional to their relative velocities 
and some constant, called the viscosity, which is taken to be a physical 
property of the fluid itself. These are called “Newtonian” fluids. In very 
high Reynolds number flows, like the kinds of flows we have been talking 
about, viscosity often becomes an insignificant parameter—it is often left 
out of the model. Of course, no one really thinks that any fluid is truly 
Newtonian, and certainly no fluid is inviscid. But treating a fluid as New-
tonian, or inviscid, might arguably be thought of as providing a good 
approximation to the actual forces that small parcels of fluid experience 
as they slide against each other. On the other hand, when simulationists 
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refer to “artificial viscosity” and label it an “unphysically large, viscosity-
like term,” they are signaling that the term in the equation is not meant 
to capture, not even approximately, relationships between properties of 
the fluid and the forces that occur within them.

Defenders of the idea that success implies truth, however, might want 
to argue that this is the wrong question to ask. The relevant sort of ques-
tion, one might argue, is not whether the claim that certain fluids display 
a viscosity that is proportional to the square of the divergence of their ve-
locity field is approximately true. The relevant sort of question is whether 
or not the models that drive the simulations, which we build using artifi-
cial viscosity, accurately represent the real functional relationships that 
exist between the various properties of the fluid, at least approximately 
so. After all, it is not as if we use “the theory of artificial viscosity” by 
itself to make successful predictions and interventions. Its only when we  
couple this little bit of mathematical structure together with some form of 
the Navier-Stokes equations or the Euler equations—equations describing  
relationships between other variables of the fluid state—that we hope to 
make any useful predictions.

If we put the question this way, asking not whether the claim about 
artificial viscosity is approximately true, but asking rather whether the 
models we build—using artificial viscosity as one piece of the puzzle—are 
approximately realistic, the answer becomes less clear. Arguably, when 
each such model is considered individually and in its entirety, there is no 
compelling reason to deny that, while all of these models contain false 
features, some of them might very well count as reasonably accurately 
representing the relevant features of the fluid. There is arguably no com-
pelling reason to resist viewing these models in quasi-realistic terms.

What I want to argue by way of reply to this objection is that defenders 
of the idea that success implies truth cannot simply avoid the first ver-
sion of the question and hide behind the second. It is correct to say that 
it is the local models—models put together using fictions but also using 
many other model building principles—that are the engines of local suc-
cesses. And it may indeed be arguable that these local models accurately 
represent, at least reasonably so. But it is also the case that the little bit 
of mathematical structure known as “artificial viscosity” is entitled to its 
own, in this case much less local, record of success. Indeed, it is only the 
artificial viscosity itself, and not the local models that incorporate it, that 
enjoys genuinely systematic and projectable success.

Recall a claim that I made above: Simulations are often used to learn 
about systems for which data are sparse. If such simulations are going 
to be at all useful, the models they use have to be trusted to produce 
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good results despite all of the deviations from pure theory that go into 
making them. The credibility of those models comes not only from the 
credentials supplied to them by the governing theory, but also from the 
antecedently established credentials of the model-building techniques 
employed by the simulationist. Now take, for example, simulations of 
fluid flows with strong shocks. Dozens of different modeling schemes are 
used to model such systems. They use varying difference schemes, they 
exploit different symmetries, they deal with truncation error in different 
ways, and so on. One thing that the members of a large cross-section of 
these local models have in common is that they employ artificial vis-
cosity to prevent unstable oscillations around the shocks. On a global 
basis, part of the reason we have for thinking that these local models are 
sanctionable is our conviction that artificial viscosity itself is a useful, 
off-the-shelf piece of mathematical structure that we can use successfully 
to build such models. In other words, it is not just the case that each of 
the models that employs artificial viscosity is itself locally capable of be-
ing used successfully to make predictions and interventions. It is also the 
case that artificial viscosity itself, when artfully and skillfully applied, can 
be successfully used for building many different sorts of local models in 
many different contexts. The success of artificial viscosity is far broader 
than that of any one of the local models that includes it. It is a piece of 
mathematical structure that has its own degree of success and trustwor-
thiness in its own domain—a domain that is much larger than that of any 
of the local models that are built with its help.

Reliability without Truth

If we cannot say of artificial viscosity that it is true, or even approximately 
true, what property does this model-building principle have that allows 
us to expect it to yield sanctionable models—models that we trust in part 
because they include artificial viscosity in their set of equations? For those 
that believe that scientific success requires an explanation, what property 
of these model-building principles can we say accounts for our expecta-
tion of their future success? The right answer to this question, I think, is 
to say that model-building principles like artificial viscosity are reliable. 
Borrowing from an idea introduced by Arthur Fine, I mean to employ this 
term to designate a rival concept to truth—reliability.

In his attempt to deconstruct the realism/antirealism debate, Fine has 
argued that all arguments for realism based on the success of science fail 
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because wherever the realist argues for truth, the instrumentalist can al-
ways settle for reliability, and vice versa (Fine 1991).

instrumentalism takes reliability as its fundamental concept and differs from realism 

only in this: where the realist goes for truth in the sense of a correspondence with 

reality, the instrumentalist goes for general reliability. . . . where the realist says that 

science does (or should) aim at the truth, the instrumentalist says that science does (or 

should) aim at reliability. . . . the realist cannot win this game since whatever points to 

the truth, realist style, will also point to reliability. (f ine 1996 ,  183)

I would note, of course, that the pragmatic notion of reliability that 
Fine is suggesting is quite distinct from the view often discussed in the 
epistemological literature known as “reliabilism.” Reliabilism is a view 
about what further characteristics true beliefs need to have in order for us 
to count them as knowledge. On this view, the beliefs need to have been 
generated by a reliable process or method. In contrast, the notion of reli-
ability being treated here is one that is meant to take the place of truth as 
a basic semantic notion. This contrast between the notion of reliabilism 
in epistemology and the notion of reliability being used here is clearly re-
lated to the discussion of technique versus claim discussed above. To take 
a claim to be reliable is to trust that we can rely upon it in much the same 
way that reliabilists demand that we be able to rely upon our justification- 
producing methods.

One other difference: reliabilists often define a reliable process or 
method in terms of something like the relative frequency with which it 
produces true results. Hence their notion of reliability is actually parasitic 
on truth. Clearly, our notion of reliability needs to avoid that. Hence, I 
characterize reliability (for modeling principles) in terms of being able 
to produce results that fit well into the web of our previously accepted 
data, our observations, the results of our paper-and-pencil analyses, and 
our physical intuitions, and to make successful predictions or produce 
engineering accomplishments.

Of course, the concept that Fine is talking about is general reliability. 
To take a claim as generally reliable “amount[s] to trusting it in all our 
practical and intellectual endeavors, . . . to be[ing] committed to under-
standing and dealing with the world from the perspective of that theory” 
(Fine 2001, 112).

Clearly, none of the contrary-to-fact model-building principles used 
in computer simulation can be taken to be generally reliable in the ro-
bust sense that Fine intends. Artificial viscosity has restricted scope—it 
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takes art and skill to know how and when to apply it. It contradicts the 
content of our theory of fluids. For these and other reasons, we simply 
cannot be committed to understanding and dealing with the world from 
its perspective. But reliability, unlike truth, comes in degrees. Instrumen-
talists like Dewey, according to Fine, believed that “in inquiry we strive 
for concepts and theories that are generally reliable—although we often 
make do with less.” If we take “generally reliable” to be a regulative ideal, 
then “broadly reliable” is a real-world instantiation.

This weaker notion of reliability dovetails well with much of the re-
cent work in philosophy of science inspired by Nancy Cartwright’s anti- 
fundamentalism—work that rejects the notion of universally true (or 
even generally reliable) theories and laws. In this tradition, theories and 
laws are seen as providing a framework for building models, schematiz-
ing experiments, and representing phenomena. They have very broad, 
but not universal, domains of application. Rather than taking theories 
and laws to be universally true and delimiting the character of all possible 
worlds, the anti-fundamentalist sympathizer takes them to be broadly 
reliable for a wide array of practical and epistemic tasks.

Fine remarked that many philosophers might find  substituting reli-
ability for truth to be nothing but a “semantic sleight of hand.” Indeed, 
many fundamentalists feel the pull of the metaphysical intuition that 
behind any broadly reliable model-building principle must lie a univer-
sally true law. Successful model-building principles like artificial viscos-
ity, however, provide a nice example to show that, at least in the case of 
broad reliability, no sleight of hand is involved. No semantic concept, not  
truth and not even approximate truth, adequately describes the proper 
attitude to have toward artificial viscosity and other model-building  
principles like it. The success of these models can thus provide a model 
of success in general: reliability without truth.
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Conclusion

When computer simulation was pioneered as a scientific 
tool in the period directly following World War II, its use 
was limited to meteorology and nuclear weapons research. 
Since then, it has become indispensible in, and has even 
revolutionized, a growing number of disciplines. The list of 
sciences that make extensive use of computer simulation 
has grown to include astrophysics, materials science, engi-
neering, fluid mechanics, climate science, evolutionary bi-
ology, ecology, economics, decision theory, sociology, and 
many others. This much is clear: In terms of its centrality to 
a sheer quantity and variety of innovation, the last several 
decades of the history of science have been the age of com-
puter simulation.

Normally, such deep and widespread changes in the way 
science is practiced—in the way knowledge, in such a wide 
variety of domains, is acquired—would attract the immedi-
ate interest of philosophers of science. This did not happen. 
It has not happened, I have argued, because philosophers 
of science have had a bias in favor of the proposition that 
the philosophically interesting action in the sciences occurs 
when new theories are proposed. Philosophers have always 
been interested in revolutionary changes, but the presump-
tion has been that the interesting changes would always 
come in the form of new fundamental descriptions of the 
world.

But in the introduction, I urged readers to consider the 
possibility that it was not only changes in basic theory 
that could be of interest to philosophers—to consider the 
possibility that new experimental methods, new research 
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technologies, or innovative ways of solving new sets of problems within 
existing theory could have a similar impact on philosophy. And I sug-
gested that philosophers might find as good philosophical fodder by ex-
amining the details of how scientists model complex phenomena within 
existing theories as they do by looking to novel fundamental theories.

It is time to revisit and evaluate those claims. I think they hold up 
well. A close look at the use of computer simulation has taught us to 
appreciate the importance of a much more nuanced view of the relation 
between theory and its applications. Theory can stand in a wide variety 
of relations to its applications; sometimes theory is applied directly—in 
a process that is well captured by the idea of derivation—and sometimes 
the path from theory to application is much more indirect, with theory 
playing only a contributing role in generating local representations of 
phenomena. There is, consequently, a whole category of epistemological 
issues in the sciences that have escaped the attention of philosophers, 
who have traditionally concerned themselves with the justification of 
theories and not with their application.

We have, in other words, rejected the overly conservative intuition 
that computer simulation is nothing but boring and straightforward 
theory application. But we have avoided embracing the opposite, overly 
grandiose intuition: that simulation is a radically new kind of knowledge 
production, “on a par” with experimentation. In fact, we have seen that 
soberly locating simulation “on the methodological map” is not a simple 
matter.

On the one hand, there is much to be gained by drawing compari-
sons between simulation and experiment. Much of what we have learned 
about the epistemology of simulation has drawn heavy inspiration not 
only from recent work on the autonomy of models, but also directly from 
the philosophy of experiment. Drawing on the work of Alan Franklin, 
who identified a number of strategies that experimenters use to increase 
rational confidence in their results, we saw how simulationists use many 
analogous strategies to do the same for their own results. And drawing 
on the work of Ian Hacking, who argued for the claim that “experiments 
have a life of their own,” we saw how arguments for the reliability of 
many simulation results depend, similarly, on computational methods 
having their own life as well. The techniques that simulationists use to 
construct their models get credentialed in much the same way that Hack-
ing says that instruments and experimental procedures and methods do: 
the credentials develop over an extended period of time and become 
deeply tradition-bound. In Hacking’s language, the techniques and sets 
of assumptions that simulationists use become “self-vindicating.” The 
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credibility, in other words, of discretization and finite-element methods, 
solvers, parameterization schemes, multiscale modeling, handshaking al-
gorithms, modeling fictions, and so on cannot be argued for entirely on 
mathematical or theoretical grounds—they bring their own reliability, 
established in their own disciplinary traditions.

On the other hand, what we might call the ontological relationship 
between simulations and experiments is quite complicated. Is it true that 
simulations are, after all, a particular species of experiment? I have tried 
to argue against this claim, while at the same time insisting that the 
differences between simulation and experiment are more subtle than 
some of the critics of the claim have suggested. Most important, I have 
tried to argue that we should disconnect questions about the identity of 
simulations and experiments from questions of the epistemic power of 
simulations. Despite (or sometimes even in virtue of) having certain char-
acteristic features that are distinct from those of experiments, simulations 
sometimes have great epistemic power—there are indeed some questions 
we can ask for which simulations provide much more reliable answers 
than any experiment can provide. At the same time, thinking carefully 
about the relationship between experiments and simulations can teach a 
great deal, I would argue, about experiment itself, and particularly about 
the role played by models and background knowledge.

We have also seen how some specific kinds of simulations raise spe-
cial philosophical issues. One of these is surely the so-called parallel 
multiscale simulations we saw in chapter 5 that draw on theories from 
more than one level of description. Such simulations put pressure on 
two philosophical intuitions that are often taken for granted. The first 
intuition is that an inconsistent set of laws can have no models. Strictly 
speaking, this is of course true. But it is often assumed that the model of 
axiomatic logic and semantics is a sufficiently good rational reconstruc-
tion of theory application for it to follow from this that an inconsistent 
set of theoretical principles can give rise to no models. But sometimes 
simulationists do build models “out of” an inconsistent set of theoretical 
claims. The second intuition is that the interesting relationships between 
theories at different levels of description are fully captured by the degree 
to which the higher-level theory is reducible to the lower-level theory 
in the ordinarily understood way. In fact, these same examples seem to 
show that it is a delicate and empirical matter how different theories will 
relate to each other in a successful and reliable model. Another special 
kind of simulation that raises its own kind of philosophical issues is the 
class of simulations used—particularly in guiding policy—to predict the 
future of the earth’s climate. The high degree of uncertainty associated 
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with the predictions of these models and their significant policy implica-
tions combine to make an interesting background for examining the role 
of social values in the appraisal of scientific hypotheses.

Simulations used to predict the future of the earth’s climate also give 
rise to their own special philosophical issues. Two things make these spe-
cial. The first is their complexity and degree of historical entrenchment, 
and the second is the combination of the degree of uncertainty associated 
with them and their significant public policy implications. As a result 
of these features, consideration of these models adds complexity to the 
debate about the appropriate role of social, political, and ethical values 
in the appraisal of scientific hypotheses.

And finally, we saw how certain kinds of modeling assumptions used 
in simulations put pressure on one of the central arguments in favor of 
scientific realism: arguments based on the idea that success implies truth. 
We saw, in particular, that many principles employed in simulations can 
be highly reliable without being even approximately true.

The philosophy of science should continue, as it always has in the 
past, to respond to the character of the science of its own era. If much of 
contemporary science has indeed entered the age of computer simulation, 
then philosophy of science should respond accordingly. And surely much 
work remains to be done. One of the interesting things about advances 
in the computationally intensive sciences is that they are often advances 
in overcoming present practical problems. We use the multiscale meth-
ods described in chapter 5, for example, because it is presently impos-
sible, in practice, to model micron-sized pieces of material entirely at the 
quantum mechanical level. But what is practically impossible today may 
become easy to accomplish tomorrow. We will surely someday have com-
puters fast enough and powerful enough to solve, by brute force—and in 
a more principled way—problems that today we solve using the kinds of 
clever tricks that have inspired many of the philosophical ideas put forth 
in this book. When that happens, will we, in the course of continually 
pushing the envelope of problems we wish to solve, employ new tricks 
that support similar philosophical conclusions? Or will we eventually 
bring all the phenomena that interest us under the umbrella of principled 
theoretical application? “I shall take care not to risk a prophecy which 
might be falsified between the day this book is ready for the press and the 
day on which it is placed before the public.”�

�. Poincaré �952, 244.
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