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Introduction

This book has two separate objectives.

The first is to examine in what ways mathematics can be said to be
applicable in the natural sciences or, if you prefer, to the empirical
world. Mathematics is applicable in many senses, and this ambiguity
has bred confusion and error—even among “analytic” philosophers:
because there are many senses of “application” and “applicability,”
there are many questions about the application of mathematics that
ought to be, but have not been, distinguished by philosophers. As a
result, we do not always know what problem they are dealing with.

For example, we often use pure mathematics in reasoning about
the empirical world. This raises two questions: what is the logical
form of such reasoning, and what are its metaphysical presupposi-
tions?

The problem of logical form arises because number words func-
tion in mathematics as proper nouns (names of numbers, numerals),
while in empirical descriptions (“three green leaves”) they often func-
tion as adjectives.! This is an equivocation, which appears to make it
impossible to reason using mathematics in an empirical situation.
Thus, some writers have felt themselves forced to distinguish between
“pure mathematics” and “empirical” or “applied” mathematics. I will
point out that Frege solved the problem, making this distinction
entirely superfluous, by showing how number words can function as
names, not adjectives, everywhere.

Names of what? Names, apparently, of numbers, thought of as
abstract or nonphysical objects. And this brings us to the metaphys-

1 This is true in English and other European languages, but not in the Semitic lan-
guages. Thanks to my brother, Richard Steiner, for clarifying the situation for me.



2 - Introduction

ical question concerning application: how can facts about numbers
be relevant to the empirical world? Frege had a keen answer to this,
too: they aren’t. Numbers are related, not to empirical objects, but to
empirical concepts! It is the empirical concepts that are used to
describe the world; numbers are used to characterize those very
descriptions. (Of course, there are other objections to Platonism than
its alleged inability to account for applications, but this is not a book
about Platonism.)

Thus, two frequently asked questions about the application of
mathematics were answered definitively over a hundred years ago. If
philosophers sometimes write as if this were not so, the reason may
be because, as I suggested above, the different concepts of applica-
bility have not been made clear. To do this is precisely my first
objective.

* % %

To the extent they have discussed mathematical applicability at all,
contemporary philosophers have usually explored its implications
for mathematics itself. Following the great physicists, however, I
would like to explore its implications for our view of the universe and
the place in it of the human mind (or minds like the human mind, if
there are any), and this is the second objective of the book.

Galileo, of course, remarked in the seventeenth century that the
Universe is a book written in the language of mathematics (actually:
geometry). But the best known contemporary essay on the applica-
tion of mathematics and its meaning for humans is by the celebrated
physicist, Eugene Wigner, who spoke of the “unreasonable effective-
ness of mathematics in natural science,” which is a gift we “neither
understand nor deserve.” In fact, my main argument concerning the
applicability of mathematics, though different from Wigner’s, could
easily be confused with his. Let me, therefore, outline the main argu-
ment of my book and show how it differs from, and escapes common
objections to, Wigner’s.2

21 do this at the suggestion of Burton Dreben, Juliet Floyd, and Robert Nozick,
whom I had the good fortune to consult with while it was still possible to rewrite the
Introduction. Further valuable advice came from Hilary Putnam, Sam Schweber,
Alan Chalmers, Jed Buchwald, and Jesper Liitzen. The opportunity to meet all these
people was made possible by an invitation to spend the year at the Dibner Institute of
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At the end of the nineteenth century, physics was at a crossroads.
Scientists were attempting to describe the unseen world of the very
small, and they already knew that the atomic world obeys different
laws than those governing the macroscopic world. Of course, as
Charles Peirce pointed out, once the laws were conjectured (abduc-
tion), one could verify them indirectly by checking their conse-
quences for the macroscopic world (induction). But first they had to
be guessed, and Peirce himself (like John Locke before him) was pes-
simistic about the ability of the human species even to conjecture the
laws of the atom. Evolution, he argued, could not have equipped the
human species with the ability to come up with the laws of objects
which play no role in our daily life. (This was exactly Locke’s argu-
ment, except that he said “God” instead of “Evolution.”)

How, then, did scientists arrive at the atomic and subatomic laws
of nature? My answer: by mathematical analogy. Of course, not only
by mathematical analogy and not only the atomic problem. The
usual procedure of experimental inquiry went on just as in the past.
What was new in the conduct of research was an increased reliance
by scientists also on mathematical analogies. To be sure, classic
inquirers like Newton and Maxwell had aiready used mathematical
analogies, as I will argue. Now, however, scientists used mathemati-
cal analogies because they had no real alternative. Scientists looked
for laws bearing a similar (not necessarily identical) mathematical
form to the laws they were trying to augment, refine, or even replace.
Often these analogies were Pythagorean, meaning that the analogies
were then inexpressible in any other language but that of pure math-
ematics. The Newtonian doctrine that Nature is “conformable to her-
self” gained a new twist, indeed a considerable expansion of
meaning, when the conformability was defined in terms of mathe-
matical analogies.

Even where the analogies assumed the form of apparently physi-
cal models (as, for example, the Bohr model of the hydrogen atom as
a “planetary” system), I will try to show that these models also func-
tioned as mathematical metaphors. That is, the mathematical form of
the models was abstracted out, and then applied analogically even in

MIT. At the risk of repeating the Acknowledgments, I would not like to overlook the
roles of Sidney Morgenbesser, Sylvain Cappeli, Carl Posy, and other friends.
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areas where the actual behavior of the atom could not be described
by classical mechanics. As Dirac would later put it, the deep mean-
ing of the so—called “Correspondence Principle” of Bohr was that
the quantum laws were to have the same mathematical form as the
classical laws.

Thus, any analogy among structures the mathematician did, or
could, recognize, became a potentially physical analogy, too.
Mathematics itself thus provided the framework for guessing the
laws of the atomic world, by providing its own classificatory schemes.

Often, once an atomic or subatomic law was guessed successfully,
the analogy at the base of the guess was discovered to have physical
warrant. We will see how the theory of quarks, for example, under-
writes the analogy used in predicting the omega minus particle by
Gell-Mann (Ne’eman also predicted the particle, but I will contend
that his reasoning relied less on analogies). This analogy was between
an abstract symmetry group already employed in physics, called
“SU(2),” and another one called “SU(3).” These two symmetry
groups (as the very notation signals) have an obvious mathematical
analogy, but at the time that Gell-Mann and Ne’eman guessed the
existence of the omega-minus particle, there were actually positive
reasons to think that quarks did not exist.

Again, I do not claim that the Pythagorean analogy between
SU(2) and SU(3) could have by itself generated the discovery. An
enormous amount of data intervened—maybe too much data. But
that data was brought to bear on the problem by means of the ana-
logy. In fact, we will see later that Gell-Mann, who was not aware of
the relevant mathematics literature, tried to discover SU(3) by him-
self, by generalizing the mathematical attributes of SU(2). In the end,
he had to consult mathematicians who told him that the work had
been done long ago.

In some remarkable instances, mathematical notation (rather than
structures) provided the analogies used in physical discovery. This is
particularly clear in cases where the notation was being used without
any available interpretation. So the analogy was to the form of an
equation, not to its mathematical meaning. This is a special case of
Pythagorean analogies which I will call “formalist” analogies.

The strategy physicists pursued, then, to guess at the laws of
nature, was a Pythagorean strategy: they used the relations between
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the structures and even the notations of mathematics to frame ana-
logies and guess according to those analogies. The strategy suc-
ceeded. This does not mean that every guess, or even a large percentage
of the guesses, was correct—that never happens on any framework for
guessing. What succeeded was the global strategy.

Because my work focuses on “Pythagorean” reasoning, I might
inadvertently create the impression that I think that vacuous mathe-
matical manipulation, rather than empirical inquiry, was what
formed modern science. So let me say immediately that no scientist
mentioned here could have formulated valuable theories without an
enormous fund of empirical information and prior modeling. And
no discovered theory can be confirmed except by empirical testing,
by what are called experiments. My point is that this empirical infor-
mation was brought to bear on new cases through the medium of
mathematical classification. Which is just to make a Galilean point:
in formulating conjectures, the working physicist is gripped by the
conviction (explicit or implicit) that the ultimate language of the uni-
verse is that of the mathematician. (I do not claim, of course, that
Galileo shared any of the further views about mathematics which I
am about to develop.)

The reader who is unwilling to follow me further can now adopt
some version of Pythagoreanism. This is not my position, as you will
see, but I consider it to be very respectable. The success of the
Pythagorean strategy might lead the reader to conceptual
Pythagoreanism, the view that the ultimate properties or “real
essences” of things are none other than the mathematical structures
and their relations. More radically, one might adopt metaphysical
Pythagoreanism, which simply identifies the Universe or the things
in it with mathematical objects or structures. (Some physicists write
as though an elementary particle just “is” an irreducible group rep-
resentation, or even that the entire universe is.)

But I will not rest at Pythagoreanism of any kind. For the main
argument of this book is that, given the nature of contemporary
mathematics, a Pythagorean strategy cannot avoid being an anthro-
pocentric strategy. An anthropocentric strategy for making a discov-
ery is one which makes no sense unless the strategist believes, if only
implicitly or unconsciously, that the human species has a special
place in the scheme of things. The difference between male and
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female is important to us as humans, but anyone who guesses that
subatomic particles should be classified as male or female—even for
purposes of discovery—is almost certainly adopting an anthro-
pocentric strategy, one which makes no sense, if the universe is indif-
ferent to our goals and values. (Any appearance of a “caring”
universe—as evidenced by the fitness of creatures to their environ-
ment—is to be explained away by natural selection, according to
Darwinists, and is therefore an illusion. For this reason, the male-
female distinction in biology does not count as anthropocentric, if
based, say, on an assumption that sexual differentiation has survival
value to complex forms of life.)?

In fact, in the Middle Ages, physics was, arguably, anthropocen-
tric—at least covertly—because it classified events into heavenly and
terrestrial, a distinction reflecting our own parochial point of view. It
is notorious that Freud regarded the geocentric universe as highly
anthropocentric, indeed narcissistic. (In Chapter 3, I will discuss
whether he was right.)

Now I claim that to use mathematics to define similarity and ana-
logy in physics is almost as anthropocentric as using “male-female”
or “earthy-heavenly” as classifying tools. Why? Because the concept
of mathematics itself is species-specific. (This is a position which
would not have occurred to the Pythagoreans of old, because math-
ematics then consisted of arithmetic and geometry, and the argument
fails if that is all there is to mathematics.) There is no objective cri-
terion for a structure to be mathematics—and not every structure
counts as a mathematical structure. Chess, for example, has a struc-
ture. But mathematicians do not regard theorems about this specific
structure as worth bothering about. (This remark removes from con-
sideration a distressingly common “explanation” for the effectiveness
of mathematics in physics: mathematics studies “structures,” and
these structures are displayed in nature where they can be studied by
physics. I believe that the currency of this explanation stems from a
confusion among the various senses of “applicability,” which I also
want to clarify in this book.)

Where mathematicians used to look to utility in science (after all,

31 am grateful to Sylvain Cappell for raising the issue of the male—female distinc-
tion in biology.
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many of them were also physicists), mathematicians foday* have
adopted internal criteria to decide whether to study a structure as
mathematical. Two of these are beauty and convenience.

The beauty of the theory of a structure is a powerful reason to call
it mathematical. Yet what we call beautiful (I argue) is species-
specific. Thus, a mathematician who uses beauty as a criterion for
mathematicality but then claims that mathematics is universal, suf-
fers from a discrepancy between doctrine and behavior; when study-
ing scientists, [ always look to the behavior, not the doctrine.

Moreover, the computing power of our brain is limited, Therefore,
calculational convenience becomes a reason for studying a concept.
Mathematicians, that is, introduce concepts into mathematics to
make calculations easier or convenient. If we had brains a thousand
times more powerful, we would presumably not need these particu-
lar concepts. Thus, both beauty and convenience (as well as related
notions like comprehensibility) are anthropocentric, or species-
specific, notions.

I am not claiming, for example, that the concept of a group is
anthropocentric—on the contrary. What is anthropocentric is the
concept of mathematics. My major claim is that relying on mathe-
matics in guessing the laws of nature is relying on human standards
of beauty and convenience. So this is an anthropocentric policy;
nevertheless, physicists pursued it with great success.

I noted before that the notation of mathematics, and not just what
the notation expresses, also played a role in scientific discovery. Here
the anthropocentrism is most blatant. For example, some of the ana-
logies physicists drew were formal, i.e., syntactical: the equations
they guessed simply looked like the equations they already had. In
such cases, scientists were studying their own representational sys-
tems—i.e., themselves—more than nature. Scientific research some-
times looked like eighteenth-century Eulerian symbol manipulation,
as when Dirac factored an unfactorable quadratic polynomial to get
an equation which was formally linear. I will describe below how
Dirac succeeded in interpreting this formal equation as a linear 4 X 4

4 Amusingly, even when the contemporary mathematician is also a physicist, the
former ignores the needs of the latter. For a remarkable statement of this, see Dyson
1972.
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matrix equation in (formal) analogy to what Pauli had done before
him with 2 X 2 matrices.

My claim is that an anthropocentric policy was a necessary factor
(not the only factor) in discovering today’s fundamental physics. This
makes the universe look, intellectually, “user friendly”’s (in that our
categories of beauty and convenience are found in the “real essences”
of things) to our species, or other species like ours, if any. I say: to
our species, rather than to the community of scientists, because the
kinds of moves I will document in this book are the kinds of rea-
soning (anthropocentric, magical) which are common to all children.
This does not mean that children could have discovered the Dirac
equation; it means that the ability to see things as a child would is one
which the great scientists have not lost in all their sophistication.

I mean this claim, that ours is (or rather: appears to be) an intel-
lectually “user friendly” universe, a universe which allows our species
to discover things about it—I mean this claim to stand as an empir-
ical hypothesis, and as the conclusion of this book. But though the
conclusion is empirical, much philosophy is needed to cut through
the difficult issues to see that there is an empirical phenomenon here
in the face of attempts to explain away the data.® Let me discuss
briefly a few such attempts.

To explain my data away, one must find a natural, or material,
property of mathematics as such, and then show how this property
accounts for the success of the mathematical discoveries to be out-
lined below. For example, a Darwinist account of the origins of
mathematics in prehistory (of which there are now several) is not
enough to refute the main argument of this book; on the contrary, it
might end up confirming it. To show this most clearly, I will consider
the most egregious forms of scientific guessing in this century, the
“formalist” moves that relied on the appearance of the mathematical
notation (i.e., its “syntax”). Recall the symbol manipulation of
Dirac, mentioned above. The preference for patterns in nature might
well have been selected for, and it is obvious how such a preference

5 Thanks to George Schlesinger for this phrase.

6 The distinction between explaining a hypothesis and explaining it away is origi-
nally due to my mentor, Sidney Morgenbesser. In explaining away, one explains the
appearance of a phenomenon, rather than its existence.
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might spill over into a preference for the same patterns in mathe-
matical notation. This explains something about mathematical nota-
tion, but not why it is successful. On the contrary, a similar
explanation could be given for the use of palindromes in ancient
magic—palindromes are sentences spelled the same way forward and
backward, and we prefer symmetrical objects. This explanation
explains the existence of magic, but also explains why we would not
expect it to work.

Some philosophers prefer a Kantian account of mathematical dis-
covery: the world is the way it is, in part because of our contribution
to our own experiences. Mathematics is the lens through which we
view the Universe, meaning the phenomenal, or experienced,
Universe (about things in themselves we know nothing). This is also
a valid attempt to explain away the data, but it will have to come to
grips with the nature of contemporary science, which deals with
objects beyond the realm of spatiotemporal experience.

Let us now look at the difference between my project and that of
Wigner.

Wigner speaks not of discovery, but of description: he asks, why
is it that the concepts of mathematics (of all things) pop up in phys-
ical laws? There are two problems with his “mystery.” First, he
ignores the failures, i.e., the instances in which scientists fail to find
appropriate mathematical descriptions of natural phenomena
(which outnumber the successes by far). He also ignores the mathe-
matical concepts that never have found an application. A deeper
problem with Wigner’s formulation is: each success of applying a
mathematical idea to physics is just that—an individual success of a
mathematical concept. The success of the group concept, for
example, might have nothing to do with a group being a mathemati-
cal concept. My own formulation avoids both problems: what has
been astonishingly successful was a grand strategy, not an isolated
act, and what succeeded was the use of the entire structure of mathe-
matical concepts, not this or that concept. Since this structure is
defined anthropocentrically, we can now conclude both that physi-
cists acted as though they held (implicitly, for the most part) anthro-
pocentric beliefs, and also that the world really does look
anthropocentric—in the limited sense that it is intellectually acces-
sible to human research.
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To the extent that “naturalism” rejects any anthropocentric point
of view (and I think all forms of naturalism do)’—then this book
challenges naturalism. This makes the book consistent with natural
theology, but there are many positions available that are neither nat-
uralist nor theological. I trust that readers who have no interest in, or
commitment to, theology will be able to learn things about the appli-
cation of mathematics in the natural sciences from this book. I know
one reader who was converted by this book, not to theism, but—
despite my best efforts—to Pythagoreanism.

In my research I have been inspired in great measure by
Maimonides’ view that no philosophy, and in particular no religious
philosophy, can be complete without careful examination of our best
physical theories (this is a much harder task today than it was in the
Middle Ages) and that the study of science (and philosophy) itself
can be a religious act. I realize, of course, that Maimonides would
disapprove, to put it mildly, of my “anthropocentric” conclusions,
but this is where my own philosophical quest has led me. But I do
hope that this book will also serve to remind religious believers of a
Maimonidean truth, the importance of the enterprise of scientific
inquiry from a religious point of view.

1 hope, finally, that this book can contribute to the dialogue
between the sciences and the humanities. I try to show how painstak-
ing attention to what seem to be technical details of mathematical
formalism can yield insight into the human mind and its place in
nature—a major goal of the humanities. But this insight cannot be
obtained, either, without the peculiar skills of philosophical analy-
sis—either mine, or a better one (to paraphrase Newton, if you will
forgive the chutzpah).

Of course, from the perspective I adopt here, there is a sense in
which physical and mathematical research are the ultimate humani-
ties. I have tried to detail here the extent to which some of the most
original scientific ideas in our century were discovered, not by

7 Nothing hangs on this, however—if there is a form of naturalism compatible with
anthropocentrism, so much the better. Note, however, that my own anthropocentrism
has to do only with the discovery of, not with the content of, present-day theories.
Indeed, there may well be a conflict between the two—i.e., scientists use anthro-
pocentric methods, which are doomed to fail, on the very theories they use these meth-
ods to discover. I doubt it is profitable to construct a philosophy based both on what
scientists say and what they do.
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inquiry into nature alone, but also by deploying creatively our own
concepts, texts, and formalisms—our “social constructions,” to use
the current jargon. At the same time, this “research into ourselves”
made possible objective achievements—particularly, the discovery of
the mathematical structures that govern all aspects of nature. If  am
right, then, all participants in the so-called “science wars” saw some-
thing valuable, however they misdescribed what they saw.






1

The Semantic Applicability of
Mathematics: Frege’s
Achievements

Many great physicists have expressed amazement that mathematics
should be applicable to physics.! Eugene Wigner says, “The miracle
of the appropriateness of the language of mathematics for the for-
mulation of the laws of physics is a wonderful gift which we neither
understand nor deserve.”? Hertz expressed similar thoughts:

One cannot escape the feeling that these mathematical formulae have an
independent existence and intelligence of their own, that they are wiser
than we are, wiser even than their discoverers, that we get more out of
them than was originally put into them.?

Steven Weinberg:

It is positively spooky how the physicist finds the mathematician has been
there before him or her.#

! T shall mainly speak of applications of mathematics in or to physical science,
rather than to the physical world or to the Universe. For I shall try to refrain from tak-
ing up a position concerning “scientific realism.” Given the variety of positions, how-
ever, that answer to the name “realism” (and, for that matter, “antirealism”), I doubt
whether I can succeed. At any rate, I do believe that the most interesting questions (if
not the answers) concerning mathematical applicability can be stated independently
of most issues concerning scientific realism.

2 Wigner 1967, 237.

3 Quoted in Dyson 1969, 99. Compare also Feynman: “When you get it right, it is
obvious that it is right . . . because usually what happens is that more comes out than
goes in” (Feynman 1967, 171).

4 Weinberg 1986.
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Richard Feynman:

I find it quite amazing that it is possible to predict what will happen by
mathematics, which is simply following rules which really have nothing to
do with the original thing.>

Kepler:

Thus God himself was too kind to remain idle, and began to play the
game of signatures, signing his likeness into the world; therefore I chance
to think that all nature and the graceful sky are symbolized in the art of
geometry.®

Finally, Roger Penrose characterizes the applicability of mathemat-
ics in physics as a

profound interplay between the workings of the natural world and the
laws of sensitivity of thought—an interplay which, as knowledge and
understanding increase, must surely ultimately reveal a yet deeper inter-
dependence of the one upon the other.”

These sentiments have been either ignored® or dismissed® by con-
temporary philosophers.1©

It is not that philosophers believe that mathematics is inapplica-
ble, or that there are no philosophical problems associated with
mathematical applicability. To the contrary: recent work in the philo-
sophy of mathematics often cites the truism that mathematics is
applicable—in the sciences, in daily life. For example, an author will

> Feynman 1967, 171. 6 Quoted in Dyson 1969, 99.

7 Penrose 1978, 84.

8 The second edition of the standard anthology, Benacerraf and Putnam 1984,
has not a single article on the applicability of mathematics in the physical sciences.
Benacerraf informed me that lack of material was the reason. And though an impres-
sive number of books and articles in the philosophy of mathematics has appeared
since 1984, almost none of it deals with our topic. A typical collection of articles,
Irvine 1990, contains not one on our topic.

2 “It is no mystery, therefore, that pure mathematics can so often be applied . . . It
is a reasonable hypothesis that pure mathematics in general is so often applicable,
because the symbolic structures it studies are all suggested by the natural structures
discovered in the flux of things” (Nagel 1979, 194).

10 Dummett 1991a, as we shall see, is an exception; so is Rescher 1984.
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maintain—polemically—that only his or her favorite philosophy can
account for the applicability of mathematics.!!

Again, philosophers and physicists often talk past one another on
mathematical applicability. Philosophers concentrate upon the
applicability of arithmetic; physicists (or physically-minded mathe-
maticians), upon the “miraculous” appropriateness of matrix alge-
bra!? or Hilbert spaces!? for quantum mechanics. The physicists see
no difficulty in the applicability of arithmetic to the world, and may
accuse philosophers who focus upon arithmetic of mathematical
ignorance.!4 Philosophers return the compliment.!> Neither charge
is just: philosophers and physicists are speaking of “applications”
and “applicability” of mathematics in different ways. There is simply
no such thing as “the” problem of mathematical applicability.

Needed, therefore, is a comprehensive philosophical analysis of
the application of mathematics, an analysis of:

What it is to apply mathematics;

What it is for mathematics to be applicable;

What philosophical problems the applicability of mathematics
raises;

What solutions are possible.

I intend this book as a contribution toward that goal, but first, let us
look at the work of others.

Speaking for Frege, Michael Dummett,!¢ almost alone among
contemporary philosophers, analyzes what “applying” mathematics

11 Such claims are offered by structuralists (e.g., Shapiro 1984); empiricists
(Kitcher 1983); and logicists (Frege as interpreted by Dummett 1991a). Wittgenstein
castigates philosophers for rendering the application of mathematics, external to
mathematics, a mystery: “the application,” he says, “must take care of itself”
(Wittgenstein 1978, 146). All agree, though, that “mathematics” is “applicable,” and
that philosophy must come to terms with this.

12 Wigner 1967.

13 Cf. Kac and Ulam 1971, 163, quoted in Dummett 1991a, 293.

14 Cf. Mac Lane 1986, who complains that philosophers have little to say about
mathematics beyond that of the third grade.

15 “It cannot be by a series of miracles that mathematics has such manifold appli-
cations; an impression of a miraculous occurrence must betray a misunderstanding of
the content of the theory that finds application” (Dummett 1991a, 300; his remarks
are directed at, among others, Kac and Ulam).

16 Dummett 1991a, 256-7.
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means. Actually, he analyzes one of the many concepts of application
in mathematics—that connected with the deductive role of mathe-
matics: In the natural sciences, and in everyday life, mathematical
theorems function as premises in deductions, including those which
predict observations. To apply mathematics (in this deductive sense)
is simply to use mathematical premises to effect such deductions.

Now, what philosophical problems arise in applying mathematics
this way? Consider the argument:

(H7+5=12,

(2) There are seven apples on the table.

(3) There are five pears on the table.

(4) No apple is a pear.

(5) Apples and pears are the only fruits on the table.

Hence,
(6) There are exactly twelve fruits on the table.!”

This argument could predict the result of counting the fruits on the
table.1®

But a semantical problem lurks.!® In the statement “7 + 5 = 12’ of
“pure mathematics,” the numeral 7’ purports to name a mathemati-
cal object, the number 7; but in ‘Seven apples were on the table,” the
term ‘seven’ looks like a predicate characterizing the apples. (The
latter sentence is what I shall call a “mixed context,” because it has
both mathematical and nonmathematical vocabulary.) This equivo-
cation destroys the validity of the argument (1)—(6). The philosoph-
ical problem is, then, to find an interpretation for all six statements
that explains its validity. More generally, the problem is to find a con-
stant interpretation for all contexts—mixed and pure—in which
numerical vocabulary appears.

This problem does not stem from a metaphysical “gap” between
numbers and fruits, between mathematics and the empirical world. It

17 1 have found “fruit” used as a count noun in Webster’s Third International
Dictionary; those unpersuaded will have to substitute “pieces of fruit” for “fruits” here
and below.

18 This statement will be qualified below, but the qualification is not germane here.

19 It was Carl Posy who defined this problem for me.
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arises also when we try to count the roots of an equation by adding
the number of real roots to the number of imaginary ones.?°

Frege addressed this semantical problem, and solved it. His solu-
tion, moreover, is independent of his thesis that arithmetic is logic.
Numerals are always singular terms—their referents are objects, the
numbers.?! All “mixed” contexts in arithmetic reduce to the form

The number of Fsism

where “is” means identity. Using the notation of Parsons 1964,22 we
can write:

@) NxFx = m.

Numerical attributions are, in the end, predications, but there are
surprises:

» The numerical attribution in (7) is not to a physical object or
objects, but to the concept F itself. Thus numerical predica-
tion is (at least) second-order predication.?3

* The numeral ‘m’ is not the predicate, but only part of it.

To formalize rigorously our deduction about fruits, the following
theorem is needed:

8) VFVGWNxFx =mAN NxGx = n AN\ "Ix(Fx N\ Gx)
— Nx(Fx v Gx) = m + n).

20 Mill’s move of physicalizing arithmetic, therefore, is beside the point, as Frege
says (1959, §§ 9 ff.). Frege, of course, argued that Mill’s view is wrong even for the appli-
cations of arithmetic to observables. See the discussion of Mill below.

21 One could, naturally, also solve the “semantic” problem of the applicability of
mathematics with a theory according to which all numerals are really predicates. See
Hellman 1989 for an updated version of this strategy.

22 Dummett fails to acknowledge such seminal articles as Parsons 1964,
Benacerraf 1981, and Boolos 1987—despite the significant overlap between them and
Dummett’s book. The omission is all the more puzzling in light of Dummett’s tren-
chant criticism (Dummett 1991b, xii) of Americans who ignore outstanding British
philosophers like the late Gareth Evans.

23 Although it is true that, according to Frege, the sentence NxFx= m predicates
something of the concept F, this does not mean that it can be written G(F), with F the
logical subject of the sentence. (Similarly, the operator d/dx is a higher-order function,
but we cannot write it as D(f), with f'the “argument” of the derivative operator.) This
peculiarity of Frege’s semantics will not concern us here, but it is discussed extensively
by Dummett 1991a, 87-94.



18 - The Semantic Applicability of Mathematics

The theorem demonstrates a connection between addition of natural
numbers and disjoint set union.?* For Frege, (8) is a theorem of pure
logic, because the objects m and n are “logical objects”; but for ques-
tions of application, we need not decide the status of (8).

The next step is instantiating concepts in (8) for F and G. In our
case, we instantiate “apple on the table” and “pear on the table” for
‘F’ and ‘G’. These instantiated concepts, it is important to realize, are
not mathematical concepts at all; nevertheless, the result is still logic-
ally (or mathematically) true.?> The rest is little more than modus
ponens, and the deduction (1)—(6) is formally valid.

The following remarks of Dummett, then, are right on the mark:

Why does Frege think it necessary, for a mathematical formula to be
applied, that it express a thought? Plainly because he takes the applica-
tion of a mathematical theorem to be an instance of deductive inference.
It is possible to make an inference only from a thought (only from a true
thought, that is, from a fact, according to Frege): it would be senseless to
infer from something that neither was a thought nor expressed one. We
do not, of course, call every inference an ‘application’ of its premisses: it
is in place to speak of application only when the premisses are of much
greater generality than the conclusion.

Frege tacitly took the application of a theorem of arithmetic to con-
sist in the instantiation, by specific concepts and relations, of a highly
general truth of logic, involving quantification of second or yet higher
order: if the specific concepts and relations were mathematical ones, we
should have an application within mathematics; if they were empirical
ones, we should have an external application. Mathematical theories
could not themselves consist solely of logical truths involving only
higher-order quantification, since they required reference to mathemati-
cal objects . . . When we are concerned with applications, however, the
objects of the mathematical theory play a lesser role, or none at all, since
we shall now be concerned with the objects of the theory to which the

24 T understand addition in (8) to be defined as the “ancestral” (iteration) of the
succession relation for natural numbers; in which case (8) is a highly nontrivial
theorem, connecting two different mathematical ideas. If we define addition as simple
cardinal addition, then (8) is not quite a definition. Either option was open to Frege
in writing the Grundlagen, since in his Begriffschrifft he had already defined the ancestral.

25 There is nothing paradoxical in this: the second-order logical theorem Vp(pv—p)
yields, by instantiating the nonlogical proposition “It is raining,” the logical truth “It
is raining or it is not raining.”
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application is being made: application can therefore be regarded as con-
sisting primarily of the instantiation of highly general truths of logic.
Evidently, a formalist can allow no place for application so conceived.
(Dummett 1991a, 256-7)

* % %

Frege, then, solved the semantical problem of the applicability of
arithmetic and, at least implicitly, other mathematical theories.

To go by recent philosophical literature, though, the chief prob-
lems about mathematical applicability are what we can call the
“metaphysical” problems. These problems, we are told, stem from a
gap between mathematics and the world, a gap that threatens to
make mathematics irrelevant. The reason for my neglect of these
“problems” is simple: Frege solved them. However, Frege never
emphasized his solution, though it does appear in his Grundlagen.
Had he done so, the philosophical public would have been spared
years of superfluous discussion.

What, exactly, are these “metaphysical” problems?

One is the very existence of mathematical “objects” and mathe-
matical “truths,” which some philosophers simply cannot accept.
One such theorist is Hartry Field.2¢ His view of Frege’s project
amounts to the following: Frege’s—valid—interpretation of arith-
metic demands the existence of objects (numbers, sets) that (in
Field’s view) do not exist. Hence, both the theorems of pure mathe-
matic and the “mixed” propositions of mathematical physics turn
out to be false statements.

If both pure and “mixed” mathematics were true, there would be
no mystery about our reliance on mathematics in making empirical
predictions. For what follows from truth by valid logical reasoning is
simply true. But if Field is correct, the premises of such derivations
are all false—so we need an explanation of how systematically false
premises can lead to systematically true conclusions. I refer the
reader to Field’s writings for enlightenment on this point.

Suppose, however, that we abandon what Dummett (paraphras-
ing Wittgenstein)?7 calls “the superstitious nominalist horror of

26 See Field 1980 and Field 1989.
27 Wittgenstein 1978, 122: “The superstitious dread and veneration by mathe-
maticians in the face of contradiction.”
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abstract objects in general.”28 That is, suppose we grant the Platonist
the existence of mathematical objects. Are there still problems—
stemming from the metaphysical gap between the mathematical and
the physical “worlds”—obstructing the use of mathematics in
physics? The only one I can envision is this: the “metaphysical gap”
blocks any nontrivial relation between mathematical and physical
objects, contradicting physics which presupposes such relations.

Surprisingly, Dummett himself endorses this very argument, for
he says:

Some have wished to maintain that [mathematics] is [about] a super-
empirical realm of abstract entities, to which we have access by means of
an intellectual faculty of intuition analogous to those sensory faculties by
means of which we aware of the physical realm. Whereas the empiricist
view tied mathematics too closely to certain of its applications, this view,
generally labelled “platonist,” separates it too widely from them: it leaves
it unintelligible how the denizens of this atemporal supra-sensible realm
could have any connection with or bearing upon conditions in the tem-
poral, sensible realm that we inhabit.2?

In Dummett’s book on Frege’s philosophy of mathematics, the
same sentiment occurs:

Platonism is the doctrine that mathematical theories relate to systems of
abstract objects, existing independently of us, and that the statements of
those theories are determinately true or false independently of our know-
ledge. This doctrine . . . raises immediate philosophical problems . . . how
can facts about [immaterial objects] have any relevance to the physical
universe we inhabit—how, in other words, could a mathematical theory,
so understood, be applied? (Dummett 1991a, 301)

28 Dummett 1994, 19. On p. 16, Dummett argues that the legitimacy of abstract
objects follows from the legitimacy of certain whole sentences which happen to con-
tain terms referring to these objects. (We need not study the direct relationship
between the term itself and the object.) The nominalist, then, is to be “pitied” for being
in the grip of a “misleading picture.”

29 Dummett 1994, 12, and never explicitly repudiated later on. What is “surpris-
ing” and even confusing here is that this argument smacks of just the sort of nomi-
nalist “superstitious horror” of abstract objects that Dummett condemns later in the
name of Frege.
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Underlying these complaints is an argument like this:

(1) On the platonist view, physical laws and theories must express
relations between mathematical and nonmathematical objects.

(2) Every relation in physics is a causal (or spatiotemporal) rela-
tion.

(3) Mathematical objects do not participate in causal (or spatio-
temporal) relations.

Therefore,
(4) On the platonist view, all physical laws and theories are false.

Dummett holds that this, the only argument I can extract from his
words, defeats Godel’s (and any other) platonism. He recognizes, of
course, that Frege’s view is also platonist, but Frege gets off quite
lightly:

[Frege’s] combination of logicism with platonism, had it worked, would
have afforded so brilliant a solution of the problems of the philosophy of
mathematics . . . Frege’s idea was that [mathematical} objects should
always be defined as extensions of concepts directly related to the appli-
cation of the mathematical theory concerned: concepts to do with cardi-
nality in the case of the natural numbers . . . In this way, application could
be understood as being no more problematic than it would be according
to non-platonist logicism: it would not consist in pure instantiation of
formulas of higher-order logic, but would involve deductive operations
so close to that as to dispel all mystery as to how application was possible.
A mathematical theory, on this view, does indeed relate to a system of
abstract objects in the sense in which we speak of pure sets . . . they are
objects characterized in such a way as to have a direct connection with
non-logical concepts related to any one of the particular domains of real-
ity, the physical universe among them. They could not otherwise have the
applications they do. (Dummett 1991a, 303)

The truth is, though, that all platonists®® can benefit from Frege’s
technical achievement. Frege argued that the laws of arithmetic are

30 Strictly speaking, everyone can benefit from Frege’s achievement, but those
philosophers who deny that arithmetic statements are true will be faced by additional
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second-order laws governing all concepts whatever. Not only did he
argue this point, he constructed a deductive system of arithmetic in
which this second-order character is evident. In Frege’s system,
numerals appear in second-order predicates applying to ordinary
concepts. In this sense, Frege “predicates” natural numbers of con-
cepts. The concepts themselves may be true of physical objects. In
short, mathematical entities relate, not directly to the physical world,
but to concepts; and (some) concepts, obviously, apply to physical
objects. The mystery thus vanishes without a trace. As Frege put it
himself in the Grundlagen, “The laws of number, therefore, are not
really applicable to external things; they are not laws of nature. They
are, however, applicable to judgments holding good of things in the
external world: they are laws of the laws of nature” (Frege 1959, § 87).

This disposal of the “metaphysical” problem of the applicability
of arithmetic to the physical world depends not at all upon Frege’s
logicism. For example, suppose we regard set theory, rather than sec-
ond-order logic, as the foundation of all mathematics, because all
classical mathematics can be modeled in it. Frege’s insight adapts
readily to this new context: numbers characterize sets, not physical
objects; while sets can contain, of course, physical bodies. Set theory
is applicable, in the present sense (one of many senses, I remind you),
simply because physical objects can be members of sets. This is a
thoroughly nonmystical idea, always supposing we accept the exist-
ence of sets in the first place.

Even the inconsistency of Frege’s logical system (the one of the
Grundgesetze) does not mar Frege’s solution of the metaphysical
problem of applicability. As George Boolos has shown, the program
of Frege’s Grundlagen, including all theorems there sketched, goes
through in a consistent second-order theory,?! which he calls “FA”
(Frege Arithmetic), in which the only “nonlogical” axiom is

problems concerning mathematical applicability. Field is one such philosopher, since
he takes arithmetic propositions literally as implying the existence of numbers, yet he
denies that numbers exist. Therefore, he benefits from Frege’s program in that Frege
shows how to incorporate pure and mixed mathematical statements in a single deduc-
tion (something that he would have had to do), but he remains with a problem not fac-
ing Frege: how systematically false statements allow systematically true empirical
predictions.

31 Other philosophers have asserted this point, but Boolos not only constructed
FA, but proved its consistency. Hence the attribution to Boolos, of whose work
Dummett seems unaware.
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VFIAxXVG(Gnx & Feq G).

(The eta sign replaces the usual epsilon set membership, and
expresses the relation that holds between a concept G and the exten-
sion of a higher-level concept under which G falls. The sign “eq”
expresses the equinumerosity of the concepts.) That is to say, the only
mathematical objects Frege needs for arithmetic are classes of
equinumerous concepts. Whether we call FA “logic” or not is here
irrelevant: FA captures the benefits of Frege’s approach to arith-
metic, logic or no.

Nor is this insight limited to arithmetic, since mathematicians
have modeled all classical mathematics in set theory, ZFC. To
“apply” set theory to physics, one need only add special functions
from physical to mathematical objects (such as the real numbers).
Functions themselves can be sets (ordered pairs, in fact). As a result,
modern—Fregean—Ilogic shows that the only relation between a
physical and a mathematical object we need recognize is that of set
membership. And I take it that this relation poses no problems—over
and beyond any problems connected with the actual existence of sets
themselves.

We can now conclude that Frege completely solved the semantic
and the metaphysical problems of applicability.

In the Grundlagen, Frege showed how to interpret both pure and
mixed arithmetic statements so that we can use pure mathematics to
deduce “applied” conclusions. This solves the semantic problem. He
did not specify the underlying logic, but all of his proofs can be cod-
ified in Boolos’s FA word for word. (That FA is not “logic” is irrele-
vant to the semantic problem of .applicability.)

And, in solving the semantic problem, Frege did not need to pos-
tulate any metaphysically suspect relations (such as causal relations)
between mathematical and nonmathematical objects. Mathematical
objects are related only to other mathematical objects and to con-
cepts. That physical objects may fall under concepts and be members
of sets is a problem only for those who do not believe in the existence
of concepts or sets. Perhaps without even intending to, Frege dis-
posed of the metaphysical “problem” of applicability, and rendered
superfluous most recent discussions of “the” problem of applica-
bility.



2

The Descriptive Applicability of
Mathematics

Can we conclude that Frege solved every problem concerning the
applicability of arithmetic? No. Frege left other problems un-
touched, and these will be my problems.

It is crucial to distinguish problems concerning specific mathe-
matical concepts from those having to do with mathematical con-
cepts in general. To postpone the chore of actually characterizing the
mathematical concepts,! I begin with the former problems. And the
specific concepts I begin with are, again, the arithmetical ones: addi-
tion and multiplication.

For example: what makes arithmetic so usefu/ in daily life? Why
can we use it to predict whether I will have carfare after I buy the
newspaper? Can we say—in nonmathematical terms?>—what the
world? must be like in order that valid arithmetic deductions should
be effective in predicting observations?*

! See Chapter 3.

2 This requirement is not inspired by the project of nominalizing physical theory
of Field 1980. I am not interested in translating any physical theory into a nominalis-
tic language, but explaining, in nominalistic language, the conditions under which a
mathematical concept will be applicable in description.

3 1 realize this five-letter word offends some philosophers; they can paraphrase it
out of the next few paragraphs. Most of the problems concerning the applicability of
mathematics in natural science and in daily life cut across the realist/antirealist divide,
I would like to believe. On the other hand, the solutions to the problems may well be
sensitive to the realist/antirealist controversy.

4 To put the matter in Kant’s language (with thanks to Carl Posy): what is the
“objective validity” of such logical or mathematical concepts as disjoint union, cardi-
nal number, etc.? Cf. also the introduction to Detlefsen 1992, where the editor expli-
citly draws this parallel.



The Descriptive Applicability of Mathematics - 25

These were not Frege’s questions, and could not have been: he
attended to the applicability of mathematics in general, not to nature
specifically. His concern was not with the usefulness of mathemati-
cal reasoning, but its validity—to which the state of the world is
immaterial.

Frege treats the semantical applicability of mathematical theo-
rems; I will attend to the descriptive applicability—the appropriate-
ness of (specific) mathematical concepts in describing and lawfully
predicting physical phenomena.> Whereas, for Frege, applying meant
“deducing by means of,” for me it will be “describing by means of.”

Despite this, Frege continues to guide us. Numbers, according to
his theory, take the measure of concepts; concepts qualify objects.
Concepts here are the physical concepts, those applying to physical
objects (below: bodies).

Consider now a predicate P, for example “coin in my pocket.”
Whether an object is a P—indeed, whether it exists—can change over
time. Speaking with the vulgar, we say that the extension of predi-
cates can also change over time, i.e., that sets can change, a confused
if intuitive way of talking. Thinking with the learned, we follow
Quine: physical predicates apply, timelessly, to “time slices” of bod-
ies.6 It is the wax-at-f that is soft, not the wax. When we speak of the
number of objects of type P at a time, we mean the number of object-
slices-at-t of type P. To say of a predicate that its extension changes
over time means that the predicate is true of r-slices of different
objects for different times . If the extension of a predicate changes
too rapidly at ¢ (speaking again with the vulgar), then humans can-
not discern the number of Ps at ¢. Arithmetic—a technique for infer-
ring the number of objects in one set from the number in others—will
then be useless, though “true.” Arithmetic is useful because bodies
belong to reasonably stable families,” such as are important in science

5 The descriptions of which I speak are thus lawlike or projectible descriptions in
the sense of Goodman 1983: descriptions which could appear in natural laws and thus
be used in predicting events. Only these descriptions are my concern.

¢ Quine 1960, § 36.

71 readily grant that if this condition were not met, human experience would be
impossible, not only arithmetic. But this would at most show that the condition is an
a priori one. I agree with Kripke that Kant erred in thinking that every a priori truth
is a necessary truth.
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and everyday life.? The number of coins in my pocket; the number of
fruits on the table; the number of political parties even in Israel; all
stay constant long enough for humans to count them. The invariance
is maintained, not only through time, but under translations and
other common maneuvers. The coins in my pocket are usually the
same whether or not I walk around the house, put candies in my
pocket, too, and so forth.

Another factor curbing our ability to count a set of objects, aside
from the above-mentioned volatility of its members, is their disper-
sion. Define the dispersion of a set of bodies as the average distance
between any pair of its elements. Generally, a physical predicate is
more significant to us arithmetically if its extension has low disper-
sion. (By abus de langage, the dispersion of a predicate will mean the
dispersion of its extension.)

Now in many cases of interest, as a result of performing physical
operations (pushing, pulling) at time ¢ on the set of Ps (for example
“coins belonging to me at time £”), it becomes possible to define a
predicate Q (“coins in the basket at ¢’ ”’) which has the same extension
at ¢’ that P had at ¢, but is much more concentrated (has much smaller
dispersion). I will call predicate Q a time-aggregation of P, relative to
times ¢ and #'. It is a contingent result of human intervention that
time-aggregations of predicates often exist.

It is contingent,® too, that when the elements of a set are pushed
and pulled around, they often retain some of the properties which
interest us. Coins remain coins, scattered or clustered.

Consider now how addition is applied, descriptively, to events.
John Stuart Mill explained addition by what he thought of as its par-
adigm application: Suppose I throw five pennies into an empty hat
and then four more. Most likely, the number of pennies in the hat is
now nine. The identity 5 + 4 = 9 elevates this empirical prediction to
a general law. Frege retorted that Mill confuses the meaning of addi-
tion with its application.!® In other words, we apply addition to

8 True, families lacking stability of this kind could not play a role in daily life in
the first place. But it is contingent that there are any such families.

2 I say contingent, not empirical, because it seems reasonable that those properties
of interest to human beings would be those invariant under these kinds of transfor-
mations. Even if a priori, though, the fact is contingent—again, just as Kripke pointed
out,

10 Frege 1959, § 9.
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assembling, gathering—without interpreting ‘+’ as an idealized
assembling. The sign ‘+’ means the same in every context.

Frege’s criticism is too tame: Mill’s example does not even apply
addition to “gathering.” Since the idea that “gathering” is an appli-
cation of addition seems widespread, it is worth refuting.

Given 4 and B, respectively the disjoint extensions of concepts F
and G at a time, if there are m objects in 4 and n in B, then there are
m + nobjectsin 4 U B, i.e.,{x: Fx v Gx}, as a matter of logic, or set
theory, certainly not physics.

Suppose that F and G have low dispersion, as arithmetically use-
ful predicates tend to do. The disjunction of Fand G will have greater
dispersion than either F or G alone if the Fs and the Gs are in differ-
ent places. In no case will the dispersion go down. Using jargon,
dispersion increases monotonically under set union (predicate disjunc-
tion). Consequently, disjunctive predicates are often less arithmeti-
cally useful than either disjunct; why is addition useful where it
enumerates an uninteresting set?

That we can neutralize dispersion makes addition useful: a time
aggregation of the “uninteresting” F v G then exists. The same bod-
ies, dispersed now, are concentrated later—by human effort. What
links addition and gathering, then, is this: gathering neutralizes the
dispersion that set union so often entails.

To counter dispersion by force is to leave the compass of logic.
Addition is useful because of a physical regularity: gathering pre-
serves the existence, the identity, and (what we call) the major prop-
erties, of assembled bodies. But then gathering is not an application
of addition at all.!!

11 What, then, is being applied in the “caveman” arithmetic of sticks and stones?
Consider a number of stones. We can distinguish between (a) the (scattered) physical
object X of which the stones are parts; and (b) the set Y of the stones, i.e., the abstract
collection of which the stones are members. The physical object (a) is called the “mere-
ological sum” of the stones. Now, it is a physical fact that the scattered physical object
X retains the same stones as its parts under a wide range of physical changes, such as
gathering the stones together. The parts of X which are stones, therefore, are members
of the same set Y over time (thinking with the vulgar). Thus the invariant structure of
the object X is the set Y. The conclusion is that in the arithmetic of sticks and stones,
the concept of a mereological sum is an application of the concept of a set. This is not
too surprising, since the concept of a set is an abstraction from that of a mereological
sum. But since most people find it difficult to grasp clearly the concepts of set and of
sum, the applications here are not usually made consciously. That is, it is possible to
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Contrast weighing, a true application of addition. If one body bal-
ances 5 unit weights, and another balances 4, then both together will
usually balance 5 + 4 = 9 unit weights. The natural numbers indi-
rectly describe, by laws of nature, not only the sets of unit weights
placed on the scale, but the objects they balance. Addition of num-
bers becomes a metaphor for “adding” another object to the scale.
Arithmetic is not empirical, but it predicts experience indirectly by
the law: if m and » are the numbers of unit weights that balance two
bodies separately, then m + x units balance both.12 Equivalently: if
one object weighs m units, and another weighs n units, then the
(mereological)!3 sum of both “weighs m + » units.” This more usual
expression looks like a tautology, but is as empirical as the former:14
the expression ‘m + #’ is embedded in a nomological description of
a phenomenon (weight). This description induces an isomorphism
between the additive structure of the natural numbers and that of the
magnitude, weight.

In referring to an “additive structure,” I do not mean a system of
bodies. There are too few bodies for them to correlate with all the
natural numbers. The isomorphism is between the natural numbers
and a magnitude: infinitely many physical properties parametrized by
those numbers. As with every magnitude, not all of those properties
need actually materialize.

Now let’s examine multiplication. The paradigmatic operation
here is, ostensibly, arranging: in equal rows, equal groups, etc. This is
how we teach multiplication to children. But here, too, arranging is
not an application of multiplication; rather, arranging makes multi-
plication valuable. As concentrating a dispersed set makes it useful,
so does arranging a large set make it “surveyable.”!> Multiplication
enumerates the union of (pairwise disjoint) similar sets, but arrang-
ing the elements of the sets in rows allows us to grasp that number.

apply a mathematical concept without being aware one is doing so, just as it is pos-
sible to speak prose one’s whole life without realizing it.

12 Actually, according to Einstein’s theory of general relativity, weight is not addi-
tive, as I shall discuss below. On the human scale, the deviation is experimentally unde-
tectable.

13 The mereological sum of a number of bodies is the one scattered body with the
same molecules as the bodies.

14 A fascinating study of how empirical laws come to pose as tautologies is Levy-
Leblonde 1979. 15 This term is from Wittgenstein 1978.
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That we can arrange a set without losing members is an empirical
precondition of the effectiveness of multiplication, rather than one
of its applications.

A familiar and genuine application of multiplication is tiling with
unit squares, Suppose we have a rectangular floor and we inquire how
many tiles cover it. The elementary answer is that if the floor length
is m units and the width is » units, the number needed is usually m-n.
As in weighing, we have an isomorphism. The numbers m and # come
to measure, not just the size of a set (of units), but the length of lines.
Multiplication comes to portray decomposing the rectangle into
squares by parallel lines; conversely, moving from one-dimensional
to two-dimensional Euclidean “intervals.” (Historically, of course, it
is the other way around—multiplication was seen as this very geo-
metric operation; and thus the product of the two numbers was seen
as a different sort of number from the multipliers. We cannot speak
of an “application” of multiplication to geometry until the modern
period.) That m-n counts those squares is an empirically!6 based iso-
morphism of the multiplicative structure of the natural numbers
with the two-dimensional geometrical structure of the plane.

The use of addition in weighing, of multiplication in tiling,
involve paradigmatic, indeed prehistoric, activities: gathering,
arranging. But these activities are not ends: in gathering weights into
the scale pan, we balance another object; in arranging the tiles, we
cover a floor. Gathering and arranging are so linked with weighing
and tiling that the additive or multiplicative structures of the natural
numbers characterize nonarithmetic structures, too.

Is there anything unexpected about the descriptive usefulness of
addition and multiplication? No; it is not hard to set down condi-
tions, in nonmathematical language, for a magnitude to have an addi-
tive structure. Indeed, the theory of measurement sets forth the
conditions under which a magnitude has the additive structure of the
reals. It is clear that we need not adopt Mill’s “empiricist” position
on arithmetic!” to explain the descriptive applicability of the arith-
metic operations.

16 ] am assuming here that geometry is empirical because I think it is. If you think
it isn’t, please ignore this example.

17 An empiricist need not, and most do not, hold that mathematics is empirical.
Mill is the exception.



30 - The Descriptive Applicability of Mathematics

* ok X

Consider now [linearity: why does it pervade physical laws? Because
the sum of two solutions of a (homogeneous) linear equation is again
a solution. This property corresponds to the Principle of
Superposition, exploited by Galileo: joint causes operate each as
though the others were not present. If we shoot a cannonball directly
up, its motion is the sum of a constant (inertial) rising produced by
the cannon, and an accelerated falling caused by gravity. The posi-
tion of the cannonball is thus given by an algebraic sum (in general,
the vector sum) of the two displacements.

Or consider the classical or quantum electromagnetic field,
meaning the electromagnetic field without “sources,” i.e., charged
particles. This theory is linear, which means that the various electro-
magnetic waves which compose the field do not interact with one
another, in accordance with the Principle of Superposition. (If there
is even one charged particle, it interacts with the electromagnetic field
as it moves around, and the equation is no longer linear.) In quan-
tum mechanics, of course, the electromagnetic waves are identified
with particles known as photons. So our conclusion is that photons
do not interact with one another to change the field, which is to say
that the photons themselves carry no electric charge.

By contrast, Einstein’s theory of gravity has a small nonlinear
effect, and the physical meaning of this is the reverse: the hypothe-
sized particles of the gravitational field, the “gravitons,” do interact
with one another, or carry “gravitational charge,” the same as mass.
Similarly for the nonlinear theory of the nuclear force field. The
hypothesized particles composing this field are called “gluons” and
they, too, interact, because they carry the same kind of “nuclear
charge” as do the protons and neutrons themselves.

Both linearity and nonlinearity, then, have a clear physical cor-
relate, based on superposition; all is explained—so far. But we must
investigate another role for linearity in science.

Obviously, not every equation in science is linear. The planets
travel in ellipses, for example, not straight lines, even though the fun-
damental equation F = ma is linear. Even so, linearity retains con-
siderable importance, since the nonlinear may often be approximated
by the linear. For example, we approximate a curve, over short dis-
tances, by its tangent, an idea which finds full flower in the famous
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Taylor series expansion for functions. Approximations like this are
valid if the curve is smooth, or at least has smooth pieces, certainly a
physical property. Hence we have an explanation for the second role
of linearity in science: the smoothness of many natural processes.
(Even in quantum mechanics, the wave function evolves smoothly
through time.)

From this, it follows that where nature does not operate smoothly,
linearity loses application. And, indeed, exponents of “fractal geo-
metry” like Benoit Mandelbrot argue that nature is best described by
infinitely rough, not (piecewise) smooth, curves. An example is
Figure 1: a picture of a “fern,” generated by a fractal-producing com-
puter program.!® Even smooth configurations, they say, can evolve

[To view this image, refer to
the print version of this title.]

Fi1GURE 1

toward roughness. An instance is soot particles in a colloid that stick
one to another and grow into a fractal pattern (Mandelbrot and
Evertsz 1990).

18 See, for example, Mandelbrot 1990 and the other essays in Fleischmann et al.
1990.
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If fractal, rather than smooth, geometry is what describes nature,
the physical implications are immediate: gone are the prospects for
understanding phenomena by breaking them up into their compo-
nent parts. The mathematical device for doing this is the Taylor
series, and the method works only if the functions approximated are
smooth. Mandelbrot therefore advocates a complete revision in
scientific thought, away from understanding the whole in terms of its
parts.

Mandelbrot may well be wrong,'® but he cannot be proved wrong
a priori. Linearity is applicable to the extent, and only to the extent,
that the Principle of Superposition holds, and to the extent that
nature operates in a smooth, or at least piecewise smooth, manner.
Whatever we are to say about this question, we can at least conclude
this: there is no mystery concerning the applicability of linearity; the
mathematical property of linearity can be reduced to physical prop-
erties which nature may either exhibit or not exhibit.

* ok ok

Scientists have succeeded in explaining the applicability of far more
arcane mathematical concepts than linearity, by matching mathe-
matical to physical concepts. One of the most abstract mathematical
concepts is known as a fiber bundle, so difficult that one of the great-
est physicists of all time, Yang, confessed that he could not readily
master the field (I hope, therefore, I will be forgiven if I do not explain
it here). Ironically, the remarkable applicability of fiber bundle
theory to physics rests on the translatability of the concepts of fiber
bundle theory into the concepts of gauge field theory (cf. Chapter
6)—a theory that Yang himself did more than anybody else to dis-
cover.

Consider Table I, drawn up by Yang himself (Zhang 1993, 17),
showing that (almost) every basic concept from bundle theory has an
exact translation into the gauge field terminology. Even the reader
who understands not a single word of either terminology (most of
my readers, I hope) should be impressed by the detailed correspond-
ence of two independently conceived theories, one physical, the other
mathematical. (Of course, only the experts will be able to verify the

19 Cf. Shenker 1994.
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TABLE I. TRANSLATION OF TERMINOLOGIES

Gauge field terminology Bundle terminology

gauge (or global gauge) principal coordinate bundle

gauge type principal fiber bundle

gauge potential b connection on a principal fiber
bundle

Sea transition function

phase factor @,p parallel displacement

field strength f,f, curvature

source J X ?

electromagnetism connection on a U;(1) bundle

isotopic spin gauge field connection on a SU, bundle

Dirac’s monopole quantization classification of U,(1) bundle
according to first Chern class

electromagnetism without connection on a trivial U (1) bundle

monopole

electromagnetism with monopole connection on a nontrivial U, (1)

bundle

accuracy of the table.) The philosophical point can be grasped eas-
ily; the abstract nature of a mathematical concept is no bar to its
reduction to the physical. In short, the applicability of the fiber bun-
dle concept is based on the existence of gauge fields.2°

Fiber bundles, however, seem to have played no role in the dis-
covery of the gauge field concept. Had they played such a role, the
Yang-Mills discovery would still have been mysterious—it would
then have been a thoroughly “Pythagorean” discovery, because the
“geometry” in question is not spacetime geometry at all. As Yang put
it much later:

That non-Abelian gauge fields are conceptually identical to ideas in the
beautiful theory of fiber bundles, developed by mathematicians without
reference to the physical world, was a great marvel to me. In 1975, I dis-
cussed my feelings with Chern [the famous mathematician], and said
“This is both thrilling and puzzling, since you mathematicians dreamed
up these concepts out of nowhere.” He immediately protested, “No, no,

20 See Chapter 6 for a detailed discussion of the discovery and Yang and Mills.
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these concepts were not dreamed up. They were natural and real.”(Yang
1977, reprinted in Yang 1983, 530)

By “real,” Chern did not mean “physically real,” of course, but
“mathematically real,” a concept discussed in Descartes’ Meditation
IV under the name “true and immutable.”

Historically, however, geometry played no role—but rather
“physics.” And I argue in the text that the role of “quantization” in
the discovery turns the physics into formal manipulation. Thus, even
for Pythagoreans, the success of Yang—Mills is a cause for wonder.

Yang explicitly denies that geometry had anything to do with his
and Mills’ discovery: “What Mills and I were doing in 1954 was gen-
eralizing Maxwell’s theory. We knew of no geometrical meaning of
Maxwell’s theory, and we were not looking in that direction” (Yang
1983, 74). Mathematicians have a hard time taking this denial at face
value, especially when they note that the theory of “fiber bundles”
was in the air during the fifties, that Yang’s father was a mathemati-
cian, and, particularly, that the equations of Yang and Mills are truly
identical to those of fiber bundle theory. (Cf. Drechsler and Mayer
1977, 2: “A reading of the Yang-Mills paper shows that the geomet-
ric meaning of the gauge potentials must have been clear to the
authors” (italics mine)—quoted by Yang himself, 1983, 74, who says
they are simply mistaken.)

But aside from the explicit denials of Yang, we have his candid
statement (Yang 1983, 73):

With an appreciation of the geometrical meaning of gauge fields, I con-
sulted Jim Simons, a distinguished differential geometer, who was then
the Chairman of the Mathematics Department at Stony Brook. He said
gauge fields must be related to connections on fibre bundles. I then tried
to understand fibre-bundle theory from such books as Steenrod’s The
Topology of Fibre Bundles, but learned nothing. The language of modern
mathematics is too cold and abstract for a physicist. All of this happened
Sfrom 1967 to 1969. (Yang 1983, 73, italics mine)

Thus, fifteen years after the appearance of the Yang—Mills paper, its
principal author, even after becoming convinced of the appropriate-
ness of the geometrical description of the gauge field in terms of fiber
bundles, was still “unable” to grasp the theory.
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* % *k

So far we have seen examples in which the descriptive applicability of
a mathematical concept is reasonable and no mystery, in terms of
general physical properties of nature. Wherever the property holds,
the mathematical concept is there applicable, and vice versa. A con-
cept whose descriptive applicability, though unquestioned, requires
elaboration, is that of the inverse square. There are inverse square
laws ruling gravity (Newton’s law), electrostatics (Coulomb’s law),
and optics (the intensity of a spherical light wave). The experimental
accuracy of these laws—for gravity, more than one in ten thousand
as of 1910—particularly impresses Eugene Wigner (Wigner 1967).
The explanatory challenge, then, is to explain, not the law of gravity
by itself, but the prevalence of the inverse square.

This question much exercised the great American philosopher-
scientist, Charles Peirce:

7.509. But meantime our scientific curiosity is stimulated to the highest
degree by the very remarkable relations which we discover between the
different laws of nature,—relations which cry out for rational explana-
tion. That the intensity of light should vary inversely as the square of the
distance, is easily understood, although not in that superficial way in
which the elementary books explain it, as if it were a mere question of the
same thing being spread over a larger and larger surface....But...what an
extraordinary fact it is that the force of gravitation should vary accord-
ing to the same law! When both have a law which appeals to our reasons
as so extraordinarily simple, it would seem that there must be some reason
for it. Gravitation is certainly not spread out on thinner and thinner sur-
faces. If anything is so spread it is the potential energy of gravitation.
Now that varies not as the inverse square but simply [as] the distance.
Then electricity repels itself according to the very same formula....Here
is a fluid repelling itself but not at all as a gas seems to repel itself, but fol-
lowing that same law of the inverse square.

7.510. According to the strictest principles of logic these relations call for
explanation . . . you must explain these laws altogether.?!

What Peirce is looking for is some general physical property which
lies behind the inverse square law, just as the principle of superposi-

2t All quotes are from Peirce 1958.
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tion and the principle of smoothness lie behind linearity. Peirce
rejects as the explanation the obvious property of Euclidean space
that the surface area of a sphere is proportional to the square of the
radius (for the sake of argument, regarding geometry as though it
were physics).?? He is therefore left without any explanation of the
applicability of the inverse square law, though he does feel that there
ought to be one.

* % %

I shall now cite a number of examples of mathematical concepts
whose descriptive applicability now seems mysterious.

Consider, first, the applicability of complex analysis in physics; in
particular, that of an analytic function. A function of a complex vari-
able is said to be analytic in a region of the complex plane if it is dif-
ferentiable everywhere in the region. Now, the differentiability of a
function of a complex variable is a much stronger condition than the
differentiability of a real variable. In fact, for a function of a complex
variable to be differentiable, it must satisfy special equations, the
Cauchy-Riemann equations, which functions of a real variable do
not have to satisfy.2> Furthermore, it is a theorem that if a function
of a complex variable is differentiable once, it is differentiable infi-
nitely many times—again, this is not true of functions of a real vari-
able. From the latter theorem we derive that a function of a complex
variable is analytic if, and only if, it can be represented by an infinite
power series (Taylor series), since the conditions for such representa-
tion by a power series are precisely that all the derivatives of the func-

22 This explanation, by the way, was published earlier by Immanuel Kant in his
Prolegomena to Any Future Metaphysics (Kant 1950), sec. 38.

23 Differentiability for a complex function is defined, verbally, the same way as for
a real function. However, since we are dealing with the complex plane, this limit must
stay the same no matter by which of the infinitely many paths 4 goes to zero. Thus, dif-
ferentiability for a complex function is a much stronger condition than for real func-
tions, and this condition is expressed by the Cauchy-Riemann equations: writing z =
x + yiand f(z) = u(x,y) + iv(x,y), where u and v are real-valued functions of x and y,
then a necessary condtion for f(z) to be differentiable in a domain D is that the
Cauchy-Riemann equations

ax ay’dy  ox

hold at each point of D; where, of course, all four partial derivatives are assumed to
exist everywhere in D.
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tion exist. (For a function of a real variable to be representable by a
power series, more than infinite differentiability is needed.)

The concept of analyticity turns out to be astonishingly applica-
ble. Let’s look at three examples: to fluid dynamics, to relativistic field
theory, and to thermodynamics.

The applicability of analyticity to hydrodynamics follows from
the theorem that a two-dimensional ideal fluid (i.e., one in which the
third dimension plays no role in the problem) obeys the Cauchy-
Riemann equation. This makes the theorems of analytic function
theory immediately applicable to ideal fluids.

The applicability of analyticity to relativistic field theory follows
from theorems that link functions defined on a light cone to analyt-
icity.?4

Finally, an application of analyticity to thermodynamics is the
assumption that one can treat the critical temperature of a ferro-
magnet (the temperature at which it loses its magnetism) as an ana-
lytic function of the number of dimensions of the magnet.

Now, even if we were to regard the first two applications (hydro-
dynamics and relativistic field theory) as sufficiently explained by the
theorems quoted, note that there is no one physical property which
explains all three applications, or types of application. So the situ-
ation does not resemble the case of additivity, where one property
explains just about every application of “+” in physics.

In addition, the first application, to hydrodynamics, is true only
for two-dimensional ideal fluids, in keeping with the essential two-
dimensionality of the theory of functions of a complex variable.
Thus, there is something “accidental” about the applicability.?>

24 Consider a “light cone” in spacetime. Outside the light cone, we can say that a
particle has zero probability to be found; in mathematical terminology, the position
function has “support” in the cone. Now there are a number of theorems relating (cer-
tain) “supported functions” to the analyticity of their Fourier transforms; for details,
see Reed and Simon 1975, ix.3, especially Theorem IX.16. (The functions in question
decrease suitably rapidly for large arguments, and have nice smoothness properties.)

But, in quantum mechanics, the momentum function is the Fourier transform of
the position of function; and the notion of a light cone is characteristic of relativity
theory. Thus, in the context of relativistic quantum (field) theory, the concept of ana-
Iyticity may have a physical interpretation. (See Wightman 1969 for a popular discus-
sion of this point.)

I am grateful to Barry Simon and Larry Zalcman for help here.

25 ] am grateful to Joel Gersten for pointing this out to me.
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The third application, though, is totally mysterious, from the
point of view of explaining the descriptive applicability of analytic-
ity. The assumption that the critical temperature of a magnet is an
analytic function of its dimension is, in fact, physically meaningless.
Not only will we have to condone, in physics, magnets of dimension
3.5 (we have gotten used to such things by reading about fractals),
but we will have to swallow magnets of dimension 2 + 3i! Here the
analytic function is used as a calculational tool or formal trick: we
cannot calculate the problem for three dimensions, so we calculate it
for a four-dimensional magnet, then expand the function as a power
series in the complex plane around the number 4, and plug in the
value 3. Nobody knows (today) why this works.

Regarding analyticity and its descriptive application, we can sum
up the situation as follows. We understand some individual applica-
tions, some much better than others; we understand some applica-
tions not at all; and in any case, we have no one property that
corresponds to analyticity in all applications.

k kX

We return now to where we began-—the mathematical foundations of
quantum mechanics. To see why Kac and Ulam regard the appropri-
ateness of the Hilbert space concept in quantum mechanics as a mir-
acle, we must go deeper than Dummett has done. I will give an
overview of the puzzling role of the Hilbert space concept in quan-
tum mechanics in this chapter; for a more detailed treatment of the
same material, see Appendix A (there, I provide a “formal” deriva-
tion of quantum mechanics, including the concept of “spin”).

The descriptive applicability of Hilbert space to quantum
mechanics follows from what I shall call the “maximality principle.”
About this, a few words.

A Hilbert space is a kind of vector space, and it is the vector space
concept which is the heart of the mathematical formalism of quan-
tum mechanics. A central concept is that of a basis for a vector space,
which we can think of intuitively as a set of “axes” as in Cartesian
geometry. The number of axes is the dimension of the space. A vec-
tor is represented by a point in the space. Each vector in an #-dimen-
sional space, relative to a basis, has » “coordinates.” (In a Hilbert
space, the number of coordinates can be infinite.) A crucial point is
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that we are free to choose any basis, any set of axes, we want, so that
the coordinates of a vector will always be relative to the chosen basis.

In quantum mechanics, a physical system is always described by a
vector space, and the state of the system, by a unit vector in that
space. The evolution of the system through time corresponds to the
“rotation”2¢ of the vector in different “directions” under the influ-
ence of the various forces of nature.

In order for the vector space to make numerical predictions, one
must be able to say, at any moment, what the coordinates of the unit
vector are. In other words, one must choose a set of basis vectors, or
“axes,” onto which we can project the unit vector to get numbers. The
Maximality Principle has to do with the choice of basis, and goes as
follows, in a deliberately unrigorous treatment.

If a Hilbert space H represents a quantum system Q, then each
basis, or set of “axes,” of H corresponds to a physical property of Q;
and each physical property of Q corresponds to a basis, or at least a
subset of a basis, of H (Maximality Principle).?’

In particular, the magnitude of position corresponds to a complete
basis. Thus, position information about a system at a given time
determines information concerning every other magnitude of the
system at that time. This information is obtained simply by changing
the basis of the Hilbert space, and recalculating the coordinates of
the unit vector relative to the new basis.

This principle has no correlate in classical mechanics, and is, at
least today, physically unintelligible (meaning, as usual, that there is
no other language to express the principle). It is not just that position
determines the other properties—but the way that this determination
takes place.

Let us see how it works. Consider a single particle, represented by
a unit vector. Choose the “position basis.” Then we have infinitely
many coordinates for the vector, because there are infinitely many
places the particle could be. When we square these coordinates, we
get the probabilities that the particle will be found in each of these

26 Technically, of course, I am referring to a unitary transformation of the vector.

27 Some physicists would accept only the latter clause, because they claim that there
are some bases that correspond to “unphysical” properties, needing to be weeded out
by “superselection rules.”
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places—a probability distribution.28 This is as much information
about the position of the particle as quantum mechanics allows. If
we now desire information about some other property of the particle,
such as its momentum, we simply change the basis to get a new set of
coordinates. That is, we consider the same unit vector relative to a
new set of “axes.” The same for angular momentum and the like. The
only thing that remains, then, is to “locate” these different bases—
those of linear momentum and angular momentum—and it turns
out to be a rather simple exercise to do this (cf. Appendix A). That is,
given the strange idea that each property of a system determines
every other one, and this by a change of basis—which we can think
of also as a “rotation” of the axes to a new position—simple argu-
ments show that, for example, the “momentum axes” are inalterably
fixed relative to the “position axes.” And so for the other properties
with their “axes.”

The Maximality Principle, though certainly not physically intelli-
gible, is a contingent, falsifiable proposition. In fact, it is such a
strong constraint on nature that it barely escapes inconsistency.

For example, moving our measuring device 100 meters away will
change every position measurement. So the unit vector will have to
“move” to a different place, relative to the position “axes.” But such
a translation will not change any momentum measurements. How
can a unit vector move so that the position information it imparts
(concerning particles) changes, yet the momentum information (con-
cerning those very particles) stays the same? How could some, but
not all, of the changes in a unit vector be physically meaningless?

The puzzling answer: if the coordinates of the unit vector are com-
plex numbers—which have not only magnitude, but also phase
(“direction”)—the unit vector can accomplish its “impossible” mis-
sion. The key idea is: the magnitudes of the coordinates are physi-
cally meaningful, not their phase.

Strangely, the addition of these physically meaningless quantities
to physics allows just the extra degree of freedom the unit vector
needs. For each physical property, we associate a different set of
coordinates on the same space to the same unit vector. Thus we have

28 Squaring the coordinates ensures that the probabilities will be positive numbers,
as they must be.
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momentum coordinates, position coordinates, etc. These coordinates
give information concerning momentum, position, etc. The coordi-
nates are complex numbers. To change the phases of some or all the
momentum coordinates, leaving the magnitudes alone, is to convey
the same momentum information. Yet this very change of phases will
almost always cause the magnitudes of other sets of coordinates to
change, for example position coordinates. In a more familiar vocab-
ulary, the Maximality Principle leads to the wave-particle duality, to
interference phenomena, etc.

But these phenomena arise only when we make a nonuniform
change of phases. Consider one particle with a fixed momentum.
One momentum coordinate will be enough to determine its state.
Only one momentum coordinate, that is, will be nonzero. Suppose we
move our measuring device as before. Only the phase of this single
momentum coordinate can change, which amounts to a uniform
change of phase?® that cannot lead to interference effects. None of
the magnitudes of the position coordinates can change. This means
that moving the measuring device effects no change in the position
information that the device gives us. This is absurd, unless the device
gave us zero information in the first place. We thus arrive at the sen-
sational result that exact information concerning momentum wipes
out all information concerning position—a special case of the
Heisenberg Uncertainty Principle! All this follows from a formal
premise, the Maximality Principle, which does not correspond to any
physical idea.

Momentum is not the end of the matter. There are other observ-
ables in physics—angular momentum, for example. The Maximality
Principle demands that the state vector give us information about
this too. The consequences are startling: in order for angular momen-
tum to be in the same Hilbert space as the other quantities, it must3©
be quantized in integral multiples of a minimum!3! We arrive at the
“quantum” principle, which physics contended with for a quarter of
a century, free of charge.

But not only is angular momentum quantized, its direction is
quantized. This means that, relative to some axis—say the z-axis—

29 A zero coordinate remains zero under any change of phase.
30 Given reasonable mathematical conditions on the state vector, outlined below.
31 For details, consult Appendix A below.
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there are only a finite number of directions for the “orbit” of a par-
ticle. If the angular momentum of an orbiting particle is fixed at j
units, and the angular momentum is conserved, we can think of it as
a unit vector inhabiting, not a whole Hilbert space, but a finite-
dimensional vector space,3? one dimension for each direction of the
orbit. (Of course, we are ignoring, for the purpose of the example,
every other property of the particle.) As we rotate the laboratory in
different directions in space, the unit vector moves around in the
finite-dimensional space, changing the probabilities that we shall find
the orbit of the particle in one of the allowed spatial directions. What
I have described in lay terminology is what the mathematicians call
an irreducible representation of the group SO(3) of spatial rotations.

That the various groups of transformations such as rotations act
not on Euclidean space, but on a linear (vector) space, puts enormous
constraints on quantum mechanics, and therefore on nature. Here is
an example: it is a theorem that the group of spatial rotations in three
dimensions has no even-dimensional irreducible representations.
Thus, the orbit of a particle with angular momentum j has 2j + 1 dif-
ferent directions.?? There is no known physical explanation for this;
it simply follows from our Maximality Principle and the properties
of the quantum mechanical formalism, neither of which has any
known nonmathematical formulation.

A knowledgeable reader may here ask: what about the so-called
“spin” of the electron? It has only two directions: “up” and “down.”
And two is an even number! The answer leads us to the most pro-
found mystery so far: there is no contradiction here. The spin of the
electron is not a spatial phenomenon, in the sense that the “spinning”
electron does not consist of orbiting parts. If it did, it would be sub-
ject to the same rules as an orbiting particle.** The formalism dic-
tates: any angular momentum of a particle which has an even
number of directions cannot arise from spatial rotations. And this is
exactly how the electron behaves.

32 This space is not exactly a subspace, but a quotient space, of the entire Hilbert
space.

33 For a more technical treatment see Appendix A below.

34 Of course the electron both orbits and “spins.” Thus it has two types of angu-
lar momentum, each following its own rule.
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The Hilbert or vector space formalism allows the physicist to state
and prove conservation laws that have no meaning in classical
mechanics, again “reading off” facts from the formalism. Consider
the concept of parity. Suppose we represent a system by a unit vec-
tor as usual. Then the system is said to have a parity if the mirror
image of the system has a unit vector which either stays the same or
is multiplied by —1. If it stays the same, the system has positive par-
ity; if multiplied by —1, it has negative parity. Although the concept
of right-left symmetry is certainly ancient,-and known to physics
(e.g., in the study of crystals), the concept of parity has no analogue
in classical mechanics, because (a) the unit vector in quantum
mechanics is not a spatial vector; and (b) there is no physical differ-
ence between a state vector and its negative.

Now, using group theory, we can prove the following theorem,
which can neither be stated nor proved in classical mechanics. If a
hydrogen atom (or any other symmetrical system) has angular
momentum j units, then: if j is an even number, the parity of the atom
is positive; if an odd number, negative. (There is no known physical
basis for this—it just follows mathematically from the quantum
mechanical formalism.) Furthermore, the parity of an atom is usu-
ally®> reversed, when it emits or absorbs a low energy?¢ photon.3?
Therefore, when a hydrogen atom absorbs or emits a photon, its
orbital angular momentum must usually change as well, a purely
mathematical dictate, but one that has quite observable spectroscopic
consequences, since it suppresses certain spectral lines. Accounting
for the so-called “missing lines” of the hydrogen spectrum was one
of the major research programs in quantum mechanics prior to 1926
(we shall return to the missing lines later). Here I have accounted for
some of them using right-left symmetry or parity; conservation of
angular momentum explains others.38

3% Technically, the parity reversal is a “first-order” effect in the sense of perturba-
tion theory.

36 One whose wave length is significantly longer than the dimensions of the atom.

37 See Sternberg 1994, secs. 3.7, 3.10, 4.5.

38 Bohr’s approach to the “missing lines” did not use symmetries, but relied on
what he called the “correspondence principle.” This principle does not lack “magic”
of its own; for an account of Bohr’s reasoning, see Darrigol 1992, 102-49.
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Let us now recapitulate: beginning with the concept of a Hilbert
space, a certain kind of (usually infinite-dimensional) vector space,
and the formal requirement that a unit vector on the space repre-
sents®® all possible information about a system, an astounding
amount of information can be gleaned. First, the space cannot be a
real vector space; the usual formalism is, therefore, based on a com-
plex Hilbert space.4® With this formalism, the Heisenberg Uncer-
tainty Principle follows directly. So does the quantization of angular
momentum, including the so-called “space quantization.” So does
the prediction that “electronic spin” cannot be due to a spatial rota-
tion. And so do the selection rules for the spectrum of hydrogen,
based on the “nonphysical” concept of parity.

The role of Hilbert spaces in quantum mechanics, then, is more
profound than the descriptive role of a single concept. An entire for-
malism—the Hilbert space formalism—is matched with nature.
Information about nature is being “read off” the details of the for-
malism. (Imagine reading off details about elementary particles from
the rules of chess—castling, en passant—a la Lewis Carroll in
Through the Looking Glass.) No physicist today understands why this
is possible, though there are those who are making valiant efforts.
Thus, the descriptive applicability of the Hilbert space formalism,
which follows from the maximality principle, remains a mystery. To
quote Feynman again:

I find it quite amazing that it is possible to predict what will happen by
mathematics, which is simply following rules which really have nothing to
do with the original thing. (Feynman 1967, 171)

* ok %k

To eliminate the mystery of a particular mathematical concept
describing a particular phenomenon, we match the concept to a non-
mathematical property, as before with linearity.

3% The term “represents” is meant in the technical sense of group representations:
the unit vector, by its transformations, irreducibly represents all the symmetry groups
of the physical system.

40 The use of complex numbers is not made mathematically necessary by the argu-
ments given here. Another possibility would be a Hilbert space with guaternionic coor-
dinates. And there are physicists who have come around to the view that such a space
has great potential.
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Here is an example of a solved mystery. At the beginning of the
sixties, both Yuval Ne’eman and Murray Gell-Mann predicted the
existence of the so-called omega minus particle, using an abstract
classification scheme known as SU(3), a scheme which we will dis-
cuss in detail later. This mysterious scheme turned out to be the key
to classifying the strongly interacting particles—the hadrons. Later,
quark theory explained the SU(3) classification by building each
hadron out of the right quarks, just as the atomic theory explained
the table of the elements by constructing them.

This explanation removes one mystery, but leaves another.
Mathematicians, not physicists, developed the SU(3) concept, for
reasons unconnected to particle physics. They were attempting to
classify continuous groups, for their own sake.

Because the SU(3) story is not isolated, there are physicists who
maintain that mathematical concepts as a group, considering their
origin, are appropriate in physics far beyond expectation. This is a
separate question from those we have been discussing, and, I believe,
the most profound. It concerns the applicability of mathematics as
such, not of this or that concept. It is a therefore an epistemological
question, about the relation between Mind and the Cosmos. It is the
question raised by Eugene Wigner about the “unreasonable effec-
tiveness of mathematics in the natural sciences” (Wigner 1967).

Wigner’s flawed presentation, however, hinders philosophers from
giving Wigner his due. Wigner cites a number of isolated examples of
mathematical concepts (e.g., the inverse square) whose effectiveness
in physics is quite unexpected, given the source of the concepts in
(what he claims is) aesthetics.#! He then, in effect, offers the follow-
ing invalid syllogism:

Argument A
(1) Concepts Cy, C,, . . ., C, are unreasonably effective.

(2) Concepts C,, Cs, . . ., C, are mathematical.
(3) Hence, mathematical concepts are unreasonably effective.

41 Wigner’s modesty prevents him from giving the most striking examples of
“unreasonable effectiveness”—namely, the ones he himself discovered in applying
group theory to atomic physics.



46 - The Descriptive Applicability of Mathematics

We can deduce only that some mathematical concepts are unreason-
ably effective. Further, even if the concepts are “unreasonably effec-
tive,” is their effectiveness related to their being mathematical?

There is another argument Wigner is not always careful to distin-
guish from the first one:

Argument B

(1) Mathematical concepts arise from the aesthetic impulse in
humans.

(2) It is unreasonable to expect that what arises from the aesthetic
impulse in humans should be significantly effective in physics.

(3) Nevertheless, a significant number of these concepts are signif-
icantly effective in physics.

(4) Hence, mathematical concepts are unreasonably effective in
physics.

Argument B does highlight the mathematical character of the phe-
nomenon. But it invites the retort: what is so significant about the
number of mathematical concepts that have proved effective in
physics? What about all the failed attempts to apply mathematics to
nature? Are not, in fact, most such attempts doomed to failure? If
Wigner replies that even a single success in applying a mathematical
concept is significant, he is thrown back to Argument A.

Wigner could counter that his thesis applies to the set of mathe-
matical concepts, not to the set of attempts to apply mathematical
concepts. Of the mathematical concepts, it can be said that a signifi-
cant number of them proved significantly effective: They permit
remarkably accurate empirical predictions, and the accuracy of these
predictions tends to increase over time—with the increasing accuracy
of our measuring instruments.*2 (He could also point to a sort of
converse: almost every phenomenon identified before Newton—elec-
tricity, magnetism, gravity, light, the motion of fluids, etc., etc.—
turned out to be describable by a mathematical law.) This
formulation, though, is susceptible to challenges from skeptics who
feign not to know what a “significant” number is, or when effective-
ness is “significant.”

42 Wigner makes a point like this about Newton’s law of gravitation.
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Rather than rebuffing these challenges, I proceed to develop a ver-
sion of Wigner’s thesis to which they are irrelevant. Like Wigner’s
Argument B, my argument speaks to mathematical concepts in gen-
eral. Unlike Wigner, however, I shall explore the peculiar role of
mathematics in scientific discovery.43

First, though, it is well to take stock. I have discussed the seman-
tic and the descriptive sense of applicability, and four associated
philosophical problems:

* How can the “pure” and “mixed” contexts of arithmetic (or
other mathematical theories) be understood semantically so that
arguments containing both contexts can be valid? Frege solved
this problem.

* How can the abstract entities of mathematics relate to the world
of physics? Frege’s answer was: they do not; they are related to
the laws of the world, not to the world itself.

* Why are the specific concepts and even formalisms of mathe-
matics useful in describing empirical reality? The problem must
be solved piecemeal for each concept.

* Wigner’s epistemological problem for mathematics as a whole:
how does the mathematician—closer to the artist than to the
explorer—by turning away from nature, arrive at its most appro-
priate descriptions?

43 An early version of the argument is Steiner 1989.
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Mathematics, Analogies, and Discovery
in Physics

The obvious way of discovering laws by mathematics is to deduce
them mathematically from old laws.! I will not add to Frege’s treat-
ment of the deductive role of mathematics.?

We thus ponder the nondeductive role of mathematics in discover-
ing the laws of nature. This role was thrust upon mathematics by cir-
cumstances: by the end of the nineteenth century, physicists began to
suspect that the alien laws of the atom could not be deduced from
those governing macroscopic bodies. Nor, of course, could they be
determined by direct observation. Atomic physics seemed reduced to
blind guessing, with an uncertain future.

Perhaps nobody has thought harder about scientific discovery
than Charles Peirce.3 Unlike the classical empiricists, Peirce distin-
guished sharply between confirmation (“induction”) and discovery
(which he called “abduction”). Unlike the contemporary philo-
sopher, Gilbert Harman,* Peirce maintained that a hypothesis, dis-

1] am using the term “laws” the way physicists do. One important feature of this
use is that laws that have been refuted may still be called “laws,” if they continue to
describe accurately a certain class of phenomena. Thus, Newton’s laws are still called
that today, though they fail to describe the tiny and the rapid. I mention this only
because Carl Hempel and other philosophers of science tend to reserve the term “law”
for what is true, an insistence which entails that we can never be certain in science
whether a hypothesis is a law or not.

2 See above, Chapter 1. I will not discuss, in this book, whether the effectiveness of
logical deduction itself needs philosophical explanation.

3 All quotations are from Peirce 1958.

4 See Harman 1989.
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covered by “inference to the best explanation,” is nothing but con-
jecture and requires independent confirmation.

On the other hand, Peirce noted, abduction (guessing) would be
futile if the human race had not an inborn talent for hitting on the
truth:

7.678. But just so when we experience a long series of systematically con-
nected phenomena, suddenly the idea of the mode of connection, of the
system, springs up in our minds, is forced upon us, and there is no war-
rant for it and no apparent explanation of how we were led so to view it.
You may say that we put this and that together; but what brought those
ideas out of the depths of consciousness? On this idea, which springs out
upon experience of part of the system, we immediately build expectations
of what is to come and assume the attitude of watching for them.

7.679. It is in this way that science is built up; and science would be impos-
sible if man did not possess a tendency to conjecture rightly.

Peirce argued that the success of science to date could not be
explained by chance:

7.680. 1t is idle to say that the doctrine of chances would account for
man’s ultimately guessing right. For if there were only a limited number
n of hypotheses that man could form, so that 1/n would be the chance of
the first hypothesis being right, still it would be a remarkable fact that
man only could form » hypotheses, including in the number the hypoth-
esis that future experimentation would confirm. Why should man’s n
hypotheses include the right one? The doctrine of chances could never
account for that until it was in possession of statistics of the hypotheses
that are inconceivable by man. But even that is not the real state of things.
It is hard to say how many hypotheses a physicist could conceive to
account for a phenomenon in his laboratory. He might suppose that the
conjunctions of the planets had something to do with it, 6r some relation
between the phases of variability of the stars in o Centauri or the fact of
the Dowager empress having blown her nose 1 day 2 hours 34 minutes and
56 seconds after an inhabitant of Mars had died.

Peirce, therefore, looked for the explanation of this pre-established
harmony between the connection of thoughts and the connection of
events. Understanding the harmony would, he hoped, actually
increase it.
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7.506. . . . What led me into these metaphysical speculations [about the
correspondence between physical and psychical laws], to which I had not
before been inclined . . . was my asking myself, how are we ever going to
find out anything more than we now [know] about molecules and
atoms? . . .

7.507. As a first step toward the solution of that question, I began by ask-
ing myself what were the means by which we had attained so much know-
ledge of molecules and ether as we already had attained. I cannot here go
through the analysis . . . But that knowledge has been based on the
assumption that the molecules and ether are like large masses of ordin-
ary matter. Evidently, however, that similarity has its limits. We already
have positive proof that there are also wide dissimilarities; and further-
more it seems clear that nearly all that method could teach has been
already learned.

7.508. We now seem launched upon a boundless ocean of possibilities. We
have speculations put forth by the greatest masters of physical theorizing
of which we can only say that the mere testing of any one of them would
occupy a large company of able mathematicians for their whole lives; and
that no one such theory seems to have an antecedent probability of being
true that exceeds say one chance in a million. When we theorized about
molar dynamics we were guided by our instincts. Those instincts had
some tendency to be true; because they had been formed under the influ-
ence of the very laws that we were investigating. But as we penetrate fur-
ther and further from the surface of nature, instinct ceases to give any
decided answers; and if it did there would no longer be any reason to sup-
pose its answers approximated to the truth.

In other words, although natural selection could possibly explain our
successes in discovering science to date (since it allegedly predicts a
kind of harmony between brain and world), it also predicts our
inability to discover those laws (such as the laws of the atom) which
had nothing to do with the evolutionary process, or survival, itself.
It is true, of course, that—if reductionism is correct>—the laws of
the atom govern the brain’s speculations about nature, as they gov-

5 And it is not clear that reductionism is correct. For example, most physicists
believe that chemistry is reducible to Schroedinger’s equation plus the appropriate ini-
tial conditions governing the individual atoms; yet there is surprisingly little backing
for this belief, owing to the enormous difficulty of carrying out the mathematics
involved (cf. Primas 1983).
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ern every aspect of the body. Does this make it more likely that the
brain could discover the laws of the atom, than if Cartesian dualism
were true? Of course not: the laws of thought, even if the severest
form of materialist reductionism is true, follow from the laws of the
atom together with an innumerable number of “initial conditions”
which, from the point of view of physics, are accidental.® Probably,
infinitely many “laws of thought” are thus consistent with the atomic
laws. In other words, the “program” of the brain is not determined
by those laws, any more than the program of a computer is deter-
mined by the electromagnetic laws of its hardware.”

Similarly, the laws of the subatomic world do not by themselves
imply the laws of the macroscopic world (the laws which make a dif-
ference, for example, to survival and reproductive success), but only
by way of countless initial conditions. To put the matter even more
strongly: the macroscopic world which affects natural selection is
consistent with innumerable possible subatomic stories.® This is par-
ticularly so because the kind of evidence which decides the sub-
atomic issues is cooked up in laboratory experience using extremely
sophisticated machinery. No events occurring naturally in our
human environment, at the time when the human brain could have
been evolving, would have decided, for example, what the symmetries
of the nuclear particles are. Indeed, most of the symmetries of these
particles are not exhibited at all in observable nature.

¢ For example: that the orbits of the planets lie, more or less, in a single plane could
not be predicted from the law of gravity. Newton himself held that God had to be
invoked to explain this. Even where the symmetries of bodies were those of the under-
lying laws—as is the case with the right-left symmetry of the human body—this coin-
cidence would have to be regarded as a miracle.

It is interesting that Newton’s conception of the miraculous order of nature is dif-
ferent from the medieval one. Newton marvels at the mathematical order, not of the
laws of nature, but of the initial conditions.

7In what follows, I will grant Peirce, for the sake of argument, that he is right about
the laws of the macroscopic environment: namely, that we have a disposition to dis-
cover them because of their conspicuous role in human evolution. I confess, though,
that I have difficulty seeing why, for example, because the laws of thermodynamics play
a role in the evolution of the brain, the brain has an enhanced capacity to discover
these laws. I will leave the matter open.

8 This claim might sound like a standard anti-realist line, but it isn’t. The antireal-
ist line is that observations cannot decide theoretical issues; my claim is that events
occurring naturally in the human environment cannot decide theoretical issues in
areas like particle physics.
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Thus, if we are to acquire an ability to guess correctly at the laws
of atomic physics, we must go beyond natural selection. Accordingly,
Peirce adopted a hybrid metaphysics reminiscent both of Spinoza
and of Hegel, but which outstrips both of them.

Here’s the theory: evolution encompasses not just the biological
sphere, but the entire universe. The laws of this evolution operate
everywhere, and govern also the evolution of mind.® What is more,
the operation of both mind and the world reflect their (common)
evolutionary history. Thus, by studying the operation of mind, one
can discover the laws of the world by applying these operations to
existing physical theories. Here is a sample of Peirce’s thinking:

7.515. But if the laws of nature are results of evolution, this evolution
must proceed according to some principle; and this principle will itself be
of the nature of a law. But it must be such a law that it can evolve or
develop itself. . . . Then the problem was to imagine any kind of a law or
tendency which would thus have a tendency to strengthen itself. Evidently
it must be a tendency toward generalization,—a generalizing tendency.
But any fundamental universal tendency ought to manifest itself in
nature. Where shall we look for it? We could not expect to find it in such
phenomena as gravitation where the evolution has so nearly approached
its ultimate limit, that nothing even simulating irregularity can be found
in it. But we must search for this generalizing tendency rather in such
departments of nature where we find plasticity and evolution still at work.
The most plastic of all things is the human mind, and next after that
comes the organic world....Now the generalizing tendency is the great law
of mind, the law of association, the law of habit taking. We also find in
all active protoplasm a tendency to take habits. Hence I was led to the
hypothesis that the laws of the universe have been formed under a uni-
versal tendency of all things toward generalization and habit-taking.

Peirce’s ideas are brilliant, if wacky. Yet his problem was real, and
it is well to study its historical resolution. How did physicists discover

9 These universal super-laws were, to Peirce’s thinking, the key to the formal math-
ematical analogies we see between laws—such as the inverse square laws in gravity and
electricity—analogies that demand explanation (7.509-7.511). But Peirce looked to
these super-laws also to explain, not only the mathematical form of laws, but even the
specific values of the constants (like the gravitational constant) appearing in them.
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successful theories concerning objects remote from perception and
from processes which could have participated in Natural Selection?!®

My answer: by analogy. Having no choice, physicists attempted to
frame theories “similar” to the ones they were supposed to replace.
But the writings of Nelson Goodman and Ludwig Wittgenstein!!
prompt the question: in what respect “similar”?'?2 Any objects are
“similar” in some respects and “dissimilar” in others. An analogy,
therefore, presupposes a taxonomy—a scheme of classifying. The
answer, “by analogy,” is so far no answer, unless the ground of the
analogy be set forth.13

10 Curiously, contemporary physics—without realizing it—did adopt, with suc-
cess, a version of Peirce’s procedure. One of the avenues to progress in physics has been
the following “rule” which I shall call the Peirce/Steiner rule (I’m only kidding):

Suppose a theory T utilizes mathematical concept C. To develop T, we look to the
history of mathematics, where we find that concept C been generalized to C*. Then
we generalize theory T by replacing concept C by C* in theory T.

That is, we suppose, and exploit, a kind of recapitulation of the evolution of math-
ematics in the evolution of mathematical physics!

After writing the above, I came across the following declaration by a contempor-
ary physicist: “I believe that the following is a true and somewhat mysterious fact:
deeper physics is described by deeper mathematics” (Zee 1990). This is a generaliza-
tion of “my” rule. Whether or not either rule is “mysterious” is what I will now con-
sider.

1 Analogies between the work of these two, apparently dissimilar, philosophers
were noted in Kripke 1982.

12 Goodman’s “New Riddle of Induction” (Goodman 1983, chs. 3 and 4) deals pri-
marily with the question, “What is the criterion for things to be truly alike?” In the
Philosophical Investigations, Wittgenstein argues that “The use of the word ‘rule’ and
the use of the word ‘same’ are interwoven” (Wittgenstein 1968, § 225), and that the
perplexities surrounding the concept of rule-following, dog also that of similarity.

13 Wittgenstein, it is true, does say “When I obey a rule, I do not choose. I obey the
rule blindly” (Wittgenstein 1968, § 219). And since “The use of the word ‘rule’ and the
use of the word ‘same’ are interwoven” (§ 225), it follows that making comparisons,
like following rules, is not done by deliberation. But it would be absurd to saddle
Wittgenstein with the view that we never think when following a rule; or, indeed, that
we never err when following a rule. That erring is possible, according to Wittgenstein,
is part of the very grammar of following a rule (§ 201); and, in following a rule, “a
doubt was possible in certain circumstances” (§ 213). After all, we do have a concept
of superstition; we often condemn people who generalize blindly.

Wittgenstein’s point is simply that “there is a way of grasping a rule which is not
an interpretation” (§201), and that the entire practice of rule-following could not exist
unless some rules are grasped this way (i.e., followed “blindly”). Generally, we con-
demn people who follow rules blindly when there are higher-order rules that dictate
how lower-order rules are to be followed. These kinds of rules exist in sophisticated
practices such as court cases and in scientific practice. Wittgenstein’s message is that
“Explanations come to an end somewhere” (§ 1). Thus it is open to me, for example,



54 - Mathematics, Analogies, and Discovery in Physics

Besides, as Peirce pointed out, reasoning by physical analogy had
already been discredited in atomic theory. The whole trouble was that
the laws (if any) of the atom (if any) were proving rot to be analo-
gous to those of bodies. The answer can only be, that (for lack of any-
thing better) scientists began relying on nonphysical analogies.

I shall portray two kinds of analogy, or taxonomy, that recur in
the reasoning of the great inquirers: the one I call “Pythagorean”; the
other, “formalist.” About these, I make two claims: first, that they are
deeply “antinaturalist”; second, that without them, contemporary
physics would not exist. We now have three terms to define: “Pytha-
gorean,” “formalist,” and “naturalist.”

By a “Pythagorean” analogy or taxonomy at time ¢, I mean a
mathematical analogy between physical laws (or other descriptions)
not paraphrasable at ¢ into nonmathematical language.!4 Previously
we had examined physically based mathematical concepts (linearity)
and also concepts (analyticity, Hilbert space) which, presently, are
not so based.!s

By a “formalist” analogy or taxonomy, I mean one based on the
syntax or even orthography of the language or notation of physical
theories, rather than what (if anything) it expresses.!¢ Because any
notation has, itself, a mathematical structure, formalist analogies are
also Pythagorean.!” I single out formalist analogies because, from
the “naturalist” standpoint, formalist analogies are (or should be)
particularly repugnant.

to criticize the physicists, in making blind analogies, in terms of higher-order rules
which they themselves accept—as I point out now in the text.

Note, once again, the powerful similarity between the thoughts of Wittgenstein
and Goodman.

14 Though there are enormous difficulties in analyzing the term “mathematics,” for
reasons sketched below, there is sufficient agreement on particular descriptions—as to
whether they are mathematical or not—to give nontrivial content to this definition.
Nor does the existence of borderline cases vitiate the distinction—if it did, most dis-
tinctions, including that between good and evil, would collapse—as Nelson Goodman
pointed out a long time ago.

15 Since we are dealing with epistemology, the relativity to knowledge is expected.

16 ] am thinking here of cases (such as quantum electrodynamics) where the math-
ematical formalism of a theory is suspected of inconsistency so that, strictly and
semantically, it expresses nothing.

17 1 am grateful to Shaughan Lavine for pointing this out to me.
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“Naturalism,” more an ideology than a thesis, has been variously
defined.'8 Perhaps the most influential, if not the most useful, def-
inition of naturalism is that of Quine: naturalism demands that
philosophy be part of, or continuous with, natural science. (It makes
no demands on science.) I see naturalism, rather, in opposition to
anthropocentrism—the teaching that the human race is in some way
privileged, central to the scheme of things. Accordingly, I will define
naturalism to be “opposition to anthropocentrism.” For example,
the naturalist contends that the universe is indifferent to the goals
and the values of humanity, the illusion to the contrary being fos-
tered by natural selection or by hubris.

This definition makes naturalism—Ilike determinism or mecha-
nism—a regulative ideal for science as well as philosophy. For
example, Steven Jay Gould regularly decries certain aspects of cur-
rent evolutionary doctrine as anthropocentric—and his criticism, I
would say, is naturalistic. I also think that this definition can do much
of the work of the other definitions of philosophical naturalism.

Nevertheless, I have no desire to lay claim to the word natural-
ism.!® My topic is anthropocentrism, and my goal in this book is to
show in what way scientists have—quite recently and quite success-
fully—adopted an anthropocentric point of view in applying mathe-
matics.

First, let us distinguish between overt and covert anthropocen-
trism.

Overt anthropocentrism takes the form of theories which preach
the centrality of the human race, either explicitly or implicitly.
Creationism is an example of explicit anthropocentrism. A theory is
implicitly anthropocentric if it implies, via unexpressed assumptions,
the privileged nature of the human race. Geocentrism, though it says
nothing about the human race explicitly, is often thought to be
implicitly anthropocentric.?® Because the anthropocentrism here,

18 The earliest use of the term I have discovered is in Kant’s Prolegomena (Kant
1950, 111): “The cosmological Ideas, by the obvious insufficiency of all possible know-
ledge of nature to satisfy reason in its legitimate inquiry, serve in the same manner to
keep us from naturalism, which asserts nature to be sufficient for itself.”

19 If there were a decent word in English for “anti-anthropocentrism,” I would
gladly drop the term “naturalism.”

20 Actually, although modern writers (most blatantly, Freud) look back at the geo-
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though implicit, is still theory-based, I choose to call it overt anthro-
pocentrism as well.

Covert anthropocentrism is behavior (not necessarily that of mak-
ing assertions) which presupposes some anthropocentric doctrine.
That is, behavior by an agent A is covertly anthropocentric if it is
irrational if A has no anthropocentric beliefs. Our main example of
covert anthropocentrism in what follows will be: classifying phe-
nomena by reference to human peculiarities. No taxonomy is neu-
tral-—employing a taxonomy seriously can be rational only if you
accept its underlying rationale.

It is easy to document the revolt against (even) covert anthro-
pocentrism in modern science. The Galilean—Newtonian revolution,
for example, not only attacked the overt geocentrism of medieval
science, it undermined the very classification of events into “heav-
enly” and “terrestrial.”?! And no contemporary physicist would clas-
sify elementary particles as male and female, although the ancient
Pythagorean systems did so classify numbers,??> and therefore phe-
nomena in general.??

centric universe as anthropocentric, even narcissistic, the medievals themselves did not
necessarily see geocentrism as noble. On the contrary: though a few writers (Saadyah,
for example) did see geocentrism as evidence that the universe was created for man,
many others (like Maimonides) saw geocentrism as a doctrine of humiliation. In many
cosmologies the center of the universe is the worst place to be, a cosmic dungeon or
even dungheap (for a recent treatment of this idea, with citations from Islamic and
Christian, as well as Jewish, philosophy, see Brague 1990).

Nevertheless, I believe that the very idea of a special place for the human race—
even a bad place—is anthropocentric, in the sense that Somebody cares enough about
us to put us in a special place. (As the Yiddish saying goes, “You’re not so big—don’t
make yourself so small.”) The Copernican revolution leaves homo sapiens without any
place; the universe couldn’t care less where we are. In any case, this book is not about
anthropocentric doctrines, as the reader will soon see; it is about anthropocentric
schemes of classification. Whether it is good or bad to be at the astronomical center,
the mistaken idea of classifying events as either “terrestrial” or “celestial” does arise
from the geocentric universe. And the geocentric universe arises from the viewing of
events from the point of view of the earth, which nobody would do if we didn’t live
here. Thus, geocentrism is, in fact, anthropocentric, even if not noble.

21 Indeed, once the heavenly/earthly classification was eliminated by implication in
Newton’s laws of motion, which made no differentiation between forces operating on
terrestrial or celestial bodies, the refutation of overt geocentrism became trivial: no
body could exert the kind of forces which would be needed, on Newton’s theory, to
keep the entire universe circling around it every 24 hours.

22 Odd numbers were male; even, female. Cf. also p. 6 above.

23 Yuval Ne’eman writes that, in attempting to classify the hadrons, he had
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Covert anthropocentrism can lead—today—to the dismissal of a
hypothesis as unworthy of attention. In fact, covert anthropocen-
trism is often equated with superstition. For example, the following
“hypothesis” was “confirmed” seven times before its refutation by
Ronald Reagan:

(P) Beginning with 1840, the President of the United States
elected in a year divisible by 20 dies when in office.

Should a rational politician have refrained from running for
President of the United States in 1980 for this reason? Such a fear is
superstitious, we feel. Philosophers of science put things as follows:
hypothesis (P) is rot confirmed, because it is unconfirmable. In
Nelson Goodman’s terminology (Goodman 1983), hypothesis (P) is
“unprojectible.” The seven “successes” are a fluke.

Why is (P) unprojectible? We do not regard “President of the
United States,” a category invented by (one) human society for its
own purposes, as relevant to mortality.2* Similarly, whether the year
(of the Gregorian calendar) is divisible by 20 (or even 2,000) or not
makes no difference to nature. Nor is there anything special about
“round” numbers like 20, which are “round” only in our parochial
decimal system, useful to us because we have ten fingers. Finally,
since the category “dies in office” includes death by “natural” causes
and death by assassination (and also refers to a naturalistically irrel-
evant “term of office”), we don’t expect any laws applicable to this
artificial class.

In sum: hypothesis (P) is not even a candidate for confirmation,
because it is covertly anthropocentric: the concepts it applies presup-
pose that the human race enjoys a special status.?> The act of

“hoped” that the Star of David would play a role. As far as I know, this is the first
attempt to apply the Jewish—gentile distinction in physics. (Ideologists have attempted
to apply national distinctions in classifying types of physical theories, another issue.)

24 1 have heard that the Mormon religion regards the Constitution of the United
States as divinely inspired; for a Mormon, the question of projectibility of (P) would
look completely different.

25 And here, “special” does not necessarily mean “preferred.”

The knowledgeable reader will wonder why, if I mention Nelson Goodman, I leave
out his concept of “entrenchment” (cf. Goodman 1983, ch. IV, for this concept).
The reason is simple: “entrenchment,” in Goodman’s theory, is significant at the most
basic level of projection. As Goodman himself points out, however, background
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projecting hypothesis (P), in other words, makes no sense except on
anthropocentric principles. For on naturalist principles, (P) is unpro-
jectible—and one cannot make rational predictions based upon
unprojectible hypotheses, even if the hypotheses have been consistent
with the data up till now.

Covert anthropocentrism, then, makes the same kind of state-
ment as overt anthropocentrism. Those who loathe anthropocen-
trism ought to loathe covert anthropocentrism all the more for being
insidious.

There is, indeed, a kind of anthropocentrism—TI’ll call it “play it
safe” anthropocentrism—which pretends to avoid statements con-
cerning the status of the human race in the Great Chain of Being.
“Play it safe” anthropocentrism advocates, modestly, that science
cannot confirm any hypothesis about the unobservable. In Van
Fraassen’s words, all we can reasonably hope to do is to confirm by
evidence that scientific hypotheses are “empirically adequate,” mean-
ing roughly that they are consistent with all possible human obser-
vations.2¢ Van Fraassen admits that this term is anthropocentric, but
sees no problem: human science can only reflect human limitations.
In any case, he argues, the realist alternative sees science as aiming at
truth, and empirical adequacy is just a weakening of that goal. Hence
empirical adequacy is a safer bet than truth,?” and therefore the more
rational conclusion—always.

I regard “play it safe” anthropocentrism as no different than any
other kind. A philosopher who objects to projecting anthropocentric
hypotheses should also object to /imiting or weakening hypotheses by
restricting them to anthropocentric categories (such as empirical

hypotheses—“overhypotheses,” as he calls them—will play the dominant role in
mature sciences. Goodman emphasizes “entrenchment” only because it is overlooked
by philosophers who realize the importance of background information in pro-
Jectibility judgments, but overlook the question of the projectibility of the background
information itself! Arguing by regress, Goodman arrives at “entrenchment,” a prop-
erty that is independent of background hypotheses. (For a very different treatment of
the role of background information in science, see Levi 1980.)

26 See Van Fraassen 1980.

27 Literally, of course, the hypothesis of truth is just as safe as empirical adequacy,
because any detectable refutation of a hypothesis is also a detectable refutation that
the hypothesis is empirically adequate. From that point of view, why not go for truth?
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adequacy). The content of the prediction may now be weaker; but the
prediction itself (the speech act) makes a covert anthropocentric
statement.

For example, the same theories that tell us that we cannot see x-
rays tell us also that what we do see (light) is a random sample of
radiation; i.e., that there is nothing special about light, and that there
is nothing wrong per se with projecting the properties of light on
unobservable radiation. Deliberately to limit our projections con-
cerning radiation to light, then, is to imply,?® covertly, theses about
the centrality of the human race—theses which are far more conse-
quential than the “realist” conclusions (about the relevance of obser-
vation to the unobservable) that Van Fraassen wanted to avoid. From
this point of view, the assumption of empirical adequacy (as distin-
guished from truth) is not “playing it safe” at all. It is adopting an
anthropocentric world view, though covertly.?°

Finally, projecting (or failing to project) a hypothesis is only one
activity one performs with a taxonomy. Guessing by analogy is
another. Nevertheless, where the analogy is improper, as anthro-
pocentric analogies are for the naturalist, guessing by analogy can be
just as irrational as projecting an unprojectible hypothesis. I take it
that using a dowsing stick to pick the place to drill for oil is supersti-
tious, even though no hypotheses are projected.

* ok %k

There is no question that the modern scientific revolution involved a
revolt against anthropocentrism. Nevertheless, I now argue, recent
physics—from about 1850—has retreated from naturalism. The truly
great discoveries in contemporary physics were made possible only

28 The implication referred to here is sometimes called “implicature” in the philo-
sophy literature. For example, when asked for my evaluation of a student and I praise
his handwriting, the implicature is that my evaluation is low. Implicature is a relation
between an act (including a speech act) and a proposition, namely that the act does-
n’t make sense unless the proposition is believed.

2% To prevent misunderstanding, I emphasize that I am not arguing against anthro-
pocentrism—quite the contrary, this book will end up supporting it. What I object to
is Van Fraassen’s idea that restricting science to the empirically adequate has no philo-
sophical implications concerning the status of the human race.
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by abandoning—often covertly and even unconsciously3°—the nat-
uralistic point of view. This astonishing thesis follows from the fol-
lowing two premises:

I. Both the Pythagorean and formalist systems are anthropocen-
tric; nevertheless,

II. Both Pythagorean and formalist analogies played a crucial role
in the fundamental physical discoveries in this century.

Leaving the discussion of II for the next chapter, here’s my argument
for L

Historically, Pythagoreanism was not viewed by its proponents as
anthropocentric. I contend that no modern version of Pythago-
reanism avoids this charge: mathematics has changed considerably
since Pythagoras. Pythagoreanism began as a doctrine concerning
numbers; but the term “Pythagoreanism” in-this book does not
reflect bias toward number theory. To the contrary, number theory
has played little role in physics; the characteristic “Pythagorean”
concepts—prime numbers, perfect numbers—have surfaced neither
in physics nor in physical discovery.3!

Also, historical Pythagoreanism was primarily metaphysics; I
accent its epistemology. Thus, I shall not discuss whether the world
“is” numbers—or, for that matter, an irreducible representation of
some group. Pythagoreanism for me is the teaching that the ultimate
“patural kinds” in science are those of pure mathematics.32

The discovery that musical intervals map into the natural numbers
was an early triumph of a creed not usually associated with empiri-
cal inquiry. In late antiquity, a synthesis of Pythagoreanism with

30 Behavior can often go contrary to, be irrational in light of, one’s professed beliefs
(no atheists in foxholes). Since practicing scientists often advocate naturalism, at least
in my sense (Hawking 1988 is an example), their behavior in making discoveries is
unintelligible, given their professed views. We focus our attention here on what scien-
tists do, not what they say.

31 Recently, however, work has been done on the problem: what would a bound
quantum system be like, if its discrete energy levels were given by the zeros of the
Riemann zeta function. (The Riemann zeta function is well known to carry informa-
tion about the prime numbers.)

32 Or, weaker: that some of the ultimate “natural kinds” are those of mathematics.
This could be called “weak” Pythagoreanism, with “strong” Pythagorean the proposal
mentioned in the text.
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Aristotelian science (the “four causes”) emerged. I quote from
Tamblichus, of the third century C.E.:

There is an efficient cause in physical numbers: one may see this in the
generative numbers shown in animal generation. And the principle of
movement according to difference and inequality in numbers shows an
efficient cause. But this is especially manifest in the rotations and the rev-
olutions of the heavens. And the stars’ configurations in relation to each
other, their periodic revolutions, all of their shapes, their powers, are con-
tained in the principles of numbers. And the moon’s phases, the order of
the spheres, the distances between them, the centres of the circles which
carry them, numbers contain them all. Indeed the measures of numbers
determine health; crises in sickness are completed according to determi-
nate numbers; deaths come thus also, nature having fulfilled the appro-
priate measures of change. Hence number is generative of animal life. For
since animals are made up of soul and body, the Pythagoreans say soul
and body are not produced from the same number, but soul from cubic
number, body from the bomiskos. For, they say, <soul’s> being is from
equal times the equal times, coming to be in equality, whereas body is a
bomiskos, produced from unequal times the unequal times. For our body
has unequal dimensions: its length is greatest, its depth least, its breadth
intermediate. Thus soul, as they say, being a cube from the number 6
(which is perfect), comes to be equal an equal times the equal as in the
cube 216, for this is 6 by 6 by 6. But body, being from unequal sides an
unequal times the unequal an unequal times, is neither dokis nor plinthis
but a bomiskos, having for sides 5, 6, 7: for 5 by 6 is 30, and 7 by 30 is 210.
Thus seven-month births occur in 210 days, having a complete body. If
then the soul alone were generated, it would be born in 216 days, a per-
fect cube being completed with its coming. But since the animal is made
of soul and body, 210 days are appropriate to the completion of the body:
the generation of the body dominates in the animal. Thus soul desires
equality, the body relates to anomaly and inequality.33

What is consequential here is not the reference to numbers as
“objects,” but the number-theoretic taxonomy: cubic number,
bomiskos, perfect number, etc. The soul is associated with the cube
of a perfect number, 6. The body, on the other hand, is associated
with the number 5 X 6 X 7, a bomiskos in which the perfect number

33 Translated in O’Meara 1989, Appendix.
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is in the middle. Iamblichus has no nonmathematical explanation of
the alleged numerical relationship between body and soul.

Not every mathematical classification is Pythagorean. We have
seen that the classification of phenomena into linear and nonlinear
can be interpreted in nonmathematical terminology. Einstein used
the mathematical trait of “covariance” to express a physical idea:
space has no causal properties.

Nevertheless, Pythagorean reasoning dominates twentieth-cen-
tury physics, in that Pythagorean mathematical analogies—ones with
no physical basis when made-—have been indispensable in recent dis-
covery. My case for this depends primarily on historical evidence; but
the following logical considerations boost its a priori plausibility.

Consider the analogies a physicist draws. The theorist proposes,
for testing, mathematical laws—themselves, analogies between the
future and the past. Laws I call first-order analogies. In discovering
those laws, however, one employs more abstract analogies than what
the laws express. For example, physicists may look for laws with the
mathematical properties of known, successful laws.?* Such mathe-
matical analogies are second-order because they are based on prop-
erties of laws. The physicist may resort even to a third-order
mathematical analogy, based upon the properties of properties of
descriptions. Murray Gell-Mann argued formally from the preva-
lence of a symmetry to that of a related, more general, one.33

Now the higher the order of a mathematical analogy, the more
likely it is to be Pythagorean. A third-order analogy is based on the
similarity between two mathematical, not material, structures. At the
time the analogy is drawn (and we do not care here about any other

34 In order to avoid getting involved in disputes about scientific realism and anti-
realism, I shall not attempt to characterize too precisely what constitutes a “success-
ful” prediction, or a “successful” mathematical description of nature.

35 See Gell-Mann 1987. I am grateful to Yuval Ne’eman for making available to
me this and many other articles on the Eightfold Way and for a number of illuminat-
ing communications (written and oral) on the subject. Though Ne’eman, independ-
ently of Gell-Mann, also discovered the Eightfold Way, his reasoning (as outlined, e.g.,
in Ne’eman 1987, does not seem to have involved mathematical analogies—and, there-
fore, his name does not appear in the text. I hope it is clear, finally, that an enormous
amount of experimental and theoretical preparation lay behind the discovery of the
omega minus; I am highlighting a specific aspect of a complicated story.
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time), it is doubtful that such an analogy could have been physically
grounded; otherwise, the physicist would not have had to draw it.

Now, what is anti-naturalist about Pythagorean analogies and
taxonomies? This question hangs upon another, weighty one: what is
mathematics? Or: what is the criterion for concepts to be “mathe-
matical”?

From a broadly Fregean standpoint, we can distinguish three cat-
egories of mathematical concepts, depending upon whether they are
(or purport to be):36

(1) Properties of mathematical objects (e.g., “prime number”);

(2) Properties of sets or systems (e.g., “group”);

(3) Second-order properties or functions (e.g., “the number of
Fs,” “the derivative of ).

Frege himself was interested in the differences between the categor-
ies. But we can also ask, of each category, what makes a member of
that category a mathematical concept? So we get three questions, and
we should not expect the answers to be the same.

For example, given (2), we can inquire after the distinction
between the concept of a group and that of a game like chess. Why
is the “theorem” that mate cannot be forced with a king and two
knights against a king not a theorem of mathematics (and no math-
ematician I consulted says it is)?>7 Why are the notions of chess, like
“castling,” “en passant capture,” “queening,” etc., of no mathemati-
cal significance? The standard philosophies of mathematics—Ilogi-
cism,3® formalism, or intuitionism—have no answer, since the
distinction between mathematics and chess is a predilection of
mathematicians, rather than a logical distinction.

36 Discussions with Sidney Morgenbesser were invaluable in helping me formulate
the following ideas.

37 Of course, the theory of games in general is a branch of mathematics. It could
well be that the theory of games, as well as other branches of mathematics, has impli-
cations for chess, in which we could speak of applications of these theories to specific
games. It remains, however, that the “axioms” of chess are not regarded as mathe-
matical axioms.

38 Frege did not treat this subject: when he accused formalist Hilbert of slighting
the distinction between mathematics and games, he meant only that Hilbert ignored
the distinction between proving a theorem and playing a game, or between the steps of
the proof and the moves of the game—not the distinction at issue here.
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This attitude of mathematicians would change if new structural
facts about chess emerged. Suppose that every winning position in
chess had a geometrical symmetry. A “theorem” of that sort might
be regarded as mathematics. Not that any mathematician expects
this: chess, like many two-party games, is an abstraction of war. The
provenance of chess does not augur well, by past experience, for the
richness typical of mathematical concepts.?®

Mathematics also has its roots in various human activities (meas-
uring, counting, locomotion). But modern mathematics has traveled
far from these roots. As Mac Lane puts it:

The genesis of the more complex mathematical structures tends to take
place within Mathematics itself. Here there are a variety of processes
which may generate new ideas and new notions. These are: conundrums
(36), completion (37), invariance (37), common structure (analogy) (37),
intrinsic structure (38), generalization (38), abstraction (38), axiomatiza-
tion (39), the analysis of proof (39).40

That modern mathematical concepts breed within mathematics
(rather than empirically) is important; but what makes them mathe-
matical? Most mathematicians would accept Wigner’s view (Wigner
1967): modern mathematics expresses the human aesthetic sense.
Concepts are selected as mathematical because they foster beautiful
theorems and beautiful theories. That the processes listed by Mac
Lane generate beauty is a remarkable, contingent fact about the his-
tory of mathematics. In the words of a great twentieth-century
mathematician:

3% Recent computer analysis of chess, working backwards, has revealed surprising
results. There are positions which result in a win for one of the players in over 90
moves, none of which involves the capture of a piece or the movement of a pawn. The
winning “line,” moreover, is almost impossible to memorize, because there seems to be
no rhyme or reason for the specific winning moves. Seemingly random moves result in
a win, without anyone being able to characterize the moves as a “strategy” of one kind
or the other. This is the opposite of what we find in mathematics.

40 Mac Lane 1986, 36. The numbers in parentheses are the author’s page references
to that work.

Note that the “processes” listed here presuppose a system of taxonomy or classifi-
cation: consider particularly “invariance” and “analogy.” Thus, from our point of
view, any use of Mac Lane’s list in order to characterize mathematics as “objective”
(nonanthropocentric) simply begs the question (I don’t claim, of course that Mac
Lane himself intended to do this).
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The mathematician has a wide variety of fields to which he may turn, and
he enjoys a very considerable freedom in what he does with them. To
come to the decisive point: I think that it is correct to say that his criteria
of selection, and also those of success are mainly aesthetical. . . . One
expects a mathematical theory not only to describe and classify in a
simple and elegant way numerous and a priori disparate cases. One also
expects “elegance” in its “architectural,” structural makeup. . . . These cri-
teria are clearly those of any creative art. (Von Neumann 1956, 2062)

Of course, G.H. Hardy is notorious for the view that beauty is the
essence of mathematics:

The mathematician’s patterns, like the painter’s or the poet’s, must be
beautiful; the ideas, like the colours or the words, must fit together in a
harmonious way. Beauty is the first test: there is no permanent place in
the world for ugly mathematics . . ..

It may be very hard to define mathematical beauty, but that is just as
true of beauty of any kind—we may not know quite what we mean by a
beautiful poem, but that does not prevent us from recognizing one when
we read it.#!

That the aesthetic factor in mathematics is constitutive has actu-
ally become a truism in the mathematical community. A survey in a
recent issue of the Mathematical Intelligencer asked readers to rank
mathematical theorems in order of their beauty (Wells 1988).
Perhaps the question was flawed for divorcing the beauty of a
theorem from the “architecture” of its proof. Still, I doubt that a
periodical in any other science would conduct such a survey.

41 Hardy 1967, 85. Hardy goes on to say that the solution to a chess problem is (or
can be) mathematics, because it partakes of the same kind of beauty as mathematics,
and in this he seems to differ from my view. But he immediately goes on (p. 88) to say
that a chess problem is “trivial” mathematics. This is because chess problems are not
serious in the way mathematics is. But he then adds (p. 90) that “the beauty of a math-
ematical theorem depends a great deal on its seriousness”! This almost circular rea-
soning brings him right back to my position.

Nor does Hardy’s insistence that pure mathematics has no utility (probably
because utility compromises beauty) have any bearing on its applicability. Utility and
applicability, he rightly holds, are two separate things. Hardy explicitly recognizes
Maxwell, Einstein, Dirac, and Eddington as “real” mathematicians. Quantum
mechanics and relativity, he says, are applied mathematics, but at present are “almost
as ‘useless’ as the theory of numbers” (131). We can, of course, today laugh (or cry) at
the naivety of the last sentence.
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It seems plausible, then, that the best answer to the question:
“Why is chess a game; but Hilbert spaces, mathematics?” will rely on
aesthetics. What caused mathematicians to frame the concepts they
did was often their taste. This certainly accords with Pytha-
goreanism, which was, inter alia, an influential aesthetic doctrine,
centuries after Pythagoras.*? For me, though, the mathematical sense
reduces to the aesthetic, whereas historical Pythagoreanism, limiting
itself to one structure only (the natural numbers), claimed the
reverse. To say that the mathematical sense reduces to the aesthetic is
to deprive the aesthetic sense of the only argument for its objectiv-
ity—namely, that the aesthetic sense is based on the objectivity of
mathematical form, as the Pythagoreans in fact argued. If the
Pythagorean position on aesthetics today begs the question—if, as I
hold, the term “mathematical form” (given the multitude of “mathe-
matical forms” today) is empty without introducing the human aes-
thetic sense—then there is no escape from the conclusion that the
human aesthetic sense is nothing but species-specific preference.
Classifications like beautiful/ugly are then anthropocentrlc S0,
finally, are the mathematical classifications.

Besides aesthetic considerations for mathematical concepts, there
is another—convenience. Our power to compute, like every human
power, is limited; computational aids compensate. For example,
imaginary numbers were introduced by Cardano as solutions of
quadratic equations. Bombelli noted (what Cardano probably also
knew) that Cardano’s formula for the roots of a cubic equation can
make even a real root the sum of the square roots of two imaginary
numbers. As Roger Penrose puts it:

While at first it may seem that the introduction of such square roots of
negative numbers was just a device—a mathematical invention designed
to achieve a specific purpose—it later becomes clear that these objects are
achieving far more than that for which they were originally designed. As
I mentioned above, although the original purpose of introducing com-
plex numbers was to enable square roots to be taken with impunity, by
introducing such numbers we find that we get, as a bonus, the potential-
ity for taking any other kind of root or for solving any algebraic equation
whatever. Later we find many other magical properties that these complex

42 See Hersey 1976.
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numbers possess, properties that we had no inkling about at first. These
properties are just there. They were not put there by Cardano, nor by
Bombelli, nor Wallis, nor Coates, nor Euler, nor Wessel, nor Gauss,
despite the undoubted farsightedness of these, and other, great mathe-
maticians; such magic was inherent in the very structure that they gradu-
ally uncovered. When Cardano introduced his complex numbers, he
could have had no inkling of the many magical properties which were to
follow—properties which go under various names, such as the Cauchy
integral formula, the Riemann mapping theorem, the Lewy extension
property. These, and many other remarkable facts, are properties of the
very numbers, with no additional modifications whatever, that Cardano
had first encountered in about 1539. (Penrose 1989, 94-5)

Penrose here supports Platonism in mathematics;*? a concept intro-
duced for convenience turns out to have the characteristic “magic” of
mathematics. But the same happens in applications to physics: a
mathematical concept introduced for convenience turns out to have
“physical reality.”

Take the very case of “imaginary numbers.” Before the nineteenth
century, these had little use in physics. Then, complex-valued expo-
nential functions replaced trigonometric functions in describing
waves, exponentials being easier to calculate with (the derivative of
an exponential is an exponential). The “imaginary part” of these
functions played as yet no role.

The concept of a potential (from which fields can be retrieved by
taking derivatives) also began as a computational convenience. For
example, a scalar potential is a scalar function ¢(x,y,z), from which
we can retrieve a field as the vector function

( 30(x, y,2) 39(x,3,2) ID(x,, Z))
ax ~  dy oz

—A¢ for short. It is obvious that it is easier to calculate with the
scalar function.

43 In another essay, however, I argue that the real spiritual ancestor of Penrose’s
doctrine is Descartes, not Plato. It was the former, not the latter, who distinguished
between “true and immutable” essences and arbitrary combinations of properties. It
was David Shatz who pointed out to me the relevance of Descartes.
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Finally, consider the concept of a Taylor series, i.e., the expansion
of a function as a power series,

s .
> c;xlA4
=

This mathematical idea has great use in calculation: we calculate the
value of a function to any degree of desired approximation by cal-
culating the values of the appropriate number of terms of the expan-
sion. If the convergence of the series is very rapid, then the first few
terms by themselves can give an excellent numerical approximation
to the exact value of the function. Taylor series are so useful that sci-
entists invent them when they don’t even exist. For example, they pre-
tend that constants are variables and then “expand” in powers of the
constant. (This is really a case of the formalism leading the scientist,
the tail wagging the dog—we shall have occasion to see the remark-
able consequences of this fiction.)

Consider the fundamental charge of the electron, e. Scientists find
it immensely useful to write expressions like this:

fx) = S aixel

derived by pretending that the charge is a variable. Each of the coef-
ficients is a function of x. Since e is known and sufficiently small, the
series converges rapidly, i.e., usefully.

One such function might be, say, P(q — ¢')—the probability that
an “excited” atom in a state ¢ will radiate a photon and drop to state
q'.#> Photons so emitted (in large numbers) are what produce spec-
tral lines which indicate, not the state of the atom (as nineteenth-
century physicists had imagined), but transitions from one state to
another. One of the historic missions of quantum mechanics was to
explain why certain spectral lines were “missing” from the spectrum

44 My understanding of these matters was greatly enhanced by conversations with
Shlomo Sternberg and Shmuel Elitzur. For a profound treatment of the group theor-
etical issues, cf. Sternberg 1994.

45 One might ask, how can an atom, in a defined state, make a transition? Isn’t it
the case that defined states in quantum mechanics are stable? The reason that atoms
make such transitions is that they are surrounded, like everything in the world, by a
field of electromagnetic radiation. What is an exactly defined state of the atom does
not count as an exactly defined state of the combined atom-plus-electromagnetic field.
This combined state can then develop over time to another combined state in which
the atom is then found in another of its defined states.
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of a given atom. I would like to discuss the vital contribution of the
concept of a Taylor series: the missing lines do occur, but are invis-
ible. To calculate the probability of the transition, we start with a
Taylor series (never mind for the moment where it comes from):

2 ai(gq.9")e

In quantum mechanics, the terms are complex numbers, so to finish
the calculation, we take the absolute square of the sum:

Pg—>q) = |3 algq)e|
Now for certain transitions g—¢’ the first-order term, a,(g,q’)e, is
zero since the coefficient vanishes. Only the first-order term could
produce a tramsition strong enough to be detectable; whence the
“missing” lines.

It is convenient—and therefore customary—to use the concept of
the Taylor series in classifying phenomena as “first-order,” “second-
order,” etc. That is, suppose we have a function that we feel tells the
“whole truth” about nature. If we expand it as a series, we can say
what nature would be like if we ignore terms beyond the first-order,
second-order, etc., terms. In our case, then, we can say: there is no
“first-order amplitude” for certain atomic transitions. Spectral lines,
in other words, are first-order phenomena. So-called “Raman scat-
tering,” by contrast, is a second-order phenomenon, since the first-
order term of the Taylor series does not allow for such scattering.
The second-order term does, and this probability contains a factor of
2, and hence is very small.

The classification of phenomena (as distinct from terms) as first-
order, second-order, etc., is certainly not one that derives from obser-
vation, but convenience. We could just as well have classified
phenomena according to decimal powers: i.e., magnitudes from 0 to
9 belong in one class, from 10 to 99 in the next class, etc. The real dis-
tinction is that between first-order, second-order, . . . terms—a math-
ematical distinction deriving from the calculus of Taylor series.
Projecting the distinction on the phenomena is anthropocentric, but
scientists do it anyhow.

More generally, they like to assume that what is convenient is cor-
rect (a trait by no means restricted to scientists). They hope, for
example, that their calculations will end in a blaze of cancellations,
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as a sign that the calculations are correct. This subject is tangential
to our topic (that is, anthropocentric classifications, not calcula-
tions), but I cannot resist quoting a candid statement by one of the
greatest calculators of the century:

I was thus led to a long calculation, the longest in my career. Full of local,
tactical tricks, the calculation proceeded by twists and turns. There were
many obstructions. But always, after a few days, a new trick was some-
how found that pointed to a new path. The trouble was that I soon felt I
was in a maze and was not sure whether in fact, after so many turns, I was
anywhere nearer the goal than when I began. This kind of strategic
overview was very depressing, and several times I almost gave up. But
each time something drew me back, usually a new tactical trick that
brightened the scene, even though only locally.

Finally, after about six months of work off and on, all the pieces sud-
denly fitted together, producing miraculous cancellations, and I was star-
ing at the amazingly simple, final result. . . . Since there were some limiting
procedures in my calculation that were not rigorous, I did not feel quite
secure until I compared the expansion of the equation in powers of the
parameter x, up to x'2, with the expansions of Van der Waerden and of
Ashkin and Lamb, which were known to be exact to x'2. There was com-
plete agreement. (Yang 1983, 12; cf. Yang 1952)

It is clear that Yang’s confidence in his calculation is bolstered by the
“miraculous cancellations” he experiences after six months. But such
thinking is obviously anthropocentric and even childlike: what has
“miraculous” simplification of the notation we use in describing
nature got to do with nature itself?

k ok k

“Formalism” is even more blatantly anthropocentric than general
Pythagoreanism, because of the pivotal role formalism ascribes to
human language.

The ancient attitude is that language not only describes, but mir-
rors reality, indeed is its own reality.#¢ The kabbalists regard the let-

46 As Sidney Morgenbesser pointed out to me, the medieval attitude to language
was complicated by their view that natural objects and events were “signs” in a Divine
language.
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ters of the Hebrew alphabet as the building blocks of creation. One
of the characteristics of magic is that it systematically substitutes
symbols for things symbolized. By erasing a symbol of one’s enemy,
it is thought, one may eliminate the enemy himself. And the
medievals regarded the semantics of language (Latin, Hebrew, what-
ever) as reflecting the system of “natural kinds.” (Plato’s Cratylus
argues this for the Greek language, though some think Plato was jok-
ing.)

It was John Locke who “made the modern mind” by arguing that
language is conventional, that its semantic schemes need not corres-
pond to a scheme outside language, and that therefore science (itself
a linguistic phenomenon) may never fathom the secrets of matter.
Unlike Peirce, Locke consoled his readers with the thought that our
faculties are sufficient for daily needs.

The idea that we can make scientific progress by studying the syn-
tax or other formal properties of our language is even more absurd,
on Locke’s position. For example, the symmetries of our notation
need not reflect the symmetries the notation describes; does a sen-
tence have an enhanced claim to be true because it is a palindrome?+”
To think it does is arrant anthropocentrism. To be sure, the natural-
ist may appeal to natural selection,*® which, let us assume, provides
an explanation of how love of symmetry promotes survival.*® But
when the preference for symmetries (in food, mating partners, etc.)
spills over into an inclination to cherish hypotheses because their
written representation is symmetrical—we get superstition and mag-
ical behavior. (As David Hume used to argue, superstition is as much
a subject for scientific inquiry as is rationality. The tendency toward
superstition may even have survival value—but it remains supersti-
tion, nevertheless.)

47 A palindrome is a sentence that is spelled the same way forward and backward:
e.g., “Madam, I'm Adam.”

48 1 take it for granted that natural selection is not anthropocentric, and that the
naturalist may use natural selection in explaining away correlations between humans
and their environment, correlations which otherwise would in fact promote anthro-
pocentric feelings among us.

49 This admission is made for the sake of argument. The naturalist should be care-
ful about such claims, however. Cavemen fashioned symmetric arrow heads for aes-
thetic reasons, although asymmetric heads would have been more efficient in hunting
animals.
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Expecting the forms of our notation to mirror those of (even) the
atomic world is like expecting the rules of chess to reflect those of the
solar system. I shall argue, though, that some of the greatest discov-
eries of our century were made by studying the symmetries of nota-
tion. Expecting this to be any use is like expecting magic to work.

* % ¥

So far the point is historical, and ad hominem. I assert that physicists
behaved as though naturalism were false. But I also assert that they
were successful in doing so. And this historical record bears on the
cogency of naturalism itself.

If we examine the analogies actually used to discover the major
laws of physics in our century, we find that the analogies used are
anthropocentric. On naturalist grounds, then, they should have
failed, just a dowser should fail to find oil. And this is a difficulty for
naturalism, because what the evidence suggests is, on the contrary,
that nature looks “user friendly” to human inquiry.>°

I say “difficulty” (for naturalism) and not “refutation” because it
is impossible to refute a background belief like naturalism in this
way. We refute a general hypothesis by finding a counter-example
(not all crows are black, not all gold is yellow). A background belief
operates by labeling certain hypotheses or behaviors as inappropri-
ate or irrelevant. But we know that on occasion, inappropriate
hypotheses can be consistent with known evidence, as in the case (dis-
cussed above) of the United States Presidents after 1840. The natu-
ralist simply dismisses as a fluke the so-called “success” of these
hypotheses, dismisses the (naturalistically) tendentious claim that
anthropocentric behavior “worked.” (In the same way, where a reli-
gious man might say that his prayer was “answered,” the naturalist
rejects the term.) And, it goes without saying, the naturalist rules out
in advance any connection between the human brain and the uni-
verse as a whole, except those connections explained away by natural
selection.

But if inappropriate hypotheses or behavior continue to “work,”
at some point the naturalist will feel confronted by a mystery: the
apparent confirmation of that which, according to background

50 ¥ am indebted to George Schlesinger for this phrase.
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beliefs, cannot be confirmed. As an example, consider the clash
between Western and Chinese medicine. For the sake of argument,
suppose that Chinese medicine is based on principles unacceptable to
Western physicians, so that specific practices based upon it, like
acupuncture, are (on Western grounds) doomed to failure. Suppose
also, however, that acupuncture, even though on Western principles
unconfirmable, has so much apparent confirmation that it cannot
simply be dismissed. What does one do, short of revising one’s total
belief in Western medicine to the exclusion of the Chinese?

One strategy is to attempt to explain away the apparent confirma-
tion as an illusion; another is to try somehow to bring acupuncture
into the framework of Western concepts. Simply to practice
acupuncture while retaining one’s background beliefs as before is a
kind of intellectual schizophrenia. This is how I regard the position
of today’s naturalist physicists: their behavior goes counter to their
beliefs. Or: given their beliefs, their behavior is irrational. For what
seem to be anthropocentric methods of discovering physical laws are
so entrenched and widespread and so spectacularly successful that
they cannot simply be dismissed.

But because my evidence, like Wigner’s, is only evidence of suc-
cess, there is an obvious counter: ignoring evidence of failure, one
can make any hypothesis look good. (This is an example of explain-
ing away the apparent success of a hypothesis or procedure.)
However, this criticism overlooks the contrast between Wigner’s the-
sis and mine.>!

My thesis concerns not this or that attempt to describe nature
mathematically, but the successful deployment of a taxonomy, a
scheme. Success is measured by whether the discoveries that scientists
were looking for (the laws of atomic and subatomic particles; expla-
nations for the various anomalies of the atomic and subatomic
world) were in fact found in due time—using the scheme. It is to be
expected that many scientists were unsuccessful, though they used
the scheme; no classification is a sufficient condition for discovery. (If
it were, there would be no difference between geniuses and second-

51 T imply that Wigner’s thesis is, in fact, vulnerable to the criticism. In fact, it is
not; but my version of the thesis (concerning mathematical analogies) is easier to
defend.
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rate physicists.) Even for geniuses like Dirac, Yang’s rule applies: “In
theoretical physics, we are pursuing . . . a guessing game, and guesses
are mostly wrong” (Zhang 1993, 19). A system of classification is,
then, merely a framework for guessing.

There is, further, a great difference between guessing the right
answer on a multiple choice test, where the options are spelled out in
advance; and guessing the laws (say) of the interactions between pho-
tons and electrons, where the investigator has to make up the options.
A scheme of analogies restricts attention to a certain range of
options. If the scheme is anti-naturalistic, it should (according to the
naturalist) be worthless; and guessing, vain. Peirce’s words are so apt
that I quote them again:

7.680. It is idle to say that the doctrine of chances would account for
man’s ultimately guessing right. For if there were only a limited number
n of hypotheses that man could form, so that 1/n would be the chance of
the first hypothesis being right, still it would be a remarkable fact that
man only could form » hypotheses, including in the number the hypoth-
esis that future experimentation would confirm. Why should man’s #
hypotheses include the right one? The doctrine of chances could never
account for that until it was in possession of statistics of the hypotheses
that are inconceivable by man. But even that is not the real state of things.
It is hard to say how many hypotheses a physicist could conceive to
account for a phenomenon in his laboratory. He might suppose that the
conjunctions of the planets had something to do with it, or some relation
between the phases of variability of the stars in o Centauri or the fact of
the Dowager empress having blown her nose 1 day 2 hours 34 minutes and
56 seconds after an inhabitant of Mars had died.

Even geniuses like Dirac should not have succeeded in guessing
the laws of the atom, using the analogical schemes they used, if nat-
uralism is true. This message will be intensified if the reader actually
examines Dirac’s discovery, narrated below.

The forgetful reader may object that given Jater physics, we often
understand why “nonphysical” guesses worked. This objection I have
already dismissed: although quarks ground the analogy which led to
the “Eightfold Way,” my point is epistemological: scientists could not
have accepted quarks, for good reasons, when the analogy was made.
On the contrary, it was the success of the SU(2)-SU(3) analogy
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which led scientists to consider quarks: a successful analogy should
have a “material” basis. In other words, the successful search for a
material basis for the SU(2)-SU(3) analogy, far from discrediting my
thesis, provides additional support for it.52

The physicist will now expostulate: why shouldn’t we use mathe-
matical analogies to make conjectures, if we have been so successful
with them in the past?

This just shows what is so hard about philosophy, as Wittgenstein
used to say: the same misconceptions keep returning again and
again—refuted here, they pop up there. What is our physicist saying,
after all? That a scientist, in employing a Pythagorean mathematical
analogy, is relying not only upon iz, but also upon the success of other
Pythagorean mathematical analogies. Then there must be an analogy
among all “Pythagorean mathematical analogies.” We now must ask:
does the higher-order property, being a Pythagorean mathematical
analogy, have a physical basis, at least by present lights? Of course
not—this is the same point again, that mathematics as such is an
anthropocentric category. Thus, being guided by the success of other
Pythagorean mathematical analogies is itself a Pythagorean mathe-
matical analogy, just as anthropocentric as any other.

In sum, on the basis of the evidence about to be presented, I would
argue for a weak and a strong conclusion. The weak conclusion is
that scientists have recently abandoned naturalist thinking in their
desperate attempt to discover what looked like the undiscoverable.
This is a conclusion about scientists, not about nature. The strong
conclusion is about naturalism: the apparent success of Pythagorean
and formalist methods is sufficiently impressive to create a significant
challenge to naturalism itself. Now for the evidence.

52 The story of the SU(2)-SU(3) analogy is more complicated than that, however.
There are two SU(3) symmetries governing the strong interactions, not one; and Gell-
Mann found the “wrong” one. Hence, even quark theory does not explain his success
in predicting the omega minus particle.
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Pythagorean Analogies in Physics

I show that the cardinal discoveries of contemporary physics
exploited Pythagorean analogies, by analyzing the actual strategies
employed by physicists to make those discoveries.

1 will begin with strategies which presume that all the solutions of
an equation E are akin. This is not by itself a Pythagorean strategy,
because often an equation expresses a physical trait which all its solu-
tions exhibit. However, there are cases—the ones I am about to dis-
cuss—in which there is evidence that the solutions of a common
equation are not analogous. A physicist who ignores this evidence,
and relies instead on the common equation, pursues a Pythagorean
strategy.

(1) Equation E has been derived! under assumptions A. The equa-
tion has solutions for which A are no longer valid; but just
because they are solutions of E, one looks for them in nature.?
Why is this a Pythagorean analogy? A standard way to
“derive” a differential equation is to begin with a function f,
known already to “be physically real”; and then, by differenti-
ating f, find an equation for which f is a solution. (Usually,
there will be several equations like this, so guessing is in order.)

! By a “derivation,” physicists do not usually mean anything like a rigorous deduc-
tion from known principles, but plausible reasoning used to “write down” (discover)
an equation. I use the term in the same sense.

2 There are cases, though, where the scientist will rule out solutions as “nonphysi-
cal,” as Einstein ruled out travel faster than the speed of light, though this is consist-
ent with his equations of special relativity. Such cases are discussed in Steiner 1986.
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The assumption that another solution, g, of the equation, is
also “physically real” is thus an analogy between f and g, medi-
ated by the equation. The analogy becomes Pythagorean if f
and g are physically disanalogous, so that only the equation
links them.

The history of the wave idea in physics supplies many good illustra-
tions. Let us consider Maxwell and Schroedinger.

In his Treatise on Electricity and Magnetism, Maxwell noted that
the experimentally confirmed laws of Faraday, Coulomb, and
Ampere, when put in differential form, contradicted the conservation
of electrical charge. By tinkering with Ampére’s law, adding to it the
“displacement current,”? Maxwell got the laws to be consistent with,
indeed to imply, charge conservation. With no other warrant than
this (Ampére’s law stood up well experimentally; on the other hand,
there was “very little experimental evidence”* for the reality of a
“displacement current”), Maxwell made the indicated changes.
Ampeére’s law now read that (the “curl” of) the magnetic field is given
by the sum of the “real” current and the “displacement current.”
Ignoring the empirical basis for Ampére’s law (magnetism is caused
by an electric current), Maxwell now boldly asserted it even for a zero
“real” current. This made electromagnetic radiation a mathematical
possibility. The belief that it was also physically real required a
Pythagorean analogy—one that paid off. Electromagnetic radiation,
today the basis of modern communications, was produced in Hertz’s
laboratory. (You can see why Hertz exclaimed that the mathematical
formulas are “wiser than we are.”)

An objection can be raised to this “Pythagorean” account, how-
ever.> Maxwell had already introduced the displacement current in
1862, eleven years before the publication of his Treatise, in the course
of constructing a mechanical model of electromagnetic phenomena
complete with vortices propelling idle (gear) wheels. In order to keep

3 Ampeére’s law, as formulated by Maxwell, states that the “curl” of the magnetic
field at any point is proportional to the current at that point. Maxwell added the “dis-
placement current,” a hypothetical current, equal to the time rate of change of the
electric field.

4 Maxwell 1954, 2: § 608, p. 252.

5 Enlightening discussions with Jed Buchwald and Alan Chalmers improved my
treatment of these issues significantly.
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the machine from breaking down under electrostatic conditions,
Maxwell had to invest the vortices with electricity, and “the dis-
placement current expressed the flux of the idle wheels owing to pro-
gressive elastic deformation of the vortices,” as Daniel Siegel points
out (Siegel 1991, 86).

The elasticity of the medium implied the possibility of wave dis-
turbances, and Maxwell calculated that the velocity of those distur-
bances would be the same as the speed of light. This indirectly
supported the existence of electromagnetic radiation, because it sug-
gested that light was an example.

This historical background, however, does not change the
Pythagorean nature of the 1873 reasoning and the prediction of elec-
tromagnetic radiation. Maxwell was a borderline figure, whose
thinking became more and more Pythagorean as his theory matured.
Maxwell had used his model to derive differential equations of elec-
tromagnetism; once he had extracted the equations, the model grad-
ually lost its appeal. The mathematical justification of the
displacement current based on charge conservation was isomorphic
to the mathematics of introducing it to prevent his model of wheels
and vortices from disintegrating (Siegel 1991, ch. 4). The calculation
of the velocity of electromagnetic radiation (should it exist) could be
done, as Maxwell did it, without assuming an elastic medium. As
Siegel points out in great detail (Siegel 1991, ch. 3), in any case
Maxwell never believed in the literal existence of the idle wheels. As
for the vortices, though they appear in the Treatise, where their rota-
tion explains the effect of magnetism on light (Faraday effect),
Maxwell later regretted having constructed such a “hybrid” theory of
the magnetic effect on light and recommended that younger scientists
not follow his lead (Hunt 1991, 18).

The model, being purely hypothetical, gave no support for the
existence of electromagnetic radiation as a laboratory phenomenon.
This is why Maxwell stated later, in the Treatise (quoted above), that
there was very little “experimental evidence” for the displacement
current (and thus for electromagnetic radiation). The calculation of
the speed of electromagnetic radiation as that of light did give cir-
cumstantial support that electromagnetic radiation existed (but
could also be done independently of the model). Of course, electro-
magnetic radiation was a possibility, according to Maxwell’s equa-
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tion. But differential equations have many solutions, and there is no
reason to believe (particularly in Maxwell’s time, when the method of
differential equations was not yet standard in science) that we can
produce something just because it solves an equationm.

I conclude that Maxwell’s reasoning was Pythagorean. By this I
mean that once he had a mathematical structure which described
many different phenomena of electricity and magnetism, the mathe-
matical structure itself, rather than anything underlying it, defined
the analogy between the different phenomena. The analogy, which
could be adopted by other physicists (Fitzgerald, Lodge), suggested
the existence of electromagnetic radiation (for which there was as yet
little evidence) as an experimental phenomenon.

Schroedinger’s discovery of wave mechanics also illustrates this
strategy.® Schroedinger assumed that a particle of constant energy £
corresponds to a wave of frequency E,” or, more specifically,

E
\P(‘x’y’ZJ) =f(xay9z)e71ﬁt-

The equation® governing such a wave would be

- gy V= E¥
2m (xaysz) -
where V2y = ¥ | 2% | ¥
x> ay*  y?

formally identical to the equation for a monochromatic light wave in
a nonhomogeneous medium (1.e., where the index of refraction
changes from place to place).®

6 “Quantisation as a Problem of Proper Values,” especially Parts II and IV, in
Schroedinger 1978.

7 This is strictly true only if we set Planck’s constant equal to 1.

8 Note, too, the important fact that even the “space part” of the wave function,
namely, f(x,y,z), also solves this equation.

° The formal (and probably Pythagorean) analogy between the laws of optics and
those of mechanics was first pointed out by Hamilton, who called attention to the
mathematical similarity between Fermat’s principle (law of least time for a light ray)
and Maupertuis’s principle (law of least action for a mechanical system). Schroedinger
considerably broadened the analogy, to include cases where it was impossible to speak
of “rays” or “paths.” Nevertheless, I hesitate to call the analogy between optics and
mechanics Pythagorean for Schroedinger, because by 1926 there was evidence sup-
porting a wave theory of matter. Schroedinger expresses great admiration for de
Broglie and his wave theories.
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To deal with problems in which energy is not conserved—for
example, an atom buffeted by a passing light wave—Schroedinger
had to get rid of the energy from his equation. Differentiating the
wave function once by the time, regarding E as a constant, and using
the classical equation!®

»
E= 5m + V(x,p,2),

Schroedinger got
¥ __E
a = g Y
or
Pk g
if 3 = EY.

Substituting in the preceding equation, Schroedinger arrived at

2
il = [- & v+ vyl
(Schroedinger’s equation).

Now that energy had been eliminated from the equation,
Schroedinger promptly “forgot™ his crucial assumption that energy
was fixed, and allowed solutions where it wasn’t.!!

For example, Schroedinger’s equation allows the superposition of
two waves, each of different frequency or, what is the same, energy.
Yet how can one particle be assigned two different energies? (Even
today there is no consensus on how to answer this question.) The
problem of superposition, by the way, arises even for a temporally
constant potential energy field.

Where the potential does vary with the time, the link to the “wave”
concept collapses completely. If the potential energy field varies suf-
ficiently (and is not a mere perturbation), the solutions of
Schroedinger’s equation don’t even look like superpositions of waves.

10 As I will point out later, this equation has no meaning in quantum mechanics.
Hence, Schroedinger’s reasoning raises additional problems, which I will ponder in the
last chapter of this book.

11 Thus, Schroedinger’s reasoning has formalist aspects, not merely Pythagorean
aspects. Regarding E as a constant in order to derive an equation, and then forgetting
that assumption, is a perfect example of allowing the notation to lead us by the nose.
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The only remaining “wavelike” characteristic of those solutions is
that you don’t have a localized particle, but a “smeared out” mass.
Last, but not least, Schroedinger’s method (differentiating once by
time, twice by space coordinates) creates an equation with an imagi-
nary coefficient, with solutions that have no physical interpretation.
A classical electromagnetic wave is simply a state of the electromag-
netic field. The wave function in Schroedinger’s equation has complex
values, and in many cases it is not possible to ignore the imaginary
part of these values. In the case of the wave of fixed frequency

E
Y(x,p,z,t) = f(x,y,2)e”'#', by contrast, it is easy to think of

fi (x,y,z)e"'é’ as f (x,y,z)cos(% t) (taking the real part). In the general
case, the wave function is irredeemably complex; it has no physical
interpretation. Only the product ¥"W= |¥|* has physical meaning.

In sum, Schroedinger began with a sine wave of fixed frequency,
based on an analogy to an optical wave, where the frequency is given
by the fixed energy. In writing down the “wave” equation by taking
derivatives, Schroedinger completely abstracted away from this intu-
ition, ending with an equation having no parallel in classical optics;
one whose solutions had no direct physical meaning; one with super-
posed solutions; one with solutions having no “wavelike” qualities at
all.

Nevertheless, Schroedinger conjectured the equation with all its
solutions.!? Apparently, just being a solution of the Schroedinger
equation was enough for belief in its existence. The equation serves
as an “umbrella” for all its solutions, and defines all the solutions as
“similar.” But this is to make the mathematical description as the
standard for similarity; which is to say, the similarity is Pythagorean.

Nor can we appeal to our previous experience in physics, where we
“wrote down” an equation by beginning with one of its solutions S,
and then succeeded in having the equation describe many situations
that have little to do with S. For the idea that we can project from our
previous success in writing down mathematical descriptions to future
successes—this idea is just as Pythagorean as any other, since, again,
the only thing common to all those successes is “mathematical”

12 T refer to all “physically admissible” solutions, which for Schroedinger meant
“square integrable” solutions.
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descriptions. We have no naturalistic definition for “mathematics,” or
so I have argued.

A final comment on Schroedinger’s equation: there are many
other equations Schroedinger could have written. In fact,
Schroedinger did write down a fourth-order, nonlinear equation
(Schroedinger 1978, Part 1V, equation (4)), only to reject this real
equation in favor of the “imaginary” Schroedinger equation. Why?
“In the following discussions,” Schroedinger explains, “I have taken
a somewhat different route, which is much easier for calculations, and
which I consider is justified in principle” (Schroedinger 1978, 104).
Though the idea that what is “easier for calculations” is to be pre-
ferred is not Pythagorean, it is certainly anthropocentric, as I argued
in Chapter 3.

(2) One looks for solutions in nature even where there is reason to
doubt their very possibility. There is no a priori reason to
believe that every solution of an equation has a physical inter-
pretation. There is nothing logically wrong, therefore, with dis-
carding certain solutions of an equation, and it is often done
(for example, unbounded solutions of Schroedinger’s equa-
tion). Nevertheless, the Pythagorean scientist goes by the
working hypothesis that a mathematical possibility will be
realized by nature.!3

Take the development of relativistic quantum mechanics. Dirac’s
equation (whose discovery is detailed in Chapter 6) gave solutions
describing the electron better than any previous equation, but it also
allowed particles of negative energies as solutions. Dirac, on the con-
trary, accepted the negative energies as real. But then he had to
explain why we never see them. Dirac theorized that negative energy
electrons were so ubiquitous as to be undetectable. (There are so
many negative energy electrons, in fact, that the “Pauli exclusion
principle” prevents the other electrons from joining them.)!4 The
electrons we see are the exceptions—they have been “boosted” from
their negative energy states, leaving behind a “hole,” i.e., an unoccu-

13 This Pythagorean assumption is, it seems to me, a special case of the “Principle
of Plenitude,” Lovejoy 1964.

14 The Pauli exclusion principle forbids two electrons from being in exactly the
same quantum state. Two photons, by contrast, can be, and often are, in the same state.
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pied negative energy state. Such a “hole” would act like a positively
charged “electron” with positive energy. And in fact, positrons were
discovered.

Today, scientists have a completely different conception of
positrons and anti-matter in general. This is, therefore, a different
conception of the negative energy solutions. None of this takes away
from the spectacular success of Dirac’s Pythagorean prediction of
the positron.

Another example of this strategy of believing in “impossible”
solutions is furnished by the Schwarzschild solution for the equa-
tions of General Relativity. This solution describes the gravitational
field of a spherically symmetric body, and for bodies of “normal”
size and mass, yields not only Newton’s laws as a first approximation,
but deviations from those laws (such as the precession of Mercury)
as a second approximation. But if the body is smaller than its “grav-
itational radius” (for a body the mass of the Sun, the gravitational
radius is about 3 kilometers), one of the components of the metric
tensor goes to infinity at a distance of the gravitational radius from
the center of the body. This seemed to rule out such a dense body, as
it would create a “singularity” in spacetime itself. Nevertheless, sci-
entists had enough faith in the equation to believe in even this solu-
tion; in 1954, Finkelstein argued that the singularity at the
gravitational radius was not a real singularity of spacetime, but an
artifact of the coordinate system.!> From a distant vantage point, a
spherical mass smaller than its gravitational radius would appear as
a “black hole” (an idea which, in the context of classical gravitation,
goes back to Laplace at least);!¢ a test particle falling toward the
mass would seem to “us” to take infinitely long to get to the gravita-
tional radius, but an observer on the test particle would not notice
anything special as he crossed the gravitational radius (the
“Schwarzschild sphere”). Scientists are now persuaded of the actual
existence of black holes.

15 For an elementary example, consider the “origin” in polar coordinates. Though
in Cartesian coordinates, the “origin” has a straightforward representation as (0,0), in
polar coordinates, this same point can be represented by infinitely many points of the
form (0,0), for any angle—which obviously affects the mathematical properties of
functions defined on the plane. Obviously, this singularity has no physical meaning
whatsoever.

16 Thanks to Barry Simon for pointing this out.
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A final point: the search for solutions in nature may require rein-
terpreting the solution or the equation. Quantum mechanics is an
extreme example: the equations were “believed” even before anybody
“knew what they meant.” This faith in the formalism as being “wiser
than we are”!” is what motivates higher-order mathematical ana-
logies.

(3) Suppose we have successfully classified a family of “objects”
by a mathematical structure S. Then we project that this struc-
ture, or some related mathematical structure T, should classify
other families of objects, even if, given present knowledge, (a)
S is not reducible to a physical property, and (b) the relation
between S and T is not reducible to a physical relation. We have
doubly Pythagorean analogies.

This reasoning has been rampant in elementary particle physics,
where “symmetry arguments” have led to some remarkable discover-
ies. These are Pythagorean arguments from analogy, where one sym-
metry is derived from another. According to the modern definition,
an object has a symmetry if it is invariant under a group of “trans-
formations.” For example, a ball has rotational symmetry, since any
rotation leaves it as it was. The sun’s gravitational field has rotational
symmetry, though the (elliptical) orbits of the planets do not.

The importance of symmetries in physics lies in their relationship
to laws of conservation. Each symmetry of a physical system implies
a law of conservation!®—rotational symmetry, for example, implies
the conservation of angular momentum. In fact, for the conservation
of angular momentum, all that is necessary is that the system in ques-
tion be invariant under “infinitesimal” rotations.!?

During the twenties, the electron was discovered to have an

17 Hertz, quoted above.

18 For continuous symmetries, this is a theorem proved by the mathematician
Emmy Noether, and it is true both for classical and quantum mechanics. In quantum
mechanics, the theorem is rather obvious—since the physical magnitudes are actually
identified with symmetry transformations. (To be more precise, every magnitude is rep-
resented by an operator that is proportional to the corresponding symmetry transfor-
mation.) For this reason, the connection between symmetries and conserved quantities
in quantum mechanics is not limited to continuous symmetries—for example,
right-left symmetry is equivalent in quantum mechanics to conservation of parity.

19 This has to do with the mathematical properties of the algebra of infinitesimal
rotations more than with the physical properties of angular momentum.



Pythagorean Analogies in Physics - 85

“intrinsic” angular momentum, called “spin.” Namely, although the
electron cannot be regarded literally as rotating,2% it sometimes acts
as though it were. For example, a spinning charged ball is a magnet,
with the north and south poles determined by the axis and the direc-
tion (clockwise or counterclockwise) of its rotation. The electron
turned out also to be a little magnet.

But if we test the electron by placing it between the poles of a
horseshoe magnet, we find a mystifying difference between it and the
classical charged rotating ball: the electron is always found aligned so
that its north pole is pointing directly at the north pole, or the south
pole, of the horseshoe magnet! This of course is not true of a classi-
cal spinning charged ball, which can have its north pole pointing any
which way initially upon measurement. The usual way of putting this
is that every electron, upon measurement, can be in one of two pos-
sible spin-states, which are thus called “spin up” and “spin down.”
(Prior to measurement, the electron may be in a “superposition” of
the two states.)

Here is another, even more, mystifying feature of electron spin.?!
Suppose we have an electron placed between the poles of a very
strong horseshoe magnet, with the north pole of the electron point-
ing to the north pole of the magnet. If we rotate the horseshoe mag-
net very slowly around any axis, the north-south pole of the electron
will follow the magnet, so that at any moment, if we make an obser-
vation, we find that the north pole of the electron is still pointing at
the north pole of the magnet.?2 If we turn the magnet 360 degrees,
you might think that the electron should return to its initial posi-
tion—and it does, almost. The electron is once again oriented with
its north pole pointing “upward,” yet the rotation it has suffered has
“marked” it in a very subtle way: its state vector is multiplied by —1.23

20 See Appendix A.

21 Thanks to Shmuel Elitzur for helping me with this material.

22 If we rotate the magnet fast, or if the magnet is weak, there is a possibility of the
electron flipping upside down, with the north pole pointing at the south pole of the
magnet.

23 Thus, to really get the electron back to its status quo ante, you have to rotate it
720 degrees. Though there is no way to imagine what is going on here, Feynman used
to act out this kind of symmetry with a coffee cup—you can turn a full coffee cup 360
degrees while holding it in your hand, without spilling a drop, only your arm gets
twisted. Surprisingly, you can turn the cup another 360 degrees (try it), and your arm
untwists itself. (Dirac did this stunt with belts.)
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Now this change, being a uniform change of coordinates, has no
physical significance, as we have already seen, so long as we are talk-
ing about a single electron. But suppose we have two electrons: one
so rotated and one left alone. Then, astonishingly, the two electrons
interfere with one another: for example, if we send a beam of elec-
trons through two slits so that they hit a screen, and install a “rotat-
ing” mechanism in front of one slit so that the electrons going
through it undergo a 360 degree rotation as above,?* then there will
be a dark spot on the screen midway between the slits.

There are thus two characteristic features of electronic spin: the
duality of the spin states (up and down), and the changing of the sign
at 360 degrees. It is easy to represent this situation mathematically (so
long as we don’t try to imagine what is going on): the spin state of the
electron is represented by a two-dimensional complex vector (one
dimension for “up”, one for “down”), and the effect of a spatial rota-
tion of the electron is to transform the vector by a certain 2 X 2 com-
plex matrix, the matrix corresponding to 360 degree rotation in any

direction being ( 01 _01 ) The group of such matrices is called

SU(2).25 In making this representation, we are of course ignoring
everything about the electron but its spin. Finally, because of the
connection between symmetry and conservation, spin is conserved in
any physical system which remains physically invariant when we
apply an SU(2) transformation to it.

In 1932, Heisenberg conjectured boldly that the proton and the
neutron—ignoring their opposite charge—are two states of the same
particle, “spinning” in opposite directions in a fictitious three-dimen-
sional Euclidean “space.” The space had to be fictitious, since (unlike
the situation with the “up-down” electronic states) one cannot turn
a neutron into a proton by standing on one’s head. Heisenberg rea-
soned that the nucleus of the atom is invariant under SU(2) trans-
formations, those which describe the spin properties of the electron;
and that there had to be, therefore, a new conserved quantity, math-

24 The mechanism has to be such as to leave no traces of its activity, otherwise we
would know through which slit the electron passes and the interference effects are
annulled.

25 Technically, SU(2) is the group of all 2 X 2 unitary matrices with determinant
+1. A unitary matrix is one that does not change the “length” of the unit vector, hence
is analogous to rotation in Euclidean space.
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ematically analogous to spin. This quantity is today called isospin,
and its discovery launched nuclear physics. Both the neutron and
proton, states of the same particle, are called “nucleons.”

Note that Heisenberg’s theory was not just that the neutron and
the proton are the same particle. That hypothesis would require only
a weaker symmetry: that one could “swap” neutrons and protons dis-
continuously (the permutation group), in any physical process not
involving the charge. Heisenberg’s theory is that the neutron is
obtained from a proton by a continuous abstract “rotation of 180
degrees,” and also that to return a neutron or a proton to its initial
isospin state, one must “rotate” the particle a full 720 degrees in the
fictitious isospin space. It seems clear that the mathematics is doing
all the work in this analogy, and that Heisenberg’s analogy was highly
Pythagorean. (Indeed, even today, nobody knows why electron spin
and isospin have the same symmetry—and even if someone were to
explain the coincidence, the explanation was not available to
Heisenberg in 1932.)

At this point, it is better to stop altogether relying on visual intu-
ition of three-dimensional space, fictitious or real, and to think of the
SU(2) group itself as the fundamental descriptive idea. The SU(2)
transformations are, as we said, 2 X 2 matrices. The dimension of
these matrices, two, corresponds to the two “states” of spin/isospin.
Spin and isospin occur in pairs (proton/neutron, electron-up/
electron-down). But group theory shows that matrices of any dimen-
sion n can “represent” the SU(2) group, and the physical meaning of
this is that isospin (as ordinary spin) can come in groups of any whole
number #: triplets, quadruplets, quintuplets, etc.2¢

The power of SU(2) symmetry was demonstrated in 1938, when
Nicholas Kemmer reasoned, as in the preceding paragraph, that
there could be an isospin triplet (a particle capable of being in one of
three isospin states)—just as in the case of electron spin—and pre-
dicted the properties of the three pions nine years before the experi-
mentalists were able to verify them. Like the nucleons (neutron and

26 The magnitude of the isospin of the nucleon is V2 Planck’s constant. In general,
the relation between the magnitude of the isospin, and the number of its states is given
by n = 25 + 1, where s is in units of Planck’s constant. For the nucleon, therefore,
s = Y2; n = 2 (two states, the proton and the neutron). For the pion, s = 1; # = 3. For
the delta, s = ¥2; n = 4, etc.
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proton), the pions exert the “strong” nuclear force. Similarly, the
deltas form an isospin quadruplet. Kemmer’s analogy was simply an
extension of Heisenberg’s, and equally Pythagorean.

Here is a truly stunning example which shows the power of
Pythagorean analogies using SU(2) symmetry.?? It is an example of
two different—but mathematically equivalent (isomorphic)—sys-
tems, both of which are known in advance—unlike the previous two
examples—to have SU(2) symmetry. The physicist projects that there
ought to be a physical process which can transform one system into
the other. The heuristic rule here is that a mathematical isomorphism
betokens physical equivalence. Because this projection is not deduc-
tively required even by the precepts of quantum mechanics, the pro-
jection is clearly Pythagorean. Here are the details.

Given two linear spaces M and N, of dimensions m and », math-
ematicians “add” and “multiply” the spaces to form spaces of dimen-
sions m + n and mn.28 If a vector of M is of the form (a,b,c) and that
of N,(d,e), we form the five-dimensional space M@®N by creating all
vectors of the form (a,b,c,d,e). The “product” of M and N, which has
six dimensions, is the vector of form (ad,ae,bd be,cd,ce).?® An impor-
tant difference between M®ON and M&N is that there is a canonical
embedding of M and N in M@N; not so for M&N.

In quantum mechanics, the interpretation of these two operations
is as follows: if vectors Wy, in M and Wy in N describe states A and
B, then W\®Wy is the superposition of the two states—in which
either A or B is possible. Should A and B be distinguishable states,
the product W,,®¥y describes the pair state <A,B>, where both A
and B obtain.

Let us apply this to particle physics. We recall that physicists (after
Heisenberg) regard the proton and neutron as two states of the same
particle, the “nucleon.” The same is true for the three pions (positive,
neutral, and negative) and the four delta particles (double-positive,
positive, neutral, negative). If we fix all other physical magnitudes
(such as momentum, spin, etc.), we can think of the nucleons as
defining a two-dimensional vector space, the pions as defining a

27 See Sternberg 1994, 4.3, 4.8 (from which the present account is adapted), for
both mathematical and physical details of this example.

281 refer to the direct sum and tensor product of linear spaces.

29 For rigorous details, see Sternberg 1994, Appendix A.
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three-dimensional vector space, and the deltas as defining a four-
dimensional space. (But recall that these vector spaces are complex
spaces, meaning that the coordinates of the vectors are complex
numbers.)

Each of these particles, nucleons, pions, and deltas, have SU(2)-
symmetry. This means that any fact (equation) about these particles
remains true when we apply any SU(2) transformation uniformly to
each particle.

Up to this point, there is nothing new.

But now consider the following mathematical fact: there is an iso-
morphism between

the delta space (four dimensions) plus the nucleon space (two
dimensions) on the one hand; and

the pion space (three dimensions) times the nucleon space on
the other.

Let us call the former, the sum space; the latter, the product space.

Furthermore, this isomorphism is an SU(2)-preserving isomor-
phism. That is, if a state x in the sum space corresponds under the
isomorphism to a state y in the product space, and g is an SU(2)
transformation, then g(x) corresponds to g(y) under the isomor-
phism.

Again, we have an interesting fact of pure mathematics. But now
comes the Pythagoreanism. Given the (SU(2)-preserving) isomor-
phism between the product space and the sum space, the physicist
assumes that there is also a physical equivalence. Thus, there must be
an experiment which transforms a pion-nucleon pair into a superpo-
sition of a delta and a nucleon.

In a nutshell: because the sum is mathematically equivalent to the
product, we regard them as physically equivalent.

This reasoning does not even follow from the rules—strange
enough in themselves—of quantum mechanics. The product of the
nucleon space and the pion space describes a system with two actual
particles: a nucleon and a delta. The sum of the nucleon space and
the delta space describes a system with only ore particle, which is
either a nucleon or a delta. There is no rule connecting these spaces.
The most we can say is that the physical equivalence of the two sys-
tems is possible, because by SU(2) symmetry, every equivalence of
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the hadrons has to be SU(2) preserving, and we have seen that the
isomorphism between the sum space and the product space is, in fact,
SU(2) preserving. But what is possible need not be actual.

And yet the reasoning works spectacularly: if we make pions col-
lide with nucleons at the right energies and momenta,3° we can actu-
ally create the superposition of a delta and a nucleon. The details of
this are subtle, so I will relegate them to Appendix B. The intrepid
reader who works through the Appendix will be much more mysti-
fied than one who doesn’t: theorems of group theory, and nothing
more, allow detailed numerical predictions which appear to come out
of thin air, though following mathematically from the Pythagorean
hypothesis:

mathematical equivalence = physical equivalence.

* ok %

Isospin symmetry was nonspatial, but isomorphic to spin symmetry.
The analogy is certainly Pythagorean—indeed, even today, physicists
see no physical analogy between the quantities “spin” and “isospin,”
and therefore have no explanation for the success of Heisenberg’s
reasoning.

Physicists continued to introduce, by Pythagorean analogy, for-
mal symmetries whose relation to experience was increasingly tenu-
ous. An example is the discovery of “unitary spin,”3! also called the
“Eightfold Way” because unitary spin has eight “components.”3?
This scheme, discovered independently by Gell-Mann and Ne’eman,
aimed to incorporate a newly discovered conserved quantity—
“hypercharge,” not discussed here—and isospin into a “global sym-
metry,” known as SU(3).

30 The Pythagorean reasoning described here does not predict the actual energy at
which this will happen. To do that, we would have to know more details about the
nature of the interaction among the particles—whereas in fact all we are given are the
symmetries of the interaction.

31 This term, introduced by Gell-Mann, is not used today.

32 Isospin, like spin, has three components, since we can have spin in the direction
of the x-, the y-, and the z-axis—only one of which, by the Uncertainty Principle, can
be measured at a time. Unitary spin adds five more components to these three, of
which at most two can be simultaneously ascertained.
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Like isospin, the theory of unitary spin postulated that strongly
interacting particles that are prima facie different may actually be dif-
ferent states of the same “thing.” Thus, the strongly interacting par-
ticles may be divided into families whose members share a common
unitary spin? but are nevertheless in different unitary spin “states.”
Again, this classification flows mathematically from a symmetry
property of strong interactions—namely, that they are invariant
under a transformation group, as in the case of isospin.

But unitary spin presents also interesting novelties. First, the num-
ber of particles in a unitary spin family is restricted. Unlike spin or
1sospin, where families can have any number of members, unitary
spin families can have only 3, 8, 10, 27, . . . members—the series being
determined by algebraic considerations. In fact, Gell-Mann and
Ne’eman made a spectacular prediction of the “omega-minus” par-
ticle by noting that nine known particles could belong to a “decu-
plet” of unitary spin, provided that the missing tenth particle existed.

Second, the “Eightfold Way” scheme grouped together particles
for which there was little evidence that they were “different states of
the same thing.” The particles would have to have the same
mass/energy, yet—for example—in the “octet” family of the
Eightfold Way, the heaviest particles were 50 percent heavier than the
lightest (which were the proton and neutron).3* What actually turned
out to be the case, that unitary symmetry is “broken” by a natural
effect that disguises the underlying order, might have looked like an
ad hoc attempt to save the theory. Thus the discoverers were gripped
by a strong faith in the symmetry of the basic forces of the universe.

But most significant is this disparity between unitary spin (or
SU(3)) and isospin (or SU(2)): the group SU(2), though not isomor-
phic to the group O(3) of rotations in three dimensions, is two-to-one
homomorphic to it (which is why we said it takes an electron two
rotations to get back to its original state). SU(2) is called by mathe-
maticians the “double covering group” of O(3). Furthermore, in the
infinitesimal limit, the homomorphism becomes an isomorphism.35

33 The unitary spin of a system is defined by an ordered pair of numbers, giving
the isospin and the hypercharge of the system.

34 Compare the isospin families: the mass difference between proton and neutron,
for example, is one part in seven hundred.

35 In mathematical jargon: the Lie algebra SU(2) is isomorphic to the algebra O(3).
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(This is why we can treat electronic spin as a form of angular momen-
tum.) Historically, the matrices of SU(2) were used to represent phys-
ical rotations.

Unitary spin symmetry, or SU(3), by contrast, is not isomorphic,
even in the infinitesimal limit, to rotations in any dimension.3¢
Unitary symmetry is just an abstract symmetry—invariance under a
transformation of a three-dimensional complex space.>” When we get
to SU(3), the link with perception has been snapped. And this makes
the SU(3) hypothesis, the analogy to SU(2), grossly Pythagorean.

How did Gell-Mann discover the Eightfold Way?38 In particular,
was the analogy to isospin physical or Pythagorean? Had he known
then about quarks, which are the “triplets” of unitary spin, he could
have built up the strongly interacting particles from quarks, just as
Heisenberg built up the nucleus from nucleons (which are the funda-
mental “doublets” of isospin), without any arguments from analogy.

But in 1960 there were good reasons to deny quarks, because par-
ticles with fractional charge had never been observed. Even after
Gell-Mann himself proposed quark theory, suggesting that they
might be unobservable, he was attacked by Marxist physicists for
“bourgeois idealism.”3° What the Marxists had in mind, presumably,
were passages like these:

[W]e construct a mathematical theory of the strongly interacting parti-
cles, which may or may not have anything to do with reality, find suitable
algebraic relations that hold in the model, postulate their validity, and
throw away the model. We may compare this process to a method some-
times employed in French cuisine: a piece of pheasant meat is cooked
between two slices of veal, which are then discarded. (Gell-Mann and
Ne’eman 1964, 198)

36 That is, the algebra SU(3) is not isomorphic to any algebra O(x).

37 For details, see Gell-Mann and Ne’eman 1964, which contains the original
papers.

38 What follows is based on Gell-Mann’s recollections in Gell-Mann 1987, and
correspondence with Yuval Ne’eman. I reiterate: I discuss here only Gell-Mann’s rea-
soning, because Ne’eman’s route to the Eightfold Way, described in the same volume
(Doncel 1987, 499-510), did not involve mathematical analogies.

39 See Gell-Mann 1987, 494. These are the physicists under the leadership of
Sakata who had championed a “triplet” model of their own, in which “materialistic”
protons, neutrons, and lambda particles make up strongly interacting particles.
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In fact, Gell-Mann was led to the Eightfold Way by a tortuous road.
He drew his third-order mathematical analogy without knowing it
and in the “wrong” way.

Gell-Mann was attempting to generalize the Yang-Mills equa-
tions,* which were the first, though failed, attempt to write down an
analogue of Maxwell’s equations for the nuclear field. The field itself
has “local isospin symmetry”: its behavior is invariant under inde-
pendent rotations of the isospin at every point in spacetime. (Thus,
for example, what is called a proton at one point may be called a neu-
tron at another. This is a much stronger symmetry, therefore, than
Heisenberg’s discovery.) Gell-Mann saw that Yang—Mills theory pro-
vides a recipe for writing a field equation, given merely the appropri-
ate local symmetry;*! hence, to generalize the equation, one must
generalize the concept of isospin. What Gell-Mann did without
knowing it was to characterize isospin rotations as a “Lie Algebra”—
a concept reinvented for the occasion, but known to mathematicians
since the nineteenth century. He then (by trial and error) began look-
ing for Lie Algebras extending isospin—unaware that the problem
had already been solved by the mathematicians—but failed, not real-
izing that the first solution required eight components, as above.4?
Later, a mathematician at Caltech enlightened him on Lie Algebras.
Gell-Mann’s was indeed a Pythagorean analogy, if dimly under-
stood.

Gell-Mann was also “lucky.” The Yang-Mills equations were
designed to describe the nuclear (or strong) interaction. And what
Gell-Mann called unitary spin is not a property of that interaction.
In other words, the property of quarks responsible for their mode of
interaction (called “color” today) is different from the property (“fla-
vor”) that determines their “unitary spin” state. Luckily for Gell-
Mann (and for science), “color” and “flavor” have the same
symmetry,** a coincidence for which no explanation is known.* So

40 Yang and Mills 1954; reprinted in Yang 1983. The derivation of these equations
is discussed in detail below, Chapter 6.

41 “From S-matrix to Quarks,” in Doncel 1987, 489.

42 He stopped at seven, exhausted by bouts of wine drinking (Doncel 1987, 489).

43 Except, of course, that the “color” symmetry is a local symmetry, valid at every
point of spacetime; whereas “flavor” is a global symmetry.

4+ Compare, for example, the electron, which is observed always to be in one of two
possible states (“up” and “down”). The (global) symmetry (SU(2) or spin symmetry)
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even the claim that Gell-Mann’s success in arguing by mathematical
analogy is “explained” by the theory of quarks must be attenuated,
since Gell-Mann discovered the “wrong” symmetry.

It might be argued that, even without an underlying physical base,
the use of group theory in physical discovery is empirically justifiable,
because group theory is grounded upon symmetry, an empirical
notion. But this is circular reasoning, since “to say that an object has
a symmetry just means that it admits a transformation into itself, and
the collection of all these symmetries is a group.”#> The groups
invoked in the theory of elementary particles today express symme-
tries only in this question-begging sense; they do not express empir-
ical or geometrical symmetries. The analogies here were therefore, in
fact, Pythagorean. In fact, even the discovery of quarks might be
regarded as Pythagorean, although the existence of quarks explains
the isopsin symmetry. The success of the abstract classification of the
particles by SU(3) made it “natural” to look for three basic particles,
by analogy to SU(2), where we have the proton and neutron as the
basic particles. “Natural”—for the Pythagorean.

* sk k

We have discussed solutions and symmetries of the laws of nature—
now, we examine the equations themselves.

(4) One formulates equations by analogy to the mathematical
form of other equations, even if little or no physical motiva-
tion exists for the analogy.

A case is Finstein’s derivation of the field equations of General
Relativity. His method was to set down three mathematical condi-
tions that the equations should satisfy—then he proved that essen-
tially only one equation satisfied them. We are interested here in two
of Einstein’s conditions: that the equation should be a second degree

responsible for this classification is not the same as that of local symmetry (U(1))
which governs the interaction of two or more electrons. That strongly interacting par-
ticles are classified by the same (global) symmetry as the (local) symmetry of their
interactions with one another, is one of the great lucky breaks of the history of
science—and a great triumph of Pythagorean “abduction.”

45 Chandler and Magnus 1982, 52-3.
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differential equation, and linear in the second derivatives. Where did
he get these conditions?

Einstein himself says that the conditions that no more than the
second derivatives of the metric tensor should appear in the field
equation, and that the equation be linear in the second derivatives,
both were “naturally taken from Poisson’s equation.”#¢ Poisson’s
equation is the nineteenth-century form of Newton’s law of gravita-
tion, which indeed involves only the second derivatives of the “grav-
itational potential,” and those only linearly. It is reasonable that a
scientist would try to have this equation as a special or limiting case
of any future equation of gravity, such as General Relativity.

This condition, though, does not imply that GR must have all the
mathematical properties of Poisson’s equation. GR could be a
higher-order equation, or not linear in the second derivative, and still
imply Poisson’s equation as a limiting case. Therefore, when Einstein
says that the mathematical properties of GR were taken from
Poisson’s equation, he means that the coordinates of the metric ten-
sor “play the role” mathematically of the gravitational potential of
the Poisson equation. Einstein’s original paper on GR contains no
real physical argument for this analogy,*” and Graves agrees with me
that there wasn’t any.*® Thus, the analogy with the Poisson equation
was a Pythagorean analogy.

Another example of this type of induction—the derivation of an
equation from another one, using a Pythagorean mathematical ana-
logy, is the procedure of Heisenberg (with Born and Jordan) in deriv-
ing matrix mechanics.*®

Heisenberg began with the classical Hamiltonian equations of
mechanics, and substituted matrices for the variables appearing in
that equation. In Hamiltonian mechanics, for each system we con-
struct a function H(g,p) of the coordinates g and the momenta p—
this is typically a polynomial in the ¢gs and ps. The function H is called
the Hamiltonian of the system, and reflects its specifics: spherical
symmetry, an inverse square law, etc. Now we can construct differ-
ential equations of the form

46 Einstein 1974, 84. 47 Ibid., 79-81.
48 Graves 1971, 178. Graves asserts explicitly that the analogy was formal.
49 Heisenberg 1925; Born, Heisenberg, and Jordan 1925.
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_ 9
fH) = EF (g.p,0)

which give the time dependence of a function F of the coordinates,
momenta, and the time, as the system sweeps deterministically
through time and space, as a functional f of the Hamiltonian.>° The
functional /' will depend on the function F we want to calculate, but
in all cases will contain differential operators.>! (To simplify matters,
I shall further abbreviate any Hamiltonian equation of this type as
E(H).)

Now Heisenberg’s idea—as amplified by Born and Jordan—was
as follows. Given any quantum system which would have, if a classi-
cal system, Hamiltonian H, and be described, therefore, by an equa-
tion E(H), simply replace all the variables p, ¢ in the equation by
matrices, and all operations (addition, multiplication, differentia-
tion) by corresponding matrix operations. The result is a matrix
equation E*(H*), and this is the quantum equation which governs
the system.>2

This procedure is an example of “quantization”>*—i.e., of trans-
forming a false classical equation for an atomic system into (what is
hoped to be) a true quantum equation for that system. There is no
physical rationale for this procedure, that of substituting matrices for
variables, except a Pythagorean analogy. To put the matter another
way, it is impossible to imagine a physicist discovering the matrix
equation by direct physical reasoning, skipping entirely the classical
step. This is because the matrix equation, though one can extract
measurable “numbers” from it, and therefore confirm the equation,
does not “say” anything about the physical system which can be

50 We think of the system as a single point in a multidimensional phase space, with
one dimension for each coordinate and each momentum.

51 Thus, if all we want is the time dependence of the second space coordinate, so
that Fis nothing but a trivial “projection” function, then all we need to do is take the
partial derivative of H with respect to the second momentum coordinate. In general,
the story is much more complicated, and involves the “Poisson bracket” of Fwith H.
Cf. Goldstein 1950, chs. 2, 7.

52 The knowledgeable reader will note here that this description of quantization is
ambiguous, because in matrix multiplication, 4B may not be the same as BA, whereas
functions in classical mechanics are all commutative. A discussion of this problem,
which only increases the “mystery” of quantization, will be found in Chapter 6.

53 See Chapter 6 for more on quantization.
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expressed—even qualitatively—without the matrices. Matrices as
such have no independent physical meaning. The matrix equation is
parasitic on the false classical equation, which does have a “non-
mathematical” meaning: the Hamiltonian equation expresses the
conservation of energy of the classical system. The matrix equation
does not express any such thing (as we shall see later, conservation of
energy is literally meaningless for a single quantum system; we can
speak only of the conservation of the expectation values of the
energy), though, again, one can manipulate the matrix solutions to
extract information about energy. Matrices don’t even behave like
ordinary numbers, because although matrix “multiplication” is asso-
ciative, it is not commutative: AB # BA, in general.

For this reason, the success of the Heisenberg (Born and Jordan)
strategy in one case would not increase the likelihood of its success
in another—unless we take Pythagorean analogies seriously.
Conversely, if we reject Pythagoreanism, then we are obliged to treat
each new substitution of matrices for variables as independent of the
others. The mathematical analogy between the matrix and the classi-
cal equation is just that: mathematical.

For it is necessary to keep reminding ourselves, that the success of
a strategy in one instance does not affect the likelihood of success in
another, unless it’s the “same” strategy in both cases. And what is the
“same” is heavily dependent on the way we are disposed to judge sim-
ilarity, based on our background beliefs. I am arguing that the back-
ground beliefs at work here in the Heisenberg (Born and Jordan)
strategy are Pythagorean; the mere reliance on this strategy—the
mere judgment that substituting matrices in one equation is the
“same thing” as substituting them in another—even in the context of
guessing or “abduction,” betrays a Pythagorean bent. And, if I am
right that Pythagorean reasoning is anthropocentric, we must admit
that one of the greatest discoveries in physics this century was made
by “non-physical” or anthropocentric reasoning.

Can the Correspondence Principle of Bohr help? The usual inter-
pretation of the principle is that the classical equations are to be the
limiting case of the quantum equations, as the systems described get
larger and larger with respect to Planck’s constant Ai—alternatively,
as we formally allow # to approach zero. And this principle is satis-
fied by the Heisenberg strategy. But, clearly, the Correspondence
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Principle—so interpreted—does not determine the form of the quan-
tum equations.

There is an interpretation of the Correspondence Principle—
Dirac’s—which is relevant to Heisenberg’s procedure.>* After redis-
covering, independently, a number of the insights of Born and
Jordan, and adding to them,>> Dirac concluded: “The correspond-
ence between the quantum and classical theories lies not so much in
the limiting agreement when % — 0 as in the fact that the mathemat-
ical operations on the two theories obey in many cases the same
laws.”36

It might be objected that Dirac, but not the other Founding
Fathers of quantum mechanics, was in fact a Pythagorean. Yet a
recent history of quantum mechanics (Darrigol 1992) analyzes the
Correspondence Principle, case by case, to show that the applications
of the Principle—by Bohr and many others—in every case were for-
mal (what I call here Pythagorean) analogies. I can only refer the
reader to Darrigol’s lucid exposition.

* % %

Another equation derived by Pythagorean analogy is the
Klein—Gordon equation, a relativistic version of Schroedinger’s—in
fact, Schroedinger published it before Klein and Gordon.%’
Schroedinger noted that his (nonrelativistic) equation could be
obtained from the classical energy-momentum relation

2

(CE) E=L
2m
by formally substituting differential operators for E and p. Now the
corresponding relativistic equation is

(RE) E? = p?c® + m?c.

Schroedinger thus suggested making the “identical”>® substitution

54 Dirac 1926, reprinted in Van Der Waerden 1967.

55 Dirac discovered the formal analogy between the classical Poisson brackets and
the commutator of two operations or matrices in quantum mechanics.

56 Dirac 1926, 315. See also Chapter 6.

57 Schroedinger 1978, Pt. IV, pp. 118-20. Pais 1986 lists six authors who derived
this equation in the space of half a year, in 1926.

58 T remind the reader here that the notions of “identical” and “doing the same
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for E and p as in the classical case, and obtained the Klein—-Gordon
equation.>®

What motivated these substitutions? Manifestly, this argument:
since substituting certain operations for magnitudes transforms non-
relativistic mechanics to quantum mechanics, the very same substi-
tution must transform relativistic mechanics to relativistic quantum
mechanics. Since no physical argument justifies this, we conclude that
the argument is by a Pythagorean analogy. Indeed, Schroedinger
himself tells us that his relativistic equation is based on a “purely for-
mal analogy.”¢°

True, Schroedinger expresses “the greatest possible reserve” about
his relativistic equation.®! And one reason he gives is the lack of

thing again™ are far from transparent. On the contrary, it is our classificatory scheme
that determines what we consider “doing the same thing again.” My claim is that
Schroedinger, whether consciously or not, was employing Pythagorean analogies
which not only supported his behavior, but also determined that what he was doing
was the “same” as in the non-relativistic case.

59 More precisely, Schroedinger did not write down the Klein-Gordon equation in
this form, which is an equation for a free particle. For, according to that equation, the
probability for the particle to be in a certain region can be negative, i.e., meaningless.
Instead, Schroedinger multiplied the probability density function by the electric
charge e, interpreting it as a charge density function—charge density, unlike probab-
ility density, can be negative. And his equation was derived by substituting in the rel-
ativistic energy-momentum equation for an electron in an electromagnetic field, rather
than in that of the free particle.

60 Schroedinger 1978, 118. Schroedinger repeats this phrase on p. 119.

When Linda Wessels (Wessels 1977, 328) states that Schroedinger had arrived at
the “Klein-Gordon” equation before he published his four-part series on wave
mechanics, she must have had the (abortive) relativistic amplitude equation (a time-
independent equation) in mind. For she herself states, on the previous page, that
Schroedinger at this time was attempting to treat the hydrogen atom as a “vibratory”
problem involving standing waves. The sources she cites (328 n.) refer vaguely to failed
relativistic attempts, but do not cite the KGE by name. To settle the matter, I exam-
ined (microfilms of) Schroedinger’s notebooks. Sure enough, my search turned up the
(unpublished) relativistic amplitude equation, but not the “real” Klein—-Gordon equa-
tion, which is a Lorentz-invariant, time-dependent equation (see Steiner 1989, 470 n.).

Even supposing, however, that Schroedinger had arrived at the “real” KGE in
1925, he also knew that it misdescribed the electron. His faith that it nevertheless
describes something, and his willingness to publish it in 1926, he based solely on the
formal analogy (for he published no other reasons for accepting the equation).
Schroedinger’s faith was vindicated years later, when it was discovered that the
Klein—Gordon equation (in quantum field theory) describes particles not known to
exist in 1926—pions.

61 Schroedinger 1978, 119.



100 - Pythagorean Analogies in Physics

physical basis for his derivation. So one might suspect Schroedinger
of weak faith in the applicability of mathematics. But his real objec-
tion, as he himself points out, is that the equation does not yield the
correct energy levels of the hydrogen atom; these are influenced by
the spin of the orbital electron, and the solutions of the
Klein—Gordon equation do not have “spin.” Charged particles with
no spin were not at that time known. On the contrary, then:
Schroedinger had such faith in his formal analogy that he was will-
ing to publish it, even though he had not worked out a single appli-
cation of the Klein—-Gordon equation.

Another problem with the Schroedinger interpretation of the
Klein—Gordon equation was the existence of “negative energy” solu-
tions, just as in the Dirac equation. Dirac’s treatment of negative
energy solutions, described above, could not work here, because the
Pauli exclusion principle is not true for spinless particles.

It took till 1934 to “understand” the Klein—-Gordon equation,
when Pauli and Weisskopf interpreted it as a field equation rather
than a particle equation. In another application of inductive pattern
(4), they applied to the Klein—-Gordon equation the so-called “field
quantization technique,” which had been used to extend Dirac’s
equation for the electron to a many particle theory, able to describe
the creation and destruction of material particles. In the case of the
Klein-Gordon equation, however, Pauli and Weisskopf began with
an equation that had no physical solutions, and derived a field equa-
tion with, finally, a positive energy parameter. This equation®? does,
in fact, describe spinless, charged particles: for example, the positive
and negative pions, discovered subsequently. Our story, then, doubly
illustrates pattern (4): in the transition by analogy from Einstein’s
equation to the Klein—-Gordon equation, and from the
Klein—-Gordon equation to its field-theoretic extension.

Indeed, the mathematical analogy of the Klein—-Gordon equation
to Einstein’s equation was so compelling that Dirac, despite his rejec-
tion of the Klein—Gordon equation,®® used it in deriving his own

62T am referring to the complex Klein—-Gordon equation.

63 Cf. Pais 1986, 288-92. Dirac objected most of all to the second time derivative
in the Klein—Gordon equation; see Dirac 1958, § 17. Dirac presents a “proof™ that
quantum mechanics requires a first order time derivative.
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equation for the electron. Having derived the general form of his
equation, but lacking the coefficients, Dirac pinned down the coeffi-
cients by requiring that any solution of his equation would also have
to be a solution of the Klein—-Gordon equation. Whatever was wrong
with the Klein—Gordon equation, he argued, it at least expressed the
relativistic energy-momentum relation for the free particle—in quan-
tum mechanical form. Dirac soon discovered that there were no
numerical coefficients for which his equation implied the
Klein—Gordon equation. Instead of giving up the trans-equational
analogy between classical magnitudes and quantum operators, Dirac
introduced matrices—not, as Heisenberg, in place of the variables of
mechanics, but as coefficients in his equation. The rest of the story is
textbook stuff—matrices as coefficients required the wave function
to quadruple itself. Nevertheless, each of the four components of a
Dirac solution satisfied the Klein—-Gordon equation, as required.
And the introduction of matrices turned out to be a blessing, because
now the phenomenon of electron spin—and of anti-matter—simply
fell out of the equation.®

Recall, next, the Yang—Mills equations, which we mentioned in
the context of a discussion of the role of symmetries in physics. But
we could also mention it here, as a classical example of the use of a
mathematical analogy in deriving an equation. The analogy was to
electromagnetism. The idea was, as we noted, that their equations
were to be related to isospin as the electrodynamical equations are to
charge. It is true, of course, that isospin is related to charge; charge
marks out the “direction” of isospin. Yet the Yang—Mills equations
ignore the electromagnetic interaction with charge. When we con-
sider the extremely salient fact that the primary analogy between
electromagnetism and Yang-Mills theory was a speculative analogy
between the abstract symmetries of the two kinds of field, we are
forced to the conclusion that Pythagorean analogies guided Yang
and Mills.

Our last examples of theory construction by mathematical ana-

64 Namely, a solution of the Dirac equation consists of a quadruple of functions,
which give, respectively, the probability (density) of finding, at a point of spacetime,
an electron with spin up, a positron with spin down, an electron with spin down, a
positron with spin up. We will return to Dirac’s discovery later.
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logies without physical ground derive from complex function theory,
and involve the concept of an analytic continuation.

A function of a complex variable is called “analytic” in a region
of the complex plane if it can be represented in that region by one or
more convergent power series.®> Equivalently, a function analytic in
aregion is one whose derivative exists in that region; this equivalence,
which is highly nontrivial, holds only for complex functions, not for
real functions, because the existence of the derivative of a complex
function is a much stronger condition than the existence of the deriv-
ative in the real case.®¢ This is because, in the complex case, the exist-
ence of the derivative at a point means that the differential quotient
has not only to converge to a limit, but to converge to the same limit
regardless of the direction from which we approach the point.

Now a complex power series, typically, does not converge every-
where in the complex plane (though it may), but within a certain “cir-
cle of convergence.” (Where the power series converges everywhere,
the radius of its circle of convergence is said to be infinity.) Thus, if
a function is represented in a region by one or more power series, it
is not immediately obvious that it can be extended to be an analytic
function in wider regions. Remarkably, however, it can be shown that
any such extension is unique—so that if we begin representing an
analytic function by a power series in its circle of convergence, we
may be able to “continue” the function analytically by the method of
overlapping circles. And, fortunately, the historically useful functions
turn out to be analytically continuable from the real line to the entire
complex plane, with the exception of isolated singularities (such as
zero in log(x)).

The concept of analytic continuation is central in defining a con-
cept which became important to physicists in the sixties—*“crossing
symmetry.”67 It was discovered that the equations of quantum field
theory imply that the interactions among elementary particles are
described, probabilistically of course, by analytic®® functions of such
parameters as the energy of the interaction. More: the equations
imply that the functions describing interactions of particles have

65 We have already discussed analytic functions in Chapter 2.

66 It is even stronger than the existence of the nth derivative for every n.
67 See Wightman 1969.

68 More precisely, piecewise analytic, cf. Wightman, 120.
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“crossing symmetry.” That is, if a function, e.g., f(E),% describes a
collision of particles at energy +E, then if we analytically continue f
to —E, f(—E)—which has no obvious physical meaning—neverthe-
less describes the expected results of a collision involving an antipar-
ticle. For example, consider the function describing “Compton
scattering,” in which an electron hits a photon and both are affected.
By applying crossing symmetry twice, we get the probability ampli-
tude for the annihilation of an electron—positron pair to produce two
gamma-rays (photons). Notice that the path that we pursue in
extending the function from +E to —E need not stick to the real line;
it can wander off into the imaginary realm in order to outflank sin-
gularities. Even on the real line, the function may be extended into
regions which are “unphysical”—for example, where the energy of
the system is less than its mass.”®

So far, we have an absorbing mathematical property of quantum
field theory. But now comes the induction: “all experimental evidence
accumulated so far supports the view that crossing symmetry holds
in Nature.””! This prediction, made in 1969, was not merely a
description of current equations; it was a constraint to be followed
in constructing new theories, outside quantum field theory—just as
“Lorentz invariance” is meant as a constraint on constructing new
theories. Yet unlike Lorentz invariance, a mathematical constraint
based on a physical idea (Relativity: equivalence of all inertial sys-
tems), the requirement of crossing symmetry as a feature of any
physical theory of subatomic collisions is Pythagorean. For there is
no way to express what all theories obeying this symmetry have in
common, without using the mathematical analogy. To project that
“all experimental evidence accumulated so far supports the view that
crossing symmetry holds in Nature” is like saying, “all evidence so far
supports the view that Presidents of the United States elected every
20 years are in trouble.” Both are anti-naturalist analogies; the dif-
ference being that the former analogy is Pythagorean, while the latter
analogy contains many other forms of anthropocentrism, forms that

69 T am simplifying by leaving out variables other than energy. As Barry Simon has
pointed out to me, it is quite important in crossing symmetry that one has more than
one variable.

70 Again, this point was impressed upon me by Simon.

7' Wightman 1969, 124.
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have played no recent role in science at all. This example shows how
deeply Pythagorean analogies penetrated physical thinking in this
century.

When a classificatory scheme becomes basic to scientific thinking,
it can become invisible. Scientists “use” it without “mentioning” it.”2
The incongruity of a “naturalist” scientist making a Pythagorean
prediction is not felt.

Readers who are experts in physics, however, may argue that cross-
ing symmetry is not as Pythagorean as I claim. If we limit ourselves
to quantum electrodynamics, the “electro-weak” theory, and any
other relativistic theory which obeys the principles of “locality” and
“causality,””? there is, in fact, a simple argument for crossing sym-
metry, which alleviates its Pythagorean character. Suppose that a col-
lision occurs at a given point (“locality”). Then, in classical Special
Relativity, none of the scattered particles can travel faster than the
speed of light; otherwise, some observers would see the scattering
before the collision, violating causality. In quantum theory, however,
if a collision is localized, the Uncertainty Principle tells us that there
is a finite probability of finding one of the particles outside of the
“light cone,” i.e., one that has traveled faster than the speed of light.
Crossing symmetry resolves this contradiction. The behavior of a
positron is exactly that of an electron moving backward in time.
(And so, of course, for all anti-particles.) Thus the observer sees not
particles moving backward in time, but anti-particles moving nor-
mally.

In cases such as these, the concept of analytic continuation plays
little role. We have a general description into which we can substitute
various situations; hence, it is not in any way mysterious that two
state descriptions are analytic continuations of each other.

But there are theories (such as so-called “S-matrix theories”) for
which this argument does not apply. These theories do not attempt
to describe the progress through spacetime of a “wave function” (or
its generalization in field theory) from which predictions are
extracted. Rather, the theories attempt to predict the results of scat-

72 As Sidney Morgenbesser said, while giving W. V. Quine the gift of a necktie.
73 Locality is the ability to localize an event at a point in spacetime; causality is the
principle that the cause precedes its effects.



Pythagorean Analogies in Physics - 105

tering directly. In particular, no principle of locality is assumed.
Furthermore, there is no general scheme into which we can “substi-
tute” to yield scattering amplitudes for various kinds of events. To
the contrary, crossing symmetry is a constraint built in to the theory
on the basis of a Pythagorean mathematical analogy. For example,
the present rage, “string theory,” at least at present, violates local-
ity—yet the theory is constructed to obey crossing symmetry.’#
Admittedly, string theory has its detractors, so the success of this
particular analogy cannot yet be finally assessed.

The conception that the analytic continuation of an important
function is also important is not limited to the phenomenon of cross-
ing symmetry. For example, it has recently been discovered that if we
“rotate” the complex plane 90 degrees, the basic formulas of quan-
tum field theory are transformed into the basic formulas of statist-
ical mechanics. This fact makes calculations possible which
previously were impossible (instead of direct calculations in one
theory, one “rotates” the problem, calculates in the other theory, then
“rotates” back). It also has led to predictions that analytic continua-
tions will lead to new discoveries and insight into old ones.”® Since
the concept of “analytic continuation” is, at present, a purely math-
ematical concept, any such prediction, even if based on past suc-
cesses, is still a Pythagorean mathematical analogy.

* %k Xk

The use of Pythagorean analogies is typical of twentieth-century
physical thinking for two main reasons: the rich development of
modern mathematics, and the lack of any alternatives. To conclude
this section, then, I will review two venerable, endlessly-discussed tac-
tics of scientific method, hoping to persuade you that—despite
appearances—they are fundamentally Pythagorean, or at least that
they contain an indispensable Pythagorean factor.

(5) A refuted law is used to test new laws—the “old” law is stipu-
lated to be a special or limiting case of any “new” law.

74 T am not claiming that crossing symmetry is the major idea in string theory;
merely that it is one constraint on string theory, one which at present has no physical
basis.

75 See Manin 1981, 80-4.
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(6) A refuted law—false by definition—is nevertheless used to
derive new laws.

Strategies (5) and (6) presuppose that mathematical structures are
more robust than the laws that instantiate them. Even if a law is
refuted, its mathematical form (symmetry) must play a role, one pro-
jects, in future developments. Such a projection is Pythagorean,
because we cannot characterize physically what we mean by “math-
ematics.”

Consider (5). An obvious, naturalistic explanation of the scien-
tists’ desire to have new laws yield the old laws is that if law A is a spe-
cial case of law B, then all the data that was thought to confirm law
A are transformed automatically into data confirming law B. Even if,
as usual, law A is only a limiting case of law B, so that technically the
laws are incompatible, we can treat the evidence that was thought to
confirm A as approximate, to within a given experimental error. In
that form, the evidence can confirm law B, since law B predicts the
experimental error of law A. Thus, we can say, that when law B yields
law A as mathematical limit, the confirmation of A is transferred to
B. I shall call this phenomenon “evidence transfer.”

But if we treat the evidence for law A as merely approximate, there
is no need to have law A, in its exact mathematical form, as a limit-
ing case of law B. All we need is that law A imply that law B is true
to within experimental error, a different matter entirely.”¢ Hence evid-
ence transfer does not entirely explain why scientists prefer that new
laws be limiting cases of the old.

In fact, there are philosophers, like Feyerabend (Feyerabend
1978), who condemn the whole idea of anchoring “law A” in advance
as a criterion for any new law. According to Feyerabend, scientists
should actively seek new laws that do not yield the old laws, but rather
explain why we thought that the old laws were confirmed by the evid-
ence. This is the antidote to dogmatism, the enemy of true science.

Another reason, though no more palatable to Feyerabend, why
scientists prefer to have old laws be the limit of new laws is—inertia.
Scientists invest an enormous amount of energy and time in learning

76 This point has been made many times by “scientific realists”; I'm using it for my
own purposes.
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a physical theory. Learning a physical theory means, above all, learn-
ing the “mathematical methods™” appropriate for the theory. This
includes tricks for solving or approximating solutions for equations,
and many other things. If a new theory yields, mathematically, the
old, then all of those mathematical techniques are still useful. An
extremely important instance of this is the use of eigenvectors in clas-
sical, and then in quantum, mechanics.

Here too, and even more so, Feyerabend’s criticism is apt: isn’t it
just dogmatism (and certainly anthropocentric) to assume that
nature cares how much time we have invested learning mathematical
methods? Isn’t yielding to inertia an intellectual sin?

Actually, I think that the preference of scientists for laws that yield
the old laws, mathematically, is not just inertia. Physicists take the
mathematical passage from law B to law A as striking evidence of a
discovery:

It is possible to know when you are right way ahead of checking all the
consequences. You can recognize truth by its beauty and simplicity. It is
always easy when you have made a guess, and done two or three little cal-
culations to make sure that it is not obviously wrong, to know that it is
right . . . . We have to find a new view of the world that has to agree with
everything that is known, but disagree in its predictions somewhere . . . .
If you can find any other view of the world which agrees over the entire
range where things have already been observed, but disagrees somewhere
else, you have made a great discovery. (Feynman 1967, 171)

It is not inertia operating here, pace Feyerabend, but Pythago-
reanism. It is the mathematical “beauty and simplicity” which we
encounter in having a new theory, based on a “new view of the
world,” nevertheless yielding the old theory as a mathematical the-
orem. That is, Feynman asserts that it is very significant that two
theories that are conceptually different are mathematically related,
and it is this relation that signals a “great discovery.”

But I foresee an objection: scientists have come to expect that suc-
cessful new laws yield the laws they replace. Quantum electrodynam-
ics yields Maxwell’s “classical” electrodynamics at the macroscopic
level. Maxwell’s theory yields Fresnel’s wave theory of light under the
conditions appropriate for the emission of electromagnetic radia-
tion, and of the appropriate frequency. Fresnel’s wave theory goes
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over into geometric optics (Snell’s law), where effects such as diffrac-
tion are negligible. There are two further approximations: geometric
optics yields linear optics in the limit of small angles of incidence;
linear optics yields so-called “Gaussian” optics, where the system
exhibits rotational symmetry (as in lenses).”” Thus, when a new law
yields the law it replaces, it fits into a historical pattern which could
provide additional evidence for the law, beyond evidence transfer. No
Pythagoreanism here, just historical evidence.

But this use of historical evidence itself presupposes Pythagorean
thinking. For what connects the various case histories is the higher-
order mathematical analogy: one law yielded another one mathe-
matically. There is nothing beyond the mathematical analogy itself
to ground the historical evidence if, as I argue, there is no naturalist
definition of “mathematics.”

Given the Pythagorean point of view, however, Feynman’s proce-
dure makes perfect sense.

A major function of a law, for the Pythagorean, is to pick out a
mathematical structure, or symmetry, that can be used to describe
nature.”® Furthermore, the structures the law picks out may and
often do survive the death of the physical ideas that motivated the
law or even the law itself. For example, Einstein laid down the con-
stancy of the velocity of light (in a vacuum) in all inertial frames as
a postulate of physics, giving what amounted to verificationist argu-
ments to support this. From this it followed that an event with space-
time coordinates in one inertial frame would have, in another inertial
frame, not only different space coordinates (this was obvious), but
also clock a different time. (Otherwise the speed of light will go down
relative to an inertial frame speeding in the same direction as the
light.) The formula linking the coordinates (x,y,z,f) of an event in
one frame with those (x’,y’,z',¢t') of the same event in another, in
order that the speed of light should remain constant, is called a
Lorentz transformation. Now Einstein argued that every law of
nature must be invariant under a Lorentz transformation: a law of
nature f(x,y,z,f) = 0 must obey the condition

77 This hierarchy is discussed in Guillemin and Sternberg 1990a, ch. 1.
78 As we have seen, the expression “symmetry instantiated by nature” is very mis-
leading.
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Vxyzt: f(x,p,2,t) & f(x",y',2',t").

For, if not, one could tell which inertial frame one was in, i.e., how
fast one was moving in absolute space, by seeing what laws hold, a
concept Einstein rejected.

The Lorentz symmetry of equations has been accepted as a per-
manent feature of physics, whereas the physical conception that
allowed Einstein to write down the Lorentz transformations them-
selves is quite dispensable. As Levy-Leblonde points out, although
all evidence is consistent with the current presumption that photons
have mass zero, if better measurements accorded photons a little
mass, their speed would no longer be ¢ (Levy-Leblonde 1979). This
sounds like an absurdity but is not:7° the constant ¢ has long func-
tioned in physics as a “conversion constant” which allows time to be
treated like space.®© That there actually be an object that travels with
velocity ¢ is not necessary or even relevant.

The sentiment that mathematical structures outlive the physical
conceptions that embody them is well expressed by Steven Weinberg:

... very often beautiful mathematics survives in physics even when, with
the passage of time, the principles under which it was developed turn out
not to be correct ones. For example, Dirac’s great work on'the theory of
the electron was an attempt to unify quantum mechanics and special rel-
ativity by giving a relativistic generalization of the Schrodinger wave
equation . . . the principles that Dirac was following have been aban-

7 For those familiar with Kripke 1980, it may be illuminating to regard ‘¢’ as a
“rigid designator.” The definite description “the speed of light” was never supposed
to be a definition of, but to fix the reference for, ‘c’. If photons have mass, then there
is no single speed of light. Semantically, then, ‘c’ has no reference. Nevertheless, we
often give the speaker the benefit of the doubt when he fixes the reference of a term
mistakenly using a definite description that has no reference in the actual world. We
correct the definite description for the speaker and assign the reference of the cor-
rected description to the speaker’s term. In Donellan’s example, “The man over there
drinking a martini,” when he is in fact drinking vodka, we assume the speaker meant
the man drinking the vodka. Similarly here: even if it should turn out that photons
have mass, so there is in fact no one speed of light, Einstein’s reference was to a cer-
tain constant ¢, which he thought was the speed of light, and which would have been
the speed of massless photons. We can plausibly assign the speaker’s reference to
Einstein’s ‘c’ based on this corrected description. The nomenclature “semantic refer-
ence” and “speaker’s reference” is also due to Kripke.

80 The quantity ict is what is on a par with the three space dimensions.
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doned, but his beautiful equation has become part of the stock and trade
of every physicist; it survives and will survive forever. (Feynman and
Weinberg 1987, 110)

A more blatant Pythagoreanism would be hard to find.

Let’s look more closely at how strategy (5) preserves mathemati-
cal structure. Suppose that law A (an equation, say) turns out to be
a limiting case of law B. Then, typically, symmetries of law B become
symmetries of law A. But this means that, in the typical case, law A
has more—not fewer—symmetries than the law which replaces it.
Now, on the one hand, this makes physical sense: a world in which
undifferentiated primal matter filled an infinite space, with nothing
happening, would be extremely symmetrical.®! Once forces start
operating, the pastoral symmetry is simply broken. But if law A has
more symmetry than law B, symmetries are not being preserved; they
are being lost. .

The solution to this riddle is subtle. Consider a sphere being
shrunk to a point. The sphere has rotational symmetry, and so does
the point, its limit. Nevertheless, there is an obvious sense in which
the sphere has “more” symmetry than the point, in that the rotational
symmetry has become degenerate in the limit, on account of the loss
of two dimensions. Something like this happens in the interesting
cases. As physics progresses, the symmetries tend to become higher-
dimensional, as we postulate more and more dimensions?? for the
laws to govern.®? To put it another way, new laws can unfold greater

8! There is, therefore, a difference between symmetry and order. We perceive as
ordered a universe with an optimum degree of symmetry, not a maximum degree of
symmetry. This probably means that the concept of order is anthropocentric.

82 The term “dimension” need not mean here physical dimensions. For example, in
a system with two particles, we can think of the system as having six abstract dimen-
sions, since each particle moves in three. Any degree of freedom that satisfies the
appropriate topological condition can be called a dimension. That said, it should be
noted that physicists are speculating that the four dimensions of space and time of our
physical universe are a small number of those that exist.

83 Thus the hierarchy of successively complex optical theories corresponds to suc-
cessively more complex symmetry groups. See again the first chapter of Guillemin and
Sternberg 1990a, where the authors go so far as to identify the various theories with
the symmetry groups by the following isomorphism: each optical system described by
a given theory is associated with a member of a corresponding group, and the physi-
cal operation of composing the systems is associated with the group multiplication.
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symmetry, because they enlarge the very arena in which the laws are
played out. There is simply more to be symmetrical.84

Strategy (6), a sort of converse of strategy (5), occupies a place of
honor in the physicist’s arsenal. It is the strategy applied by Newton
in deriving the inverse square law from Kepler’s laws, as part of his
program “from the phenomena of motions to investigate the forces
of nature, and then from these forces to demonstrate the other phe-
nomena.”’8> Newton imagines a Keplerian mass point in an elliptical
orbit, around an immovable center of force, located at a focus.8¢ A
mathematical argument shows that such a point always accelerates
toward the focus of the ellipse in inverse proportion to the square of
the distance. Since force is proportional to acceleration, we are done.

Pierre Duhem has a famous criticism of this argument, in which
he denies that Newton could have deduced the inverse square law
from the experimental data.8” For Newton, as is well known, raised
the inverse square law to the status of a universal phenonemon: every
body attracts every other one by the same force that keeps the plan-
ets in their orbits. Thus, Duhem argues, the planets must attract one
another, interfering with their Keplerian motion. But then their
orbits do not imply the inverse square law. Another problem is the
third law of motion. If the sun attracts the planets, then the planets
attract the sun. Hence we cannot speak of a fixed center of force, and
the derivation is unsound. Thus Newton made use of data which,
according to his own theory, must be false.#® Hence the data cannot
be used as true premises in a derivation, and Newton misrepresented
his own procedure. It would have been more honest, Duhem felt, for
Newton to do the opposite: to assume the inverse square law for the
purpose of deriving its consequences and then just check the conse-
quences (the “hypothetico-deductive method” favored by Duhem).
Thus, for example, the inverse square law applied universally implies

84 Thanks to Harry Furstenberg and Joel Gersten for helping me with this point.

85 Newton 1934, Preface to Ist edn.

86 Kepler’s first two laws are sufficient for the demonstration: that planets revolve
in an elliptical orbit with the sun at a focus; and that a radius vector from the sun to
the planet sweeps out equal areas in equal times.

87 See Duhem 1962.

88 The structure of this argument is: if p is true, then it is false; hence p is, in fact,
false.
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that the Kepler laws are approximately true even when we take into

account the motion of the sun and the interplanetary perturbations.
Duhem’s criticism is cogent, but Newton’s argument can be recon-

structed as follows. As a rule of thumb, consider Principle (N):

(N) Whenever a physical phenomenon is approximately describ-
able by a mathematical structure S, we assume that there is
something about the phenomenon that is exactly describable
by S, and the deviation from S is caused by a perturbation (i.e.,
we don’t just say that the description by S is inexact).

Kepler’s laws approximately represent the motions of the planets;
i.e., they are correct to within experimental error (in the time of
Newton), particularly in the case of the planets close to the sun. We
therefore assume that the symmetry addressed by Kepler’s laws is the
symmetry of something about the planets. To discover what that is,
we study the model of a single planet orbiting around an immovable
sun (located in the focus of the ellipse), and for this case, there is a
mathematical proof that the sun is exerting an inverse square force
to keep the planet in orbit. We then go on to study this force—which
Newton discovered was none other than the force of gravity—rather
than Kepler’s laws. In the particular case of planetary motion,
Newton was very lucky, since the actual deviation from Kepler’s laws
observed by later astronomers was completely accounted for by grav-
itation. That is, even the perturbing force on the planets, causing the
deviation from Kepler’s laws, was the same force Newton had derived
using his ideal model.

Note, however, that Principle (N) is deeply Pythagorean, since,
once again, we cannot independently specify what a “mathematical
structure” is. Chess, for example, is not a mathematical structure, for
reasons that are ultimately subjective. Thus we must, it appears,
attribute Pythagoreanism to Newton to make sense of his procedure.
Principle (N) essentially says, as a rule of discovery of course, that
every approximate symmetry is to be treated as a broken symmetry.

Are there any other ways to rationalize Newton’s procedure, ways
that do not assume Pythagoreanism? Consider one of the deepest
studies of Newton’s procedure, Harper 1990. Harper points out that
there is a sense in which Kepler’s orbits continue to exist even though
they are perturbed. Namely, by the law of superposition (i.e., the lin-
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earity of the homogeneous equations of motion), the actual orbit of
each planet is the vector sum of all the motions due to all the forces
acting on the planet. The dominant component is due to the sun and
is an ellipse. (I am simplifying, of course, by assuming the sun to be
immovable for the sake of argument.) We can then view Newton’s
procedure as straight deduction from Kepler’s laws, applied not to the
actual motion of the planets, but to a component.

Harper’s analysis is certainly correct, but it presupposes mine; i.e.,
it does not replace Pythagoreanism, but adds to it. In corroborating
the inverse square law by Kepler’s “observations,”3® Newton had no
basis for assuming that the Kepler motions were true of even com-
ponents of planetary motion, if he could not distinguish between the
“real” symmetry of the motions and the perturbation. Only Principle
(N) does that. Given Principle (N), it is fine to analyze the situation
as Harper does, though Principle (N) can be used also in cases where
the laws of motion are not linear, and where, therefore, the mathe-
matical structure does not even describe a component of the actual
motion. Hence Principle (N) is deeper than Harper’s principles.

I have argued that Principle (N) affords a “rational reconstruc-
tion” of Newton’s reasoning which avoids Duhem’s censure. That is,
even if Newton did not rely on Principle (N) consciously, his actual
behavior is Pythagorean. But in fact, Newton made declarations
which evoke Principle (N). Principle (N) gives a very neat interpreta-
tion of Newton’s fourth “rule for reasoning in philosophy”
(Principia, Book III):

In experimental philosophy we are to look upon propositions inferred by
general induction for phenomena as accurately or very nearly true . . . till
such time as other phenomena occur by which they may either be made
more accurate or liable to exceptions.

Little meaning can be given to “very nearly true” here without
Principle (N). Once we are confirming the approximate truth, rather
than the truth, of a proposition, there is no end to the propositions

89 Newton never gave Kepler credit for having discovered “laws.” This is mean-spir-
ited, but also reflects Newton’s belief that physical laws are those which specify the
forces of Nature, i.e., dynamical, not kinematical, laws.
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we are confirming. With Principle (N), of course, the weather clears:
propositions are mathematical propositions or structures. These
don’t grow on trees. For example, the inverse square is a mathemati-
cal structure, but the inverse of 2.00000000093 is not.

* ok %k

The “Newtonian” strategy is a very powerful method of discovery in
contemporary physics. We have already discussed the so-called
“missing” lines of the spectrum of hydrogen. Missing lines mean that
there are transitions that the hydrogen atom, for some reason, does
not undergo. An explanation for this could be the existence of a hith-
erto undiscovered symmetry of the system, one which imposes a
“new” law of conservation, preventing the “missing” transitions. An
example is the symmetry known as parity.

But, in fact, the transitions, the spectral lines, are not missing.
They are simply fainter than the others. According to Pythagorean
strategy (N), we are to regard the fainter lines as perturbations of
what is a broken symmetry, where “symmetry” is defined by mathe-
maticians.

What is more, the effect that breaks the symmetry may itself be
governed by a symmetry. (In the case of Newtonian gravitation, what
broke the gravitational symmetry of Kepler’s laws is itself a gravita-
tional perturbation.) Here is another example of Principle (N), and
thus Strategy (6), which illustrates this idea—that what breaks the
symmetry may itself be governed by a symmetry.

A lambda hyperon (A°) is a hadron with isospin zero and charge
zero. We find that a hyperon “weakly” (i.e., slowly) decays into a pro-
ton (p) and negative pion T, or a neutron (n) and a neutral pion 1%

Al sp+n
A > n +

The first type of “weak” decay occurs approximately % of the time;
the second, about %5 of the time. And both reactions fail to conserve
isospin: a proton has isospin '2; a neutron, —'%; a neutral pion, 0; a
negative pion, —1.

Here physicists guessed: if the statistics (i.e., %5 to '4) were exact,
we could calculate as follows. Multiply the two-dimensional nucleon
space by the three-dimensional pion space, in the sense of tensor
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product (cf. above). We then get a six-dimensional space. Within this
space, the neutron is formally represented as the following linear
combination:?°

n = %n®n — V%n Rp.

Squaring the coefficients, as we do in quantum mechanics, we get the
exact probabilities %3 and %5 we are looking for. Physicists thus con-
jectured (using Principle (N)) that there is some natural, if weak,
interaction, which increases the isospin from zero to 5,°! so that it
can decay as the above. Though the latest theories of matter give
insight into the process, these allow other possible scenarios for the
hyperon decay, and it is not yet clear what rules them out.
Nevertheless, the Pythagorean conjecture, that the weak decay of the
lambda hyperon proceeds via an SU(2) mechanism, seems vindi-
cated.

A saying popular in the sixties was: “To be a particle physicist, you
need two things: familiarity with the Greek alphabet, and an ability
to recognize fractions.”®2 This is a beautiful definition of a third-
century Pythagorean.

90 Cf. Sternberg 1994, 213 ff. for the details of this group theoretical calculation.

1 It is not that the hyperon actually becomes a physical neutron before decaying—
it is abstractly represented as one before decaying.

92 Shlomo Sternberg told me this.
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Formalisms and Formalist Reasoning
in Quantum Mechanics

In quantum mechanics, formalist analogies often take the form of
pseudodeductions: instead of preserving truth, formalist reasoning
establishes meaning. Formalist reasoning shows that the extension of
the formalism to new situations is constrained by the formalism
itself. Such reasoning is like what my student and colleague Meir
Buzaglo calls “strongly forced extensions” in the history of mathe-
matics. For example, when mathematicians extended the formalism
of “raising to a power” to cover zero, negative, rational, real, and
even imaginary powers, they found that they had little or no choice
in defining these concepts, so long as the essential syntax of raising
to a power was preserved.!

But there is a major difference, too: physics, unlike mathematics,
is subject to empirical tests. That a physical formalism can be
extended only if certain empirical conditions hold is not a naturalis-
tically valid reason that these conditions in fact hold (who says that
formalism should be so extendable?). In fact, I maintain, much phys-
ical research in the present century has been, in the first instance,
inquiry into our own formalisms, and only secondarily into nature.

! For example, we want to preserve rules like

x%B = xotB
ﬁ; = xoB
x

but are willing to sacrifice x*>0. Buzaglo defines the notion of “forced” extensions and
“strongly forced” extension, using the techniques of model theory.
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The scientist investigates a formalism to “see what it means,” as
though it were the Handwriting on the Wall in the Book of Daniel.
Therefore, much research is based on anthropocentric premises. And
the success of such research makes the universe look anthropocen-
tric. (I do not say that the success of anthropocentric research con-
firms one or another anthropocentric premise, because dogmatic
naturalists can always rule out the confirmability of anthropocen-
trism. Still, I can say that even for dogmatic naturalists, the success
of anthropocentric research is a mystery, and that the usual strate-
gies of explaining away anthropocentrism do not obviously work.)

In Appendix A, I “derive,” by formal means, such results as the
Heisenberg Uncertainty Principle, the quantization of angular
momentum, and some of the properties of electron spin. Of course,
the results themselves were known before anybody thought of show-
ing how these results are latent in the formalism of quantum mechan-
ics. My main object there is simply to show that the Hilbert space
formalism is descriptively applicable to quantum mechanics, and to
point out that no explanation for this is presently known.

Nevertheless, the formal derivations of empirical results are ger-
mane to the context of discovery also. These formal derivations take
the form of showing that there are severe restrictions on how the
formalism can be extended—for example, we must either quantize
angular momentum, or give up the formalism. This suggests to the
scientist that this is the route to further discoveries, that one must “do
the same thing as before” to make these discoveries. In other words,
the motivation for this sort of research is—an analogy.

But we have already seen the slippery nature of “doing the same
thing as before.” If the analogy in question is illegitimate, then, it is
simply not true that we are “doing the same thing as before.” For the
naturalist, in particular, using the formalism to make discoveries by
analogy to other cases of extension, is, in my opinion, ruled out; the
naturalist is blocked from a claim based on “doing the same thing
again.”

This chapter shows how the quantum mechanical formalism was
actually used to make a prediction in this way—how scientists
assumed that the formalism continues to “track” nature even when it
is altered by extension.

Our story has to do with the extension of the quantum mechani-
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cal formalism to a two particle situation. Let us first recall a funda-
mental property of the quantum mechanical formalism—one which
I will not attempt to derive at all. This is the Principle of
Superposition. It says that if vector W4 describes a system in state A,
and vector Wy describes a system in state B, and we have no way of
deciding, even with probability, whether the system is in A or B, then
the vector describing the situation that the system is either in state A
or in state B is (proportional? to) W, + Ws.? A familiar example of
this is the “two hole” experiment (see Figure 2). We shoot one par-
ticle at a wall with two tiny holes, in back of which a screen scintil-
lates wherever a particle lands. We can take the screen as the x-axis.
Suppose that, with hole A open, the vector that gives the position
data of the particle is W ; then the probability that it will strike at a
point x is [ 5 (x)]>. With hole A closed and B open, suppose the prob-
ability curve is given by [¥g(x)|°. (Both curves might look like bell

2 The sum of the vectors might have to be multiplied by a constant, in order that
the probabilities still add up to one. This is called “normalization.” I will adopt the
attitude that the Principle of Superposition is simply part of the rules of the form-
alism.

3 The ground of this principle is still controversial. For a readable account of the
principle, see Albert 1992.
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curves, each with the maximum opposite the corresponding hole.)
Then, with both holes open, and the experiment conducted so that
there is no way to detect which of the two holes the particle traverses,
the probability curve is [Pa(x) + Wa(x)]>, which is not the sum
[¥A(x)]? + [¥e(x)* of the two probability curves.# On the contrary,
the two vectors can interfere with each other, and the screen will have
areas forbidden to the particle. (If a whole beam of particles is shot,
the screen will contain dark areas.) The reason is that the coordinates
of the vectors are complex numbers that have “directions” as well as
“length.”

We confront here one of the famous “paradoxes” of quantum
mechanics: how can opening another hole in the wall restrict the
movements of the particle? One would think the opposite is the case:
the particle now has more degrees of freedom. Much ink has been
spilled on this and other “paradoxes” of quantum mechanics® and
the matter is in good hands. This book is not about the mysteries of
quantum mechanics, but the mystery of its discovery; and, as here,
the mystery of its extension.

Let us see if we can extend the formalism to deal with two parti-
cles, particles 1 and 2. Fach position “axis” will now represent the
position of two particles, not one. Indeed, if we consider position in
three-dimensional space, then each position axis will correspond to
a value for the following six variables: x1,y1,21,X2,V2,22, the first three
numbers giving the position of particle 1; the second three, that of
particle 2. The coordinate of the state vector will then be a (complex-
valued) function of six variables: x;,y1,21,X5,52,22. The absolute
square of this function then gives the probability that particle 1 is at
the place (x,y1,z;) and particle 2 is at (x5,y5,2,). The six-dimensional
space defined by the variables x,,y,,2,,%2,V2,2o—the “direct sum” of
two copies of three-dimensional Euclidean space—is called the “con-
figuration space” of the system of two particles, the space on which
the function W(x1,y1,21,X2,52,22) 1 defined. It is important not to be
confused about the difference between the configuration space,
where the system resides, and the linear space, where the state vector
resides.

4 Actually, it is Y4[¥a(x) + Ws(x)]’; otherwise, the sum of all the probabilities
would be 2.
5 I refer the reader once again to Albert 1992.
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After Wilczek 1991, let us consider the following experiment (see
Figure 3). Two particles with equal charge and mass are “shot” simul-
taneously at each other at equal velocities from guns that are located
an equal distance east and west, respectively, of the origin. The par-
ticles are scattered in different directions, but the difference between
the two directions must be exactly 180°; it is sufficient to know the
direction of either particle, to know the direction of the other one®
(the convention will be that the direction given is always the angle of
the western particle, the particle that comes from the west). Thus, it
is possible, but not necessary, that one particle is scattered due north,
and the other, due south. In fact, either particle could go due north,
or 90°. In theory, of course, we need three coordinates to locate a par-
ticle (x,y,z, or, in spherical coordinates, »,0,0, where 0 is always the
“latitude” and ¢ the “longitude”). But suppose we care only about
the angle ¢—the “scattering angle” (with respect to a horizontal
plane). We can then speak of a function ¥(,,9,) of two variables
only, the amplitude for particle 1 to end up at ¢, at the same time as
particle 2 ends up at ¢,. (N.B.: we will not be able to ignore the three-
dimensionality of space for long, though.)

6 This fact is not special to quantum mechanics, but follows from the classical prin-
ciple of conservation of momentum. I have simply set up the experiment, following
Wilczek, in such a manner that the outcomes are easy to calculate.
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Two ways of arriving at the same result: Particle 1 incoming from west;
Particle 2 from east. One particle arrives at 135° the other at 315°.

As in the two-hole experiment, there are always two ways to get
one particle at any given place (i.e., “longitude” f). For example (see
Figure 4), a particle could end up at 135°, and the other, perforce, at
315°, if either:

(A) particle 1 (incoming from west to east) is deflected backwards
at an angle of 45° from its incoming path,
or:

(B) particle 2 is deflected forward at an angle of 135° from its
incoming path.

If the particles are nonidentical, though having the same mass and
charge—in other words, if there is any property that distinguishes the
two particles—then we can distinguish between cases (A) and (B). In
that case, the Principle of Superposition does not apply. So to get the
probabilities to have one particle landing up at angle ¢ (and, of
course, we cannot have them both ending up at the same place), we
simply add the probabilities of case A and that of case B, arriving at

(JP(135°,315%) + [¥(315°,135%)]%).

If, however, the particles are identical, we would expect (given the
Principle of Superposition) the following result:
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[P(135°,315°)] + [¥(315°,135°).

In general, we can write the following expression for the probability
that exactly one particle will be deflected in the direction ¢:

(1) I(\Ilnonid(¢ls¢2) + anonid(q)Z)q)l))‘Z

Let’s consider the special case where one particle is deflected due
north, the other due south. By symmetry, clearly

anonid(9O°727OO) = ‘Pnonid(27003900)-

In other words, in the case of nonidentical particles, we get the same
amplitude (and the same probability) for either particle to go north.

In this case the calculation is easy, and similar to the one for the
two-hole experiment. The probability for one particle to be deflected
due north, in the case of nonidentical particles, is

(¥ n0nia(90°,270) + [¥0nia(270%,90°)) =
2|\Pnonid(90072700)|27

and in the case of identical particles

|\Pnonid(90°’270°) + ‘.Pnonid(2700:900)|2 =
4 nonia(90°,270°),

i.e., twice as likely—just as before. And, in fact, this is exactly what
happens—sometimes. For some pairs of identical particles, that is,
our calculation is exactly what the Principle of Superposition pre-
dicts.”

Consider the case of two electrons shot from the guns of our
experiment. What is the probability that an electron will be deflected
due north? The shocking experimental answer—if we are still capa-
ble of shock after the Principle of Superposition—is: zero. How is
this possible? And could there be any other behavior then the two just
described: either twice as much probability at due north or zero? (The
latter kind of identical particles are called “fermions,” and the former
“bosons,” in memory of the great physicists, Fermi and Bose, who
discovered them.)

7 And particles here can mean also: nuclei, i.e., clusters of particles that can be
treated as a unit for our purposes. If you would like an example of “elementary” par-

ticles described by this calculation, the pions will do. Yet for other pairs of identical
particles, there is the most startling result.
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The explanation of this amazing phenomenon (interference, as it
were, yet different from the interference of the two holes above) is
typical of twentieth-century physics. No new laws will be put for-
ward. Rather we will return to our formalism, and seek there infor-
mation that we never noticed before—information conveyed
nondeductively. This information will exhibit new possibilities in our
formalism, and thus new possibilities in nature.

Consider the case of identical particles once again. So far we have
discussed probabilities, but really we need a “state vector” to describe
a system in quantum mechanics. What kind of linear space will we
have? (The linear space is defined on the configuration space, since
each point of the configuration space is considered an “axis” of the
linear space.) What is the coordinate function, the psi-function, of
the system? For nonidentical particles, we can get a function of two
positions (six coordinates), ¥(x,,x,), where bold letters mean vec-
tors, i.e., ordered triples. (In our experiment with the two guns, we
ignored all coordinates except for the two “longitude” angles. As we
shall see presently, the missing coordinates play a role even if we
ignore them.) The space of six coordinates is called the “configura-
tion space.” The points of the configuration space, in turn, form the
“axes” of our linear space, where the state vector resides.

In the case of identical particles, however, we cannot—by defini-
tion—tell the difference between the situation described by (xy,x;)
and that described by (x,,x:)—i.e., particle 1 at place x, and particle
2 at place x,—or the reverse. (This is why we didn’t just add the prob-
abilities in the first place.) Each of these describes the same situation,
one particle at each place. What this suggests is that we identify the
location® (x;,x,) with the point (x,,x;). This is like taking a piece of
paper and folding it along its diagonal. Indeed, in our gun experi-
ment, where we had only two coordinates, the angle of the first par-
ticle and the angle of the second, we get a two-dimensional graph,
and we can visualize the folding quite easily. In other words, the psi-
function should be thought of as a function on “half” the number of
points when the particles are identical. A better way to put the mat-
ter is that we consider the pair <(x;,x,),(x2,%1)> to be a member of

# A reminder: the “locations” here are not in ordinary three-space, but in the con-
figuration space, which is six-space, E* ® E>.
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an equivalence class, and the psi function is now thought of as a func-
tion on pairs of equivalence classes. We might write W¥,,(X;,X5), with
capital letters, to express this idea. The capital letter variables Xy, X,
range over the equivalence classes of locations. The subscript “id”
means that we are defining a new state vector, one that expresses max-
imum information concerning a system of two identical particles.

What are the pairs (x,x)—known as the diagonal—equivalent to?
Only to themselves, thus there would have to be some equivalence
classes with only one pair of positions. The way out here is simply to
omit these points (take out the diagonal). I emphasize that removing
the diagonal makes no difference,® because if the psi-function is con-
tinuous, then the values of the psi-function for points near the diag-
onal will determine the values on the diagonal. In other words, the
value of ¥;;(X;,X3), where X; =~ X,, would have to determine the
meaning (the value) of ¥,,(X;,X;) or ¥.4(X3,X5). And, by the way, in
the experiment now under consideration, the physics of the situation
guarantees that the two particles can never land at exactly the same
place, since each particle is distant 180° from the other. I stress this
because the reader is quite likely to suspect “hanky-panky” in what
follows.

Let’s look at what happens when we take a six-dimensional (con-
figuration) space composed of (the “direct sum of”) two copies of
ordinary three-dimensional Euclidean space: remove the pairs <x,x>
(the remainder will still be a six-dimensional space), and then “iden-
tify” every point <x;,x,> with <x,,x;>. Since this still gives a six-
dimensional space (we just “folded it over”), it is hard for us to
visualize. To make things easier, indeed to reduce the problem to a
three-dimensional one, consider this space, not from the point of
view of the Cartesian coordinate system, but from the reference
frame of one of the two identical particles. Each particle thinks it is
the center of the universe, stationary there—and the other particle

9 The diagonal of a sheet of paper is a line, but the diagonal of the six-dimensional
space (the three coordinates of each particle) in which we locate two particles is an
entire three-dimensional Euclidean space. In general, the diagonal has half the dimen-
sions of the whole configuration space.

Only in two dimensions does the removal of the diagonal make a real difference—
it divides the plane into two separate pieces; the plane is no longer a connected set. We
will have occasion soon to remark upon the special properties of two dimensional
manifolds.
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moves around in a three-dimensional space. Note that the “diago-
nal” has now become a single point—the center of the universe, the
origin, since only the other particle can move—and to say that the
particles are on the diagonal is to say that they are at the same point
in space.

So we take ordinary three—dimensional space, and puncture it
only at the point (0,0,0), where one of the particles stays fixed, and
the other particle never goes (or at least, we ignore it, if it goes there).
From this point of view, what does it mean to replace a point <x;,x,>
with <x,,x;>—i.e., for the particles to switch positions? It means
(from the parochial point of view of our “geocentric” particle, which
thinks it never moves) for the other particle to reflect itself through
the origin to the diametrically opposite position. That is, it moves
from (x,y,z) to (—x, —y,—z): a turn of 180°, if you prefer.

To make things even simpler, let us consider, not the whole space
(x,y,z), but only those points within some radius  from the origin—
a sphere and its interior (with the center removed). In Figure 5, each
point in the “northern hemisphere” is identified with its diametrically
opposite point in the “southern hemisphere.” Let’s call the result the
“Punctured Projective Sphere (PPS).” This is a space that we cannot
really visualize, but we can try to interpret the projective space in
terms of our own. Figure 5, then, is a picture of the Euclidean
sphere, !¢ in terms of which we will try to grasp the unpicturable PPS.

For example, a closed loop in the PPS corresponds to a pair of
closed loops in the Euclidean sphere, one the reflection of the other.
In Figure 5, for example, the two loops are supposed to lie in planes
parallel to the equatorial plane—one loop in the northern hemi-
sphere, the other in the southern hemisphere—and points a and b
correspond, respectively, to points a’ and 4'. Notice that we can
shrink both loops simultaneously to diametrically opposed points
while remaining in the Euclidean sphere; thus, the one loop in PPS to
which the two correspond, can be shrunk to a single point—the point
to which the two points in the Fuclidean sphere correspond.

Now move the two loops continuously toward the equatorial
plane. When they arrive there, the two loops coalesce into two simul-

10 By “sphere” I mean to include the interior as well—what mathematicians some-
times call a “ball.”
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F1GuUre 5. The Punctured Projective Sphere.

The loop in the northern hemisphere is equivalent to its mirror image in the
southern hemisphere.

taneous trips around the missing center (from different starting
points, however). We can also reverse the process by a continuous
motion and bring back the two loops. Thus, the loop in PPS that cor-
responds to the two trips around the equator can also be shrunk to a
point.

Suppose, now, we take two simultaneous trips around half the
equator—from A to A’ and from A’ to A. The “trip” to which this
corresponds in PPS is from the pair <A,A’> to the pair <A',A>. But
these pairs are diametrically opposed to each other. Hence the pairs
<A,A’'> and <A',A>, though different on the Euclidean sphere, are
one and the same on PPS. In other words, by taking two simultane-
ous trips around only half the equator, we have arrived back where
we started from. (Not on the Euclidean sphere, remember, but in our
unimaginable PPS.) That is, the pair of trips that we took, corres-
pond, in PPS, to a closed loop. Yet it is not hard to see that we can-
not shrink this closed loop to a point: if we move the two half
equators off the equatorial plane, we will get two half loops in the
northern and southern hemisphere. Thus, only on the equatorial
plane does this special “PPS-loop” stay a loop. But the equatorial
plane is punctured. To get the loop off the equatorial plane (i.c., to
turn the loop into two small Euclidean loops), we have to complete
(simultaneously, twice) the entire equator.
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In sum, in the Punctured Projective Sphere, though there are loops
that cannot be shrunk down to a point, any double loop can. (This
fact can be given a mathematical proof in algebraic topology.)

Let us abandon, now, the point of view of one of the particles, and
treat of both particles with one function ¥,,(X;,X3). The topological
facts we have developed for the simplified point of view (from the ref-
erence frame of one particle, and also taking a finite sphere around
the origin) hold good when we abandon that point of view. In other
words, there exist closed paths in the six-dimensional space of points
(X1,X3) minus the diagonal points <X,X> that cannot be shrunk to
a point, but every double closed path can be “untwisted.”

Now this topological fact has implications for our quantum
mechanical formalism.

In this book, the quantum mechanical function ¥(x) (x is a point
in the configuration space) has always been regarded as single-valued,
though there is no physical difference between the function W(x) and
the function ¢®¥(x) for any “phase” 8. Why? Because, as I point out
in Appendix A, if the psi-function were multiple-valued, we could
find a loop in the configuration space, such that traversing the loop
would cause the function to switch values, i.e., add a phase factor.
Then we could shrink this loop to a point, making the function
switch values in an infinitesimal loop, violating continuity.

But in the projective (configuration) space now under considera-
tion, not every loop can be shrunk to a point—only a double loop
can. So it is consistent (though, indeed, not mandatory) for the func-
tion ¥,4(X,,X3) to have more than one value.!! Namely, its value can
be multiplied by a complex number ¢ with modulus 1. On the other
hand, if it goes around the same loop again, it must come back to its
original value. In other words, we have the equation

@ =1,
which implies that
3 c=*l.

These two solutions now explain our two kinds of particles, and in
particular the behavior of electrons. Allowing two electrons to switch
places (as the result of a continuous motion) is, from the point of

11 Reread carefully the discussion in Chapter 2 on this point.
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view of one of them, like allowing the other electron to move dia-
metrically opposite to it, 180°. But in our projective space, this is an
entire loop, not half a loop—and it is consistent for the ¥;, to change
sign as a result of the loop.

To clarify this, let us return to our experiment with the two guns.
Because of the conditions of the experiment, where the particles
always end up 180° apart, switching the two (destinations of the) par-
ticles is like rotating our “laboratory” by 180° in Euclidean space. But
in projective space, where we identify <0,,0,> with <6,,0,>, rotating
the laboratory 180° is like coming back to the starting point, i.e., one
loop. Consider the series

(4) Wia(90°,270°),¥,4(135°,315°),¥,4(180°,0°), ¥,4(215°,45°),
¥ia(269°,89°),%:4(270°,90°) [= ¥:4(90°,270°)},

which are some of the values obtained by “rotating the laboratory
180°,” in other words, checking the amplitude of the state in which
one particle is at 90° and the other is at 270°, and moving around until
we are checking the state where one particle is at 270° and the other
is at 90°. Naturally the first and last state must be the same. Yet the
function ¥(¢4,4,) need not come back to the same value. It is logic-
ally possible, given the topological considerations mentioned above,
for ¥(269°,89°) to be almost —¥(90°,270°), and for the psi-function
to change sign as it continuously makes a loop (not in Euclidean
space, but) in projective space.

Now let us apply the Superposition Principle, which states that,
when vectors ¥4 and Wy tell us what the state of a system is in cir-
cumstances A and B, respectively—then, when we cannot tell
whether the system is, in fact, in circumstance A or B, we add the vec-
tors (not the probabilities).

For the case of our experiment, since there is no way to tell
whether it is particle 1 at 90° and particle 2 at 270° or the opposite,
we should get

(5) lPid(90032700) = lI,ru)nid(goo’2'700) + Tnanid(27003900)-

But this ignores one critical fact about the formalism: if a vector
describes a physical system, then the vector multiplied by any com-
plex number of “length” 1 will describe that very system. Thus, equa-
tion (5) is too restrictive, and we should write instead
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(6) Wia(90°,270°) = ¥10,:a(90°,270%) + '¥0ia(270°,90%), |cf* = 1.

But the only way for ¥(6,,0,) to change sign (as the position changes
continuously from <90°,270°> to <270°,90°>) is the value

c= -1
We have, therefore, arrived at the other possibility: namely,
() ¥.4(90°,270°) = ¥,,,,,..a(90°,270°) — ¥ ,0,.:2(270°,90°) = 0.

Information contained in the formalism has solved the problem.
More generally, of course, we get

® V¥ia(X1,X2) = Wronia(X1,X2) £ Wronia(X2,X1),

as our two possible applications of the Superposition Principle.

We now, by the way, have a simple answer to the question: what is
the value of the psi-function of two identical particles on the diago-
nal? Namely, zero, or double the value of the psi-function of two non-
identical particles to be on the diagonal.!? For in equation (8), the
right side obviously goes to zero or to double when |x; — x,| — 0.
Hence, if we want ¥';4(X;,X2) to be continuous, we require

) FialX,X) = {2\Pnon2<x,x)}-

That the psi-function of two identical particles should change sign
as a result of their switching place in Euclidean space (equivalently,
that the psi-function should change sign as a result of one closed
loop in the PPS) is not required, only possible. To the contrary, it
might not change sign at all. It is reasonable, however, to link this
behavior with the nature of the particle.!> All pairs of electrons
change sign; no pairs of pions do.

In sum, then, answering the formal question, “Under what condi-

12 Recall, though, that in our example, the amplitude for particle 1 and particle 2
to be on the diagonal is zero even for nonidentical particles, because of the nature of
the experiment and conservation of momentum.

13 In fact, all electrons have an intrinsic “spin” or angular momentum that is one-
half Planck’s constant. (Meaning: if we think of “spin” as a vector, then its z-compo-
nent is always found to be ' Planck’s constant.) In 1940, Pauli showed that the
“antisymmetric” behavior of electrons is explained by their spin.
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tion must the state vector be determined uniquely?” turns out to have
singular physical implications. Of course, we needed the Principle of
Superposition, but this, too, is a formal principle.!4 (Why should it
make a difference whether we “know” which of the two holes the par-
ticle goes through? And so on.)

A skeptical response to the above analysis is: I may be “reading
into” the formalism results already known to be true. I shall now pre-
sent Wilczek’s hypothesis, which can certainly not be regarded as ad
hoc—it could even be wrong. The fact that Wilczek makes it, though,
illuminates the cast of mind that dominates theoretical physics in our
century. And, of course, it may well be true.

Let us return, now, to our Punctured Projective Sphere. We dis-
covered that the PPS has topological properties that differ markedly
from the Euclidean punctured sphere (ball). In the latter, any closed
loop can be shrunk continuously to a point. We say that the
Euclidean (punctured) sphere is simply connected. The PPS, though,
is not simply connected, because there are closed loops that cannot
be so shrunk. On the other hand, any double loop is isomorphic to
an ordinary loop in the Euclidean sphere, and can be shrunk to a
point.1>

Let’s consider a much easier problem. What does the Punctured
Projective Disk look like? In other words, let us consider the case of
identical particles confined to a plane. As before, let us consider mat-
ters from the reference frame of one of the particles which serves as
the origin. Thus we need only two coordinates to locate the other par-
ticle. As before, we identify points in the disk with their reflections
through the origin: (x,y) with (—x,—y). But, because we are dealing

14 If any physicist could find intuitive motivation for the Principle of Super-
position, it would be Feynman; but, concerning this very principle, Feynman says: “I
find it quite amazing that it is possible to predict what will happen by mathematics,
which is simply following rules which really have nothing to do with the original thing”
(Feynman 1967, 171). This situation could change in the future, of course, if the quan-
tum formalism is embedded in a more general physical theory. Since such a theory has
not achieved general currency, my remarks stand, as history and even as contempor-
ary description.

15 In the language of algebraic topology we say: the Fundamental Group of the
Euclidean sphere is trivial (it contains only the zero element), while that of the PPS is
that of the integers mod 2, i.e., Z/2Z. We regard loops as equivalent, if they can be
deformed continuously into one another (homotopy equivalence); the loop equivalent
to a point is the zero element of the group. The “multiplication operation” of the
group is simply the composition of the loops.
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FIGURE 6. The Punctured Projective Disk.

A punctured disk is cut in half, then sewn back as shown, the radii identified;
we get the punctured disk back again.

with only two dimensions, and we are three-dimensional beings, it is
almost trivial to imagine the PPD. Take the punctured disk, slice off
one half of it, and “sew it up” along its diameter in such a way that,
on the diameter, diametrically opposed points coincide. Clearly, we
get the punctured disk right back again (see Figure 6).1¢ Consider an
infinite series of loops around the missing center of this disk: the
loops go once, twice, thrice, . . . around the center before coming back
to their beginning point. Clearly, one cannot continuously deform
any of the loops into a point. The implication of this is that a psi-
function at a given position can have infinitely many values. Each
time the psi-function returns to the “same” position in (configura-
tion) space, it can (does not Aave to be, but can) be multiplied by a
phase factor (a complex number of modulus 1). This phase factor
need not, of course, be —1 (or 180°), as in the case of ordinary elec-
trons. Instead, it can be any rational phase factor. And this has acute
implications for our experiment. In our scattering experiment with
two electrons, we treated the problem as a two-dimensional one: we

16 This way of imagining projective space fails in three dimensions, however. The
PPS could be thought of as what you get by taking the (punctured) sphere, lopping off
the southern hemisphere, and sewing things back up so that opposite points coincide.
This operation cannot be pictured in three dimensions.
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had detectors at a fixed distance r from the center of the collisions,
and we measured only the “longitude” angle ¢ of the electrons, not
the “latitude” angle 0. Thus, only the plane of the “table” concerned
us, though we well knew that the electrons could fly up in the air or
down to the ground. (If one flies up, the other flies down.)

But though the third dimension, altitude, is only a silent spectator
in this experiment, its mere existence influences the result profoundly.
For if the laboratory—the world—were really two-dimensional, the
electrons would no longer “live” on the PPS, but rather the PPD. In
other words, they would no longer have the property that the state
vector describing two electrons changes sign from + to — when those
two electrons change positions (i.e., when, in our experiment, the lab-
oratory is rotated 180°). Instead, the state vector could change by any
phase at all—the probability that some particle should end up going
due north could then be any value between the cases of fermions
(zero) and that of bosons. Identical particles, in a word, could be
“anyons,” as the current jargon goes.

There is, to be sure, an argument, popular in textbooks, according
to which this conclusion is impossible. This is the argument that the
only two kinds of identical particles are bosons and fermions. It goes
as follows.

Consider the psi-function, W(x;,x,), for two identical particles.
Make the assumption that there is no way to distinguish between the
particles, and that the formalism should reflect that fact. Thus inter-
changing the particles is nothing more than interchanging their
names, and the functions ‘¥(x;,x;) and W(x,,x;) describe exactly the
same state. Since multiplying a quantum state function (vector) by a
phase factor does not change the described state at all, we are allowed
to write, in general,

(10) Y(x2,x1) = c¥(x1,x2), |c| = 1.

Interchanging the variables twice brings us back to our starting
point, whence

(1) W(xy,x2) = CZ\P(xlaxZ)
W

2=1,c==*l.

That is, there are only two possibilities: the state function must be
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either symmetric or antisymmetric. Since the argument did not
depend upon the dimension of the configuration space, there cannot
be “anyons” in any dimension.

There is a subtle fallacy in this argument, however.!7 It is true that
if we permute the variables of a function term W(x,,x,) twice, the
term will come back to itself. But from this it does not follow that if
we switch the particles twice, the state must come back to itself.
Suppose the particles are situated so that we can switch them simply
by rotating our measuring instrument and we do this twice. There is
no more reason to think that the twin particles will come back exactly
to their original state than there is to think that a single electron,
rotated 360°, will come back to itself. (Which, we have seen, does not
happen.)

In fact, the same kind of consideration which allowed for the pos-
sibility that, when the particles are switched once, the function,
though it continues to describe the “same” state, undergoes a phase
change, must allow for the possibility that when the particles are
switched twice, the function may not regain its original phase.

The mistake in the accepted argument, then, is the confusion
between the sign and the things symbolized. What is striking how-
ever, is how little this confusion matters. For, as it happens, as we have
seen, the conclusion of this fallacious reasoning is perfectly correct—
in three dimensions. Why need we worry about two dimensions, when
electrons are happy to reside in three?

Enter Wilczek. He conjectures that electrons, trapped in a thin
layer of material, behave like the two-dimensional particles they are
not. They lose their fermionic identities, and masquerade as anyons.
This extremely bold hypothesis has both predictive and explanatory
value. For example, Wilczek uses it to explain some of the perplex-
ing phenomena of solid state physics, like superconductivity.

Wilczek’s thesis is very controversial, because, obviously, no “thin
layer of material” is two-dimensional. Electrons, on principle, cannot
even be confined to a plane by force—says Heisenberg’s Uncertainty

17 The refutation that follows is inspired, of course, by Wilczek 1991. Wilczek’s
ideas, however, are couched in the language of Feynman path integrals, where I have
preferred to avoid this terminology.
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Principle. (This is one of the reasons why the Bohr model of the
atom, which is a two-dimensional Keplerian system, fails.)

On the other hand, dimensional reduction is not new in physics.
Given the right conditions, a three-dimensional system can behave
like a zero-dimensional one. Thus, Newton showed that two perfect
spheres attracting one another by an inverse square law would behave
as though their masses were concentrated in the centers of the
spheres. Wilczek in fact has postulated a physical mechanism to
explain how electrons might adopt the behavior, “virtually,” of par-
ticles in a plane. This mechanism is that of the Aharonov-Bohm
effect,!® in which, in the two hole experiment, a solenoid (electro-
magnetic coil) is interposed between the wall with the holes and the
screen behind. Turning on the solenoid changes the interference pat-
tern on the screen, even though outside the solenoid there is no elec-
tromagnetic field whatsoever. (The secret is that the electromagnetic
potential is not zero even though the fields are.) '

For our present purposes, it is sufficient to say that turning on a
solenoid is mathematically equivalent to changing the topology of
the configuration space. The solenoid can destroy, electromagneti-
cally, the fermionic behavior of the electron, so that no matter how
many loops one takes around it, the phase of the electron never
comes back to itself. Effectively, the problem becomes a two-dimen-
sional problem. Thus, Wilczek, controversially, associates a little
“solenoid” to go along with every electron in the kind of solid state
problems he is concerned with solving.

Should Wilczek turn out to be correct, the method of research by
studying one’s formalism, rather than “the world,” will gain a new
and wonderful vindication.

It is now time to sum up this chapter.

One of the most powerful methods of discovery in physics, par-
ticularly in quantum mechanics, is to attempt to extend the formal-
ism to cover new cases. For it turns out that the formalism itself gives
hints at its own extension.!” More than that: the extension of the
quantum mechanical formalism is often “forced,” in the sense that

18 T discussed this effect in Steiner 1989, 477-9.
19 1 have not studied another example of a formalism, the thermodynamic for-
malism. I am told that a similar phenomenon exists there.
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the extension of the notation for exponent is “forced,” when mathe-
maticians defined exponentiation for real and even complex expo-
nents. This ideas can provide retrospective “derivations” for known
results, as when we derive the quantization of angular momentum.
Thus, although these results could have been discovered by formal
considerations, they were not. Once physicists realized the potential
of the method, however, they started using formal extension in an
attempt to conjecture as yet unknown results.

~ Now, reasoning by formal extension is certainly Pythagorean. But
it is also what I have called “formalist,” though mildly so, compared
to what I will present in the next chapter. In reasoning by extension,
one is adapting a language, a syntax, to new uses. I say “a language,”
rather than “a mathematical structure,” because before the extension
takes place, the formalism is simply not defined for the cases in ques-
tion.

In this chapter, I have presented only one real conjecture based on
formal extension (the other examples were reconstructions of known
results by formal extension)}—namely, the extension of the quantum
mechanical formalism to configuration spaces with “deviant”
topologies, such that not every loop can be shrunk to a point. There
is no reason to believe—except by a formal analogy to other cases of
extension—that the extension of the formalism in this way should
continue to be “empirically adequate.” Physicists who nevertheless
engage in such reasoning, I would argue, have abandoned natur-
alism.



6

Formalist Reasoning: The Mystery of
Quantization

Perhaps the most blatant use of formalist reasoning in physics was
the successful attempt by physicists to “guess” the laws of quantum
systems using a strategy known as “quantization.” This strategy
begins by assuming that the system obeys the classical laws—a false
assumption, of course. Then the classical description is converted (by
syntactic transformations) into what is hoped is a true quantum
description of the same system. In this chapter, I will show that the
discoveries made this way relied on symbolic manipulations that bor-
der on the magical. I say “magical” because the object of study of
physics became more and more the formalism of physics itself, as
though symbols were reality—and the confusion of symbols with
reality is what characterizes much of what we call magic. I have no
great love for this word, however, and readers whom it offends can
ignore it safely.

I will begin with the development of Schroedinger’s equation—or
equations—for atoms. I will allow myself—in the interests of clarity,
if not historical accuracy—to describe his achievement in mathe-
matical terms not necessarily known to Schroedinger himself.

The state of a quantum system, we have seen, is represented by a
single unit vector in a complex Hilbert space (again, I emphasize,
these are not Schroedinger’s terms). Schroedinger’s equation
describes the movement of this vector through time. Since the vector

My thanks to Shelly Goldstein for lengthy discussion and voluminous corres-
pondence on the subject of this section. The title of this chapter is taken from one of
his lectures.
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is to remain a unit vector, the “movement” must be what mathemati-
cians call a “unitary transformation.” This is a transformation of a
complex space that preserves the “length” (norm) of every vector;
(invertible) unitary transformations replace rotations in complex
spaces.!

Thus, if U(?) is a group of unitary transformations such that
U(0) = I, and the system at ¢ = 0 is represented by the state vector
Yo, then the system at any time ¢ is represented by U(#)¥,. Naturally,
the identity of U(¢) depends on the forces at work in the system under
discussion.

We begin by noting that U(#) is a group of unitary transformations
such that U(0) = Iif and only if there exists a self-adjoint? transfor-
mation H for which the following equation holds:

) = e 713

Therefore, our state vector can be represented at any time by the
equation

() = e FH W(0).

In short, to find the state of our system at any moment, it is enough
to know the value of a certain self-adjoint transformation H. This
transformation is called the “Hamiltonian” of the system.

! The mathematical definition is: U is a unitary transformation if UU* = U*U =
1. (U* is the adjoint of U: if U is represented by a matrix, then the adjoint is repre-
sented by the matrix obtained by simultaneously interchanging rows for columns and
replacing each complex number x + iy by its complex conjugate x — iy. It is easy to
show that unitary transformations preserve the “length” of vectors. [ is the identity
transformation.)

2 A self-adjoint transformation H on a linear space with scalar product satisfies
<x| Hy> = <Hx| y>. In the finite-dimensional case, this amounts to H* = H, so that
if H is represented by a matrix (c;), self-adjointness is equivalent to the equation ¢; =
c*;. For basic facts about transformations, especially the “double role” of self-adjoint
transformations as observable and infinitesimal symmetries, cf. Guillemin and
Sternberg 1990b, 1-15. All of the mathematical facts cited in the following discussion
of the relationship between quantum mechanics and classical mechanics are proved
there.

3 Where transformations are used in exponential functions, the meaning is that the
function should be expanded as an infinite power series in the transformation.
Represented as matrices, it is not hard to define what we mean by the convergence of
such series.
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It is obvious from the previous equation that our state vector
obeys the differential equation
d¥ _

i
dt —ﬁHLP(t):

or, multiplying both sides by i,
o d
h—Y (1) = HY(®).
i (1) = HY()

By simply erasing ¥(¢), we can write this more simply as an operator
equation;

5 d

it P H.
Our question now becomes: what is H?

Schroedinger’s formalist answer—for a nonrelativistic system—
was the one accepted by the physics community by the end of 1926.
To derive a quantum equation for a system (e.g., an atom), one pre-
tends that the system obeys classical mechanics, writes down the clas-
sical energy equation true of such a system, and then “quantizes” the
equation. This is done by substituting the quantum operators for the
corresponding variables in the equation, arriving at the quantum
Hamiltonian H.

Now, the classical energy equation for a system of particles has the
form

Energy = Kinetic Energy + Potential Energy,

where the classical kinetic energy is given by
1 2 2 2
KE =— (px+p,+p:
5 (Px + Py ¥ p3)

for each particle of mass m and momentum p. The potential energy
is a function (e.g., a polynomial) of the position(s) of the particle(s)
of the system and perhaps the time (where energy is not conserved).*

4 Of course, the energy of the entire universe, physicists believe, is conserved; but
it is often convenient to consider a part of the universe as though it were a separate
system under the influence of an outside potential which may vary with time.
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In this equation, to derive H we make the following substitutions
for each particle:

E —>iﬁ(%

5 0
px—>—zﬁa
py—>—iﬁ§—y

5 0
pZ—>—zﬁ£

x — multiplication by x
y — multiplication by y
z — multiplication by z.

Also, wherever a variable (like momentum) appears classically raised
to a power, we iterate the corresponding operation the appropriate
number of times. Thus, we get, for example,

2

Y > a2
P ax?
the minus sign the result of multiplying twice by i. A trivial, but use-
ful, remark is: if V(x)is a function of x, and if Q, is the operator that
multiplies a function by x, then V(Q,) is the operator of multiplica-
tion by V(x).

For the case of one particle in an external field, if we write
W(x,y,z,t) for the spatial coordinates of our state vector ¥ at any time
t, we get the partial differential equation

2 2 2 2
it MW (xy.20) _ [—i (i + 9 9 W(x,y,z,t)

—+ — |+ V(xp,
ot 2m\ax?  9y? 622) (x.0.2)

The result is known as the “Schroedinger equation” for that system.

Ignoring relativistic effects, and to a reasonable approximation,
we can regard the hydrogen atom, classically, as a “planet” rotating
around an immovable “sun”-—the much more massive proton. The
“gravity” holding the electron in orbit is the Coulomb attraction
between the equal but oppositely charged proton and electron. Thus
the electron feels a potential proportional to
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e
¥

TR .
where r = Vx*+r*+z* is the distance of the electron from the
nucleus (the proton). Thus Schroedinger’s equation for the hydrogen
atom is obtained from the above by the substitution

2
Nxpz) = k-,

k an empirically determined proportionality constant.

Thus we have determined the coordinates of the state vector at
any time by pretending that the hydrogen atom obeys Kepler’s laws
and then “quantizing” this absurd assumption away. In quantum
mechanics, of course, the very idea that the electron has both a
momentum and a position is meaningless—thus the classical
Hamiltonian, though mathematically a well-defined function, is a
physically meaningless expression.

Nevertheless, the Schroedinger equation for the hydrogen atom
worked. The next step was to generalize the method to the helium
atom and thence to the heavy atoms. Consider the case of helium—
which has 2 protons and 2 electrons. Classically (and nonrelativisti-
cally) the energy of a helium atom whose nucleus is stationary is
equal to the sum of:

A. The kinetic energies of the electrons;

B. The (negative) potential energy of the electrons from being
attracted to the nucleus;

C. The (positive) potential energy of the electrons from repelling
each other.

In this case, we must take into account the coordinates of both elec-
tron 1 and electron 2, and the Schroedinger equation becomes

i SFC1Y1,21,%2,2,20,8)

at
2 (92 2 2 2(92 2 2
_i(i+i+i)_ ﬁ_("_ +9 +3_)
2m 0x; 90y, 0z 2m dx; 94y, 0z>

_kl i
T

2
e

~—+ k= ]l}‘(xl,h,zl,x%ybzbt)’

12 T2
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where m is the mass of each electron; r, and r, the distance between
electron 1 and electron 2 from the nucleus, respectively; and ry, is the
distance between the two electrons.

Was there any reason, before the fact, to expect that quantization,
which had worked for the hydrogen atom,> would work for helium?
The expectation rested on three supports.

(a) Performing the indicated substitutions assures that the
Schroedinger equation so derived will, in the “classical limit,”
go over into the classical equations of physics.®

What this means is only that, whenever Planck’s constant can be
regarded as negligible (as in the case of most macroscopic phenom-
ena), then to a high degree of probability the observed behavior of a
system will be governed approximately by the classical equations.
Contrast this with the case of special relativity where, as the speed of
light is thought of as approaching infinity, the classical equations
become, with certainty, better and better approximations to- the
truth. Thus, classical mechanics is not straightforwardly a “limiting
case” of quantum mechanics.

But even if we accept the standard claim that (in some sense)
Schroedinger’s equation has Newtonian mechanics as a limiting case,
this is no argument that Schroedinger’s equation is true where
Newtonian mechanics is manifestly false.

(b) For the free particle (where ¥ = 0), Schroedinger’s equation
reduces to the de Broglie theory of matter-waves, for which
there are physical arguments, buttressed by Einstein’s theory
of relativity.” Thus Schroedinger’s equation is just a general-
ization of the de Broglie theory for the case of arbitrary
potentials.

5 It had also worked for the harmonic oscillator.

$ For the mathematical details of this, see Landau and Lifshitz 1965, § 17.

7 Cf. Weyl 1950, 48-54 for a concise account of this theory. Schroedinger’s equa-
tion is, of course, non-relativistic; but the notion that, if the time derivative of a wave
(function) is (proportional to) its energy, then its space derivative is (proportional to)
its momentum, is both logically and historically motivated by Einstein’s special theory
of relativity.
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This is just the kind of reasoning this book has been written to
expose. Formally, this reasoning is correct. But physically there are
reasons to spurn it. For simplicity, consider a single particle moving
along the x-axis only. Then we can drop subscripts and write simply,

pZ
Energy = =— + V(x).
2m
Substituting operators for these variables, as above, we get an equa-
tion that has the following form:

o ﬁ2 N
H = 27n+ V(Q).

What this equation means is that the left side of this equation and its
right side give the same result when applied to the coordinate func-
tion W(x). The equation would make sense—indeed, it would express
the de Broglie theory—if it asserted, or implied, that a particle with
a definite total energy state can be represented as having a definite
kinetic energy and a definite potential energy so that the energy is
precisely
2
Py V(x).
2m

But the potential energy of a particle is a function of its position; the
kinetic energy, of its momentum—and, as we know, no particle can
have, simultaneously, a definite position and a definite momentum.
What this means is that a particle with a definite kinetic energy may
have an indeterminate potential energy and vice versa. Or, a particle
with a definite total energy may have both its kinetic and its poten-
tial energies indefinite, according to the Heisenberg Uncertainty
Principle. (In the de Broglie wave theory, by contrast, position does
not arise; there is no reason why a free particle cannot have, simulta-
neously, a definite energy and a definite momentum.) What this
means is that there is a colossal difference between Schroedinger’s
equation without potential energy and the equation with potential
energy. The physical motivation for the equation breaks down—
Schroedinger’s equation is, then, only a formal generalization of the
de Broglie theory. As Weyl puts it, “We assume with Schroedinger
that in spite of the fact that all our variables do not commute we still
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apply our rules for formation of the wave equation.”® That is to say,
Schroedinger’s equation is derived formally from the classical equa-
tion by formal substitution of operators even when the original
motivation for the substitution no longer applies.

Ultimately, then, the true argument for Schroedinger’s equation is:

(c) The success of quantization in the case of hydrogen argues for
its probable success in the case of helium (and the other
atoms).

But here the question is: what is “it”? That is, are we sure that
quantization in the case of helium is the “same thing” as in the case
of hydrogen? Yet this question is nothing but the question of whether
the following hypothesis is a projectible one:

(H) The Schroedinger equation arrived at by quantizing a classi-
cal atom gives a good (nonrelativistic) description of that
atom.

For one cannot separate questions of “identity” from questions of
projection.® Earlier, I pointed out that, for the naturalist, anthro-
pocentric hypotheses are “unprojectible.” For this very reason, one
must conclude, that, for the naturalist, anthropocentric analogies are
invalid. That is, we cannot (if naturalists) argue that we are simply
“doing the same thing” when the criterion for “same” is an anthro-
pocentric one.

Suppose, then, that the “naturalist” physicist argues—with Weyl,
above—that we are merely following “the same procedure” as before.
Hence the expectation, based upon past successes, that our equation
for helium is correct, is rational. But Weyl’s argument is not available

& Weyl 1950, 56. Compare Landau and Lifshitz 1965, 51: “The form of the
Hamiltonian for a system of particles which interact with one another cannot be
derived from the general principles of quantum mechanics alone.”

° As I have emphasized throughout this book, this point is made with great force
by none other than Ludwig Wittgenstein in his Philosophical Investigations (Wittgen-
stein 1968). Speaking in the context of rule-following, he argues that whether one s,
or is not, “doing the same thing as before” depends simply upon which rule one is fol-
lowing.
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to the naturalist, since all that is “the same” here is our manipulation
of a meaningless expression. (That is, quantum mechanics assigns no
meaning to the classical energy equation

2
_ P
E=E2 + v
2m x);

though, formally, the equations of quantum mechanics “look like”
the classical equation the more Planck’s constant becomes negli-
gible.) The analogy here is anthropocentric, because notation-
dependent.

For heavy atoms, of course, the problem is intensified. It is gener-
ally asserted that classical chemistry is, to a good degree of approxi-
mation, “nothing but” Schroedinger’s equation as applied to the
electrons.!? That is, chemistry is understood to be reducible, more or
less, to the theory of electrons moving in the attractive Coulomb
potential of a positive nucleus, and repelling one another with the
same Coulomb force. But since nobody has demonstrated that this
dogma is actually true,!! the ground for this widespread belief can
only be those successes of Schroedinger’s equation given in the text-
books. The truth is, that even for helium, the Schroedinger equation
is not solvable analytically—and for the heavier atoms, one can rely
only on various techniques of approximation. Thus, if Schroedin-
ger’s equation cannot be grounded in its own physical picture,!? its
confirmation (in the case of heavier atoms) rests on its analogy to the
equation in the case of the lighter atoms—i.e., upon quantization,
and thus upon an anthropocentric analogy. In other words, so long
as Schroedinger’s equation is allowed to be the basis of (nonrela-
tivistic) quantum mechanics, it is unavailable to the naturalist.

10T am ignoring here electronic spin, Pauli’s principle, and, generally, relativistic
effects.

11 Cf. Primas 1983. More generally, on the relation between fundamental equations
and actual phenomena, cf. Cartwright 1983.

12 T insert this proviso because there are those—Bohm, Bell, and, recently, Shelly
Goldstein—who believe that Schroedinger’s equation can be demonstrated from a
deterministic physical theory without the aid of quantization. If this is true, then we
have an ex post facto explanation of why quantization succeeded. The historical mys-
tery remains, however, since those who developed quantum mechanics using quanti-
zation were not aware of, or rejected outright, “Bohmian mechanics,” they were led
primarily by what amounts to superstition.
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Scientists who trust it, therefore, are implicitly going beyond natu-
ralism—to any of a number of possible metaphysical alternatives
(which one, will depend on the individual).

Radical theses are often misunderstood; so I shall restate mine in
other terms. In quantum mechanics, according to its orthodox inter-
preters, we dispense with pictures and models. We cannot even speak
of the “path of a particle” in quantum mechanics, much less of its
“orbit” around a nucleus.!? Some philosophers even regard this as a
good thing, a philosophical advance. All there is to quantum
mechanics, then, is the formalism itself. And the formalism has no
descriptive role: it keeps track of the probabilities that various
“observables” will be measured (classically) to have different possible
“values.”

Now critics like Bell or Bohm protest here that this point of view
robs quantum mechanics of its connection to the rest of physics—
indeed, robs it of its very right to be called a physical theory. My own
view 18 more radical than theirs (though compatible with it). We have
no basis for saying, for example, that the uranium atom is relevantly
like the helium atom (our intuition to the contrary being based on a
continuing, though tacit and officially denied, commitment to classi-
cal physics). Thus the success of the formalism of quantum mechan-
ics in predicting the properties of helium should have no bearing on
its probable success with uranium.

Indeed, if we take seriously the orthodox view that quantum
mechanics is nothing but the quantum mechanical formalism, the
only connection we have between, say, the Schroedinger equation for
helium and that for uranium, is itself a formal connection. This con-
nection is that both Schroedinger equations are derivable by “quan-
tization” from the appropriate classical equations. But to say that the
connection is “formal” is just another way of saying that the con-
nection is mediated by nothing more than notation. And a connec-
tion mediated by notation, I have been arguing, is anthropocentric.

I am not a physicist, and my criticism here is not of quantum
mechanics—I leave that to Bohm and Bell. I have no quarrel with a
physicist who is happy with the status quo, and works with quantum

13 Landau and Lifshitz 1965 take this line consistently.
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mechanics as a mere formalism. My only claim is that such a “happy”
physicist has no right to be a naturalist.

It is often said that the era of quantization is over. That is, one no
longer guesses the laws of motion of a quantum system by trans-
forming a classical description to a quantum one. If my analysis is
correct, however, the continuing validity of Schroedinger’s equation
for new cases rests on quantization. Thus the era of quantization will
not be over until Schroedinger’s equation is derived in a standard way
from the first principles of an underlying physical theory, which does
not depend upon its formal relationship to classical theories for its
formulation.

* %k X

Another route to “quantization” was that of Heisenberg, Born, and
Jordan!4—that of “matrix mechanics.” To be sure, I have already dis-
cussed Heisenberg’s ideas as examples of Pythagorean analogies. But
a closer analysis reveals that many of Heisenberg’s analogies were in
fact formalist.'> The matrix physicists, by and large, were ignorant of
the mathematical basis of their analogies.

For the mathematician, a matrix, as notation, represents a linear
transformation of a vector space; which one is undetermined, until
we fix a basis of the vector space. To put it another way, infinitely
many equivalent matrices represent the same linear operator. A lin-
ear operator, in turn, can represent a symmetry transformation; for
example, a five-dimensional, or an infinite-dimensional, matrix
might represent!® a three-dimensional rotation or translation. (This
idea is the basis for an entire field of mathematics, group representa-
tions.) In short, a matrix is a mathematical notation which represents
mathematical objects. It is not the focus of interest by itself.

For Heisenberg and Pauli, however, a matrix was an array of
quantized variables, not a transformation or a symmetry proxy. That
is, it was a “convenient” bookkeeping device. Substituting matrices
for variables in an equation, and interpreting the algebraic and ana-

14 From now on, I will just mention Heisenberg.

15 Recall that a formalist analogy is also Pythagorean; the converse is not always
true.

16 By “representation” here is meant a homomorphism from the group to the set
of linear operations on a vector space.
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Iytic operations of the equation as matrix operations, yielded, there-
fore, an equation with the same outward form as the classical origi-
nal. The analogy was then to the form, the syntax, of the equation,
not to the mathematical content. It was thus a formalist analogy.

The formalist nature of scientific discovery is often hidden,
because scientists attempt to rationalize it post facto—and, as in the
case of matrices and group representations, they often discover that
the mathematicians have done the work already. My purpose here is
to tear away the later rationalizations or “reconstructions,” to under-
stand what the quantization program really was.

The program began straightforwardly enough. Heisenberg inter-
preted the coordinates of both position (x;,x,,x3) and momentum
(p1,02,p3) as Hermitian, or self-adjoint, matrices X1,X5,X3,P1,P2,P;3.
These are matrices of complex numbers that return to themselves
when rows are transposed to columns and each matrix entry a + biis
“conjugated” to a — bi. An example of a two-dimensional Hermitian

matrix is
( 2 1+i)
1-i 3 )¢

One reason for requiring such matrices is that, as is obvious, the diag-
onal of a Hermitian matrix consists solely of real (i.e., not imaginary)
numbers and thus can express observable physical quantities.!”

There is, however, a striking difference between matrices and the
classical magnitudes they replace: matrix multiplication is not com-
mutative in general; FG may not equal GF. In modern phrasing, the
“commutator” [F,G] = FG — GF of F and G is not always zero.
Heisenberg laid down the famous relations between the position and
momentum matrices:

[X,P] = X,P;—P,X; = {—ZNzﬁ,z:J }

0,i#j
So now we have two constraints on the position and momentum
matrices: that they should be Hermitian, and that they should satisfy

17 The other reasons Heisenberg and Pauli gave for Hermitian matrices (physical
in character) will not concern us here; they were unaware of the deep mathematical
meaning of Hermitian matrices which I will touch upon later.
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these commutation relations. Significantly, only infinite matrices can
satisfy these two conditions.

Fundamental in classical mechanics is the law of conservation of
energy,

energy = kinetic energy + potential energy,

expressed mathematically by
E= 2 [plF + Vixixaws).

The right-hand side of the equation (let us abbreviate it H(p,x)) is
called the “Hamiltonian.” From the Hamiltonian, we can derive the
equations of motion of the classical system.

Heisenberg’s idea was to replace this equation by the matrix equa-
tion of the same form:

E= - oI+ VX0 X0 Xo),
m

where matrices (represented by capital letters) replace position and
momentum coordinates, and the energy F is replaced by a diagonal
matrix (i.e., zeros in all places except the diagonal), expressing the dif-
ferent quantized values of energy.'® Perhaps a better way to describe
the idea is that the classical equation would be given a nonstandard
interpretation: a matrix interpretation, rather than a numerical inter-
pretation. Note that the classical Hamiltonian does not involve the
product of position by momentum, so that commutation problems
do not arise when we interpret the variables as matrices.

For example, in the one-dimensional harmonic oscillator, V(x) is
the function kx*. No commutation problems arose for Heisenberg,
because of the separation of the variables for position and momen-
tum. All one needed to do was interpret E as an infinite diagonal
matrix (giving the quantized values of the energy), and interpret
DP1.D2:P3,X1,X2,X3 as infinite matrices, satisfying the commutation rela-
tions

_ _ _ [—2mit,i=j }
(.P) = X, = | 2R

18 Energy actually is not always quantized in quantum mechanics; but it is in the
“bound states”—such as those of atoms—that Heisenberg was interested in.
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This was a great success. Solving the equation gave the correct energy
levels for the oscillator.

Trouble arose, however, for the simplest “real” problem—the
hydrogen atom. The hydrogen atom was understood as a minuscule
solar system, obeying Kepler’s laws, with the electron its “planet”
revolving around the positive nucleus as “sun” according to
Coulomb’s law, which is an inverse square law like gravity. Now, what
was the matrix analogue to planetary motion? The energy equation
was of no use here, because the energy of a planet is given by the
equation

1 o | km
E=— + 2=
Lo+t

where r is the distance of the planet from the sun. If we represent the
distance r by a matrix R, we still have the problem of representing
1/R. We cannot assume that R has an inverse, and therefore even if
1/r has a quantum analogue, its relation to the quantum analogue of
¥ remains a mystery.

In 1925, however, Wolfgang Pauli vindicated Heisenberg’s faith
that matrix mechanics had a description of the hydrogen atom by
producing one.!® Pauli’s description rederived known results and pre-
dicted surprising new ones.

Pauli’s method of quantizing the laws of Kepler avoided the
energy equation, concentrating instead on other conserved quantit-
ies of planetary motion. As pointed out by Pauli’s own departiment
chairman, Lenz, in 1924, classical planetary motion has two con-
served quantities, besides the energy, whose conservation is both
necessary and sufficient for Kepler’s three laws. Furthermore, by
knowing these quantities, one can calculate the constant total energy
of the planet in orbit.

The first of these quantities is the angular momentum of the
planet; a vector, perpendicular to the plane of the orbit, whose alge-
braic definition is x X p, that is,

19 Pauli 1926. The result was obtained a year earlier. An extremely lucid recon-
struction of the argument using group theory and Lie algebras is contained in the first
six chapters of Guillemin and Sternberg 1990b. I have drawn upon this book freely in
my own treatment. All of the mathematical claims I make in what follows are proved
there.
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Ly = x2p3—X3p2
L= X1P3—~ X3Py
L= x1p2—x2p1,

where the xs are position coordinates and the ps are momentum
coordinates.

The conservation of angular momentum implies that the orbit of
a planet remains in a plane. It also implies the area law of Kepler—
the radius vector of the planet sweeps out equal areas in equal times.
The conservation of angular momentum arises from a rotational
symmetry: the gravitational pull is the same in all directions. To
quantize angular momentum, we need only follow Heisenberg’s
recipe, because the matrices X; and P, in the definition all commute.

Lenz, however, discovered a more subtle conserved quantity, one
which is needed for the other two laws of Kepler, or, equivalently, for
the inverse square law. This is the vector that bears his name; it lies
along the axis of the ellipse and its length is equal to the eccentricity
of the orbit. The conservation of the Lenz vector means that the
orbit does not precess (swing around) or change its shape.?? The def-
inition of this vector is

1
f:_._
mk

o>+

F
where 1 is the angular momentum; p, the linear momentum; x, the
position of the “planet”; r, the distance from the “sun”; m is the mass
of the “planet”; k, a constant of proportionality. It is not hard to see
that the energy can be calculated using the Lenz vector, and in fact,

2F
L=t === P

Pauli’s idea was to find the quantum analogue of the Lenz vector.
An analogue to the classical functional dependence of the energy and
the Lenz vector would allow him to solve for the quantized energy of
the hydrogen atom. Indeed, Pauli was able to calculate that the nth

20 Interestingly, Newton not only already knew that the nonprecession of the orbit
of a planet is necessary for the inverse square law, he used this nonprecession as a sen-
sitive test for the inverse square law. This same test was used later by Einstein to refute
the inverse square law, as the orbit of Mercury does precess. Cf. Harper 1990.
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energy level of hydrogen corresponded to n? different states. This is
called “energy degeneracy.”

There was one problem, however. The quantum Lenz vector could
not be defined merely by interpreting position and (linear) momen-
tum as matrices in the formula

1 X
=_[pxI]+=x.
f mk[p 1 r

The components of the matrix expression P X L contain noncom-
muting products of the form X;P;. For this reason, the expression is
not Hermitian. Pauli, whether he realized it or not, was faced with
the problem of finding a suitable version of p X 1 which could be
quantized by direct substitution of matrices. Pauli suggested the fol-
lowing symmetric expression:

Va(p X 1 =1 X p).

This is the same as p X 1 classically and is well defined.

Unfortunately, there are infinitely many different “symmetrized”
matrix expressions that are classically equivalent to the Lenz vector.
The only argument that Pauli gives for his choice is this. The com-
mutator of position and angular momentum, can be easily calculated
as

[X,L] = X.L, — LX, = {O’ i:j}.
pEAT A T SR i ]

If we use Pauli’s quantized Lenz vector, we get the following formally
analogous commutation relations:

I L

[F.L] = F.L, — LF, —{ih’ #j}_
So the only argument Pauli gives for his choice of the Lenz vector in
matrix mechanics is formalist to the core. This shows that quantiza-
tion is not (even) an algorithm, but involves faith in the Heisenberg
(et al.) prophesy each time we quantize,

The transformation of the Lenz vector by quantization has pro-
found results. For an arresting example, consider again the classical
equation

E
1= f|P == |1~
Iele=E
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In matrix mechanics, this equation is shifted as follows:
—IFr=ELIp
1= 1FP=E P,

which of course changes the classical energy values, aside from quan-
tizing them.

(This expression, to be sure, approaches the classical expression in
the limit, as # — 0. But not every quantum analogue does that. For
example, where the (absolute value of) the classical angular momen-
tum is s, the quantum analogue must be ys(s +1), which does not
approach s in the limit. To be sure, there are other definitions of
“limit”—and it is true that

lim\fs(s +1) =1,
s

Ao

which is a weaker form of limit.)

Historically, the energy levels of hydrogen (the “Balmer series”)
had already been derived by Bohr. Thus a cynic might argue that
Pauli reasoned backwards, choosing the form of the Lenz vector that
would give the Balmer series.

The answer to the cynic is, first, that Heisenberg’s formalist pre-
diction is still vindicated—he predicted that it would be possible to
find a quantum analogue of any classical problem, and this turned
out to be true for the hydrogen atom.

Second, Pauli’s analogue to the Lenz vector also led to a new and
successful prediction: that the first energy level of hydrogen would
have to correspond to angular momentum zero. This result seemed
physically absurd because if the electron were not orbiting the
nucleus, it could not produce magnetism, and the so-called alkali
metals, physically analogous to the hydrogen atom, would certainly
be counter-examples. Pauli stuck by his result, then, even though it
seemed to defy the facts. And he was right: the magnetism of the
alkali metals does not stem from orbital angular momentum, but
from a special intrinsic magnetism of the “spinning” electron itself.2!

21 Tt is interesting that Pauli knew about the hypothesis of spin, because it had
already been offered by Uhlenbeck and Goudsmit, but was not particularly enthusi-
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My claim, then, is: the lack of an algorithm to “quantize” classi-
cal systems makes the analogy between classical and quantum
mechanics distinctly formalist.

An objection to this is that Pauli’s choice for Lenz vector analogue
makes a great deal of mathematical sense. Pauli’s definition ensures
that the quantum hydrogen atom has the same symmetries as the
classical planetary system.

The two conserved quantities of planetary motion, angular
momentum and the Lenz vector, arise from symmetries of the plan-
etary system. Angular momentum conservation arises from rota-
tional symmetry, in which the energy of the system (potential and
kinetic) does not change under rotations of space where the sun is at
the center. The Lenz vector conservation also arises from a symme-
try, but not one involving a transformation of the three dimensions
of space. The classical planet “lives” in a portion of a six-dimen-
sional space—called “phase space”—where the coordinates are those
of space and those of linear momentum. Lenz vector conservation
arises from a transformation of this phase space, not physical space.

In quantum mechanics, the wave function of the planet (i.e., the
electron of the hydrogen atom) “lives” in an infinite dimensional vec-
tor space, known as a Hilbert space. Abstractly, the same symmetries
acting on the classical phase space may act on Hilbert space. In the
case of quantum mechanics, the members of a symmetry group are
represented by infinite matrices or linear operators; in classical
mechanics, they are represented by functions on phase space. In both
cases, the functions representing the rotations follow the abstract
“multiplication table” of the rotation group.??

We can now rephrase the analogy between classical and quantum
mechanics as follows: for each conserved quantity in a classical sys-
tem, there is a conserved quantity in the analogous quantum system
such that both quantities arise from the same symmetry group. This
“group-theoretic” analogy provides a mathematical rationale for

astic about it. Later, to be sure, the concept of “spin” became central to his “exclu-
sion” principle.

22 Technically, the functions are homomorphic images of the elements of the rota-
tion group.



154 - Formalist Reasoning: The Mystery of Quantization

Pauli’s decision concerning the definition of the Lenz vector in quan-
tum mechanics: through his definition, but not through the alternat-
ives, the Lenz vector conservation law arises in both classical and
quantum mechanics from the same symmetries.

To this argument, there are two answers.

First, even if this were so, the analogy would be Pythagorean, even
if not formalist—so, in any case, opposed to naturalism. There is no
physical reason to suppose that the same abstract groups act in a
theory as in the one that replaces it. In fact, there is reason to assume
that they do not: one would think that a stronger theory has fewer
symmetries. That is, the discovery of new forces in nature tends to
break symmetries already given. Besides, the entire concept of “sym-
metry” as used in modern mathematics is Pythagorean, and has only
a partial overlap with the ancient Greek concept of symmetry (bal-
ance, proportion).

But, second, and more significant for present purposes, Pauli
failed to see the mathematical analogy between classical and matrix
mechanics (Dirac later pointed it out). Even had Pauli noticed this
analogy, he would not have understood its mathematical signifi-
cance—jfor him, even this analogy would have been formalist. As I
remarked before, Pauli saw a matrix merely as an array of numbers,
not as a linear operator.

It is easy to document Pauli’s “unmathematical” attitude towards
matrices. Pauli writes down the following matrix “equations,” most
of which we have seen already:

L X L = ihL;

0,i=j
F,L]=FL, — LF,={" }
£ L] s me

3
F-L=ZF,L,-=O;
If =0,
FXF= -2 EL:

mk*>
E
1—|FIP=£2_( L|F+ 5.
Al km(il | )
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Pauli here remarks that “regrettably”?® he cannot solve these
equations without further assumptions on the kind of solutions he is
looking for. He goes on to assume, for example, that not only is the
energy matrix E diagonal, but also the matrices || L ||* and L. are diag-
onal. Alternatively, he assumes that the matrices L., F, are diagonal
along with E.

But this remark shows how primitive, in 1925, was Pauli’s mathe-
matical comprehension of matrices. Had he seen a matrix as one of
many representations of the same transformation of a vector space,
he would have seen that the “assumption” that a matrix is diagonal
is just a choice of basis for the vector space. The ability to choose dif-
ferent bases is not “regrettable,” but reflects the physical situation as
it really is. Each choice of basis is a decision which quantities to
measure, because we can’t measure them all simultaneously in quan-
tum mechanics.

There is another, more subtle, point. Throughout his article, Pauli
writes as though the matrix equations he is generating for the hydro-
gen atom can be viewed as relations among finite matrices, although
officially Heisenberg requires the matrices to be infinite. This devia-
tion from Heisenberg is obvious, particularly when Pauli regards the
energy matrix not only as a diagonal matrix (having different entries
along the diagonal) but as a scalar matrix, i.e., a diagonal matrix hav-
ing the same entry all along the diagonal, or, equivalently, a number
times the identity matrix. This reflects what is called the “degener-
acy” of energy, i.e., the fact that one energy corresponds to a finite
number of different states of the atom; in fact, it is this finite number
that Pauli wants to calculate, inter alia. Pauli even divides by the
matrix E, although, not knowing in advance what that matrix is, he
cannot know in advance that this is legitimate. He simply assumes,
without any real proof, that the equations involving infinite matrices
remain physically correct when interpreted in terms of finite matri-
ces, the energy matrix collapsing into a number E. Pauli couldn’t have
known that Schur, one of the great founders of the theory of group
representations, had already justified this assumption years before.24

23 Pauli 1926, p. 404 in the English version (Van Der Waerden 1967).

24 Schur’s Lemma states that no matrix, except a scalar matrix, can commute with
every m X m matrix that represents a group, irreducibly, on an m-dimensional vector
space.
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I conclude, therefore, that Pauli’s analogy, given what he knew then,
was thoroughly formalist.

Although wave mechanics shortly afterward eclipsed matrix
mechanics, I believe that Pauli’s approach served as a model for fur-
ther discovery. After all, Gell-Mann attempted to explain the unex-
pected degeneracy of hadronic particles by attempting to solve
matrix equations of the same kind as Pauli’s. A mathematician would
say that Pauli and Gell-Mann showed that if one knows the symme-
tries of a system, one can dispense with equations. This is true only
from hindsight: both Pauli and Gell-Mann, as they pursued their
avenue of discovery, were ignorant of the appropriate concept of
symmetry. The appropriate mathematical structures are called Lie
groups and Lie algebras, of which both physicists were uninformed.

* k%

I shall discuss two further episodes of quantization, both due to
Dirac: his “quantization” of the electromagnetic field (Dirac 1927),
and his famous relativistic equation for the electron, which led to the
discovery of the positive electron, or positron (see Schwinger 1958,
82-91).

The quantization of the radiation field was perfectly reasonable,
given that quantization itself is reasonable (which it is not, for the
naturalist). Dirac proceeded as follows:

(a) He confined the radiation to a “box.”

(b) Maxwell’s theory then gives the radiation as a superposition
of countably many “normal modes.”

(c) Each normal mode is equivalent, formally, to a harmonic
oscillator.

(d) Each harmonic oscillator can be quantized, according to
Schroedinger’s equation (or Heisenberg’s, equivalent,
approach).

(e) The quantized field, then, is the superposition of countably
many quantum oscillators.

The reasoning is formal: there was no physical or mathematical
reason to accept the principle that to quantize a sum, we must sum
the quantizations. Those who accept quantization as a natural form
of reasoning, though, will see this as a reasonable continuation—
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“more of the same.” I have already argued that a naturalist, though,
cannot help himself to quantization, so that Dirac’s procedure here
(naturalistically) is just more superstitious behavior; and its success
is cause for wonderment at the “coincidence.”

* k 3k

Dirac’s formal derivation of the electron equation? is a high point of
the quantization program, and should amaze even those unmoved by
the successes of quantization I have so far retold.2¢ I have already dis-
cussed this derivation as a general mathematical analogy. Now I
would like to return to it as an example of quantization, adding some
more details.

The method of formal substitution had led Schroedinger (and
others) to a relativistic wave equation, as we have seen.2’ After con-
cluding that the way to derive nonrelativistic mechanics was by sub-
stituting differential operators in Hamilton’s energy equation

2
.y
E=—,
2m
he suggested making “the same” substitutions in the Einstein mass-
energy equation
E2 _ pz — m2.28

Schroedinger, recall,?® explicitly refers to this as a “purely formal
analogy.” The result (for a free particle) is:

ra — —2) + m?| W(x,y,z,f) = 0

) 32 ——(62 +a_2 82
ax*  9y* oz

25 For Dirac’s own reminiscences concerning the relativistic equation for the elec-
tron, see Dirac 1977. (Where Dirac discusses the work of other physicists, however,
this article is not to be relied upon. Where he discusses his own reasoning, the article
is obviously more reliable—but one should always treat with caution accounts written
over thirty years after the events they detail.)

26 T was overoptimistic; Eli Zahar cites (Zahar 1989, 39), albeit briefly, this very
example, but remains unmoved by it.

27 See Schroedinger 1978, 118-20. Pais 1986 lists five other authors who derived
the Klein—-Gordon equation in the space of half a year in 1926.

28 This is the correct equation in units where the speed of light is unity.

29 Schroedinger 1978, 118-19.
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or, in operator form (where the hat on top of the variable signifies the
corresponding operator),

2 _ a2 52 52 2
E —Px TPy Pz=nmr,

known today as the Klein—-Gordon equation.3® There is a standard
trick which can transform this equation from a free particle equation
into a particle moving under the influence of an electromagnetic
field.3!

This equation had a number of “defects,” however. First, of
course, even after the above-mentioned “trick™ was tried, it did not
give the correct energy levels of the hydrogen atom. Today we know
that this is because the KGE—as a field equation—describes, not the
electrons, but spinless particles, such as pions. Second, because the
Einstein equation contains the energy squared (Hamilton’s contains
only the first power of E), the free particle KGE has “negative energy
solutions.” Of course, even without quantum mechanics, the Einstein
equation has negative energy solutions; the difference is that quan-
tum mechanics allows the transition of a particle from one energy to
another—and it was not clear, if the Klein—-Gordon equation is cor-
rect, why we do not see such a transition in nature.

But for Dirac, however, the KGE had an overriding flaw—it was
second-order in the time; that is, it contains the second derivative of
time. This meant that knowing the initial state of a system at time
zero would not be enough to predict the future development of that
system. (One would have to have an extra initial condition—just as
in the case of Newtonian mechanics.) And this was a violation, for
Dirac, of a fundamental formal feature of quantum mechanics.

True, the Schroedinger equation is first-order in time, but it con-
tains the second derivatives of space. And that spoils the symmetry
of spacetime necessary for a relativistic equation. Dirac therefore
concluded that one must search for an equation that 1s first order in
all derivatives.

30 T have already disputed the widespread opinion that Schroedinger had written
down the Klein—Gordon equation even before he arrived at what we call today
Schroedinger’s (nonrelativistic) equation.

31 See Messiah 1962, 884 ff., for details.



Formalist Reasoning: The Mystery of Quantization - 159

This did not mean that the KGE was “false,” however. To the con-
trary, it was arrived at by the “correct” formal substitutions—and
did, therefore, express the quantum version of Einstein’s energy
equation. To the contrary, Dirac argued, the equation he was look-
ing for should imply the Klein-Gordon equation (i.e., every one of
its solutions should be also solutions of the KGE) but not the con-
verse.

Dirac concluded that the only way to get a relativistic equation for
the electron was to factor the Klein—-Gordon equation:

B2 2= - =
(E+ alﬁx"' azﬁy + Oc3ﬁz+(x4m)(E—OL1ﬁx— azﬁy_ (X3pz"' (X4m) =0.

The right factor, set to zero, is the Dirac equation. The only problem
was that the Klein—Gordon equation does not factor. For in order
that the “identity”

B === = =
(E+a1ﬁx+ a2ﬁy + (X:;pz‘.‘ (X4m)(E'~OL1f7X - azﬁy - (X3pz - 0L4m)

should hold, the following relations among the alphas must hold:

d=o3=0i=03=1

o0y = —oyoy (k#1).

That is, the alphas anti-commute, and their square is 1. Obviously
there are no numbers that satisfy these relations, so the KGE does not
factor.

Undeterred by mere mathematical impossibility, Dirac argued
backwards: since the formal relations expressed by the equations are
correct, there must be some consistent interpretation for them. In
fact, Dirac was able to find four matrices, 4 X 4 each, which satisfied
the formal relations (square being 1 and anti-commuting), and which
were also self-adjoint. These could be the coefficients of his equation.
(Here is an interesting twist to the quantization story. In prior
episodes of quantizations, matrices replaced physical magnitudes. In
Dirac’s case, matrices replaced coefficients.)
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But now the tail wags the dog: in order that the coefficients of our
operator equation be 4 X 4 matrices, the solutions of the equation
have to be 4 X 1 matrices (i.e., quadruples of numbers),32 so that each
solution of the equation is four solutions. Thus, instead of one psi-
function, determining the amplitude of finding the particle at a given
point in space, we have a matrix of four psi-functions, called a
“spinor.” And now the miracle happens: our “spinor” gives us infor-
mation about completely new phenomena, unknown to classical
mechanics—and to nonrelativistic quantum mechanics: spin3? and
anti-matter. For the four psi-functions give the probability, not only
of the position of the particle, but also of its spin and charge. That
is, the four components of the spinor give the probability of the par-
ticle being, respectively, an electron of spin “up,” an electron of spin
“down,” a positron of spin “up,” and a positron of spin “down.”

Actually, this particular interpretation of the Dirac equation took
hold slowly. (As we have seen, an equation can be in place long before
its “true meaning” is understood.) It was clear that two of the four
psi-functions in the solution of the Dirac equation were the “nega-
tive energy solutions” that had proved puzzling in the context of the
Klein—Gordon equation. The idea that a positive particle in an elec-
tromagnetic field could behave like a negative particle with “negative
energy”—a positron—had occurred to scientists, but nothing like it
had been observed. Hermann Weyl spoke for the consensus when he
concluded, falsely, “The solution of this difficulty would seem to lie
in the direction of interpreting our four differential equations as
including the proton in addition to the electron.”3* Dirac, on the
other hand, believed in the equation—and constructed a theory to
explain why positrons had never been seen.?> The positron was dis-
covered by an experimentalist, Carl Anderson, in 1932.

32 These quadruples are not known as vectors, because they do not return to them-
selves when space is rotated by 360 degrees. Instead, they are known as four-dimen-
sional spinors.

33 The “spin” of the electron—the intrinsic magnetic moment of the particle—was
discovered in the 1920s even before Schroedinger’s equation was written down.
Schroedinger’s equation does not predict the interaction with the electron spin with
the electromagnetic field, because its Hamiltonian is derived directly from that of clas-
sical mechanics. Nor does the Klein—-Gordon equation which, though relativistic,
describes spinless particles (which were discovered twenty years afterwards).

34 Weyl 1950, 225. Dirac himself was part of this consensus for a while.

35 Dirac’s theory postulated a “sea” of electrons having negative energy—invisible
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Dirac’s derivation was, thus, doubly formal: he began with the
standard substitutions that had launched Schroedinger’s equation,
and shared Schroedinger’s faith that, despite the vast difference
between Hamilton’s and Einstein’s energy equations, a substitution
that “worked” in one case should work in the other. This yielded the
Klein—Gordon equation. The next step was to factor the equation
formally, in order to achieve the double desiderata of a first-order
equation and a Lorentz-invariant equation. Having arrived at a for-
mal result, he then—and only then—looked for a consistent inter-
pretation of the equation. The first “half™ of his quadruple-spinors,
he concluded immediately, showed that electron spin was a truly new
phenomenon, the offspring of the marriage of quantum mechanics
and relativity.® The other “half” of the spinor, corresponding to
anti-matter, took longer to interpret, because here a prediction—that
of the positron—was involved, and it took courage to predict it.

A sheltered reader might here ask: why did it take courage to pre-
dict the positron? Does it take courage to predict the eclipse of the
moon? Isn’t prediction just a matter of simple deduction from the
laws of nature—or what we take to be those laws—plus “initial con-
ditions”?37

I have news for such readers. The term “prediction” in physics has,
in the last hundred or so years, undergone a meaning shift.3®
Prediction today, particularly in fundamental physics, refers to the
assumption that a phenomenon which is mathematically possible

because of their very ubiquity. On the other hand, the so-called “Pauli exclusion prin-
ciple” (which states that two electrons cannot be in the exact same state) would pre-
vent visible electrons from sinking into the negative energy states. On the other hand,
it remained a theoretical possibility to raise one of these electrons of energy —F to an
energy of +E, in which case an electron-positron pair could be produced—the
positron corresponding to the “hole” left behind in the “sea.” This prediction was
spectacularly confirmed. Nevertheless, the Dirac “electron sea” theory has been super-
seded by the deeper field theoretic approach to quantum electrodynamics.

36 The irony here is that, from a deeper perspective, “spin” can be derived even from
non-relativistic quantum mechanics, as will appear below. Hence Dirac’s oft-quoted
view that “spin” is a “relativistic” phenomenon was a mistake.

37 Indeed, this standard view of prediction led Carl Hempel and Ernest Nagel,
independently, to the “deductive-nomological” model of explanation in science,
according to which explanation would be the same as prediction, with the one excep-
tion that the explanandum (thing explained) has already happened.

3% ] find it interesting that historians, such as Kuhn, who allege wholesale meaning
shifts in physics, failed to notice this one—which is real.
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exists in reality—or can be realized physically.3® Even when the physi-
cist works with a deterministic equation, there is often no question
of predicting the future from initial conditions, since the whole prob-
lem is whether these initial conditions are physically (as distinct from
mathematically) possible. (Recall Einstein’s view that faster-than-
light travel was mathematically possible but physically absurd.)
Many of the “Pythagorean” examples of discovery described in this
book involve the “prediction” that, since such-and-such a phenome-
non is a solution of an equation, the initial conditions in nature must
either exist or be realizable.

Even without an equation, physicists can predict events by the use
of symmetries. Here virtually all predictions are of the (nondeduc-
tive) “possible implies actual” variety, because symmetry conditions
define more what cannot occur rather than what must occur.*° In
particle physics, for example, I cited the example of collision experi-
ments, where the mathematical fact that two structures*! are iso-
morphic leads to the physical prediction that the corresponding
physical structures can be transformed into one other. There is noth-
ing deductively inevitable about such predictions, which are based on
the inchoate assumption that mathematical possibilities are realized.

In short, the concept of “prediction” has itself become thoroughly
Pythagoreanized. Pythagorean expectations have become “built in”
to the extent that they are called predictions. In the case of Dirac,
then, to predict the positron took courage—or faith in mathematics.
And the equation which supported this Pythagorean prediction, we
have now seen, was “derived” by purely formalist maneuvers.

The knowledgeable reader may object that I have attributed to

39 T have already drawn attention to the resemblance of these ideas to Lovejoy’s
Principle of Plenitude. The main difference is that Lovejoy’s principle involves the
belief that possibilities will be actualized in the fullness of time, while the physicist’s
“principle” is more activist in that it holds that the realization of possibilities in physics
might involve billions of dollars of machinery. Alternatively, the physicist holds that
the possibilities already exist in nature, but it might take billions to discover them.

40 Tt is important to remember that equations do not define necessities either. When
a physicist predicts the future F on the basis of initial conditions C and laws L, what
is necessary is the statement “If C and L, then F.” From this, the necessity of F does
not follow, unless C by itself is necessary, which is usually not the case.

41 These structures are, in fact, group representations, so we are talking about the
use of symmetries.
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Dirac some kind of magical manipulation of symbols, when he was
only doing algebra. In advanced algebra, we deal with many struc-
tures that differ in their properties from the real numbers. In fact, the
algebra that Dirac was working with—the algebra of matrices—had
already been discovered, and it is called a “Clifford algebra.” In this
algebra, but not in the algebra of real numbers, the Klein-Gordon
equation factors.

My answer is that there are two concepts of algebra available to
mathematics. Algebra may be conceived as the study of structures
(groups, fields, etc.) which are the class of models of a set of postu-
lates that serve as definitions of the structures. It is this conception
that inspires the objection to my account.

But algebra is also the study of symbolic manipulation.4? One can
present a group, for example, by taking the set of all expressions
(“words™) that are possible using the identity symbol, the inverse
symbol, etc. This set is itself a group—called the “free group.” Now
by identifying certain of the different “words” by rules, we can cre-
ate what are called “quotient groups” of the free group. Here we have
a structure defined in terms of the syntax of expressions, not in terms
of models.#> The power of algebra lies in the different approaches we
make take to the subject. My thesis is that Dirac, in discovering his
famous equation, was operating simply on the syntax of his expres-
sions. Physical requirements (first-order, Lorentz-invariance) became
purely formal requirements, and lost their physical content, at least
for a while. Later, the mathematicians discovered that Dirac had
rediscovered the Clifford algebra, and Dirac’s discovery was then
enriched.

Let me summarize the magical discovery by Dirac, made largely
by formalist reasoning. Schroedinger had noted that the
Schroedinger equation could be obtained by formal substitution of
operators for variables in the classical energy equation

2
g Il
2m

42 Only in algebra, for example, do we have mathematical concepts that have an
explicitly syntactic characterization: that of “left inverse” and “right inverse,” for
example.

43 Shaughan Lavine pointed this out to me.
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Making “the same” substitution in the Einstein energy equation
E?— | p |? — m? = 0 yielded the so-called Klein-Gordon equation.
This (admittedly, relativistic) equation had no known use then, but
Dirac factored it formally to obtain a (formally) linear equation in
time, itself formally analogous to the Schroedinger equation (this last
analogy was very important to Dirac, and played a dominant role in
the discovery, but physicists no longer regard linearity in time as a
necessary feature of quantum mechanics). The formal coefficients of
this factored equation could be represented as 4 X 4 matrices, but this
compelled quadrupling the equation, yielding always four solutions.
These solutions predicted both electron spin and anti-matter. Dirac
thus vindicated the basic predictions of the quantization program—
that the key to quantum mechanics was by the route of substituting
operators for classical variables in the classical equations. But he
took the program a few steps further by his trick of formal factoring
of the classical equation, and extending the use of matrices to the
coefficients of the classical equations, not just the variables.

There is an amazing sequel to the Dirac story. Dirac describes the
thought processes that led to his wave equation in the following way:

[Elventually the solution came rather by accident, just by playing with the
mathematics. I noticed that if you take the matrices 6,,6,,05 describing
the three components of spin for a spin of half a quantum. . . . then if you
form

(C1p1 + Gops + O3ps)°
you get a very interesting result, just
pi+pi+ps
You had thus a sort of square root for p} + p3 + p3.

Now I needed a corresponding expression for the square root of the
sum of four squares. . . . That was a serious difficulty for me for some
weeks, until I noticed that there is really no need to keep to two-by-two
matrices. . . . One can go to four-by-four matrices, and then one can eas-

ily get an expression for the square root of the sum of four squares. (Dirac
1977, 3)

Dirac did not realize, nor did anybody else until two Spanish physi-
cists pointed it out (Galindo and Del Rio 1961), was that the “inter-
esting” result that Dirac had discarded,
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(1) (o'p)* = (owpx + Oyp, + G.p.)° = pi + pj + P2,

could be used, not just as a stepping stone, but for its own sake, in
demonstrating that the spin of the electron is already implicit in clas-
sical, nonrelativistic mechanics.

For, consider the classical equation for the free particle

_ lel?
E—%.

Using (1), Dirac’s discovery, one can factor the equation in the form

This remarkable result shows that the formalism of classical mechan-
ics “knows about” spin.*4 We substitute operators for the magnitudes
E and p—simultaneously bringing in the electromagnetic potentials
using the “trick” of Schroedinger alluded to on p. 99 n. The result
(detailed in Appendix C) is a Schroedinger equation for the “spin-
ning” electron in an electromagnetic field. Since the Pauli matrices
0,,0,,0. are two-by-two matrices, though, the psi-function now has
two coordinates and has the form of a two-by-one matrix

L)

where the “up” component gives the probability to be at place x at
time ¢ and also have spin + %% in the z-direction; correspondingly, for
the “down” component.

We can see the success of this quantization, and of the formalist
prophecy of Heisenberg more generally, from another angle. The
equation discussed in Appendix C is the following:

I omd (—ih‘i _e A,)z v-¢lhspy (E—eryw =0
r=1 ix, ¢ me 2

44 Cf. Galindo and Del Rio 1961 for the mathematical details.
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This equation contains three terms, each of which describes, in quan-
tum mechanical language, the three kinds of energy an electron has
in an electromagnetic field in virtue of its spin. (The Schroedinger
equation is always the quantum mechanical version of an energy
equation.) The first term corresponds to kinetic energy. The third
term refers to the potential energy of the electric field. The middle
term,
_elh c'BY,
mce 2

gives the potential energy of the coupling of the spin to the magnetic
field (spin makes the electron into a magnet). Remarkably, this gives
exactly the right answer (disregarding, once more, some fluctuations
requiring quantum electrodynamics to explain).

Historians and physicists know, however, that this correct answer
was twice the result that standard quantization predicted, and I
would like now to explain why two routes to quantization gave two
different results.

The standard way to quantize the energy of a charged particle
rotating or spinning in a magnetic field is, naturally, by direct substi-
tution in the classical energy equation. Now, classically, the potential
energy of a spinning (or rotating) charged particle with angular
momentum coordinates S,,S,,S, in a magnetic field with coordinates
B..,B,,B, is

@ y(%)S-B = Y(S:B, + S,B, + S.B.),%
where v is a constant known as the “gyromagnetic ratio.” It only
remains to substitute the appropriate operators for the angular
momentum coordinates. The gyromagnetic ratio “should” (if we
believe in quantization) be the same as for classical physics, so let us
reason classically.

45 Believe it or not, the factor Lis inserted to make the units come out right—we
could have eliminated it by simply adopting units of measurement in which ¢ = 1.
Note, too, the difference between the magnetic potentials referred to earlier and the
magnetic field. The magnetic potential does not contain any potential energy—this is
all contained in the electric potential. The magnetic field, on the other hand, does pro-
duce potential energy.
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If we think of the electron as orbiting classically around an atomic
nucleus (as in the later abandoned “Bohr model” of the atom), then
a fairly elementary calculation*¢ shows that

(5) Yorbit = Zef_’}’l s

where e is the charge of the electron, and m its mass. And, even in
quantum mechanics, the calculation is valid: though, of course,
angular momentum is quantized in units of Planck’s constant, the
relation between orbital energy, angular momentum, and magnetic
field remains valid—as a “quantized” operator equation.

For the “spinning” electron, understood as a top, the same classi-
cal calculation holds as for the orbiting one, yet incontestable experi-
mental evidence yields a gyromagnetic ratio twice as large:4’

(6) Ysp in =

s.lm

Experimentally, then, the “quantized” Hamiltonian for the spinning
electron in an electromagnetic field must have the term

e (1\(h

M = 5c)Go8)
twice what we would seem to get from “quantizing” the classical for-
mula for orbital energy. Remarkably, this very term appears in the
equation derived by sorcery in Appendix C—a great victory for
quantization. But why does the more direct method of quantizing
yield a result which is one-half of the right answer?

Now this is not such a great anomaly as it may seem. The idea of
“quantizing” electron spin is already a misnomer, since the spin of an
electron is not a classical concept in the first place. That is, electrons
do not literally turn on their axis; their angular momentum is not a
result of spatial motions. We have also seen earlier that to return an
electron to its initial position, a turn of 720 degrees (i.e., twice what
we would expect) is necessary. Even what I have called the direct
method of quantizing yields a result that has the right form, though

46 See, for example, French and Taylor 1978, 438 ff.
47 1 ignore quantum field fluctuations which prevent this statement from being
exactly true.
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it has to be multiplied by 2 to get the right magnitude—that is as
much as we could expect. What is astounding is that we get the right
answers for the spin-coupling energy by formal factoring of energy
equations—and that we get the same answer by factoring the classi-
cal energy equation as by factoring Einstein’s energy equation.

* k¥

My final example of a triumphant “quantization” is perhaps the
most spectacular of all. I refer to the program in physics known as
“gauge field theories,” inaugurated by Yang and Mills in their semi-
nal article.*® Yang and Mills lay down a recipe for writing down
quantum field equations—or, what is the same, the equation for the
bosonic particles that make up the field.

As we have seen so often, the basic idea was by a brilliant, though
formal, analogy to an existing theory—in this case, Maxwell’s theory
of electromagnetism. Yet, strangely, the analogy could not have been
appreciated by Maxwell, as we shall now relate.

Maxwell’s equations govern the electric and magnetic fields,
including electromagnetic radiation, and show how they are gener-
ated by electric charge, which is a conserved quantity. However,
physicists discovered that computations are much easier to make
when, instead of two fields (with a total of six components), one inte-
grates the fields to obtain potentials at each point in space—the one
electric potential ¢(x,7) and the three magnetic (or “vector”) poten-
tials 4,(x,£),4,(x,1),4.(x,t). By multiplying the charge by the electric
potential one gets the potential electric energy; the potential mag-
netic energy, as we have seen in , has a more complicated formula.
The point is that one does calculations using the potentials, and then
retrieves the electric field by differentiation as follows:

__ 9
®) Ex=—2-0
__d
Ey—' ayq)
d
E =-2
2 az¢,

48 Yang and Mills 1954; Mills himself published an extremely useful retrospective
article, Mills 1989. I am grateful to Issachar Unna for bringing this article to my atten-
tion.
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or, for short,

9 E = —-V¢.
The magnetic field is retrieved in a more complicated way as follows:
(10) Bo= g A=A
B, = ;?; A, a‘a} A,
B. =§;Ay —gyAx,
or, for short,
(11) B = curl(A) =4V X A.

Now, whenever we integrate a function, we introduce an arbitrary
“integration constant,” which disappears upon redifferentiation.
Since the differentiation here is only partial, we introduce an entire
arbitrary function. In fact, it is not hard to show that, for any func-
tion 0(z,x,y,z), the following transformations of the potentials leave
Maxwell’s equations exactly as they are:

12) oo+19 9
c 0t
A, >4, -2 0
ax
A,—>4,-0
¥y y ay
A, 4. 2o
9z

These transformations were called “gauge” transformations, since
they were thought to be trivial changes in the scale of potential
energy, of no greater significance to physics than the “invariance” of
the laws of nature under transformation of Fahrenheit to Celsius.
From the contemporary point of view, initiated by Hermann
Weyl, however, the invariance of Maxwell’s equations under gauge
transformations is a symmetry, analogous to the invariance of
Einstein’s equations under local arbitrary coordinate transforma-
tions (general covariance). And, imitating Einstein’s procedure, Weyl
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proved that Maxwell’s equations are virtually the only equations that
are both gauge and Lorentz invariant.*® Weyl hoped that the formal
similarity between general covariance and gauge invariance would
provide the key to unifying electromagnetism with gravity, Einstein’s
longstanding dream.

Instead, Weyl’s idea surfaced in the Yang—Mills paper of 1954 in
a startling new way. In the context of quantum mechanics, charge,
like any other quantity, must correspond to a symmetry—and con-
servation of charge must be a consequence of a physical system hav-
ing that symmetry. We have seen already, however, that we cannot
expect every symmetry to be a spacetime symmetry, such as spatial
rotations, translations, etc. Formal, or abstract, symmetries have
become the bread and butter of physics. Furthermore, we have no
analogue in classical mechanics to work with—that is, we knew
before quantum mechanics that linear momentum was associated
with translational symmetry, that angular momentum was associated
with rotational symmetry, etc. Here we must work backwards, as it
were, and guess the symmetry associated with a known quantity.

Let’s say that @ is the (unknown) symmetry group associated with
charge and charge conservation. Suppose that g € Q, i.e., ¢ is a trans-
formation on Hilbert space such that, if ¥ designates a system with
a certain charge, so does ¢'¥'. But the truth is that charge is a quant-
ity entirely independent of any other quantity we have discussed so
far—its symmetry transformation can therefore make no physical
change in the state, say, of a free charged particle. The ineluctable
conclusion is: ¢ is nothing more than multiplication by a complex
number of norm 1, ¢®—in other words, a “phase change” of 6.
Suppose the system has a charge of —ne. Then we can say (as a mat-
ter of simple bookkeeping) that the symmetry transformation asso-
ciated with charge is multiplication by e~ *°, Differentiating, we get

d
de

Multiplying by i (to get a self-adjoint transformation), we get the
quintessentially trivial result, that the charge operator is that opera-

e~ O g0 = —ine.

(13)

4% An equation is Lorentz-invariant if it implies that the speed of light is constant
in every inertial coordinate system.
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tor that multiplies each and every vector in the space by —ine. In
other words, every vector in the space has a definite charge.>¢

We have then that invariance of the laws of nature under change
of phase of the state vector (an abstract change, to be sure) corres-
ponds to charge conservation, an entirely picayune matter. The triv-
iality of this is not alleviated by giving the group of phase changes a
name: U(1). U(1) is still nothing but the group of multiplications by
complex numbers of norm 1.

Things started to look very interesting, however, when Hermann
Weyl pointed out that charge conservation was not simply a global
phenomenon, but a local one. That is, charge moves continuously,
like a fluid, from place to place——it does not “disappear” here only to
“reappear” instantaneously over there. Thus invariance under
change of phase should also be regarded as a local phenomenon.
Namely, the transformation ¢ must be a function of position, ¢(x),
multiplying by ¢®*, a different phase for each point in space. This,
of course, must change the physical state of a state vector: we are
multiplying each spatial coordinate by a different complex number
(though, it is true, one which changes continuously and smoothly
from point to point: 8(x) is a differentiable function of x) which can
definitely change, say, the momentum of the particle as well as its
energy. Where does this energy and momentum change come from?

We must therefore suppose, argued Weyl, that this momentum
and energy come from a surrounding field which contains both
energy and momentum in reserve, so that changes in the
energy/momentum of the particle are compensated for by changes in
the field.

The field is best thought of, 4 la Einstein, as defined by four num-
bers—potentials—at every point in spacetime. And, mirabile dictu, it
turns out>! that a local shift in phase 6(x) is exactly compensated for
by the following shift in the potentials:

50 We could, for every positive or negative integer n, make a copy of Hilbert space
associated with that amount of charge. Charge is then the operator that multiplies a
unit vector, if it lives in Hilbert space number #, by the number —ne. Conservation
means that a vector trapped in one Hilbert space can never get out.

51 See Mills 1989, 498, for details.
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But these are exactly the gauge transformations (12). And, by Weyl’s
other theorem, the gauge transformations (together with the Lorentz
transformations of special relativity) determined Maxwell’s
Equations. The baffling conclusion is: the move from global to local
invariance in quantum mechanics is equivalent to the existence of the
classical electromagnetic field as described by Maxwell. Naturally,
the electromagnetic field can itself be quantized (the field quanta are
called photons) by substituting operators for variables in the classi-
cal field equations. Note, however, that the variables here are field
variables; i.e., they are different at every point in spacetime. Hence,
at each point in the spacetime continuum, we must follow suit in
quantum field theory by substituting a different operator. Thus we
have to substitute infinitely many operators in quantizing a classical
field.

However astounding this result may be, it remained a mathemat-
ical theorem, derivable strictly from premises already accepted by
physicists—thus giving no new information—until Yang and Mills
entered the scene. One could generalize Weyl’s procedure by choos-
ing a more complicated global symmetry than U(1) symmetry, posit-
ing that the global symmetry must also be local, and writing down
the appropriate equations.

Consider, as they did, the group known as SU(2), which we have
come across many times in this book. These are the 2 X 2 complex
unitary matrices of determinant unity.>?> They operate on a 2 X 1
array of complex numbers so as not to change the sum of the
(absolute) squares of the numbers, and thus, for the mathematician,
they are the natural generalization of U(1)—simple phase change.

52 Recall that a unitary matrix M satisfies MM* = I.
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Recall that Heisenberg had conjectured in 1932 that the neutron and
the proton were two different states of the same particle, just as the
spin up and spin down electron are the same particle. The mathe-
matical symmetry behind this conjecture was, indeed, SU(2) symme-
try: the state vector was to be given by a two-component psi-function

(¥0)

similar to the case of electron spin. A “definite” proton had a zero
below; a “definite” neutron, a zero above. One could turn a proton
into a neutron by transforming the coordinate function of one into
the other by an SU(2) matrix. Generally, no matter what SU(2)
matrix one applied, the physics was to be invariant. This symmetry
was associated with the conservation of a quantity Heisenberg called
“isotopic spin,” by analogy to electron spin.

But here, argued Yang and Mills, the analogy ended. Isospin (as it
is called today) could, and should, be regarded more like charge than
like electronic angular momentum. Isospin could be considered the
source of the powerful field in the nucleus, so powerful it easily over-
came the repulsion of the protons. This could happen if, and only if,
isospin went from a global to a local symmetry. So they calculated
what kind of field it would be necessary to introduce to compensate
for local SU(2) symmetry; what were, in short, the gauge transfor-
mations necessary here.

Here they discovered that an important difference between U(1)
and SU(2) implied a physical difference between the electromagnetic
and the (hypothetical) isospin fields. U(1) is, obviously, a commuta-
tive group—one can multiply by numbers, including complex num-
bers, in any order. In the case of matrices, the order of multiplication
usually changes the product. This is the mathematical difference: the
physical consequences of this (as explained in Mills 1989, 498-9) are
that the nuclear field would itself carry isospin, unlike the electro-
magnetic field, which is not charged.

Rather than dwelling on this, however, let us continue in the tracks
of Yang and Mills. Using the procedure discovered by Weyl, they
derived the appropriate “Maxwell equations” for the nuclear field.
These equations they quantized into field quanta which, in the
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isospin case, were charged particles (unlike photons) for reasons
already referred to.

Before elucidating the improbable (for the naturalist) character of
this discovery, let us make sure that Yang and Mills did make a dis-
covery. In one sense, their paper was a failure. The Yang-Mills field
quanta, like all those of gauge fields, have zero mass, and the nuclear
forces required massive field quanta.>® What is more, SU(2) symme-
try is not the basic symmetry of the nucleus, as we have already seen:
SU(3) is required, since the protons and.neutrons are not elementary
particles (they are made of quarks).

In the true sense, however, the Yang-Mills paper was one of the
greatest triumphs of twentieth century physics. The problem with
mass was solved by the concept of “spontaneous symmetry-
breaking”: massless particles can acquire mass “later.” And the spe-
cific non-commutative group they chose to work with was not the
main point. Other investigators soon put the Yang-Mills “algo-
rithm” to work using other, more involved, symmetry groups. The
fruits so far have been the “electroweak” theory of Glashow,
Weinberg, and Salam; and the theory known as QCD for the strong
forces of the nucleus. Physicists are persuaded that the ultimate
theory of “everything,” if it exists, will be a gauge theory. We can say,
therefore, that the Yang—Mills paper was an eminent success.

Yet, there are at least three reasons why this prediction of Yang
and Mills was more like “magic” than (the naturalist version of)
“science.”

First, the idea that “global symmetries are local symmetries” is
Pythagorean thinking. The symmetries in question are abstract sym-
metries, i.e., not spatiotemporal symmetries, so the validity of pro-
jection from the success of one instance of this rule to another is
heavily dependent upon the idea that we must categorize nature in
the categories of “mathematics.” One must not forget that there were
only two examples of a global/local symmetry in 1954: general rela-
tivity and electromagnetism.

Second, although the electromagnetic field was a well-established

53 Massless field quanta like the photon imply long range forces like the electro-
magnetic or gravitational forces. The nuclear forces, for example, fall off drastically
with distance.
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empirical phenomenon, detectable on the macroscopic level, prior to
its so-called “quantization,” the “classical” gauge fields of the Yang—
Mills program were hardly real objects.>* They existed only to be
quantized away, for they cannot be detected at all as classical objects.
The nuclear forces, for example, can be detected only at the quantum
level. The idea that we write down a fictitious field equation in order
to quantize it—and expect the magic to work—is even wilder than
the usual procedures of quantizing things like the Lenz vector (of
which I have already written that the expectation they should work is
childlike). Mills himself writes:

While gauge theories are easy to formulate at the classical level, the
process of quantizing gauge theories is quite awkward, involving either
noncovariant procedures or the introduction of unphysical degrees of
freedom. . . . If the most basic theory of the universe is a quantum gauge
theory, then a gauge theory should be the most natural thing (if not per-
haps the only thing) that can be quantized, rather than the most awkward;
indeed, you should be able to formulate a quantum gauge theory directly,
without going through the intermediate stage of the classical theory.
(Mills 1989, 507)

It is interesting, by the way, that the equation that Yang and Mills
wrote down, as a generalization of Maxwell’s equation, could be seen
by them as a generalization only via the formalism of quantum
mechanics. The analogy between the two equations—one set linear
(Maxwell’s) and the other nonlinear—was not a direct mathematical
analogy.>’

Finally, when we look at the quantization procedures themselves,
we are confronted with a difficulty going well beyond those of previ-
ous examples of quantization. The quantization “rules” involve, as I
have said, the introduction of a continuum of operators to replace
field variables in (pseudo) “classical” equations. These equations
have the form

54 I'mean “physically real.” Mathematically, the concepts of gauge field theory are
isomorphic to those of the geometrical theory of “fiber bundles.” See Chapter 2 for a
discussion.

55 Of course, given the geometrical apparatus of fiber bundles, one can formulate
the analogy without quantum mechanics. But, as I have argued in Chapter 2, Yang
and Mills did not see this analogy at all.
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(15) P)Q(x) — Q)P(x) = ...,

where we must solve for P(x) and Q(x). The discouraging fact is, that
to this very day it is not known whether equation(s) are consistent or
not—whether they have solutions in some kind of reasonable “math-
ematical” structure (as did the square root of minus one ultimately)
or not. Certainly, Yang and Mills had no evidence that these equa-
tions had solutions.

Physicists know how to manipulate equations to get numbers
without solving them, however, and they have thus been able to make
predictions from gauge field theories without solving the question of
mathematical consistency. The success of these predictions is all the
more startling if we do not realize that it is the formalism itself (and
not what it means) that is the fundamental subject of physics today.

In summation: the most startling success of quantization, namely,
the Yang—Mills procedure, involved “quantizing” a fictitious “classi-
cal” equation C, arriving at a quantum field equation Q not known
even to be consistent. The classical equation itself, C, was arrived at
by an analogy to other classical field equations—a formalist analogy
which was (to Yang and Mills) incomprehensible without the for-
malism of quantum mechanics.>¢

* k%

The story of quantization, in sum, buttresses the major theses of this
book. The early founders of quantum mechanics, particularly Bohr,
spoke of a “correspondence principle” relating classical and quan-
tum mechanics. But I have shown here, I think, that this correspond-
ence principle was deeply anthropocentric (because formalist).
Hence, the true “correspondence” was between the human brain and
the physical world as a whole. The world, in other words, looks “user
friendly.” This is a challenge to naturalism.

56 T emphasize that this formalist analogy was “upgraded” to a Pythagorean ana-
logy later on, when the theory of fiber bundles provided a direct analogy between the
various classical gauge field equations.
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A “Nonphysical” Derivation of Quantum
Mechanics

There are many textbooks on quantum mechanics, and I do not aim
to increase their number. My goal here is to show, in greater detail
than in the text, the power of the Hilbert space concept—its descrip-
tive applicability to quantum mechanics. I will do this by showing
how the formalism of quantum mechanics actually suggests—nond-
eductively—its own development. That is, we can “read off” infor-
mation about the world—in a “nonphysical,” yet nondeductive
way—ifrom the formalism. In this way we will get a feel for the mys-
terious nature of the Hilbert space concept, in its application to
physics.!

There is nothing historical, therefore, about the following “deriva-
tion” of quantum mechanics, which was inspired by, and resembles,
that of Henry 1990.2 On the contrary, I reverse the historical order,
to show that, starting with little more than the “Maximality
Principle,” quantum mechanics could have been discovered by study-
ing the formalism itself, rather than studying nature. (Later, I will dis-
cuss some actual discoveries using “formalist” reasoning.) This

! T emphasize once again that the mystery could well be solved in the future. I am
writing from the point of view of present knowledge.

2 The present text, however, incorporates improvements I learned from Joel
Gersten, Percy Deift, Shmuel Elitzur, Sylvain Cappell, Shelly Goldstein, and Harry
Furstenberg.

Henry’s aim was completely different from mine. His treatment was meant for the
classroom, to persuade students that quantum mechanics is “inevitable.” Needless to
say, [ dissociate myself from that goal.



178 - Appendix A

certainly shows how remarkably suited is the Hilbert space concept
to describe nature.

Suppose, provisionally, that a particle can be in one of » places:
X1,X2, . . .,Xn, and that for each we know the probability that the par-
ticle is at x;. The “state” of the particle can be represented by a unit
vector in an n-dimensional space, one “axis” for each possible posi-
tion of the particle, where:

A. The n coordinate axes are perpendicular to one another;

B. The square of the coordinate of the unit vector with respect
to “axis x;” gives the probability of the particle’s being at
place x;. (The sum of the squares of the coordinates of the
vector equals 1.) We use the squares of the coordinates so
that the vector’s length always equals 1-—a convenience (in
principle, we could allow the coordinates themselves to be
the probabilities, and then the sum of the coordinates would
equal 1).

So far, no physics has been done.

On the same n-dimensional space, superimpose a new set of per-
pendicular axes, p,,ps, . . .,p,. The numbers p,,p,, . . .,p, represent the
possible momenta of the particle, and the new axes are placed so that
the new coordinates, squared, give the probability that the particle
has the corresponding momentum.

In the real world, however, there are as many places a particle
could be as the power of the continuum—and so for momenta. Thus
our space needs to have axes equal in number to the power of the
continuum, both for position and for momentum. Instead of saying
that the sum of the squares of the coordinates is 1, we now say that
the integral of the squares of the coordinates is 1.2 That is, if ¥ is the
state vector, so that the coordinates of the vector are given by the
expression W(x) (the coordinate of the vector at “axis” x), the
“length” of the vector is defined as [7=7|¥(x)|?dx, and a unit vector
is defined by the equation [* ¥ (x)|?dx = 1.

Here, formidable problems arise—the analogy between finite- and
infinte-dimensional spaces is tricky. Most vectors, according to this

3 Of course, we are now interpreting the squares of the coordinates as probability
densities (probability per centimeter, say) rather than as simple probabilities. For ease
of reading I shall often write sums when I really mean integrals.
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definition, have no “length” (norm), because the integral is infinite.
This will happen not only if the absolute value of the function, [¥(x)|,
1s unbounded, but even if it is constant.

The “converse” problem also arises: Because we would like to have
something as a unit vector, its coordinates are unbounded and go to
infinity. Think of a particle which is with probability 1, i.e., with cer-
tainty, at position x,. This means that the function ¥(x) is zero when-
ever x # xo. But if W(xo) is finite, the “length” of the vector is also
zero (the area under a curve cannot change by changing the curve on
a finite set of points, or in general on a “set of measure zero”).

The space of vectors ¥ with a defined, i.e., finite, length—where
we identify any two vectors whose coordinates are “almost all” the
same*—is the classic Hilbert space, known by mathematicians today
as L.2. In general, any vector space on which we can define the length
of vectors, or more generally the length of the projection of one vec-
tor on the other, determines a Hilbert space; but in what follows,
“Hilbert space” will mean the classic one. However, following the
physicists, and throwing rigor to the winds, we shall speak as though
there were in the Hilbert space a vector all of whose coordinates are
equal, and also a vector of length 1, whose coordinates are “almost
all” zero. The reason these vectors are useful to physicists is that both
can be thought of as infinite limits of vectors that are in the Hilbert
space. For example, think of a bell curve around a point; you can
make the curve as narrow around the point as you want without
changing the area under the curve, so long as you make it higher and
higher. Similarly, you can pull a bell curve apart without limit with-
out changing its area, because you can make it lower and lower.
Hence these two kinds of vectors can be thought of as ideal elements,
to be added to the Hilbert space. (The mathematicians have already
thought of ways to make this rigorous.) In the following discussion,
I will therefore speak as though these ideal elements were part of
Hilbert space. In any case, my view is that major discoveries were
made by such “incorrect” mathematics—i.e., where the formalism
had not been interpreted consistently.

* K ok

4 Technically, this means that the members of Hilbert spaces are equivalence
classes of vectors, but we won’t bother much with this distinction.
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The requirement that a single unit vector give us information both
about the position (probabilities) of the particle and—Dby a change of
basis—about the momentum (probabilities) of the particle is an
example of what I have called the Maximality Principle. Unfor-
tunately, calling it a “principle” does not make it true that one vector
could give all this information, in this way.5 For example, suppose we
measure position of the particle with respect to a measuring device,
which we then move. The position coordinates of the particle “shift”
to reflect the relocation—the state vector moves (“rotates™) in the
Hilbert space. Yet the momentum probabilities should not change just
because we measure them from somewhere else. Relative to the
momentum coordinates, the state vector should not “move” at all.
But how could it move relative to only one set of axes?

Consider a particle in one spatial dimension (that is, confined to
the x-axis) whose position and momentum probabilities are given by
the (squares of) the coordinates of a single state vector .6 Write
W2o%(x) for the coordinates of the vector with respect to the “position
axes,” and W"°"(p) for the coordinates of the vector with respect to
the “momentum axes.” Thus the probability that the particle is at
position x is (¥7°%(x))?, and the probability that the particle has
momentum p, is (¥”°"(p))*. The graph of both functions might be
a bell curve. In what follows, I will be assuming ¥(x) to be differen-
tiable.

Now suppose we move our measuring instrument as before. In
fact, to apply the calculus, assume that it is moved an “infinitesimal”
amount €, say in the “negative” direction. The state vector should
shift in its space, so that its new coordinates are given by the function
Yoewl(X) = P(x + €). The “bell curve” of the probability will have the
same shape, but shifted the amount € in the “positive” direction.

5 Whose importance Shelly Goldstein in particular impressed upon me. That
Henry 1990 glides over the issue weakens the credibility of his claim that quantum
mechanics is “inevitable.”

¢ It is crucial to keep in mind the distinction between physical space and Hilbert
space. The physical particle is in physical space—which we are restricting to the x-axis
for simplicity. The Hilbert space is infinite-dimensional.

7 The free use of the intuitive “infinitesimal” notation by physicists was universally
considered mathematically inconsistent until Abraham Robinson settled the matter by
proving that it is, in fact, consistent to assume the existence of numbers, though not
being equal to zero, are yet smaller than any real numbers.
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Since the vector has shifted, albeit by an infinitesimal amount, the
momentum coordinates ¥*"(p) necessarily shift as well. How could
they change, without changing the momentum probabilities? Only, it
would seem, by multiplying the coordinates by *1; that is, some of
them by -+1 (which is too little, i.e,. no change at all) and some of by
them by —1 (which is too much, i.e., not an infinitesimal change).
And, recall, any other change would alter the momentum proba-
bilities.

To preserve maximality—to represent both position and momen-
tum with the same state vector—we must find numbers that are
infinitesimally close to 1, but have absolute value 1. The complex
numbers can provide what we need.® The “complex” numbers are
two-dimensional vectors (not to be confused with our state vector)—
they have both “length” and “direction.” The number +1 gets re-
interpreted as a vector along the “real axis” having directional angle
zero; +1i, the square root of —1, is a vector of length 1 with direction
90° “north”; etc. We represent a vector of length 1 and direction
angle d as

i&
e,

and if d is infinitesimal, we have just what we want: a number infini-
tesimally different from +1, but whose absolute value (length) is 1.
Thus, if our state vector moves infinitesimally, we can multiply each
momentum coordinate ¥"”°(p) by a complex number whose direc-
tion differs infinitesimally from 0°. The result is now a complex num-
ber % ¥(p) whose absolute® square is still | ¥ (p)].

So the Maximality Principle forces us to introduce complex coor-
dinates.!® The complex coordinates of a state vector with respect to
the position “axes” are called the amplitudes of the position. We need

8 There are other mathematical structures that have been called “numbers”—
quaternions, octonions, “p-adic” numbers, and others. One could imagine quantum
mechanics done with these algebras. The complex numbers, nevertheless, allow the
most straightforward extension of the concepts of analysis (the calculus).

2 We must be careful here: the square of a complex number is itself a complex
number. We take here the absolute square: the square of the length of the vector, which
is its “absolute value.” For “real” numbers there is no difference between the square
and the absolute square, because the square of a negative number “happens” to be a
positive.

10 Strictly speaking, what is forced is the abandonment of the real number field for
a higher structure. For this comment I thank Sylvain Cappell.
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a new word, because the coordinates do not give (even) the probab-
ilities of position, except through their absolute squares. The prob-
abilities, of course, are still real: they are the absolute squares of the
coordinates.

In classical mechanics, the positions and momenta of particles are
independent of one another. Yet in the quantum formalism, with the
Maximality Principle, if we know the coordinates of the state vector
with respect to the position axes, we can calculate them with respect
to the momentum axes—a truly remarkable fact. In other words, the
Maximality Principle fixes inalterably the “orientation” of the
momentum axes with respect to the position axes. This is true
whether or not momentum is conserved.

To see this, consider a state vector ¥, lying along one of the
momentum axes—representing, therefore, with certainty (probabil-
ity 1) a particle of momentum p.!! So the coordinate, squared, of
¥,, with respect to the p-momentum axis, is unity: in symbols,
[¥,(x)|* = 1. (The rest of the coordinates are zero.) Let us see how
vector ¥, is changed by an infinitesimal translation of our measur-
ing device by € in the negative direction.

We have, by our previous argument,

(1) W, (x + €) = €9, (x).12

The phase 8 can obviously depend on the momentum p and the
amount of the translation €. But we can require that & be independ-
ent of the position x (that is, we require that the function ¥,(x) be
such that 6 be independent of x). This is the simplest postulate; it also
reflects our belief that the points of space are indistinguishable. Let
us see what this postulate yields.

11 The astute reader will realize that we are speaking here of an infinite probabil-
ity density, since all the probability from the entire continuum of momenta is concen-
trated at a point. (I warned above in the text that we would be discussing such things.)
Physicists usually ignore mathematical contradictions connected with infinity, hoping
that the mathematicians will give content to their meaningless formalisms. In this par-
ticular case, a mathematically rigorous way was discovered to make sense of these den-
sities, just as a rigorous way was discovered to describe Newtonian “mass points” that
also have infinite density.

12T shall begin dropping the superscript “pos” without further notice.
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The left side of this equation is approximately equal to
@ Wp(x) + 8 e To(0);

while the right side is approx1mately equal to
©) (I + B)¥,(x);

so we can write, to “first order,”

4) ¥, (x) + s Y.(x) = (1 + d)Y,
collecting terms, we get

) —¢ g—x ¥ (x) = i8¥,(x),
that is,

©) Ly, =i w,w.

Now the quotient g of the two infinitesimals must be a single real

number, because we have set & independent of x. This, of course, was
a condition, ultimately, on the function ¥,(x)—justified by the
“isotropy” of space. Equation (6) makes it clear that, by multiplying
(“rescaling”) the function ¥,(x) by a suitable “fudge factor,” we can

make the quotient 2 be any real number we want. For bookkeeping

only, we set

(7

™

the resulting differential equation is
d .
(8) a}‘yp(x) = lP\Pp(X),

which can also be written in the illuminating form

© (=14 1,0 = ¥y,
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which states that the operator —i (—;i‘ “extracts” the value of the
X

momentum, p, from the (unit vector lying in) the momentum axis.!3
Of course, some of this is mere bookkeeping, since we could have

chosen any real number for the value of % in equation (7). What is not

bookkeeping is the fact that the operator
. d
{—z - }‘Pp(x) =¥,(x)

acts on the unit vector by multiplying it by a number.
The solution of the equation is:

(10) WY, (x) = ce?™,

where ¢ is a complex constant (it doesn’t really matter which). For
every x, this is a complex number whose length is that of ¢, where the
“direction” is determined by the momentum, p. So the probability for
a particle, having definite momentum p, to be at any given place x, is

(n lce™ P = |cf,

which means that the particle could be anywhere, with equal prob-
ability.'# This is, of course, a special case of the Heisenberg
Uncertainty Principle.

(Actually, we should have expected this result already: if the
momentum, and the momentum probability, does not change merely
because of a translation of the measuring apparatus, then the prob-
ability curve remains constant when it is shifted along the x-axis.
Only a horizontal straight line has this property.)

13 These equations show that the operator d/dx plays a double role: it represents
infinitesimal translations; multiplied by —i (whence it becomes a Hermitian operator),
it represents that quantity whose conservation follows from invariance under infini-
tesimal translations. See Guillemin and Sternberg 1990b for an illuminating account
of the “dual role” of symmetry operators in quantum mechanics.

14 Literally, the formula means nothing, because since the probabilities are equal,
and there are infinitely many of them, they do not add up to 1:

J 72 e 2dx = oo,

Physicists ignored this problem too, relying on the mathematicians to solve it.
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We can think of ce”~, as c¢ varies, as determining the entire
momentum “axis” corresponding to momentum p (with respect to
the position axes)—thus, we have discovered “where the momentum
axis 1s,” if this formalism is to make sense. Where are the other
momentum axes? They must be perpendicular (orthogonal) to this
one. Mathematics to the rescue: any two vectors having the coordi-
nates e?1* and e¥2* are perpendicular:

(12) Leiplxe’szdx =0, p, £ p-.

Thus, there is nothing inconsistent with adopting the “bookkeeping”
device of “labeling” each momentum axis with the value assigned to

it.15 The operator P = —i j— is called the “momentum operator,” and
x

a vector ‘¥, lying along the momentum axis satisfies
(13) PY, =p¥,,

that is, the effect of the operator P on this vector is simply that of
multiplying it by the real number p. Thus ¥, is called an “eigen-
vector” of P, and p is called its “eigenvalue.”

Let us sum up the results so far: from little more than the
Maximality Principle (a strong, yet formal, requirement) and a triv-
ial property of momentum (invariance under translation), we have
shown how momentum information must depend upon position
information. The argument holds whether or not momentum is con-
served. That is, the momentum axes are fixed with respect to the posi-
tion axes—independently of the forces operating on the particle. The
argument was not deductive, because our assumptions had to do not
only with truth, but with meaningfulness. We were “forced” to intro-
duce complex numbers, to save the meaningfulness of the Hilbert
space formalism.

But the use of complex numbers has profound implications. Every
coordinate will have, from now on, not only an absolute value, but
also a “phase.” The phases of the coordinates are what cause par-

15 In other words, the momentum axis must be a complex exponential of the form
€*; the assighment ¢ = p is a convention.
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ticles to behave, mathematically, like waves. All the surprising fea-
tures of quantum mechanics that we shall examine rest upon these
“innocent” phases that leave the probabilities untouched (because
they disappear upon taking the absolute square).

To repeat, this argument for the indispensability of complex num-
bers is retrospective.'¢ Schroedinger’s introduction of complex num-
bers into quantum mechanics was quite different (he was not
working in the framework of an abstract vector space). Nevertheless,
it, too, was formal.!”

So far, then, our formalism for keeping track of probabilities,
using a unit vector in a multidimensional space to describe the state,
based on the Maximality Principle, has led us to two remarkable, but
nondeductive, conclusions:!8

(a) that everything knowable about the momentum of a particle
can be inferred from the position (function) of the particle,
irrespective of what experiment we are running; and

(b) that the position function of a particle must be complex-
valued, a fancy way of saying that a particle behaves like a
wave.

An even more remarkable conclusion surfaces when we apply this
formalism to angular momentum.!® Suppose the particle moves in a

16 We see here the parallel development of physics and pure mathematics: the imag-
inary numbers themselves were a prime example of extending mathematics by formal
manipulations. The Ttalian mathematician Cardano introduced imaginary numbers
formally, as solutions of problems like: find two numbers whose sum is 10 and whose
product is 40. Mark Wilson (Wilson 1992) recounts how nineteenth-century mathe-
maticians used imaginary numbers to “find” the “intersection points” of a circle and
a line which, on the Euclidean plane, don’t meet at all. This formal move led to
advances in projective geometry: e.g., the unified treatment of geometrical properties
that heretofore had not seemed associated. It took hundreds of years for physics to
introduce complex numbers in the “indispensable” way that Schroedinger did.

17 See Chapter 4 for a detailed description of Schroedinger’s derivation of the wave
equation, including the introduction of complex wave functions.

18 The conclusions are not deductive, because we reason, not from the truth, but
from the meaningfulness, of the premises.

19 For two-dimensional circular motion around the origin, the angular momentum
is given by multiplying the (absolute value of the) momentum of the particle by its dis-
tance from the origin. For clockwise motion, we assign positive angular momentum;
for counter-clockwise, negative. For other motion, we draw a radius from the origin to
the particle, and then consider only the component of the momentum perpendicular
to the radius.
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plane,?° so that it has two spatial coordinates, and one component of
angular momentum. It is most convenient to take these as polar
coordinates. We still have an infinite-dimensional space with an axis
for each point in the place; but the function ¥ that gives the coordi-
nates of the state vector becomes a function W(r,d) of two variables.
Thus, each “position axis” is an “r—¢” axis, and |¥(r,0) |* is the prob-
ability (density) that the particle is at position <r,$>.

Suppose we now superimpose “axes” of angular momentum on
our space—and extend the Maximality Principle to angular momen-
tum. That is, the same unit vector that describes position “ampli-
tudes” should describe those of angular momentum as well. Then a
trifling symmetry argument, using the invariance of angular momen-
tum under rotation, fixes the angular momentum “axes,” as follows.

If we rotate our measuring device by an infinitesimal angle, the
state vector of the system must have almost the same angular
momentum coordinates as before (i.e., their absolute squares remain
the same), except that the coordinates can—and must—be multiplied
by a complex number with an infinitely small “angle” (remember to
distinguish between the angle of a complex number and the angle of
our measuring device in space). In analogy to the case of linear
momentum, writing / for angular momentum and ¥ (r,0) for the
coordinates with respect to the “polar position axes” of a unit vector
which describes a particle with definite angular momentum /, though
not necessarily with definite radius, we arrive at the equation

(14) —i%%(r,q») = I¥,(r.0),
whose solution is
(15) ¥ (r,0) = f(r)e™,

for f(r) an arbitrary complex-valued function. This function f{r), by

20 In the “real world,” no particle can be restricted to a plane, because, supposing
the particle moving in the xy plane, both the position and the momentum of the par-
ticle in the z-direction (zero) would be known with certainty, and we have shown that
this is impossible—this was one of the mistakes of the “Bohr model” of the atom.
(This point will assume great significance later on.) Nevertheless, our results below will
hold true for the z-coordinate of angular momentum even in the “real world.”
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the way, can be one whose absolute square gives an immense prob-
ability density for a certain fixed distance r, from the origin, so that
if we fudge the difference between “immense” and “infinite” (as
physicists are wont to do), we can say that there is no contradiction
between a particle having a determinate angular momentum and a
determinate radial position. Thus, we can speak of r—/ axes instead
of r—¢ axes, / replacing ¢—a state vector lying on one of these axes
having, with probability 1, radius », and angular momentum /.

For a fixed r, though, the relationship between /and ¢ is analogous
to that between p and x—the mathematics is almost precisely the
same. Namely, for a fixed radius 7, if the angular momentum /is also
fixed, then we lose information about the angle ¢ (the orientation of
the particle in its plane of motion); for

(16) [ (r)F = 1f (Ne™P = | f(P,

i.e., it is the same for all .

So far, angular momentum is a replay of linear momentum. This
is not surprising: there are many analogies in classical physics
between linear and circular motion. But now comes the “voodoo.”

* ok ok

In modern logic, the word “function” denotes what is called by
mathematicians, pleonastically, a “single-valued function.” Func-
tions are defined extensionally: there is no difference between a func-
tion and its graph: a function is a set of ordered pairs <x,y>, such
that for each x there is exactly one y.

An older view (which survives in some complex analysis texts and
in physicists’ jargon) is that a function is a rule, and in any case, is not
equivalent to its graph. According to this view, it is not a tautology
that functions are single-valued. In fact, there are functions that are
intrinsically multiple-valued.

An example is the square root function on the complex plane. If a
complex number is a vector <r,0> (r is called the modulus and 0 the
phase), its square root is the vector

9
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take the square root of the modulus and halve the phase. For sim-
plicity, consider the complex numbers with modulus one (so the
modulus will not change under square root). Begin with the vector at
phase zero, and rotate it continuously counter-clockwise through 27
(360°). At the starting point, when the phase is zero, representing the
real number 1, the square root is naturally the same vector, a1=1
When the phase reaches 2r (360°), the square root is —1—i.e., a unit
vector with phase ©. Yet a turn of 360 degrees brings the vector back
to the starting point, so that, as a result of a continuous motion, the
square root function has arrived at a different value: —1. (Of course,
everybody knows that 1, as an integer or as a real number, has two
square roots, £1; the point is that in the complex plane it is possible
to go from one value to the other by a continuous path.)

What about a function ¥(x,y) or ¥(r,), the function that gives the
position coordinates of our state vector? Must it be single-valued?
You might say that, physically, a particle ought to have one posi-
tion—Dbut the only information the state vector gives is position prob-
abilities. And even these it only gives by way of the absolute square,
[¥(r,0)]>. This means that we could multiply the function ¥(r,) by
some phase factor—i.e., a complex number €® of modulus 1-—with-
out changing the physical meaning of the function.

Nevertheless, there is good reason to require that the position
function be single-valued.?! For if the position function is continu-
ous and defined at every point <x,y> in the xy plane, yet multiple-
valued, we could find a loop beginning and ending at <x,y> such that
the value of the function at the beginning of the loop would be dif-
ferent from that at the same point at the end. That loop could then
be shrunk continuously to infinitesimal size, so that the same—
finite—change of phase would occur at an infinitesimal interval, con-
tradicting continuity.?2

Let us return to a function f(r)e™, which gives the amplitude
(coordinate) of the direction of the particle when the angular

21 The appropriate language for this paragraph would be that of “covering space
theory” in topology. My apologies to professional topologists.

22 With the square root function itself, this does not happen, because, as we shrink
the loop around the origin to radius zero, the “distance” between the two values of the
square root also goes to zero; that is, the square root function is single-valued at zero,
double-valued everywhere else.
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momentum is determined to be /—and let us therefore make the
assumption that this function is to be single-valued, and, for sim-
plicity, let us make f(r) a constant function: the particle has equal
probability to be any distance from the origin. Now the angles ¢,
0+2r, ¢F4m, . . . all represent the same direction; so for single-
valuedness we need

(17) et =elo+2m =

But this is impossible unless / is an integer—the number of units of
the fundamental angular momentum.?3 It is customary to name this
natural unit of angular momentum #, Planck’s constant. We have
arrived at quantization of angular momentum, one of the funda-
mental empirical discoveries of twentieth-century mechanics, “for
free”! The main premises here were the Maximality Principle and the
single-valuedness of the coordinate function . Again, the formal-
ism seems to display information beyond that for which it is designed.
Our conclusion, the quantization of angular momentum, is the only
one which allows us coherently to express data about this magnitude
using a unit vector in a linear space.

Is the preceding an a priori argument? Of course not: you cannot
arrive at empirical conclusions without making at least some empir-
ical assumptions. (This truism is what is correct about “empiri-
cism.”)?* But the assumptions made here are about the empirical
adequacy of a formalism, not about causal processes.

23 The argument I have given is valid for “orbital” angular momentum—that angu-
lar momentum that arises from physical movement of a particle around a point cho-
sen as the “origin.” As we shall see, and as knowledgeable readers already know, there
is also a form of “intrinsic” angular momentum, called “spin,” that can be attributed
to certain elementary particles, such as the electron. The spin of the electron is 72
Planck’s constant.

Nevertheless, spin Y2 can exist only in three dimensions (for reasons which are far
from obvious and which I shall give later). Our argument, which assumes that space
is a Buclidean plane, is technically valid—in a plane, there is no angular momentum
less than Planck’s constant. As the reader will see by continuing this Appendix, it is
quite worthwhile to explore what quantum mechanics looks like in two dimensions, as
compared to three.

Even in three dimensions, though the maximality principle fails to predict half-
integer spin, there are other considerations, just as “formal,” which do predict it. More
of this later.

24 Nevertheless, philosophers often content themselves with this observation, over-
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* k %

Next, I show the intrinsic spin of the electron, which is %2 Planck’s
constant,>® though not representable by a unit vector on our linear
space, is nevertheless hinted at by the quantum formalism more gen-
erally.

In our treatment of angular momentum, we discovered the “loca-
tion” of the axes corresponding to various values of angular momen-
tum by a symmetry argument: angular momentum was that quantity
which stays the same under rotation. A further argument, based on
the single-valuedness of the coordinate function, yielded the result
that the possible values of angular momentum are integral multiples
of a minimum value, Planck’s constant.

This treatment, however, based as it was on two-dimensional
motion, is oversimplified. Adding the third dimension makes for
quite a difference. I shall now sketch what happens in three dimen-
sional motion, leaving out most of the mathematical details and all
of the proofs.

Any rotation in three dimensions is the sum of rotations around,
successively, the x, the y, and the z axes. Instead of speaking of angu-
lar momentum, we must speak of the three components of angular
momentum. Furthermore, it is no longer true that angular momen-
tum is invariant under rotations: the angular momentum vector will
change direction, if the rotation is not around the vector itself. What
remains true, however, is this: any rotation around the x, the y, and
the z axes will not change the corresponding component of the angu-
lar momentum vector. This is a fortiori true for infinitesimal rota-
tions, and so we get three operators, L,, L,, L., for each of the
components of angular momentum, corresponding to the three
infinitesimal rotation operators

looking that there can be degrees of a prioricity. What is surprising in physics is how
much can be obtained from so little.

25 If we think of angular momentum as a three dimensional vector, according to
the classical picture, then “spin ¥2” does not mean that the length of the vector is %2
Planck’s constant, but rather that the maximum possible value of the z coordinate of
the “vector” is 4. The validity of the vectorial picture here is limited in any case,
because (as we shall see) it is impossible to determine more than one of the compo-
nents of angular momentum exactly, and therefore we cannot use the Pythagorean
Theorem to calculate the length of the angular momentum “vector” in the standard
way.
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J. = —ihL,,
J, = —ihL,,
J, = —itL,.

(18)

As before, the three angular momentum operators L,, L,, L, (via the
eigenvector equations) determine the position of the “axes” assigned
to each value of angular momentum. Yet here an extraordinary con-
trast with linear momentum arises: the axes for the three components
of angular momentum can never coincide. The reason for this, math-
ematically, is that the three angular momentum operators do not
commute with one another, and thus cannot have common eigen-
vectors. In other words, should we know the exact value of the z-
coordinate of angular momentum, the other two coordinates are
absolutely uncertain—in stark contrast to the case of linear momen-
tum.

Mathematically, the formula connecting three operators of angu-
lar momentum is:

(19) L.L,— L,L, =L,
L.~ L.L,=itL,
L.~ LL,=ihL,.

From now on, when we think of a particle with some fixed angu-
lar momentum, we will mean one with a fixed z-component of angu-
lar momentum (which is all that we can mean). As before, though,
this fixed angular momentum is quantized: it must be some integral
multiple of Planck’s constant. Suppose, then, the angular momen-
tum is 5 units—meaning the projection of the angular momentum on
the z-axis 1s 5 units. Since we do not know the other two components
of the angular momentum vector, the value of the z-component
(namely 5) gives us less information than we might expect. If we
rotated our laboratory away from the vertical, so that the new z-axis
no longer is perpendicular to the floor, the (z-component of) the
angular momentum would change: for example, it might increase,
say, to 7 units. In fact, to get maximal information about the (z-com-
ponent of) angular momentum, one needs to know not only the
value, but what values it could have if the laboratory were rotated
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away from the vertical. Actually, it would be enough to know the
maximum value that the angular momentum could take on. For
example, by rotating the laboratory away from the vertical by a cer-
tain angle, the (z-component of) angular momentum might change
from 5 to 9 units and then begin to decrease again. Or, it might
increase to 1,000,000 units. (In the classical picture, this would hap-
pen if the angular momentum “vector” was very long but almost hor-
izontal in position, so that its “shadow” on the z-axis was very small.)
On the other hand, 5 might be the maximum value under such a rota-
tion. So, then, the angular momentum axes must contain informa-
tion of the form (/,m), where [ is the (z-coordinate of) angular
momentum and m is the maximum possible under rotation. Clearly,
then, if m is the maximum possible angular momentum for a sys-
tem, then —m would be the minimum. But what are the values in
between?

In order to solve this problem, consider the problem in terms of
the state vector in our linear space, rather than in terms of physical
space. As we rotate our laboratory in all directions, the state vector
moves too. But if it happens to be located in a subspace determined
by the permitted values (/,m) for a fixed m, it will move around in that
subspace, trapped. Note that this subspace must be of finite dimen-
sion; for there are only a finite number of values of angular momen-
tum possible where the maximum value is fixed. When restricted to a
finite linear space, though, the angular momentum operators L,, L,,
L, reduce to self-adjoint matrices M,, M,, M,. The fact that the
matrices do not commute means, algebraically, that we cannot diag-
onalize the matrices simultaneously, but only one of them at a time;
naturally, we diagonalize M. The diagonal of that matrix gives us the
values of permitted (z-coordinate of) angular momentum for a fixed
maximum.

The problem has now been converted to an equation, or rather
three equations. We are looking for three Hermitian matrices, M.,
M,, M, one of which (M,) is diagonal, that satisfy the following
equations:

(20) MM, — M,M, = iiM,
MM, — M.M, = ihM,
MM, — MM, = iliM.,.
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Solving these equations is a piece of algebra,?® which yields the
following result: the matrix M, necessarily has the form

Q1) m 0 0 . 0 0
0 m-1 0 . 0 0
0 0 m-2 . 0 0
0 0 0 . —m+l 0
0 0 0 . 0 -m

where m may be an integer or a half-integer (i.e., an integer plus 2
such as %2, 1%, 214, etc.).

Thus, for example, a particle may be in a state where the z-coor-
dinate of its angular momentum may be one of the following: 3, 2,
1, 0, —1, —2, —3 (times Planck’s constant). Tilting the laboratory
away from the vertical by suitable angles will “change” this value to
one of the others—and one of the others only. If we turn ourselves
upside down, of course, the value will assume its negative.

But what of the half-angular values? We have already demon-
strated that angular momentum must come in integral multiples of
Planck’s constant. Only thus can the “wave function” (for us, the
coordinate function) be single-valued. Consider, for example, the
case of “angular momentum '5.” The equations are satisfied by the
following three matrices, of which only the last is diagonal:

(0 VA (0 whiy . (Hh O
(22) Mx_(’/zﬁ 0)’ My‘(—l/zﬁi 0 ) MZ‘( 0 —l/zﬁ)'

Defining the three “Pauli spin matrices” by

(23) ox = (? é),ﬁﬁ(_oi é)a"zz((l) —01)

we can write the solutions as follows:

(24) M;=Yho,i=1,2,3.

26 For a nice exposition, see Yamanouchi 1970.
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Equation (22), particularly the form of Mz, seems to suggest that
there could be a particle whose (z-coordinate of) momentum is '%5.
But this leads to a paradox: the function of a particle with (z-coor-
dinate of) angular momentum % would have to be some function of
the radius of the particle multiplied by

25) ei30.

And such a function is double-valued: to put it another way, to make
this function return to its initial value, one must rotate the z-axis not
360°, but 720°.

There would be no logical objection simply to rejecting the half-
angle values of angular momentum as “unphysical.” After all, the
equations set down necessary conditions for the matrices we seek.
Perhaps they are not sufficient. It is not unknown for equations in
physics to have solutions that are rejected—perhaps the most famous
example being Einstein’s rejection of velocities faster than the speed
of light.

But, on the other hand, mathematical possibilities have turned out
to be physically real far more often than might have been expected.
And spin %, though bizarre indeed, turns out to be an empirical real-
ity. Every electron turned out to have an intrinsic angular momen-
tum of Y2 Planck’s constant, as if it were spinning on an axis, and
thus can be considered as a little magnet.

The key phrase here is “as if.” Our argument shows that this spin
of %2 cannot be due to the literal rotation of the electron. But this just
means that there are other dimensions of reality than those of ordin-
ary space and time. The electron simply has its own internal degrees
of freedom. We can, for example, construct a new two-dimensional
space, with two axes: one for spin + 2 and one for —'%. The state vec-
tor can take positions either on an axis or off. If we wish to combine
data concerning spin and data concerning, say, position, in one
space, so that one state vector will give all the information, what we
do is simply make two copies of our infinite-dimensional linear
space, and label one set of spatial axes “spin up” (meaning spin +Y%;
ot, rather, +'4#) and one set “spin down.” Another way to put this is
that the psi-function has two components, ¥,,(x) and ¥ z,,..(x). The
former function (absolute squared) gives the probability of finding
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the electron at position x with spin “up,” while the latter gives the
probability to find the electron at position x and also spin “down.”

It must be admitted, therefore, that the Maximality Principle, in
its original formulation, fails. Even complete knowledge of position
amplitudes will not determine the spin amplitude of the electron. Yet
the reason for this failure is not so much the principle itself, but the
narrowness of its application. By the mistaken assumption that ele-
mentary particles must “live” in three-dimensional space of macro-
scopic experience, we have truncated our linear space by half. Yet
even our truncated formalism retains enough information to hint at
its own extension.

The above discussion, I must stress one more time, does not fol-
low the historical order of discovery. The hypothesis that the electron
has a tiny intrinsic “spin”—distinct from its orbit around the nucleus
of an atom—was introduced to explain spectroscopic data. Only
later did Pauli discover the appropriate extension of the quantum
formalism that could encompass the new discovery. Even from hind-
sight, though, it is remarkable how the reasoning could have gone the
other way—how the formalism contains, latently, further develop-
ments. This is why the physicist rightly marvels at the applicability of
the Hilbert space formalism.
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Nucleon—-Pion Scattering

Consider a scattering experiment, described in Sternberg 1994, in
which pions collide head-on with nucleons at known momenta and
energy; the only variables are the kind of incoming particles. We set
up a particle detector at some fixed nonzero angle o from the path of
particles. Again, the only variables are the kind of outcoming parti-
cles; momentum and energy are now fixed. Thus, as above, we can
describe nucleons, pions, and deltas, respectively, in terms of two-,
three-, and four-dimensional spaces. Then Pythagorean reasoning
suggests that a combination of pion and a nucleon is physically
equivalent to a superposition of a delta and a nucleon, as above. In
fact, we can do better. The symmetry-preserving isomorphism asso-
ciates (as a mathematical theorem)

(@) n~Qp <> \f‘_/s A° + \]2_3 n.

Thus a n~/proton pair is physically equivalent to the superposition
of a neutral delta and a neutron, the coefficients being as shown.
Another equivalence is

(b) Ao |V Qp® % n.

There is, therefore, a mathematical possibility that the system could
do the following:

T p—o>A’ > np,
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that is, form a A° which then decays back into a ©~/proton combina-
tion. The probability for this theoretical reversal is calculated by mul-
tiplying the coefficient of A® in (a), by the coefficient of 1~ ®p[roton]
in (b), and then squaring the result:

(\Or/s X \,@;)2 =Y,
Suppose we start with a T"p combination, for which we have
(©) T®p > AT

(the only way we can have charge conservation in this setup).

Then the probability that a ©* p combination will return to itself,
even if it forms a delta particle, is 1, i.e., nine times the probability
that the n™p combination will return to itself if it forms a delta par-
ticle.

Now all of these calculations have so far no physical significance.
We are speaking so far of “incoming” nucleons and pions, i.e., par-
ticles which are still far apart. In other words, we have not specified
any experiment which realizes this mathematical possibility, though
the backwards symmetry condition suggests there should be such an
experiment.

So let’s allow the particles to interact and then scatter. Recall we
are waiting at angle o to see whether particles do scatter. (We are also
in the “center-of-mass frame” so that the only momentum variable is
the scattering angle itself.) Generally speaking, if particles approach
each other head-on, we would expect them either to miss or to
rebound along their line of approach. On the other hand, if a
nucleon and a pion combine to form a delta which then decays, the
debris scatters in any direction. Empirically it is discovered that this
happens when the energy of the collision is 180 million electron volts.

Now a remarkable theorem called Schur’s Lemma guarantees that
the 9 to 1 calculation we have performed remains true even after the
pion interacts with the nucleon, even after scattering, so long as this
interaction preserves the symmetry condition. Essentially, Schur’s
Lemma says that, under symmetry, a superposition of two particles
remains a superposition. For example, consider the right-hand side
of equation (a), which says that a x—p pair is a mathematical super-
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position. At 180 MeV the superposition is actualized, so that we
really have the physical superposition of a (neutral) delta particle
with a neutron. The neutron, if formed, does not scatter, so it has
effectively zero chance of getting to our detector. But the delta decays
in any direction into a pion/nucleon pair according to the two pos-
sibilities implicit in equation (b).

On the other hand, a n¥p pair, at 180 MeV, simply turns into a
A**, which just decays back into #*p. The conclusion is, assuming
only that the interaction of hadrons has SU(2) symmetry, that at 180
MeV (or whatever energy it takes to form a delta out of a
nucleon—pion combination), our detector at scattering angle alpha is
nine times more likely to detect the pair n*p than the pair n7p.



Appendix C

Nonrelativistic Schroedinger
Equation with Spin

Beginning with the equation

v _ O°P vy OP )=
(E (2m)'/’) (E (2m)” 0,

we make the usual substitutions

Esitder
51

o —inl — %4 (r=1,2,3).
ax c

r

In the case where we are not interested in an electromagnetic field
that changes over time, we can make for E the simpler substitution

E—eV.

Remultiplying, we recall that the magnetic field components B, are
related to the magnetic potential 4, by

B=V XA,
ie., B.=34-24
ay Jaz -
B,=%4,-9 4
9z ax
B.=24,- 24,
0x Jay
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We note, too, that the Pauli matrices anti-commute
0.0, = —00;(i %)),
and that their square is 1:
= (10y,. _
oo, =1=(y)(=123.
Performing the multiplication, and supplying the psi-function, we

derive the following equation for an electron in an electromagnetic
potential:

3
D (—ﬁ"— —EA,)z\P— — 6-BY¥ — (E—eV)¥ = 0.

1
ax, ¢ c

NSRS

€
m
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