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 Alfred North Whitehead once observed that omitting the role of mathematics in the story 

of modern science would be like performing  Hamlet  while  “ cutting out the part of Ophelia. 

This simile is singularly exact. For Ophelia is quite essential to the play, she is very 

charming — and a little mad. ”   1   If in the story of science mathematics takes the part of 

Ophelia, music might be compared with Horatio, Hamlet ’ s friend and companion who 

helps investigate the ghost, discusses what may lie beyond their philosophies, sings the 

sweet prince to his rest, and tells his story. 

 This book will examine some significant moments in the relationship of music to 

science, especially those in which prior developments in music affected subsequent aspects 

of natural science. By investigating this direction of influence, we question the common 

presupposition that, however beguiling, music is conceptually derivative or secondary 

compared to other modes of thought or perception — an effect, rather than a cause. The 

examples considered in this book show the larger intellectual and cultural dimensions of 

music as a force in its own right. 

 By virtue of its special position in Greek natural philosophy, music occupied the perfect 

position to mediate between idealized mathematical objects and the world of experience.  2   

Based on these ancient models, the continuing structures of learning mandated music ’ s 

ensuing centrality as the  “ hinge ”  discipline connecting arithmetic, geometry, and the 

sensual world. This both reflected and moved the profound alterations that surrounded the 

birth of the  “ new philosophy ”  during the sixteenth and seventeenth centuries. My main 

contention is that, in whatever directions its interventions tended, from ancient until 

modern times music so deeply and persistently affected the making of science over so 

many historical vicissitudes that we should tell their stories jointly. Our awareness of how 

exactly music entered into the story can enlarge and deepen our understanding of the 

human and intellectual dimensions of science. In so doing, we may draw more closely 

together the study of  “ aural culture ”  and symbolic structures hitherto considered separate. 

This rapprochement calls for an enriched exploration of the felt dimensions of scientific 

experience, considered as a fully human activity vividly engaged with perception, feeling, 

and thought.  3    

 Introduction 



2 Introduction

 As Horatio has ties to both Hamlet and Ophelia, music touches both natural philosophy 

and mathematics. Accordingly, we will examine several critical shifts of understanding 

in both these domains. Chapter 1 describes the most consequential move of all: ancient 

Greek natural philosophy connected music with mathematics and astronomy within a 

fourfold study, the  quadrivium . This alliance involved both experiment and theory, and 

hence positioned music at the frontier between the worlds of physical sensation and ideal 

forms. During the subsequent fifteen centuries, music retained its central place among the 

mathematical sciences, an essential component of what became  “ liberal education, ”  which 

explicitly continued a program the Pythagoreans began, Plato systematized, and Boethius 

transmitted to the West. These ancient developments are important not merely as historical 

background, buried as hidden sediment under the surface of modernity, but as continually 

active and reemergent forces that shaped and continue to shape  “ modern ”  science and 

mathematics. 

 Chapter 2 considers the status of these forces as they seemed to a preeminent fourteenth-

century natural philosopher. Nicole Oresme used musical concepts as important elements 

in his reexamination of the cosmos, its possible cycles, and their relation to arithmetic and 

geometry. The case of Oresme shows how significant musical issues were well before the 

advent of the  “ new philosophy ”  of the sixteenth century. Oresme ’ s contact with the  “ new 

music ”  ( ars nova ) led him to refute the simplest versions of cosmic harmony and to 

propose radical new alternatives that depend on the tension between arithmetic and geom-

etry. The underlying musical and cosmological considerations allow us to deduce his own 

unstated conclusion in favor of geometry. 

 Disputes about the order of the planets had profound musical and cosmological implica-

tions, especially on the growing controversy over whether the seemingly immovable Earth 

could be understood to move, as the Pythagoreans held. Though he had presented strong 

arguments in favor of this view, Oresme himself finally accepted the geocentric account. 

Chapter 3 investigates the role of music in this cosmological controversy as it came to a 

head in the fifteenth century. The problem of a seemingly immovable yet moving center 

such as the Earth parallels the musical problem of changing the usually fixed modal center 

of a composition. Despite its proverbial impossibility, the theorist Heinrich Glarean drew 

attention to just such a shift of mode in Josquin des Prez ’ s motet  De profundis . If so, music 

might show how the immovable could move, after all. Indeed,  harmony  became the defin-

ing issue on which Copernicus and those following him phrased their arguments about the 

new cosmology. Musicians followed this controversy closely; in his 1588 polemic for a 

revival of ancient musical practice, Vincenzo Galilei was among the first Italians to defend 

the heliocentric view, many years before his celebrated son Galileo took up this cause, 

again under the banner of harmony. 

 Several decades before Vincenzo Galilei ’ s surprising avowal, music influenced funda-

mental changes in the concept of number. Though irrational quantities had long been 

excluded from arithmetic and harmonics, sixteenth-century musical theory and practice 
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called for irrational and rational quantities on an equal footing. Chapter 4 discusses three 

central figures in this story: the German mathematician Michael Stifel, who was the first 

person to use the phrase  “ irrational numbers ”  in the course of his exposition of music, but 

who then hesitated to grant those numbers full reality; Girolamo Cardano, celebrated 

physician-polymath, who gave such quantities even greater significance in his musical 

writings; and Nicola Vincentino, a composer obsessed with reviving ancient Greek quarter 

tones who found himself in need of what he called  “ irrational proportions ”  to define these 

unfamiliar intervals. Each of these three men was involved with practical music to a degree 

correlated with their respective reliance on irrational numbers. 

 Johannes Kepler, more than anyone, incorporated music into the foundations of his 

innovative astronomy. Chapter 5 relates his interest in musical practice to his novel 

approach to its theory, which moved him to reject algebraic results that contradicted 

musical experience. Kepler ’ s search for cosmic polyphony points to Orlando di Lasso ’ s 

 In me transierunt  as a moving expression of the  “ song of the Earth, ”  down to the melodic 

spelling of the Earth ’ s song. Kepler presents both cosmos and music as essentially alive 

and erotically active, based on his sexual understanding of numbers. The pervasive dis-

sonance of the cosmic harmonies reflects the throes of war and eros. Like Oresme, Kepler 

realized the essential incompleteness of the cosmic music, which may never reach a final 

cadence, a universal concord on which the world-music could fittingly end. Kepler treats 

this as an indication of divine infinitude, inscribed in the finite cosmos. 

 Ren é  Descartes began his career writing about music, which affected his innovative 

natural philosophy throughout its development. Chapter 6 reads his correspondence with 

Marin Mersenne as tracing the interaction between musical, mathematical, and philosophi-

cal themes. Musical observations led to Descartes ’ s initial observations of the overtones 

of vibrating strings, which in turn led to wider considerations of mechanics, motion in a 

vacuum, and eventually to his continuum theory of the universe. His theories emerged in 

constant dialogue with musical issues and problems. 

 Music was central to the natural philosophy of Mersenne. Chapter 7 begins with his 

musical arguments for heliocentrism, against the hermetist Robert Fludd. Mersenne used 

musical devices to make pioneering measurements of the frequency of vibrating strings 

and of the speed of sound. Mersenne ’ s work on overtones both profited from and struggled 

with his musical preconceptions, as did his attempt to incorporate atomism into his account 

of vibrating bodies. 

 Though Isaac Newton walked out of the only opera he ever attended, music had a sig-

nificant place in his work.  4   His early notebooks show his close study of music theory and 

his attention to matters of  “ elegancy ”  in practice. A decade later, he applied the musical 

scale to define the colors in the spectrum. Though he had initially assumed that color 

spanned a perfect octave from red to violet, chapter 8 discusses Newton ’ s subsequent 

realization that it actually spanned a smaller interval. Yet he did not realize that the depar-

ture from an octave implied strong evidence for the wave nature of light. 
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 Throughout his life, the great mathematician Leonhard Euler spent most of his free time 

on music, to which he devoted his first book. Chapter 9 shows how he reformulated the 

ordering of musical intervals, implying a mathematical basis for the greater  “ sadness ”  of 

minor chords, compared to major. For this purpose, Euler devised a  “ degree of agreeable-

ness ”  that indexed musical intervals and chords. This work on numerical factorization and 

ratios immediately preceded his subsequent interest in number theory. Having devised a 

new kind of index, Euler was prepared to put forward indices that would address novel 

issues like the K ö nigsberg bridge problem and the construction of polyhedra, basic con-

cepts of what we now call topology. Euler also applied musical ideas and analogies with 

sound to the wave theory of light, as chapter 10 describes. He took the analogy with sound 

so far as to postulate light  “ overtones ”  and  “ undertones ”  based on musical theories, though 

undertones lacked any experimental justification. Euler ’ s later musical writings include 

his reflections on  “ ancient ”  versus  “ modern ”  music through their use of different chords. 

He also used music as the centerpiece in his popular account of science. 

 Building on the work of Euler, Thomas Young advanced the wave theory of sound and 

light. Chapter 11 describes how Young found his way to music against the strictures of his 

Quaker milieu. His newfound passions for music and dance informed his studies of sound 

and languages. At many points, his understanding of sound influenced and shaped his 

approach to light, including the decisive experiments that established its wave nature. 

When Young turned to the decipherment of Egyptian hieroglyphics, he relied on sound 

and phonology. His final suggestions about the transverse nature of light waves again 

turned on the comparison with sound. 

 Those who followed Euler ’ s wave theory of light often reengaged its relation to sound. 

The study of electricity and magnetism resonated with ongoing initiatives in light and 

sound, reflecting also wider philosophical ideas about the unity of nature. Chapter 12 

examines the intertwined studies of electricity and acoustics by Georg Christoph Lichten-

berg, Johann Ritter, and Ernst Chladni. The search to unify the forces of nature often relied 

on analogies with sound, which in turn looked to electricity for new tools. In the aftermath 

of Young ’ s work, waves became a newly attractive explanatory approach to the problems 

of electricity. Building directly on Chladni ’ s sound figures, Hans Christian  Ø rsted discov-

ered the synthesis of what he called  “ electromagnetism. ”   Ø rsted brought a new unity to 

the two formerly separate forces of electricity and magnetism, advancing the unitive hopes 

of  Naturphilosophie,  the German Romantic tradition of natural philosophy. This dialogue 

between sound and electricity also affected Charles Wheatstone and Michael Faraday. 

Chapter 13 shows how their unusual collaboration led Wheatstone to discover telegraphy 

and Faraday to the intensive investigations of sound immediately preceding and preparing 

his discovery of electromagnetic induction. 

 Chapter 14 considers how Hermann von Helmholtz ’ s studies of vision and hearing drew 

on his deep interest in music and art. The dialogue between these arts and their respective 

senses fed strongly into his investigations into the possible  “ spaces ”  of experience, which 
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chapter 15 connects with the many-dimensional manifolds earlier considered by the math-

ematician Bernhard Riemann. Riemann ’ s unfinished work on the mechanism of the ear 

affected Helmholtz ’ s ensuing response, which used studies of sound and color to present 

an empirical basis for Riemann ’ s hypotheses. Einstein drew on these results to shape his 

world-geometry. 

 At the same time, the study of spectra brought the music of the spheres to the atomic 

level. Chapter 16 explores the acoustical underpinnings of G. Johnstone Stoney and Johann 

Balmer ’ s search for the order in elemental spectra. Balmer ’ s basic formula for the spectral 

lines of hydrogen emerged from musical presuppositions and analogies. In the following 

years, Max Planck investigated a complex harmonium just before he began studying black-

body radiation in 1894. Though Helmholtz assumed that  “ natural ”  tuning would win out 

over the convention of equal temperament, Planck ’ s performance experiments with cho-

ruses showed otherwise. Chapter 17 describes the relation between Planck ’ s surprising 

musical findings and the  “ chorus ”  of resonators he subsequently introduced to determine 

the universal spectrum of black bodies. 

 Planck ’ s colleagues, such as Werner Heisenberg, often considered their musical experi-

ences to be formative of their relation to physics. As chapter 18 shows, even the unmusi-

cal Erwin Schr ö dinger found himself relying on musical analogies as he formulated his 

wave mechanics. The continuing development of string theory reengages the mathematics 

of vibration, though the reality of the strings rests on analogy built on analogy. The 

Pythagorean theme of harmony remains potent in contemporary physics, though its har-

monies are more and more unhearable, ever more embedded in its mathematical formal-

ism. Even so, the quest for these harmonies preceded and succeeded the profound changes 

in the  “ new philosophy ”  around the seventeenth century. Mathematics and physics, 

ancient as well as modern, have been and remain closely linked to essentially musical 

concepts, whose continuities may have been more significant than the changes generally 

ascribed to the  “ scientific revolution. ”  To put it provocatively, that  “ revolution ”  may more 

nearly have been a phase in the restoration and augmentation of the ancient project of 

musicalizing the world than a change in the basic project of natural philosophy. I hope 

that bringing forward these overarching musical themes will allow us to see science in 

a new light, compared to standard accounts based on disruptive  “ revolutions ”  and  “ para-

digm shifts. ”   5   

 I have not attempted anything like a complete history of the connections between music 

and science but have chosen cases in which music led the way.  6   I have restricted myself 

to what we now call physics and mathematics, noting throughout the actual terms used by 

the actors themselves, terms generally quite different from ours.  7   About 1830, William 

Whewell advocated the use of the terms  “ scientist ”  and  “ physicist, ”  but Michael Faraday 

did not care for them and called himself simply a philosopher, as did those who preceded 

him (sometimes qualifying their pursuit as  “ natural philosophy ” ). Using and assessing the 

terms and language of the historical actors is essential to approaching their meaning, which 
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still requires a sustained, sensitive, and cautious comparison with our usage and its own 

presuppositions. 

 Restoring the name  “ philosophy ”  to physical science through the nineteenth century 

already establishes an important link to the ancient sources, whose fuller content we will 

explore. We will need to do much work to establish the full meaning of  “ music ” ; far beyond 

the current sense of music as particular specimens of fine arts in the sonic realm, the 

ancient concept of  mousik ē   was far more inclusive of mathematical and philosophical 

studies. Though, in what follows, I perhaps should have used throughout this Greek term 

to emphasize its larger meaning, I decided to use our word  “ music, ”  which was understood 

in that more inclusive way by many of the historical actors in this book. I beg the reader 

to bear in mind that older, larger meaning throughout. Then too, musical theory and prac-

tice (whether ancient or modern) lies within a broader realm that includes all kinds of 

sound; accordingly, we will often pass from music into that larger sonic world. The study 

of  “ aural culture ”  complements the  “ material culture ”  of science, its machines and devices, 

and  “ visual culture, ”  its charts, diagrams, and illustrations.  8   Yet sound has generally been 

neglected, compared to sight and material objects. 

 In contrast, H. Floris Cohen ’ s classic work showed the close connection between 

musical and scientific investigations during the first century of the new philosophy, as did 

pioneering work by Claude Palisca on musical humanism, by D. P. Walker on Kepler and 

Galileo, by Penelope Gouk on Bacon and Newton, and by Jamie Kassler on Hooke; Ben-

jamin Wardhaugh extended these investigations into the succeeding century, including 

many neglected musical and scientific thinkers.  9   The whole field is enjoying a period of 

notable ferment, thanks to the exciting work of Alexandra Hui, Myles Jackson, Axel 

Volmar and others concerning the nineteenth and twentieth centuries. Emily Thompson 

and Jonathan Sterne examined the rich interactions between culture and technology in the 

twentieth century, in the interfaces between architecture, recording, and the sonic arts.  10   

Hillel Schwartz ’ s exuberant history of noise connected many facets of cultural and acoustic 

history.  11   Brigitte Van Wymeersch, Paolo Gozza, and Jairo Moreno reconsidered the wider 

implications of Descartes ’ s writings on music; Veit Erlmann explored the deep connection 

between reason and resonance, in all its senses. Friedrich Kittler offered provocative links 

between ancient and modern, media and philosophy, music and mathematics.  12   I hope this 

volume will add some new avenues and approaches to this growing array of insights. 

 Attempts to make such broad-reaching connections should be circumspect. Consider, 

for instance, Erwin Panofsky ’ s provocative argument that Galileo Galilei ’ s artistic judg-

ments, particularly his antipathy to mannerist art and its predilection for oval shapes, 

influenced his rejection of the elliptical planetary orbits Kepler proposed.  13   Yet surely 

Galileo ’ s artistic views were one factor among many, not simple determinants of his sci-

entific views.  14   Music was important to Galileo personally, not least through the influence 

of his musician-father Vincenzo, who may (as Stillman Drake suggested) have set him on 

his path to study nature by joining experiment with mathematics.  15   But lacking further 
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hard evidence, Drake ’ s speculation remains only that. Galileo ’ s beautiful pages on music 

in his  Dialogues on Two New Sciences  show ways he applied his new science to music, 

rather than vice versa.  16   

 Instead, I will present cases in which more substantive evidence shows the effect of 

music on science. Drake daringly claimed that music was  “ the father of modern physical 

science and mathematics was its mother ” ; I will make a more nuanced argument that music 

influenced the unfolding of science at many points and in different ways.  17   My studies 

point to diverse modes of interaction, both in kind and degree. Nor is musical influence 

merely  “ positive ”  in the sense of advancing what (from our perspective) became the 

received opinion, whose emergence I will view with some reservation. In particular, New-

ton ’ s engagement with music arguably had a ambiguous effect on him, at least from the 

point of view of those who judge critically his role in the controversy between particle 

and wave theories of light. 

 Most of all, the case studies in this book bring forward the peculiar power of music, its 

autonomous force as a stream of experience and sensitivity, independent of language, 

capable of stimulating insights different than those mediated by visible representations 

and their attendant theoretical constructs. Compared to the realms of verbal and visible 

experience, we are only at the beginning of assessing and understanding the role in human 

experience played by music and sound. Examining the intimate relations between music 

and science may help us hear (not just see) them both more acutely. 

    Throughout the book, where I refer to various  “  ♪  sound examples, ”  please see   http://mitpress

.mit.edu/musicandmodernscience   (please note that the sound examples should be viewed in 

Chrome or Safari Web browsers). See that link as well for further information on purchasing 

enhanced digital editions that will be available in a variety of formats. The text and examples 

are most easily and seamlessly available on the iBook version, available for iPad and Mac, 

in which you need merely touch a sound example to hear and see it.     





 Music entered deeply into the making of modern science because it was already a central 

element of ancient philosophy. Greek concepts of number and cosmos were the founda-

tions to which their successors looked, even when they turned toward new directions.  1   The 

ancient Greek word  mousik ē   denoted all the activities of the Muses, vocal and instrumental 

art as well as the arts of poetry and dance, which the followers of Pythagoras then con-

nected with their teaching that  all is number , thereby also implying that  all is music . This 

fundamental connection between music and mathematics had fateful consequences. Plato 

developed what Pythagoreans first named  “ philosophy ”  into a new kind of education that 

unified the study of arithmetic, geometry, music, and astronomy. Expressing the conso-

nance of the primordial musical intervals, integers were separated from irrational magni-

tudes, setting arithmetic apart from geometry. Yet mathematical ratios shaped the physical 

world, as expressed in the mythical story of Pythagoras visiting a smithy: music was the 

meeting ground where the first experiments interrogated the mathematical underpinnings 

of experience. We retrace these deep connections by recapitulating their historical sequence. 

 Born on the island of Samos in the mid-sixth century  b.c . e. , Pythagoras himself remains 

so shadowy a figure that everything said about him is controversial. Even by the fourth 

century, the brotherhood who deified him had dispersed; modern historians no longer 

accept the traditional view that they founded Greek mathematics.  2   A century later, a few 

fragments remain from the writings of those who came to be called Pythagoreans: Philo-

laus, a contemporary of Socrates, and his student Archytas, whom Plato knew and admired.  3   

Philolaus held that  “ all things, indeed, that are known have number: for it is not possible 

for anything to be thought of or known without this, ”  underlining the primal status of 

number as the inescapable criterion of intelligibility. For him, music takes its place at the 

very center of the treatment of number and the cosmos. In Homer,  harmonia  has the literal 

sense of fastening together (the word is used to describe the fashioning of Odysseus ’ s raft) 

or a covenant or agreement (such as the compromise Hector proposes to Achilles during 

their combat).  4   In Philolaus,  harmonia  has both the general sense of  “ locking together ”  

like and unlike in the cosmos,  “ a unification of things multiply mixed, ”  as well as specifi-

cally meaning an octave ( ♪  sound example 1.1). He lists more complex musical intervals 
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that fit together to make the  harmonia  of an octave, which he also uses as a verb, to har-

monize, literally meaning to  “ octavize ” :  “ Nature in the cosmos was harmonized from 

unlimiteds and limiters, both the whole cosmos and all things in it. ”   Cosmetein  means to 

put in order and thus beautify (hence  “ cosmetics ” ). The cosmos can be an ordered, intel-

ligible whole only because it is  harmonized , organized into octaves using alternate mix-

tures of what Philolaus called  “ limiters ”  and  “ unlimiteds, ”  which came to be identified 

with odd ( “ limiter ” ) and even ( “ unlimited ” ) numbers.  5    

 Several ancient accounts weave the moment of discovery into a famous, though prob-

lematic, myth. Dictating a simplified account for a noble lady in the second century  c.e ., 

Nicomachus gave the earliest extant version: Pythagoras was engrossed in trying to find 

 “ some instrumental aid for the hearing ”  that would be comparable to the measuring rod 

or compasses used by sight or the balances used for weight and touch. Then, 

 happening by some heaven-sent chance to walk by a blacksmith ’ s workshop, he heard the hammers 

beating iron on the anvil and giving out sounds fully concordant in combination with one another, 

with the exception of one pairing: and he recognized among them the consonance of the octave and 

those of the fifth and the fourth.  …  Overjoyed at the way his project had come, with god ’ s help 

[ kata theon ], to fulfillment, he ran into the smithy, and through a great variety of experiments [ peirai ] 
he discovered that what stood in direct relation to the difference in the sound was the weight of the 

hammers, not the force of the strikers or the shapes of the hammer-heads or the alteration of the 

iron which was being beaten.  6   

 Writing as the minister of a barbarian king four centuries later, Boethius transmitted this 

story with some additions:  “ in order to test [ inquiriebat ] this theory more clearly, [Pythago-

ras] commanded the men to exchange hammers among themselves. But the property of 

the sounds was not contingent on the muscles of the men, but rather followed the 

exchanged hammers. ”   7   Thus, even though Pythagoras came to the smithy  “ by the favor 

of a god, ”  what happened there was not a supernatural or miraculous event worked by 

divine power. Instead, we visit an everyday workplace and behold ordinary events revealed 

as wondrous. Pythagoras ’ s epiphany led him not to worship or quiet contemplation but 

to human actions inquiring into that mysteriously unified sound. Had this been the 

scene of a divine revelation, what followed might be understood as inappropriate or even 

profane because Pythagoras actually tried to stop or alter the very thing he found most 

wonderful. 

 This test was the archetypal experiment, a trial ( peira ) in which Pythagoras  tests  the 

source of the wonderful sound through an  action  that attempts to alter it, rather than 

through purely verbal or rational means. In Homer, the verb  peira ō   can mean an assault 

that tests the enemy ’ s strength, but also an attempt to gain information, to test someone ’ s 

character or fidelity. In Boethius ’ s version, Pythagoras tested the weight of the five 

hammers in the shop and found that four of them produced consonant intervals based on 

the ratios of their weights: the hammers whose weight was in ratio of 1:2 sounded an 

octave; those of 2:3, a perfect fifth; those of 3:4, a perfect fourth. Each consonance yoked 
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an odd with an even number, corresponding to the  “ limiter ”  and  “ unlimited ”  Philolaus 

described. These ratios are successive pairs taken in the sequence 1:2:3:4, which Boethius 

also expresses in the sequence 6:8:9:12: within the octave (6:12 or 1:2), the fourth (6:8 or 

3:4) and the fifth (6:9 or 2:3) find their place. This then implied,  without  adding any new 

information (or hammers), that between the interval of the fifth and the fourth emerges 

the ratio 8:9, later called a  tone  or  whole step  because it is the step between these two 

intervals ( ♪  sound example 1.2), which according to Nicomachus  “ was in itself discordant, 

but was essential to filling out the greater of these intervals. ”  

 While Nicomachus reconciles the discordant hammer as  “ essential ”  to the greater inter-

val, Boethius tells that  “ the fifth hammer, which was dissonant with all, was rejected. ”  

This, too, should be taken as part of the foundational myth:  an experiment requires rec-
ognizing and dealing with dissonance , the part of an experience that does not  “ sound 

together ”  with the rest. Clearly, there is peril here: how to decide what is  “ dissonance ”  

that should be set aside, without throwing out some crucial piece of information? At this 

primal scene of Pythagorean science, confronting dissonance represents the price and also 

the potential danger of the knowledge achieved through the test and through  principled 
reconsideration or rejection of some experiences  in order that others may stand out more 

intelligibly. We shall return to the identity of this fifth hammer.  8   

 Boethius notes that Pythagoras continued his examination after he left the smithy: he 

tested the pitches of strings of different lengths, some stretched by different weights; he 

tried pipes,  “ using some twice as long as others, as well as fitting in the other proportions ”  

and glasses filled with different amounts of water by weight (  figure 1.1 ).  “ Thus he made 

his belief complete by various experiments, ”  for which Boethius now specifically uses the 

word  experientia , whose literal meaning is  “ something lived through as a trial or even 

peril ”  ( ex-perire ). Yet a ten-pound hammer does not ring differently than a six-pounder 

(as you can hear for yourself in  ♪  sound example 1.3); one wonders whether the smiths 

tried to set Pythagoras straight or whether he even talked to them. Perhaps the word 

 sphur ō n  ( “ hammer ” ) used in some texts was a misreading or corruption of  sphaira  

( “ sphere ”  or  “ disc ” ).  9   If so, what Pythagoras may have heard were the pitches sounded by 

various-sized metal discs, which could conceivably have behaved in the numerical ratios 

recorded, whereas hammers could not. Still, the tale refers to the hammers as the smiths ’  

tools, rather than objects forged in the shop.    

 Nevertheless, strings do behave as Boethius recounts in describing the  “ ruler ”  or mono-

chord ( kan ō n ) that Pythagoras developed (  figure 1.2 ), which  “ is fixed and firm under the 

study of anyone. ”   10   A single stretched string mounted against a graduated ruler allows 

stopping the string at lengths that will realize various proportions; indeed, the proportions 

1:2, 2:3, and 3:4 ring out their respective intervals as the story has them ( ♪  sound example 

1.2) if the tension is held constant, but not otherwise. Simple pipes of the same diameter, 

material, and construction also will sound these intervals, as will water glasses, according 

to the Boethian story. The difficulties with some of these stories were probably known to 
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 Figure 1.1 
 Images of the founders of music from Francinus Gaffurius,  Theorica musicae  (1492): Jubal, from the Bible (top 

left), along with images of Pythagoras (trying bells, glasses, strings, and pipes) and Philolaus. 
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the great Alexandrian astronomer and music theorist Claudius Ptolemy (second century 

 c.e .), who rejects the evidence given by reed pipes and flutes  “ or weights suspended from 

strings, ”  as well as by  “ spheres or discs of unequal weight, ”  and never mentions hammers, 

judging instead that the monochord (presumably at constant tension)  “ will show us the 

ratios of the concords more accurately and readily. ”   11   Following Ptolemy, we may specu-

late that the smithy story dramatized original findings with strings. No one may have 

thought to check whether hammers really behaved that way because it all seemed reason-

able: how could hammers  not  obey the proportions already established for strings 

and pipes?    

 Here emerges another recurrent peril of experiment: taking a certain pattern, observed 

in one context, to dictate what  “ must ”  happen in another, seemingly analogous situation. 

None of these problems figured in Pythagorean lore, which presented the story as a 

miracle; number triumphs even in a smithy. The real wonder may be that numerical ratios 

can be clear for a simple string, however complex elsewhere. This underlying thread 

emerges more clearly if we return from Boethius ’ s late Roman summary (written almost 

a thousand years after the earliest relevant texts) to consider what survives of the earliest 

Greek evidence. 

 The Pythagoreans called  pythmenes  ( “ base ”  or  “ foundation ” ) two, three, and four the 

 “ first numbers ”   because  they  “ produce the ratios of the concords, ”  the primal conso-

nances of octave, fifth, and fourth.  12   One, never considered a  “ number ”  in Greek math-

ematics, is both even and odd, the primal monad ( monos ,  “ solitary, ”   “ unique ” ) out of 

 Figure 1.2 
 A monochord from John Tyndall,  Sound  (1871). 
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which all the other numbers came. For Philolaus, the One was cosmologically as well 

as metaphysically central:  “ The first thing fitted together, the One, in the middle of the 

sphere, is called the hearth, ”  the central fire around which all else revolves. Aristotle 

noted that, though  “ most people say that [the Earth] lies in the center, ”  as he himself 

held,  “ the people in Italy who are called Pythagoreans speak in opposition to this. For 

they say that at the center is fire, while the Earth is one of the stars, and by traveling in 

a circle around the center makes night and day. ”   13   We will return to this Pythagorean 

notion in the following chapters. 

 Recounting Philolaus ’ s views, Plato presents the same  harmonia  governing soul and 

body as regulates the cosmos. In his  Timaeus , Plato asserts that the soul and the cosmos 

are both  made of music , which explains why we are so moved by the primal cosmic har-

monies: in them, we recognize the same numerical concords that ground our own being.  14   

Archytas took Philolaus ’ s ideas as the basis of what he called the four  math ē mata , literally 

 “ learnable things ” : astronomy, geometry,  “ numbers ”  (arithmetic), and music. These four 

are united because  “ their concern is with the two primary forms of what is, which are 

sisters themselves, ”  by which Archytas may have meant the realms of the visible and the 

audible.  15   In his  Republic , Plato put these four at the center of the education that leads to 

what he called  “ philosophy, ”  which he depicted as a journey from the shadowy illusions 

of perception to the full light of reality that shines beyond the dark cave we call  “ the 

world. ”  This quest requires harmony in both body and soul, for which Plato prescribes the 

combined practice of  mousik ē   and  gymnastik ē  , which is not merely acrobatics or calisthen-

ics but the living embodiment of  mousik ē   in the moving body. He uses the expression  “ to 

rhythmize ”  as a synonym for education.  16   

 Children learn these musical skills  “ by habit, not knowledge, imparting a kind of tune-

fulness by mode and gracefulness by rhythm, ”  but those who aspire to guide and guard 

the human commonwealth must go further. To pass from habit to knowledge, they need 

 “ to learn to count, ”  an ability (Socrates notes) even the famous warlord Agamemnon 

lacked,  “ that little matter of distinguishing one and two and three. ”   17   With his usual irony, 

Socrates may allude to the famous catalog of ships, which Homer includes as if the war 

chief were incapable of numbering his vast host, or may allude to Agamemnon ’ s failure 

to understand the need to unite his army, rather than divide it by angering Achilles. In 

more senses than one, Agamemnon did not know what really counts. 

 Numbering here unites a basic sense of counting off with the larger judgment of what 

objects count as sufficiently separate to merit enumeration, which depends on context: 

Agamemnon and Achilles are two separate men, at odds whether or in what way they 

should constitute a single larger whole as allied Hellenes. Then too, in an era before 

widespread literacy, knowledge of calculation was far less widespread; the Greek notation 

for numbers lacked a zero and used the alphabet in ways that made numerical knowledge 

depend on basic literacy.  18   Plato takes these numerical foundations as important because 

they rely on fundamental distinctions between what is the same and what is other, what 
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counts as one and what as two. Thus, though a child can parrot counting numbers, under-

standing them requires discernment. 

 This deeper knowledge leads to the four sister studies, each of which illuminates some 

essential aspect of  math ē matik ē  , the master art of grasping all learnable things. All four 

studies are necessary for the quest Socrates calls philosophy: each of these studies  “ appears 

to compel soul to use thought by itself for purposes of truth by itself. ”   19   Arithmetic relies 

on the most fundamental insight into being and otherness and how they can be combined 

into more or less inclusive wholes when considered as a one, or distinguished into the 

various numbers as many. The primal category of  multitude  is manifest in whole numbers, 

each one called in Greek an  arithmos , meaning a countable multitude of countable things, 

an integer whose wholeness is essential to its integrity, its very essence. The word  arithmos  

comes from the Indo-European root common to our word  rite , as in the counting essential 

to the performance of sacred ritual, as well as the fundamental sense of rightness (in 

Sanskrit   ṛ ta ) or rhythm (in Greek  rhythmos ) underlying the cosmos as an ordered whole. 

A shape or pattern conveying motion, such as the fluid pose of a dancer or of a sculpted 

figure, was also called  rhythmos , which the Romans commonly translated as  numerus , 

number itself .   20   

 Arithmetic also concerns how whole numbers can be connected by a ratio, a  logos . In 

Homer, the verb  legein  means  “ to gather together, ”  as when the grieving Achilles tells his 

comrades  “ let us gather up [ leg ō men ] the bones of Patroklos ”  in preparation for his funeral 

rites.  21   By extension, this word for gathering or collecting also came to signify speaking, 

recounting, telling, and reasoning, implying that all these are deeply forms of  bringing 
together , hence of  connected  expressions. In that sense, only by means of  logoi  — the 

primal relations between integers — do the counting numbers really become fully the object 

of accounts and reason, of  logos  manifest in what the Greeks therefore called  logic .  Logos  

also has the specific meaning of a musical interval, hence suggesting that, as  logoi , musical 

intervals may be deeper even than the integers whose relation they express. One might 

daringly suggest that the intervals (such as 1:2, 2:3, 3:4) come before the integers them-

selves, which remain profoundly isolated until we express their relation. Can we under-

stand the concepts of two or three only if we grasp each in relation to the unit of which 

they are implicitly composed (2:1, 3:1)? If so, arithmetic may implicitly rely on musical 

ratios to ground our awareness of number.  22   

 In contrast, geometry deals with  magnitude  ( megathos ), which Plato (and Greek math-

ematicians in general) considered deeply different from  multitude  ( pl ē thos ). The Pythago-

reans were credited with the crucial insight that showed the full extent of the distinction 

between arithmetic and geometry: in general, geometric lines cannot be expressed as any 

number or as any ratio of finite numbers. Most famously, the diagonal of a square is not 

commensurable with its side: if its side is a unit length, no ratio of whole numbers  m : n  

can express the length of the diagonal, called  irrational  ( alogon , not having a  logos ) or 

 unspeakable  ( arrh ē ton ) because not expressible in terms of finite numbers. A beautifully 
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terse contradiction emerges if one assumes hypothetically that such a ratio could be found, 

for if so, the  “ numbers ”  of that ratio would have to be simultaneously odd and even.  23   Our 

symbol  2  does not resolve this problem but merely gestures symbolically toward a  “ ratio ”  

that is in fact no ratio of finite numbers but (as we would say) an infinite decimal, 

1.41421356237  …    . It is, indeed, both even and odd, or neither. 

 Thus, Greek mathematics could never speak of  “ irrational numbers, ”  as familiar as that 

terminology became after the sixteenth century. In Greek mathematical texts, numbers 

were by definition integers and did not include zero (a concept nowhere explicit in their 

mathematical texts) or one. Indeed, some Pythagoreans considered two not a number but 

a crucial intermediate, a mysterious dyad that bridges the utter solitude and uniqueness of 

the One and the multitude of the Many.  24   In his own way, Plato treats the dyad as  “ unlim-

ited ”  by connecting pure Being — the One in its solitary splendor — and non-Being, leading 

to the variable, ever-changing multiplicity of the cosmos, in which Being and non-Being 

are not utterly separate but somehow interwoven into the structure of Becoming as we 

experience it.  25   Throughout his dialogues, Socrates and his friends examine the strange 

mixture of truth and story,  logos  and  mythos , constituting the living stream of language 

and thought. They keep looking to the realm outside our dark cave where, if only in 

imaginative speech, we aspire to see the One and the other pure Forms or Ideas, each 

distilling the ultimate essence of a number or concept. Socrates suggests that  “ proceeding 

to the major and more advanced part of geometry tends to make it easier to behold the 

Idea of the Good, ”  the highest Form, which many passages in Plato suggest may be identi-

fied with the One itself. As Socrates notes, everything in that realm of Forms tends to 

compel  “ soul to be turned round to that place in which the happiest of what is exists, which 

soul must in every way behold. ”   26   

 Accordingly, Socrates pokes fun at geometers ’  use of phrases like  “ squaring, ”   “ apply-

ing, ”  or  “ constructing, ”   “ as if all their words were for the sake of action ”  rather than 

 “ undertaken for the sake of knowledge, ”  meaning the philosophic contemplation  “ of what 

always is, not of what sometimes comes to be and passes away. ”  Though he touches on 

the practical uses of mathematics, which appeal to his companions, Socrates is much more 

interested in its  “ useless ”  aspects because it awakens and sharpens  “ an organ in the soul 

of every man which is purified and rekindled in these studies when it has been destroyed 

and blinded by other pursuits, an organ more worth saving than ten thousand eyes; for 

truth is seen by it alone. ”   27   

 Given the exalted purity of what Socrates seeks to behold, he and the other Greek 

mathematical writers would have been amused, if not dismayed, by the breezy nonchalance 

with which later mathematicians speak of  “ irrational numbers, ”  which would have seemed 

to them a sheer contradiction in terms, even nonsense:  “ nonnumerical numbers, ”  in their 

terms, or  “ uncountable counting numbers. ”  Socrates teases his young friends for being 

 “ as irrational as lines, ”  an ironic judgment he likely would have passed on the modern 

mathematical proclivity to mix rational with irrational quantities. Socrates makes fun of 
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fractions, which he does seem to have heard of:  “ For you surely know that if someone 

undertakes to divide One itself in speech, those who are skilled in these matters laugh and 

won ’ t allow it. On the contrary, if you break [the One] up, they multiply it, taking care 

that one should never appear not one, but many parts. ”   28   He notes that we implicitly take 

any such supposed parts or fractions each to be one in itself, thus negating the premise 

that we had  “ broken ”  the One into many pieces. 

 For Plato, these counting numbers, with the One as their supreme source, stand as the 

touchstone of knowledge as such, the prime example showing the  possibility  of human 

reason, of knowing  anything  with certainty. We literally  count  on the difference between 

one and two and three as the most certain things we know, which indeed define knowledge 

itself. Thus, the Greek insistence on the utter distinction between number and magnitude 

is not merely terminological fussiness but the central point on which they grounded their 

search for truth. To admit, as moderns do,  “ irrational numbers, ”   “ imaginary numbers, ”  

or  “ surreal numbers ”  on equal terms with the integers implicitly rejects and ignores 

the fundamental insight of logic:  countable  entities cannot be confused with the endless 

divisibility possible (and necessary) for  uncountable  magnitudes, such as geometric lines.  29   

By holding fast to this distinction, Euclid and Plato balanced the realms of the rational 

and the irrational, giving coordinate but separate domains to each, respecting both by 

never mixing them. This widely held set of assumptions will be of great importance at 

several points in this book, as they came to be challenged and replaced with the modern 

alternatives. 

 These fundamental mathematical premises are deeply grounded in musical findings. 

The primal Pythagorean ratios place music on the side of arithmetic, not geometry. For 

instance, if one tries to  “ hear ”  the irrational ratio formed by the relation of the diagonal 

of a square to its side by approximating that interval on two strings, the result is very close 

to the tritone, the interval later notorious as the  diabolus in musica  ( ♪  sound example 1.4). 

Ironically, a perfect  geometric  division corresponds to a highly  dissonant  musical interval, 

whereas the  arithmetic  division into simple ratios corresponds to the primal  consonances . 

On this basis, it seems plausible that the fifth hammer that Pythagoras discarded as  “ dis-

sonant with all ”  was irrational with respect to them; as Adrastus of Aphrodisias put it, the 

irrational is mere  “ noise [ psophos ] ”  that should not even  “ be called notes [ phthongoi ], but 

only sounds [  ē choi ]. ”  If so, the rejection of the dissonant hammer initiated the ancient 

separation between numbers and magnitudes, arithmetic and geometry.  30   

 Indeed, the same fundamental problem plagues the division of any melodic interval. If, 

for instance, one tries to lay out equal tones (9:8) to fill out an octave, it turns out that five 

tones undershoot an octave but six tones overshoot it ( ♪  sound example 1.5); to create 

modes or scales, it is necessary to introduce some kind of  “ half tone ”  to fill out the missing 

space between five tones and an octave.  31   But, as the Greeks already realized, a perfectly 

equal division of a tone (as of an octave) would require the use of an irrational magnitude, 

as will become of crucial importance in chapter 4. 
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 Nevertheless, the Greek theorists found a way to include geometric proportion in music 

by introducing a  harmonic mean  that is a hybrid of the  arithmetic  and  geometric  means 

(  box 1.1 ), positioning music  between  arithmetic and geometry. Like music, astronomy (the 

fourth of the sister sciences) is also poised between  arithmetic  proportions of the ratios 

between the movements of the heavenly bodies and their description using spherical 

 geometry . Music and astronomy bridge the invisible realm of mathematical forms and the 

sensual realm of experience. Socrates argued that both music and astronomy use the expe-

rience of the senses to  “ summon or arouse thought, ”  whereas many other modes of percep-

tion  “ do not summon thought to inquiry. ”  Through beholding  “ intricate traceries in the 

heavens, ”  astronomy  “ compels a soul to look upward, ”  toward  “ what is and is invisible. ”   32   

Music, in a different way, joins imperceptible numerical ratios with the perceptible inter-

vals. Both music and astronomy connect the purely mathematical and the sensually per-

ceptible. In what follows, both these sister sciences will play out their intermediary roles. 

But whereas the formative influence of astronomy in the development of science has long 

been acknowledged, the ways music has entered this story remain to be told.   

 These matters aroused deep and enduring controversy. The Pythagorean view of music 

as mathematical ratios was opposed by Aristoxenus, the great contrarian voice in Greek 

music theory, so famous that the Romans referred to him simply as  “ the musician. ”  Where 

the Pythagoreans exalted reason over sensual judgment, Aristoxenus, like his teacher 

Aristotle, emphasized the fundamental role of the senses:  “ Through hearing we assess the 

magnitude of intervals, and through reason we apprehend their functions. ”   33   In reasserting 

the sensual, experiential character of music, Aristoxenus called into question the relation 

between music and mathematics. But Boethius, adhering to Pythagorean views, treated 

Aristoxenus briefly and dismissively. Because all musical study during the subsequent 

millennium relied on Boethius, Aristoxenus fell into obscurity until his texts were redis-

covered in the sixteenth century with powerful effects on musical and mathematical 

thought, as we shall see in chapter 4. 

 Then too, Ptolemy took the side of the Pythagoreans against Aristoxenus. Ptolemy ’ s 

 Mathematical Composition (Syntaxis) , which Arabic scholars called  Almagest  ( “ The 

   Box 1.1 
 The arithmetic, geometric, and harmonic means. 

  Arithmetic mean    Geometric mean    Harmonic mean  

 1:2:3  1: √ 2:2  1:2:4 

 2 is the arithmetic mean 

between 1 and 3, an equal 

difference from both: 

2 – 1 = 3 – 2 

  √ 2 lies at an equal ratio 

( √ 2:1) between 1 and 2 

because 1: √ 2 =  √ 2:2 

 The  differences  2 – 1= 1, 

4 – 2 = 2 are in the same 

 ratio  as the terms, 

namely 1:2 
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Greatest ” ), synthesized the observational data of Babylonian, Egyptian, and Greek observ-

ers over centuries and presented a theoretical model that predicted the motion of the planets 

with an accuracy exceeding anything that had come before, which stood unchallenged for 

a millennium. At the same time, Ptolemy ’ s  Harmonics  synthesized musical learning on a 

scale comparable to his astronomical work. Andrew Barker has emphasized the scientific 

accomplishment of this work, which bridges observational practice with theory in ways 

comparable with Ptolemy ’ s  Almagest.   34   Though the  Almagest  had been transmitted via the 

Arabs and received in the West by the twelfth century, the  Harmonics  only reentered the 

stream of Western music theory in the sixteenth century. Parts of this work were translated 

then, though its extant corpus was fully available only in the early seventeenth century. 

As we shall see, its reentry was consequential not just for the study of music. 

 Unlike his  Almagest , Ptolemy ’ s  Harmonics  was not transmitted in its entirety. Its final 

Book III is an intriguing torso that integrates certain astronomical topics, showing the 

explicit connection between these matters in his mind. In particular, Ptolemy connects the 

motions of the planets in his geocentric system with  changes  of musical modes, for which 

we use the modern term  “ modulation ”  to translate his term  metabol ē  , whose primary con-

notations are both the transformations of metabolism (in which ingested foodstuffs are 

digested and changed into living flesh) and its political sense of  revolution , change of 

regime. Ptolemy notes ways in which the  “ proper motions ”  of planets (moving closer or 

farther from their center) parallel musical change of mode.  35   This reflects ancient practices, 

especially the Athenian  “ New Music ”  of the late fifth century  b.c.e. ; Ptolemy ’ s discussion 

shows the astronomical correlates of musical modulation.  36   Though the surviving text of 

his  Harmonics  breaks off at this point, enough survives to give a clear sense of the depth 

and range of the correlations between music and astronomy in his work. This connection 

will return in the controversies over heliocentric astronomy. 

 Plato ’ s  “ fourfold way ”  of philosophical preparation set out arithmetic, geometry, music, 

and astronomy as higher studies to follow the initial  “ threefold way ”  of grammar, rhetoric, 

and logic, the linguistic basis on which all discourse rests. His  Republic  proposed the first 

utopia, the idealized  “ no-place ”  that, even if unrealizable in practice, could set a standard 

and pattern to which to aspire. His advocacy of the education of women and his critique 

of slavery remained controversial for millennia. 

 His radical educational proposals shaped the immediate future. Traditional Greek 

 paideia  had consisted of memorizing Homer and learning rudimentary arithmetic; Plato 

created  “ liberal education, ”  worthy of the free born ( liberi ), as opposed to the rote training 

of slaves to perform their assigned tasks.  37   His vision everywhere haunts the modern uni-

versity, even when it turns against the liberal arts to prefer utilitarian vocational training. 

Beginning with the Academy that Plato founded, his three- and fourfold ways became 

standard as education of the elite. This pattern was transmitted to the Romans and, via 

Boethius, to the West as the  trivium  and  quadrivium ; the church then used this plan of 

liberal education to form its clerics, gradually including rulers and nobility. 
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 Thus, a continuous line of quadrivial studies goes all the way from Plato to about the 

eighteenth century, in the sense that educated persons were exposed to a unified curriculum 

of those four subjects, in which music (as mathematical harmonic science) was habitually 

studied in conjunction with the others. In the chapters that follow, we shall explore some 

of the consequences of this shared fourfold study, all the more powerful because it was 

the capstone of higher education, the central content of university learning. Even when 

the quadrivium is not specifically mentioned, we still need to remember that many edu-

cated persons up to about the time of Isaac Newton would have a shared experience of 

musical theory that was as much a part of their common fund of learning as was the basic 

study of arithmetic, geometry, and the basic linguistic arts of the trivium (considered so 

common that they underlie the connotations of  “ trivial ” ). Though we continue to share 

most of these studies as part of our elementary (and even higher) educations, music and 

perhaps also astronomy have fallen out. Not so for our predecessors, as we shall see. 

 

  



 For two centuries after he wrote it, Boethius ’ s treatise on music was unavailable, seemingly 

lost in the  “ dark ages. ”  Beginning in the ninth century, manuscript copies began appearing 

in ever-increasing numbers; Boethius became the principal source of music theory (and 

of arithmetic) long before Latin translations made Aristotle ’ s writings directly accessible. 

In this intermediate period during which Aristotelian science remained relatively unknown, 

ancient musical theory continued to be taught.  1   In that sense, musical science maintained 

a continuity that other branches of natural philosophy generally had lost, in the absence 

of available ancient sources. After the renaissance of the twelfth century, during which 

Aristotle was translated by Richard of Moerbecke, the dialogue between astronomy, 

physics, and music could recommence more fully. 

 In that conversation, Nicole Oresme played an extraordinary role as the leading natural 

philosopher of the fourteenth century, remarkable both for the breadth and depth of his 

writings as well as for his penetrating questions and insights. Emerging from humble 

origins in Normandy, Oresme eventually became the Grand Master of the College of 

Navarre he attended, designed for students too poor to attend the University of Paris. His 

scholarly writings attracted the attention of the future King Charles V of France, for whom 

Oresme prepared translations and commentaries on several of Aristotle ’ s major works, 

along with his own writings. The king eventually elevated Oresme to the bishopric of 

Lisieux, where he spent the final five years of his life. Study of his works gives us the 

opportunity to consider the transmission and reception of ancient natural philosophy as he 

reformulated its leading issues. Oresme was a probing and daring thinker who shows us 

the dimensions of the issues at stake before the advent of the  “ new philosophy ”  about two 

centuries later. 

 Oresme ’ s writings and commentaries brought new life to the ancient texts. As would 

have been expected of an educated person of his time, he was versed in music as part of 

the quadrivium and wrote a book (now lost) on the division of the monochord.  2   Though 

he demonstrated fundamental contradictions in the received teachings about cosmic 

harmony, he gave that concept new dimensions. He investigated whether celestial motions 

were commensurable with each other or not, which bears on larger issues of celestial 

 2  The Dream of Oresme 
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repeatability that he phrased in musical terms. In this, differences between arithmetic and 

geometry, music ’ s sisters in the quadrivium, came forward musically, mathematically, and 

astronomically. 

 Oresme began by showing that the radii of the different celestial spheres cannot be 

expected to be commensurable with each other, based on Euclid ’ s propositions about 

spheres circumscribing regular solids.  3   He drew on his older contemporary, Johannes de 

Muris, best known for theoretical writings on music, though Oresme went much further 

in examining the consequences. He concluded that the radii of different spheres are far 

more likely to be incommensurable than commensurable with each other, which still 

remains possible, though improbable.  4   But if two celestial motions are incommensurable, 

then any given initial position of the two bodies  will never recur . His argument is simple; 

assume hypothetically the contrary, that their motions (say, their velocities) obey a certain 

ratio, say, 3:2. Then after six revolutions of the first body, both bodies will have regained 

their initial position, the first body having  “ lapped ”  the second body twice over. If the ratio 

were  m : n , it would take  m  ·  n  revolutions; if, on the contrary, their motions are  not  com-

mensurable,  m  and  n  are not any finite numbers, and neither is  m  ·  n . Hence, the initial 

positions of these two bodies would never recur even after an infinite time. If so, the 

cosmos will not return to any given initial configuration, continually assuming different 

states from any that came before. 

 On the other hand, Plato had described a cosmic cycle of 26,000 solar years, the  “ Great 

Year, ”  after which the planets would return to their initial configuration.  5   Oresme con-

cluded that no such recurrence was possible, hence no Great Year. He emphasized that his 

result disproves astrology: the impossibility of recurrence disallows the recurrent astral 

configurations on which astrological predictions depend. Learning this, he hoped that the 

ignorant would abandon astrological determinism and understand their free will. 

 At many points, Oresme ’ s inclusion of musical matters plays a central role. His judg-

ments reflected his interest in new music and in new ideas, including the speculation that 

the Earth might not be the center of the universe. More than century and a half before 

Copernicus, Oresme ’ s writings give an invaluable view into the status of geocentric 

cosmology. Though he addressed this issue at several points in his earlier writings, his 

most extended treatment comes in his final work,  Le Livre du ciel et du monde  (1377), 

a translation and extensive commentary on Aristotle ’ s  On the Heavens  written for 

Charles V (  figure 2.1 ).    

 Oresme devotes considerable space to the suggestion that the Earth may not be at the 

center of the cosmos and might move, rather than remaining at rest, as Aristotle had argued. 

What Oresme calls the  “ Italian or Pythagorean ”  view places  “ the sphere of fire ”  at the 

middle, so that  “ the earth is a dark star moving in a circle around the center and  …  this 

is the cause of our nights and days. ”  Explaining the heliocentric view, Oresme compares 

the planets moving clockwise around  “ the entire circumference of the wheel  …  just like 

people in a  carole , ”  a circular dance ( chorea  in Latin) that during the twelfth century was 



 Figure 2.1 
 An illuminated page from Oresme ’ s  Le Livre du ciel et du monde  (1377, fol. 3r), showing God raising his right 

hand in benediction, holding in his left hand a circle of fire containing a symbolic representation of the globe, 

above which the inscription reads:  “ The senseless man shall not know; nor will the fool understand these things ”  

(Psalm 91:7 [92:6]). In the margins, the heraldic swan, coat of arms, and motto  Le temps venra  ( “ the time will 

come ” ) all indicate the patronage of the Duc de Berry. 
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still danced in church on special occasions.  6   Oresme presents a convincing account of this 

view, including the argument (often attributed to Copernicus and Galileo) that  “ we do not 

perceive motion unless we notice that one body is in the process of assuming a different 

position relative to another. ”   7   Given the prestige of Aristotle, the extent and sympathetic 

quality of Oresme ’ s account of the heterodox  “ Pythagorean ”  alternative has been much 

remarked by scholars, some tempted to judge him a heliocentrist. He goes so far as to 

argue that it would be paradoxical, even preposterous, for the heavens to rotate diurnally, 

requiring them to travel at high speed to complete their daily revolution. 

 Oresme also confronted such scriptural passages as the famous miracle of the sun stand-

ing still for Joshua. Like many other scriptural interpreters, going back to Augustine, 

Oresme notes that the Bible  “ conforms to the customary usage of popular speech  …  where 

it is written that God repented, and He became angry and became pacified, and other such 

expression which are not to be taken literally.  …  Thus, we could say that the heavens, 

rather than the earth, appear to move with diurnal motion while the truth is the exact 

opposite.”  8   

 In the end, Oresme seems to draw back from advocating this extreme view, however 

strongly he had presented the arguments in its favor: 

 However, everyone maintains, and I think myself, that the heavens do move and not the earth: For 

God hath established the world which shall not be moved [Psalm 92:1], in spite of contrary reasons 

because they are clearly not conclusive persuasions. However, after considering all that has been 

said, one could then believe that the earth moves and not the heavens, for the opposite is not clearly 

evident. Nevertheless, at first sight, this seems as much against natural reason as, or more against 

natural reason than, all or many of the articles of our faith. What I have said by way of diversion or 

intellectual exercise can in this manner serve as a valuable means of refuting and checking those 

who would like to impugn our faith by argument.  9   

 Oresme ’ s statement might be read as a carefully balanced accommodation to common 

opinion, despite the powerful arguments against the geocentric view he had just presented. 

Perhaps he found those arguments privately persuasive but so disturbingly contrary to 

church teachings (and to common opinion) that he prudently overrode them. As an expe-

rienced ecclesiastic, Oresme may well have discerned the enormous doctrinal controversy 

that would ensue, were he to advocate heliocentric cosmology. When, a century and a half 

later, Copernicus espoused that view, the text of his  De revolutionibus  reveals his appre-

hension of ecclesiastical condemnation; the rhetoric of his dedicatory letter to Pope Paul 

III clearly aims to avert those dangers. One imagines that Copernicus was privately relieved 

that he could present his controversial theory from his deathbed, where he was supposed 

to have seen the first copy of his book, escaping any furor by disappearing into the 

hereafter. 

 If indeed Oresme privately rejected the geocentric view, he had no such escape route 

available; his rather tortuous formulation of his public position could be read as walking 

a tightrope between dishonesty to his intellect and imprudent disclosure. His quotation of 



The Dream of Oresme 25

the verse from the Psalms seems disingenuous, given his own dismissal of literal appeals 

to figurative language in the scriptures. Oresme presents his antigeocentric presentation 

as an  “ intellectual exercise ”  and mere  “ diversion, ”  hence purely hypothetical and therefore 

not subject to the rigorous doctrinal scrutiny he may have anticipated, had he put forward 

those views as realistic representations of the cosmos. His allusion to  “ those who 

would like to impugn our faith by argument ”  may refer to long-standing controversies 

about the relation of reason to the mysteries of faith; as such, he tacitly seems to indicate 

the mathematically simpler motion of the Earth, compared to geocentric cosmology. 

His passing comment that the alternative cosmology may violate natural reason as much 

as  “ the articles of our faith ”  could be read as comparing the difficulties of the antigeocen-

tric view with those already surmounted by Christian apologists. His implicit suggestion 

may be that heliocentrism strains human credulity no less than do the paradoxes of 

Christian doctrine. 

 But setting aside these more or less speculative possibilities, it is more likely that 

Oresme considered the matter finally undecidable, however probable the arguments he 

adduced for the Earth ’ s motion and rotation. Likely affected by the wider skeptical and 

probabilistic currents in fourteenth-century natural philosophy, Oresme wrote that  “ I 

indeed know nothing except that I know that I know nothing ”  about natural knowledge, 

using the famous Socratic formulation to express the inadequacy of human opinion. As 

such, he distanced himself from the  “ real ”  explanations later claimed by Copernicus and 

Galileo because of his principled demurral from certainty, which also may have accorded 

conveniently with his desire to avoid doctrinal controversy.  10   Even so, we cannot consider 

his position merely timorous; he seems quite sincerely to have considered the foundations 

of natural philosophy ultimately to lie beyond human certainty — and it remains possible 

that he was right. 

 In trying to assess his real views, however, we should include his treatment of the 

musical context of astronomy that immediately precedes his discussion of geocentrism. 

His musical considerations provide additional and perhaps decisive evidence against the 

diurnal movement of the heavens and hence against geocentrism. Oresme follows Aristotle 

in considering that the celestial harmonies are not audible, but he takes the primal musical 

proportions quite seriously, arranging the harmonic ratios in a two-dimensional array, a 

figure he considers full of  “ very great mysteries ”  (  figure 2.2, table 2.1 ). Note that the top 

row contains the successive powers of 2 (1, 2, 4, 8, 16, 32), while the leftmost column 

lists the powers of 3 (1, 3, 9, 27, 81, 243). Then the interior of the array lists the various 

products of these outer rows and columns precisely in accord with the modern rule for the 

terms of a matrix: the term in the  n th row and  m th column is given by  nm . This may be 

the earliest  “ matrix ”  (though without using that modern term), in which Oresme lists all 

the various possible products that appear in musical theory, as he knows it. His diagram 

contains many blank cells, in addition to those in which he has noted numbers that appear 

explicitly in musical theory. By thus drawing attention to the other, heretofore unnoticed 
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 Figure 2.2 
 Oresme ’ s diagram of the principal musical ratios, from  Le Livre du ciel et du monde  (1377, fol. 125v). (For his 

diagram in modern notation, see table 2.1 on the following page.) 
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  Table 2.1  
 Oresme ’ s diagram.  

 1  2  4  8  16  32 

 3  6  12  24  48 

 9  18  36 

 27  54  108 

 81 

 243 

 729 

possibilities, Oresme may be indicating implicit speculations about as yet unused  “ har-

monic ”  possibilities. Less speculatively, his diagram indicates a nascent interest in pure 

combinatorics (the array of all possible products of a certain form, here powers of 2 and 

3), as well as the possibility of visualizing them in such an array.    

 Oresme approvingly quotes Cassiodorus ’ s sentiment (by then a commonplace) that 

human ears are too gross to perceive these celestial ratios, which also govern earthly music. 

Yet, along with Boethius and so many ancient authors, Oresme nonetheless goes on to 

consider even an inaudible  “ music ”  of the spheres as crucial to the cosmos. In so doing, 

he shows the continuing availability of music as the meeting ground between the supra-

sensual world of mathematics and the perceptible evidence provided by astronomy. 

 In fact, Oresme deploys music to solve a long-standing astronomical problem. In geo-

centric cosmology, there remained the question of which musical pitches should be 

assigned to the various heavenly spheres. In particular, does the  “ highest ”  sphere, that of 

the fixed stars, correspond to the lowest or the highest pitch of the celestial system, even 

assuming (as Oresme does, following Aristotle) that no audible sound results? Even though 

these spheres produce no sound grossly audible to our ears, Oresme still applies the 

musical language of relative pitch to describe the various possibilities. He uses the spheres ’  

decoupling from ordinary processes of sound production to consider new possibilities of 

 “ musical ”  cosmology. 

 If, he asks, the sphere of the fixed stars were in diurnal revolution, as required by the 

geocentric view, then what musical pitch should be associated with it? Oresme notes that, 

according to many accounts, this rapid revolution of a huge and massive structure is often 
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associated with a high pitch. Moving inward from it, the planets closer to Earth should 

then have successively  lower  pitches, until we reach the unmoving (and hence presumably 

silent) Earth itself. But this seems to him problematic, for those most exalted stellar spheres 

would seem more suitably associated with deep, solemn tones, not high-pitched squeaks. 

These musical considerations concern a cosmological decision of considerable importance, 

undecided on purely astronomical grounds. One wonders, too, whether he was troubled 

by the correlate arguments implied for the  “ music ”  of the Earth, in each case. On the 

contrary supposition, the Earth ’ s immobility would be associated with the highest pitch, 

which also seems problematic: how can an immobile body be associated with a high degree 

of vibration? 

 Oresme does not comment on these incongruities, so it is not finally possible to assess 

their significance for him. If we were to take them most seriously, they would seem to 

impeach the geocentric view on musical grounds. As such, they might be read as forming 

an implicit extension of his antigeocentric arguments, amassed above, perhaps indicating 

to discerning readers a hidden heliocentric drift in Oresme ’ s argument, his disclaimer 

notwithstanding. But nothing in the text authorizes us to take this rather conspiratorial 

reading as anything more than speculation. What is clear is that, for Oresme, musical 

arguments can address otherwise undecidable astronomical questions. 

 In his  Livre du ciel , Oresme brings this approach to bear on his own inquiry into the 

relative status of incommensurable versus commensurable celestial movements. Here 

again he faces issues that are not decidable from within astronomy alone; he reminds us 

that nothing tells us a priori whether any given celestial sphere is or is not commensurable 

with another, though far more likely to be incommensurable. In his earlier  Tractatus de 
commensurabilitate vel incommensurabilitate motuum celi  ( Treatise on the Commensura-
bility or Incommensurability of the Celestial Motions , written sometime during 1340 –

 1377), Oresme staged this problem in the form of a debate between personified figures of 

Arithmetic and Geometry, enacted at the command of Apollo himself. The whole dramatic 

scene is unique among his works, which he generally phrased in the traditional Euclidean 

style of geometrical propositions. 

 Appearing as a character in his own drama, Oresme expresses his perplexity whether 

incommensurability is actually present in astronomy or only a purely theoretical possibil-

ity. Then Apollo, accompanied by the Muses, Arts, and Sciences, appears to Oresme  “ as 

if in a dream. ”  Apollo rebukes him for being  “ ignorant of the ratios relating the things of 

this world ”  and hence subject to  “ affliction of the spirit and an unending labor. ”  Apollo 

phrases the problem trenchantly;  “ an imperceptible excess — even a part smaller than a 

thousandth — could destroy an equality and alter a ratio from rational to irrational. ”  Citing 

the authority of al-Battani ( “ if you have read him ” ), Apollo concludes that  “ the ratios of 

these motions is unknown, and neither arithmetic nor geometry can lead you to a knowl-

edge of it. ”  Addressing Apollo as his  “ dear father, ”  Oresme reiterates  “ that it is not given 

to human powers to discover such things ”  (his stated position on the geocentric 
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controversy) yet still asks  “ why did you make the very nature of men such that they desire 

to know, and then deceive or frustrate this desire by concealing from us the most important 

truths? ”  Responding to the intensity of Oresme ’ s pleas, Apollo,  “ smiling, ”  orders the Arts 

and Sciences  “ to teach him what he asks. ”  Thereupon Arithmetic and Geometry respec-

tively plead their opposing positions before this highest court of knowledge. Apollo then 

orders them both  “ to defend their cause with reasoned arguments, as if they were litigants 

in a lawsuit, ”  while Oresme listens  “ filled with wonder. ”   11   

 As Apollo indicated, arithmetic or geometry alone cannot decide such larger issues that 

involve all the arts and sciences. Nor does Oresme personify astronomy as a speaker in 

the debate, for her status would be dependent on the result of this debate, which concerns 

the basis of her science. In the end, both sides invoke music as a deciding factor to break 

the mathematical deadlock. 

 Arithmetic ’ s position is the most straightforward and traditional, as befits her claim to 

be  “ firstborn ”  of the quadrivium, on whose concepts all the others depend. Her biblical 

allusion that  “ the architect ”  built everything according to  “ number, weight, and measure ”  

still does not quite resolve these more detailed mathematical issues. Arithmetic argues that 

 “ the greatest prince of all, himself one and three everywhere, ”  the triune God, disclosed 

the primacy of number when he  “ arranged all things pleasantly, that is, harmonically, ”  

using  rational  quantities because each  “ irrational proportion is discordant and strange in 

harmony, and, consequently, foreign to every consonance, so that it seems more appropri-

ate to the wild lamentations of miserable hell than to celestial motions that unite, with 

marvelous control, the musical melodies soothing a great world. ”  Arithmetic then cites a 

host of ancient authorities from Hermes Trismegistus to Cicero attesting to the sublime 

pleasantness of the celestial concords, and hence their consonance. She also notes the 

consequent deduction of the Platonic Great Year and other recurrent astronomical cycles 

noted by the ancients. But her deepest argument seems to be that irrational proportions 

sound terrible and thus cannot be allowed in a harmonious cosmos.  12   

 In response, Geometry does not deny  “ a certain eternal beauty and perfection in her 

[sister ’ s] rational ratios ”  but wants to subsume them in a larger and less consonant musical 

whole. Her argument moves boldly toward a praise of artistic innovation:  “ The heavens 

would glitter with even greater splendor ”  if some motions were incommensurable than if 

all were purely commensurable. Though she disputes Arithmetic ’ s claim of precedence as 

the  “ firstborn, ”  Geometry does not try to argue that irrational ratios are more pleasant than 

rational ratios. Rather, she considers that Arithmetic ’ s reliance on the criterion of pleasure 

is artistically inadequate to grasp the full complexity of cosmic music, for which diversity 

is Geometry ’ s touchstone:  “ What song would please that is frequently or oft repeated? 

Would not such uniformity produce disgust? It surely would, for novelty is more delight-

ful. ”  Geometry asserts that purely rational music would be like the sound of a cuckoo, 

annoyingly repetitive not only in its uniformity of elements but in its endless 

recurrences.  13   
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 Though Geometry does not really address the troubling sensual displeasure produced 

by irrational proportions, she implicitly embraces it as the price of really interesting cosmic 

music that will not repeat itself ad infinitum. Where Arithmetic had spoken only indirectly 

of  “ the architect ”  (notably restrained in her reference to revelation), Geometry explicitly 

describes God the creator and his artistic alternatives. In contrast to the pleasures offered 

by Arithmetic, Geometry considers her own ideal student to be  “ a subtle man [who] per-

ceives the beauty in much diversity, while an ignorant man, who fails to consider the whole, 

thinks that the sequence in this diversity is confused, just as he who does not realize that 

what we call an irrational ratio is part of our order and plan. And yet the infinite plan of 

God distinctly realizes this diversity which, put in its proper place, is pleasing to the divine 

sight and makes the celestial revolutions more beautiful. ”   14   

 Geometry then reinterprets Arithmetic ’ s biblical reference to  “ number, order, and 

 measure  ”  to mean that measured  magnitudes  are just as necessary as pure numbers. Geom-

etry also discerns a wider horizon of mathematical possibilities for harmony, not just in 

planetary velocities or periods (as Arithmetic had implied) but also in the  “ magnitude ”  of 

the spheres, their weight or size, and hence by implication their spatial dimensions. Con-

sistent with her specific subject matter, Geometry emphasizes the full spatial reality of the 

celestial spheres as structures with determined radii, not just a mathematical model (as 

Ptolemy had argued) but a measurable geometric edifice. 

 The musical implications of these questions lead us back to the issue of audibility. 

Arithmetic had treated celestial music as audible, hence excluding perceptibly inharmoni-

ous irrationals; Geometry, in contrast, cites the ancient authorities who treat cosmic 

 “ harmony ”  as inaudible, in which case sensory disharmony would be an irrelevant crite-

rion. Even so, she keeps using  musical  language to describe the cosmic harmonies. Oresme 

seems to want to hang on to the imaginative and artistic possibilities of musical discourse 

even as he questions its sensory basis. 

 The ending of this singular debate leaves us hanging. After Geometry finishes speaking, 

 “ Apollo, believing himself adequately informed, ordered silence. ”  But Oresme feels 

 “ astonished and confounded by the novelty of so many things, ”  especially by the manifest 

contradictions between the arguments of Arithmetic and Geometry. Perceiving this, Apollo 

reassures him not to believe  “ that there is genuine disagreement between these most illus-

trious mothers of evident truth. For they amuse themselves and mock the stylistic mode 

of an inferior science. ”  Apollo announces that he will now announce the truth in the form 

of his judgment, so that  “ with the most ardent desire did I await his determination, but, 

alas, the dream vanishes, the conclusion is left in doubt, and I am ignorant of what Apollo, 

the judge, has decreed on this matter. ”   15   

 This enigmatic interruption could be interpreted as a wry expression that we cannot, 

after all, know the truth of such exalted matters, on the lines of Oresme ’ s skeptical account 

of geocentrism. But a number of clues allow us to conclude that Oresme ’ s own opinion 

lies finally with Geometry. We know, from several of his writings (including the  Livre du 
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ciel ) that he strongly held to the inaudibility of cosmic harmonies, which put him 

on Geometry ’ s side on this issue, at least. Even stronger evidence comes from Oresme ’ s 

 Livre du ciel , particularly the musical judgments he expresses there, which align strongly 

with Geometry ’ s position on cosmic inaudibility and the impossibility of astronomical 

recurrence. 

 Oresme makes a point of connecting cosmic music with the essential irreversibility of 

events. Referring to his own earlier arguments on this subject, Oresme proceeds on the 

assumption that celestial motions are incommensurable, again showing his agreement with 

the position of Geometry. If so,  “ the heavenly bodies are continually and always in new 

positional relationships with one another so that it is naturally impossible that these posi-

tions ever repeat themselves again. ”   16   He immediately interprets this musically: the heav-

enly bodies  “ are continuously producing new but imperceptible music:  canticum novum , 

a new song, such as never existed before. ”   17   He goes on to clarify his scriptural reference: 

 “ And Holy Scripture often speaks of the divine music of the angels and blessed souls 

caused by God Himself: They were singing a new canticle [ canticum novum ] before the 

throne, ”  citing a phrase from the Book of Revelation that also figures in several psalms.  18   

Oresme specifically praises the  newness  of the song, its continual novelty; though an 

opponent of astrology, he saw Heaven and Earth as connected, causally and musically: 

 Since the bodies of our world are governed by heavenly bodies and by their natural movements, as 

Aristotle says in the first book of  Meteors , it follows therefore that terrestrial bodies are continuous 

in new and different arrangements such as never previously existed and that human affairs, except 

those that depend upon the will as opposed to natural inclination, are continuously different and 

such as they never were before in any way at all. Just as change cannot exist unless it is for better 

or worse — although both better and worse are sometimes for the best — and just as choral singing 

[ chant de pluseurs voiez ] by excellent voices is not so good if the voices always sing in absolute 

harmony, in the same way things here below are sometimes in better state than at other times, 

depending upon the variations in the imperceptible music of the spheres; accordingly, sometimes 

we have peace, sometimes war, as the Scripture says:  A time for war and a time for peace ; one time 

sterility, another time fertility, and so on with all the other changes.  19   

 This striking passage opens many doors. His reference to  “ choral singing ”  is one of the 

rare contemporary mentions of the novel practice of polyphonic music, so significant a 

musical development that it deserves treatment elsewhere in its own context.  20   Here we 

stress its novelty: the prevalent practice of monophonic music, such as the single melodic 

line of Gregorian chant or troubadour song, in the centuries before Oresme had been joined 

by variegated and exuberant experiments in many-voiced music, from organum and the 

School of Notre Dame (in the twelfth century) to the ever more complex motets of  ars 
antiqua  and  ars nova  in Oresme ’ s own time. 

 Indeed, Oresme ’ s celebration of the  “ new song ”  is arguably an indirect reference to 

the musical  ars nova  not only because of the common theme of  “ newness ”  but because 

Oresme was directly connected with the most important master of this new style, his elder 
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contemporary Phillipe de Vitry.  21   A renowned scholar and friend of Petrarch, de Vitry had 

written his  Ars nova notandi  in 1322 or 1323, setting forth the novel rhythmic procedures 

of the  “ new art. ”  De Vitry ’ s own musical compositions are exemplars of this new idiom 

( ♪  sound example 2.1). Oresme dedicated his mathematical work  Algorismus proportio-
num  to de Vitry,  “ whom I would call Pythagoras if it were possible to believe in the return 

of souls  …  so that if it is agreeable to your Excellency you may correct that which I put 

before you. For should it be approved by the authority of so great a man and corrected 

after his examination [of it], everything that has been revised by your correction would be 

an improvement. Then, if a disparager should open his mouth and set his teeth to rend 

[my work] into pieces, he would not find [what he seeks]. ”   22   Oresme ’ s  Algorismus pro-
portionum  makes no overt reference to music; it treats the addition and subtraction of 

 “ rational ratios ”  and  “ irrational ratios, ”  evidently as part of his larger project to understand 

their relation. Oresme ’ s prologue considers de Vitry not only  au courant  with this advanced 

mathematical investigation but capable of judging and correcting it, probably also of 

approving and applauding it. 

 Thus, Oresme ’ s praise of the  canticum novum  accords with his dedication to the prince 

of the new musical art. Given his acquaintance with de Vitry, Oresme surely knew his 

treatise  Ars nova notandi , which contains a considerable amount of mathematical detail 

as part of its exposition of the new notational possibilities he exploits in his motets.  23   Both 

men were part of larger currents of mathematical and musical speculation. At several 

points, Oresme acknowledges the prior work of de Muris, de Vitry ’ s peer among the older 

generation of music theorists. De Muris ’ s writings were also sources for the new musical 

practice, especially his  Ars novae musicae  (1319), whose title also registers the sense of 

musical innovation. As noted above, Oresme drew on de Muris ’ s work on commensurable 

and incommensurable quantities.  24   These matters occupied Jewish as well as Christian 

scholars. De Vitry asked Levi ben Gershon (Gersonides) to help him resolve a mathemati-

cal question bearing directly on music; in turn, Oresme used this musical result to make 

an astronomical argument. This interchange illustrates the interweaving of mathematical, 

musical, and astronomical issues in the works of these men. 

 According to Boethius, the basic musical ratios are  superparticular , meaning that they 

have the form  n :( n  + 1), such as 2:3 or 3:4. The more complex intervals derived from this 

primal set involve only powers of 2 and 3. Besides these, de Vitry suspected that no other 

compound superparticular intervals could exist. Having learned of Gersonides probably 

from his  Maaseh Hoshev  ( Work of Calculation , 1341), a Euclidean compilation of results 

in arithmetic, de Vitry asked Gersonides whether he could prove his conjecture, which he 

did in his brief  De numeris harmonices  (1342).  25   De Vitry probably was interested in this 

result less for its application to the ratios governing musical intervals, which were not 

really under controversy at the time, than for its implications for  rhythmic  notation, the 

subject of much controversy between the practitioners of  ars antiqua  and  ars nova .  26   De 

Muris had already set out the complicated rhythmic issue at stake; Gersonides ’  result 
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confirmed the superiority of the  ars nova  notation over its older rival. Thus,  musical  ques-

tions had led to a question in  arithmetic , whose result then bolstered one side in the 

antecedent  musical  controversy. Oresme used the implications of this result to argue for a 

change in the fundamental concept of the harmony of the spheres, both musically and 

astronomically. 

 In his  Tractatus de commensurabilitate , before the concluding dialogue between Arith-

metic and Geometry, Oresme investigates the precise relation between the relative ratios 

of revolution of heavenly bodies and their conjunctions, the occasions at which they would 

occupy the same apparent position in the sky. His Proposition 11 demonstrated that the 

number of such conjunctions in any one revolution is given by the difference between the 

two terms of the ratio between the velocities of the two bodies, here assumed to be rational. 

He then notices the deep astronomical and musical problems this result implies: 

 If the ratio of velocities of any two celestial mobiles were in any of the principal harmonic ratios in 

music, namely the diapason [octave, 1:2], diapente [fifth, 2:3], diatesseron [fourth, 3:4], and tone 

[8:9], which make a concord or harmony, the mobiles will never conjunct except in one place only, 

since the least numbers of such a ratio differ only by a unit. As an example, if the mean motion of 

Mars were exactly twice the speed of the sun ’ s mean motion, there would never be a middling 

conjunction of these two bodies for [they would conjunct] in only one place, or point.  …  Since no 

configuration consisting of two motions is found to occur in only one point of the sky, [it follows] 

as a consequence that no two celestial motions have velocities related in a principal harmonic ratio. 

Therefore, if celestial bodies in motion produce a harmony, it is not necessary [to assume] that such 

a harmony arises from the velocities of their motions, but perhaps it stems from some other source 

for other reasons, as will be seen later.  27   

 Here Oresme relies on a long-known finding of observational astronomy that the conjunc-

tions of the planets occur at different points in the sky, not just one. Where the theorem 

of Gersonides proved that the  “ principal ”  harmonic ratios were all superparticular, Oresme ’ s 

corollary now showed that  any putative celestial music based on those intervals was 
incompatible with the visible evidence of astronomy , based on the common assumption 

that the  “ harmonies ”  related celestial velocities. This argument showed that the musical 

program of harmonizing the cosmos mathematically contradicted its own starting point, 

as it had been commonly understood. Oresme then generalized these results to several 

moving heavenly bodies or to a single body moving in several ways at once. 

 This, then, is the framing question that surrounds the debate between Arithmetic and 

Geometry: what is to become of the music of the spheres in light of these results? On the 

face of it, they seem to contradict the common assumption of rational (commensurable) 

relations between planetary orbits. As the patroness of this assumption, Arithmetic protests 

that  “ a position contrary to ours would destroy the beauty of the universe and detract from 

the goodness of the gods. ”   28   Though she also mentions Oresme ’ s result that  “ if the motions 

are incommensurable, it is impossible that they all return [to the same place] on their 

circles, ”  she seems to ignore Oresme ’ s corollary to Proposition 11, which effectively 
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blocks her advocacy of the alternative possibility  “ that the celestial  velocities  are propor-

tioned by numbers. ”   29   

 In rebuttal, Geometry notes that no one really supposes  “ that any celestial motions are 

related as any one of the principal concords, ”  which seems explicitly to recognize the 

problem that Arithmetic had ignored. Despite this, Geometry does not abandon the concept 

of celestial harmony in her alternative:  “ However, should the celestial spheres produce 

some concord while moving, this ought not be measured in terms of the velocities of the 

motions, but rather by the volumes of the spheres, or the quantities of the orbs. ”   30   Both 

these statements accord with Oresme ’ s own stated positions earlier in the work, thus giving 

further evidence that Geometry finally wins the debate, even though we never get to hear 

Apollo ’ s verdict. In the wake of his Proposition 11, Oresme had offered the same response 

to the problem he disclosed that now appears in the mouth of Geometry: the harmonies 

relate  volumes  and their correlate  “ quantities of the orbs ”  (probably meaning their masses, 

proportional to their volumes). Neither Oresme nor Geometry abandons the concept of 

celestial harmony, even in the face of its inaudibility and the incompatibility of the simplest 

ancient versions based on the principal concords. 

 Geometry ’ s resolution also comes with an important corollary: to resolve Oresme ’ s 

problem, celestial harmonies must involve some aspect of incommensurability. To that 

end, Geometry suggests harmonizing celestial volumes, rather than velocities. The logic 

of her statement bears close examination: by using volumes as a way to introduce incom-

mensurability, she seems to presume that the volumes of spheres have some kind 

of incommensurability. This in turn seems to reflect Oresme ’ s knowledge of the work of 

Archimedes, who had proved that the volumes of spheres are proportional to the cube 

of their radii. As a consequence, commensurable spherical volumes have incommensu -

rable radii.  31    

 Oresme ’ s arguments about the irreversible and never-repeating course of the universe 

are inextricably joined with arguments about mathematical incommensurability and with 

the  “ new song ”  that results in ever-novel cosmic harmonies. In this intricate tapestry of 

ideas, music plays an essential role mediating between astronomical, arithmetical, and 

geometric ideas. Oresme celebrates this  “ new song ”  in his climactic image that  “ the 

heavens are like a man who sings a melody and at the same time dances, thus making 

music in both ways —  cantu et gestu  — in song and in action. ”   32   Pure song is the melodic 

and harmonic ideal, incarnating mathematical relationships in the visible dance of stars 

and planets. The combination of new music with ancient results about incommensurability 

led Oresme to reject the simplest versions of the music of the spheres even as he indicated 

new possibilities for celestial harmony. Two centuries later, Music moved her sisters to 

reconsider their relation entirely. 

 

  



 In the century after Oresme ’ s imaginary debate between Arithmetic and Geometry, their 

sisters Music and Astronomy returned to the question whether a seemingly immovable 

center could somehow move. That center could be the Earth or the mode of a musical 

composition, both generally assumed to be unchanging. Because each celestial sphere was 

associated with a mode, a change of mode suggests motion between spheres. As innovative 

musical compositions used unprecedented changes of mode, the immovable musical center 

began to move. In the following decades, the new astronomy put forward the theory of a 

moving Earth. Other musical considerations moved Vincenzo Galilei to prefer heliocen-

trism decades before the controversy came to a head. More generally,  harmony  became a 

crucial term in the debates about Copernican astronomy. 

 Through the fifteenth century, writers on music struggled with disturbing contradictions 

between the ancient authorities about the exact ordering of the celestial spheres. For 

instance, in his  Liber de arte contrapuncti  ( Book on the Art of Counterpoint , ca. 1476), 

Johannes Tinctoris expressed considerable frustration: 

 I cannot pass over in silence the opinion of numerous philosophers among them Plato and Pythagoras 

and their successors Cicero, Macrobius, Boethius, and our Isidore [of Seville], that the spheres of 

the stars revolve under the guidance of harmonic modulation, that is, by the consonance of various 

concords. But when, as Boethius relates, some declare that Saturn moves with the deepest sound 

and that, as we pass by stages through the remaining planets, the moon moves with the highest, 

while others, conversely, ascribe the deepest sound to the moon and the highest to the sphere of the 

fixed stars, I put faith in neither opinion. Rather I unshakably credit Aristotle and his commentator, 

along with our more recent philosophers, who most manifestly prove that in the heavens there is 

neither actual nor potential sound.  1   

 This fundamental disagreement led Tinctoris to join Aristotle in rejecting celestial sounds, 

but other writers generally opted for one or the other of the ancient alternatives. Thus, 

Giorgio Valla in 1501 followed Boethius and assigned the sun the  mese , the  “ middle ”  note 

of the Greek gamut (  figure 3.1a ), whereas Franchino Gaffurius in 1596 followed Cicero 

and assigned it the  lychanos hypaton , the  “ highest ”  note (  figure 3.1b ).  2   Yet both versions 

associated the sun with the Dorian mode (see   figure 3.4 ), considered the first or primal 
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A B

mode, and assigned it the middle position in their diagrams. Though practical music was 

still notated according to hexachords (spanning six notes), the cosmos spanned a full 

octave from Earth to the fixed stars, according to the ancient diatonic pattern S T T (each 

semitone followed by two whole tones).    

 This same solar primality appears in Henrich Glarean ’ s  Dodecachordon  (1547), which 

summarized and reformulated the theory of the modes and their usage in contemporary 

composition. To the eight standard church modes Glarean added four more, thereby includ-

ing the modern major (Ionian) and natural minor (Aeolian) scales on an equal footing with 

the older modes (see figure 3.4). His cosmological diagram displays the two rival celestial 

pitch-orderings side by side, but again the sun appears in a central position among the 

planetary notes, whichever alternative one chooses to order the spheres of the outer planets 

(  figure 3.2a ). Glarean was an innovative geographer who drew one of the first polar pro-

jections of the northern hemisphere, but his views were completely geocentric, as shown 

in his cosmological diagram centering the universe on his hometown (  figure 3.2b ), nor did 

 Figure 3.1 
 Cosmological diagrams from (a) Giorgio Valla,  De expetendis et fugiendis rebus opus ,  “ De musica ”  (1501); 

(b) Franchino Gaffurius,  Practica Musicae  (1596). 



A

B

 Figure 3.2 
 (a) Glarean ’ s diagram comparing the two received orderings of the celestial spheres, from  Dodecachordon  (1547); 

(b) his manuscript drawing of cosmology, centering on the Earth and his hometown, from his  De geographia  

(ca. 1510 – 20). 
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 Figure 3.3 
 Gregorian chant  In exitu Israel  in  tonus peregrinus , the  “ wandering tone, ”  so named because it  “ wanders ”  from 

the first reciting tone on A (first measure) to another on G (second measure) ( ♪  sound example 3.1). Text:  “ When 

Israel came out of Egypt and the house of Jacob from a strange country. ”   

he show any awareness of Copernican astronomy. Both doctrinally and cosmologically, 

Glarean was conservative; he remained loyal to the Roman church and strongly distanced 

himself from the Protestant reformers, yet was proud to be a friend of Erasmus.    

 Though he was no heliocentrist, Glarean ’ s musical work opens a new perspective on 

whether a seemingly immovable center can move. In compositions throughout the Middle 

Ages, whether chant or polyphonic works, the mode remained as unmoved as the Earth 

in Aristotelian physics. Only in the  Tonus peregrinus  ( “ wandering ”  or  “ foreign ”  mode) of 

chant was there the possibility of moving between modal centers, as in the chant sung by 

the pilgrims at the beginning of Dante ’ s  Purgatorio , the aptly chosen  In exitu Israel  
( “ When Israel Came Out of Egypt ” ;   figure 3.3 ;  ♪  sound example 3.1). But here too the 

chant eventually reaches a final pitch that situates it within a regular mode.  3      

 In the course of presenting his novel modal ideas, Glarean also discusses ways of chang-

ing the modal center. He notices that such possibilities are beginning to be used by con-

temporary composers, whose practices confirm his theories by showing that, by habitually 

adding a B ♭  to the Lydian mode, those composers essentially are writing in the Ionian 

(modern major) mode starting on F (  figure 3.4 ;  ♪  sound example 3.2). Such a shift from 

Lydian to Ionian he considers  “ scarcely clear even to a perceptive ear, indeed often with 

great pleasure to the listener, ”  indicating the possibility of other, more radical changes: 

 “ But in other cases the changing seems rough, and scarcely ever without a grave offense 

to the ears, as changing from the Dorian to the Phrygian. From this I believe the adage 

arose: from Dorian to Phrygian, from natural to less natural, or from well-ordered 

to irrational, or from mild to harsh; briefly, from whatever, as they commonly say, does 

not keep to its course and falls from this into a different one. ”   4   The adage questions the 

status of any such fundamental change, whether in the divine order, the human polity, 

or music.    

 Aristotle considered the  “ manly ”  Dorian and  “ emotional ”  Phrygian so opposed that 

when Philoxenus (an avant-garde practitioner of the Greek New Music discussed in chapter 

1) tried to sing a Dionsyiac dithyramb in the Dorian mode, he  “ fell back by the very 

nature of things into the more appropriate Phrygian. ”   5   One would expect as conservative 

a thinker as Glarean to reject change of mode, yet he notes that new compositions force 

a reconsideration:  “ But enough now of philosophizing. Josquin des Prez in the psalm  De 
profundis , has undertaken successfully to go from Dorian to Phrygian, skillfully and 
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without offending the ears. ”  What traditional practice and proverbial wisdom would not 

allow, a contemporary master has accomplished, an innovation Glarean acknowledges and 

explores.  6   

 Josquin ’ s remarkable change of mode sets a penitential text from the Psalms:  “ Out of 

the depths have I cried unto Thee; O Lord, hear my prayer. ”  Another dark biblical text on 

the lamentation of King Saul over the death of his son Absalom drew Josquin to set his 

motet  Abasalon, fili mi  with a shifting modal center and an extremely low tessitura of male 

voices. The change of modal center seems to symbolize or even reenact the felt experience 

of turning from the depths to the heights of divine understanding and forgiveness. As part 

of the general musical understanding of his time, Josquin probably knew the astronomical 

associations of the modes, as in   figure 3.1 , in which a motion from Dorian to Phrygian 

would correspond to going from the sun to Mars. For him and his learned hearers, this 

shift in mode would suggest a huge cosmic displacement without precedent in ordinary 

experience, musical or astronomical. Even more, Glarean notes that Josquin accomplishes 

this miracle without startling the ear. He bridges Dorian and Phrygian by using intermedi-

ates between them, a process that may illuminate the general problem of how the immov-

able might be moved. 

 Following well-established compositional precedents, Josquin organized his phrases 

through their cadences, musical formulas that serve as punctuation. The  “ final ”  or  “ perfect ”  

cadence affirms the mode at the end of the composition. Intermediate cadences affirm 

 Figure 3.4 
 The modes according to Glarean ( ♪  sound example 3.2); note that the Ionian (corresponding to the modern major 

scale) and the Aeolian (modern minor scale) were not included among the traditional modes. Note that adding 

a B ♭  to the Lydian mode turns it into Ionian based on F (F major). 
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important structural pitches within the mode. But in  De profundis , Josquin organized his 

intermediate cadences so that they lead from Dorian to Phrygian structural pitches. He 

begins by establishing the Dorian mode sung in octaves by all voices above an extraordi-

nary low D, far below the usual range of the voices, literally signaling the  “ profundity ”  

of the depths by a low note to which we will return ( ♪  sound example 3.3a).   Box 3.1  

( ♪  sound examples 3.3a – e) gives the details of how he goes from the Dorian to the Aeolian 

mode during the first part of the motet, by means of the Ionian mode as intermediary. As 

Glarean explained, these two  “ new ”  modes (Ionian and Aeolian) have many points of 

interconnection that render their alternation easy, for they share the same  “ octave species, ”  

their fundamental pattern of whole and half steps, which sets them apart from the other 

church modes.  7   At the same time, they complete the possible patterns started by the older 

diatonic modes.   

 The second part of  De profundis  immediately begins with a strong assertion of the Ionian 

(C), as if to stabilize the Aeolian – Ionian axis on which the modal transformation turned 

( ♪  sound example 3.4a). Josquin continues to move back and forth between Aeolian and 

Ionian, establishing them as constituting an intermediate state in his journey from Dorian 

to Phrygian. When he does make his first full cadence in the Phrygian, he does so above 

the low E, one step above the deep D we noted at the beginning of the motet. By so doing, 

he reminds us both of that  “ profound ”  opening, the invocation of the depths, but also of 

the significant distance upward the motet has traversed, from D to E, as if mapping the 

distance from despair to hope (see   box 3.2,   ♪  sound examples 3.4a – c). The text at this 

point,  sicut erat in principio  ( “ as it was in the beginning ” ), is a recurrent formula that 

concludes many verses in the Catholic liturgy but here has a surprising significance: this 

arrival at the Phrygian definitely is  not  where this motet began.   

 His concluding reaffirmation of the Phrygian mode also recapitulates in brief the entire 

amazing modal journey just completed. This unprecedented transformation is so subtly 

accomplished that the listener may not even be aware of it, for only a highly trained ear 

could recollect the initial Dorian D and compare it with the final Phrygian E. Perhaps this, 

too, can be read as Josquin ’ s insight that the passage of the soul out of the depths happens 

through means that can escape ordinary awareness, however consequential their result. 

 Josquin and Glarean would have looked to Aristotle for the larger philosophical context 

for the possibility and character of such an essential change ( metabol ē  ), meaning a change 

of regime or revolution that moves between two contradictory states via an intermediate 

state ( metaxu ) serving as  “ a contrary relatively to the extremes. ”  Aristotle gives a musical 

example:  “ A middle note [ mese ] is low relatively to the high note [ n ē t ē  ] and high relatively 

to the low note [ hypat ē  ]. ”   8   A melody moves from high to low note via a middle note 

between them, the  mese  (associated with the sun, as noted above), both opposing and 

connecting the other notes. Though change of mode is a more radical change, it involves 

the same essential structure. In Josquin ’ s motet, the new Ionian and Aeolian modes are 

the intermediaries between the contrary Dorian and Phrygian. 
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   Box 3.1 
 How Josquin transforms modes: Part one of  De profundis . 

 Josquin begins with a Dorian cadence above the  “ profound ”  low D ( ♪  sound example 3.3a): 
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Box 3.1
(continued)

 He then cadences on the Aeolian A, a fifth above Dorian D, though he only includes its 

fundamental (A) and fifth (E), not the third (F) ( ♪  sound example 3.3b): 

 

  

 As he gradually introduces the missing F, he then leads it down a semitone to E and uses 

that as the third degree of C (Ionian), on which he then cadences ( ♪  sound example 3.3c): 
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Box 3.1
(continued)

 This leads to a subsequent cadence on G, the Ionian dominant (that is, the fifth above its 

final) ( ♪  sound example 3.3d): 

 

  

 But G is also the third degree of E; this reinterpretation of G enables the ensuing Ionian (C) 

harmony to be the pivot between Dorian harmonies and Phrygian. Josquin underlines the 

modal distance so far traversed by ending the motet ’ s first part on a full Aeolian (A) cadence, 

now bringing forward in the highest voice its third (C), which also alludes to the important 

Ionian (C) arrivals that had prepared it ( ♪  sound example 3.3e): 
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   Box 3.2 
 Arriving at the Phrygian: Part two of Josquin ’ s  De profundis . 

 Josquin begins the second part of this motet strongly in the Ionian (C) ( ♪  sound example 

3.4a): 

 

  

 Josquin first gives a Phrygian cadence on the low E that brings to mind the low D with which 

he began ( ♪  sound example 3.4b): 

 

  

 Aristotle also notes that some changes happens  “ by nature ”  while others are  “ against 

nature ”  and occur  “ by force [ bia ], ”  a word that came to be translated as  “ violence [ vio-
lentia ]. ”  Thus, a stone thrown upward suffers a  “ violent ”  motion, compared to its  “ natural ”  

motion downward, though clearly the stone is not  “ violated ”  when its natural motion is 

thus interrupted.  9   Further, such  “ violent ”  change happens essentially through the action of 

some agent  outside  the body itself: a hand must throw the stone and likewise some external 

artistic force must bend the mode from Dorian to Phrygian. In Aristotle ’ s eyes, such a 

modal change is violent: when Philoxenus tried to force a dithyramb into the Dorian, the 

song fell back into its  “ natural ”  Phrygian mode, like throwing a stone whose violent 
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Box 3.2
(continued)

 Josquin ’ s final Phrygian cadence recapitulates the extraordinary arc of the whole motet by 

moving from a Dorian harmony (D – F – A) four measures from the end via a penultimate 

Aeolian harmony (A – C – E) to the final, extended Phrygian chord (E – B) ( ♪  sound example 

3.4c): 

 

    

vertical rise eventually gave way to its natural fall. With this in mind, Josquin ’ s feat exceeds 

the ancient example of Philoxenus, going beyond the natural (and pagan) to show the even 

greater force of divine grace. 

 The implications of Aristotle ’ s analysis extended beyond musical examples. Oresme had 

used Aristotle ’ s categories in formulating his new mathematics of change.  10   In 1624, 

Francis Bacon epitomized  “ all violent motion ”  by a moistened finger rubbing a glass ’ s 

rim to excite its ringing, which he found similar to the chiming of a bell or the plucking 

of a string. This  “ motion of liberty, i.e. from compression to relaxation, ”  Bacon considered 

 “ the chief root of all mechanical operations, ”  transforming nature itself through the artful 

redirection of  “ violence. ”   11   Medieval alchemists theorized the possibility of elemental 

transmutation in terms of Aristotle ’ s concept of an undifferentiated  “ prime matter ”  that is 
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therefore capable of changing its outward form, so that base metals might receive the 

tincture of gold.  12   Even when twentieth-century physicists realized the dream of transmut-

ing elements, they had to irradiate a stable element so that it became an unstable radioactive 

intermediate isotope, which then could decay into the desired product. In so doing, they 

used the new phenomena of radioactivity to bridge the stable elements via a common 

substratum of  “ prime matter, ”  the electrons, protons, and neutrons they knew at the time. 

 Schooled in the Greek language and Aristotelian physics, Nicolaus Copernicus knew 

the multiple meanings of  metabol ē  , which denotes change as well as revolution in the 

sense of cyclical, circular motion. He also realized that the heliocentric cosmology required 

an explanation of how the Earth could possibly move, against the evidence of our senses 

and Aristotle ’ s arguments. Not until Newton ’ s laws was there a fully worked-out replace-

ment for Aristotle ’ s physics; in the interim, belief in a movable Earth had to justify its 

seemingly paradoxical claims.  13   To do so, Copernicus gives new meaning to harmony in 

 De revolutionibus coelestis  ( On the Revolutions of the Celestial Orbs , 1543). 

 Though he never completed his bachelor ’ s degree at the University of Kr á kow, Coper-

nicus probably studied the musical component of the quadrivium through the writings of 

de Muris.  14   By that time, in Paris Aristotelian natural sciences had tended to replace the 

quadrivial study of musical theory, but that was far less true in England and Central 

Europe.  15   Because of this, Copernicus (and later Kepler) had the fortune to be educated 

in areas where the older practice of musical-mathematical study remained in place. Though 

Oresme himself was not generally read in succeeding centuries, writings by others in his 

school, notably his teacher, Jean Buridan, and perhaps also his own, were studied in 

Kr á kow during the fifteenth century, which became a notable center of astronomical 

knowledge.  16   Thus, during his student days there, Copernicus may have had the opportu-

nity to learn something of the thoughts and speculations of these Parisians of the preceding 

century, including their arguments that considered heliocentrism with great care. 

 Two passages in Copernicus indicate a significant musical connection. His early  Com-
mentariolus  (written about 1508 – 1514), which first expounded his view that the Earth 

moves while the sun stands still, concludes that his theory suffices  “ to explain the entire 

structure of the universe and the entire ballet of the planets [ siderum chorea ]. ”  As Oresme 

compared heliocentric planetary motion to a circular dance ( chorea ) he called a  carole, 
 Copernicus presents astronomy united with choreography and music using the same ter-

minology. Copernicus took the Latin phrase  siderum chorea  ( “ dance of the stars ” ) from 

Martianus Capella, whose influential musical cosmology he also cites in his  Revolutions .  17   

In that book,   after addressing the objection that we see the sun rise and set but do not see 

the Earth move, Copernicus argues that the heliocentric theory determines the order 

and distances of planetary spheres, the very problem that also troubled music theorists. 

In the sun-centered arrangement,  “ we discover a marvelous symmetry [ symmetriam ] of 

the universe and an established harmonious linkage [ certum harmoniae nexum ] between 

the motion of the spheres and their size, such as cannot be found in any other way. ”   18   
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Presenting his own cosmological assumptions at the beginning of his  Almagest , Ptolemy 

made no such reference to harmony, though he refers to mathematical theories as  “ beautiful 

[ kalon ] ”  and praises  “ the contemplation of the eternal and unchanging, ”  such as his treatise 

presents.  19   In contrast, Copernicus is evidently arguing against the general opinion that 

heliocentrism is  “ quite ridiculous, ”  as Ptolemy put it, controverting common sense and 

plain reason.  20   Copernicus ’ s language of  harmony  aims to reconcile his readers to these 

dissonances, even to help them appreciate their richness and surpassing beauty. His invoca-

tion of harmony ultimately stems from the musically formed cosmos of Plato, as do so 

many later invocations of harmony we will consider in science, down to the present day. 

 Copernicus ’ s rhetoric relies on the implicit interconnection between astronomy and the 

rest of the quadrivium. Where  “ symmetry ”  tends to have visual connotations, Copernicus ’ s 

word  symmetria  also has the specifically geometric meaning of  commensurability .  21   

That is, the size of each planet ’ s sphere can be expressed in terms of the Earth – sun mean 

distance as an astronomical unit. By pointedly connecting the technical terms  symmetria  

and  harmonia , Copernicus signals the linkage between arithmetic and music he considers 

a capital feature of heliocentrism. In his dedicatory letter to Pope Paul III, Copernicus also 

mentions the secretive practices of the Pythagoreans; his original manuscript emphasized 

these Pythagorean connections even more strongly.  22   He thereby brings to mind their 

heliocentric cosmology, as well as their quest to understand the  harmonia  of the cosmos 

in musical ratios, both important precedents for his heliocentric  symmetria .  23   

 In different ways, Copernicus ’ s early readers recognized and amplified the musical 

context of  harmonia . Even before the publication of  De revolutionibus , Copernicus ’ s 

disciple Rheticus explained in his  Narratio prima  (1540) what his teacher meant by  “ an 

absolute system ”  in which  “ the order and motion of the heavenly spheres agree. ”  Writing 

about earlier astronomers (such as the Arab Albategnius), Rheticus remarks that  “ we 

should have wished them, in establishing the harmony of the motions, to imitate the musi-

cians who, when one string has either tightened or loosened, with great care and skill 

regulate and adjust the tones of all the other strings, until all together produce the desired 

harmony, and no dissonance is heard in any. ”   24   In favor of the heliocentric view, Rheticus 

notes that  “ all the celestial phenomena conform to the mean motion of the sun and that 

the entire harmony of the celestial motions is established and preserved under its control. ”  

Because Rheticus writes explicitly to explain the system of  “ my teacher, ”  we might take 

these expressions as also having Copernicus ’ s implicit approval. They further amplify the 

language of  “ harmony ”  by adding further details of its musical implications, down to the 

tuning of the strings to avoid dissonance. 

 Johannes Praetorius ’ s  Compendiosa enarratio Hypothesium Nic. Copernici  ( Compendi-
ous Narration of the Hypothesis of Nicolaus Copernicus , 1594) praises the heliocentric 

system because  “ this symmetry [ simmetria ] of all the orbs appears to fit together with the 

greatest consonance so that nothing can be inserted between them and no space remains 

to be filled. ”  The explicitly musical term  “ consonance ”  expands the mathematical notion 
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of  simmetria . Ironically, Praetorius later turned against heliocentrism, though he had 

initially been captivated by its harmony.  25   

 Among those who remained steadfastly attached to the new cosmology, William Gilbert 

emphasizes the Pythagorean connection in his  De magnete  ( On the Magnet , 1600), listing 

its ancient advocates, especially Philolaus, and praising Copernicus for having discovered 

 “ the harmony [ symphoniam ] ”  of planetary movements.  26   Gilbert ’ s term  symphonia  draws 

attention to the polyphonic fullness of the heliocentric cosmology, whose development by 

Kepler will occupy us in chapter 5. 

 But the most interesting reaction to Copernicus may be discerned in a musical text, the 

 Dialogo della musica antica, et della moderna  ( Dialogue on Ancient and Modern Music , 

1580 – 81),  “ surely the most influential music treatise of the late sixteenth century, ”  by 

Vincenzo Galilei, a lutenist and composer who became deeply interested in the nature of 

ancient Greek music and its implications for the music of his own time.  27   Vincenzo had 

been a student of the eminent music theorist Gioseffo Zarlino and was interested in inves-

tigating the Greek sources, which had not yet been translated into the vernacular. Vincenzo 

was also part of the Camerata, a circle of enthusiasts around the Count Giuseppe de ’  Bardi, 

who shared an intense interest in the relation between ancient and modern music.  28   

 In the course of their conversations, Bardi put Vincenzo in touch with Girolamo Mei, 

an older scholar who knew Greek and was engaged in the first really careful, philological 

examination of the ancient musical texts in the West since antiquity. Vincenzo had many 

questions and Mei responded at great length, often giving a very different account than 

what Zarlino had taught. As their exchange went on, Vincenzo became more and more 

excited, convinced that he was seeing entirely new vistas in this ancient music. Above all, 

Mei taught Vincenzo that Greek music had been strictly monophonic, a single melodic 

line having extraordinary powers of rhetorical persuasion and emotional effect based on 

its supple melody and its use of various musical modes suited to the emotions being 

evoked. More interested in philological sleuthing than in contemporary musical practice, 

Mei passed on his findings to Vincenzo, who collected his new understanding in his  Dia-
logue . The Camerata doubtless discussed Vincenzo ’ s findings and some scholars have 

viewed his text as a foundational document for their subsequent efforts to revive the lost 

powers of Greek tragic drama in a newly recreated form they called  opera . Bardi and 

like-minded aristocratic patrons sponsored the first operas, beginning with  intermedii  
produced at the Medici court in the 1580s. Appropriate to its ancient inspiration, early 

opera involved dramatizations of myths: Cavalieri ’ s  Dialogo del anima e corpo  ( Dialogue 
of Body and Soul ), Peri ’ s  Euridice , and especially Claudio Monteverdi ’ s  L ’ Orfeo  (first 

performed in 1607). These dramas and Vincenzo ’ s work illuminate a crucial stage in the 

development of expressivity as the essential project of contemporary music.  29   

 In a passing comment, Vincenzo brings forward a significant connection between these 

musical developments and the new cosmology. Mei himself had not been much interested 

in the relation of astronomy and music; he felt that ancient Greek music was more closely 
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akin to the rhetorical and grammatical arts of the trivium than to the mathematical arts of 

the quadrivium. Above all, Mei was interested in how music could rejoin drama and litera-

ture, leaving behind its old connection with mathematics and astronomy. Thus, Mei ’ s 

letters to Vincenzo contain scarcely any of the old planetary lore. For instance, in 1581 

Mei compared the turning movements of the ancient Greek chorus to  “ the movement of 

planets from west to the east and returning to the west ” ; coming to a standstill, the chorus 

 “ signified the stability of the earth around which those movements are made, ”  hence a 

geocentric cosmos.  30   Thus, Vincenzo ’ s own comment about cosmology in his  Dialogue  

comes as a surprise:  “ Like the many lines drawn from the center of a circle to the circum-

ference, which all gaze back at the center, every musical interval in the octave sees itself 

as if in a mirror, like the planets [ stelle ] do in the sun, not otherwise than the way everyone, 

depending on individual capacity, receives from it the person ’ s being a perfection. ”   31   

 Vincenzo clearly indicates that he considers the  sun  to be the center of the planetary 

system, and his argument is based on diagrams of the musical scale such as Glarean illus-

trated (see figure 3.2a), in which the sun ’ s position is surrounded symmetrically by whole 

tones on either side, the interval separating it from the planets on either side of the picture, 

and likewise of the semitones and whole tones throughout the octave,  read outward from 
the sun as center , so that  “ each musical interval in the octave sees itself as if in a mirror, 

like the planets do in the sun. ”  Vincenzo has taken a diagram based on a  geocentric  world-

picture (as Glarean and those before him had assumed) and used it to argue that the sun 

is the true musical and hence also cosmological center. Vincenzo uses the musical sym-

metries he discerns in the solar-centered octave as a way of expressing his astronomical 

preference for the heliocentric cosmos. 

 Though he does not mention Copernicus, Vincenzo is writing almost forty years after 

 De revolutionibus , so that we infer that he must have known of the basic idea of the new 

astronomy. If so, he may have been one of the first in Italy to evince such awareness.  32   

But how could he have come by it? The most likely hypothesis goes back to his teacher, 

Zarlino, whose own cosmology seems to have been quite geocentric, judging by the wholly 

traditional account of the  musica mundana , the  “ music of the spheres, ”  he included near 

the beginning of his seminal  Istitutioni harmoniche  ( Harmonic Institutes , 1558) (  figure 

3.5 ). Zarlino does show an interest in symmetries of musical intervals and their correspon-

dence with cosmology, though applied to the relations between the four physical elements 

(  figure 3.6 ), rather than to the planetary system.       

 Zarlino, however, revealed his own interest in astronomy in two shorter writings:  Intorno 
il vero anno,  &  il vero giorno, nel qual fu crucifisso il N. S. Giesv Christo redentor del 
mondo  ( On the True Year of the Crucifixion of Our Lord Jesus Christ , 1579), which 

addressed a long-standing chronological controversy, and  Le risolutioni d ’ alcune dimande 
fatte intorno la correttione del calendario di Giulio Cesare  ( Resolution of All Requests 
Concerning the Correction of the Calendar of Julius Caesar , 1589), which addressed the 

call of Pope Gregory XIII to find the best means of rectifying the growing divergence 
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 Figure 3.5 
 Zarlino ’ s diagram from his  Istitutioni harmoniche  showing the orderings of the celestial spheres and their plan-

etary designations following the traditional geocentric accounts of Cicero and Boethius. 
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 Figure 3.6 
 Zarlino ’ s diagram of musical intervals, compared to the relations between the four elements. 
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between the Julian calendar and the observed astronomical occurrences of solstices and 

equinoxes.  33   Zarlino thus entered into two intricate calendrical disputes, about which his 

texts show his close study, evidencing his definite awareness of contemporary issues of 

astronomy. In his time, the Julian calendar was about two weeks in disagreement with the 

astronomical seasons: Julian March 21 fell two weeks shy of the observed vernal equinox. 

To remedy this, Zarlino proposed adjusting the calendar by twelve days (in 1582 a ten-day 

shift was adopted, along with the present scheme of leap years). 

 Even more to the point, Zarlino owned a copy of the first edition of Copernicus ’ s  De 
revolutionibus , which Zarlino signed and dated 1566.  34   This places Zarlino in an elite 

company of astronomers and savants who bought this rather expensive book when first it 

appeared. Compared to the wider distribution of the extant copies in German-speaking 

lands, Zarlino ’ s copy represents a notable point of contact for Copernican ideas in Italy. 

 Based on the altogether geocentric descriptions in his  Istitutioni , we infer that Zarlino 

was not convinced by Copernicus. If Zarlino acquired his copy of Copernicus during or 

before the 1560s, when Vincenzo studied with him, it seems plausible that Zarlino may 

have mentioned it to him, if only as a curiosity. If so, one wonders about their ensuing 

discussions, for at some point Vincenzo seems to have decided that Copernicus was 

correct. The musical justification he gives in his  Dialogue  suggests that he thrashed out 

the matter in the course of his studies with Zarlino, or in the subsequent years. Did they 

argue about Copernicus? Did Vincenzo ’ s rebelliousness move him to sympathize with the 

heterodox cosmology, if only to annoy his mentor? Vincenzo certainly came to disagree 

with his teacher on many matters, bringing them forward both in the  Dialogue  and in his 

later  Discorso intorno l ’ opere di Messer Zarlino  ( Discourse on the Works of Mr. Zarlino , 

1589). Though at the beginning of his  Dialogue  Vincenzo paid homage to Zarlino as  “ one 

of the masters ”  alongside Gafurius and Glarean, his scathing criticism of what he consid-

ered his teacher ’ s errors about Greek music was so brusque that Zarlino took offense at 

what seemed Vincenzo ’ s ingratitude and disrespect. 

 Though these disputes had to do with musical matters, Zarlino could have been the 

source for Vincenzo ’ s awareness of heliocentrism, based on his possession of Copernicus ’ s 

book. There is another, not completely distinct possibility. Galileo Galilei was a teenager 

during the years leading up to his father ’ s  Dialogue  and later recorded in his own  Dis-
courses on Two New Sciences  his awareness of some of the musical issues that engaged 

his father. Knowing that Vincenzo had adopted the heliocentric view sometime before 

1580, it seems plausible that he and Galileo discussed it. If so, Galileo might have learned 

of this new astronomy from his father. Writing to Kepler in 1597, Galileo remarks that he 

had  “ many years ago ”  adopted Copernican views, though he does not specify how long.  35   

Placing his first contact with it during the 1570s would certainly fit this description, giving 

fully twenty years in which he could have mulled it over. Given the generally positive 

tenor of Galileo ’ s references to his father, one might speculate that he took up his father ’ s 

enthusiasm for the new cosmology during the period in which the  Dialogue  was being 
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composed. But the reverse channel of influence is also possible: the teenaged Galileo may 

have learned from other sources about Copernicus ’ s idea and brought it to his father, who 

might have also had some earlier discussions with Zarlino on this matter. Though it is 

beguiling to think of the intrepid teenager initiating his father into the new astronomy that 

would lead to so much controversy and danger for himself, no extant evidence shows how 

Galileo first learned about heliocentrism. 

 Evidence does emerge in Galileo ’ s early notebooks, dating from around 1590 (but pos-

sibly as far back as 1584), whose section on the heavens is closely copied after a 1581 

work by Christopher Clavius, the eminent Jesuit astronomer.  36   When he comes to  “ the 

order of the heavenly orbs, ”  Galileo (citing Clavius) begins with Aristarchus and Coper-

nicus, though the ensuing text amasses a preponderance of evidence against the Copernican 

view.  37   Here, it is hard to judge how far Galileo is merely copying the received view, 

showing his familiarity with it in order to advance his nascent academic career, or how 

far he himself believes the prevalent view of geocentrism presented by Clavius. At the 

very least, Galileo was well aware of Copernicus (and of the controversy surrounding him) 

by about 1590. 

 In any event, the evidence presented above supports Vincenzo ’ s musical interpretation 

of heliocentrism, with the implication that, for him, music illuminated and underwrote a 

crucial astronomical innovation. As for his famous son, Galileo ’ s arguments for heliocen-

trism often turn to the same musical terminology and categories that we noted in Coper-

nicus, Praetorius, and Gilbert. For instance, in his  “ Considerations on the Copernican 

Opinion ”  (1615), Galileo describes how, 

 encouraged by the authority of so many great men, [Copernicus] examined the motion of the earth 

and the stability of the sun. Without their encouragement and authority, by himself either he would 

not have conceived the idea, or he would have considered it a very great absurdity and paradox, as 

he confesses to have considered it at first. But then, through long sense observations, favorable 

results, and very firm demonstrations, he found it so consonant with the harmony of the world that 

he became completely certain of its truth. Hence this position is not introduced to satisfy the pure 

astronomer, but to satisfy the necessity of nature.  …  Who does not know that there is a most agree-

able harmony among all truths of nature, and a most sharp dissonance between false positions and 

true effects?  38   

 Here, the general language of harmony is further sharpened by specific musical distinctions 

between consonance and dissonance, which Galileo introduces as a higher criterion rising 

above the considerations of  “ pure astronomy, ”  which by itself never seems to have inter-

ested him greatly. His language remains consistent in his  “ Reply to Ingoli ”  (1624) even 

as he turns to the more difficult issue with which we began, how the seemingly immovable 

Earth could possibly be movable:  “ Now if the nature of the earth is very similar to that of 

moving bodies, and the essence of the sun very different, will it not be much more prob-

able (other things being equal) that the earth rather than the sun imitates with motion its 

other six consorts? Add to this another no less notable harmony, which is that in the 
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Copernican system all fixed stars, also intrinsically luminous bodies like the sun, are 

eternally at rest. ”   39   Galileo persuaded his readers by using familiar topics that connected 

astronomy and music within the quadrivium they all knew. Thus, in 1674 Robert Hooke 

noted that those seeking  “ better reasoned grounds, from the proportion and harmony of 

the World, cannot but imbrace the  Copernican  Arguments, as demonstrations that the Earth 

moves, and that the Sun and Stars stand still. ”   40   The language of harmony invoked a new 

aesthetic that would not only alleviate the dissonance of heliocentrism but invite enjoyment 

of its expressive power. 

 

 

 

 

 

   



 A century after the immovable center began to move, another seeming impossibility began 

to seem necessary: a new concept of number that encompassed both integers and irrational 

quantities. The transformation of the ancient concept of number underlies modern math-

ematics, and hence also much of modern science. Though a number of social, economic, 

cryptographic, and even legal perspectives have shed light on this mysterious shift, music 

(both theoretical and practical) helps illuminate the hesitation about the nascent concept 

of irrational number in the work of three close contemporaries: Michael Stifel, Girolamo 

Cardano, and Nicola Vicentino. All three worked at the frontier between mathematics and 

music around 1550; all three discussed the possibilities of  “ irrational numbers, ”  more or 

less hesitantly. In the end, their different mathematical conclusions strongly reflected their 

different approaches to music. Only music connected Heaven and Earth, theory and experi-

ence, mathematics and feeling. 

 Sixteenth-century mathematicians worked in the shadow of the ancient concepts of 

number and magnitude, but struggled with these ancient distinctions. For instance, though 

Robert Recorde ’ s  The Whetstone of Witte  (1557) notes that  “  Euclide ,  Boetius , and other 

good writers ”  acknowledge only  “ whole numbers, ”  Recorde also includes  “ nombres 

irrationale, ”  approximated as closely as desired by infinite series of fractions. Thus, as 

Katharine Neal notes, Recorde broadened his  “ number concept while simultaneously using 

labels that signaled his awareness of the unacceptability, by traditional standards, of the 

new numbers. ”  Recorde observed that his number terms draw on algebra, then known as 

the  “ cossic art, ”  whose solutions include both rational and irrational quantities. This art 

has many practical aspects, as Cardano and other Italian mathematicians had noted; 

Recorde dedicated his book to the  “ venturers ”  of the Muscovy Company, offering practical 

examples of military formations, bricklaying, and geography and promising a further book 

on navigation.  1   

 Both practical and theoretical considerations moved Fran ç ois Vi è te to make crucial 

symbolic innovations that linked these different number concepts more closely. In his 

 Canon mathematicus  (1579), Vi è te advocated the use of decimal fractions to replace the 

sexagesimal calculations traditionally used for astronomy; such decimals could express 

 4  Hearing the Irrational 
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both rational and irrational quantities.  2   Vi è te ’ s reading of Diophantus and Pappus, along 

with his own innovative cryptanalytic work, led him to introduce alphabetic signs for 

unknowns as well as for coefficients, as outlined in his  In artem analyticem Isagoge  

( Introduction to the Analytical Art , 1591).  3   Because a symbol like  x  could now stand for 

an integer as well as for an irrational quantity, the new algebraic usage effectively unified 

these heretofore separate and opposed categories. 

 These innovations, however ingenious and practical, skated over a foundational abyss 

because they subsumed irrational and rational under a single symbol. Yet these very 

issues about the nature of number had emerged earlier in the context of musical theory. 

The nature of the musical evidence, both theoretical and practical, strongly supported 

the necessity and legitimacy of irrational numbers. Music was ideally situated to 

mediate this new understanding between her sisters arithmetic and geometry. In con-

trast, though the painter Piero della Francesa was an important mathematician, his 

writings do not show any interaction between his innovations in painting and his 

concept of number.  4   

 The earliest explicit mention of  “ irrational numbers ”  as an intended term for these 

mathematical hybrids seems to have been in the  Arithmetica integra  ( Complete Arith-
metic , 1544) of Michael Stifel, a former Augustinian monk who left the order and 

became a friend and collaborator of Martin Luther. Alongside his work as a fervent 

advocate of ecclesiastical reform (he anagrammatized the name of Pope Leo X to yield 

666, the Number of the Beast), Stifel was arguably the most distinguished German 

mathematician of the sixteenth century; his methods were crucial sources for Recorde. 

In  Arithmetica integra , Stifel introduced the term  “ exponent ”  and used the signs +,  – , 

and  √ .  5   

 Stifel begins by reviewing  “ the nature and species of abstract numbers [ numerorum 
abstractorum ]. ”  From the beginning, he embeds his novel term  “ irrational numbers ”  ( num-
erici irrationales ) in an extensive discussion of music.  6   In Book 1 of  Arithmetica integra , 

Stifel treats musical intervals in terms of the ratios of string lengths, beginning with the 

ancient definitions of the basic intervals as whole-number ratios. Because the octave 

cannot be divided into an integral number of whole tones, the construction of scales 

requires dividing tones in half, as Boethius had recounted.  7   But dividing a semitone exactly 

in half would involve a  geometric  mean that is necessarily irrational (  figure 4.1 ), and hence 

impossible in the context of the pure  arithmetic  ratios of Greek musical theory. Boethius, 

following his Greek sources, avoided this problem by dividing the tone unequally into a 

 “ major semitone ”  and a  “ minor semitone, ”  which differ by the tiny interval called the 

 “ comma. ”   8      

 But Stifel notes that  “ musicians speak of certain irrational proportions, ”  implying that 

these proportions were already in current musical use and hence should be mathematically 

acceptable. In contrast, earlier theorists had held that  “ music does not consider irrational 

proportions. ”   9   Stifel ’ s statement acknowledges the new  musical  desirability of such equal 
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 Figure 4.1 
 Jacques Lef è vre d ’  É taples ’ s diagram from  Elementa musicalia  (1496), demonstrating that the interval  Ab : bc  can 

be divided geometrically exactly in half ( bg ). If the two collinear segments  Ab  and  bc  are in the ratio  Ab : bc :: 

8:9, then (Euclid,  Elements  6:3) erecting the perpendicular bisector  bg  on  Ac  gives the mean proportional  Ab : bg :: 

 bg : bc . Thus, a string of length  bg  would sound an exact semitone higher than string  Ab ; because 8: bg ::  bg :9, 

in modern notation,  bg  =  72  , hence the  “ ratio ”  of a semitone is 8: 72  . 

division, despite its  mathematical  irrationality, in all senses. To be sure, Euclid ’ s  Elements  

used  “ irrational proportion ”  to denote  “ incommensurable quantities. ”   10   Though Oresme 

referred to rational and irrational proportions, he never connected number with irrationality 

because  “ no irrational ratio is found in numbers. ”   11   Yet neither Euclid nor Oresme ever 

overstepped the boundary between rational and irrational, as Stifel does. For instance, 

Stifel divides the tone into equal semitones following a Euclidean construction (  figure 

4.1 ).  12   Likewise, Stifel applies various arithmetic operations to musical proportions, noting 

that  “ in these ways irrational proportions of irrational terms can be computed by rational 

numbers through this beautiful reckoning, ”  including his explicit halving of the tone (  figure 

4.2 ).  13   To my knowledge, this is the earliest printed statement that combines a rational 

(arithmetic) proportion with its irrational (geometric) mean. Acknowledging the contro-

versy about them, Stifel still asserts that  “ these halvings are so certain that no one can 

deny them.  …  A tone can be divided by an uncertain number and that is constituted by 

no assembly of units, that is, by an irrational number. ”   14   Thus, in this musical context, 

Stifel treats these irrational  “ halved ratios ”  as though they are as valid as rational 

proportions.    

 Yet when Stifel returns to the larger question of  “ the essence of irrational numbers, ”  his 

attitude shifts: 
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 It is properly debated whether irrational numbers are true numbers or fictions. For if we lack rational 

numbers in geometrical figures, their place is taken by irrationals, which prove precisely those things 

that rational numbers could not; certainly from the demonstrations they show us we are moved and 

compelled to admit that they [irrational numbers] really exist from their effects, which we perceive 

to be real, sure, and constant. 

 On the other hand, other things move us to a different assertion, namely that we are forced to 

deny that irrational numbers are numbers. Namely, where we might try to subject them to numera-

tion and to make them proportional to rational numbers, we find that they flee perpetually, so that 

none of them in itself can be precisely grasped: a fact that we perceive in the resolving of them, as 

I will show below in its place. Moreover, it is not possible to call that a true number which is such 

as to lack precision and which has no known proportion to true numbers. Just as an infinite number 

is not a number, so an irrational number is not a true number and is hidden under a sort of cloud of 

infinity. And thus the ratio of an irrational number to a rational number is no less uncertain than that 

of an infinite to a finite.  15   

 Here, the  “ cloud of infinity ”  is the infinite sum of fractions needed to represent an 

irrational quantity; such an  “ actual infinite ”  was rejected by Aristotle. Stifel ’ s distaste 

for this infinitude finally outweighs his geometrical and musical arguments that irratio-

nal quantities can  “ take the place ”  of rational numbers in every effective respect. Thus, 

even though his musical arguments had led him to affirm irrational numbers, his concern 

to avoid the infinite ultimately moved him to demote them from the class of  “ true 

numbers. ”  

 Stifel ’ s arguments show the effect of musical considerations on mathematical concerns, 

indicating the possibility of shifting and surprising alliances between the various parts of 

the quadrivium: geometric irrationalities, excluded from arithmetic, could find a place in 

music. Though Stifel himself finally gave precedence to an Aristotelian rejection of the 

actual infinite, others would take these arguments in a different direction precisely by 

placing new emphasis on the musical side. 

 Among these, the famous mathematician, physician, and polymath Girolamo Cardano 

has special importance, even though his writings on music are less well known than the 

 Figure 4.2   
 Michael Stifel ’ s diagram showing the equal division of a whole tone, from  Arithmetica integra  (1544). He uses 

   to denote a square root and places 8,  72  , and 9 in proportion. 
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rest of his vast output. Though Cardano ’ s  De musica  was published only in his  Opera 
omnia  (1663), among his works on arithmetic and geometry, he wrote this manuscript 

about 1546, during the period surrounding the appearance of his most famous mathematics 

book,  De arte magna  ( On the Great Art , 1545), which announced the general solutions of 

the cubic and quartic equations (in the midst of notorious controversies about priority and 

disclosure), a landmark in the development of modern algebra. Thus Cardano ’ s presenta-

tion of what he modestly called  “ this most abstruse and clearly unsurpassed treasury of 

the entire arithmetic ”  should be read next to his contemporaneous musical work, which is 

notable for its emphasis on practical techniques related to musical instruments as well as 

its theoretical considerations.  16   

 Cardano sang and played several instruments, including the recorder and the lyra, and 

was a skilled composer, as is shown by several compositions he includes in  De musica  

and his careful accounts of instrumental techniques. Cardano ’ s awareness of such modes 

of ornamentation as trills and vibrato draws attention to microtonal shifts that singers and 

instrumentalists used to decorate their melodies. He particularly emphasizes the unusual 

interval of a  diesis , a quarter tone (half a semitone) that produces  “ such a movement [that] 

titillates the ear and increases its pleasure. ”  As Clement Miller notes,  “ his affection for 

this tonal embellishment was very great and his description of the beauty and pleasantness 

of the effect sometimes borders on the ecstatic. ”   17   

 Cardano ’ s predilection for the diesis led him to put forward new opinions about its 

definition and that of the semitone, though he cites the mathematical problem of the exact 

divisibility of ratios. To divide a tone into two equal semitones (or a semitone into two 

equal quarter tones)  “ correctly and arithmetically, ”  he acknowledges that a  “ true calcula-

tion ”  involves an irrational root, for which he accepts a rational approximation that is 

 “ closer in perception. ”  For these  “ true ”  irrational intervals (whether of semitone or diesis), 

he empirically substitutes a simple rational approximation, thus conflating the geo-

metrically irrational with the arithmetically rational. He treats the result as a  “ correct ”  

system of tuning, not merely a stopgap or approximation; in fact, the application of his 

calculation of his approximate semitone ( 18
17  ) to fretting a lute was  “ the first really practical 

approximation of equal temperament, ”  later (incorrectly) attributed to Vincenzo Galilei 

(see box 4.1,  ♪  sound examples 4.1a – c).  18   Cardano treats rational and irrational intervals 

on the same footing primarily because of musical considerations: he chooses between 

rational approximations for the diesis  not  on the basis of closeness of numerical value 

(which would lead to  34
35  ) but on perception as judged musically (leading to  36

35  ). He calls 

 “ true ”   both  the irrational  “ true diesis ”  and its rational, musical equivalent, which is true 

 “ arithmetically. ”    

 Though in  De arte magna  Cardano often refers to  “ numbers ”  with the sense of  “ inte-

gers ”  and never uses the term  “ irrational numbers, ”  he uses the phrase  “ the numbers that 

were to be found ”  to refer to specifically irrational expressions. Cardano ’ s  “ golden 
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rule ”  shows how to find what he calls the  “ closest approximation ”  to solving an equation 

through finding the integers,  “ greater and less, which most nearly satisfy the equation, ”  

then generating a series of differences between the values those integers generate when 

substituted in the equation, from which a further refined estimate can be made, leading to 

what he takes to be a converging series of approximations. Through this procedure,  “ you 

will undoubtedly arrive at an insensible difference ”  compared with the true value:  “ This 

is universal reasoning and needs no other rule. ”   19   His procedures here seem to reflect the 

practical sense that comes to the fore in his musical writings:  “ true ”  geometric (irrational) 

and  “ true ”  arithmetic (rational) quantities  sound  the same; their differences are  “ insensi-

ble. ”  Music is the sole example he has of this kind of mediation between  “ perceptual ”  and 

 “ true ”  quantities; he lacks any other kind of mathematical physics (as it would later come 

to be called) that could have confronted mathematical idealizations with physical reality. 

But music was sufficient for him. Musical judgments intermixed rational and irrational 

quantities, supporting and paralleling Cardano ’ s working equivalence of the two in his 

algebraic art and providing it with crucial examples. 

 The grounds on which Nicola Vicentino treated irrational quantities as numbers had 

more to do with issues of melodic style and musical practice, as for Cardano, than with 

the more purely theoretical questions that concerned Stifel. Boethius had enumerated 

three ancient  “ genera ”  of melody, each genus designating a separate set of basic 

intervals on which music could be constructed. In the last chapter, we considered the 

 diatonic  genus, which Boethius considered  “ somewhat more severe and natural ”  ( ♪  sound 

example 4.2a). The other two genera are more unfamiliar (see   box 4.2 ). According to 

Boethius, the  chromatic  genus  “ departs from natural inflection and becomes more sensual 

[ mollius ]. ”   20   The name  “ chromatic ”  persists even today to describe music that makes 

   Box 4.1 
 Pythagorean tuning, just intonation, and equal temperament 

  Pythagorean   tuning  relies on the simple intervals of the smithy story (chapter 1): octave (2:1), 

perfect fifth (3:2), perfect fourth (4:3), whole tone (9:8). From these are derived more complex 

(hence less consonant) intervals, such as the major third (two whole tones, 81:64), major 

semitone (interval between a major third and a perfect fourth, 256:243), minor third (a whole 

tone and a major semitone, 32:27) ( ♪  sound example 4.1a). 

  Just intonation  is a system of related tunings that all begin with the Pythagorean octave, 

fifth, and fourth, and then redefine other intervals to be simple whole number ratios, such as 

the major third (5:4) and minor third (6:5), reflecting the growing use of those intervals as 

consonances after the fifteenth century ( ♪  sound example 4.1b). 

  Equal   temperament  divides the octave into twelve mathematically equal semitones, each 

defined by the irrational expression  2 112 :  . Except for the octave, all other intervals are slightly 

 “ out of tune ”  with respect to just intonation or Pythagorean tuning ( ♪  sound example 4.1c).   
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extensive use of consecutive semitones, sometimes to evoke greater sensuality or expres-

sivity ( ♪  sound example 4.2b).   

 In contrast, our music lacks the  enharmonic  genus, which Boethius considers  “ even 

more closely joined ”  than the chromatic, in the sense that the enharmonic genus uses a 

quarter tone (diesis). Apart from some self-conscious attempts to recreate such music that 

we will come to and some experimental music later still, the diesis fell out of use in 

Western music. Yet Boethius does not treat it as exotic but only remarks that it  “ is beauti-

fully and fittingly yoked together ” ; indeed, its Greek name ( harmonia ) is the general word 

that has come down to us as  “ harmony ” : the enharmonic genus was considered harmonious 

 par excellence .  21   Before the sixteenth century, only the diatonic genus seems to have 

evoked commentary, perhaps because it was used in musical practice. New translations 

brought the other genera to prominence.  22   In his book  L ’ antica musica ridotta alla moderna 
prattica  ( Ancient Music Adapted to Modern Practice , 1555), Vicentino identified the 

enharmonic as the secret behind those extraordinary, lost powers of ancient music, which 

he decided to revive ( ♪  sound example 4.2c). 

 Vicentino was a practicing musician and composer with deep interests in the theory of 

music (  figure 4.3 ). Born in Vicenza, he came under the influence of the humanist Giovanni 

Giorgio Trissino, who in 1524 described the enharmonic and the chromatic as  “ two genera 

that our age does not know. ”  After studies with Adrian Willaert, the great Venetian com-

poser, Vicentino came to Ferrara at the behest of Cardinal Ippolito II d ’ Este, whom he 

then accompanied to Rome. In 1546 Vicentino published his first book of madrigals, but 

around 1534 he had already begun thinking about the ancient genera.  23   In 1551 he became 

embroiled in a public controversy that shows the extent to which these matters provoked 

contention among the educated elite throughout Europe.    

 The argument started in June 1551 after a private performance of a motet in Rome, 

when those present began discussing what genera of melody were used in the composition. 

The Portuguese composer and theorist Vincente Lusitano maintained that the motet used 

only the diatonic genus, whereas Vicentino argued that it used elements of all three genera. 

What was at stake went beyond this single work to all of contemporary practice: what was 

   Box 4.2 
 The three ancient musical genera 

 The  diatonic  genus follows the pattern of a semitone followed by a tone and another tone: S 

T T ( ♪  sound example 4.2a). The  chromatic  genus has the pattern S S S 3 , where S 3  stands for 

a  “ trihemitone ”  (an interval composed of three semitones) ( ♪  sound example 4.2b). 

 The  enharmonic  genus uses a quarter tone (the diesis, abbreviated D), according to the 

pattern D D T 2 , where T 2  denotes a  “ ditone, ”  an interval composed of two whole steps ( ♪  

sound example 4.2c).   
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 Figure 4.3 
 Portrait of Nicola Vicentino, aged forty-four, as the frontispiece of his book  Ancient Music Adapted to Modern 
Practice  (1555). In the outer border, his motto reads:  “ You have revealed to me the uncertain and hidden things 

of Thy science. ”  In the inner border, he is identified as  “ inventor of the archicembalo and also of the practical 

division of the chromatic and enharmonic genera. ”  
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the true status of those ancient genera in contemporary music? The broader implications 

of this question concerned not only whether modern music had kept or broken faith with 

its ancient heritage but also the character and integrity of the cosmos, which was widely 

assumed to be regulated by musical intervals. 

 The debate began with a wager of two gold scudi and quickly became formal and 

public. Over a period of five days (June 2 – 7), Vicentino and Lusitano presented their 

arguments at the Vatican to  “ an audience of many learned men, ”  in the presence of 

Cardinal Ippolito and  “ judges ”  who were singers in the chapel of Pope Julius III; the 

young Orlando di Lasso (then nineteen) may have been in the audience.  24   This tribunal 

found against Vicentino in a statement that reads (given the ecclesiastical authority of 

the presiding cardinal and the papal offices of the judges) like a legal anathematization, 

concluding that  “ the said Don Nicola must be condemned, as we sentence him in the 

wager made between them ”  (  figure 4.4 ).  25   Vicentino ’ s own account treats quite seriously 

what he considered a grave injustice, whether or not we take the scene as an  auto-da-f é   
for  “ heretical pravity ”  that anticipates the trials of Giordano Bruno or Galileo. Perhaps 

Vicentino ’ s wounded pride kept him from taking the less serious tone others may have 

adopted. But even a high-spirited imitation of inquisitorial proceedings presided over 

by an eminent cardinal seems ominous. The church, especially the Jesuits, condemned 

any alterations to the foundations of mathematics that would undermine its epistemic 

certainty and hence the unchanging rational foundations of Christian doctrine. We will 

shortly consider Vicentino ’ s argument that experience was the  “ mistress ”  of musical 

and mathematical theory — rather than pure reason, as Boethius taught and the church 

insisted.  26      

 The confrontation at the Vatican led Vicentino to publish his defense for a larger public 

interested in the case and willing to pay to read about it. By way of amplifying and illus-

trating his assertions, Vicentino described his newly invented archicembalo, an  “ arch-

harpsichord ”  whose specially designed keyboard could play the complex variety of 

semitones and dieses necessary to execute chromatic and enharmonic compositions (  figure 

4.5 ).  27   Vicentino ’ s keyboard mechanized the playing of quarter tones, heretofore labori-

ously measured and sounded one by one.  28   His new instrument enabled accurate renditions 

of enharmonic music, but tuning it required deciding the exact interval of a diesis. To do 

so, Vicentino needed to unearth the work of ancient theories who addressed these musical 

and mathematical questions.    

 In the mid-sixteenth century, the problem of dividing the tone was not yet solved 

uniquely; several conflicting definitions of the semitone remained in use.  29   This aggravated 

the problem of defining the diesis: how could one define a quarter tone if the half tone 

remained so contentious? The obvious approach was to define unequal major and minor 

dieses by dividing up major and minor semitones, but this would lead to an endless recur-

rence of the problem of dividing intervals.  30   New clarity was sought in the ancient sources. 
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 Figure 4.4 
 The sentence passed against Vicentino, as recorded in his book. 



Hearing the Irrational 65
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B

 Figure 4.5 
 Vicentino ’ s archicembalo. (a) Detailed view of the split keys of an archicembalo reconstructed in 1974 following 

Vicentino ’ s design by Marco Tiella and made in the workshop of the organ builder Barth é lemy Formentelli 

(Pedemonte, Verona). (b) Schematic layout of a section of a keyboard shown in a fold-out page from Vicentino ’ s 

book. The split black keys allow the playing of intervals of a diesis. 
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What follows, then, is not a digression into antiquity but an account of how ancient prob-

lems returned to life. 

 Boethius had not given the enharmonic diesis a precise ratio, perhaps because of its 

very smallness.  31   Plato and Aristotle considered the diesis a kind of element, analogous 

to a vowel or consonant; Aristoxenus also judged that  “ the voice cannot distinctly 

produce an interval even smaller than the smallest diesis, nor can the hearing detect 

one. ”   32   The diesis, it was concluded, may be so small an interval that strict, secure 

definition is elusive. This judgment may also reflect the material circumstances and 

difficulties surrounding the production of this interval. Aristides Quintilianus (first 

century  c.e. ) noted that the enharmonic  “ has gained approval by those most distin-

guished in music; but for the multitude, it is impossible. On this account, some gave 

up melody by diesis because they assumed through their own weakness that the interval 

was wholly unsingable. ”   33   Thus, even in ancient times the diesis involved discrimination 

and virtuosity, as in the quarter-tonal  “ bending ”  of pitch possible on the aulos (a pipe 

with finger holes and a reed mouthpiece, often played in pairs). Aristotle described the 

aulos as  “ orgiastic, ”  its shrill wails often associated with Bacchic and Corybantic rites, 

sending its hearers out of their minds (  figure 4.6 ).  34   Such associations would not mili-

tate toward fussiness in intonation, if indeed the diesis were an ecstatic  “ bending ”  of 

a pitch not really to be measured by any ratio but only by the inspired frenzy of the 

Dionysian virtuoso.    

 Though this aural interpretation goes against Pythagorean tradition and its ratios, its 

ancient champion was Aristoxenus. Most of the information we have on the enharmonic 

diesis comes from him, suggesting that this interval may have fit particularly well into 

his thesis that discriminative hearing, rather than predetermined, fixed ratio, really deter-

mines musical intervals.  35   Aristoxenus stood at a critical point in the problem of sub-

dividing intervals, which (as we have seen) involves irrational magnitudes if the 

divisions are to be strictly equal. In the face of this paradox, he opened the liberat -

ing possibility that we might weaken or abandon the demand that every interval be 

strictly rational through his reliance on the sense of hearing, rather than on reason. He 

himself never seems to remark that his line of argument would imply the possibility 

of quantities that might bridge the rational and irrational; on the contrary, he explicitly 

maintains a sharp  “ division  …  in respect of the differences between the rational and 

the irrational. ”   36   

 By turning away from Pythagorean ratios, Aristoxenus took a crucial step toward treat-

ing an arbitrary musical quantity  as a unit unto itself, apart from whether it is or is not 
rational  with respect to the initial integral units of string length.  37   His demonstrations recall 

Euclid, who had shown in the  Elements  that magnitudes are rational or irrational only 

relative to other magnitudes, not in any absolute sense. The diagonal of a square is incom-

mensurable with its side but may be perfectly commensurable with other lines (for instance, 
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with the sides of another square built on that diagonal).  38   If indeed Aristoxenus built tone 

and semitone on the diesis as an arbitrary unit, that would ignore the inherent incommen-

surability of tone and semitone or quarter tone, as discussed above. At the very least, by 

abandoning the idealized fiction of a pure ratio underlying every note Aristoxenus was 

able to bring forward the practical  “ commensurability ”  of every pitch sung or played on 

real strings: because we can  hear  those intervals, he implies, they must  de facto  be 

commensurable. 

 At the beginning of his book, Vicentino embraces Aristoxenus and  “ experience as the 

mistress of things, ”  paradoxically outstripping the  “ modern ”  practice of music by reviving 

the  “ ancient, ”  specifically through the retrieval of the lost enharmonic genus he considers 

 Figure 4.6 
 Young man playing a pair of auloi while a courtesan dances with castanets. Red-figured cup painted by Epiktetos, 

ca. 500  b.c.e . 
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 “ more sweet and smooth than the other two genera. ”   39   His emphasis on experience means 

that musical practice is the new touchstone that can outweigh older arguments about 

rationality. The process of evenly dividing ever smaller musical intervals tacitly over-

stepped the ancient separation between geometry and arithmetic through the commonsen-

sical identification of a physical string length with the corresponding line in a geometric 

diagram (such as   figure 4.1 ), rather than with a purely numerical ratio, considered apart 

from any sounding body.  40   

 Vicentino realizes that these quarter tones are  “ disproportioned and irrational. And the 

other parts accompanying this division cannot contain proportioned and accurate leaps 

because they must correspond to this irrational ratio.  …  Likewise, the nature of the enhar-

monic genus disrupts the order of both the diatonic and chromatic and permits the creation 

of steps and leaps beyond the rational. For this reason such a division is called an irrational 

ratio. ”  In using this phrase, Vicentino is the first (as far as I can determine) to try to state 

in some positive (if paradoxical) way the status and character of musical intervals that are 

formed through  irrational , geometric means but at the same time are incorporated into the 

 rational  arithmetic of music theory.  41   Vicentino ’ s contribution may have been to state as 

clearly as possible, in common words, not only the inherent paradox of a new concept but 

its necessity and the functionality that justifies our embracing it despite and even through 

its paradoxicality. 

 Vicentino ’ s unfolding argument presents us with both sides of the paradox: the diesis, 

as constructed geometrically, is irrational but, functioning as the smallest  “ unit ”  within a 

framework of numerical ratios, is in that sense also effectively a  “ proportion. ”  Such a 

hybrid concept, like a centaur, needs to be grasped in its inherent duality, considered as 

its essence rather than as grounds to refute its existence. Vicentino ’ s premise — that the 

enharmonic genus exists and is superlatively important — was attested by many ancient 

sources. Therefore its basis, the diesis, must also exist, and so we should take in stride 

whatever paradoxical qualities it may have. Vicentino anticipates that we might rightly be 

 “ astonished ”  at what at first seems a prodigy or monster, this  “ rational irrational ”  — rather 

in the way that we might consider a centaur monstrous were we not familiar with examples 

of wise centaurs such as Chiron,  “ who included music among the first arts he taught Achil-

les at a tender age, and who wanted him to play the harp before he dirtied his hands with 

Trojan blood. ”   42   

 Vicentino ’ s argument also builds cunningly on the successive examples of the three 

genera, as if in a kind of rhetorical crescendo.  43   The diatonic sets the point of departure, 

the purely rational. From our earlier discussion, we know that the semitone of the diatonic 

genus already contains the latent problem of its relation to the tone: namely, that no rational 

semitone can be exactly half of a tone. The stratagem of devising major and minor semi-

tones merely conceals this problem without solving it, giving a stopgap solution that serves 

to make the diatonic appear wholly rational. The two successive semitones in the chromatic 

genus reiterate the problem:  which  semitones are they to be, major or minor? In the 
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chromatic genus, the latent problems hidden in the diatonic come forward sufficiently to 

cause  “ disruption ” : incipient instability and growing theoretical uncertainty. Only with the 

enharmonic genus does this simmering instability disrupt  both  the diatonic and chromatic 

genera and  “ permit the creation of steps and leaps beyond all reason. ”   44   This, Vicentino 

tells us, is the cause that should move us not only to call them  “ irrational ratios ”  but also, 

by so naming them, to install them in mathematics and music jointly as having equal 

existential force with the  “ rational ratios ”  we learned from arithmetic and the  “ irrational 

magnitudes ”  from geometry. For Vicentino, music is the intermediate ground on which 

arithmetic and geometry meet in such hybrid concepts as  “ irrational ratios, ”  shared between 

mathematics and music. 

 The attitudes of Stifel, Cardano, and Vicentino about these mathematical issues reflect 

their respective musical projects. As we saw, Stifel ’ s closest approach to affirming that 

 “ irrational numbers ”  were  “ real ”  or  “ true ”  came in the context of his musical theorizing. 

Yet this did not prove sufficient for him to maintain this position in the face of the actual 

infinitude of fractional sums, the  “ cloud of infinity, ”  perhaps because his involvement 

with music remained largely theoretical and restricted. Stifel ’ s main foray into practical 

music was his thirty-two-strophe song to propagate Luther ’ s teachings,  “ Johannes th ü t 

uns schreiben ”  (1522), based on the popular tune  “ Bruder Veyt. ”  Stifel ’ s composition led 

him into a polemical war of song and countersong with the theologian Thomas Murner, 

both always keeping this same melody for their new lyrics ( ♪  sound example 4.3).  45   

Though Stifel ’ s song was very popular and went through many printings, even serving 

as an important early example of the power of music that may have inspired Luther 

himself, its melody was simple and derivative. Stifel merely provided new words to an 

old tune; he had no vision of reforming the elements of music that would compare with 

Vicentino ’ s ambitious project to (re)create a whole new genus of music. By comparison 

with Stifel ’ s song, Cardano ’ s extant compositions are very ambitious, including a five-

voice perpetual canon and a tour de force of four simultaneous three-voice canons (twelve 

voices in all).  46   

 Among Vicentino ’ s much larger output, his motet  “ Musica prisca caput ”  ( ♪  sound 

example 4.4) dramatizes the emergence of the enharmonic genus to glorify his patron: its 

first verse is in the diatonic genus, the second in the chromatic, while the final verse is in 

the enharmonic, dramatically reserving the introduction of the diesis to produce a special 

aura around the name of Cardinal Ippolito at the end of the motet. This motet ’ s pointed 

delineation of all three genera provides yet another demonstration and justification of 

Vicentino ’ s views to refute his critics and contest his condemnation. He tells us, as well, 

that the whole d ’ Este family, including the cardinal and the prince of Ferrara, sang 

this daring new music, quarter tones and all,  “ with the most exceptional diligence. ”  

Vicentino had evidently persuaded them that, in contrast to the public uses of diatonic 

music  “ in communal places for the benefit of coarse ears, ”  such enharmonic music was 

 “ reserved  …  to praise great personages and heroes for the benefit of refined ears amid the 
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private diversions of lords and princes. ”   47   Thus Vicentino brought his polemic on behalf 

of enharmonic music not only to experts but also to the powerful amateurs whose princely 

involvement he considered capital for his cause. By so doing, he carried his case to an 

alternative and (in his view) superior social milieu, whose approval and validation he took 

as definitive. In addition, he positioned himself so that his theories would be highly visible 

and readily available to another aristocratic set that would take up his ideas in the next 

generation — the Florentine Camerata and Vincenzo Galilei, whose admiring advocacy 

indeed vindicated Vicentino posthumously.  48   For instance, Zarlino, Vincenzo ’ s teacher, 

incorporated these irrational ratios in his representation of the tuning of a lute (  figure 4.7 ), 

which showed how a geometric construction can dictate the placement of the frets for 

equal temperament (see box 4.1,  ♪  sound examples 4.1a – c). In this way, geometry set a 

template that could be mechanically reproduced without having to duplicate its geometric 

construction.  49      

 Even so, the use of these irrational ratios remained controversial. Though Zarlino ’ s 

student Giovanni Maria Artusi accepted his teacher ’ s geometric construction for tuning 

instruments, he balked at applying such irrational ratios to vocal music. Writing in 1603, 

Artusi objected that Claudio Monteverdi, the great exponent of the new operatic art spon-

sored by the Camerata, was applying irrational ratios to generate for expressive purposes 

intervals Artusi considered  “ false for singing, ”  particularly the diminished seventh and 

diminished fourth (  figure 4.8 ,  ♪  sound example 4.5). Artusi complained that the use of 

such  “ irrational ”  intervals showed that Monteverdi had no  “ rational ”  understanding of 

music, as he put it. Though it was possible to play these intervals on the fretted lute,  “ the 

natural voice is not suited to negotiate such unnatural intervals by means of natural ones, 

not having a preset stopping place like an artificial instrument.  …  It cannot justly divide 

the tone into two equal parts. ”   50   Artusi ’ s objections blend mathematical uneasiness about 

 “ unnatural ”  irrational ratios with his concomitant aversion to Monteverdi ’ s expressive use 

of those same intervals.    

 Such objections show the deep and long-lasting anxieties provoked by irrational ratios, 

anxieties that reflect both musical and mathematical considerations. Stifel was content to 

remain in the realm of conventional (and popular) music, and so his  “ irrational numbers ”  

drew on no particular musical justification that might help defend them against traditional 

philosophical objections. In contrast, Cardano ’ s strong interest in composition and perfor-

mance and Vicentino ’ s reliance on  “ irrational ratios ”  in his music seem to have helped 

them sustain their effective use  as numbers , to the extent that they advanced them as 

musical and hence mathematical necessities. 

 The comparison of these three figures as theorists, composers, and mathematicians 

illuminates ways in which musical concerns, both practical and theoretical, influenced the 

acceptance of novel mathematical concepts.  51   As Guillaume Gosselin noted in  On the 
Great Art or the Hidden Part of Numbers, Commonly Called Algebra or Almucabala  
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 Figure 4.7 
 Zarlino ’ s geometric approach ( Sopplimenti musicali , 1588) to fretting a lute in equal temperament using the 

construction shown in   figure 4.1 . The caption reads:  “ The equal division of the consonance of a diapason into 

twelve semitones. ”  
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(1577),  “ The arithmetician sees numbers in themselves, the musician and the algebraist 

indeed know numbers, but in their relation to something else. ”   52   His implication is that 

musicians were essential companions on the road that led from arithmetic to algebra in 

that they reached beyond numbers to the  “ something else ”  manifest through music. If so, 

the struggle to  “ hear ”  the mathematical irrational was indeed consequential on many 

levels. Mediating between the realms of mathematics and felt experience, music evoked 

and justified new concepts of number. 

 
 

 

 

 

 

 
  
 

 Figure 4.8 
 Claudio Monteverdi,  La favola d ’ Orfeo  (first performed 1607), Act II, measures 274 – 279 (from the edition of 

Venice, 1615). The messenger is recounting Euridice ’ s dying words:  “ and calling on you, Orfeo, Orfeo, after a 

deep sigh expired in these arms. ”  Artusi objected to the  “ irrational ”  diminished seventh between voice (B  ) and 

continuo (C  ) at the word  grave  (indicated by arrows), expressing the depth of her sigh ( ♪  sound example 4.5). 



 For Johannes Kepler, music was crucial to the emergence of a new astronomy. Kepler ’ s 

 Harmonices mundi libri V  ( Harmony of the World , 1619) culminates in his so-called third 

law of planetary motion: the square of the orbital period of any planet is proportional to 

the cube of its mean distance from the sun.  1   This surprising connection emerged from 

Kepler ’ s search for harmonic relations between planetary data and became a touchstone 

for Newtonian celestial mechanics. As important as this result is, Kepler presents it without 

fanfare, certainly not as the  “ law ”  it was later called. For him, it was only a part of his 

much larger project of seeking harmonious relations between planetary motions. Kepler 

embarked on this enterprise moved both by his Neoplatonic concern with cosmic arche-

types and also by his keen interest in practical music and contemporary compositions.  2   

His strong feeling for what he called the  “ song of the Earth ”  illuminated and comple-

mented his cosmic concerns. 

 On the theoretical side, though he identified himself strongly with Pythagoras, Kepler 

reinterpreted musical consonance in terms of the ratios of the sides of polygons, instead 

of the pure numerology inherited from Pythagorean tradition. Indeed,  Harmonice mundi  
concludes with a polemic against the English Rosicrucian Robert Fludd, from whom 

Kepler distinguishes himself  “ in the way in which a practitioner does from a theorist. ”   3   

According to Kepler, Fludd  “ has advice on the composition of figured melody, an art which 

I do not profess ”  and  “ also digresses to various musical instruments, to which I had not 

even given thought. ”   4   

 On the practical side, though the passages in  Harmonice mundi  in which Kepler turns 

to actual musical compositions are few and brief, they give insight into his sensibility. In 

those moments, he characteristically gives examples from compositions by Orlando di 

Lasso. Kepler does not say much or go deeply into these examples, yet they are still inter-

esting because they figure in an astronomical work. Indeed, in the long tradition linking 

music and astronomy, Kepler is remarkable for citing specific musical examples, not just 

theoretical generalizations. These examples illuminate the context of his whole project. 

 Like many of the other figures considered in this book, Kepler was involved in the 

practice of music as well as its theory. From early childhood, Kepler was steeped in the 

 5  Kepler and the Song of the Earth 
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musical traditions of W ü rttemberg Protestantism, in school and in church.  5   From age five, 

he practiced German psalmody as well as the Latin sequences and hymns he later cites in 

 Harmonice mundi .  6   This daily singing was supplemented by weekly lessons in theory. The 

standard of musical cultivation as well as of theoretical instruction in W ü rttemberg was 

quite high, including also contrapuntal and figured music.  7   Kepler derived a solid theoreti-

cal knowledge and practical skill from his primary schooling, continued and deepened 

during his theological studies in T ü bingen (1589 – 1594).  8   There, he, like all his fellow 

students, had musical instruction. The academic ordinances prescribed singing three days 

a week, so that the students must  “ always study new motets and good songs, and thus keep 

the exercise of music in practice. ”   9   Kepler participated in performances of church music 

and private festivities; he also encountered Glarean ’ s musical theories.  10   

 Kepler ’ s first job was teaching mathematics in Graz (1594 – 1600), where he also taught 

Virgil and rhetoric. His abiding interest in the practice of rhetoric (and use of Virgilian 

images) informed his mature writings.  11   The musical life of the school where Kepler taught 

was many sided. The school organist, Erasmus Widmann, so favored dance styles in his 

sacred music that sarcastic critics wondered whether they were in a church or a beer hall.  12   

During Kepler ’ s stay, the Italian organist Annibale Perini brought Venetian musical prac-

tice to Graz. Indeed, Andrea Gabrieli had dedicated his  Primus Liber Missarum 6 V  (1572) 

to Karl, the Habsburg archduke resident in Graz. Karl had close links to Venice; his wife 

Maria had a personal bond to Lasso ’ s family and a strong interest in his music.  13   It is not 

clear what part Kepler took in all this, though it seems likely that he would have been 

aware of these musical cross-currents. One of his letters mentions  “ the excellent music 

that Italy abounds in ” ; Kepler ’ s acquaintance with Lasso ’ s music definitely began in Graz, 

if not before.  14   In 1599, Kepler wrote a friend that he wished that  “ Orlando, if he lived, ”  

could teach him how to tune a clavichord properly, singling out the great composer as the 

ultimate authority on tuning.  15   

 After Kepler moved to Prague in 1600, he entered the service of Emperor Rudolf II, 

famous for his patronage of occult arts. Unmarried, distancing himself ever further 

from political realities, Rudolf fostered  “ exact science next to the deepest superstition, 

religious freedom next to zealotry, a tendency to display the utmost pomp next to diseased 

manifestations of self-love and eccentricity, refined taste next to brutal sensuality. ”   16   In 

Rudolf ’ s court, both practical and theoretical music were important, including some novel 

developments.  17   For instance, the court alchemist Michael Maier wrote fifty canons in 

 Atalanta fugiens  (1618), whose settings of alchemical texts would complement the manip-

ulations of the  “ great art. ”   18   Such a synthesis would have deeply interested the alchemist-

emperor. So also did the  “ perspective lute, ”  which tried to relate musical tones to colors, 

or the court composer and organist Hans Leo Hassler ’ s experiments with new automatic 

instruments.  19   As R. J. W. Evans points out, in such activities music was  “ practical, yet 

offered immediate contact with cosmic forces, ”  mobilizing magic powers through the 

influence of sound.  20   



Kepler and the Song of the Earth 75

 Kepler did not record his precise reaction to these developments but in a private letter 

wrote a stark disclaimer:  “ I hate all kabbalists. ”   21   To be sure, Kepler gave voice to mystic 

sentiments of his own:  “ For there is nothing which I examine with more scruple, and which 

I desire to know so much as this: whether perhaps the God whom I as it were touch by 

hands when I contemplate the whole universe, can also be found by me inside myself. ”   22   

Yet Kepler noted in  Harmonice mundi  that  “ whoever wants to nourish his mind on the 

mystical philosophy  …  will not find in my book what he is looking for. ”   23   Though he 

detested esotericism, Kepler was deeply interested in the larger question of how the prac-

tice and theory of music might impinge on cosmic structure. His antipathy to the occultism 

in Rudolf ’ s court may have indicated his anger at what he considered the bungling of his 

own favorite idea that music shapes the cosmos. 

 Kepler ’ s letters of the period turned to more practical concerns. Given his interest in 

tuning, he may well have noticed the  “ Clavicymbalum Vniversale, seu perfectum, ”  a key-

board instrument much admired at court, whose octaves were divided into nineteen steps.  24   

He likely attended the services of the court chapel, in which one hundred musicians 

(including sixty-five singers) performed music by court composers, as well as Venetian 

polychoral music and early monody. He could scarcely have missed the six  “ violinists or 

musicians ”  or the eighteen trumpeters and timpanists that were part of the imperial 

household. 

 Kepler also recorded a fragment of the prayers sung by the  “ Turkish priest, ”  as he calls 

him, who accompanied the Turkish ambassador to court.  25   Kepler was fascinated by what 

he described as the priest ’ s  “ practiced and fluent manner, for he did not hesitate at all; but 

he used remarkable, unusual, truncated, abhorrent intervals, so that it seems that nobody 

could with proper guidance from nature and voluntarily of his own accord ever regularly 

contemplate anything like it. I shall try to express something close to it by our musical 

notation ”  (  figure 5.1 ).  26   We shall shortly return to the significance of Kepler ’ s attempt to 

notate the exotic strains of Muslim cantillation. For now, it is an apt image of his alert 

curiosity about the possibilities of music not only in theory, but in practice.    

 Finally, the archduke Matthias seized power from his Prospero-like brother Rudolf, who 

died not long after, in 1612. Kepler did not remain in Prague but spent his last years in 

Linz (1612 – 1626) as a teacher, though retaining the title of Imperial Mathematician. There, 

he completed the  Harmonice mundi , the apex of his theoretical activities, in a school 

reputed as  “ the undisputed center of musical cultivation to support the renewal of faith ”  

and which gave the highest priority to  musica practica .  27   Lasso had pride of place in their 

library, followed by other masters of the Renaissance. Following the customary academic 

regulations, Kepler probably would have taken an active part in the choir and the house 

music of the regional nobility, among whom he had many friends and patrons.  28   

 Thus, though claiming no skill as composer or performer, Kepler had been surrounded 

with musical performance all his life and had been personally involved in musical activities 

on many occasions. Here, more recent distinctions of professionalism are misleading. The 
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musical experience of an amateur can be no less deep than that of a professional and, in 

Kepler ’ s time, amateurs did a great deal of serious music making. Beyond the traditional 

school readings in the quadrivium, Kepler was largely self-educated, but with the gusto 

that characterized his idiosyncratic genius. One thinks of him traveling in October 1617 

to save his aged mother from prosecution as a witch, taking Vincenzo Galilei ’ s  Dialogo 
della musica antica et della moderna  along and reading it  “ with the greatest pleasure 

[ summa cum voluptate ], ”  though he disagreed with the book on many musical issues.  29   

This shows that only two years before Kepler published his own treatise, he needed to 

catch up with contemporary theory.  30   Evidently unaware of Vicentino and his Italian 

sources, Kepler was able to acquire a Greek text of Ptolemy ’ s  Harmonics  only in 1607.  31   

Thus, Kepler rediscovered this important ancient source in the course of pursuing his 

own vision. 

 Though he was engaged in reviving the Platonic vision of cosmic harmony, Kepler ’ s 

awareness of contemporary music informed crucial departures from the ancients. By his 

time, musicians needed consonant thirds and sixths for their polyphonic music, though 

 Figure 5.1 
 Kepler ’ s  Harmonice mundi  (1619), showing the Turkish chant (top), compared to the Gregorian chant  Victimae 
paschali  (middle) and its melodic skeleton (bottom) ( ♪  sound examples 5.1–5.3). 
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Boethius had assigned complex (hence less consonant) ratios to those intervals, according 

to the original Pythagorean tuning. Contemporary practice and theory (including Zarlino) 

used simpler intervals for these intervals, known as just intonation (see box 4.1).  32   Kepler 

sided with these contemporary musicians, critiquing the Pythagoreans for judging  “ from 

their numbers alone, doing violence to the natural prompting of hearing. ”   33   For his part, 

Kepler combines musical practice with geometric arguments about the ratios between sides 

of regular polygons.  34   For instance, though he used a pentagon to justify the major sixth 

as 3:5, he refused to use a heptagon to allow such discordant ratios as 3:7.  35   Euclidean 

geometry could disqualify the heptagon, which, unlike a pentagon, cannot be constructed 

with ruler and compass, but Kepler notes that the nascent art of algebra would allow a 

calculation of the heptagon ’ s side that, if accepted, would give the heptagon as much 

validity as the pentagon. 

 Though he expressed admiration for the calculational powers of algebra, Kepler finally 

did not allow it full legitimacy because it implies infinite processes (akin to Stifel ’ s  “ cloud 

of infinity ” ) and also for musical reasons. Algebra would allow intervals like 3:7, which 

Kepler finds  “ utterly abhorrent to the ears of all men and the usages of singing, even though 

it may be possible for strings to be tuned in that way, seeing that as they are inanimate 

they do not interpose their own judgment but follow the hand of the foolish theorist without 

the least resistance. ”   36   

 Going past basic issues of tuning, Kepler discusses what constitutes  “ naturally tuneful 

and suitable melody. ”   37   He attempts a rhetorical analysis that encompasses fine details of 

the melodic skeletons of two very different melodies, beginning with the Turkish chant 

mentioned earlier (  figure 5.1 , top;  ♪  sound example 5.1). He treats this as a kind of anti-

music,  “ that grating [ stridulo ] style of song which the Turks and Hungarians customarily 

use as their signal for battle, imitating the uncouth voices of brute beasts rather than human 

nature. ”   38   As nearby fellow-subjects of the emperor, perhaps the Hungarians ’  use of such 

signals might make their rudeness more intelligible or at least more familiar. Kepler specu-

lates that such songs arose because their  “ original author absorbed uncouth melody of this 

kind from an instrument which was rather unsuitably shaped, and from long familiarity 

with the construction of the instrument transmitted such melody to his descendants and to 

his whole nation. ”  The problem is not a barbaric soul but the instrument ’ s disproportionate 

body, whose physical shape gives rise to its sound. 

 Kepler ’ s transcription may attempt to capture the ululation of Muslim cantillation, as 

of a muezzin ’ s call to prayer. Here he confronted the complex melody and pitch slides that 

are an essential part of Middle Eastern music. Kepler took some pains to be faithful to 

what he heard, though his notation and musical preconceptions were of little help. For 

comparison, Kepler cites a famous Gregorian chant, the Easter sequence  Victimae paschali 
laudes  (  figure 5.1 , middle;  ♪  sound example 5.2). Perhaps not coincidentally, it too begins 

and ends on G, its highest note the g an octave higher; Christians and Muslims both 

acknowledge the overarching octave G as they worship the same God. In his commentary 
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on the Gregorian chant, Kepler notes that its underlying melodic structure outlines a triad 

as  “ the skeleton of the octave. ”  Kepler ’ s application of the term  “ skeleton ”  (used earlier 

by Pietro Aron, Glarean, and Zarlino) shows his effort to understand the inner construction 

of melody, not just its constituent intervals or temperament. He goes so far as to write 

down this skeleton explicitly (  figure 5.1 , bottom;  ♪  sound example 5.3), emphasizing its 

triadic shape, while leaving the Gregorian melody far behind. Seeing it rewritten thus, the 

reader is immediately reminded of the Turkish chant, written on the same page in the same 

clef (  figure 5.1 , top), as if to suggest that, in skeletal form, the Turkish and Gregorian 

chants have some relation. Still, Kepler ’ s text mainly points to what he considers their 

differences: where the Turkish chant jumbles dissonance and consonance,  Victimae pas-
chali  carefully observes their skeletal relations. 

 Yet Kepler never disclaims the odd resemblance between them, at least at the skeletal 

level. This implicit relation remains open because Kepler continues to discuss the melodic 

structures of both the Turkish and the Christian chant simultaneously. Ancient musical 

theorists gave the terms that Kepler takes up:  agog ē   (literally  “ approach, ”  passage from 

one consonance directly to another),  tom ē   ( “ emphasis, ”  dwelling on a consonance),  petteia  

( “ gaming, ”  approach via playful  “ tiny motions ” ), and  plok ē   ( “ twisting ”  that  “ wanders in 

its passage around the  agog ē  , as a dog does around a passerby ” ).  39   In the absence of any 

examples of ancient Greek music, Kepler interpreted these terms in light of the music he 

knew. He applies the same vocabulary to the Gregorian chant as he does to the Turkish.  40   

Throughout, he reinterprets the ancient terminology to fit the musical realities of his 

examples. 

 Kepler emphasizes the polyphonic character of contemporary music as the model for 

the polyphony of planetary music, in contrast to the ancients, whose  “ music of the spheres ”  

( musica mundana ) and  “ instrumental music ”  ( musica instrumentalis ) he considers to have 

been restricted to a single melodic line.  41   Here, Kepler invokes no mathematical argument, 

only his profound feeling for polyphonic music, specified in the musical examples he 

instances, especially Lasso ’ s motet  In me transierunt  (1562).  42   This particular motet was 

already famous as an example of the Phrygian mode, whose prominent semitone (E-F) 

makes it  “ sound plaintive, broken, and in a sense lamentable, ”  as Kepler puts it.  43   Given 

the scope of his reading in contemporary German theorists, Kepler may well have known 

Joachim Burmeister ’ s analysis of the musical rhetoric of this motet (1606;  ♪  sound example 

5.4).  44   Probably citing its opening by heart, Kepler notes the  “ rather rare ”  rising minor 

sixth that then descends by steps (  figure 5.2 ,  ♪  sound examples 5.5a,b).  45   He comments 

on the melodic shape of this opening passage using terms he had applied to the Gregorian 

and Turkish chants:  “ a single ascending leap over a minor sixth [E – C], with a downward 

 agog ē   [approach] following, expresses the magnitude of grief, and is suitable for wailing, ”  

as the minor sixth sinks a semitone, down to a fifth.  46      

 Kepler does not go further into the details of the motet, recognizing ruefully that he is 

not up to the task. He calls inquiry into the relation between sounds and affects  “ various 
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and manifold, and very nearly infinite. Since it is too much for my muscles, it would be 

more correctly passed on completely to the practical men, that is, to practicing musicians, 

seeing that without teaching, guided solely by nature, they emerge time and again as the 

authors of wonderful tunes. ”   47   As Kepler acknowledges the limits of his ability, he also 

confirms that he considers most important the testimony of  “ practicing musicians. ”  

 Though his own harvest of insights is limited to this one small observation, it will turn 

out to be pregnant, leading to the climax of Kepler ’ s work, his description of the songs of 

the planets. At this point, he pauses to intone a solemn prelude: 

 Now there is need, Urania, of a grander sound, while I ascend by the harmonic stair of the celestial 

motions to higher things, where the true archetype of the fabric of the world is laid up and preserved. 

Follow me, modern musicians, and attribute it to your arts, unknown to antiquity: in these last 

A

B

 Figure 5.2 
 Kepler ’ s citation of the beginning of Lasso ’ s motet,  In me transierunt , and a modern transcription ( ♪  sound 

examples 5.5a,b). 
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centuries, Nature, always prodigal of herself, has at last brought forth, after an incubation of twice 

a thousand years, you, the first true offprints of the universal whole. By your harmonizing of various 

voices, and through your ears, she has whispered of herself, as she is in her innermost bosom, to 

the human mind, most beloved daughter of God the Creator.  48   

 In fact, the planets are  “ singing ”  a polyphonic motet  à  la Lasso; Keper directs us to 

 “ modern musicians ”  in order to hear Nature ’ s secret whispering. 

 In this cosmic motet, Kepler identifies the particular vocal part of each planet: soprano 

(Mercury), alto (Earth and Venus), tenor (Mars), and bass (Saturn and Jupiter).  49   He also 

notes that the motions of each planet suit its particular part: Mercury as  “ the treble is most 

free, ”  Earth and Venus with  “ very narrow distances between their motions  …  as the alto 

which is nearly the highest is in a narrow space, ”  Mars as tenor  “ is free yet proceeds 

moderately, ”  while Saturn and Jupiter  “ as the bass make harmonic leaps ”  (  figure 5.3 ; 

 ♪  sound example 5.6). The interweaving of their six individual  “ songs ”  leads to a complex 

work of practical polyphony, in which Kepler anticipates  “ certain syncopations and 

cadences ”  and all sorts of passing dissonances as planets pass between rare moments of 

cosmic consonance, particularly when they reach perihelion or aphelion, their closest or 

furthest points from the sun. We shall return to the problem of reaching such cosmic 

cadences, moments of complete resolution and consonance.    

 If  “ the planets in combination match modern figured music, ”  we return to the modern 

masters with renewed attention.  50   Kepler does not simply identify this celestial music with 

any existing composition;  “ in fact, no sounds exist in the heaven, and the motion [of the 

planets] is not so turbulent that a whistling is produced by friction with the heavenly 

light. ”   51   His cosmic harmony reflects the relative minimum and maximum angular veloci-

ties of the planets, as measured from the sun. 

 Curiously, this harmony involves certain elements that emerged when considering the 

Turkish chant, whose complex glissandi are not really expressible in discrete notation. 

Indeed, in Western music the glissando as such was not explicitly used until the cat imita-

tions in Carlo Farina ’ s  Capriccio stravagante  (1627;  ♪  sound example 5.7). Yet glissando 

 Figure 5.3 
 Kepler ’ s transcription of the songs of the planets and the moon ( ♪  sound example 5.6). 
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is a central feature of the planetary music itself. Since the planets move continuously in 

their orbits, their distances to the sun vary smoothly from perihelion to aphelion. As Kepler 

puts it,  “ They advance from one extreme to the opposite one not by leaps and intervals, 

but with a continually changing note, pervading all between (potentially infinite) in reality. 

I could not express that in any other way but by a continuous series of intermediate notes. ”   52   

Accordingly, his cosmic music is really a complex interweaving of glissandi, each confined 

within certain limits, which D. P. Walker compares to the wailing of air-raid sirens.  53   Ironi-

cally, the same sliding Kepler found so strange and difficult to notate in the Turkish chant 

turned out to be an all-pervasive feature of the heavenly music. Here, the Turks and Hun-

garians, with their  “ grating, ”   “ uncouth ”  singing, were in touch with a dimension of musical 

practice that Kepler discovers in his cosmic music. 

 The very soundlessness of the spheres directs him all the more insistently to the modern 

polyphonic masters, as if their harmonies will guide him in this silent realm. In a playful 

marginal note, Kepler clarifies his meaning:  “ Shall I be committing a crime if I demand 

some ingenious motet from individual composers of this age for this declaration: The royal 

psalter and the other sacred books will be able to supply a suitable text for it. Yet take note 

that no more than six parts are in harmony in the heaven.  …  If anyone expresses more 

closely the heavenly music described in this work, to him Clio pledges a wreath, Urania 

pledges Venus as his bride. ”   54   By challenging composers  “ more closely ”  to incorporate 

the harmonies that he has discovered in planetary data, Kepler seems to suggest that some 

motet already expresses the heavenly sounds  “ closely. ”  Given his several preceding men-

tions of this work,  In me transierunt  is the obvious candidate whose text is the  “ royal 

psalter, ”  though falling short of the challenge by having five voices, not the requisite six.  55   

Earlier, Kepler had drawn attention to the prominent semitone c – b at the beginning of  In 
me transierunt , which characterizes its  “ wailing ”  Phrygian modality and threads through 

the whole motet. 

 Further, this motet has a special significance in the light of Kepler ’ s planetary melodies, 

in which  “ the Earth sings  MI FA MI , so that even from the syllable you may guess that in 

this home of ours MIsery and FAmine [ MIseria et FAmes ] hold sway. ”   56   Kepler here uses 

an older system of note names than the present  do re mi  syllables. In that older system, 

the song of the Earth was spelled  mi fa mi , exactly the same syllables as would have been 

used to spell the opening of  In me transierunt .  57   Thus, this motet may well have struck 

Kepler as a powerful treatment of the song of the Earth, embedding the earthly semitone 

in a rich constellation of sonorities that suggest the full universal harmony.  58   

 Now the Earth has a voice, no longer consigned to voiceless immobility at the center 

of the Aristotelian cosmos. The Earth moves and sings, and its song is not neutral and 

divinely impassive, like the ancient celestial monophony, but prays with the royal psalmist 

David, expressing desolation and seeking divine mercy. How appropriate, then, and how 

moving must Kepler have found Lasso ’ s text for this motet:  “ Thy wrath has swept over 

me; thy terrors destroy me. My heart throbs; my strength fails me; my sorrow is ever before 
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me. Forsake me not, O Lord; O my God, be not far from me. ”  As a devout Lutheran, he 

viewed the semitone of human suffering as an essential part of the quest for divine grace, 

so that the song of the Earth resounds within the larger scheme of suffering and redemp-

tion. The semitones in Lasso ’ s motet and in Kepler ’ s song are signs of terrestrial disso-

nance that can be reconciled in celestial harmony. 

 This music is alive in every sense, not just lifeless intervals and ratios; Kepler takes 

Plato ’ s concept of a world-soul animating the cosmos further by describing its activity in 

the most vivid physical terms. Emphasizing the primacy of experience and felt response, 

Kepler connects music with sex, both mirroring the soul ’ s yearning to reunite with the 

primal archetypes that shine through visible, palpable reality. Though novel in its graphic 

sexuality, his idiosyncratic (and not much noticed) ideas draw on ancient connections 

between  er ō s  and  musik ē  .  59   Kepler argues that cadences, essential to musical syntax, are 

fundamentally sexual in character because of the underlying sexuality of numbers them-

selves. In a 1608 letter, Kepler identifies 2 and 10 as male, 3 and 24 as female, noting that 

 “ I do not think I can more clearly and explicitly explain this than by saying that you are 

to see the images here of phalluses, there vulvas. ”   60   A slightly less explicit figure appears 

in  Harmonice mundi  (  figure 5.4 ), where he draws attention to the geometric figures he 

considers the source of musical ratios:  “ What is surprising then if the progeny of the 

 Figure 5.4 
 Kepler ’ s illustration of the sexual relations between male numbers (2 and 10) and female (3 and 24). 



Kepler and the Song of the Earth 83

pentagon, the hard third of 4:5 and the soft 5:6, moves minds, which are the images of 

God, to emotions which are comparable with the business of generation? ”   61      

 Accordingly, Kepler specifies that  “ the major third will turn out manly, the minor femi-

nine. ”  Between these intervals, the semitone difference is crucial,  “ for a semitone following 

after always invites the voice to climb over it, on account of its small size; for it is like a 

crest on a slope which gets more gentle. ”   62   Here Kepler specifies the position of their 

intercourse and the successive stages of sexual excitement expressed in melodic motion: 

 “ And every time a semitone occurs towards the upper part, it is taken as a sort of boundary 

to the melody, towards which it tends, and then as if the crest has been passed, and when 

the effort is complete it often begins to turn back to the lower part. Certainly if we sing 

 RE MI , the hearing is not satisfied, but expects that  FA  should also be added. ”  

 The waves of melody parallel an increasingly urgent desire for satisfaction, which 

Kepler describes using Greek words to veil his meaning, perhaps to avoid the censure 

of the prurient, connecting musical technicalities with their explicit erotic correlates. The 

 “ hard ”  major third G – B strives upward,  “ having force which is  gonimos  [productive], 

and  akhm ē  aokhetos  [irrepressible vigor], seeking its own end, ”  the perfect fourth G – C, 

 “ of which the semitone [B – C] is like an  ekphusis  [bursting out] for it, sought with its 

whole effort. ”  In contrast, the  “ soft ”  minor third D – F  “ falls back ”  over the semitone E – F 

it has  “ climbed over  … , as if content with itself, and made by nature to be overcome 

and to be passive, always like a hen prostrates itself on the ground, ready for the cock 

to tread it. ”   63   

 No one before (and perhaps since) has described the structure of musical modes in such 

erotic detail. Kepler ’ s climactic sentence describes  akhm ē  aokhetos , the  “ highest culmina-

tion ”  of orgasm and  ekphusis , bursting out as ejaculation or begetting.  64   The Greek words 

emphasize the union of the generative and the sexual, but are not exclusively masculine 

in character, for  ekphusis  can also mean bearing and generation. 

 The copulation of numbers is always fruitful:  “ For just as a father begets a son, and his 

son another, each like himself, so also in that division, when the larger part is added to 

the whole, the proportion is continued: the combined sum takes the place of the whole, 

and what was previously the whole takes the place of the larger part. ”  Kepler here describes 

the formation of the Fibonacci series, 1, 1, 2, 3, 5, 8, 13, 21,  …    , remarking that its closely 

relation to the pentagon, which is governed by the  “ golden proportion ”  that is the limit of 

the ratio of successive terms in the Fibonacci series.  “ God the Creator has shaped the laws 

of generation in accordance with [this series], ”  such as  “ the logic of the seeding of plants ”  

that yields successive generations of 2, 3, 5, 8,  …  seeds. Kepler also describes the  “ wed-

dings ”  by which male and female geometric figures marry and produce progeny, remarking 

that  “ the study of the sky and music  …  must originate from the same fatherland of geom-

etry. ”   65   As Walker puts it,  “ Polyphonic music, with its thirds and sixths, excites and moves 

us deeply as does sexual intercourse because God has modeled both on the same geometric 

archetype. ”   66   
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 Yet though geometry is archetypal, it depends on a sexual response that is mutual 

between partners. Thus, describing the interaction between the sun and the Earth to make 

the weather, Kepler, quoting Virgil ’ s  Georgics ,  “ compares the bosom of the Earth to  the 
thighs of a wife , and indeed  a joyful wife , that is, one who perceives what is happening to 

her with pleasure and helps her husband with suitable motions. All these things are signs 

of life, and suppose a soul in the body which experiences them. For it would not be easy 

for the Sun, destitute of suitable troops, to invade this citadel of the bowels of the earth, 

without the co-operation of some kind of soul, seated within, to collude with the enemy 

and open the gates to him. ”   67   This mixed image of military invasion and sexual conquest 

recalls Kepler ’ s extended erotic  “ battle ”  with the planet Mars in his  Astronomia nova  and 

opens new possibilities in understanding the cosmic harmonies.  68   Altogether, Kepler con-

siders sexuality an essential aspect of soul, perhaps relying on the biblical notion that 

knowledge is fundamentally carnal, as when  “ Adam knew Eve, his wife. ”  Such knowledge 

encompasses both male and female sexual experience: Kepler includes both  “ hard ”  (major) 

and  “ soft ”  (minor) harmonies of the planets, indicating that both  “ masculine ”  and  “ femi-

nine ”  must be given equal scope as he describes the different musico-erotic climaxes of 

each sex. 

 Kepler calculated that the universal harmonies  “ of the hard kind ”  and  “ of the soft kind ”  

for six planets are notably dissonant (as one can hear in  ♪  sound example 5.6) because of 

their prominent fourths.  69   Kepler ascribed these dissonances to deep-seated marital diffi-

culties between Earth and Venus, whom he considers man and wife but whose music 

frequently conflicts because the Earth sings within a semitone (16:15), while Venus sings 

scarcely within a diesis (25:24). Thus,  “ the Earth, on the contrary, and Venus much more, 

on account of the narrowness of their own intervals, restrict their harmonies not only with 

the other planets, but most of all their mutual harmonies with each other, to a remarkably 

small number. ”   70   

 In erotic terms, male and female planets battle for supremacy, the Earth  “ pressing on 

with tasks which are worthy of a man, pushing aside and banishing Venus to her peri-

helion as if to her distaff, ”  or Venus beguiling the Earth  “ to make love, laying aside for 

a little while his shield and arms, and those tasks which are proper for a man; for then 

the harmony is soft. ”   71   In either case, the  “ harmony ”  of the heavens is shot through with 

erotic dissonance, for Kepler notes that if  “ this antagonistic lady, Venus, ”  were silent, the 

other planets would sound more consonant chords, though this neglects further harmonic 

conflicts with Mars. As Turkish and Hungarian songs were appropriate to war, with all 

its grating harshness, the planetary music, in the throes of cosmic sex and battle, groans 

unspeakably. 

 Nevertheless, Kepler does not consider this a failure of his reasoning or an indictment 

of the cosmos, because  “ the motions of the heavens are nothing but a kind of perennial 

harmony (in thought not in sound) through dissonant tunings, like certain syncopations or 

cadences (by which men imitate those natural dissonances), and tending toward definite 
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and prescribed resolutions, individual to the six terms (as with vocal parts) and marking 

and distinguishing by those notes the immensity of time. ”   72   Here he refers to the practice 

of  “ evading the cadence ”  ( fuggir la cadenza ) or deceptive cadence, which Zarlino describes 

as  “ useful when a composer in the midst of a beautiful passage feels the need for a cadence 

but cannot write one because the period of the text does not coincide, and it would not be 

honest to insert one. ”   73   For example, Lasso ’ s  In me transierunt  has a beautiful deceptive 

cadence in measures 6 – 7 (  figure 5.5 ;  ♪  sound example 5.8). As Claude Palisca remarks, 

 “ Lassus and other masters of the new music depended greatly on the evaded cadence, 

which permitted them to break up their texts into short phrases for descriptive and affective 

 Figure 5.5 
 The deceptive cadence in measures 6 – 7 of  In me transierunt  ( ♪  sound example 5.8). 
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emphasis, while maintaining harmonic continuity. ”   74   Though Kepler did not use this 

precise term, he clearly understands that the cosmic harmony can immensely delay its final 

cadence through specific musical artifice.    

 Here again Kepler looks to compositional practice, in which  “ Man, aping his Creator, 

has at last found a method of singing in harmony which was unknown to the ancients, so 

that he might play, that is to say, the perpetuity of the whole of cosmic time in some brief 

fraction of an hour, by the artificial concert of several voices, and taste up to a point the 

satisfaction of God his Maker in His works by a most delightful sense of pleasure felt in 

this imitator of God, Music. ”   75   Kepler claims these cosmic dissonances and deceptive 

cadences are really pleasure made excruciating through delayed gratification. Compared 

to God, we experience the cosmic harmonies immensely dilated and slowed almost beyond 

intelligibility, but a work like Lasso ’ s motet allows us to taste the ecstasy of deceptive 

cadence that is the divine pleasure. 

 Of course, this opens the question of whether and when a full resolution might occur. 

Kepler considers several possibilities. Harmonies between three planets happen rather 

often, but  “ harmonies of four planets now begin to be scattered over centuries, and those 

of five planets over myriads of years. However, an agreement together of all six is hedged 

about by very long gaps of ages; and I do not know whether it is altogether impossible 

for it to occur twice, by a precise rotation, and it rather demonstrates that there was some 

beginning of time, from which every age of the world has descended. ”   76   He seems to 

concede that  “ if there could occur one single six-fold harmony, or one outstanding one 

among several, that undoubtedly could be taken as characterizing the Creation. ”  Yet his 

initial  if  marks this as hypothetical, allowing some doubt whether that initial concord really 

took place. If so, the uniqueness of the instant of creation is somewhat shadowed, opening 

the unorthodox possibility that there was no such moment. 

 Without fully resolving this problem, Kepler seems rather to follow the imitative texture 

used in  In me transierunt , common to Lasso and his contemporaries. As the voices enter 

one by one in Lasso ’ s motet, without an initial concord of all, Kepler considers the planets 

successively by pairs and then in larger groups (as you can do for yourself in  ♪  sound 

example 5.6). Though there is nothing in astronomy that compels him to do so,  “ for some 

unknown reason this wonderful agreement with human melody forces me so that I am 

compelled ”  to identify planets with soprano, alto, tenor, and bass parts.  77   Throughout, 

Kepler relies on musical practice to guide his steps. He considers skeletons of the planetary 

melodies, recalling the skeleton he constructed for  Victimae paschali , and considers how 

those skeletons could align to form harmonies of all six planets together. After a long 

series of propositions, Kepler concludes that musical and geometric constraints dictate the 

spacing of the planets as we find them. 

 In all this, the issue of the final cadence remains open. Just after stating what we now 

call his third law, Kepler had noted that  “ if we suppose an infinity of time, all the states 
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of the orbit of one planet can coincide at the same moment of time with all the states 

of the orbit of another planet. ”   78   This is close to what is presently called the ergodic 

hypothesis, that eventually the planets will occupy all possible positions vis  à  vis each 

other and the fixed stars. Yet this still does not imply that the initial chord will be repeated 

even after an infinite time has elapsed. Already in the final lines of his first book,  Mys-
terium cosmographicum  (1596), Kepler had concluded, as had Oresme long before him, 

that  “ the motions [of the planets] are in irrational proportions to each other, and thus 

they will never return to the same starting point, even if they were to last for infinite 

ages. ”   79   Kepler reaffirms this conclusion in his notes added to the second edition of this 

work (1621), written after the  Harmonice mundi  and referring to it directly:  “ Therefore 

no exact return of the motions to their starting point is to be found, which can be taken 

as an end to the motions in accordance with form and reason. ”   80   Kepler ’ s discovery of 

the third law reinforced this, for the relation between planetary periods and mean dis-

tances is  irrational , proportional as cubes are to squares, and hence not expressible as 

any ratio of integers. 

 If so, there will be no final cadence to the cosmic music. Kepler ’ s 1596 formulation 

excludes the repetition of any original sonority, while his 1621 addendum goes further 

to exclude  “ an end to the motions in accordance with form and reason. ”  Did Kepler 

not already realize this as he wrote the  Harmonice mundi  in 1619, only reaching the 

more radical conclusion in 1621? This seems quite unlikely, given that he himself had 

established the basic result in 1596 and discovered the third law in 1618. If, then, he 

realized that there was no final cadence, he decided to veil this in the  Harmonice 
mundi , for whatever reason. Such a suggestion of the endlessness of the world could 

have appeared to be dangerously heretical because it contradicts the orthodox dogma 

of the finitude of the cosmos, whose duration is limited by the divine creation and Last 

Judgment. It is not clear how this might have moved Kepler, who had already been 

excommunicated by his fellow W ü rttemberg Protestants and driven out of Graz by 

Catholic edict.  81   

 In the end, Kepler hesitated before matters lying beyond human ken. He brought his 

own book to its final cadence still aware that he had fallen short of comprehending the 

divine music. In general,  “ the human voice in figured melody is almost perpetually out of 

tune ”  and hence unequal to grasping the archetypal harmonies.  82   The example of figured 

music again comes to his aid as he contemplates what God nevertheless found  “ very good ”  

in the harmonies of his creation. Kepler notes that the abstract proportions  “ must have 

given way to the harmonies ”  so that  “ the geometrical proportions in the figures strive for 

harmonies, ”  not the other way around, because  “ life completes the bodies of animate 

beings, ”  taking them beyond lifeless, static ratios to something that moves and breathes.  83   

In his late  Epitome of Copernican Astronomy  (1618 – 1621), Kepler likewise emphasized 

that  “ the celestial movements are not the work of mind but of nature; that is, of the natural 
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power of the bodies, ”  which sway their souls away from uniformity and circularity to the 

elliptical orbits he discovered.  84   These deviations are the very signs of life by which the 

planetary image reflects its cosmic creator. 

 As in Kepler ’ s sexual imagery, this complex motion is not a flaw but the central beauty 

of the design, imaging divine potency in cosmic intercourse, in cadence postponed, and 

in the endless ebb and flow of human desire. For Kepler, the cosmic music is an ongoing 

cadence that never ceases,  “ finite and yet similar to the infinite, ”   85   signing the finite cosmos 

with the hidden signature of the infinite. 

 

 

 

 
 



 Ren é  Descartes pioneered the  “ new philosophy ”  through his achievements in mathematics, 

natural science, and metaphysics, yet his work in music has remained relatively unknown. 

He himself was diffident about his musical knowledge and accomplishments, though he 

first found his voice addressing musical questions. His work on music has many connec-

tions with his new physics and his view of the cosmos as a fluid continuum, whose vortices 

and motions explain light and celestial mechanics. 

 At age twenty-one, Descartes wrote his earliest essay,  Compendium musicae  ( Compen-
dium of Music , 1618), when he had just begun his career as a gentleman-soldier, supporting 

the Netherlands in its rebellion against Spanish overlordship. Stationed in Brabant, where 

peace then prevailed, Descartes had some leisure to think, though he wrote hastily,  “ in the 

midst of turmoil and uneducated soldiers. ”  He formed an important friendship with Isaac 

Beeckman, to whom he offered the  Compendium  as a New Year ’ s gift, seven weeks after 

they first met. Descartes asked that he keep his essay to himself,  “ forever hidden in the 

privacy of your desk or your library; it should not be submitted to the judgment of others, ”  

because it was written  “ for your sake only, ”  in the turbulent circumstances of an army 

camp  “ by a man without occupation or office, busy with entirely different thoughts and 

activities. ”   1   

 Eight years older than Descartes, Beeckman had studied theology, but doctrinal disputes 

prevented him from teaching in that field. He then worked making candles and water-

conduits, eventually becoming a school administrator. Though he graduated in medicine 

the year he met Descartes, he was self-taught in science and mathematics; at times, he 

rediscovered results that had long been known, but he also took a fresh view of those 

fields, not having been steeped in Aristotelian natural philosophy.  2   Though Beeckman 

worked in a tremendous variety of fields, including engineering, mechanics, astronomy, 

logic, medicine, and music, he never published anything. Nonetheless, already in 1613 he 

had stated a principle of inertia and had accounted for gravity as a  “ force pulling by little 

jerks ” ; in their boldness, these insights parallel and even surpass Galileo ’ s work, though 

Beeckman ’ s notebooks remained private communications until their rediscovery and 

publication in the twentieth century.  3   

 6  Descartes ’ s Musical Apprenticeship 
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 According to Beeckman, Descartes told him,  “ Really you are the only one who has 

reawakened me from idleness. ”   4   Beeckman noted that Descartes  “ says he had never found 

someone, except for me, who is accustomed to study in the way I prefer and accurately 

joins mathematics and physics. And for my part, I have never spoken with anyone apart 

from him who studies in this way. ”   5   Aristotle had argued that mathematics applies to the 

regular motions of the heavenly bodies, not to  physis,  the earthly realm of growth and 

change, because mathematical concepts were inherently unchanging. Around 1600, Francis 

Bacon coined the word  “ mixed mathematics ”  to describe mathematics applied to physical 

problems; a similar term was used by Marin Mersenne, with whom Descartes also formed 

an important relationship through discussion and correspondence.  6   Though Beeckman and 

Descartes did not use the term  “ mixed mathematics, ”  they thought that understanding 

nature required bringing mathematics together with natural philosophy in new ways, first 

of all in the realm of music. 

 Beeckman was not really familiar with practical music, though interested in theoretical 

questions, and he relied on Descartes for mathematical results beyond the elementary 

level.  7   Descartes ’ s exposition in the  Compendium  is a fascinating mixture of old and new; 

though Cohen has noted that it  “ adheres so closely to the Renaissance style of music theo-

rizing, ”  it also casts music in a new light by reconsidering its relation to mathematics and 

to physical sound.  8   

 Descartes ’ s terse opening words signal a shift in thinking about music,  “ whose object 

is sound, ”  as he puts it. As Suzannah Clark and Alexander Rehding observe,  “ with only 

slight exaggeration these four words sum up the impact of the scientific revolution on 

music — the change from music as a divine force to music as a material phenomenon. ”   9   

While agreeing with their general point, I think its causal force also works in reverse. 

Because Descartes ’ s musical essay  precedes  the rest of his work, it is more coherent to 

read it as a musical argument that contributed to the formation of the new natural 

philosophy. 

 Descartes takes music as a perfect exemplar of his nascent project to  “ accurately join 

mathematics and physics, ”  mediating between arithmetic and geometry and their physical 

manifestations. As sound (rather than divine afflatus), music aims  “ to please and to arouse 

various emotions, ”  which are empirical, sensual states, rather than idealized types. Their 

intensity gives an observable  magnitude  of excitation, analyzable into  “ differences of 

duration or time, and its differences in tension from high to low. ”   “ The quality of tone ”  

of the sounding body he assigns to  “ the domain of the physicists [ Physici ], ”  one of the 

first connections between  physici  and music. Until then, music ’ s place was next to astron-

omy, the changeless heavens, rather than  physis , the sublunary realm of change. 

 Pleasure is essentially a geometrical magnitude,  “ a proportional relation [ proportio ] of 

some kind between the object and the sense itself. ”  Within the limits set by our sensory 

capacities, Descartes analyzes this pleasure-magnitude into sensations that do  “ not fall on 

the sense in too complicated or confused a fashion. ”  Looking at an astrolabe (  figure 6.1 ), 
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he finds the simpler lines of the  rete  more  “ satisfying to the sense ”  than the complex design 

of the  mater  because the  rete  is  more distinctly perceivable . The man who would go on 

to advocate  “ clear and distinct ideas ”  uses an astronomical instrument to illustrate the 

aesthetics of  melodies .  10      

 Sense can perceive an object  “ more easily  …  when the difference of the parts is smaller ”  

and  “ when there is greater proportion between them. ”  These proportions  “ must be arith-

metic, not geometric, the reason being that in the former there is less to perceive, as all 

the differences are the same throughout, ”  such as in   figure 6.2 . By comparison with the 

simple progression of an arithmetic proportion (in his example, 2, 3, 4), a geometric pro-

portion involves a middle term whose relation to its neighbors is harder to discern, such 

as dividing an octave 2:4 in half at its geometric mean  8  . Though Descartes accepts that 

 Figure 6.1 
 An astrolabe from the workshop of Jean Fusoris (Paris, ca. 1400) in the Collection of Historical Scientific Instru-

ments, Harvard University. The  rete  is the inset metal structure with curved lines, showing the  mater  and  plate  

underneath; the straight  rule  rotates to measure distances on the instrument. 
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a quantity like  8  is comparable to integers, still  “ the mind is in this case constantly 

perplexed ”  by its irrationality. Music should rely on arithmetic rather than geometric ratios 

because  “ the most agreeable to the soul is neither that which is perceived most easily nor 

that which is perceived with the greatest difficulty; it is that which does not quite gratify 

the natural desire by which the senses are carried to the objects, yet is not so complicated 

that it tires the senses. ”  Because  “ variety is in all things most pleasing, ”  music relies on 

variation.  11      

 Where Plato assumed the priority of arithmetic, Descartes allows different mathematical 

objects to generate various pleasures. Though he began his innovative world-project by 

recasting the ancient theory of music, as Cohen observed, his little treatise is perhaps the 

most conservative such work of its century.  12   His  Compendium  combines the ancient topics 

of mathematical music with the nascent mathematical physics: the numerical patterns of 

music theory lead directly to the perceptible, observable world. He begins with rhythm, 

showing how relative simplicity of ratio governs our experience, how easily we hear two 

even notes against one, whereas five notes against one are  “ almost impossible to sing. ”  

Exactly similar processes govern our awareness of the ordering of a melody as we count 

up its phrases, until  “ our imagination proceeds to the end, when the whole melody is finally 

understood as the sum of many equal parts. ”   13   Each beat physically makes us  “ dance and 

sway, ”  accompanying  “ each beat of the music by a corresponding motion of our body. ”  

The downbeat of a measure, when  “ the sound is emitted more strongly and clearly  …  has 

a greater impact on our spirits ”  by sheer visceral force, so that  “ even animals can dance 

to rhythm if they are taught and trained, for it takes only a physical stimulus to achieve 

this reaction. ”   14   

 Music arouses various affects precisely through various meters:  “ A slower pace arouses 

in us quieter feelings such as languor, sadness, fear, pride, etc. A faster pace arouses faster 

emotions such as joy, etc. ”   15   Triple meters (like 3/4)  “ occupy the senses more ”  than duple 

ones (like 2/4),  “ since there are more things to be noticed in them, ”  namely three rhythmic 

units, rather than two. Even a solitary military drum can affect us by its beat, demonstrat-

ing the felt reality of pure rhythm. By treating  “ number or time in sound ”  before pitch 

 Figure 6.2 
 Descartes ’ s comparison of arithmetic and geometric proportions from his  Compendium :  “ The example of a 

proportion of lines [2:3:4] is more easily distinguished by the eyes than this one [2: 8 :4]. ”  
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(which previous theorists treated first), Descartes shows that we feel number with the full 

force of a martial drum. 

 Descartes observed that when a lute string is plucked,  “ the force of its sound will set 

in vibration all the strings which are higher by any type of fifth or major third, but nothing 

will happen to those strings which are at the distance of a fourth or any other conso-

nance. ”   16   Here he made an important step toward the discovery of what later were called 

 overtones , showing the  physical  connection between the octave, fifth, and third, rather than 

what the ancient theorists considered a purely numerical relation. Descartes correlated the 

mathematical division of the octave with physical experience, giving the first example of 

his new mathematical physics through the intermediacy of music. 

 Descartes continued to think about music long after his little  Compendium , as shown 

in his correspondence.  17   He often included music among other topics in physics and math-

ematics. Ten years later, in his first letter to Mersenne from Holland in September 1629, 

Descartes begins by asking how one consonance can pass into another, such as  “ might 

offer all the diversity of music, ”  then turns abruptly to a new  “ part of mathematics I call 

the science of miracles ”  that could produce astonishing illusions.  18   His next letter describes 

working through  “ all the  Meteores  [celestial phenomena] ”  such as parhelia (mock suns, 

  figure 6.3 ), pointing to what would become his work of that name, published in 1637 as 

an appendix to his  Discourse on Method , along with  La Geometrie  (on his algebraic 

approach to geometry) and  Dioptrique  (optical phenomena and vision). Descartes tells 

Mersenne that he is preparing  “ a little treatise that will contain the explanation of the colors 

of the rainbow, ”  that archetypal miracle, but begs him  “ not to speak of this to anyone in 

the world, for I have decided to show this in public as a sample of my philosophy and to 

hide myself behind the picture to hear what they will say of it. ”   19   To his friend, Descartes 

discloses the masked persona he will don so that he can present his work, gauge its 

response, yet remain safely hidden.    

 This letter goes on to discuss questions of rarefaction (which might be able to explain 

the ancient concept of ether) and thence to a certain  “ book of cameos [here meaning 

monochrome painting on jewelry or enamel] and talismans, ”  which he judges  “ only con-

tains chimaeras, ”  showing his disdain for the ordinary run of  trompe-l ’ oeil  or occult 

 “ wonders. ”   20   He then returns to the ways in which a unison could pass to a major versus 

a minor third; Descartes shows a sensitive awareness of the relation of this particular issue 

to the whole context of the composition in which it might occur, including the relative 

motions of treble and bass. He seems familiar with contemporary musical practice, not 

just theory in the abstract. 

 After this paragraph on music, Descartes turns to another question Mersenne posed: 

How does a pendulum move in  “ empty space, ”  where the air gives no hindrance? Galileo ’ s 

response was not published until 1632 and hence was unknown to these men. Descartes 

makes a calculation dependent on the length of the string and arrives at fractions among 
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which are several well known to him from musical theory, such as  43
256
81,  . Perhaps there is 

no connection in his mind between these identical results for different musical and 

mechanical problems, but they remind us (as may also have struck him) that both sets of 

questions play out on the same mathematical terrain, between pure number and sensuous 

reality.  21   In this letter, as in his work as a whole, musical theory had set the mathematical-

empirical stage on which the new natural philosophy would perform. In his final lines, 

Descartes mentions a new problem straddling mechanics and music, which Mersenne had 

posed: what are the motions of a lute string when plucked? 

 Descartes enlarges the scope of such investigations in his next letter (November 13, 

1629):  “ In place of explaining only one phenomenon, I have resolved to explain all the 

phenomena of nature, that is to say, all of physics. ”   22   Questions, first about music, then 

pendulums and parhelia, have mushroomed into a project to understand  “ all the phenomena 

of nature ”  as mathematical physics, a vast synoptic enterprise. Descartes returns to 

the pendulum in a vacuum and gives a more detailed account in which again the music-

theoretic numbers 2, 4, 8, 9, 12, 16 figure prominently. He then returns to the problem of 

 Figure 6.3 
 Parhelia (mock suns or sundogs) in Fargo, North Dakota, 2009. 



Descartes’s Musical Apprenticeship 95

a plucked string, which he clearly considers a direct continuation of the problem of the 

pendulum swinging in a vacuum. What follows gives a window into his emergent thought 

process, especially its twists and turns in the face of difficulty and paradox. Descartes 

treats the string as making  “ turns and returns ”  away from its equilibrium position in a 

vacuum, each point along the string behaving essentially like the pendulum he had just 

considered. He concludes that the string ’ s vibrations would damp down geometrically: if 

its first vibration had amplitude 4, the next would have amplitude 2; if it began with mag-

nitude 9, then would follow 6, 4,  …  — again those musical numbers, here illustrating a 

quintessentially musical phenomenon. Then he hesitates:  “ I said  in vacuo , but in air I 

believe that [the successive vibrations] will be a little slower at the end than at the begin-

ning because, the movement having less force, it will not overcome the resistance of the 

air so easily. ”   23   Air is evidently more resistive than empty space, but suddenly he seems 

to recall the Aristotelian paradoxes of motion in a void, as he continues:  “ However, I am 

not sure of this and perhaps also the air, on the contrary, may help [the string] at the end 

because the movement is circular. ”  

 This moment of confusion, especially in this proudly lucid mind, gives invaluable evi-

dence of his struggle to make physical  and  mathematical sense of a phenomenon that, so 

far, had purely been treated arithmetically by music theory. In the face of this hornet ’ s nest 

of problems, Descartes ’ s response is telling:  “ But you can experience [ experimenter ] it 

with the ear by examining whether the sound of a string thus plucked is higher or lower 

at the end than at the beginning, for if it is lower, that means that the air slowed it; if it is 

higher, then the air made it move faster. ”  His purely mathematical arguments rely on a test 

by experiment, and a musical one at that. In the course of this letter, the problem of the 

plucked lute string that had begun as a purely musical phenomenon passes through a 

middle stage of mathematization (the analogy with a chain of tiny linked pendula), and 

finally returns to the realm of musical experience: the ear can test the exact influence of 

the resistive air. 

 Descartes ’ s letter continued to discuss the vibrating string, but the remainder of his text 

has not survived. His next letter (December 18, 1629) returns to these matters in even 

greater detail. Their interchange about optical phenomena now includes Descartes ’ s doubts 

about Mersenne ’ s claim to have seen a colored  “ crown ”  around a candle flame, as if it 

were a miniature mock sun. Descartes also asks Mersenne, as a cleric, about the possible 

danger in speculating about natural philosophy in directions contrary to Aristotle,  “ for 

it is almost impossible to express another philosophy without it immediately seeming 

against the faith. ”   24   He is worried about whether there might be anything  “ determined 

by religion regarding the extension of created things, namely whether they are finite 

or rather infinite, and whether in all those lands one calls imaginary spaces there might 

be true and created bodies, for as yet I have not wanted to touch this question. ”   25   

This hypothetical question gives a preview of Descartes ’ s nascent project, to propose 

a new (and distinctly post-Aristotelian) natural philosophy disguised as the description 



96 Chapter 6

of a purely imaginary world, which developed into his  Trait é  du Monde . Galileo ’ s  Dia-
logues on the Two Chief World Systems  (1629) had just appeared in Italy, though it had 

not reached France. Yet even before Galileo ’ s ecclesiastical troubles, Descartes was already 

apprehensive. 

 Descartes ’ s cautious inquiry alerts us that the mass of related questions we have been 

tracking were forming, in his mind, a new approach to natural philosophy that would make 

good on his sweeping claim to understand  “ all phenomena of nature. ”  Beginning in 

1619 – 1620 (just after completing his  Compendium ), he had begun drafting his  Rules for 
the Direction of the Mind , but abandoned that work after 1628; his new project seemed to 

carry forward the systematic, mathematical thrust of those rules. In his letter, we seem to 

see his new world beginning to be synthesized as he struggles with atmospheric and light 

phenomena, musical questions, pendulums, and lute strings. 

 Immediately after asking Mersenne ’ s theological advice, Descartes returns to musical 

questions, which now have a dynamic aspect: the use of various intervals depends on how 

the melodic lines  move , whether they ascend or descend. For guidance,  “ I hold to what 

[musical] practitioners say. ”   26   Descartes notices that if,  “ in a musical concert, the voices 

move always equally or become lower and slower gradually, that puts the listeners to sleep; 

but if on the contrary one raises the voice suddenly, that wakes them up. ”   27   These musical 

issues merge into questions about bodies:  “ One can say that a deep sound is more sound 

than a high one because it is made by a more extended body, it can be heard from further 

away, etc. ”  Here the primal quality of  extension , so important in Descartes ’ s later philoso-

phy, enters the realm of sound. Returning to whether strings vibrate differently in air than 

in a vacuum leads him to questions about balls of different weights and materials falling 

from different heights, fundamental for basic mechanics (and for which Galileo had not 

yet published his investigations). 

 Throughout this letter, Descartes moves freely between musical questions, vibrating 

strings, and falling bodies, showing how closely these topics are related in his mind and 

how helpful he finds passing between them: the coincidence of the pattern of two vibrating 

strings can explain consonances between them.  28   Descartes also considers the relation of 

contemporary music to that of ancient Greece, the touchstone of music ’ s fabled powers. 

His approach is not cerebral but flies free of rules: 

 Regarding the music of the ancients, I believe that it had something more powerful than ours not 

because it was more learned, but because it was less, from which it comes about that those who 

have a great natural talent for music, not being subject to the rules of diatonic music, do more by 

the sole force of imagination, which those cannot do who have corrupted that force by knowledge 

of theory. Further, the ears of hearers not accustomed to a music as ordered as ours are much more 

easy to surprise.  29   

 Breaking off abruptly, he announces  “ I want to start studying anatomy, ”  indicating his 

nascent interest in human physiology; his next sentence turns to sunspots.  30   
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 This amazing letter ends with a larger consideration of the nature of sound that seems 

to look from the contemporary theory of  “ pulses ”  of air set in motion by a vibrating body 

toward a more general theory of waves. Descartes notes that the vibrations that strike the 

ear are not those that engender the sound: he compares the process to the horizontally 

spreading circles caused by a stone dropped in water,  “ though the stone goes straight 

down. ”  This was not, to be sure, an original observation; Cohen judges that it remained 

within the  “ pulse ”  theory of sound, which did not truly become a wave theory until a 

century later when it developed into a mathematical theory of longitudinal waves of com-

pression and rarefaction.  31   But the question of the nature of sound was, for Descartes and 

Mersenne, alive and connected to the musical and physical issues they were struggling 

to resolve. 

 This intense exchange of letters at the end of 1629 was by no means the end of their 

correspondence on these matters. Thirteen other letters remain from 1630 to 1634, spaced 

more widely, bearing witness to Descartes ’ s interest in music in connection with other 

issues in natural philosophy, especially the vibrating string and falling weights in and out 

of a vacuum. Yet on April 15, 1630, Descartes wrote that  “ in fact I cannot distinguish 

between a fifth and an octave, ”  though it is hard to take seriously his assertion that he is 

really so tone deaf as not to know a fifth from an octave, when he has written so clearly 

on just that difference.  32   He goes on to make an astute contrast between the recognition 

of intervals heard out of context with the perception of intervals  “ when they are placed in 

a concert of music. ”  His further remarks seem to admit knowing the very intervals he had 

just claimed he could not distinguish. 

 In a letter of October 1631, Descartes theorizes that 

 sound is nothing else than a certain vibration [ tremblement ] of the air, that comes to tickle our ears 

and that the turns and returns of this vibration are more sudden as the sound is higher [in pitch]; so 

that, two sounds being an octave from each other, the deeper only vibrates the air one time while 

the higher vibrates just twice, and likewise with the other consonances. Thus one must suppose that 

when two sounds strike the air at the same time, they are that much more concordant when their 

vibrations recommence more often with each other and when they cause less inequality in the whole 

body of the air.  33   

 The standard theory of  “ pulses ”  of two pitches that coincide more or less completely when 

received at the ear here seems to shift toward a concept of  frequency  (as we now call it), 

which considers the element of  time  with respect to the vibration itself. At this point, 

Descartes wrote in the margin that  “ I abuse here the word  ‘ vibration ’  that I take for each 

of the blows or little shakes that move the body that vibrates. ”  His marginal note shows 

his hesitation about how exactly to describe the state of the vibrating  air , as opposed to 

the vibrating body that caused the sound or the vibrating ear receiving it. This problem 

continued to be the central issue on which rested the mathematical theory of waves and 

vibrations, and hence the whole mechanical theory of continuous media. The vibrating 
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string is the simplest example, reduced to a single dimension, of vibrating membranes and 

solids. Thus, this problem emergent from musical experience was foundational for the 

generalization of mechanics from point bodies to continuous media. 

 In this nexus of questions, the issue of the vacuum takes an important place; we have 

seen, in the moment-to-moment byplay of Descartes ’ s thoughts, as he set them down to 

Mersenne, his alternate consideration of and doubt about the nature and possibility of 

motion in a vacuum. At first, he seems to resist Aristotle ’ s famous arguments against the 

possibility of a void. Yet Descartes seems increasingly troubled by the status of a void vis 

 à  vis the resistance of air or other media. The unfolding dialectic of this letter offers evi-

dence that  Descartes ’ s rejection of the vacuum emerged in the context of this musical-
physical problem , one at least of the issues that moved him. 

 We can best see where this process took him by examining the text of  Le Monde de Mr. 
Descartes, ou le Trait é  de la lumi è re et des autres principaux objects des Sens  ( The World 
of Mr. Descartes, or the Treatise on Light and on the Other Principal Objects of the 
Senses ), as he assembled it during 1629 – 1633. His subtitle signals that, though  light  is his 

subject, his design encompasses a sketch of the whole visible universe and all the  “ objects 

of the senses. ”  By labeling his treatise merely an imaginary vision, he seeks a safe way 

to present a new cosmology that could escape controversy or censure. Throughout this 

work,  sound  is the hidden thread that helps him find and state his new worldview. At the 

very beginning, Descartes distinguishes between  “ our sensation of light ”  and  “ what is in 

the objects that produces that sensation. ”  For him, sound is essentially like touch, the sense 

 “ thought least misleading and most certain, ”  yet  “ even touch causes us to conceive many 

ideas that in no way resemble the objects that produce them. ”  Choosing an example that 

makes one wonder about his military experiences, Descartes notes that in the heat of battle 

a soldier might think he had been wounded, though  “ what he felt was nothing but a buckler 

or a strap. ”   34   Perhaps this was as close as he came to being wounded in action. 

 Descartes uses sound, understood as  “ a certain vibration of air striking against our ears, ”  

as a template to form his understanding of light and the cosmos, which he conceives as 

an infinitely divisible fluid continuum. His reluctance to accept a void, which emerged in 

his letters, eventuates in his view (expressed in  Le Monde ) that the continuous world-fluid 

is not finally atomic and hence does not admit of any void spaces, however small. As 

critical as he was, Descartes finally found himself on the same side as Aristotle not only 

because of the metaphysical problems of ascribing any positive properties to pockets of 

emptiness but because he considered that sound must travel in a continuous medium (as 

in his image of the spreading circles in a pond) that will not tolerate interruption by voids.  35   

 Thus, in his figures Descartes represents the minute  “ parts ”  of his fluid cosmos by little 

balls, which model the interaction of the fluid on the small scale, not really atoms in any 

physical sense. In   figure 6.4 , the fluid can move by the transmission of motion from one 

layer of balls to the next, each relaying the  “ touch ”  to the next by a process that is essen-

tially the same as his understanding of sound. He uses exactly the same pictures to explain 
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our sensation of light as an experience of  pressure  registered by the eyes, essentially  sonic  

in its dynamics. For instance, he depicts the refraction of light rays by the reciprocal 

pushing and impeding of the little balls of world-fluid (  figure 6.5 ). In his later develop-

ments of this idea, he ascribed the phenomenon of color to the different states of spin of 

these interacting balls, which he compares to spinning tennis balls.       

 On the largest scale, Descartes uses his sonic world-fluid to explain the motions of the 

planets in terms of a series of vortices, which carry around the visible planetary bodies 

(  figure 6.6 ). His picture had the intuitive merit of explaining how the planets could move 

in seemingly empty space by showing the motions of the invisible fluid that guide them, 

those closer to the center of the vortex moving more swiftly about that center than those 

farther away, as is true of the planets with respect to the sun. In Descartes ’ s picture, the 

sun must necessarily stand at the center of our vortex, so that his world is necessarily 

Copernican, probably the crucial fact he wished to conceal by presenting a purely imagi-

nary world.    

 The impending controversy brought him back to this all-too-human Earth. Though in 

July 1633 he had written Mersenne that his treatise  “ is just about finished, ”  in November 

of that year he learned the news of Galileo ’ s condemnation, which  “ has so astonished me 

that I am almost resolved to burn all my papers, or at least not to let anyone see them. ”   36   

 Descartes ’ s new physics required the motion of the Earth and offered an alternative to 

Aristotelian physics. Even Galileo, convinced Copernican though he was, had no account 

of an alternative physics that might support the new picture of the universe that shattered 

the Aristotelian separation between  physis  and the perfection of the heavens ( ouranos ). 

Though Kepler had offered speculations about  anima motrix , a  “ moving spirit ”  analogous 

to magnetic power emanating from the sun capable of moving the planets around it, he 

 Figure 6.4 
 Descartes ’ s illustration from  Le Monde , showing how horizontal pressure to the right on the  “ parts ”  of a fluid 

marked 1, 2, 3, 4, 5 will in turn move those marked 10, 20, 30, 40, 50 to the right. 
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was not able to embed that speculation into a coherent picture, as Descartes had. Des-

cartes ’ s decentering of the Earth went a step beyond Copernicus and Kepler because it 

grants our sun no special cosmic status; our solar system is merely one vortex among many 

others in an endless, eddying expanse with no center or end. Bold as he was, Kepler was 

unable to accept such cosmic vastness, to which we shall shortly return. 

 Though daring in his  Monde , Descartes was cautious in this-worldly affairs. He decided 

to suppress his treatise rather  “ than to have it appear mutilated ”  through politic omissions, 

as though it were possible to hide its central Copernican argument. Much later, in 1644, 

he considered the time ripe to publish his vortex-cosmos in his  Principles of Philosophy , 

which had great influence in the succeeding centuries, especially on continental natural 

philosophy.  37   

 After the 1633 – 1634 crisis, Descartes ’ s correspondence contains very little reference to 

music. Yet, as Walker pointed out, even in 1640 Descartes was involved in musical discus-

sions, prompted by Mersenne ’ s commission of a vocal setting of a French poem by Joan 

Albert Ban, who did not know that it had also been set by a distinguished contemporary, 

Antoine Bo ë sset. Mersenne sent both settings to Descartes, who wrote an extensive 

response that preferred Bo ë sset; as Walker notes,  “ he had certainly examined Bo ë sset ’ s 

air with great attention, and his defense of it shows remarkable insight and subtlety. ”   38   

 Figure 6.5 
 Descartes ’ s depiction of the mechanism of light refraction, from  Le Monde ; the whole space should be considered 

as filled with balls representing parts of the world-fluid; the straight lines from points  L, I, M  illustrate the refrac-

tion of rays from those points via the rebound of representative balls at 1, 2, 3 and 4, 5, 6. 
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 Figure 6.6 
 Descartes ’ s diagram of the cosmos from  Le Monde , showing our solar system (within  FGGF ), centering on our 

sun  S , with the various planets labeled by their astronomical symbols, including the Earth. The nearby solar 

system within  GHHG  centers around the star   ε  . 
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 Though Descartes himself may have continued to have such interests, at least as solicited 

by Mersenne, the music may have drained from his imagined cosmos. If the sun is only 

one of a vast number of stars, there may be nothing special about the  “ harmony ”  of our 

particular solar system; the relative distances and periods between its planets might be 

utterly different in other solar systems. Kepler ’ s cosmic harmonies sought  musical  inter-

relations of orbital radii and periods, on the model of understanding a motet by Lasso 

through awareness of its salient melodic and modal qualities. The significance of the 

cosmic  “ motet ”  — the harmonic ordering of the motions of the planets — is diluted, even 

negated, if our solar system is only one among many, seemingly random, possibilities.  39   

The story of Descartes ’ s vortex-universe sets the stage for a recurring dilemma: the quest 

to understand the harmony of the cosmos can lead to a plurality of worlds whose very 

multiplicity challenges any overarching universal music. 

 

 

 

 

 
 



 Advances in mathematics and natural philosophy owe a great deal to conversation, whether 

in person or via correspondence, contrary to the misapprehension that such work emerges 

in isolation. Descartes ’ s interest in music could have remained undeveloped, had not his 

dialogue with Beeckman initially stimulated him to assemble his thoughts on the subject. 

During the critical years from 1629 to 1634 and thereafter, Mersenne ’ s questioning sus-

tained Descartes ’ s continuing response. 

 So far, Mersenne himself has remained in the background, as if he were merely a sound-

ing board for Descartes. To some extent, this reflects the disparity in what remains of their 

correspondence: only five letters from Mersenne, compared to 146 from Descartes.  1   

Whether Mersenne ’ s letters have simply been lost over time or Descartes just discarded 

them, we tend to read their dialogue through the one-sided perspective of Descartes ’ s 

responses. But any answer must be judged in light of the precise inquiry that prompted it 

and, as Blaise Pascal observed, Mersenne  “ had a very special talent for posing beautiful 

questions, for which there was no one else comparable. ”   2   To understand the implications 

of any scientific theory, of any  answer , we need always to ask:  but what was the question?  

A beautiful question tends to go beyond any response it provokes, which does not close 

or end it but gives it further life. 

 In the case of Mersenne, this inquiry will lead us to further aspects of their dialogue 

(and of the significance of music) than were apparent in Descartes ’ s side of the correspon-

dence. Though for Descartes music was one among many interests, for Mersenne music 

was at the very center of his work, especially before 1637. He was, if anything, even more 

of a polymath than Descartes, as befitted his special role as the self-appointed (but uni-

versally recognized) secretary of the Republic of Letters, that cosmopolitan and self-

organized network of scholars so important for the development of learning in their time. 

Often writing in Latin, the international language shared by the learned, these savants 

exchanged and transmitted enormous amounts not just of information (in the contempo-

rary, neutral sense of  “ data ” ) but of thought, observation, and (above all) salient questions.  3   

Among them, no one was more prominent or more important than Mersenne in shaping 

the intense discourse that formed the new natural philosophy. 

 7  Mersenne ’ s Universal Harmony 
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 The last of six children born to a provincial laboring family, Mersenne did not come 

from the privileged world of Descartes, yet he came to share its intellectual and cultural 

milieu. Though they overlapped at the same Jesuit school, there remains no record of 

any contact between them then; Mersenne was eight years older and the Jesuits took care 

to separate boys of different ages. After further studies in Paris, at age twenty-three 

Mersenne joined the Franciscan Order of Friars Minor, known as the Minims, then con-

sidered the most severe monastic order in Western Christendom. He spent most of 

his life in that order ’ s monastery in Paris, but through friendship and an immense cor-

respondence, he reached out to a vast array of scholars across Europe. Descartes was 

only one among a group of correspondents with whom Mersenne maintained a particu-

larly strong contact. In that era before academic journals, Mersenne ’ s letters served to 

disseminate and exchange views so well that his correspondents were effectively publish-

ing their letters to him. He did not scruple to hide what he learned because, for him, 

dissemination and discussion of important new findings far outweighed issues of priority. 

His activities constituted a veritable  “ Acad é mie Mersenne ”  he organized and conducted 

through his correspondence, which led to the formation of the French Acad é mie des 

Sciences in 1666.  4   

 Mersenne ’ s own intellectual journey took him from conventional adherence to geo-

centric cosmology to gradual acceptance and advocacy of the new Copernican views, 

even against the opposition of the Roman hierarchy. In his voluminous commentary on 

Genesis,  Quaestiones in Genesim  (1623), his first published work, he cited the eccle-

siastical condemnations of 1605 and 1616 against Copernicus and concluded that he 

 “ could not demonstrate that the center of the universe is not our earth  …  whatever the 

explanation of Aristarchus of Samos and Copernicus after him. ”   5   His phrasing suggests 

that, though he had some sympathy for the Copernican view, he could not demonstrate 

it to his own satisfaction, at least to the point of holding it publicly in the face of 

ecclesiastical opposition. But as he assembled the materials for his work on universal 

harmony, Mersenne gradually moved closer and closer to the Copernican position, 

moved by musical arguments he discusses in his  Trait é  de l ’ harmonie universelle  

(1627), a trial run for the  magnum opus  he produced a decade later. He locates the 

technical astronomical issues within the context of the relation between musical con-

sonances, the heavens, and the planets. 

 Mersenne begins with the Platonic account and places himself with those who believe 

in the auditory reality of the heavenly music. We cannot hear this heavenly music,  “ for 

we are accustomed to it from the wombs of our mothers. Sometimes the sound is too far 

from us, too low, too high, or too great to be heard, ”  as with the extremely quiet sounds 

 “ which ants and other little animals make. ”   6   Having marshaled the classical lore, he asks 

 “ if Johann Kepler has alighted on more than Robert Fludd concerning celestial harmony. ”  

Mersenne phrases the debate between Copernicus ’ s champion, Kepler, and the geostatic 

traditionalist Fludd, with Brahe providing  “ the most correct observations that we have. ”  
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Mersenne reviews the planetary observations expressed in terms of their consonances or 

dissonances; where purely Copernican arguments had earlier failed to sway him, Kepler ’ s 

musical treatment finally wins the day. 

 After explaining the Copernican system, he praises it by saying that it will 

 serve musicians for entertaining their spirits in the contemplation of celestial things while playing 

on the spinet, lute, viol, organ, or any other wind or stringed instrument, and for admiring the provi-

dence of God, Who has preserved such beautiful proportion in the order which He has placed in all 

parts of the universe, I shall clearly show that man can not imagine anything excellent which is not 

found therein [in the Copernican system] with a singular perfection.  7   

 Mersenne ’ s  “ explanation ”  includes a detailed account of Kepler ’ s work, which he contrasts 

with that of Copernicus and Tycho, who  “ concur regarding the sizes of the sun and the 

earth ”  and many other interplanetary distances. Mersenne prudently refrains from flatly 

asserting the motion of the Earth but strongly implies his views through his high praise of 

Kepler ’ s detailed harmonies, which agree with observation and hence have the kind of 

musical provenance that Ptolemy evidently lacks, in Mersenne ’ s eyes. His  “ Table of the 

Harmony of the Planets ”  marshals the observational evidence bearing on Kepler ’ s claims, 

which Mersenne examines critically. Mersenne notes a number of places in which the 

consonances are not perfect, reminding his readers that, according to Kepler, we should 

judge these harmonies  “ as if we were seeing them from within the sun. ”  Viewed from that 

central perspective,  “ the consonances are perfect when one considers the two points where 

the planets are nearest and farthest apart and when one always places two planets together, ”  

at their conjunctions. 

 Despite these imperfections, Kepler ’ s planets  “ approach perfection so closely that the 

ear would have difficulty discerning what they lack. ”  Accordingly, Mersenne feels that 

Kepler ’ s planetary intervals  “ may serve as musical notes, not only for a simple song, but 

also for the four parts. Men may be said to have imitated the apparent motion of the stars 

in order to represent planetary motion in their songs. ”   8   In summary, Mersenne judges that, 

though Kepler  “ did not find all that he desired to find and we still do not know precisely 

enough the distances or motions of the planets, he blazed the trail and said several things 

never before said or even thought. ”  Mersenne further speculates that the hymn to the sun 

that Kepler ascribes to the pagan Neoplatonic philosopher Proclus might be read as wor-

shipping the Son of God  “ under the name of Titan or Sun, perhaps out of fear of being 

punished by emperors who had the Christians killed and against whom he wrote. ”  If so, 

the heliocentric view could be identified as Christian and would identify this Neoplatonic 

sage with the Christian cause, implicitly turning the tables on those who (like the pagan 

Roman emperors and perhaps their latter-day heirs in Rome) proscribed heliocentrism. 

Mersenne ’ s conclusion combines a clear declaration of the immovability of the sun with 

careful avoidance of language that might get him in trouble:  “ May it please God that all 

the musicians of the Earth should never wish to sing or compose anything but hymns and 
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A B

motets in order to dedicate them to the great Sun, which is immobile and more truly moves 

all creatures at will than the sun moves the planets. ”   9   

 By contrast, his account of Fludd ’ s arguments shows that Mersenne ’ s devotion to cosmic 

harmony is tempered by his requirement of precise observation and principled argument. 

In some respects, Mersenne ’ s penchant for numerology resembles Fludd ’ s mystical numer-

ation of the cosmos. Even in his later  Harmonie Universelle , Mersenne included his own 

version of one of Fludd ’ s famous images, the cosmos as a monochord tuned by the hand 

of God,  “ the divine Orpheus ”  (  figure 7.1 ); even though he criticizes and finally rejects 

Fludd, Mersenne shares his fundamental premise of cosmic harmony. Mersenne presents 

a rather detailed account of Fludd ’ s Neoplatonic cosmology, including a summary of his 

numerological design, which relies on such traditional identifications as between the 

 Figure 7.1 
 (a) Robert Fludd ’ s image of the cosmic monochord from his  Utriusque cosmi  …  historia  (Oppenheim, 1617). 

(b) Mersenne ’ s similar image of  “ universal harmony ”  from the appended section  “ On the Utility of Harmony ”  

from his  Harmonie Universelle . 
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Trinity and the number three, descending into the created world as larger and larger 

numbers come into view. Mersenne had deep theological disagreements with Fludd ’ s 

pantheism:  “ He mixes the Divinity with creatures, as if the latter had the divine essence 

for their form.  …  I do not believe that he wanted to corporealize the Divinity, and I attribute 

it rather to his ignorance than to his malice that he considered creatures as nothing else 

but God. ”   10      

 In the end, though, Mersenne judges Fludd more in terms of the empirical grounding 

of his claim, finding  “ no solidity in all this discourse [of Fludd ’ s] ” ; he is rather  “ of the 

opinion of Kepler, who contends that all the harmonies of Fludd and the Platonists are but 

analogies and comparisons based only on imagination. ”   11   Mersenne dismisses Fludd ’ s 

harmonies as arbitrary and ungrounded; he confronts them with what he considers proper 

numerology from Plato and also uses the work of Regiomontanus (the greatest astronomer 

in the century before Copernicus) to attack the details on which Fludd built his harmonies. 

Mersenne emphasizes what he considers gross physical errors in Fludd ’ s argument, such 

as a triangle of strings that  “ can not produce the sounds of the musical scale, if they are 

of equal thickness and tensions, ”  as Fludd had supposed, which Mersenne corrects in his 

diagram (  figure 7.2 ).    

 Fludd ’ s basic physical misunderstanding violates Mersenne ’ s deep commitment to the 

facts of harmony, not just their language. After remarking in a conciliatory vein that  “ it is 

much easier to reproach others than to do better than they, ”  Mersenne still concludes that 

 “ it is far better not to know this Harmony at all than to imagine it as something entirely 

other than what it is, ”  as Fludd had.  “ False imaginations exercise indescribable tyranny 

upon our spirits, from which our spirits can disengage themselves only with difficulty. ”   12   

Thus, Mersenne feels compelled to exorcise Fludd ’ s false harmonies at the same time as 

he embraces Kepler ’ s; both being heretics (one a pantheist, the other a Protestant), the 

grounds of Mersenne ’ s choice remain musical, rather than theological. 

 Though himself orthodox, Mersenne ’ s passion for universal harmony led him to espouse 

a teaching anathematized by his superiors. Far to the north of the Curia, from within the 

proudly independent French church, Mersenne was able to advocate the Copernican cause 

in ways not possible to Galileo, whom he attempted to befriend and defend.  13   But this was 

only one facet of Mersenne ’ s amazingly diverse interests, which extended throughout the 

whole realm of science and engineering. This got him into trouble during his first foray 

abroad, to the Netherlands in 1628 – 29. Though himself without funds, he traveled at the 

expense of his order and exhibited such curiosity about everything he saw that, near 

Anvers, he was arrested as a spy and thrown into the tower overnight. On another occasion, 

a suspicious soldier shot at him, though fortunately the weapon was not loaded.  14   

 During the height of the correspondence we examined in the last chapter, the Galileo 

affair was just becoming known in France while Mersenne was immersed in the prepara-

tions for his largest work,  Harmonie Universelle  (1636 – 37). Throughout its fifteen hundred 

pages, this book demonstrates many times over the centrality of music in his work on 
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 Figure 7.2 
  “ The System of Robert Fludd, ”  from Mersenne,  Trait é  de l ’ harmonie universelle  (1627). Correcting Fludd ’ s 

mistake, Mersenne places a bridge at the number indicating each string, showing the actual length required to 

sound the stated note. The flute illustrates another argument by Mersenne against Fludd ’ s pantheism. 
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natural philosophy. Music played a crucial role in the discoveries that Mersenne himself 

made and was constantly present in his correspondence.  

 Both on the large and the small scale,  Harmonie Universelle  shows the closest interac-

tion between practical music, its theory, and natural philosophy. Its subtitle proclaims that 

it treats  “ the nature of sounds, and of movements, ”  as well as of  “ consonance, dissonance, 

genres, modes, composition, voice, chants, and all sorts of harmonic instruments. ”  Its 

elegant frontispiece (  figure 7.3 ) depicts Orpheus playing his lyre to charm the animals, in 

which a lion lies next to a lamb, identifying the scene with the biblical vision of the end 

of time and the divine singer with the Redeemer. This is indeed a vision of universal 

harmony. Through his motto from the Psalms, Mersenne depicts his project as a confession 

of  “ thy truth with the instruments of the psaltery, ”  in which singing and the harp itself are 

not only the means of divine praise but also the instruments through which divine truth is 

revealed. In the process, warring animal natures are subdued: the lion looks down rather 

fiercely on his prey, who turns demurely away. The image hints at the possibilities but also 

the limits of taming the passions; only the innately peaceable animals seem totally 

immersed in the music, like the ecstatic turtle at Orpheus ’ s feet or the rapt sloth in the tree 

above his head.  15      

 Mersenne begins with  “ the nature and properties of sounds, ”   “ the movements of all sorts 

of bodies, ”  and  “ the movement, tension, force, weight, and other properties of harmonic 

strings and other bodies, ”  followed by treatises on the voice, on chant, consonances, dis-

sonances, the art of composition, and all sorts of instruments. He situates his encyclopedic 

treatment of music in relation to the new Galilean theories of motion. He does not disguise 

his adherence to the heliocentric view, but (in contrast to his preliminary  Trait é  de 
l ’ harmonie universelle ) he does not devote a section of the new book to astronomy or 

cosmology, standard topics though they were in treatments of  musica mundana , thereby 

avoiding dangerous debates. He anticipates that, though practicing musicians may find his 

first books  “ the most laborious of all, ”  they will still understand the necessity of connecting 

music with fundamental physics. In short, he imagines his readers to be, like himself, 

passionately interested in music as practical art and physical phenomenon. He believes 

that they, like he, want to confront facts established by precise experiments, not just plau-

sible reasonings or empty words; he takes nothing simply from authority, not even Gali-

leo ’ s, but wants to test assertions for himself and urges his readers to do likewise. As a 

prime example, in his preface he emphasizes the surprising result of that archetypical 

Galilean experiment, the  “ Pisan drop ” :  “ two bodies of the same size but one weighing 

eight times more than the other will fall in almost the same time when dropped over one 

hundred feet. ”  He takes this sheer fact as crucial in light of the long-received Aristotelian 

arguments that deny this. As he insists on positive proof by experiment, he also defends 

using the technical terms of the art of music, whose practical aspects are, for him, a direct 

source of experimental knowledge. 



 Figure 7.3 
 Frontispiece of Mersenne,  Harmonie Universelle  (1636). The motto is drawn from Psalm 70:22:  “ For I will also 

confess to thy truth with the instruments of the psaltery: O God, I will sing to thee with the harp, thou holy one 

of Israel. ”  
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 Mersenne also emphasizes that the investigations of sound and light mutually clarify 

each other, so that the study of sound is the royal road to understanding nature as a whole. 

Ever since his visits with Descartes and Beeckman in the Netherlands in 1628 – 29, he had 

considered light, like sound, to be a purely corporeal phenomenon. This required a certain 

adjustment in reading the divine poetry of scripture so as not to conflict with these scien-

tific insights. In that spirit, Mersenne interprets sacred scripture to present the study of 

universal harmony as the key to human excellence, whose understanding of nature culmi-

nates in personal and religious perfection.  16   

 Writing in the aftermath of Galileo ’ s pioneering work, and by comparison with it, one 

might think of Mersenne as derivative or as essentially a reporter, not an originator of 

discoveries. Yet Mersenne reached certain insights well before Galileo. As he presents 

his work in  Harmonie Universelle , he connects these insights within his overarching 

musical context. Though he was rarely, if ever, truly original in the sense of initiating a 

new question or line of investigation, Mersenne was able to use his extraordinary persis-

tence and awareness of the history of prior developments to extend them still further. Some 

of these have an obvious musical origin and importance, such as his demonstration that 

pitch is proportional to frequency and hence musical intervals are ratios of frequencies of 

vibration. Though G. B. Benedetti, Vincenzo Galilei, and Beeckman had already estab-

lished the fundamental argument underlying this general proposition, Mersenne showed 

how to count the slow vibrations of very long strings against  “ a heartbeat, or a very slow 

and lazy pulse ”  he takes as measuring a second of time.  17   In so doing, he gives an experi-

mental and observable actuality to this proposition, in accord with his principled prefer-

ence for deeds over words. Mersenne ’ s musical-physical experimentation gave the first 

absolute measurement of the frequency of a vibrating body, which Galileo had thought to 

be impossible because the rapidity of audible vibrations blurs them together so that they 

cannot be counted by sight. 

 Mersenne solved this problem by using a string 17 ½  feet long,  “ a lute or viol string 

of the size one mounts on racquets, ”  alluding to the vogue of tennis that also touched 

Descartes, though this Gargantuan string is  “ made from a dozen sheep ’ s intestines. ”   18   

Essentially, Mersenne magnified a musical string to the point where its vibrations are 

commensurate with human sense capabilities. Stretched under a weight of half a pound, 

his string vibrates at two cycles per second, just countable because its cyclical  “ turns 

and returns ”  have been sufficiently slowed. Then Mersenne increases the weight on the 

string: under two pounds, it vibrates four cycles per second; under eight pounds, eight 

cycles per second. Though he does not make this explicit, these observations depend on 

his musical awareness, for these specific cases correspond to successively higher octaves 

above the lowest tone, as given by the series of ratios of frequencies 2:4:8 given by the 

ratio of weights  ½ :2:8. One infers that he adjusted the weight upward and listened for 

the octaves (and perhaps also noted the characteristically doubled visual wave-form of 

the string). 
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 From these observations follows an empirical proportionality between the vibrational 

frequency of a string and the square root of its tension (here measured by the weight); in 

other experiments, he likewise showed that frequency varied inversely as the string ’ s length 

and its cross-sectional area, results now called  “ Mersenne ’ s laws. ”   19   He also established 

similar relations for wind and percussion instruments, demonstrating their general applica-

tion to vibrating bodies. These findings allowed him to carry his result from the ultra-slow 

vibrations of his giant string to the realm of more ordinary frequencies. He observes that 

a section of the same string about one foot long stretched under an eight-pound weight 

sounds in unison with a four-foot organ pipe pitched at the  ton de chapelle , one of the 

standard pitches in use at the time. From his empirical laws, he deduces that this string 

was vibrating at 84 cycles per second, a frequency sufficiently high that, as Galileo had 

surmised, it could not have been counted directly.  20   Mersenne goes on, in his methodical 

way, to tabulate the frequencies of notes over eight octaves. 

 He notes that  “ a string must beat at least 20 times a second in order to be heard, and 

only 42 times a second for its movement to be seen by the eye, nevertheless without being 

able to count its returns until it only makes more than ten, ”  indicating the greater sensitivity 

of the ear to discern these very slow vibrations. Thus, Mersenne ’ s experimental technique 

essentially depends on the ear even as it explores realms of frequency that are no longer 

aurally discernible. 

 At the same time, Mersenne became interested in aspects of sound that would not 

depend on the observations of a trained ear. By applying the results of his empirical laws, 

he was able to show that  “ a deaf man can tune a lute, viol, spinet, and other string instru-

ments and find the sounds he wishes, if he knows the length and size of the strings. ”  He 

provides a  “ harmonic tablature for the deaf ”  that enables them to find the visible charac-

teristics of different notes they might be asked to produce (  figure 7.4 ). Perhaps this was 

addressed to his friend Descartes, who by 1638 described himself as  “ almost deaf. ”   21   In 

the following generation, Joseph Sauveur made important contributions to acoustics (even 

providing that name to the field) though profoundly deaf and mute until age seven.  22   

Conversely, Mersenne demonstrated that  “ one can know the size and length of strings 

without measuring or seeing them, through the means of sounds, ”  so that hearing can 

substitute for the other senses.  23      

 A similar blend of practical musical consideration and theoretical speculation character-

izes Mersenne ’ s other investigative initiatives. He may have been the first to measure the 

speed of sound and to show its independence of pitch and loudness, a proposition he tested 

by various kinds of echoes. Mersenne ’ s experiments involve using language itself to probe 

the speed with which the echo is formed;  “ it is certain that all sorts of echo that repeat 

seven syllables pronounced in the time of a second must cover the distance of 485 feet, ”  

which he compares to the firing range of an arquebus.  24   He repeated the syllables  Bene-
dicam Dominum  ( “ Let me bless the Lord ” ) at higher and lower pitches, softly and loudly, 

in foggy and clear weather, to determine that the speed of their sound, measured by the 
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clarity of their echo, did not depend on these factors. Though his monastic brethren would 

have recognized his words, his intent went beyond ordinary prayer. He also refers to an 

echo in the Tower of Metallus near the Aventine Hill in Rome, which (or so he recounts) 

can repeat eight times the recited opening of Virgil ’ s  Aeneid ,  Arma virumque cano qui 
primus ab oris  ( “ of arms and the man I sing  …  ” ). Mersenne used this curious lore to 

extend his calculations. He notes that this verse cannot be said clearly and distinctly 

in less than two seconds, so that the eightfold repetition would take thirty-two seconds 

(evidently allowing equal time between each successive echo). Based on his calculated 

velocity of sound, the eight echoes traverse 1,296 toises, traveling back and forth, about 

half a league (2.78 km). He speculates that this might give a way of measuring a 

large distance (such as the width of a city) by measuring how far sound could be heard 

across it. 

 Figure 7.4 
 Mersenne ’ s  “ Harmonic Tablature for the Deaf, ”  showing (leftmost column) the notes of the scale, along with the 

tension, size, and length of the string needed to produce these sounds. 
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 Having used an instrument string to measure the frequency of sound and its laws, Mer-

senne points out that  “ if one brought a piece of music from Paris to Constantinople, to 

Persia, to China, or elsewhere, along with those who understood the notes, ”  they could 

perform the piece  “ according to the intention of the composer ”  because they could adjust 

the pitch to the Parisian standard, using his laws to generate the corresponding frequency.  25   

Further, the tempo could be specified in universal units, such as beats per resting pulse or 

per second by the clock. 

 These issues of musical time also are connected with Mersenne ’ s reconsiderations of 

the clock itself and the means by which it might measure time more accurately. This 

forms part of his book on the  “ movements of all sorts of bodies, ”  on which depends 

the problem of vibrating strings. Here, he is much influenced by Galileo, whom his 

own activity in this field outstripped on some occasions. In June 1634, he noted that 

the frequency of a pendulum is inversely proportional to the square root of its length, 

a full year before Galileo found this result. In his  Harmonie , Mersenne provides a table 

showing this result, noting that physicians might use such a simple pendulum  “ to find 

out how much faster or slower is the pulse of their patients at different hours and days, 

and how much the passions of anger and other hasten or retard it. ”  He also noted that 

watchmakers could also use this device to improve time-keeping; though the pendulum 

watch was not patented by Christiaan Huygens until 1656, with improvements that were 

important for it to reach sufficient accuracy for navigation and other precise uses, 

Mersenne ’ s insight was an important step.  26   

 Mersenne ’ s detailed treatment of the mechanics of falling bodies, inclined planes, and 

pendulums clearly supports and enables his ensuing deductions about vibrating bodies, 

following out Descartes ’ s insight that a vibrating string could be understood as an ensem-

ble of pendulums, one for each point along the string. As Peter Dear puts it,  “ Mersenne 

accomplished the harmonization of mechanics through the mechanization of music. ”   27   But 

Mersenne did not only move in one direction with these deductions, from musical observa-

tions to physical theories. He also moved in the other direction, from the physical proposi-

tions he had established to their musical applications. For instance, he studied the various 

sounds made by falling bodies, which vary in pitch depending on the height from which 

they fall. From what heights, he asked, ought they be dropped so as to produce any given 

consonance or dissonance? He worked out an elaborate table that he mapped into a striking 

crisscross circular design, in which the entire musical scale is cross-referenced with the 

appropriate falling body (  figure 7.5 ). This construction hovers somewhere between the 

conceptual and the observational; it does not seem credible that he has actually  heard  

the pitches of these  “ singing ”  bodies with any degree of accuracy as they fell. Mersenne 

gives the authority of Aristotle for the general premise that  “ a sound is that much higher 

if it is made by a faster movement, ”  to which he adjoins the Galilean law of freely falling 

bodies. From this, Mersenne extrapolates the degrees of velocity reached by two falling 

bodies (depending on the height from which they were dropped) and then rather arbitrarily 
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 Figure 7.5 
 Mersenne ’ s diagram showing the distances traversed by freely falling bodies (left), which he converts to the 

appropriate ratios needed to sound musical intervals (right). In his circular diagram, the pitches of the scale are 

shown around the circumference, while the relative distance a body needs to drop to make a given interval (as 

he calculates it) is shown by a chord between its two notes. 
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takes the ratios of these speeds to represent the musical ratio that they  would  sound at that 

terminal velocity. He does not correct for air resistance or any other factor that would 

indicate the kind of experiment he elsewhere insists on; this whole proposition seems a 

 jeu d ’ esprit , an imaginary return from physics back to the spirit of music from which it 

had emerged. Though allegedly staged on Earth, its pattern of deduction is much closer 

to that which Kepler (and Mersenne) had used to examine the harmonic relations between 

the planets. In that sense, Mersenne is trying to bring back to Earth what he had learned 

in the heavens.    

 Above all, Mersenne ’ s musical motivations led him to investigate the physics of sound. 

Descartes had noted overtones at the octave, fifth, and third; Mersenne noticed other 

 petits sons ,  “ little sounds ”  that could be heard from a single string a second octave higher 

and, above that, the note a major third higher still (  figure 7.6 ). Their successive ratios of 

string lengths fall along the series of the first five integers. He noted that  “ it is necessary 

to find complete silence to perceive them, although this is not necessary when one has a 

trained ear. ”  These overtones were overlooked because musicians  “ are so anticipating and 

preoccupied with the natural tones of the string that there is (it seems) no place in their 

ordinary senses or imagination to receive the idea or species of these small, delicate 

sounds. ”  He notes that it is easier to hear them played by a bass viol in the silence of the 

night, details that suggest the range of his experiments. Despite the difficulty of producing 

and distinguishing these sounds from the fundamental tone (or the habitual sound of the 

string in the player ’ s ear),  “ I have had no difficulty and I have met many musicians who 

hear them as well as I and undoubtedly ever one hears them when they lend the necessary 

attention. ”   28   Though the  petits sons  had been there all along, Mersenne was the first to 

hear so many of them because of his extraordinary attention to every detail of musical 

experience and instrumentation. As precedents he mentions only Aristotle, not Descartes, 

though Mersenne knew of Descartes ’ s  Compendium . Even so, Mersenne went much 

further than Descartes precisely because of his far greater interest in the fine details of 

music. Where Descartes barely commented on the extra tones, Mersenne verified his 

observations  “ very exactly more than a hundred times, on the viol and on a theorbo, as 

well as on two monochords, ”  in order to exclude the possibility  “ that these different tones 

do not come from other strings that are on the instruments and that tremble without being 

 Figure 7.6 
 The fundamental pitch (C) and the first four overtones ( petits sons ) above it, corresponding to integral ratios, as 

observed by Mersenne. 
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played, ”  by sympathetic vibration,  “ since the single string of the monochords produce the 

same sounds. ”   29      

 Mersenne goes even further when he notes that there are  “  at least  five different tones 

at the same time, ”  implying the possibility that there are still more. He hears  “ still a fifth 

one higher ”  that  “ produces the major twentieth with the natural tone. ”  If so, this seventh 

overtone (counting the fundamental as the first) would correspond to the note A above the 

last overtone shown on   figure 7.6 ; later observations placed it closer to B ♭ . Given the 

increasing faintness of each successive overtone, it is not surprising that he would have 

had difficulty with this even fainter one, but theoretical reasons may have made him hesi-

tate. Up to this point, the overtones had coincided exactly with the well-known conso-

nances: octave, fifth, major third. Theorists soon noticed that Mersenne ’ s series of four 

overtones (  figure 7.6 ) in fact sounded the ordinary triad based on the fundamental tone, 

laid out in exactly the way that practitioners had found most euphonious. This was, for 

many music theorists, the fundamental justification of the triad as the  “ chord of nature. ”   30   

 Compared to that purely triadic standard, the seventh overtone is a rogue, an outlier, 

rather like Boethius ’ s version of the fifth hammer in the blacksmith shop. Mersenne ’ s 

hesitation about its status reflects its deviance from ordinary music theory and practice. 

So strong was his commitment to the conventional intervals that he felt implicit pressure 

to reduce it to one of the notes he did know (namely, the twentieth, two octaves and a 

sixth above the fundamental). When he turns to wind instruments, he confirms the series 

of overtones so far, which are formed by  “ overblowing ”  the airstream. The trumpet of his 

time, a tube with a flared horn and no valves, produces this series with great clarity and 

volume, including the troublesome seventh partial ( ♪  sound example 7.1). Players then 

and now know that this tone lies flat from the equal-tempered scale (and also from just 

intonation), so that it needs to be adjusted upward in pitch by using the tension of the lip. 

 Mersenne includes the trumpet in his extraordinary survey of all the instruments in the 

known world, a musical  tour d ’ horizon  that had little precedent in earlier writings and 

which remains an invaluable source about the practice of his times. He describes the history 

and construction of the trumpet and lists its range, which coincides with the series of 

overtones but omits the seventh, skipping from the sixth to the eighth and also omitting 

two other higher overtones that sound flat (  figure 7.7a ). When he illustrates the instrument 

in its military uses (  figure 7.7b ), though, he includes all these partials in one panel but not 

the other, which presumably includes only the notes used in fanfares and excludes these 

problematic overtones. His text is hesitant and puzzled on the whole matter; he notes 

 “ many difficulties ”  that begin with the seventh overtone. The sequence of pure conso-

nances is broken at this point; he has heard a discordant pitch in the place of the seventh 

partial but does not want to admit its existence, calling it a  “ wound, ”  even a  “ vice. ”   31   

Musical practice maintained so strong a hold over him that he tried to exorcise his experi-

mental results as numerologically impossible or devilish. Though he tried to amend the 

faint seventh overtone of a viol string, the trumpet ’ s was harder to ignore.    
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 Figure 7.7 
 (a) Mersenne ’ s list of the range of the trumpet, which omits the discordant seventh, eleventh, and thirteenth 

overtones. (b) Mersenne ’ s illustration of the military trumpet with its range, including the problematic overtones 

(above), but not in their musical application (below). 

BA

 The multiplicity of overtones posed an even more fundamental musical and logical 

problem:  “ How is it possible that a single string can make many sounds at the same 

time? ”   32   Further,  “ why does it make no sound lower than what is natural to the string? ”  

In a corollary, he argues that  “ it is more probable that these different sounds come from 

different movements of the exterior air rather than those of the interior [of the string]. ”   33   

Yet he refers his readers to his discussion of bells, which he says use the  “ motion of their 

parts, which imprints a similar movement on the air with which they are surrounded. ”   34   

His discussion of bells intensifies the problem because they so loudly exemplify this 

multiplicity: even to a relatively unpracticed ear, a single bell produces a complex sound, 

not a single pitch. 

 Among all the many instruments he described, Mersenne devoted special care to bells 

and organs, as befits one who spent his life in churches (  figure 7.8 ).  35   Mersenne notes how 
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 Figure 7.8 
 (a) Mersenne ’ s cross-sectional diagram of a bell. (b) Mersenne ’ s diagram of an organ. 

striking a bell at different points elicits different sounds. Noticing that, in different bells, 

the various overtones appear with different strength, he brings forward information about 

the possible combinations of metals, showing that he had studied the artisanal knowledge 

of bell-makers, though many of them  “ have been wrong in all sorts of bells, making them 

too heavy, or too light, or too straight, or too large. ”   36   He lists the most successful mixtures 

of metals and the best proportions for bells but is not able to account for them mathemati-

cally. He compares the various overtones of bells with those of strings, the voice, and 

organ pipes.  37      

 In his preliminary summation, the movements of all  “ solid and hard bodies which are 

made of complete vibrations, which hold some elasticity, are species of tremblings and 

shakings. ”  The problem is  “ how the shuddering is made without the bells being burst, for 

if all their parts are moved, when they tremble, some must give way to the others  …  [and] 

find space for moving and vibrating. ”  He concludes that the body must be  “ more or less 

porous, ”  having  “ a great number of small empty places ”  as in the ancient atomic theory, 

which he thinks  “ can easily explain the vibration of bells. For when one strikes them 

their atoms are stirred and crackled in changing place, and in occupying the spaces of 

the small vacuums, and then they return many times into their ordinary place, and return 

into the said vacuums until they become quiet. ”   38   Here Mersenne is in sympathy with his 

close friend Pierre Gassendi, who was deeply interested in atomism, though it was 

A B



120 Chapter 7

ecclesiastically suspect because it seemed to leave no room for the transubstantiation of 

bread and wine into divine body and blood.  39   

 Still, Mersenne notes the unsolved problem of why the atoms return to their place, or 

what force might so move them;  “ it is not enough to say that it is natural to them, ”  because 

 “ atoms are indifferent to all sorts of places and movement is as natural to them as the 

repose is contrary. ”  He speculates about  “ little hooks or crotchets of the other atoms of 

the bell, which draw them back into their ordinary place, ”  or of atoms having tetrahedral 

or octahedral shapes (as in Plato ’ s  Timaeus ) that might somehow explain their internal 

forces and movements.  40   But he could go no further in advancing this microscopic view 

or in formulating the macroscopic mathematics of vibration. Even so, Mersenne raised the 

perplexing multiplicity of overtones into a principle of harmonic pleasure:  “ The sound of 

any string is the more harmonious and agreeable, the greater the number of different 

sounds it makes heard at a time. ”  If, he continues, it is permitted to  “ translate physics into 

human actions, one can say that each action is much more agreeable and harmonious to 

God as it is accompanied by a greater number of motives, provided that they are all good. ”   41   

Mersenne ’ s own vibrating plethora of investigations and speculations testify to his devo-

tion to the God of Universal Harmony. His questions, his beautiful questions, he left for 

those who came after. 

 

 

 

 

 

 

 
 



 Though Isaac Newton considered poetry  “ ingenious nonsense, ”  music had a significant if 

limited place in his intellectual world.  1   His youthful manuscripts demonstrate the scope 

of his knowledge and interest. Later, at a critical point in his optical writings, he relied on 

a musical analogy to compare the seven notes of the diatonic scale and the seven colors 

he likewise attributed to the spectrum. A close examination of his use of this analogy 

discloses its power and implicit limitations. Newton ’ s case may be read as a cautionary 

tale about the way musical analogies can open possibilities but leave important matters 

provocatively undecided. 

 Almost all of Newton ’ s musical writings are in a notebook he used during his under-

graduate period (1664 – 1666), spanning his  annus mirabilis  1665, the year in which he 

first grasped his celebrated insights about gravitation and light during an enforced stay at 

home to avoid the plague.  2   In this notebook, Newton first compiled drafts that work out, 

in intense and obsessive detail, fundamental definitions of musical intervals (  figure 8.1 ). 

He includes circular diagrams resembling some in Descartes ’ s  Compendium musicae , 

supporting the possibility that Newton studied that work, as he studied Descartes ’ s other 

writings at the time.  3   Newton ’ s manuscript  “ Of Musick ”  clearly demonstrates his involve-

ment in the study of music as part of the quadrivium. Though brief, the work ’ s level of 

detail and methodical enumeration of possibilities show the ways music was important to 

him, not merely a perfunctory study.  4      

 Beyond summarizing commonplaces, the ordering and minute details of Newton ’ s 

text register his unfolding sequence of further reflections. He begins by analogizing the 

 “ Clef or Key ”  of a piece of music to the concept of  “ an unit ”  as mathematical center. 

Turning then to the octave and the intervals within it, Newton considers their  “ order of 

concordance ”  but goes beyond commonplaces about their ratios to an argument that is 

interestingly physical in character:  “ As too sudden a change from less to greater light 

offends the eye  …  so the sudden passing from grave to acute sounds is not so pleasant as 

if it were done by degrees, because of too great a change of motion made thereby in the 

auditory spirits. ”   5   

 8  Newton and the Mystery of the Major Sixth 
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 Figure 8.1 
 A page from Newton ’ s undergraduate notebook, dated November 1665:  “ ye distances of any two notes ”  (f. 104r). 

(By permission of The Syndics of The Cambridge University Library.) 



Newton and the Mystery of the Major Sixth 123

 In this passage, Newton independently puts forward an analogy between optics and 

music years earlier than Robert Hooke, who communicated this analogy to Henry Old-

enburg in a 1672 letter later forwarded to Newton.  6   In his notebook, Newton extends 

this analogy from sound to light to heat:  “ Thus a little heat is least perceptible to one 

newly come from a greater. ”  In framing this analogy, Newton might well have recalled 

several ancient texts he had studied: a famous passage in Plato ’ s  Republic  described 

the inability of the eye to deal with sudden passage from light to darkness, but there 

is no precedent in Plato for the comparison with sound, though Aristotle does discuss 

such a comparison. Thus, Newton may have synthesized Aristotle ’ s comparison of light 

and sound with Plato ’ s description of the physical (almost visceral) effect of abrupt 

transitions in light.  7   

 Returning to enumerate the parts of an octave, Newton begins a new thought in square 

brackets, which he used to set off speculative or interpretative comments: whole tones 

might be divided into semitones and quarter tones,  “ but they would be of no use ”  because 

 “ the number of discords twixt each concord would much more bee harsh than the concord 

would be pleasant. ”   8   Here, as with Vicentino before him, quarter tones open new theoretical 

possibilities. Though Newton initially reverts to the conventional view that semitones and 

quarter tones are  “ unpleasant ”  discords, he then strikes out his closing bracket in order to 

open a new thought:  “ Yet perhaps  ½  or  ¼  notes passed over very hastily with a larger stay 

upon the concords twixt which they are, might be delightful. ”  This shows a certain curios-

ity about new musical possibilities; there is no evidence that he ever read Vicentino, though 

he studied Kepler closely. Newton closes off this line of thought by noting that  “ since they 

are such discords, inserted as  ’ twere by accident only to graduate concords,  &  so quickly 

slipped over, the sense cannot perceive any error or exactness in them,  &  therefore be they 

useful yet to treat of them would be lost labor. ”  Even the way he decides to end his brack-

eted digression shows his preoccupation with  “ the sense, ”  here meaning the experimental 

judgment of the ear, rather than any prior theoretical considerations. This experiential 

orientation accords with his earlier optical/musical analogy, which emphasized the physi-

cal response of eye and ear. 

 Newton limits himself to the diatonic order in his following discussion of how the modes 

 “ much limit the parts of the tune from discord sounds of one with another, particularly 

because tunes framed by divers of them differ in their airs or Modes. ”  He enumerates all 

the possibilities of ordering tones and semitones and reconstructs the conventional modes, 

presented in tabular form. Newton several times refers to  “ sweetness, ”   “ grace, ”  or what is 

 “ grateful to the ear, ”  rather than numerical theory, as his criteria in setting out  “ the 12 

Modes in their order of elegancy, ”  again seeming to prefer empirical, physical criteria of 

satisfaction to pure numerology. This represents an important divergence from Boethius ’ s 

preference for rational judgment over the evidence of the ears; Newton too followed Aris-

toxenes ’  empiricism, whether knowingly or not.  9   Likewise, in his  “ Questiones quaedam 

Philosophiae ”  (composed in the early 1660s), Newton had noted that  “ the senses of divers 
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men are diversely affected by the same objects according to the diversity of their constitu-

tion. To them of Java pepper is cold. ”   10   

 Among the modes, Newton puts in the highest place the Mixolydian, which  “ excels ”  

the Dorian he places second (see figure 3.4); all the other modes he considers even more 

 “ diminished ”  in  “ sweetness. ”  Here Newton seems to follow contemporary trends in music 

theory, which gradually came to prefer what we call the major mode (which is essentially 

Mixolydian with a raised seventh, F  ) over the church modes, among which Dorian was 

the first in the usual order. In his final sections, Newton also notes that  “ Tis usual to pass 

from one mode to another in the midst of a song, ”  the practice of modulation we considered 

in chapter 3: what during the sixteenth century was rare became common in Newton ’ s 

time, during the same period when the formerly unimaginable motion of the Earth became 

widely accepted.  11   

 A decade after  “ Of Musick, ”  Newton ’ s analogy between optics and music came forward 

in his comparison of the spectral colors to the seven notes of the diatonic scale, first pre-

sented publicly in his second letter on light and colors for the Royal Society (1675).  12   

There, Newton observes that as vibrating bodies excite sounds of various tones, so does 

light excite the optic nerve, 

 much after the manner, that in the sense of hearing, nature makes use of aereal vibrations of several 

bignesses to generate sounds of divers tones; for the analogy of nature is to be observed. And further, 

as the harmony and discord of sounds proceed from the proportions of the aereal vibrations, so may 

the harmony of some colours, as of golden and blue, and the discord of others, as of red and blue, 

proceed from the proportions of the aethereal. And possibly colour may be distinguished into its 

principal degrees, red, orange, yellow, green, blue, indigo, and deep violet, on the same ground, that 

sound within an eighth [octave] is graduated into tones.  13   

 Newton goes on to describe how he had projected prismatic colors in a dark room and 

asked  “ a friend to draw with a pencil lines cross the image, or pillar of colours, where 

every one of the several aforenamed colours was most full and brisk, and also where he 

judged the truest confines of them to be. And this I did partly because my own eyes are 

not very critical in distinguishing colours, partly because another, to whom I had not com-

municated my thoughts about this matter, could have nothing but his eyes to determine 

his fancy in making those marks. ”  This notably solitary and secretive worker used  “ a 

friend ”  to check his own lack of critical judgment about colors, though Newton never 

made a similar acknowledgment about his sense of pitch; in his account, the tones within 

an octave seem a better established frame of reference against which he judges the vagaries 

of color perception. Though Newton acknowledges that  “ the just confines of the colours 

are hard to be assigned, because they pass into one another by insensible gradation, ”  he 

notes that  “ this observation we repeated divers times ”  and that  “ the  differences  of the 

observations were but little, especially toward the red end. ”  By  “ taking means between 

those differences ”  Newton judged that the length of the whole image  “ was divided in about 
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the same proportion that a string is, between the end and the middle, to sound the tones 

in the eighth [octave], ”  as he illustrates in   figure 8.2 . He regarded the color spectrum as 

similar to the musical divisions of a string.    

 Though Newton presents the analogy as the result of careful experiment, consciously 

constructed to avoid prior hypothesis, he asserts more generally that  “ the analogy of nature 

is to be observed ”  with respect to the corresponding natures of the different human senses, 

rather than between the natures of light and sound as such.  14   As Newton went to apply 

this analogy to  different  optical phenomena, though apprehended by the  same  sense, he 

obtained results whose divergence cannot be due to that single sense but to the nature of 

light itself. 

 The crux of Newton ’ s analogy was that, as the upper note in an octave stands to the 

lower (as d would to D an octave lower), so do the extremes of color, namely  “ deep violet ”  

and red, likewise represent an  “ octave ”  in color, within which the intermediate hues should 

occupy the traditional seven scale degrees, thus interpreting the colors of the spectrum as 

corresponding to musical notes spanning an octave. From this flows his assertion that, at 

the appropriate points in the scale, the spectral colors orange and indigo should be inserted 

at the very points in which the chosen mode (Newton took this to be Dorian) has the 

semitones E – F and B – C. For those who came after, Newton ’ s musical analogy is the source 

of the widely held opinion that orange and indigo are actually intrinsic in the spectrum, 

despite the great difficulty (if not impossibility) of distinguishing indigo from blue, or 

orange from yellow, in spectra. Thus the authority of Newton, even speaking far from his 

primary expertise, carries unquestioned weight even to the present day. Yet in his  Optical 
Lectures  (1670 – 1672) Newton had been rather diffident about the analogy and admitted 

that  “ I could not, however, so precisely observe and define this without being compelled 

to admit that it could perhaps be constituted somewhat differently. ”   15   

 Here Newton acknowledges the difficulty of dividing the spectrum into seven  “ more 

prominent ”  colors  “ proportional to a string so divided that it would cause the individual 

degrees of the octave to sound. ”  That is, he admits that he imposed the seven colors by 

analogy with the (Dorian) mode without being able to demonstrate that those specific 

colors must necessarily be placed at those scale steps — hence his admission that the color 

correspondence  “ could perhaps be constituted somewhat differently. ”   16   

 Newton ’ s primary assumption is that color, like sound, admits of octave (2:1) ratios. 

This assertion bears strongly on Newton ’ s theories about light. Though familiar with the 

experiments of Francesco Maria Grimaldi that seemed to show wave effects in light (  figure 

8.3 ), Newton argued that a light wave passing an obstacle should  “ bend into the shadow, ”  

which he felt had not been demonstrated even by what Grimaldi called  “ interference. ”   17   

Though he preferred a particulate description of light emission, Newton never presented 

his preference as more than an hypothesis; while denying that light itself was a wave, he 

put forward his idiosyncratic (and rather puzzling)  “ fits of easy transmission and 
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 Figure 8.2 
 Newton ’ s illustration (1675) of the analogy between spectral colors and the seven notes of the diatonic scale. 

The note names follow the older nomenclature spelling the Dorian mode. 
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reflection ”  — sudden seizures in the behavior of light — as a way to incorporate certain 

aspects of wave theory into a predominantly particle view.  18      

 Newton ’ s musical analogy, however, has an unexpected relation to the wave theory. 

Already in a 1672 manuscript, he supposed that  “ the vibrations causing the deepest scarlet 

to be to those causing the deepest violet as two to one; for so there would be all that variety 

in colours which within the compass of an eight [octave] is found in sounds,  &  the reason 

why the extremes of colours Purple  &  scarlet resemble one another would be the same 

that causes Octaves (the extremes of sounds) to have in some measure the nature of 

unisons. ”   19   Here Newton seems to assume that the  “ resemblance ”  of purple and scarlet 

parallels the  “ resemblance ”  of octaves. 

 In this manuscript, Newton tried to find empirical support for the 2:1 ratio of the  “ vibra-

tions ”  of purple and scarlet in the ratios between spaces of colored rings from illuminated 

lenses (first described by Hooke, though usually known as  “ Newton ’ s rings, ”    figure 8.4 ). 

Yet in Newton ’ s rings the ratio of the extreme colors was  “ greater than 3 to 2  &  less than 

5 to 3. By the most of my observations it was as 9 to 14. ”   20   In his  Opticks  (1704), Newton 

stated that rings  “ are to one another very nearly as the sixth lengths of a Chord which 

found the Notes in a sixth Major, ”  such as from D to the b above it, compared to the octave 

D – d.  21   Here Newton reduces the number of his  “ principal colours ”  from seven to 

five, which probably stemmed from his observations of the rings, in which it is hard 

to observe minute color nuances. Thus, he was open to altering his musical enumeration 

of spectral colors.    

 Newton ’ s hesitation between octave and major sixth shows the difficulty and importance 

of the point. He had initially assumed an octave, based on his prior ideas about the perfec-

tion and completeness of that interval, whereas a major sixth clearly comes from empirical 

observation and seems to indicate some quality inherent in light itself. Indeed, a wave 

theory can far more naturally explain this ratio than can a particle theory, which lacks a 

concept of wavelength (whose place Newton tried to supply with his  “ fits ” ). In terms of 

wavelength, visible light spans roughly only a major sixth, about a ratio of 700:400, cor-

responding to the modern conventions for violet at 400 nm and red at 700 nm, noticeably 

short of an octave. In short, the human eye has never experienced an octave relation, 

whereas the human ear recognizes many octaves.  22   Newton ’ s analogy is therefore in 

tension with this fundamental inconsistency. Clearly troubled by the discrepancy between 

octave and sixth, in order to agree  “ something better with the Observation ”  Newton then 

reinterpreted his measurements through a rather intricate stratagem. He suggests that the 

rings ’  major sixth could be understood  “ as the Cube Roots of the Squares of the eight 

lengths of a Chord ”  in an octave, thus rather tortuously reinterpreting the musical interval 

of a  sixth  in terms of an  octave . 

 This connection between cube roots and squares resembles Kepler ’ s third law connect-

ing the cube of the distance of a planet from the sun and the square of its period.  23   Newton 

considered that relation crucial to establishing the inverse square law of gravitation; in the 
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 Figure 8.3 
 (a) A modern photograph of the light fringes seen next to a sharp edge. (b) Grimaldi ’ s 1665 diagram of such 

fringes,  OQ ,  RQ ,  V . 
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 Figure 8.4 
 Newton ’ s rings. (a) A modern recreation of his experiment using two plano-convex lenses pressed against each 

other, showing the characteristic moir é  pattern. (b) Newton ’ s diagram of the appearance of the rings, their colors 

in relation to the curved lenses, and their explanation in terms of his  “ fits of easy transmission, ”  from his  Opticks  

(1704). 

A

B
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 Figure 8.5 
 Voltaire ’ s illustration of Newton ’ s musical analogy between musical notes and colors, from  The Elements of Sir 
Isaac Newton ’ s Philosophy  (London, 1738). 
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case of light, his use of a similar proportion allows him to subsume the major sixth in an 

overarching octave.  24   His reinterpretation sets forth a rival Keplerian  “ third law, ”  here for 

the harmonies of the colored rings, rather than of the planets. 

 Having done so, he seems to have satisfied himself that the major sixth is a masked 

form of the octave. Thus, he was not inclined to interpret the major sixth as having some 

important significance of its own, much less that it could be interpreted in terms of a wave 

theory of light. Nor did those who followed him immediately notice this mystery. For 

instance, in 1712 Nicolas Malebranche argued that  “  different colors  consist only in the 

different  frequency  of the pressure vibrations of subtle matter, as  different tones  of music 

result only from the different  frequency  of the vibration of gross air. ”   25   Thus, Newton ’ s 

analogy persists in Malebranche ’ s wave account, which incorporates Newton ’ s octave of 

color without noticing the problem of the major sixth. Voltaire also featured  “ the Resem-

blance between the seven Primitive Colours and the seven Notes in Musick ”  in his popular 

treatment of Newtonian philosophy (  figure 8.5 ).  26      

 The picture was so beautiful, the analogy with the octave so fetching, that all trace of 

the troubling major sixth was mostly forgotten until Leonhard Euler and Thomas Young 

took note of it decades later, as we shall see. For Newton himself, other more weighty 

arguments and concerns may have relegated this musical puzzle to the sidelines. His 

opposition to the wave theory of light was long considered and deeply held; his optical 

writings are far greater in volume than the few pages he devoted to music in his youth. 

Yet musical theory supported his interest in the importance of ratios as applied to physical 

phenomena and thus was a helpful touchstone for his mathematical natural philosophy. In 

later life, he remarked that  “ Pythagoras ’ s Musick of the Spheres was gravity. ”   27   Though 

Newton took music sufficiently seriously to register the mysterious major sixth, in the end 

his desire to lay the mystery to rest may have missed its surprising import because he did 

not take music seriously enough. 

 

 

 

 
 





 Among Continental scholars who advanced and reconsidered Newtonian physics, Leon-

hard Euler was probably the greatest and surely the most prolific. Of his thirty thousand 

published pages, only a few hundred are devoted to music, but these have a special sig-

nificance among his works. Music was one of the first topics he addressed at length, and 

he returned to it several times throughout his life. Moreover, musical questions led Euler 

to consider new mathematical topics and devise new approaches that then characterized 

several of his most important initiatives in mathematics and physics. Indeed, Euler ’ s indi-

vidual mathematical discoveries, great as they are, need to be placed in the context of his 

larger role in the beginnings of modern number theory and topology. As familiar as these 

mathematical disciplines have become, we cannot take them for granted but should try to 

understand how they came into being in Euler ’ s hands. In this story, his musical writings 

open surprising perspectives. 

 At age thirteen (1720), Euler matriculated at the University of Basel, which included 

musical studies in its curriculum and was an important center of musical thought. His 

father, a Calvinist pastor, introduced him to Johann Bernoulli, whom Euler visited on 

Saturday afternoons to discuss mathematics. Bernoulli noted his extraordinary talents and 

persuaded Euler ’ s father to allow his son to follow his mathematical interests; thereafter, 

Bernoulli continued to correspond with Euler about mathematical, scientific, and musical 

questions, as did his son Johann II. 

 Indeed, Euler was much occupied with music throughout his life. Nicholas Fuss, his 

student, son-in-law, and secretary, recorded that  “ Euler ’ s chief relaxation was music, but 

even here his mathematical spirit was active. Yielding to the pleasant sensation of conso-

nance, he immersed himself in the search for its cause and during musical performances 

would calculate the proportion of tones. ”   1   This quest for a new mathematics of music began 

in his earliest works and persisted throughout his productive life. 

 Euler ’ s early scientific notebooks include an outline he prepared at age nineteen (1726) 

for a projected work he entitled  “ Theoretical Systems of Music, ”  an ambitious survey he 

intended to include sections on composition in one and many voices, treating both melodic 

and harmonic writing.  2   His outline also envisaged chapters on various dances, as well as 

 9  Euler: The Mathematics of Musical Sadness 
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larger musical forms. Euler ’ s interest in music encompassed many aspects of contemporary 

composition and practical music-making, not only its mathematical elements. In his early 

manuscripts, notes on musical theory precede any material referring to his second printed 

work,  “ Physical Dissertation on Sound ”  (1726), indicating the path that led him from 

music to the mathematical physics of sound.  3   

 In this work, Euler addresses all kinds of sources, from musical instruments to thunder 

and snapping twigs, whose sounds all arise  “ from the sudden restitution of compressed 

air, and as a stronger percussion of the air. ”  Especially, he addresses wind instruments such 

as the flute,  “ since no one up to the present has given anything of substance concerning 

these instruments. ”   4   He extends Newtonian methods by considering an air column to 

vibrate  “ following the amplitude of expansions and contractions in the same manner as 

strings, and thus I can consider that same air column as a bundle of air strings with the 

tension given by the weight of the atmosphere. ”  Here he faces the inherent mathematical 

difficulties of the vibrations of a cylindrical pipe, for which his treatment is only a begin-

ning.  5   Still, he expresses satisfaction in his general result that  “ the sounds of flutes will 

be sharpest in pitch with the maximum heat, and the air the least dense, but to be lowest 

pitch with the maximum cold and the most dense [air]. This difference of sounds is espe-

cially observed by musicians and organists. But since all flutes have the same change in 

place equally, the melody is not changed. ”  

 Euler puts forward his work  “ to be examined along with the distinguished candidates, ”  

showing that he considered his treatment of sound a calling card demonstrating his skill 

as he searched for a position. Euler ’ s work on sound led to further problems in mechanics 

and thence to questions regarding the relative stability of ships with varying heights of 

masts and sizes of sails. His first foray into nautical science forms the pendant to his work 

on sound, which informs the mechanics of masts and winds. The juxtaposition of these 

diverse topics shows their interconnection in his mind: in the study of sound, practical and 

theoretical concerns unite mechanics, metaphysics, and nautical engineering.  6   

 During the same period as he was preparing his work on sound in music and physics, 

Euler was also working on a more speculative, larger work, his  Tentamen novae theorae 
musicae ex certissimis harmoniae principiis dilucide expositae  ( Essay on a New Theory 
of Music Based on the Most Certain Principles of Harmony and Clearly Expounded , 

written 1730, published 1739).  7   Not able to find a job in his native city, Euler left Basel 

in 1727 to move to St. Petersburg, where he obtained the chair of natural philosophy in 

1730, the year he completed his  Tentamen . By devoting so much of his attention to this 

work during the crucial period in which he needed to establish himself in a permanent 

position, Euler showed how integral he considered music to be to mathematics and natural 

philosophy. Writing in 1731 to Daniel Bernoulli, a fellow pioneer of the mathematical 

study of vibrating strings, Euler clarified his larger intent:  “ My main purpose was that I 

should study music as a part of mathematics and deduce, in an orderly manner, from 

correct principles, everything that can make a fitting together and mingling of tones 
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pleasing. In the whole discussion, I have necessarily had a metaphysical basis, wherein 

the cause is contained why a piece of music can give one pleasure and the basis for it 

is to be located, and why a thing to us pleasing is to another displeasing. ”   8   By Euler ’ s 

time, music was well on its way to its present status as a fine, rather than liberal, art, 

grouped with painting and architecture rather than with mathematics. Not satisfied with 

the classical accounts, Euler wanted to find new principles connecting mathematics 

with music and pleasure. 

 Euler begins his  Tentamen  by reviewing his earlier work on the physical basis of sound, 

understood as  “ the perception of successive pulses which occur in the air particles situated 

around the ear. ”   9   He reviews the mathematics of strings, vibrating bodies in general, and 

his own  “ entirely new theory of sounds provided by wind instruments. ”   10   Though he takes 

note of the Pythagorean teachings about musical ratios, he seeks to put them on a new 

mathematical basis. As he noted in a 1752 letter to the great composer and theorist Jean-

Philipe Rameau,  “ the Pythagoreans were early misled in their numbers and treated them 

capriciously, as when they maintained that only superparticular ratios furnished conso-

nances, a principle devoid of all foundation, and in this regard the Aristoxenians were right 

to mock their false theory. ”   11   Where Boethius had assumed that simple ratios like 1:2 

(octave) were  more perfect  than complex ones like 243:256 (semitone), Euler wished to 

demonstrate that they were  more pleasurable  and to calculate the exact degrees of pleasure 

involved. 

 The difference in these fundamental categories reveals the profound shift toward an 

aesthetics premised on sentiment and pleasure, rather than pure order and its concomi -

tant goal of moral perfection. In his reply to Euler, Daniel Bernoulli expressed some 

puzzlement: 

 I cannot readily divine wherein that principle should exist, however metaphysical, whereby the 

reason could be given why one could take pleasure in a piece of music, and why a thing pleasant 

to us, may for another be unpleasant. One has indeed a general idea of harmony that it is charming 

if it is well arranged and the consonances are well managed, but, as it is well known, dissonances 

in music also have their use since by means of them the charm of the immediately following con-

sonances is brought out the better, according to the common saying  opposita juxta se posita magis 
elucescunt  [opposites placed together shine brighter]; also in the art of painting, shadows must be 

relieved by light.  12   

 Bernoulli shares the common presupposition that pleasure is fundamental, but he does not 

see how it could be mathematically or metaphysically grounded beyond itself. As if 

expressing the widely shared admiration of sentiment, Bernoulli relies on purely intuitive 

notions of pleasure through contrast, which his example from painting underlines; if so, 

the fine arts all share this fundamentally nonmathematical reliance on contrast. His invoca-

tion of charm sustains this aesthetics of ineffable sentiment. 

 Euler seeks to combine what his friend considered two rather antithetical approaches. 

To find a mathematics of sentiment, Euler had to make a new construct, for the traditional 
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accounts did not seek to bridge these two; with few exceptions to this day, he was a lone 

pioneer of mathematical aesthetics.  13   He founds his new theory on  “ the exact knowledge 

of sound, ”  understood from the mechanics of waves, and on  “ metaphysics ” :  “ Led by reason 

as well as experience, we attacked that problem and drew the conclusion that two or more 

sounds are pleasing when the ratio, which exists between the numbers of vibrations pro-

duced at the same time, is understood; on the other hand, dissatisfaction is present when 

either no order is felt or that order which it seems to have is suddenly confused. ”  To make 

this quantitative,  “ we graded this perceptive ability in certain degrees, which are of greatest 

importance in music and also may be found to be of great value in other arts and sciences 

of which beauty is a part. Those degrees are arranged in accordance with the ease of 

perceiving the ratios, and all those ratios that can be perceived with equal facility are 

related to the same degree. ”  He calls this their  degree of agreeableness  ( gradus suavitatis ), 

using a Latin word that might also be translated as  sweetness ,  charm,  or  tunefulness .  14   

 Though Euler ’ s exposition of these degrees may remind us of the ancient ordering based 

on the  perfection  of intervals, his definition reminds us that he ranks  “ how much agree-

ableness each consonance has in itself or, what amounts to the same thing, how much 

facility is required for perceiving it. ”  Where the ancients had placed the priority on the 

intervals and ratios themselves, Euler now places it in the perceiving human subject. Still, 

his prior mathematical sense of the relative simplicity of various ratios informs his ensuing 

definitions (see   box 9.1  for details). 

   Box 9.1 
 How Euler constructed his degree of agreeableness 

 First, he assigned degree 1 to 1:1 and degree 2 to 1:2, which sets the basic pattern:  “ by the 

simple operation of halving or doubling, the degree of agreeableness is changed by unity. ”  

Then to ratios of the form 1:2  n   he assigned the degree ( n  + 1) because  “ the degrees progress 

equally in ease of perception. Thus, the fifth degree is perceived with more difficulty than 

the fourth, ”  and so on. For ratios of the form 1: p , where  p  is prime, he assigns the degree  p ; 

thus, both 1:3 and 1:4 have degree 3, to accord with both principles he used thus far. He then 

argues that 1: pq  (where both  p  and  q  are prime) has degree  p + q   –  1. A few more steps led 

him to the general conclusion that for any composite number  m  composed of  n  prime factors 

whose sum is  s , the ratio 1: m  has the degree of agreeableness  s   –   n +  1. Based on this, he 

then argued that the degree of a series of proportions such as  p:q  or  p : q : r  (where  p ,  q ,  r  are 

primes) is the same as that of 1: pq  or 1: pqr  respectively, where Euler calls the least common 

multiple of these primes the  exponent  of that ratio. Hence, he assigned to 1: pqr  and to  p : q : r  

the same degree,  p  +  q + r  –   2. Thus, the fifth (2:3) has degree (5  –  2) + 1 = 4, the same as 

the degree of 1:6. A major triad C – E – G (4:5:6) has the same degree as 1:4 · 5 · 6 = 1:120, whose 

exponent 60 = 2 2  · 3 · 5,  s  = 12 and  n  = 4, thus the degree is  s   –   n +  1 = 9, the same as the 

dissonant major seventh C – E – G – B, 8:10:12:15, whose exponent is also 60. A minor triad 

like E – G – B (5:6:7) has exponent 210 = 5 · 6 · 7, so  s  = 18,  n  = 3, and degree  s   –   n +  1 = 16.   
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 Euler illustrates his reasoning with a diagram (  figure 9.1 ) showing  “ the pulses in the 

air as dots placed in a straight line. The distances between the dots correspond to the 

intervals of the pulses. ”  He sees this diagram as visualizing their degree of understand-

ability and hence agreeableness. At the same time, though, this diagram represents the 

coincidences between the  “ pulses ”  and hence represents geometrically the interrelation 

between sound waves. Implicitly, Euler ’ s two different meanings converge: agreeableness 

correlates with the alignment of the two wave-forms, which Hermann von Helmholtz made 

explicit in his physical theory of consonance over a century later (with due acknowledg-

ment to Euler).  15   In his  Tentamen , Euler restricted himself mainly to the traditional just 

intonation using simple whole-number ratios, not the newer temperaments intended to 

allow free modulation between all keys (see box 4.2).      

 Within these limitations, Euler ’ s quest for a precise degree of agreeableness informs his 

mathematical rankings. In light of this, he chooses the degree always to be integral, never 

fractional,  “ since in this case the ratio would be irrational and impossible to recognize, ”  

implying an underlying rationality to the felt quality of agreeableness. He sets out the 

result in a table that goes far beyond the traditional set of musical ratios (  figure 9.2 ). Euler ’ s 

mathematical schema leads him to include ratios that have no precedent in traditional 

music theory; Zarlino, for instance, argued that only numbers up to six (the  senario , as he 

called them) are allowable in musical ratios, but Euler makes a case for going past six. In 

so doing, Euler makes consonance and dissonance really a matter of degree, as opposed 

to the traditional tendency to distinguish sharply between them. He is led to this notably 

innovative step by his mathematics, which phrases both in the same general language of 

ratios, as well as by his awareness of the expressive power of dissonance.    

 Euler thus found a new numerical index that, to some extent, correlates with traditional 

(and aural) judgments of relative consonance but is far more precise: the lower the degree, 

the more agreeable the sound. Yet in his system an interval between  two  notes can have 

the same degree as a  triad , which has a more fundamental status in harmony. Worse, 

Euler ’ s scheme assigned the same degree to the most familiar triadic harmony (like 

C – E – G) as to the dissonant major seventh chord (C – E – G – B) ( ♪  sound example 9.1).  16   

Still, Euler ’ s numerical rankings illuminate a long-standing theoretical problem: the status 

of the minor mode. After its discovery by Mersenne and Descartes, music theorists realized 

that the overtone series provided a natural justification for the major mode because the 

first six overtones sound a major triad. Yet the minor mode had no such acoustical justi-

fication. Further, why does the major mode sound  “ happy, ”  the minor mode  “ sad ” ? From 

where, exactly, does the minor mode derive its origin and its emotive power? 

 Euler argues that  “ everything pleases us in which we perceive perfection to exist, and 

so we are pleased more when we observe more perfection. On the other hand, we are 

displeased by those things in which we perceive a lack of perfection or much imperfec-

tion. ”   17   Hence, we should absolutely prefer music that keeps to the lowest degrees of 

agreeability (in his scale) and be displeased by any deviation toward the higher degrees. 
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 Figure 9.1 
 Euler ’ s diagram visualizing the relative agreeableness of various simple ratios of sound pulsation, from his 

 Tentamen  (1739). 
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But when we calculate the degrees associated with major versus minor triads, in general 

and in the most common keys, the major triads are of  lower  degree (see   box 9.1 ). If so, 

we should always prefer music with major triads and avoid minor ones, which  “ will be 

almost painful. ”   18   Yet Euler knows that music contains many minor triads, and he points 

out that  “ the more easily we observe the order in a given thing, the simpler and more 

perfect we consider it, and therefore we receive pleasure and delight from it. On the other 

hand, if the order is discerned with difficulty and seems less simple and distinct, we per-

ceive something like sadness [ tristitia ]. In either case, as long as we sense order, the given 

object pleases, and we conclude that the object has agreeableness. ”   19   Euler thus connects 

the greater  “ difficulty ”  of minor intervals (and higher-degree  “ dissonant ”  intervals) with 

their perceived affect of  sadness . Hence, he explains the sadness of the minor mode (for 

instance) as the direct correlate of its  epistemological  status: what is harder to know is felt 

to be sad simply because we struggle to discern its order. In that sense, sadness seems to 

be the felt effect of the pain we experience in the face of cognitive dissonance. 

 Euler interprets this sadness as part of the larger project of the pleasure conveyed by 

music, which includes both happiness and sadness. He connects the mathematics of 

sadness with the experience of drama: musical harmonies  “ are like comedies and tragedies 

all of which should be filled with agreeableness. The comedy should fill the spirit with 

joy and the tragedy should convey sadness. Thus it is clear that something can please and 

 Figure 9.2 
 Euler ’ s table of the first ten degrees of agreeableness of musical intervals. 
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evoke joy, and something else can please and bring sadness. ”   20   His paradoxical context 

points to Aristotle ’ s discussion of the  “ joy of tragedy, ”  the tragic pleasure that purifies the 

soul through pity and fear.  21   In Euler ’ s account, sadness and joy both have a precise numeri-

cal degree: mathematics is capable of rendering these seemingly incommensurable mental 

states literally commensurable by calculating their common measure. The sadness we 

experience hearing minor harmonies is not simply dismay at  “ contemplation of the imper-

fect, ”  as we would feel hearing a blatantly wrong note. Instead, we locate the minor har-

monies (and dissonances in general) as parts of the larger perfection of the whole musical 

edifice.  “ For music, since it tries to please, neither intends nor is capable of much sadness. 

Thus sadness simply involves more difficult perception of perfection or order and differs 

from joy only in degree. ”   22   By providing commensurate degrees for both joy and sadness, 

Euler shows the basis on which the mind can integrate and reconcile them in the overall 

pleasure conveyed by the entire musical work. In so doing, he also illuminates the nature 

of  tristitia  by revealing it as the sensation of the mathematical mind laboring to understand 

difficult ratios. 

 Even as it struggles, the mind experiences the concomitant pleasure of connecting its 

complex labors with the relative resolution felt in simpler states, which are then perceived 

as joy. This does not mean that we simply suffer through the sad parts in order to enjoy 

the relief of their ending, as if they were a kind of toothache whose passing gives us the 

relative pleasure of anguish ended. Though he does not spell it out, Euler ’ s argument 

clearly implies that a mind capable of contemplating complex things has a more 

intense response to the work of music than would be felt by a less percipient — and less 

intelligent — hearer. 

 This analysis of mental mathematical activity also informs Euler ’ s parallel inquiry why 

 “ barbarians get little or no enjoyment from our music, ”  whether that pleasure comes  “ of 

familiarity alone ”  or because  “ there is far more order and agreeableness in our music, of 

which only the least part is perceived by the barbarians. ”   23   Though he acknowledges the 

power of familiarity, ultimately his argument puts much more weight on the trained mind ’ s 

ability to discern order. More complex ratios may indeed weary and sadden us, but they 

are the indispensable grounds for our experience of joy, which we know through our 

 mathematical , even calculational, faculties. Euler thus identifies mathematical awareness 

as the core of our ability to experience joy and sadness, whose inherent nature in fact 

requires the connected experience of both. The young mathematician here seems to antici-

pate and to welcome his coming lifetime of struggle and triumph, with all the sadness and 

joy his endeavors will entail. He implicitly places these under the aegis of music by treat-

ing  “ music as a part of mathematics, ”  connected just as are joy and sadness. 

 In the remainder of his  Tentamen , Euler gives evidence of such mutual interactions 

between music and mathematics. At many points, he goes into considerable musical 

detail.  24   Not content only to schematize degrees of agreeableness, he gives detailed theo-

retical examples of increasingly complicated harmonic structures to illustrate his funda-
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mental concepts (  figure 9.3 ). To the more complex of these harmonies, Euler adds a 

sort of figured bass notation. When played in order, these complex harmonies become 

progressively more audacious, even weird ( ♪  sound example 9.2); indeed, his  “ figured 

bass ”  is more a kind of shorthand notation than anything conforming to the musical usage 

of his time.    

 To simplify calculations in his  Tentamen , Euler was one of the first to treat musical 

ratios with logarithms, which reduce multiplication to addition and division to subtrac-

tion.  25   This  musical  application then induces Euler to take a new  mathematical  step, 

because expressing a logarithm ’ s magnitude calls for the use of irrational numbers, in 

general.  26   For instance, using logarithms to calculate the ratio of the octave to the fifth, 

Euler gets decimals, which he then converts to the expression 
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 He can then obtain approximations by truncating the denominator of this  continued frac-
tion  at successive points downward.  27   While preparing for the publication of his  Tentamen , 

Euler wrote  “ On Continued Fractions ”  (1737), the first sustained treatment of this new 

kind of mathematical object.  28   He realized that continued fractions, as they emerged in his 

musical treatment, were ideal arenas for considering irrational numbers, each of which 

turns out to correspond to a  unique  continued fraction, which displays the inner structure 

of that number in a different (and often more perspicuous) way than its decimal expansion. 

On the other hand, Euler demonstrated that the converse is not true, for it is possible to 

express any ordinary (rational) fraction as a continued fraction.  29   Among irrational quanti-

ties, the celebrated  “ golden ratio ”    φ   has the beautifully simple form 
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A

B

 Figure 9.3 
 (a) Euler ’ s musical illustration of the first eight species of harmony, according to his degrees of agreeableness. 

(b) Species I – XV, with Euler ’ s figured bass notation of the harmonies. 
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 in which the ever-recurrent 2s seem to echo the initial 2 from which  2   is drawn. These 

two examples show something of the visual poetry of continued fractions, which power-

fully symbolize and expose the infinite processes and relations that form the inner structure 

of irrational numbers. 

 In  “ On continued fractions, ”  Euler gave the first proof that  e  = 2.71828182845904  …  , 
the base of the natural logarithms (and the crucial constant describing exponential growth 

or decay), is in fact irrational, which had been suspected but not proved. To accomplish 

this important step, he showed that it could be written as a continued fraction: 
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 Here one wonders what the pattern of  even  integers (2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1,  … ) 

spaced regularly along the diagonal has to do with this  irrational  quantity; Euler ’ s alge-

braic deductions do not give an intuitive meaning for this pattern, though they implicitly 

generate it.  30   

 Nor were the mathematical effects of his musical work restricted to this one technique. 

Though Euler ’ s name later became so closely associated with number theory, his interest 

in this field began  after  his earliest work on music, such as his 1726 notebook entries. 

Only after his arrival in St. Petersburg in 1727 and his subsequent correspondence with 

Christian Goldbach (who moved to Moscow shortly after Euler ’ s arrival) did Euler ’ s inter-

est in number theory really begin, during the period of his greatest activity preparing the 

 Tentamen . For instance, in December 1729, Goldbach wrote Euler to ask him whether 

 “ Fermat ’ s observation [is] known to you, that all numbers  2 12n +   are prime? He said he 

could not prove it; nor has anyone else done so to my knowledge. ”  Euler ’ s rather indiffer-

ent response indicates that, even by that date, he was not greatly interested in this funda-

mental question. Only after a subsequent letter from Goldbach prodding him did Euler 

catch fire and disprove Fermat ’ s conjecture by showing that the fifth Fermat number, 

 2 1 4 294 967 29725 + = , , ,  , is evenly divisible by 641.  31   

 After that, Euler read Fermat ever more closely and took up number theory with par-

ticular passion. His first result already underlines his phenomenal abilities as a calculator; 
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only as a result of that special skill, combined with his mathematical acumen, could he 

have achieved such a factorization, long before computers or any other mechanical calcula-

tors. The same fascination with the pure manipulation and calculation of numbers also 

pervades his musical  Tentamen , which contains many tables of numbers that have some 

importance in his musical scheme. Study of Euler ’ s early notebooks (around 1726) shows 

that, as he prepared his  Tentamen , he was not then aware of Leibniz ’ s (1714) view that 

 “ music charms us, even though its beauty consists only in the harmonies of numbers and 

in a calculation, which we do not perceive but which the soul nevertheless carries out, a 

calculation concerning the beats or vibrations of sounding bodies, which are encountered 

at certain intervals. ”   32   After he met Goldbach, Euler became aware of these views, which 

Leibniz had described to Goldbach in a letter of April 1712.  33   Though Euler conceived his 

musical theories independently, Leibniz ’ s writings supported them, for Euler had set out 

a precise scheme whereby the soul might accomplish its musical counting quite con-

sciously. Given Euler ’ s staggering calculational abilities, including lightning mental com-

putations, one can readily imagine that he himself may have been able to compute what 

he was hearing, perhaps even in  “ real time. ”  At the least, his  Tentamen  contains his retro-

spective account of musical awareness in terms of explicit arithmetic. 

 The juxtaposition of the musical and arithmetical concerns in Goldbach ’ s correspon-

dence with Leibniz helps underline the many ways in which these two themes arguably 

overlapped and intersected in Euler ’ s mind through his interchanges with Goldbach. Yet 

even before then, Euler ’ s absorption in the intricate arithmetic of his music theory provided 

the fertile ground on which his ensuing interest in number theory grew. The modern 

concept of  “ pure mathematics ”  should not blind us to the many ways in which, in Euler ’ s 

time and before, no hard barrier separated it from the  “ applied ”  branches of what we now 

call physics, engineering, music theory — disciplinary names that he would neither have 

known nor separated absolutely. Nothing would have been more natural for Euler than to 

follow his intricate musical arithmetic into the further studies of the properties of numbers 

that only came to be called  “ number theory ”  in the aftermath of his own work. 

 Looking back to the  Tentamen , many of Euler ’ s musical arguments directly imply arith-

metical problems that lead straight to the more general questions he later addressed about 

the properties of numbers. His definition  s  –  n +  1 for the  gradus suavitatis  of a musical 

interval involves counting the  n  prime factors of the interval ’ s exponent and their sum  s  

(  box 9.1 ), which are central topics in his ensuing number theoretical work. The Pythago-

reans had begun to investigate perfect numbers (each equal to the sum of its proper divi-

sors, such as 6 = 1 + 2 + 3) and pairs of amicable numbers, for which each is the sum of 

the other ’ s proper divisors, such as 220 and 284.  34   Both types of numbers became important 

for Euler, but he had already laid the groundwork for their study in his  Tentamen . In 1747, 

Euler published thirty new pairs of amicable numbers, compared to the four pairs previ-

ously known, listing them in a format that recalls his diagrams ranking musical intervals 

in his  Tentamen .  35   
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 Euler went on to conduct many other inquiries into amicable and perfect numbers, 

among a vast variety of topics related to the abundance of prime numbers of different 

kinds, including his profound relation between the harmonic series and the prime numbers 

(  box 9.2 ). To be sure, Euler does not make any explicit connection between the harmonic 

series and harmony, but he knew well that this series had its origins in music, for the 

Pythagoreans already defined the harmonic ratio as a way of mediating between arithmetic 

and geometric ratios (see box 1.1).  36   In making his arguments for this deep and surprising 

result, Euler used the tools of analysis — that is, differential and integral calculus — as 

well as those of traditional arithmetic, not only to find individual results such as this 

one but to open a whole new field of mathematics. Andr é  Weil observed that  “ one may 

well regard these observations as marking the birth of analytic number theory, ”  as it came 

to be called.  37     

 The influence of Euler ’ s musical work can also be seen in a very different arena of 

his activity, his famous solution of the problem of the K ö nigsberg bridges. In that city 

(now called Kaliningrad in Russia), the island Kneiphof in the river Pregel joins various 

parts of the city via seven bridges (  figure 9.4 ). Euler became aware of the  “ quite well-

known problem ”  whether someone could take a walk that would return to its starting 

point after crossing each of the seven bridges only once. His letters reveal that, even 

in 1736, he considered the problem  “ banal ”  because its solution  “ bears little relationship 

to mathematics, and I do not understand why you expect a mathematician to produce 

it, rather than any one else, for the solution is based on reason alone, and its discovery 

does not depend on any mathematical principle. ”   38   Euler ’ s distancing of this problem 

from what he considered  “ mathematics ”  helps clarify the new step he made by consid-

ering it (as he puts it in his 1736 paper) an example of a branch of geometry  “ that has 

been almost unknown up to now; Leibniz spoke of it first, calling it the  ‘ geometry of 

position ’  [ geometria situs ]. This branch of geometry deals with relations dependent on 

   Box 9.2 
 Euler and the harmonic series 

 Following the ancient definition of a harmonic mean (box 1.1), Oresme proved that the 
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 , whose name  ζ ( s ) came from Bernhard Riemann, who 

brought the properties of this  “ Riemann zeta function ”  to the center stage of mathematics. These 

expressions relate the  sum  over the reciprocal of each number 1, 2, 3,  …  (raised to the power 

 s   >  1) to the  product  only over the prime numbers, indicating the deep structure whereby the 

primes underlie all other numbers.    
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position alone, and investigates the properties of position; it does not take magnitudes 

into consideration, nor does it involve calculation with quantities. ”   39   Euler ’ s letter of 

1736, though, shows his puzzlement as to what this  geometria situs  really means:  “ You 

have assigned this problem to the geometry of position, but I am ignorant as to what 

this new discipline involves, and as to what types of problems Leibniz and Wolff 

expected to see expressed in this way. ”  Euler ’ s paper was first presented in 1735; the 

field became known as  analysis situs  and is now called topology, of which this paper 

is one of its first great results.    

 Euler immediately generalized the K ö nigsberg problem to  “ any configuration of the 

river and the branches into which it may divide, as well as any number of bridges, to 

determine whether or not it is possible to cross each bridge exactly once, ”  which has come 

to be called an  Euler walk .  40   He reduced topography to alphabetic symbolism and derived 

simple rules, though without defining a numerical index that would  “ involve calculation 

with quantities, ”  as he put it. 

 Euler did devise such an index when he returned to the  “ geometry of position ”  in his 

 “ Elements of the Doctrines of Solids ”  (1752), the first of two papers in which he studied 

the relations between the number of vertices ( V ), edges ( E ), and faces ( F ) of a polyhedron 

(  figure 9.5 ).  41   Euler ’ s crucial innovation was defining the edge ( acies ) of a polyhedron, 

which, curiously enough, had never before been stated. Euler also identified the polyhe-

dron ’ s faces ( facies ) and its  angulus solidus , by which he means not  “ solid angle ”  (as a 

subtended, finite angle) but the point from which such an angle emerges, only called 

 Figure 9.4 
 Euler ’ s diagram of the city of K ö nigsberg, the Kneiphof island (A) and the seven bridges over the River Pregel, 

 a ,  b ,   …   ,  g . 
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 Figure 9.5 
 Euler ’ s 1752 illustrations of various polyhedra. 
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a  “ vertex ”  by Legendre (about 1794). If a solid polyhedron (closed but not necessarily 

regular) is bounded by planar faces, Euler argued that  “ the sum of the number of solid 

angles plus the number of faces exceeds the number of edges by 2, ”  or  V + F   –   E  = 2 (to 

state it algebraically, which he does not do), now widely called  “ Euler ’ s formula. ”  Though 

his arguments are somewhat flawed, the truth and depth of this proposition make it one 

of his most celebrated results. It represents a three-dimensional generalization of the 

K ö nigsberg bridge problem, in which the requirement of  closure  for the solid polyhedron 

corresponds to the  connectedness  of an Euler walk, its return to its starting point.  42   By 

identifying and tabulating  V ,  F , and  E , Euler was able to calculate the index  V + F   –   E  = 

2 that also characterizes such polyhedra.    

 The structure of this relation between vertices, edges, and faces is strikingly similar to 

the structure of the degree of agreeableness of musical intervals,  s  –  n +  1. Without intend-

ing any direct connection between polyhedra and Euler ’ s hierarchy of musical intervals, as 

such, both these relations ( V + F   –   E  = 2 and  s  –  n +  1) give the kind of general categoriza-

tion we now think of as  topological  and which Euler thought of in terms of  geometria situs . 

To be sure, these relations are very different, and not just in the objects they describe. Euler ’ s 

formula is an  equation  describing a necessary and sufficient condition for closed, convex 

polyhedra; his formula for musical degree defines a hierarchy between different intervals. 

They both pose a general schematization that categorizes a vast domain, of polyhedra or of 

musical intervals, respectively, subsuming many different individuals under a larger genus. 

Thus, polyhedra of many different shapes and numbers of sides fall under Euler ’ s formula, 

which (as modern topology phrases it) describes polyhedral surfaces of  genus 0 , those 

having no  “ holes ”  or  “ handles. ”  Later topologists generalized Euler ’ s formula to manifolds 

of higher genus than zero (such as a doughnut whose hole gives it genus 1, for instance) by 

defining the  Euler characteristic   χ  =  V + F   –   E . In this way,  χ  gives a  “ degree ”  of such 

surfaces that is analogous to the musical degree  d = s  –  n +  1, which gives the  “ topology ”  

of musical intervals, their general grades of classification.  43   

 Thus, Euler ’ s early work classifying musical intervals grouped different intervals under 

a single degree, expressing a higher commonality among them, despite their differences. 

He did so without any earlier precedent in mathematics, for the traditional hierarchy of 

musical intervals was based on fairly arbitrary numerological criteria of  “ simplicity. ”   44   

Euler ’ s degrees group together intervals by cutting across these traditional classes; his 

criterion for setting up his degrees is freely chosen according to his notions of what would 

be more  “ intelligible ”  and hence more  “ agreeable ”  ( suavis ). In his musical work, Euler 

first devised the general classificatory strategy that he then applied to the bridge problem 

and later to polyhedra. To use a later mathematical term, his approaches in these cases 

were  isomorphic , that is, they had the same essential structure. Because the musical 

example came first, it arguably was the arena in which he first found and applied the kind 

of approach that he later (and perhaps without realizing it) then found appropriate to 

bridges and polyhedra. 
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 Euler thus discovered not just the first important insights that later grew into the field 

of topology but also, more deeply,  indexing  as a crucial (and novel) tool of what became 

 the topological approach itself . Music was a particularly appropriate first venue for this 

new topological thinking because musical intervals do not have the kind of spatial structure 

that seems to govern elementary geometry. The lack of visible evidence — and his judgment 

of the insufficiency of the traditional criterion of  “ simplicity ”  of ratio — opened the door 

to his definition of degree, tied to the sensual criteria of  suavitas . After Euler took this 

initial step away from the traditional givens of mathematics, such as pure ratio, it was 

probably easier to think in essentially the same way when he came to the bridge problem 

and then to polyhedra. To be sure, the concept of degree was already familiar in the realm 

of algebra, such as the degree of a polynomial equation. But the example of music required 

a still bolder application of this general concept of degree in a case where it has no obvious 

prior meaning, unlike the algebraic degree of an equation that is manifest in the highest 

power of the unknown.  45   In the cases of music, bridges, and polyhedra, Euler had to devise 

a degree for each that would have a decisive,  invariant  significance; this required him to 

discern from a number of surface details those that could constitute the kind of parameter 

that would answer his questions. For Euler, musical questions opened the way to a new 

mathematics. 

 

 

 

 
  
 





 Besides his enormous achievements in mathematics, Euler was deeply involved in many 

areas of physics. His early work on music had a direct bearing on his study of sound, 

which in due course contributed to his studies of the mechanics of continuous bodies, the 

transmitters of sound vibrations. These important advances in continuum and fluid mechan-

ics also moved Euler to advocate a wave theory of light, as against Newton ’ s emission 

(particle) theory. Throughout, Euler used the examples of sound and music as exemplars 

for a new understanding of light and color. 

 In the century after his seminal work on optics, Newton ’ s theories remained the locus 

of considerable controversy. On the Continent, his work found supporters as well as 

notable critics. Leibniz, for one, was impressed but advocated careful repetition of New-

ton ’ s experiments. The prolific Christian Wolff became the chief popularizer of Newton ’ s 

theory in German lands, but many scholars were more attracted to versions of Descartes ’ s 

theory of a vibrating medium or ether that pervaded space.  1   Nor can such medium theories 

be too sharply distinguished from Newton ’ s, who also argued for a  “ subtle ether ”  that 

would fill space but not retard the heavenly bodies, though he considered light an emission 

phenomenon rather than a state of the ether as such. 

 Others within the Cartesian tradition took the idea of a light-bearing medium in quite 

different directions. For instance, in 1690 Christiaan Huygens considered light to be a 

sequence of pulses traveling at a finite velocity within the medium. The word  “ pulse ”  here 

should be distinguished from  “ wave ”  because Huygens dismissed the possibility that the 

pulses follow each other at regular intervals, as would wave fronts. Yet some of his con-

cepts carried over to the later wave theory, most notably the formation of collective fronts 

of pulses or waves through what now is called Huygens ’ s principle (  figure 10.1 ). Though 

some accepted Huygens ’ s theory because of its account of the perplexing phenomenon of 

double refraction — the passage of two different light rays at two different speeds through 

a calcite crystal — others had trouble with his account of how simple rectilinear propagation 

could be reconciled with ever-spreading circular pulse fronts. Most troubling, his theory 

gave no account of colors; in the half century after 1700, it fell from sight in research 

publications, though it was noted favorably in German textbooks.    

 10  Euler: From Sound to Light 
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 Still others offered various attempts to synthesize the Newtonian emission theory with 

some kind of medium, most notably Johann II Bernoulli, Euler ’ s childhood friend and son 

of his Basel mentor. In 1736, the younger Johann submitted to the Paris Acad é mie a physi-

cal and mathematical investigation into the propagation of light. Johann II considered the 

ether to be filled with infinitely many tiny vortices, interspersed with hard, small particles 

that are sent into longitudinal vibrations about their equilibrium positions as a result of 

compression transmitted through the vortices. This resulted in what he called a  “ light fiber ”  

( fiber lumineuse ) stretching along the line of particles, its luminosity propagated from one 

particle to the next. The first particle in the series determined the way the light would 

travel down the fiber, in which particles much larger or smaller than the first would be 

unable to follow the traveling motion of the light ray. Bernoulli compared this process to 

the resonance of a string instrument in sympathetic vibration, responding to vibrations of 

another nearby string tuned at the same pitch.  2   

 Figure 10.1 
 Huygens ’ s principle, showing the constructive interference of pulse fronts along the line  DCEF , from his  Trait é  
de la lumi è re  (1690). 
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 Bernoulli ’ s analogy shows the power of the example of musical sound as a formative 

influence in the emergent wave theory of light, in which his theory was an interesting 

attempt at a synthesis of Newton ’ s concept of color-making particles with a Cartesian 

vortex-filled medium. Bernoulli ’ s use of the analogy with sound followed other attempts 

to apply that analogy, including (as we have seen) Newton ’ s own. Bernoulli may well have 

drawn on the earlier work of Dortous de Mairan, whose theory of sound had moved the 

other direction, by analogy with Newton ’ s color-making particles, to propose the existence 

of air particles that could transmit only one specific tone.  3   

 Though he rejected Huygens ’ s principle and did not discuss interference effects, Ber-

noulli noted that sound can travel obliquely, compared to the rectilinear propagation of 

light. In that sense, he follows Newton in denying any positive evidence of wavelike 

behavior of light. But where Newton used the same model for the medium of light as for 

sound, Bernoulli considered their media to be fundamentally different. He worked out the 

mathematics of the displacements of his fibers, noting especially the comparison between 

the  longitudinal  motion of light along a fiber and the  transverse  displacements of a vibrat-

ing string (that is, its motion perpendicular to itself). Here again, he makes use of what 

he considers a  “ far-reaching similarity between the motion of the string of a musical 

instrument and that of a fiber. ”   4   These two perpendicular kinds of propagation in continu-

ous bodies will return at several points in later developments; for Bernoulli, their differ-

ences and similarities emerged in the context of musical instruments. 

 When Euler brought forward his own theory of light,  “ the most lucid, comprehensive, 

and systematic medium theory ”  of his century, he first of all posed it on the analogy with 

sound, rather than in the context of the long-standing debates between emission and 

medium theories.  5   He first announced his theory in a 1744 lecture to the Berlin Academy, 

 “ Thoughts on Light and Colors, ”  whose opening section announces the analogy on which 

he builds: 

 There is such a great connection [ rapport ] between light and sound that the more one studies the 

properties of these two objects, the more one discovers resemblances. Light and sound both come 

to us in straight lines if nothing impedes their movement, and if there are obstacles, the resemblance 

does not cease to hold. For as we often see light by reflection or refraction, these two things are 

found also in the perception of sound. In its echoes we hear sound by reflection, in the same way 

that when we see images in a mirror, the refraction of light is the passage of rays through transparent 

bodies, which always produce some change in the direction of the rays; the same thing is found with 

sounds, which often pass through walls and other bodies before reaching our ears, so that the walls 

and other similar bodies are in connection with sound the same as transparent bodies are for light. 

 …  So great a resemblance does not allow us to doubt that there is such a harmony between the 

causes and the other properties of sound and of light, and thus the theory of sound will not fail to 

clarify considerably that of light.  6   

 Apparently, this analogy was so coolly received by its first audience that, when Euler came 

to write his extended presentation of his  “ New Theory of Light and Color ”  (1746), he 
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made substantial changes to his argument by foregrounding the well-known controversy 

between medium and emission theories as the ground on which his analogy, and his 

ensuing new theory, stood. Still, his original statement clarifies the preeminent significance 

of this analogy in his thinking.  7   As he clarified his argument, Euler also sharpened the 

contrast between medium and emission theories, which until then had often (as we have 

seen) been combined in various ways, rather than being considered entirely exclusive of 

each other. Euler used the analogy with sound to ground his polemic for his medium theory. 

 To do so, Euler addressed head on a difficulty that probably led his 1744 audience to 

doubt his argument, the very difficulty Newton had emphasized: whereas sound pulses 

entering a room through an opening penetrate the whole space, light rays do not seem to 

behave similarly. Euler ’ s reply reasserts the power of the analogy with sound, which he 

contends that Newton misunderstood. Euler argues that Newton ought to have compared 

the optically opaque room with an acoustically  “ opaque ”  barrier because sound can pass 

even through normal walls, not just through an opening between rooms. Only a perfectly 

soundproof barrier could rightly be compared with a visually opaque wall, though Euler 

acknowledges the practical difficulty in constructing such an ideal acoustic barrier. His 

insistence on the sound/light analogy brings forward the precise limitation of Euler ’ s views 

that Young will address in the next chapter. Euler asserted that sound had not been observed 

to spread out laterally in a room but propagates linearly, as does light. In his view, one 

sound pulse could not prevent or interfere with another so as to allow sidewise spreading. 

Indeed, the question of the spreading of sound propagated through a medium remained 

controversial for the next half century; Euler was relying on the absence of what he con-

sidered sufficient evidence for spreading, but he also seemed to have used the analogy in 

reverse, applying the straight-line propagation of light rays to sound. 

 This example shows the multiple possibilities that lay within the application of the 

sound – light analogy. Rather than imposing the later perspective that Euler simply erred, 

my point is more that the example of sound was so strong for him (as for Newton himself) 

that it remained potent even when its conclusions may seem paradoxical. Yet there was no 

paradox for Euler: his argument about sound-transmitting walls seemed to answer New-

ton ’ s assertion neatly, nor did Euler have any positive information on sound propagation 

that would have differed from what was common knowledge about the rectilinear propaga-

tion of both sound and light. Euler fortified his argument with several others against 

Newtonian emission (such as that it would deplete the sun ’ s matter and would preclude 

the possibility of transparent materials). Consistently, he found no evidence that a beam 

of sound or of light could interfere in any way with another such beam, which an emission 

theory would portray as the collision between the emitted particles. Ironically, this impor-

tant advocate of wave theory seemed to overlook what, in the sequel, seemed to others its 

most salient feature, interference. He did so as much because of his arguments for the 

lack of interference between sound sources as because of his arguments for the lack of 

interference between light beams: above all, he maintained the  analogy  between them. 
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 On the other hand, Euler ’ s arguments brought forward other aspects of waves that are 

no less consequential and cannot be taken for granted. He took the pulse theory as it had 

developed in the work of Descartes and Huygens but changed it by adding a new element 

of  periodicity , so that Casper Hakfoort cautions us to call it a  “ periodic pulse theory ”  rather 

than simply a  “ wave theory. ”   8   This leads to the most innovative part of Euler ’ s theory, 

which connected this periodicity to the phenomenon of color. In this development, already 

his earliest auditors remarked that  “ what is special in the hypothesis of Mr. Euler is its 

parallel between sound and light. ”   9   Euler specifically applied this analogy to extend the 

propagation of pulses from sound to light. Beginning with his 1727 calculation of the 

speed of sound (in his youthful  “ Dissertation on Sound ” ), Euler now applied a similar 

argument to light, considered as pulses in a  “ subtle ”  ether that has a finite, if small, density 

and hence a finite velocity of propagation, as opposed to Descartes ’ s and Huygens ’ s 

instantaneously propagating medium. By comparing the ratio of known sound and light 

velocities with his calculations about the strength of materials, Euler arrived at very nearly 

the same ratio of the ether ’ s elasticity to its density from both calculations, which he took 

as further confirmation of his fundamental analogy and its physical preconditions. 

 From there, Euler constructed propagating light pulses, which are not yet fully waves 

but still very close to sound pulses, each considered as a sequence of traveling zones of 

higher state of motion, whether in air or in ether (  figure 10.2 ). Defining the distance 

between pulses as  d , their frequency  f , and velocity of propagation  v , Euler gives their 

fundamental relation  d = v/f , which is the basis for his account of color. Note that he does 

not speak of  “ wavelength ”  — for indeed these are not waves but traveling pulses — but of 

the frequency of the pulses. Not a whole  “ wave ”  but the individual pulses are primary for 

him; Euler considers that the pulses can be  “ isochronic, ”  equally spaced pulses correspond-

ing to a single musical pitch of frequency  f , or  “ nonisochronic ”  pulses having no single 

spacing  d  and hence no single frequency.    

 Figure 10.2 
 Euler ’ s diagram of the propagation of a sequence of pulses, from his  “ New Theory of Light ”  (1746). 
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 Thus, Euler ’ s concept of frequency, perhaps his most important contribution to the 

theory of light, comes directly not just from the general analogy with sound but from the 

specifically musical concept of a single pitch: as our perception of high or low pitches 

depends on how many times a second our ear receives sound pulses, so do our eyes dis-

tinguish more or less frequent impacts by their color. When he goes on to address Newton ’ s 

seminal finding that white light is a composite of many colors, Euler took his musical 

analogy one step further by explicitly comparing a  “ composite ray ”  of light to a multinote 

chord, under the implicit premise that the eye blends the  “ notes ”  of that chord into a single 

perception of color (say, white), whereas the ear does not blend the chord tones but hears 

them as separate, though perhaps related harmonically. Euler ’ s ingenious suggestion, 

however, raises the unacknowledged question: do  “ composite ”  light rays themselves really 

blend or do they keep separate their constituent chordal (and separately pure)  “ notes? ”  

Yet this bold application of music to harmony represents, for Euler, the power of the 

sound – light analogy, when taken to its furthest extent. 

 In the remainder of his treatment of light, Euler continued to use the musical underpin-

nings of his theory to guide him, especially in difficult cases, such as the problem of the 

colors of opaque bodies. Newton had somewhat tortuously argued that their colors tended 

to come from iridescent layers, such as the colors in soap bubbles, a peacock ’ s tail, or thin 

layers of air (as in Newton ’ s rings; see figure 8.4). Even the blue of the sky was, for 

Newton, to be understood in terms of such seemingly evanescent phenomena.  10   Euler 

emphasizes that Newton ’ s examples of iridescence have very different appearances and 

colors when seen from different angles, whereas most opaque bodies do not exhibit any 

such iridescence. Instead, Euler compares the vibrating particles of opaque bodies to a 

number of taut strings, each one resonating only at its own particular frequency.  11   He 

carries this comparison even further to hypothesize color overtones, analogous to those 

produced by sounding bodies:  “ Let us suppose that a ray representing a red color carries 

 f  pulses to the eye in one second; and, just as in music sounds are held similar which have 

vibrations, produced in the same length of time, that bear a double, quadruple, eight-fold 

etc. ratio [to the main tone], so simple rays containing, in one second, 2 f , 4 f , 8 f  etc. or  ½  f , 
 ¼  f ,  ⅛  f  etc. vibrations, will all be considered red. ”   12   

 Euler offers no proof of these assertions, other than the analogy with musical sounds, 

which he seems to treat as established fact; one wonders whether he meant to go so far as 

to include all the higher overtones of a given frequency, not just those corresponding to 

octaves. Even more striking, he also includes  under tones, those corresponding to fractional 

underoctaves below the fundamental frequency  f . This he could not have based simply on 

acoustic theory; following Mersenne, only overtones had been experimentally recognized. 

Because of this, we must conclude that Euler got his idea of undertones not from natural 

philosophy as such but from music theory, particularly that of Rameau. Euler corresponded 

with Rameau, who, though respectful, was critical of Euler ’ s degrees of agreeableness. 

Euler was surely aware of Rameau ’ s concept of  sous-entendre , which held that the hearer 
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would  “ sup-pose ”  or  “ hear below ”  the lowest notated pitch the fundamental bass needed 

to make sense of an inverted chord, in which that fundamental note may be buried in the 

middle. In Rameau ’ s own theoretical writings, it is not clear whether he took this  sous-
entendre  to be essentially an action of judgment, though perhaps almost unconscious, 

whereby the hearer gravitates toward the fundamental bass,  “ the musician ’ s invisible guide, 

 which has always directed him in all his musical works without his having yet noticed 
it . ”   13   In this reading,  sous-entendre  is an act of  implication , of discerning a note that is not 

physically there but whose presence is implied by the other sounding pitches. Alternatively, 

the  sous-entendre  could be interpreted as responding to a subtle physical phenomenon of 

undertones, vibrations below the fundamental pitch of a string precisely on the analogy 

of overtones. 

 The notion of undertones went on to a long history of its own; as late as 1875, the 

musicologist Hugo Riemann made delicate nighttime experiments trying to hear the under-

tones of a piano.  14   Though this extreme view of audible undertones eventually fell into 

disrepute, its significance here is independent of experimental judgment. Euler was moved 

to assert color overtones and undertones  simply on the authority of Rameau ’ s harmonic 
theory  and its agreement with Euler ’ s sense of mathematical symmetry. The only compa-

rable example of a natural philosopher being so swept up by the prior force of musical 

theorizing may have been Newton himself trying to impose the scale on the spectrum. 

 Though Euler proposed his color undertones already in his 1744 summary announce-

ment, he reiterated and expanded them in his 1746  “ New Theory. ”  Just as a musical octave 

includes many microtonal pitches, some of which have not been named, so too the color 

spectrum contains many unnamed colors, along with those whose names reflect their 

 “ musical ”  interrelation. This may have been Euler ’ s version of Newton ’ s musical spec-

trum; Euler seems to imply, as Newton had, that the well-known colors correspond to the 

principal notes of the musical scale. In his 1744  “ Thoughts, ”  Euler treated the higher 

 “ octaves ”  of color as appearing brighter and more vivid than the lower. By his 1747  “ New 

Theory, ”  Euler is aware of Newton ’ s mistake: the extreme visible frequencies in sunlight 

differ  less  than by a factor of two, the octave factor Newton had implicitly assumed in his 

color scale. Thus, Euler recognizes that the naked eye cannot discern an  “ over-red ”  that 

would be an  “ octave ”  2 f  above the frequency of ordinary red,  f . 
 Even though the naked eye could not discern these  “ derivative colors ”  that represent 

octaves above or below those we see, Euler considered that such undercolors or overcolors 

might have some experimental reality, perhaps observable through the phenomena of reso-

nance or sympathetic vibration: a body resonating to red might also perforce resonate to 

over-red, which shares the same submultiple frequencies as red. Essentially, Euler ’ s 

musical theorizing drew him to propose the physical existence of what we now call infrared 

and ultraviolet light, demonstrated experimentally around only 1800, as we shall see. 

 Euler ’ s  “ New Theory ”  became the most influential work on the theory of light for the 

rest of the century. He himself returned to various optical topics many times over the 
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succeeding thirty years. For instance, he changed his mind several times about whether 

red or violet had the higher frequency; his  voltes faces  caused some amusement among 

savants. But his main initiatives turned from theory to practice; he demonstrated the pos-

sibility of a lens that could be free of chromatic aberration, which would be of great 

importance for all optical instruments, such as eyeglasses, telescopes, and microscopes. 

This aspect of his work culminated in his magisterial  General Theory of Dioptrics  (1765). 

His work on acoustics itself continued with studies of the propagation of sound in the 

atmosphere (1759). During those decades, Euler also returned a number of times to musical 

questions, demonstrating that his interest was not merely a youthful fancy but a continuing 

preoccupation alongside his other work in mathematics and natural philosophy. 

 As with his later work on optics, Euler ’ s interests in music became more practical, 

devoted more to issues closer to the composition and performance of music than to its 

theoretical foundations. His 1764 paper  “ On the True Character of Modern Music ”  took 

up a theme already broached in his 1730  Tentamen , the possibility of using intervals having 

the number 7 in their ratios.  15   Euler sets forth a contrast between  “ ancient ”  and  “ modern ”  

music, which he evidently assumed would be clear to his readers. Though he does not 

specify the exact chronology or stylistic periods, his distinction seems very close to that 

of Vincenzo Galilei, contrasting the serene polyphonic practice of composers like Pal-

estrina to the expressive, monophonic art of the early operas, reviving the fabled powers 

of ancient Greek music. Among composers or theorists, Euler refers only to Rameau, a 

preeminent  “ modern. ”  Euler ’ s own preferences emerge in his characterization of modern 

music as  “ sublime, because its character consists in a higher degree of harmony, ”  compared 

to ancient music as  “ common [ commune ], ”  in the sense of adhering to common harmonic 

practice. Yet he never cites a single musical example that would give specific insight into 

his compositional tastes. Disconcertingly, his sole musical example is a formulaic cadence 

that violates elementary rules of voice-leading by allowing parallel octaves (  figure 10.3a ; 

 ♪  sound example 10.1). Were these solecisms just typos, or did the great mathematician 

finally have a tin ear?  16   Or was he quoting crude hymnody he remembered from the Cal-

vinist services of his childhood? 

 Euler lived in an age of vivid musical controversy, between French and Italian styles, 

between partisans of ancient and modern practices. A full study of the issues involved 

would call for another book; in our present context, Euler is offering an implicit defense 

of the modern practice of Rameau and others by explaining its modernity as a new 

freedom in the use of dissonance. Euler perceptively locates this modern dissonance in 

what he himself and his contemporaries were beginning to call the chord of the dominant 

seventh (  figure 10.3b ;  ♪  sound example 10.2). Euler argued that the aural pleasure of the 

progressions enabled by this chord justifies its dissonance. Quoting Rameau, Euler notes 

that this dissonance serves to alert the hearers to the key they are in; in   figure 10.3a , the 

tritone B – F in the penultimate dominant seventh chord tells us that we are in C major 
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A

B

because B – F moves strongly to the resolution E – C ( ♪  sound example 10.3). The 4:5:6:7 

ratios of a dominant seventh chord involve the previously forbidden sevenths, which 

Euler call  “ strangers ”  (  é trangers ) but invokes  “ a  musical license  ”  that allows these  “ for-

eigners ”  to be welcome. Thirty years after his youthful  Tentamen , Euler was extending 

and continuing its argument to include contemporary harmonic practice. In 1773, Euler 

returned yet again to the foundations of his harmonic theory and the role of interrelated 

keys in harmonic practice in  “ On the True Principles of Harmony Represented in the 

Mirror of Music. ”   17      

 Euler also put music at the center of his popular account of contemporary science for 

an intelligent reader, his  Letters to a German Princess  (1768 – 1771). Written at the behest 

of Catherine the Great (herself originally a German princess) after his return from the 

Berlin Academy to the Petersburg Academy, these letters may be the first work of popu-

larization by a great scientist, but they are also an important document in the history and 

philosophy of science. Euler discusses music in far more mathematical detail than any 

other subject in his  Letters , subjecting the princess to quite a bit of the argument of his 

 Tentamen . After he emphasizes the expressive, dramatic side of music and its attendant 

sentiments, Euler reviews his arguments on the nature of light based on its analogy with 

 Figure 10.3 
 (a) A progression cited by Euler outlining the key of C especially through the penultimate dominant seventh 

chord (marked  
7

3
 ). Note the parallel octaves between the lower voices, from the second to the third (D – E) and 

fourth to the fifth (F – G) chord ( ♪  sound example 10.1). (b) A dominant seventh chord built on the note C (identi-

fied by the C clef on the bottom line of the staff): C, E, G, B ♭ , as dominant seventh in the key of F ( ♪  sound 

example 10.2). From Euler,  “ On the True Character of Modern Music ”  (1764). 
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sound, often using musical examples. He explains that  “ difference of color is to the organ 

of vision what sharp or flat sounds are to the ear, ”  going even further than in his earlier 

optical papers to emphasize that  “ the parallel between sound and light is so perfect, that 

it holds even in the minutest circumstances. ”  Thus, the mysterious glowing of phospho-

rescent substances,  “ which, once illuminated, preserve their light for some time, though 

conveyed into a dark room, ”  are sympathetic vibrations made visible.  18   Euler ’ s musical 

examples reflect not only the genesis of his theory and its original arguments, but its 

justification and popularization in musical terms. 

 

 
 



 The crucial evidence for the wave theory of light was the work of an amazingly multital-

ented individual, who, though surely unique in his constellation of abilities, manifests the 

fruitful breadth of scope so important in the advances made by other contemporary natural 

philosophers. Thomas Young used studies of sound and music to advance the theory of 

wave motion, especially the concept of interference, which he learned from sound and 

then applied to light. Sir John Herschel singled out Young ’ s insight into sound interference 

as  “ the key to all the more abstruse and puzzling properties of light, which would alone 

have sufficed to place its author in the highest ranks of scientific immortality, even were 

his other almost innumerable claims to such a distinction disregarded. ”   1   Young ’ s awareness 

of sonic and musical phenomena prepared the ground for his work on light, down to the 

precise details of the experiment that would finally satisfy Newton ’ s stipulations. 

 Though born in modest circumstances to a pious Society of Friends (Quaker) family, 

Young ’ s uncle was an eminent physician and member of the Royal Society. Early on, 

Young showed prodigious talent for languages, though basically self-taught. By age nine-

teen he was fluent in Latin and Greek, had a good command of the principal European 

living languages, could read biblical Hebrew, and had also studied Chaldean, Syriac, and 

Arabic.  2   He translated Shakespeare into classical Greek. Young also taught himself math-

ematics and developed an interest in science. He read Newton ’ s  Principia  by himself; he 

ground pigments to make paint, studied drawing, and constructed scientific instruments. 

After leaving one of the local schools, he devoted himself  “ almost entirely to the study of 

Hebrew and to the practice of turning and telescope-making. ”   3   Yet despite his amazing 

breadth and depth of learning, Young ’ s Quaker upbringing removed him from the ordinary 

activities of his contemporaries. 

 Whatever may have been his personal preferences, his family ’ s finances dictated that 

he take up a career in medicine, following his uncle ’ s lead. This he did without complaint, 

seemingly considering it a continuation of his interests in physics and mathematics, now 

extended to a physiological sphere. Following the practices of the time, Young first served 

an apprenticeship in London as a pupil in St. Bartholomew ’ s Hospital and showed his 

extraordinary abilities in anatomy. At age twenty (1793), he made a major discovery about 

 11  Young ’ s Musical Optics 
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the function of the lens in accommodation, the process through which the eye adjusts its 

focus from near to distant objects.  4   In studying the eye of an ox, Young thought he had 

found evidence of fibers inside the lens that could plausibly act as focusing muscles, which 

earlier anatomists had conjectured but not seen definitively. Through the good offices of 

his uncle, Young read a paper on his discovery to the Royal Society, which led to his being 

elected a Fellow at age twenty-one, though this accolade was overshadowed by contro-

versy. John Hunter, an eminent anatomist, claimed Young ’ s discovery as his own, while 

another anatomist asserted he could find no such muscular structures in the lens. At that 

point, Young withdrew his discovery, in deference to this authority, though he later reas-

serted it in light of further research. 

 Young ’ s medical apprenticeship led him next to Edinburgh, where many Quakers chose 

to study, excluded from Oxford and Cambridge on account of their faith.  5   Still, at Edin-

burgh Young began to play the flute and to take dancing lessons, which disobeyed Quaker 

precepts, as did his incipient experiments in theatergoing.  6   Not surprisingly, the experience 

of new places and people helped Young break away from the doctrinal limitations in which 

he had been raised. He further broadened his horizons in G ö ttingen, where he attended 

the lectures of Georg Christoph Lichtenberg, who presented and critiqued Euler ’ s theory 

of light.  7   Young ’ s doctoral dissertation (1796) concerned the physiology of human speech, 

including an alphabet of forty-seven letters intended to convey every sound of which the 

voice is capable.  8   In this work, his interests in sound directly address his ongoing linguistic 

and phonological concerns. 

 Young ’ s disorientation in adjusting to foreign customs paradoxically intensified his 

pursuit of the social and artistic activities excluded from his Quaker upbringing. He began 

to take dancing lessons five or six times every week; as he wrote an English friend, nor 

was he  “ very punctual in some of the medical courses. ”  George Peacock, Young ’ s early 

biographer, noted that  “ it was in vain that his fellow-students, whether in banter or in 

earnest, told him that his musical ear was not good, and that he would fail to acquire ease 

and grace as a dancer. A difficulty thus presented to him as insuperable was a sufficient 

motive to attempt to conquer it; and though different opinions have been expressed with 

respect to the entire success of the experiment, there is no doubt that the mastery of those 

arts, which he really attained, was another triumph of his unconquerable perseverance. ”   9   

 Precisely because they were relatively late interests that emerged in his formative years 

and spoke to a part of his nature that had been underdeveloped, the musical side has special 

importance for Young.  10   His final stage of medical apprenticeship led him to matriculate 

at Cambridge (1797) and to break with the Westminster Quaker meeting, which formally 

disowned him in 1798. Young still struck his Cambridge classmates as having  “ something 

of the stiffness of the Quakers ” ; he did not associate much with the other young men, who 

called him  “ Phaenomenon Young, ”  indicating both their respect and their disdain.  11   One 

of them recalled that  “ he read little, and though he had access to the college and university 

libraries, he was seldom seen in them. There were no books piled on his floor, no papers 
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scattered on his table, and his room had all the appearance of belonging to an idle man. I 

once found him blowing smoke through long tubes [though Young never smoked tobacco], 

and I afterwards saw a representation of the effect in the Transactions of the Royal Society 

to illustrate one of his papers upon sound; but he was not in the habit of making experi-

ments. ”   12   We will shortly return to this scene. Young himself noted, shortly after arriving 

in Cambridge, that, starting with his G ö ttingen thesis on  “ the various sounds of all the 

languages that I can gain knowledge of, ”  he had  “ of late been diverging a little into the 

physical and mathematical theory of sound in general. I fancy I have made some singular 

observations on vibrating strings, and I mean to pursue my experiments. ”   13   

 In 1797, Young ’ s uncle died, leaving generous bequests to his friends (and patients) 

Edmund Burke and Samuel Johnson, as well as to Young himself, who was now free to 

follow his own interests without financial concerns. The following year, after an accident 

and broken bone kept him from his usual exercise, Young devoted himself to what he called 

 “ observations of harmonics, ”  by which he meant experimental studies of wave motion in 

sound.  14   During his recovery, he also read contemporary French and German mathematics 

and noted that  “ Britain is very much behind its neighbours in many branches of the math-

ematics; were I to apply deeply to them I would become a disciple of the French and 

German school; but the field is too wide and too barren for me. ”   15   His choice not to engage 

further with Continental mathematics had lasting consequences, as we shall see. 

 The course of Young ’ s work in the years after his early paper on the accommodation of 

the eye clearly shows the interweaving of music, sound, and light in his subsequent work. 

Three essays he published in the year 1800 show the remarkable overlay and simultaneity 

of his thinking in these domains. In January 1800, while still at Cambridge, he read to 

the Royal Society his  “ Outlines of Experiments and Inquiries Respecting Sound and 

Light, ”  which in essence lays out the fundamental premise of his ensuing research and 

whose title emphasizes the yoking of these two fields.  16   Young ’ s experiments measured 

the quantity of air discharged through an aperture, the direction and velocity of the air 

stream, the velocity of sound, its degree of spatial divergence, the harmonic sounds of 

pipes, and the decay of their sounds, ending with a general discussion of the vibration of 

various elastic fluids. He often connects his work with those who preceded him, especially 

Euler, whose arguments about the wave theory in sound and light he had studied closely.  17   

Here, and throughout the later works we will discuss, Young often interweaves musical 

references very naturally, as if he clearly expected his audience to find them familiar and 

congenial. Such connections between music and more general scientific topics were evi-

dently widely shared. 

 Young structures his acoustical investigations first to elucidate how pipes make har-

monic sounds. Using simple equipment (glass tubes, funnels, bladders), he devises ways 

to measure the flow of air through a pipe. He is careful and observant, often referring to 

common phenomena, such as still liquid disturbed by a stream of air directed toward it, 

or the deviations wind causes in the shape of a flame or of smoke ascending from a 
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chimney. The physician in him notes the slight effect of every pulsation of the heart on 

the lungs blowing air through a glass tube. In fact, he is writing from his rooms at Cam-

bridge, where (as we have seen) Young blew smoke through various tubes, to the mysti-

fication of his classmates. He now records more detailed experiments in a meticulous table 

comparing the varying pressures required to sound various harmonics from organ pipes 

(  figure 11.1 ).    

 When Young turns to  “ the analogy between light and sound, ”  he lists the evidence that 

light is a wave, including Newton ’ s rings.  18   Young notes the difficulty and complexity of 

Newton ’ s putative  “ fits of transmission and reflection ”  and adds that the recurrence of the 

same color in Newton ’ s rings is  “ very nearly similar to the production of the same sound, 

by means of a uniform blast, from organ pipes which are different multiples of the same 

length. ”   19   For instance, four-foot and eight-foot-long organ pipes under the same pressure 

sound the note C an octave apart. Young notes that Euler had already noticed this analogy, 

 “ although he states the phenomena very inaccurately. ”   20   Though Young himself leaves his 

exact analogy somewhat unclear, he considers the  recurrence  of colors in Newton ’ s rings 

to be precisely comparable to the recurrence of pitches produced by organ pipes, a phe-

nomenon he finds incomprehensible to particle theory, which has nothing like a series of 

overtones underlying it.  21   Young also draws attention to the  “ tone, register, colour, or 

 timbre  ”  of the organ and other instruments as a neglected subject that should be studied 

by natural philosophy.  22   Thus, when Young compares Newton ’ s rings to an organ, we 

realize the full appropriateness of his application of timbre or sound-color to visual color, 

for Newton himself had noted the importance of the recurrent pattern of the coloration in 

his rings. Young  “ hears ”  Newton ’ s rings as resembling an organ ’ s cyclical structure of 

pitches, overtones, and stops, in which the pressure of the air stream can excite recurrent 

harmonic pitches as the pressure exerted on the glass can evoke the recurrent colors of the 

rings. Implicitly, Young translates a  temporal  phenomenon (the frequencies of the organ 

pipes) to a  spatial  one (the varying lens thicknesses producing Newton ’ s rings). 

 Having established this fundamental analogy between music and light, Young then turns 

to a musical phenomenon that will provide a crucial insight into light. His point of depar-

ture is a troubling assertion by Robert Smith, the eminent Cambridge astronomer, in his 

 Harmonics, or, The Philosophy of Musical Sounds  (1749), that  “ the vibrations constituting 

different sounds should be able to cross each other in all directions, without affecting the 

same individual particles of air by their joint forces. ”  On the contrary, Young notes, 

 “ undoubtedly they [the vibrations] cross, without disturbing each other ’ s progress; but this 

can be no otherwise effected than by each particle ’ s partaking of both motions. ”  As proof, 

he instances  “ the phenomena of beats ”  as discussed by Smith. To explain them, Young 

devises a kind of thought experiment, supposing  “ what probably never precisely happens, 

that the particles of air, in transmitting the pulses [of sound], proceed and return with 

uniform motions, ”  drawing their motion along the horizontal axis, their displacement along 

the vertical (  figure 11.2 ).  23   Young includes a number of different cases in which,  “ by 
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 Figure 11.1 
 Young ’ s illustration of his experiments in  “ Experiments and Inquiries Respecting Sound and Light ”  (1800), with 

his caption:  “ Fig. 27. The appearance of a stream of smoke forced very gently from a fine tube. Fig. 28 and 29, 

the same appearance when the pressure is gradually increased. Fig. 30. A mouth piece for a sonorous cavity. 

Fig. 31. The perpendicular lines over each division of the horizontal line show, by their length and distance from 

that line, the extent of pressure capable of producing, from the respective pipes, the harmonic notes indicated 

by the figures placed opposite the beginning of each, according to the scale of 22 inches parallel to them. The 

larger numbers, opposite the middle of each of these lines, show the number of vibrations of the corresponding 

sound in a second. ”  
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supposing any two or more vibrations in the same direction to be combined, the joint 

motion will be represented by the sum or difference of the ordinates. ”  Thus, two sounds 

of nearly the same strength and pitch will produce a  “ joint sound ”  called a  “ beat ”  that 

reaches its maximum (the sum of the maximum of each component) on a slow rhythm 

determined by the exact difference between their respective frequencies or pitches. Young ’ s 

sequence of cases show the graphic difference between the joint sounds produced by dif-

ferent components, noting that  “ the greater the difference in the pitch of two sounds, the 

more rapid the beats, till at last, like the distinct puffs of air in the experiments already 

related, they communicate the idea of a continued sound; and this is the fundamental 

harmonic described by Tartini. ”   24   His diagrams (  figure 11.2 ) show  “ snapshots ”  of the 

vibrating string, translating its temporal motion into instantaneous spatial wave-forms.    

 At this point, Young ’ s description breaks free from the presumption that sound is a 

vibrating  body  by noting that sufficiently frequent puffs of air by themselves  “ communi-

cate the idea of a continued sound. ”  Thus, the locus of the investigation of sound has been 

shifted to the vibrating air, away from the body no longer needed to produce it. We now 

realize that, in his student rooms, Young had been producing not just puffs of smoke but 

 a sound of very low frequency , as if he had slowed the phenomenon of a musical pipe 

down to an immensely slower time scale on which it could be carefully observed and 

thoroughly compared with the flowing air that caused it. 

 Young immediately draws a musical corollary from his description of beats. Returning 

to the addition of two almost equal sounds,  “ the momentum of the joint sound is double 

that of the simple sound only at the middle of the beat, but not throughout its duration. ”  

Therefore,  “ the strength of sound in a concert will not be in exact proportion to the number 

of instruments composing it. ”  Surprisingly, two violins playing in unison will still not 

consistently sound twice as loud as one alone, given that the players, however skilled, will 

inevitably deviate minutely in timing, volume, and pitch. Young reached this counterintui-

tive result from his thought experiment, rather than any actual observation, but he now 

realizes its possible significance as evidence of the wave theory, were it made observable. 

 “ Could any method be devised for ascertaining this by experiment, it would assist in the 

comparison of sound with light, ”  evidently by demonstrating the palpable reality of beats 

in waves, whether of sound or light.  25   In this insight, Young expresses what now will be 

his quest: to find visible evidence of the  “ beating ”  of light waves that will be as clear as 

the evidence for the beating of sound. 

 Indeed, his whole plate of diagrams (  figure 11.2 ) richly illustrates the way he juxtaposes 

light and sound. Where the diagrams on the right illustrate various possible sound-forms, 

those on the left show  “ the affections of light, ”  its behavior in reflection, refraction, and 

passing  “ near an inflecting body, ”  perhaps a string or knife ’ s edge. The very layout of the 

plate invites us to contemplate sound and light together. After comparing them, Young 

returns to acoustic matters, particularly the problem of determining the frequency of vibra-

tions, shape, and state of motion of what he calls a  “ chord, ”  a stretched string. Here the 
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 Figure 11.2 
 Plate 4 from Young ’ s  “ Experiments and Inquiries Respecting Sound and Light ”  (1800). Figs. 32 – 35 show  “ affec-

tions of light, ”  its reflection (32), refraction (33), total reflection (34), and light passing  “ near an inflecting body ”  

(35); figs. 36 – 43 show the waveforms of various combinations of two sounds: an octave (37), major third (38), 

major tone (39), minor sixth (40), a fourth  “ tempered by about two commas ”  (41), a fourth further tempered by 

 “ subordinate vibrations of the same kind in the ratios of 3, 5, and 7 ”  (42), and a vibration  “ corresponding with 

the motion of a cycloidal pendulum ”  (43). 
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visual appearance of a sounding body becomes of interest as he looks more and more 

closely at the vibrating string. 

 In fact, Young may have been among the first to use the piano, a rather recent arrival 

among musical instruments, as a  scientific  instrument. He uses  “ one of the lowest 

[wire-wrapped] strings of a square piano forte ”  to make an optical experiment:  “ Con-

tract the light of a window, so that, when the eye is placed in a proper position, the 

image of the light may appear small, bright, and well defined, on each of the convolu-

tions of the wire [due to its wrapping]. Let the chord be now made to vibrate, and the 

luminous point will delineate its path, like a burning coal whirled round, and will 

present to the eye a line of light, which, by the assistance of a microscope, may be 

very accurately observed. ”   26   Though his primary object was to gauge the shape of the 

vibrating string, the details of Young ’ s experimental arrangement are, in fact, very close 

to what would turn out to be his crucial demonstration of light interference: a thin 

string illuminated by a small, well-defined light source. Young ’ s own illustration of light 

passing  “ near an inflecting body ”  (in   figure 11.2 ) gives evidence that he was aware of 

this parallelism, even though in this paper he does not take the next step, to allow the 

vibrating string to come to rest and then to see the vibrations of light surrounding it, 

as if that were silence made visible. 

 Young connects his studies of pipes with the problem of the human voice,  “ the object 

originally proposed to be illustrated by these researches. ”  This recalls the physiological 

and medical aspects of his G ö ttingen dissertation, though here Young seems more inter-

ested in purely musical aspects of timbre and resonance. He connects the voice with his 

smoke pipes by noticing that, analogous to his rhythmic pipe-puffs, the human glottis can 

produce a slow vibration  “ making a distinct clicking sound ”  that can be made more con-

tinuous  “ but of an extremely grave pitch: it may, by a good ear, be distinguished two 

octaves below the lowest A of a common bass voice, consisting in that case of about 26 

vibrations in a second ”  ( ♪  sound example 11.1). Young connects this glottal clicking with 

the methods used by ventriloquists to  “ throw ”  their voices and also (at still higher pitches) 

with falsetto singing. Though intriguing, his investigations are allusive and tentative, given 

the complexities of human vocal production. Though he refers to anatomy and physiology, 

he more often relies on  “ a good ear ”  that can (he tells us) hear four harmonics above the 

fundamental sung by  “ a loud bass voice. ”  

 The finale of this remarkable paper is even more purely musical and mathematical. 

Young, like so many before him, became fascinated with the question of temperament and 

here offers his own solution to the age-old problem, an astutely practical variant of con-

tinuing use in performances of late eighteenth-century music that seek authenticity 

( ♪  sound examples 11.2, 11.3).  27   Young illustrates his own temperament in a diagram 

comparing various systems of tuning, showing the depth of his study not only of the ques-

tion of musical temperament but of their varieties throughout history (  figure 11.3 ), using 

spatial visualization to illustrate sonic issues. His comparative investigations closely 



Young’s Musical Optics 169

 Figure 11.3 
 Young ’ s comparison of different schemes of musical temperament (1800), including his own (the ring labeled 

 Y ); the entire circle spans an octave around  C , shown at the top. 
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resemble, in scope and structure, his concurrent comparative work on languages, as if they 

were various possible  “ temperaments ”  of living speech.    

 Only four months later (April 1800), Young published  “ An Essay on Music, ”  giving 

important evidence of his ongoing interest in music during the height of his optical 

researches. He begins by acknowledging  “ the agreeable effect of melodious sounds, not 

only on the human ear, but on the feelings and on the passions, ”  yet Young considers 

music far more than  “ delicate titillation ”  or even than  “ giving expression to poetical and 

impassioned diction, ”  which Coleridge and other Romantic thinkers emphasized.  Contra  

Kant, Young argues that the study of music is not  “ amusement only ”  but reveals a 

science  “ that, in its whole extent, it is scarcely less intricate or more easily acquired 

than the most profound of the more regular occupations of the schools. ”  Those who 

show  “ superior brilliancy ”  in music  “ seem almost to require the faculties of a superior 

order of beings. ”  Young ’ s essay shows considerable familiarity with the history and 

theory of music, as well as the importance he ascribed to it. He emphasizes the role of 

harmonics or overtones for the common triads and scales of contemporary musical 

practice. Finally, he discusses the terminology of musical tempo and gives a detailed 

table of the number of measures per minute sounded by composers such as Handel, 

Haydn, and Mozart. This table shows acquaintance with J. J. Quantz ’ s attempt several 

decades earlier to standardize tempo using as a standard the common resting pulse rate 

of eighty beats per minute. As a physician, Young well knew the variability of human 

pulse and chose instead a more objective standard given by the number of measures per 

minute taken at various tempi. His table gives valuable evidence of performance prac-

tices around 1800.  28   

 Seven months later (November 1800), Young presented his paper  “ On the Mechanism 

of the Eye ”  to the Royal Society.  29   Revisiting his maiden discovery about the accommoda-

tion of the eye, Young argued that he had been fundamentally right that changes in the 

shape of the lens were responsible for accommodation; only after his lifetime was the 

mechanism identified with the ciliary muscles surrounding the lens, rather than (as Young 

had initially thought) muscular fibers inside the lens itself. But in 1800, Young established 

conclusively that the lens alone was responsible for accommodation, not the cornea or the 

length of the eyeball, as had been suggested by others. 

 Young ’ s argument is a tour de force of persistent experimentation and deduction that 

refutes the suspicion that he was an inspired dilettante who merely guessed discoveries 

without ever exhaustively demonstrating them. His experiments required not only ingenu-

ity but courage, for he experimented on himself, following an old medical tradition and 

also Newton ’ s more disturbing example. Newton had inserted a bodkin (a thin knife) 

behind his own eyeball to demonstrate that visual perception could be caused by ocular 

pressure without any incoming light.  30   Young, in his turn, performed no less invasive tests 

of his own eye and its functioning by fashioning a compass whose ends were keys that he 

pressed against his sclera, the whites of his own eye (  figure 11.4 ).    
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 Figure 11.4 
 Young ’ s illustrations of measurements made on his own eyes, from  “ On the Mechanism of the Eye ”  (1800). 
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 Though these excruciating measurements and Young ’ s ensuing physiological deductions 

are the bulk of his paper, he first lays his groundwork on another extended comparison of 

sound and sight, of ear and eye. He judges that the ear is  “ the only organ that can be 

strictly compared ”  with the eye, for the other senses operate through more immediate 

contact of their objects with the nerves. Thus, Young uses the ear as a comparative touch-

stone that illuminates the eye ’ s different functioning. He calculates the quantitative differ-

ence between the ear ’ s ability to discriminate the angular direction from which sounds are 

coming (only within about 5 degrees) and the eye ’ s far sharper directional abilities (90,000 

times finer). On the other hand, the eye ’ s  “ field of perfect vision, for each position of the 

eye, is not very great, ”  whereas  “ the sense of hearing is equally perfect in almost every 

direction. ”  Using these comparisons between eye and ear as an initial point of reference, 

Young then goes on to devise what he calls a new optometer that will allow precise mea-

surement of the eye ’ s focal distances, as well as the other parameters needed to make his 

argument about accommodation fully detailed and complete.  31   

 Thus, these three papers of Young ’ s  annus mirabilis  1800 all invoke sound, hearing, and 

music in fundamental ways that inform and shape his arguments about seeing and light. 

In August 1801, he published a letter reaffirming his account of sound and his new tem-

perament against the criticisms of a Professor Robinson in Edinburgh. In November, his 

paper  “ On the Theory of Light and Colours ”  juxtaposed excerpts from Newton ’ s writings 

with Young ’ s own series of new propositions, presented in Euclidean-style hypotheses 

and demonstrations.  32   Young ’ s rhetoric enlists Newton on the side of the wave theory of 

light, defusing Newton ’ s objections to it by juxtaposing them with the many passages in 

Newton ’ s own works where he recognized its merits. 

 As the essential background for his argument in favor of an ether carrying the vibrations 

of light, Young assumes the prior case of air as the medium for sound vibrations.  “ Every 

experiment, relative to sound, coincides with the observation already quoted from Newton, 

that all undulations are propagated through the air with equal velocity ” ; Young thought 

this a capital point in favor of the wave theory of light that Euler himself did not seem to 

understand when he maintained incorrectly that waves of higher frequency travel faster. 

Here and throughout, Young uses the wave theory of sound to establish the essential results 

he will apply to light; returning to his earlier arguments against Smith, he notes that  “ it is 

obvious, from the phenomena of elastic bodies and sound, that the undulations may cross 

each other without interruption ”  by  “ uniting their motions, ”  though different frequencies 

of wave will not intermix. Likewise, he relies on the example of sound to establish that 

waves expand spherically through a homogeneous medium.  33   

 Though Young claims not to  “ propose any opinions which are absolutely new, ”  he offers 

an important suggestion that color vision relies on only  “ three principal colours, red, 

yellow, and blue, ”  which he chooses because their  “ undulations are related in magnitude 

nearly as the numbers 8, 7, and 6, ”  whose ratios he will shortly relate to music theory. 

Thus, green light, whose frequencies are about 6.5 in terms of these ratios,  “ will affect 
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equally the particles in unison with yellow and blue, and produce the same effect as a light 

composed of those two species: and each sensitive filament of the nerve may consist of 

three portions, one for each principal colour. ”   34   

 Young continues to follow closely what Newton had called  “ the analogy of nature, ”  

noting that, on the basis of his own argument,  “ any attempt, to produce a musical effect 

from colours, must be unsuccessful, or at least that nothing more than a very simple melody 

could be imitated by them ”  because the ratios of the primary colors limit the range of any 

such  “ color melody ”  to less than an octave because anything larger would go  “ wholly 

without [outside] the limits of sympathy of the retina, and would lose its effect; in the 

same manner as the harmony of a third or a fourth is destroyed, by depressing it to the 

lowest notes of the scale. ”  That is, musical melodies would not translate directly to colors 

because musical intervals become indistinguishable when transposed to the extreme limits 

of audible frequencies. The analogy between the ear and the eye guides Young ’ s hypoth-

esizing even when he becomes aware of their important differences, which are no less 

significant to him than their similarities.  “ In hearing, there seems to be no permanent 

vibration of any part of the organ, ”  implying its greater simplicity and unity, compared to 

the eye as a two-dimensional field of sensors that, at every point, cannot possibly have the 

range of vibrations available to the ear in its single canal. His three-color hypothesis 

emerges under the direct pressure of the pitch-distinguishing capabilities of the ear.  35   

 Young goes on to offer additional evidence in favor of the wave theory of light, drawing 

especially on the arguments about the superposition of waves he had earlier made against 

Smith, culminating in  “ Proposition VIII.  When two Undulations, from different Origins, 
coincide either perfectly or very nearly in Direction, their joint effect is a Combination of 
the Motions belonging to each . ”  Young notes that he had earlier  “ insisted at large on the 

application of this principle to harmonics; and it will appear to be of still more extensive 

utility in explaining the phenomena of colours. ”  He applies it now to  “ Mr. Coventry ’ s 

exquisite micrometers; such of them as consist of parallel lines drawn on glass, at the 

distance of one five hundredth of an inch, ”  what we now call diffraction gratings.  36   

 From Proposition VIII, Young derives a simple mathematical criterion for the light 

waves of a given monochromatic wavelength (coming from a point source of red light, 

say) to combine constructively and yield a bright red spot whenever the sine of the angle 

of that spot is an integral multiple of the ratio of the spacing between lines on the grating 

and the wavelength of light. Because the incident red light can reflect constructively off 

the grating at a whole series of angles, we will see not one but a series of red spots, each 

corresponding to a different integer in Young ’ s formula. He notes that the particle theory 

of light would not produce any such periodic and recurrent spots, so that  “ it is impossible 

to deduce any explanation of it from any hypothesis hitherto advanced; and I believe it 

would be difficult to invent any other that would account for it. There is a striking analogy 

between this separation of colours, and the production of a musical note by successive 

echoes from equidistant iron palisades; which I have found to correspond pretty accurately 
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with the known velocity of sound, and the distances of the surfaces. ”  Once again, music 

gives the point of departure for his optical analogy. As he contemplates the lines of the 

grating, he analogizes them as  “ echoing ”  the light, as if audition and vision had merged.  37   

Once again, a sonic, temporal phenomenon translates into a spatial, optical one. 

 Young ’ s account of his sound experiment also suggests that he could have used it to 

connect the speed of sound with its wavelength and the spacing between the iron pali-

sades. Though Young is quite aware of the significance of determining the wavelength 

of light experimentally, he does not do it here, reserving it for his reconsideration of 

Newton ’ s rings, which (as noted above) Young had earlier instanced as the linchpin of 

his analogy with the recurrent frequencies of organ pipes. In  “ On the Theory of Light 

and Colours, ”  Young obviously attaches special significance to determining the wave-

length of light from Newton ’ s own data, as if to show what was lying right in front of 

Newton all along, had he only realized it. Here, as elsewhere, Young both challenges and 

retroactively co-opts Newton, enlisting his posthumous support for the wave theory, 

though he had resisted it during his life. As he self-consciously stepped beyond Newton, 

Young always looked back to him, seeking his support even in the process of overthrow-

ing his conclusions. 

 Newton had framed his spectral colors by assuming that they formed an octave; he did 

not seem to recognize that his own ring data contradicted such a 2:1 ratio.  38   But now Young 

corrects Newton ’ s musical mistake, as had Euler before him:  “ The whole visible spectrum 

appears to be comprised within the ratio of three to five, which is that of a major sixth in 

music; and the undulations of red, yellow, and blue, to be related in magnitude as the 

numbers 8, 7, and 6; so that the interval from red to blue is a fourth. ”   39   Thus, Young spe-

cifically returns to the same musical analogy that Newton had used, though Newton had 

mistakenly substituted the octave for the major sixth. By getting right what Newton had 

mistaken, Young is able to retrieve the accurate wavelengths of the optical spectrum, which 

he goes on to state in musical terminology:  “ The absolute frequency [of light] expressed 

in numbers is too great to be distinctly conceived, but it may be better imagined by a 

comparison with sound. If a chord [vibrating string] sounding the tenor c, could be con-

tinually bisected 40 times, and should then vibrate, it would afford a yellow green light: 

this being denoted by c 41 , the extreme red would be a 40 , and the blue d 41 . ”   40   Even the 

identity of these colors is  “ better imagined ”  by giving their musical note names, as if Young 

preferred to  “ hear ”  than to see them, though the  “ pitches ”  involved are enormously higher 

than any audible sound. The resultant synesthesia goes far beyond our normal senses: 

Young concludes that C is  “ yellow-green ”  and D is  “ blue, ”  as if we were able to hear forty 

octaves above middle C. He also provides a table stating the  “ absolute length and fre-

quency of each vibration ”  of different colors of light (  figure 11.5 ), thereby reminding us 

of their sheer physical reality in space and time. Young does not seem to notice that orange 

and indigo do not really appear in the spectrum, or perhaps he simply bows to Newton ’ s 

musically inspired definition of the spectral colors.  41      
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 Young presented new evidence to the Royal Society in  “ An Account of Some Cases of 

the Production of Colours not Hitherto Described, ”  delivered in July 1802.  42   In it, he further 

distills the content of his principle of superposition from its somewhat less quantitative 

form in his Proposition VIII to what he now calls  “ a simple and general law ” :  “ Wherever 

two portions of the same light arrive at the eye by different routes, either exactly or very 

nearly in the same direction, the light becomes most intense when the difference of the 

routes is any multiple of a certain length, and least intense in the intermediate state of the 

interfering portions; and this length is different for light of different colours. ”   43   With 

his general law in hand, Young returns to simple experiments mentioned by Newton 

and Grimaldi, from which he can now deduce the exact wavelengths they themselves did 

not calculate. Observing the  “ fine parallel lines of light which are seen upon the margin 

of an object held near the eye, ”  Young notes that  “ they were sometimes accompanied by 

coloured fringes, much broader and more distinct. ”  To make them more distinct, he 

observes a horse hair, then a wool fiber, then a single strand of silk, which gave the clear-

est, broadest pattern. Young made a rectangular hole in a card and bent its edges to support 

a hair parallel to the sides of the hole, a stabilizing mounting that allowed him to measure 

 Figure 11.5 
 Young ’ s table showing the wavelengths and frequencies of different colors of light, as he calculated from New-

ton ’ s experiments on thin plates. From  “ On the Theory of Light and Colours ”  (1801). 
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the deviations of the various colored fringes, which coincided with those he had measured 

in Newton ’ s rings.  44   

 Young takes these experiments a step further in his final paper before the Royal Society 

(November 1803), which begins by noting that  “ fringes of colour  …  produced by the 

interference of two portions of light ”  prove  “ the general law of the interference ”  and hence 

the wave theory in a  “ decisive ”  way.  45   His new experiment is even simpler: making a small 

hole in a window shade, on which a mirror directs the sun ’ s light, he used his artificial 

sunbeam to illuminate  “ a slip of card, about one thirtieth of an inch in breadth, and 

observed its shadow, either on the wall, or on other cards held at different distances. ”  Young 

now proves that the fringes were the  joint  effects of light passing on  both  sides of the card, 

not just one. He uses  “ a little screen ”  to block the light coming on one side of the card 

and then notes that  “ all the fringes which had before been observed in the shadow on the 

wall immediately disappeared, although the light inflected on the other side was allowed 

to retain its course. ”  Therefore, the fringes could only be produced by the joint action of 

light  “ passing on each side of the slip of card, and inflected, or rather diffracted, into the 

shadow. ”   46   He goes on to show that his results are quantitatively consistent with his 

 “ general law ”  and that the distances between the dark lines in his fringed shadows agree 

accurately with analogous distances that he calculates from Newton ’ s own observations 

of the shadow of a knife ’ s-edge and of a hair.  47   

 Young concludes that light  “ is possessed of opposite qualities, capable of neutralising 

or destroying each other, and of extinguishing the light, where they happen to be united, ”  

so that light plus light may yield darkness. As he emphasizes, this seemingly paradoxical 

conclusion is the essence of the wave theory, which gives it the power to explain the recur-

rences, fringes, and inner rainbows he had identified. His arguments also contradict New-

ton ’ s hypothesis that (particulate) light speeds up in denser media. Thus,  “ the advocates 

for the projectile [particle] hypothesis of light must consider, which link in this chain of 

reasoning they may judge to be the most feeble; for, hitherto, I have advanced in this paper 

no general hypothesis whatever ” ; here, he clearly signals the failure of the particle view. 

Young ’ s conclusion takes him full circle, back to the musical hypotheses with which he 

had begun:  “ But, since we know that sound diverges in concentric superficies [surfaces], 

and that musical sounds consist of opposite qualities, capable of neutralizing each other, 

and succeeding at certain equal intervals, which are different according to the difference 

of the note, we are fully authorized to conclude, that there must be some strong resem-

blance between the nature of sound and that of light. ”   48   

 In 1801, in the midst of this series of papers, Young became professor of natural phi-

losophy at the Royal Institution, founded the year before by the flamboyant Count Rumford 

as  “ a great metropolitan school of science ”  that would also undertake grand practical 

projects and to which we shall return in a succeeding chapter.  49   Though instruction in 

mathematics and natural philosophy had been the province of the ancient British universi-

ties, the Royal Institution addressed a broad educated public in London, whose fascination 
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with science it fed and profited from. This audience also included women, still excluded 

from the universities. Within a few months, Rumford quarreled with the other directors 

and abandoned his fledgling institution; Young and Humphrey Davy carried it forward. 

 Though among the first in this eminent succession, Young was a less dramatically suc-

cessful public figure than those who followed him; he thought his public presentations 

were too  “ compressed and laconic, ”  not  “ very popular or very fluent. ”   50   On the other hand, 

 A Course of Lectures on Natural Philosophy and the Mechanical Arts  (1807) was the most 

comprehensive yet given in England, one of the first attempts of general synthesis in the 

aftermath of Newton. Addressing a broad audience, Young presented a general picture, 

emphasizing the leading concepts and omitting mathematical details. Reading him now, 

we can see how Young ’ s synoptic project reflected his own work synthesizing sound and 

light through the wave theory. His papers showed the importance of music and sound as 

he discovered his new insights; his lectures showed how he continued to rely on sound 

and music not only in the context of the discovery of his ideas but also in the context of 

their public justification and popularization.  51   

 After 1803 and the remarkable series of papers considered above, Young left the Royal 

Institution and active research in optics, discouraged by vitriolic attacks on his papers by 

Lord Brougham, a fanatical adherent of the particle theory of light. Young then wrote on 

medical subjects and increasingly worked on deciphering Egyptian hieroglyphics. Later, 

he was greatly encouraged by the recognition and praise of the younger French researchers 

in optics, especially Dominique Arago and Augustin-Jean Fresnel. The  “ Young – Fresnel 

theory, ”  as it came to be called, prevailed by the 1820s, having converted all except for a 

few stubborn partisans of Newtonian orthodoxy (such as Brougham). In 1817, Young 

surveyed these confirmations in a magisterial article for the  Encyclopaedia Brittanica  

entitled  “ Chromatics. ”   52   

 Indeed, many new things had emerged after 1803, particularly the discovery of the 

polarization of light by  É tienne-Louise Malus in 1807, which added a new level of puzzle-

ment that the undulatory theory of the time could not illuminate. Gazing through an Iceland 

spar (calcite) crystal at the reflected sunlight from a neighboring glass window, Malus 

noticed that the two images of the window would alternately disappear and appear as he 

rotated the crystal. Somehow, the reflected light had some kind of directionality that the 

crystal could transmit only when correctly oriented. The crystal would split the incoming 

reflected light into two separate beams, each  “ polarized ”  differently, as Malus phrased it. 

If indeed light is a wave, how could it exist in the different states of orientation Malus had 

discovered?  53   

 By 1815, Young doubted that his theory could account for this new phenomenon, as he 

wrote in his private correspondence at the time. But in a letter of 1817, he himself proposed 

a solution that both used and reversed the analogy with sound. Writing to Arago, he noted 

that  “ it is a principle in this [wave] theory, that all undulations are simply propagated 

through homogenous mediums in concentric spherical surfaces like the undulations of 
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sound, consisting simply in the direct and retrograde motions of the particles in the direc-

tion of the radius [i.e., the direction of propagation of the wave], with the concomitant 

condensation and rarefactions. ”   54   

 In modern terminology, Young was pointing out that sound is a  longitudinal  wave, 

causing fluctuations of density of the air along the wave ’ s direction of propagation. In 

his 1807 lectures, he noted that  “ Dr. Chladni has discovered that solids, of all kinds, 

are capable of longitudinal vibrations, ”  though  “ the vibrations which most bodies 

produce are, however, not longitudinal but lateral. ”   55   As we will consider in the next 

chapter, Ernst Chladni ’ s vibrating plates showed Young visible evidence of both longitu-

dinal and lateral (transverse) motion. In 1817, though Young clearly understood the force 

of the example of sound, he now realized that light waves might operate in an importantly 

different manner:  “ And yet it is possible to explain in this theory a transverse vibration, 

propagated also in the direction of the radius, and with equal velocity, the motions of the 

particles being in a certain constant direction with respect to that radius: and this is a 

 polarization . ”   56   

 That is, if the vibrations of the light wave occur in the transverse (perpendicular) plane 

to their direction of propagation, they can then be polarized in that plane. The two split 

beams transmitted by Iceland spar turned out to exemplify the two orthogonal directions 

in that plane: Malus ’ s images appeared and disappeared as the crystal was rotated, first 

transmitting the polarized light, then not.  57   Thus, Young suggested, as did Andr é -Marie 

Amp è re, Arago, and Fresnel independently, light could be a transverse wave, compared to 

sound waves as longitudinal.  58   Though several of Young ’ s biographers assert at this point 

that he and Arago had been  “ blinded ”  by the analogy with sound, Young ’ s letter suggests 

the opposite, for he says that he was led to his new suggestion precisely by sound itself.  59   

Note that he speaks, in both the case of transverse and of longitudinal waves, of  “ this 

theory ”  in the singular, indicating that the general characteristics of  “ undulatory theory ”  

are shared by both, including the concepts of wavelength, frequency, velocity, and direction 

of propagation. 

 Returning to this issue in 1823, Young again represents himself as  “ strongly impressed 

with the analogy of the properties of sound, ”  but he now notices that the possibility of 

transverse light waves lead to a  “ perfectly  appalling  ”  consequence: because they had 

always been formulated in terms of the vibrations of a solid,  “ it might be inferred that the 

lumeniferous ether, pervading all space, and almost all substances, is not only elastic, but 

absolutely solid!!! ”   60   Though Young ’ s biographers take this, too, as even stronger evidence 

of his being  “ blinded ”  by the analogy to sound, it has not been noticed that his objection 

indicates the very difficulties with the ether to which we shall return in chapter 13. Here 

too, Young credited this final contribution to optics to his reflections on  “ undulations 

of sound, ”  though he might have said the same for many of his prior insights connecting 

music, sound, and light. 
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 This concluding example confronts us with the full richness of Young ’ s translation of 

sound vibrations into light waves. As with his youthful rendition of Shakespeare into clas-

sical Greek, he was alive both to the possibilities and the perils of such translation. In the 

present case, his  “ translation ”  yielded both the possibility of transverse light waves but 

also the attending paradox of the ether. Young was content to follow this translation from 

sound to light far enough to contemplate these new,  “ appalling ”  implications; characteristi-

cally, he left to Fresnel and Arago the detailed mathematical exploration of the new 

terrain.  61   Similarly, in his subsequent work on Egyptian hieroglyphics, Young discovered 

that the language was phonetic and correctly identified many characters on the Rosetta 

Stone, leaving to Jean-Fran ç ois Champollion the full decryption of the rest of the text and 

the attendant  r é clame .  62   Ironically, Young ’ s French acclaim for his light theories was 

accompanied by British neglect; conversely, the British magnified and the French mini-

mized his achievements in hieroglyphics, compared to Champollion. In the tumult of the 

Napoleonic era, Young experienced the frustrations of a cosmopolitan polymath traversing 

the British – French divide. 

 Experiencing the crucial moment of breakthrough in translation may have been more 

satisfying for Young than the subsequent labor to fill out the gaps and continue the work 

to the bitter end. Ultimately, he may have been most hampered by his aversion to the  “ too 

wide and too barren ”  mathematical language Fresnel used so powerfully. Ironically, though 

a polymath suspected of speaking too many tongues, Young may have had one too few, 

insofar as he eschewed the Continental mathematical language. Perhaps his disinclination 

may reflect his idiosyncratic education, steeped in Newton ’ s intentionally archaizing, anti-

Cartesian geometrical language, rather than the algebraic symbology associated with 

Leibniz. Rather than merely imitating Newton, though, this may have reflected Young ’ s 

(and Newton ’ s) deep respect for antiquity. Both were curious about  prisca sapientia , the 

primal wisdom of the ancients, as became manifest in Young ’ s work on hieroglyphics and 

in Newton ’ s on ancient chronology. However one reads his own wide-ranging quest, Young 

himself thought that  “ it is probably best for mankind that the researches of some investiga-

tors should be conceived within a narrow compass, while others pass more rapidly through 

a more extensive sphere of research. ”   63   Though this fluent statement does not make explicit 

the difficulties and frustrations involved, Young was the exemplar of this second path, 

poised between languages in ways that paralleled his fundamental role in translating the 

wave theory between sound and light.  64   

 

 

 

 
 





 Thomas Young ’ s translation of sound into light provided a crucial example for parallel 

work connecting sound with electricity and magnetism that emerged in the decades just 

before and after him. The early connection that Georg Christoph Lichtenberg made 

between electricity and its visual trace led directly to Ernst Chladni ’ s vibrating plates, 

which gave visual form to sound. F é lix Savart continued the exploration of the electricity –

 sound connection, as did Hans Christian  Ø rsted and Johann Wilhelm Ritter in their own 

ways. In all these cases, sound represented a parallel venue for ideas and experimental 

approaches that contributed to the Biot – Savart law of magnetic action and to  Ø rsted ’ s 

discovery of what he called electromagnetism. The complex interweaving of these studies 

of sound, light, electricity, and magnetism aptly reflects the traveling vibrations they all 

pursued. 

 Earliest in this network is Lichtenberg, a remarkable polymath, writer, and wit, and a 

friend of Goethe and Kant, whose aphorisms have resonated for generations in the Ger-

man-speaking world. The first professor of experimental physics in a German university, 

whom we have already met as Young ’ s teacher, Lichtenberg was active in geodesy, volca-

nology, meteorology, astronomy, and mathematics, to name only a few of his endeavors. 

These manifold topics, though, he understood as part of a search for  Ganzheit , the whole-

ness and integrated unity of nature:  “ There is only  one  natural science before God; man 

makes isolated chapters out of it, and  must  make them, in accordance with his limitations. 

As long as the chapters do not fit together, an error lurks hidden somewhere, in the dif-

ferent chapters separately, or in all of them. ”   1   This quest for the unity of nature character-

ized German  Naturphilosophie  as a whole, though Lichtenberg stood apart from many of 

its more visionary adherents in his hard-headed empirical and experimental orientation. 

For him,  “ unity ”  was a watchword for tough-minded science, not a mystic slogan. 

 In that spirit, music and sound take their place among many other significant fragments 

of the great whole. Convinced that  “ everything is in everything, ”  Lichtenberg sought con-

nections between magnetism and electricity, magnetism and light, light and heat, heat and 

sound — for instance:  “ Has one ever produced heat through sound? ”   2    “ Does music make 

plants grow, or are there among the plants some that are musical? ”   3   His most famous 
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intervention in physics made invisible electricity take a visible form. In 1777, he completed 

construction of a large electrophorus (  figure 12.1a ), whose resinous  “ cake, ”  two meters in 

diameter, when rubbed with fur generated static electricity, whose polarities he symbolized 

as + and  – . By placing the insulated metal plate in contact with the charged  “ cake ”  and 

then touching the plate ’ s upper surface to allow positive charge to escape ( “ charging by 

induction ” ), the bottom of the plate had sufficient negative charge to generate sparks up 

to 40 cm long (about 20,000 volts in modern units). 

 He noticed that the charged plate, when discharged, would cause the resin dust on his 

table to assume striking shapes, now called  Lichtenberg figures  (  figure 12.1b,c ),  “ innumer-

able stars, galaxies, and large suns  …  finely formed branches, similar to those made by 

frozen steam on window panes. ”   4   Consistent with his quest for the unity of nature, he 

described the electrical patterns in the language of astronomy or botany, as if the electrified 

dust visibly disclosed the deep affinity between all these realms. Further, he could clarify 

the figures by scattering more dust on them, bringing out their fine details, which remained 

clear even after several days.    

 Lichtenberg felt he had discovered a means of investigating the  “ motion of electrical 

matter ”  similar to the long-known use of iron filings to make visible the action of magnets. 

He noted the pronounced difference between the figures generated by positive (  figure 

12.1b ) and negative (figure 12.1c) charge, taking this as evidence that electricity is com-

posed of two different fluids, not one (the subject of much controversy into the early 

nineteenth century). He also realized that pressing black paper on his figures allowed them 

 to print themselves  in far greater and more perfect detail than he could achieve in a 

drawing. Some historians thus credit Lichtenberg with discovering the essential process 

of xerography, now used in every copier or printer.  5   

 Lichtenberg ’ s figures found immediate resonance in the work of Ernst Chladni. The son 

of a law professor, he quit the law after his father ’ s death to follow the  “ study of nature, 

which had always been my secondary and therefore dearest occupation. As an amateur of 

music, whose elements I had begun to learn a bit late at age nineteen, I noticed that the 

theory of sound was more neglected than many other branches of physics, which gave rise 

to my desire to remedy this lack and be useful to this part of physics through some dis-

coveries. ”  In 1785, Chladni began  “ very imperfect ”  experiments striking plates of glass or 

metal at different points and trying to understand their sounds, compared to the familiar 

vibrating string, which he studied from Bernoulli and Euler. Chladni then read of  “ a 

musical instrument made in Italy by abb é  Mazzocchi, consisting of bells to which one 

applied one or two violin bows, ”  which he then decided to try on his plates. He obtained 

sounds whose pitches were in the ratios of the squares of 2, 3, 4, 5,  …  but felt he did not 

understand the underlying motions. Reading Lichtenberg ’ s experiments made him 

 “ presume that the different vibratory motions of a sounding plate also ought to show dif-

ferent appearances if a little sand or a similar substance were spread on the surface. ”  

His first trials on a round plate yielded ten- and twelve-pointed stars (  figure 12.2a ), 
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 Figure 12.1 
 (a) An electrophorus, composed of a  “ cake ”  of resinous material (bottom) and a metal plate with an insulating 

handle (top). (b) Positively (+) and (c) negatively ( – ) charged Lichtenberg figures produced using the static 

electricity generated by induction from the electrophorus. 
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 Figure 12.2 
 (a) Chladni ’ s figures ( Acoustics , 1830). (b) John Tyndall ’ s illustration of the process of forming a Chladni figure 

( Sound , 1871). 
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whose attendant  “ very high sound ”  changed according the squares of the ratios he had 

found:  “ Imagine my astonishment in seeing this phenomenon that no one had ever seen 

before. ”   6      

 These figures make visible the spatial patterns produced by sound waves, the correlation 

between them brought home by the coincidence of sight and sound, especially as the pat-

terns suddenly change when the bow audibly excites a new standing wave in the plate. 

Chladni ’ s discovery transcribed Lichtenberg ’ s electrical figures into sound on the implicit 

presupposition that an analogous  “ vibration ”  lay behind the action of electric charge and 

behind the sounding plate. Chladni went on to exhibit his figures throughout Europe. He 

also invented two musical instruments (the euphonium and the clavicylinder), each an 

offspring of his vibrating plates.  7      

 Chladni visited Paris in 1808 and demonstrated his figures to the Acad é mie des Sci-

ences, including Napoleon himself (  figure 12.3 ), showing the enormous interest evoked 

by the wonderful spectacle of visible sound, audible sight. In the painting, Napoleon and 

his entourage gaze thoughtfully on the demonstration, showing his celebrated interest in 

exact science as he scrutinized a talisman of the new physics. Several French savants took 

up Chaldni ’ s experimental program, particularly F é lix Savart, who began as a physician 

but became  “ truly Chladni ’ s professional successor. ”   8   Where Chladni had applied the 

violin bow to various shapes of plates, Savart used the same techniques to study the violin 

itself as a special kind of vibrating plate, exploring the relation between its structure and 

its sound. In this way, Savart clarified the complex functions of the violin ’ s bridge 

and sound post, part of artisanal violin-making that previously lacked theoretical explana-

tion. By locating the nodal lines, where sound waves would interfere and allow sand to 

settle quietly, Savart showed that the best placement of the sound post — in French the 

 “  â me, ”  the violin ’ s  “ soul ”  — avoided those nodes. After studying models based on Stradi-

vari and Guarneri violins, Savart thought he could improve the instrument ’ s basic design. 

To maximize the violin ’ s symmetry, he built a trapezoidal violin with rectangular sound 

holes, thereby simplifying the violin ’ s traditional curves and  f -holes (  figure 12.4 ). Savart ’ s 

novel violin was studied carefully by an eminent committee formed jointly by the Acad é-

 mie des Sciences and the Acad é mie des Beaux-Arts, including the composer Luigi Cheru-

bini and also Savart ’ s older colleague, the physicist Jean-Baptiste Biot, who wrote the 

report. Their unanimous opinion was that  “ the new violin could pass for an excellent 

violin, ”  its tones even more suave than a standard instrument, though a bit more subdued 

when heard close by.  9      

 The parallel strands in this intertwined story takes us to yet another country in which 

a young savant made a new connection with Chladni ’ s work. In Denmark, Hans Christian 

 Ø rsted had drawn inspiration from Kant ’ s attempt to deduce natural philosophy from 

basic forces of attraction and repulsion, which  Ø rsted and others interpreted in the spirit 

of contemporary  Naturphilosophie . Charles-Augustin de Coulomb ’ s work in the 1780s 

had offered persuasive evidence that electricity and magnetism involved two utterly 
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 Figure 12.3 
 Chladni demonstrating his figures to Napoleon (1808). (Courtesy Deutsches Museum, Munich.) 
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 Figure 12.4 
 (a) Savart ’ s illustration of the nodal pattern of a violin in relation to its structure; (b) his design for a trapezoidal 

violin ( Memoir on the Construction of String Instruments , 1819). 
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different species of matter. Yet the unitive spirit of  Naturphilosophie  led  Ø rsted to 

hypothesize that they were, in fact, connected. In the course of his attempts to demon-

strate this decisively,  Ø rsted began to work with Chladni ’ s acoustic figures. In an 1804 

letter to his friend and fellow  Naturphilosoph  Johann Wilhelm Ritter in Jena,  Ø rsted 

expresses his view that Chladni ’ s figures not only  “ may offer important insights into the 

theory of sound ”  but could offer the hope of discovering  “ electric phenomena in the 

production of the acoustic figures. ”  Thus, the impulse that came from Lichtenberg ’ s 

figures recording electricity subsequently shaped Chladni ’ s acoustic figures, then circled 

back to influence  Ø rsted ’ s work on electricity. To implement his plan,  Ø rsted (like Lich-

tenberg before him) used fine lycopodium power, more responsive to electric charge than 

the sand or rosin dust Chladni had used.  Ø rsted observed that  “ a number of small waves 

or nodal points developed with each stroke of the violin bow ”  applied to this electrified 

Chladni setup, so that  “ each acoustic oscillation is composed of a number of smaller 

ones. ”  Thus,  “ each tone in itself would be an organization of oscillations just as any 

music is an oscillation of tones, ”  thereby unifying the structure of music with the physical 

structure of sound in general.  10   

 The following year (1805),  Ø rsted continued his train of thought in a letter to Marc 

Auguste Pictet in Geneva, which, like his letter to Ritter, was published and thus shared 

more widely.  Ø rsted observed the fine detail of the motion of his tiny piles of lycopodium 

powder as they moved on the vibrating plate, giving a dynamic quality to the movements 

underlying the formation of the visible patterns and the concomitant sound. He then 

directed attention to the friction involved in these processes, which  “ produces not only 

heat but electricity. ”  Using Coulomb ’ s electrometer,  Ø rsted reports his tentative finding of 

electric charge  “ on the edges and corners ”  of his vibrating bodies, which he proposes to 

investigate further. 

 At this point,  Ø rsted involves the work of his friend Ritter, surely the most  “ Romantic ”  

of the  Naturphilosophen : pursuing their common search to unveil the unity of Nature 

( Einheit der Natur ), Ritter took this quest to extremes that tested the limits of that unity 

and even of his own safety.  11   His boldness and radical imagination clearly fascinated his 

friends, who included Goethe, Alexander von Humboldt, and the poets Novalis (Friedrich 

von Hardenberg) and Clemens Brentano, as well as  Ø rsted. For instance, Ritter applied 

the principle of the unity of nature to argue that, corresponding to the  “ heat rays ”  (infrared 

radiation) just discovered by William Herschel (1800), by symmetry there should be 

cooling  “ chemical rays ”  at the opposite end of the spectrum (ultraviolet). In 1801 (the year 

he met  Ø rsted), Ritter showed that these rays darkened silver chloride. In 1800, using the 

new voltaic pile Ritter had independently discovered the electrical decomposition of water, 

which he again had deduced from the implications of  Naturphilosophie  for the interrelation 

between positive and negative electricity. At the time, he was twenty-four, a dropout from 

medical school, basically self-taught as a scientist. Not all his deductions about the unity 

of Nature were confirmed by others, such as his claim that the Earth had electric (as well 
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as magnetic) poles or that magnets (as well as electric currents) could decompose water, 

not to speak of his investigations of occult practices such as metal witching and sword 

swinging. 

 In his letter on acoustic vibrations,  Ø rsted mentions that the  “ celebrated Ritter  …  had 

long ago discovered that Volta ’ s electric pile [battery] is capable of producing sound when 

the ear receives a shock from it. ”   12    Ø rsted ’ s surprising statement is far paler than the reality 

of Ritter ’ s experiments, which applied electric currents (some quite large) to his own body, 

including his eyes, ears,  “ organs of evacuation, ”   “ organs of reproduction, ”  and  “ other 

choice parts of the body. ”  Though Ritter probably went further in self-experimentation 

than anyone else, in 1795 Alexander von Humboldt (who enlisted Ritter ’ s collaboration) 

devised a galvanic circuit that connected some frogs via open wounds he had caused on 

his own back.  13   Their horrifying fascination aside, Ritter ’ s detailed accounts describe his 

self-experimentation as brave explorations of a terrain of experience he dared not inflict 

on anyone else, yet considered important to reveal the dimensions and implications of 

unified nature, including human beings. Though one wonders about his exact relation to 

these transgressive experiments and their possibilities for superlative pain and pleasure, 

Ritter explicitly used these electrical stimulations to probe the exact relation between the 

different (yet presumably unified) modes of sensation. 

 For instance, in one series of experiments in 1803, Ritter stimulated various organs with 

the positive pole of a voltaic column, resulting  “ in the eye: increased influence of light, 

bluish color, diminution of objects, narrower than usual field of vision; in the ear: sound 

with a deeper tone than g; in the nose: suppression of scent as with  acide muriatique 
oxyg é n é  ; on the tongue: acidic taste; and finally in all of these, as in every other part of 

the body,  expansion.  ”  In contrast, application of the negative pole yielded  “ in the eye: 

diminished influence of light, reddish color, and wider than usual field of vision; in the 

ear: sound with a higher tone than  ḡ  [presumably an octave higher]; in the nose: impulse 

to sneeze; on the tongue: alkaline taste; and finally the general feeling [ Empfindung ] in 

all of these, as in every other part of the body:  contraction . ”   14   The symmetry of these 

extremes in fact shows the larger rationale for Ritter ’ s expectation of  “ chemical rays ”  lying 

beyond the violet. Beyond his general expectations from  Naturphilosophie  about the polar-

ity of expansion and contraction throughout the sensorium, Ritter ’ s findings reveal high 

and low pitches (as well as blue and red colors, acid and alkaline tastes) as expressions of 

 electrical  activity. As he notes, with some wonder,  “ the same thing that produces colors 

in the eye, produces tones in the ear, — as though colors were  mute tones , and tones, in 

turn,  speaking colors . — That may well seem to be only a manner of speaking, but it could 

be more than one may have allowed oneself to believe. ”   15   

 Writing to Pictet,  Ø rsted interprets Ritter ’ s findings to mean  “ that in each sound there 

are as many alternatives of positive and negative electricity as there are oscillations, but 

the union of the two electricities produces a shock.  …  The perceptible effect of the union 

of all these imperceptible shocks is sound. ”   16   Because of their overriding commitment to 
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 unity , Ritter and  Ø rsted understood electricity to underlie the senses, no less than the senses 

provide evidence of electricity: Ritter felt he was  hearing  electricity, no less than  Ø rsted 

was  seeing  it move the powder on his vibrating plates. For these Romantics, hearing and 

music enabled the deepest and most inward knowledge.  Ø rsted wrote a dialogue about 

music. Ritter ’ s  Fragments from the Posthumous Writings of a Young Physicist  (1810), 

which Walter Benjamin considered the  “ most significant confessional prose of German 

Romanticism, ”  ends with a visionary interweaving of Chladni ’ s and  Ø rsted ’ s sound figures, 

electricity, light, and music. For Ritter,  “ there must absolutely be no human relation, no 

human history, which could not be expressed through music.  …  All life is music, and all 

music as life itself — at least its  image . ”   17   Ritter ’ s provocative thoughts on music made deep 

impressions on Novalis, E. T. A. Hoffmann, and Robert Schumann.  18   Calling light  “ the 

bond that binds together all and every thing, ”  Ritter nonetheless considers that  “ every tone 

is the  life  of the sounding body and in it, as long as it holds, as tone is extinguished with 

it. Every tone is a whole organism of oscillation and figure, shape, as is also every organic 

living thing. It expresses its existence [ Er spricht sein Daseyn aus ]. ”   19   He often connects 

music with the deepest sources of language, just as he treats electricity as a kind of  “ fire-

writing [ Feuerschrift ] ”  that inscribes its primordial glyphs in Lichtenberg figures.  20   Ritter 

considers these expressive shapes to be the originals for written language itself, taken as 

visibly recording the emergent shocks of consciousness:  “ Music is also language, general 

language, the first of mankind.  …  Music decomposes into languages, ”  rather like the 

decomposition of water into oxygen and hydrogen Ritter was one of the first to achieve. 

 “ Thus every one of our spoken words is a secret song, for music from within continuously 

accompanies it. ”   21   

 In closely harmonizing ways, Ritter and  Ø rsted sought the inner music of electricity. 

During 1802 – 1803,  Ø rsted visited Paris to represent their very different approach in the 

capital of mechanistic science whose champion was Pierre-Simon Laplace.  22    Ø rsted kept 

returning to his electric version of Chladni ’ s experiment, for instance in his essay  “ On the 

Harmony Between Electrical Figures and Organic Forms ”  (1805), an extended meditation 

on the striking differences he noted between the polarities of the electrical figures: the 

positive charge patterns ’   “ striking resemblance to vegetation ”  (such as   figure 12.1b ) versus 

 “ the internal form of the plant ”  seen in the negatively charged patterns (  figure 12.1c ), with 

their womb- or egg-shaped contours.  Ø rsted connected these contrasting forms with 

chemical phenomena and with repulsive and attractive forces in general, ending with the 

behavior of light. Though he notes that  “ the first fundamental law of light is that its effect 

spreads along straight lines, or that it is in the form of the first dimension, ”  when light 

strikes a partly opaque body  “ another force must act against it, as its opposite. ”  Thus, a 

straight ray of light passing through a prism give rise to a new effect, the spectrum, and 

 “ the direction of this effect is precisely perpendicular to that first straight line. ”   Ø rsted 

further speculates a third dimension, a  “ penetration or chemical process ”  like the effect 

Ritter discovered from  “ chemical rays ”  acting beyond the violet end of the spectrum.  23   
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 Prefacing his discussion of the multidimensionality of these phenomena,  Ø rsted men-

tions a general philosophical argument from Schelling correlating the three dimensions of 

space with  “ the construction of matter by the attractive and repulsive forces. ”  Schelling ’ s 

general observation, however, only sets the stage for  Ø rsted ’ s own specific argument, 

phrased against the background of his sound-electricity figures and ending with a specific 

identification of magnetism as  “ longitudinal, ”  electricity as  “ latitudinal, ”  and  “ depth ”  as 

chemical. Thus, in 1805  Ø rsted was already thinking about the relation between electricity 

and magnetism in terms of perpendicular directions. 

 The relation between this train of thought and sound phenomena comes forward clearly 

in his  “ Experiments on Acoustic Figures ”  (1810).  Ø rsted notes that, when observed 

more closely, what had been taken as simple straight lines in Chladni figures are actually 

hyperboloidal curves. He connects this with the varying transmission of sound waves 

through the plate, as excited by a violin bow, speculating that  “ there is nothing to prevent ”  

all the other conic sections from forming on very large plates.  Ø rsted contrasts this with 

the various patterns seen and sounds (more or less dull) heard when one taps different 

points along the plate. Thus, he treats the action of the bow as compounding many small 

taps into a more continuous excitation. To test this,  Ø rsted first records the  “ crude ”  image 

after one stroke of the bow, then again after the pattern has been completed after further 

strokes (figure 12.5). This emphasizes the  dynamic  quality of the sound figures, not merely 

their  static  appearance once they have been formed.  Ø rsted was struck by the living, 

organic quality of this dynamism, which he takes not simply as transient phenomena 

superseded by the completed figure but as clues to the  “ life ”  recorded by the figures ’  

changing forms.    

 Consistent with his writings on sound since 1804,  Ø rsted in this 1810 essay treats elec-

tricity and sound as essentially connected: the motions of the particles on a plate indicate 

its electrical configuration. He shares Ritter ’ s idea that convex curvature of the plate would 

lead to positive charge, concave to negative.  24   At this point,  Ø rsted ’ s thought becomes 

sharper, akin to the very pattern he was watching clarify on the plate. The motion of the 

powder particles elucidates the inner activity of electricity/sound, moving in undulations 

around the plate, in which an initial impulse (say from some point on the edge) spreads 

out sideways as it travels, generating further motion  perpendicular  to its original direction. 

Here  Ø rsted has gone past the generalities of Schelling to indicate a nascent argument 

about how electricity, like the sound it generates and that in turn generates it, may cause 

effects that transduce between one and two dimensions.  Ø rsted observes various degrees 

of harmoniousness generated by different  “ dimensionalities ”  of tapping: a  “ dull thud ”  at 

one point, a  “ clatter ”  when a whole side of the plate is struck, a  “ proper tone ”  when the 

whole surface is excited (as by a violin bow), at which point Chladni ’ s striking patterns 

emerge. From this,  Ø rsted connects music with these visible manifestations:  “ the most 

perfect and internally harmonious motion of bodies is also the one which, through the ear, 

produces the deepest impression on our internal sense of beauty. ”   25    Ø rsted also echoes 
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 Figure 12.5 
  Ø rsted ’ s figures of the pattern seen after one stroke of the violin bow (left) and then  “ completed ”  after further 

strokes (right). 
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Ritter ’ s speculations,  “ the greatest ever said about tones ”  and their felt musical effects, 

 “ how sorrow and joy each has its own, the former in minor, the latter in major. ”   Ø rsted 

considers light a higher frequency of vibration than sound:  “ According to this conception, 

one sense would become an octave of the other on the grand scale of sensations, and all 

would be subject to the same laws. Thus all sensations spring from the same original force, 

which in light works  in puncto  but in galvanism spreads in space, where, however, it runs 

through all forms of vibration so that it becomes perceptible to every sense. ”   26   Marveling 

at this all-encompassing unity,  Ø rsted hears in musical harmony, as in Chladni ’ s sound 

figures,  “ the mark of an invisible Reason ”  that is far more than  “ mechanical sensory 

stimulation. ”  

  Ø rsted ’ s major discovery emerged within this nexus of electricity and sound. In 1815, 

he had demonstrated  “ that heat and light consist of the conflict of the electricities, ”  implic-

itly including sound, as his other comments confirm.  27   In 1820, he gives specific form to 

 “ electromagnetism ”  (as he christens this new unity) by exhibiting the essentially  perpen-
dicular  effect of currents on magnets through the intermediacy of the  “ conflict of electrici-

ties, ”  which he defines as  “ the effect which takes place in this conductor and in the 

surrounding space. ”   28    Ø rsted ’ s description of the circular lines of  “ conflict ”  surrounding 

the conductor directly recall the transverse outlines he had provided for the dynamic 

motions of sound and electricity (  figure 12.5 ) as well as his detailed descriptions of 

the motions induced by those forces. He does not discuss the contrast with longitudinal 

motions noted in the previous chapter, though he was probably aware of Chladni ’ s use of 

this term to describe the propagation of sound in his figures.  Ø rsted seems to take as self-

evident that the symmetry of the source (the linear conducting wire) should be reflected 

in the form of the  “ conflict ”  that surrounds it, whose transverse (rather than radial) sym-

metry is far from obvious. The only precedent we can find in  Ø rsted ’ s earlier work is the 

transversality of the sound/electric effects on his vibrating plates, though his 1820 papers 

announcing the new electromagnetic effect do not explicitly direct attention to its acoustic 

prehistory. 

  Ø rsted, however, always mentions the unity of forces that guided all his endeavors, 

among which sound figures in so many cases. He certainly takes his 1820 discovery to 

confirm his guiding presupposition. By comparing his new work to the response of 

magnets during storms,  Ø rsted implicitly includes it in the interrelated framework of 

thunder and lightning, as if such weather provided a macroscopic precedent for his dis-

covery, dramatically combining sound and light. His work on sound becomes the all-

pervasive background and matrix in which he explores the unification of electricity, 

magnetism, and light. 

  Ø rsted ’ s publications spread news of his discovery, which first found its experimental 

confirmation during one of his lecture demonstrations; his first direct observations were 

thus preceded and prepared by a long period in which the example of sound and the quest 

for unification of the forces of nature focused his attention. In Paris about at the same 
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time, Savart turned from his investigations of violins to studies of magnetic action, paral-

leling  Ø rsted ’ s path from sound to electromagnetism. After finishing his work on the 

committee judging Savart ’ s trapezoidal violin, his colleague Biot joined him in the detailed 

study of electromagnetic action that became their most famous work.  Ø rsted ’ s orientation 

toward the holistic generalities exalted by  Naturphilosophie  shaped his qualitative descrip-

tion of the circular lines of force surrounding a conducting wire. In contrast, Biot and 

Savart ’ s immersion in the decidedly mathematical orientation of French physics is manifest 

in the quantitative law for the magnetic field strength, known by both their names (though 

in its mathematical detail very much also the work of Andr é -Marie Amp è re): the Biot –

 Savart law.  29   The larger French research tradition informed both their work on sound and 

on electromagnetism, but for them, as for  Ø rsted, sound came first. 

 

 

 

 
 



 In the wake of  Ø rsted ’ s discovery, the entwined stories of Charles Wheatstone and Michael 

Faraday likewise interwove sound and electromagnetism. Starting out as an apprentice 

bookbinder, Faraday altogether lacked mathematical education; he said he could not 

understand a single equation. From his earliest work as a laboratory assistant to Humphrey 

Davy, Faraday thought in terms of experiments, in the felt reality of observation and 

manipulation, his visual turn of mind manifested in the constant sketches he put in his 

diaries, essential adjuncts to his hands-on experiences. His cultural awareness was far more 

sonic; he never mentions paintings or the visual arts but at several points makes clear his 

strong love of music. 

 Writing in 1813 to his close friend Benjamin Abbott, the young Faraday begins by 

quoting Shakespeare ’ s famous encomium of music:  “  ‘ He that hath not music in his heart 

 & c ’  confound the music say I. — it turns my thoughts quite round or halfway round from 

the letter ”  that Faraday is trying to write. His joke implies that Shakespeare ’ s line scarcely 

does justice to Faraday ’ s infatuation with the music he hears in the night.  “ You must know 

Sir that there is a grand party dinner at Jacques hotell which immediately faces the back 

of the [Royal] institution and the music is so excellent that I cannot for the life of me keep 

from running at every new piece they play to the window to hear them — I shall do no 

good at this letter tonight and so will get to bed and  ‘ listen listen to the voice of ’  bassoons 

violins clarinets trumpets serpents and all the other accessories of good music — I cant stop 

good night. ”   1   By this time, Faraday had just become Davy ’ s  “ chemical assistant ”  at the 

Royal Institution, whose fame Faraday later augmented through his popular lectures, 

alongside his ceaseless stream of experiments and publications. In 1813 he was only begin-

ning along that path, using his letters to improve his writing, studying elocution several 

times a week to rectify his pronunciation and overcome the signs of his lower-class back-

ground, though phonetic problems dogged him all his life (he could not pronounce the 

letter  “ r ”  and called his brother  “ Wobert ” ).  2   His struggle with his own phonemes paralleled 

his attention to sonic questions. 

 Beginning his scientific life with Davy, chemistry occupied the first phase of Faraday ’ s 

activity, though he increasingly devoted his attention to electricity and magnetism, as did 

 13  Hearing the Field 
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many others. After the announcement of  Ø rsted ’ s discovery in 1820, Andr é -Marie Amp è re 

wrote his son that  “ since I have heard of the beautiful discovery of M. Oersted  …  I have 

thought of it constantly. ”   3   Amp è re was surprised because Coulomb ’ s work had seemed 

to demonstrate that any influence of electricity on magnetism was impossible because 

they were two essentially dissimilar fluids, and hence were incapable of interacting. 

Further, circular lines of force had no precedent in Newtonian physics, which was usually 

understood to exclude transverse forces. Amp è re gave precise mathematical form to 

 Ø rsted ’ s discovery, bringing the quantitative power of French science to this child of 

 Naturphilosophie.  Reconsidering Coulomb ’ s arguments, Amp è re theorized that magnetism 

was caused by electric currents and described the mutual forces between two parallel 

current-carrying wires in what came to be called  “ Amp è re ’ s law. ”  

 In 1821, at the request of his friend Richard Phillips, Faraday published an extensive 

historical survey of the new field of electromagnetism, which showed that he considered 

history an essential part of what he called  “ philosophy, ”  not fond of the new coinages 

 “ physicist ”  and  “ scientist. ”  Indeed, Faraday ’ s historical reconstruction helped him correct 

his initial misunderstanding of  Ø rsted ’ s discovery as simple attraction or repulsion, rather 

than a circular force acting transversely.  4   As was the case with Descartes, Faraday ’ s cor-

respondence shows him moving between many fields, addressing questions of chemistry, 

sound, and electromagnetism. For instance, his letters to Charles Gaspard de la Rive began 

in 1818 with their shared interest in  “ singing tubes, ”  heated vials of hydrogen and other 

gases that produce roars and even musical tones, about which Faraday had written a paper.  5   

In September 1821, Faraday ’ s subsequent letter to de la Rive combined descriptions of 

investigations of steel alloys with discussion of Amp è re ’ s theories, alongside Faraday ’ s 

experimental demonstration that electromagnetism could rotate a wire: the first electric 

motor (  figure 13.1 ).  6      

 Faraday ’ s correspondence with Amp è re showed their mutual respect as well as 

Faraday ’ s hesitation to accept the literal physicality of Amp è re ’ s microscopic theory of 

electromagnetism, in which each molecule was a tiny current loop. For Faraday in 1821, 

 “ we have no proof of the materiality of electricity, or of the existence of any current 

through the wire. ”   7   As an alternative to  “ the passage of matter ”  being the cause of the 

electromagnetic effects, as Amp è re had argued, Faraday now suggests  “ the induction of a 

particular state of its [the conducting wire ’ s] parts, ”  the first mention of the intermolecular 

 “ state ”  that would figure so significantly in his later thoughts on what he eventually called 

the  “ electro-tonic state. ”   8   

 Having learned that electric currents give rise to magnetic effects, Faraday and many 

others sought what seemed the symmetric and complementary effect: if indeed electro-

magnetism were a unified, symmetric whole, magnetism ought likewise to cause electric 

effects. Yet despite many attempts in the following decade, no one could find any such 

effect. Its eventual discovery as electromagnetic induction was preceded by Faraday ’ s 

return to questions of sound, which clearly helped him find this elusive phenomenon, 
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 Figure 13.1 
 Faraday ’ s palm-sized demonstration of electromagnetic rotation (1821). An electric current passes through the 

apparatus via liquid mercury (at the bottom of the tube), setting the rod into rotation. 
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though his progress was slowed by the press of many other duties and experimental pro-

grams. In 1825, he tried the fundamental experiment suggested by Amp è re ’ s theory: the 

magnetic forces produced from current-carrying wires should in turn generate electric 

effects in a nearby wire loop, but Faraday registered no effect, which increased his skepti-

cism about Amp è re ’ s theory.  9   Returning to Faraday ’ s quest for an alternative  “ state ”  of a 

current-carrying wire, beyond Amp è re ’ s material currents, L. Pearce Williams noted that 

 “ it clearly had to be something more complicated than a mere arrangement of particles, 

for it was difficult to see how a static arrangement could cause a dynamic rotation. ”   10   

Averse to the imponderable  “ fluids ”  favored by Amp è re and others, Faraday turned to the 

wave theory of light advanced by Young and taken up by Fresnel, who in 1827 – 1829 

published a nonmathematical account in English, which Faraday studied carefully. The 

example of light waves offered him another possible way of thinking about the  “ state ”  

surrounding the wires as able to transmit force via waves without involving the transfer 

of matter.  11   

 Yet sound was the most obvious pattern for such wave transmission, for Young as for 

those who came after him; in the 1820s, the wave theory of sound was far better established 

than the still controversial wave theory of light. Accordingly, Faraday ’ s turn in 1828 – 30 

to investigations of sound form a plausible staging-ground for his reconsideration of the 

 “ state ”  that might unlock the electromagnetic problem he could not solve in 1825. In the 

years immediately preceding his breakthrough with electromagnetic induction, Faraday 

concentrated on examples of sound transmission that offered suggestive and helpful 

avenues he then pursued in electromagnetism. 

 This new phase began in 1828 with Faraday ’ s involvement in public lectures on sound 

at the Royal Institution that were curious exercises in ventriloquism, in which Faraday did 

not speak on his own behalf but as the voice of Wheatstone, whose shyness inhibited him 

from speaking publicly. A decade younger than Faraday, Wheatstone came from a family 

of musical instrument makers and dealers and had no formal scientific education. At age 

fifteen, apprenticed to his uncle the year before, Wheatstone composed two songs that 

were published. He spent most of his earnings on books, such as a work on Volta through 

which he learned of the recent electrical discoveries. Though involved in the music busi-

ness after 1823, Wheatstone did not care much for its commercial side and spent most of 

his effort on musical inventions; in 1824, he published a  “ Harmonic Diagram ”  to help the 

public understand key signatures (  figure 13.2 ).    

 He later noted that  “ as an admirer of music  …  I remarked that the theory of sound was 

more neglected than most of the branches of natural philosophy, which gave rise in me to 

the desire of supplying this defect. ”   12   In 1823, he published his first scientific paper,  “ New 

Experiments on Sound, ”  which begins by distinguishing longitudinal from transverse 

modes of vibrations, using Chladni ’ s technique on a glass plate covered by a layer 

of various fluids (water, oil, mercury) to induce  “ crispations, ”  slight undulations that 

Wheatstone interprets as the  “ vibrating corpuscles ”  or  “ phonic molecular vibrations ”  of 
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 Figure 13.2 
 Wheatstone ’ s  “ Harmonic Diagram ”  (1824), whose rotating wheel can be pointed to a pitch (here D), so that 

when the flap is raised, the correct key signature for D major appears. 
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the plate.  13   Wheatstone also excited such crispations by blowing a flute close to the moist-

ened glass plate, forming  “ a circle round the end of the tube, and afterwards appearing to 

radiate in right lines; on the harmonics [overtones] of the tube being sounded, the crispa-

tions were correspondingly diminished in magnitude. ”  He thus applied his own instrument 

to extend Chladni ’ s static experiments and, in the process, evoked dynamic, transient wave 

phenomena that will be of increasing importance in what follows, as will Wheatstone ’ s 

insistence that  “ the molecular vibrations pervade the entire substance of the phonic [vibrat-

ing body], ”  using  “ molecular ”  in the then-current sense of minute portions of substance. 

He also showed his experiments to  Ø rsted, who told Wheatstone of his own very similar 

earlier experiments, discussed earlier.  14   Here, as at many other points in this story, the 

protagonists reencounter and reinforce each other. 

 Wheatstone also shows his continuing interest in the problems of transmission of sound. 

In this first paper, he described his experiments transmitting sound along a long rod, noting 

his astonishment that  “ all the varieties of tune, quality, and audibility, and all the combina-

tions of harmony, are thus transmitted unimpaired, and again rendered audible by com-

munication with an appropriate receiver. ”  Wheatstone exploited this device in his Enchanted 

Lyre or Acoucryptophone ( “ hearing a hidden sound ” ), first shown in London in 1821 

(  figure 13.3 ), in which a rod through the ceiling connects a piano in a room above to a 

lyre whose sympathetic resonance mysteriously transmits the hidden instrument. Its eerie 

sounds moved Wheatstone to note that  “ so perfect was the illusion in this instance from 

the intense vibratory state of the reciprocating instrument [the lyre], and from the intercep-

tion of the sounds of the distant exciting one [the piano], that it was universally imagined 

to be one of the highest efforts of ingenuity in musical mechanism. ”   15      

 In 1827, Wheatstone presented his new kaleidophone (literally  “ hearing beautiful 

forms ” ), which made visible the wave motion of a vibrating rod traced out over time by a 

luminous point at its end, a silvered glass bead (  figure 13.4 ).  16   Though Wheatstone depre-

catingly called this a  “ philosophical toy, ”  the sonic counterpart to a kaleidoscope, he traced 

it back to Young ’ s experiments making visible the vibrations of a piano wire and noted that 

 “ this instrument possesses higher claims to attention; for it exemplifies an interesting series 

of natural phenomena, and renders obvious to the common observer what has hitherto been 

confined to the calculations of the mathematician, ”  namely the wave theory of light.  17      

 Surely these words, and the striking instrument as well (still to be seen in science 

museums), must have resonated with Faraday ’ s concern to penetrate the mathematical fog 

and reach the concrete details of the underlying  “ state ”  of wave motion. Indeed, in 

what follows Faraday himself acted as the resonator responding to and retransmitting 

Wheatstone ’ s original impulse, as if they together constituted an Enchanted Lyre. In Febru-

ary, 1828 Faraday delivered Wheatstone ’ s new communication  “ On the Resonances, or 

Reciprocated Vibrations of Columns of Air, ”  thus allowing his friend to  “ speak ”  through 

Faraday ’ s own resonantly vibrating column of air, transmuting the agony of Wheatstone ’ s 

shyness into felicitous ventriloquism.  18   
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 Figure 13.3 
 Wheatstone ’ s Enchanted Lyre (1821); the rod transmits the sound of the piano to the lyre in the room below. 
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 Figure 13.4 
 (a) Wheatstone ’ s kaleidophone (1827), whose several rods exhibit various modes of vibration by means of a 

luminous point at the end of each; (b) patterns produced by the different modes of the kaleidophone. 



Hearing the Field 203

 The very first words spoken through Faraday brought forward elements that became 

particularly important in his subsequent work. Wheatstone began the text of their joint 

address by noting that an elastic body  “ may be made to assume a vibratory state ”  either 

 “ immediately, by any momentary impulse, ”  which alters the natural position of its parti-

cles, allowing them afterward to return to their former state; secondarily, another sounding 

body may cause it to  “ reciprocate ”  via resonance. His historical overview goes back to 

Bacon ’ s  “ experiments of sympathy, ”  to Galileo making a pendulum move by  “ the least 

breath of the mouth ”  repeated at the resonant frequency, to Newton ’ s comparison between 

a shining body ’ s component colors and  “ the several pipes of an organ inspired all at once. ”  

Wheatstone notes that these sympathetic phenomena exhibit the classic Pythagorean ratios, 

which Faraday demonstrated by a Javanese musical instrument, a  g é nder , whose tuned 

bamboo columns resonate vibrating plates (  figure 13.5a ). This exotic instrument had the 

aura of far-flung British colonial exploits; Faraday borrowed it from Lady Sophia Raffles, 

wife of the colonial governor in service of the East India Company.  19   But Wheatstone ’ s 

purpose in using it went beyond mere exoticism and colonial display; he emphasized that 

no European instrument had yet used resonant columns of air to augment the intensity of 

sounds as did the  g é nder , along with other Asiatic and African musical instruments. Thus, 

non-European musical traditions that had previously been treated condescendingly here 

taught techniques and designs from which European science and music might profit.    

 Wheatstone used the  g é nder  to show how resonances may occur at different frequencies 

than the original sound. To demonstrate this, he sounded a tuning fork next to a tube with 

a sliding piston, noting the resonance of the air column  “  when the number of its own 
vibrations are any multiple of those of the original sounding body , ”  but not the nonexistent 

undertones Euler had hypothesized.  20   Wheatstone uses these multiple resonances to explain 

the sound production of the humble guimbarde (sometimes called  “ jew ’ s harp, ”  though 

lacking any substantive connection to the Jewish people), a folk instrument of Asiatic 

origin (  figure 13.5b ). Here, the vibrating body is the steel tongue in the middle of a metal 

frame, which is held against parted front teeth, so that one ’ s mouth becomes the resonating 

cavity, alterable in shape through changing the positions of tongue and lips. By considering 

the various resonances, Wheatstone explained how this simple instrument, seemingly 

restricted to the one fundamental frequency of its steel tongue, can produce a scale. 

 One imagines Faraday quite challenged to demonstrate these effects himself, serving as 

a human resonator for the guimbarde ’ s metal tongue. Surely Faraday could not have 

managed the virtuosity Wheatstone ascribed to a certain Mr. E ü lenstein, who used sixteen 

guimbardes  “ to modulate through every key, and to produce effects truly original and of 

extreme beauty. ”   21   Instead, Wheatstone had Faraday sound the instrument over resonators 

with movable pistons, thus achieving the scale formerly reserved to the virtuosic mouth. 

Such a setup could also duplicate Mr. E ü lenstein ’ s feat of sounding a major triad using 

three instruments simultaneously over a suitably chosen resonating tube. On a subsequent 

Wheatstone – Faraday lecture, a Mr. Mannin rounded out the evening by performing  “ some 
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 Figure 13.5 
 Wheatstone ’ s illustrations of (a)  “ the G é nder. Musical Instrument of Java ” ; (b)  “ the guimbarde or Jew ’ s harp, ”  

from his 1828 paper. 
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airs which he whistled first as solos, and then as duets, ”  showing that the mouth itself 

could be divided into two differently resonating chambers.  22   Though Williams treats these 

as amusing, even silly, spectacles, they had a serious intent; most of the sessions of the 

Royal Institution included  “ serious ”  science alongside a potpourri of curiosities.  23   We 

might better understand them as a kind of performative  Wunderkammer , a collection of 

remarkable and strange musical feats, inspired by the desire not merely to wonder but to 

understand, according to the emerging lights of Young, Davy, and Faraday. In the present 

instance, polyphonic whistling gave evidence of the multiplicity of modes of resonance. 

 Over the following two years, Wheatstone remained active as an inventor of musical 

instruments, including the concertina (1829), still in use today (  figure 13.6a ). This innova-

tion was directly inspired by demonstrations of the Chinese  sh ē ng  (  figure 13.6b ), a mouth-

blown free reed organ brought to the West by Joseph Amiot in 1777, which Chladni 

described in 1821 and which led to many new Western instruments such as the harmonica 

and harmonium.  24      

 Extending his work on the transmission of sound, in July 1830 Wheatstone announced 

via Faraday a method to determine the velocity of electricity in wires, which Wheatstone 

published in 1834.  25   Wheatstone ’ s apparatus involved an ingenious revolving mirror that 

could render observable times otherwise too small to measure (  figure 13.7 ). To test the 

stability of the speed of rotation of the mirror itself, Wheatstone relied on a musical device: 

he used the rotating arm to power a small siren, the stability of whose pitch accurately 

BA

 Figure 13.6 
 (a) Wheatstone ’ s patent diagrams for his concertina. (b) Chladni ’ s 1821 diagram of a Chinese  sh ē ng.  
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tested the constancy of rotation. Hippolyte Fizeau and L é on Foucault subsequently used 

this device to measure the speed of light in water and air, important experiments leading 

up to the theory of relativity.    

 In 1831, Wheatstone and Faraday returned to the transmission of sound. To illustrate 

the much greater speed of sound through solid media than through air, Wheatstone called 

for linked rods reaching forty feet into the cupola above the auditorium. A tuning fork 

applied to the upper end transmitted its vibrations to a sounding board at the bottom end 

with striking clarity. Faraday also brought Wheatstone ’ s Enchanted Lyre (see   figure 13.3 ) 

to the Royal Institution, its eerie resonance demonstrating the difference between longi-

tudinal and transverse transmission by changing the angle of the lyre with respect to the 

rod connecting it to the hidden piano. Wheatstone described similar experiments with 

violins, flutes, and other instruments, finally transmitting the sound of an entire orchestra 

through a sounding board linked to a rod, resulting in a faint sound at the distant recipro-

cating soundboard:  “ but on placing the ear close to it, a diminutive band is heard, in which 

 Figure 13.7 
 Wheatstone ’ s rotating mirror apparatus to measure the speed of electricity in wires (1834). To test the stability 

of the rotation, he held a piece of paper touching the rotating arm ( Q ) to produce a pitch. 
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all the instruments preserve their distinctive qualities.  …  Compared with an ordinary band, 

heard at a distance through the air, the effect is as a landscape seen in miniature beauty 

through a concave lens. ”   26   This miniature but faithful sonic transmission clearly was a step 

on Wheatstone ’ s quest for telephony and telegraphy. 

 A decade later, he achieved long-distance telegraphy via electromagnetism, not solid 

rods, which required the step Faraday himself was about to take in discovering electro-

magnetic induction. Their joint presentations had steeped Faraday in what would prove to 

be two crucial elements: the relation between longitudinal and transverse vibrations 

(already important to  Ø rsted ’ s discovery) and the essentially transient nature of the effects 

they had demonstrated. As Williams perceptively notes,  “ Although Faraday or Wheatstone 

did not remark the fact at the time, they were dealing with what might be called acoustical 

induction. An arrangement of particles on one plate could be effected by another plate 

thrown into a vibratory state. ”   27   Extending this insight (and giving more weight to Wheat-

stone ’ s contribution), I would like to emphasize the specific parts played by the two crucial 

elements just listed. 

 Though Williams considers Wheatstone ’ s work merely  “ suitable for the amusement of 

the audience at the Royal Institution, ”  serious substance ran through that work, particularly 

the two persistent elements that moved Faraday to pursue sound and acoustical figures 

for the six months immediately preceding his discovery of electromagnetic induction in 

1831.  28   His diary makes clear the scope of his acoustical work and helps us understand its 

relation to what follows, as does a paper he published in the midst of this work,  “ On a 

Peculiar Class of Acoustical Figures; and on Certain Forms Assumed by Groups of Par-

ticles upon Vibrating Elastic Surfaces. ”   29   

 Faraday began his 1831 experiments by further investigating Chladni figures, using 

many kinds of powder and liquid, as Wheatstone had begun to do. Faraday wanted to know 

the fine details of exactly how and why these substances form their patterns on the plate, 

not just the resulting shape. He tested and found wanting a 1827 paper by Savart giving 

a simple account of the particles finding quiet resting places on the plate. To go more 

deeply, Faraday set up all kinds of baffles and partitions, designed to show exactly where 

the particles move, and when (  figure 13.8 ). Looking at the patterns formed on some of his 

plates, Faraday surely compared them with the noticeably similar iron filing patterns he 

had seen produced by magnets (  figure 13.9 ).       

 Above all, Faraday investigated the three-dimensional formation of these sound patterns, 

which previously had been treated as purely two-dimensional. He studied the air currents 

above the plate and how they affected the particles or liquids. Using a pump to lower the 

air pressure above the plate allowed still further control over the conditions in the medium 

forming the patterns. Faraday even did upside-down experiments, suspending liquids 

 underneath  the vibrating plate. Where Savart based his model only on the motion of the 

plate, Faraday concluded that  “ the nature of the medium in which those currents were 

formed ought to have great influence over the phenomena. ”   30   His observations provide a 
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 Figure 13.8 
 Illustrations from Faraday ’ s 1831 paper  “ On a Peculiar Class of Acoustical Figures, ”  showing the build-up of 

heaps of particles blocked by various paper-card obstacles;  ×  shows where the violin bow excites the plate. 

 Figure 13.9 
 (a) Faraday ’ s 1831 illustration of the pattern formed by lycopodium powder on a vibrating glass plate, supported 

by bridges or strings at the two vertical lines shown. (b) Faraday ’ s illustration of the lines of force of a bar 

magnet, as made visible by iron filings. 
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detailed picture of those currents in relation to the density and composition of the medium, 

extending several centimeters above the plate. 

 This thickly substantial view of the medium supported Faraday ’ s consideration of the 

interplay within it of longitudinal and transverse forces,  “ considered as a pendulum vibrat-

ing to and fro under a given impulse, ”  thereby giving rise to heaps of particles or crispations 

of the liquid surface. Perhaps remembering his apprentice days in the work-yard, Faraday 

instances the comb-shaped surface of  “ the water in a pail placed in a barrow, and that on 

the head of an upright cask in a brewer ’ s van passing over stones, ”  which he duplicated 

by tapping his plate (  figure 13.10a,b ). He was particularly pleased with  “ a very simple 

arrangement [that] exhibits these ripples beautifully ”  (  figure 13.10c ); tapping transversely 

created radial ripples,  “ the results of that vibrating motion in directions perpendicular to 

the force applied. ”   31   This significant transduction between  perpendicular  directions of 

motion — singularly important in  Ø rsted ’ s discovery — Faraday attributes to the properties 

of the medium.    

A B

C

 Figure 13.10 
 Faraday ’ s 1831 illustrations of (a) tapping a plate at  ×  to excite (b) the comb-shaped ripples on the surface of 

the water; (c) another device to excite strong radial ripples from a transverse tap at  ×  on a rod attached to a cork 

extending into a bowl of water. 
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 Faraday dated his draft paper on acoustical figures March 21, 1831, and sent it to 

Wheatstone, who responded in a detailed letter two days later, showing that they remained 

in contact during this new phase in which Faraday was conducting and writing his own 

version of these phenomena. Wheatstone ’ s reply emphasizes the correctness of Faraday ’ s 

experiments and inferences,  contra  Savart. In passing, Wheatstone mentions that he had 

shown his own experiments to Young, thus closing the circle with the older generation of 

wave theorists. Wheatstone also reminds Faraday of one of the techniques they had used 

in an 1830 joint lecture, which Wheatstone uses to give another disproof of Savart. Wheat-

stone ends by noting the  “ twofold importance ”  of Faraday ’ s experiments both for  “ the 

investigation of the residual phenomena of elastic surfaces ”  and  “ further valuable informa-

tion from the application of similar considerations to other phenomena with which they 

are intimately connected. ”   32   Given their shared history, these  “ other phenomena ”  may well 

have included the velocity of electricity. 

 Though many of the effects collected in his 1831 paper concern steady-state phenomena, 

Faraday often notes the transient quality of their onset or disappearance. For instance, he 

notices how  “ a strong steady wind ”  excites  “ stationary undulations ”  forming uniform 

ridges on the surface of shallow water. Such ridges can also have a transitory quality and 

are also seen  “ on the pavements, roads, and roofs when sudden gusts of wind occur 

with rain. ”  Faraday deduces that these are not ordinary deep-water waves but physically 

different in causation and form,  “ due to the water acquiring an oscillatory condition  …    , 

probably influenced in some way by the elastic nature of the air itself and analogous to 

the vibration of the strings of the Aeolian harp, or even to the vibration of the columns of 

air in the organ-pipe and other instruments with embouchures. ”  Faraday also thinks gases 

and vapors can show analogous effects,  “ their elasticity supplying that condition necessary 

for vibration which in liquids is found in an abrupt termination of the mass by an uncon-

fined surface. ”   33   This spatial abruptness echoes the temporal suddenness he remarked in 

the gusts of wind causing ridges on a wet surface. 

 The collocation of temporal and spatial effects is evident in Faraday ’ s descriptions of 

the striking changes in the geometry of the patterns, whose beauty he remarks at many 

points. Using a rectangular plate, he notices a characteristic time sequence beginning with 

circularly symmetric patterns centered on the source of excitation; increasing the force of 

vibration leads eventually to a surprising shift to a quadrangular pattern, first diagonal, 

and finally square (  figure 13.11 ). Faraday notes that the reflected image of these patterns 

is not stationary, but rather  “ moves so as to re-enter upon its course, forming an endless 

figure, like those produced by Dr. Young ’ s piano-forte wires or Wheatstone ’ s kaleido-

phone, varying with the position of light and the observer, but constant for any particular 

position and velocity of vibration. ”   34   Evidently, Wheatstone ’ s little instrument (and its fili-

ation with Young) had remained in Faraday ’ s mind.    

 Faraday ’ s diary records his attention to the interplay between circular and rectangular 

symmetries in his experiments. On June 17, he drew the circular crispations on a round 
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piece of glass barely covered in water (  figure 13.12a ). On July 2, he rang a glass by moving 

a moistened finger around its lip ( à  la Bacon and Mersenne) and drew its crispations (  figure 

13.12b ) as  “ little ridges  apparently  permanently standing out along the surface of the water 

perpendicular to the glass, ”  in contrast to  “ places where the crispations were weakest, ”  

marked  × , which  “ were breaking into confused heap like crispations. By diminish[ing] the 

force of vibration the former almost entirely disappeared and the latter became simple 

linear heaps perpendicular to the glass.  Very good.  ”   35      

 In his singing glass, Faraday approvingly noticed the interaction between vibrating 

 linear  patterns, only  “  apparently  permanent, ”  in its  circular  environment, thereby 

linking the medium ’ s connection of circular and linear modes with the transience of 

these effects. On July 18, he wrote his diary entry at the beach at Hastings (where he 

was on vacation with his wife), noting the  “ peculiar series of ridges produced by steady 

strong wind on water on sandy shore. ”  Going indoors, he  “ vibrated round plate on lath 

with water and sand so as to obtain circles and then square arrangement; the numbers 

of intervals between the circles and between the heaps were the same for the same 

plate, water, vibration, etc. etc. ”   36   Faraday dated the appendix to his paper on sound 

figures July 30, 1831, showing that his work and thinking continued past his final diary 

entry on this subject. 

 The very next entry in Faraday ’ s diary is dated August 29, 1831 (four weeks later): 

 “ Expts. on the production of Electricity from Magnetism, etc. etc. ”  During the intervening 

weeks, he had made an iron ring (about 2 cm in thickness and 91 cm in diameter) with 

two sets of wire windings, labeled  A  and  B  in his sketch (  figure 13.12c ), separated and 

insulated from each other so that no direct conduction of current could occur between 

them. The  B  coil he connected to a galvanometer to measure the current; the  A  coil could 

be connected to a battery. The moment of discovery was at hand, decisive yet subtle: 

 “ When the contact was made, there was a sudden and very slight effect at the galvanometer, 

and there was also a similar slight effect when the contact was broken. ”   37   But when the 

current through  A  was steady, there was no effect in  B ; the effect was  “ evident but tran-

sient, ”  for  “ it continued for an instant only, and partook more of the nature of the electrical 

wave passed through from the shock of the common Leiden jar than of the current from 

a voltaic battery. ”   38   Earlier researchers had overlooked this effect because of its transience: 

 Figure 13.11 
 Faraday ’ s 1831 illustration of the typical sequence of patterns shown on a rectangular plate excited near its center 

as the force of vibration increases (read left to right). 
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 Figure 13.12 
 Drawings from Faraday ’ s diary: (a) Modes of vibration excited on a circular plate barely covered by water (June 

17). (b) The surface of a water glass rung with a moistened finger, showing crispations at the squiggly lines, and 

quiet water at  ×  (July 2). (c) The iron ring Faraday designed for the first experiments seeking electromagnetic 

induction (August 29). 
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it vanished in the steady state and only appeared the instant contact was made or broken, 

and thus could easily be dismissed as a meaningless glitch. 

 Yet Faraday recognized it on the  very first day  he began his experiments; his mind was 

evidently thoroughly prepared to recognize the effect, however transient. Though his diary 

makes no explicit connection with his preceding experiments on sound, several clues 

indicate their significance for his parallel experience in electromagnetism. His published 

account compares the effect to an  “ electrical wave ” ; he had just spent six months studying 

in great detail the behavior of sound waves in various media. His careful consideration of 

the state of those media and their effects on the resulting patterns seems to inform the 

 “ new electrical state or condition of matter ”  he designates as  “ the  electro-tonic  state ”  that 

is  “ altogether the effect of the induction effect, and ceases as soon as the inductive 

force is removed.  …  This peculiar state appears to be a state of tension, and may be con-

sidered as  equivalent  to a current of electricity, at least equal to that produced either when 

the condition is induced or destroyed. ”   39   Faraday ’ s electro-tonic state clearly is the  “ state ”  

he had sought in answer to Amp è re; he would go on to use it as an important element in 

his further work on electromagnetism. Even his drawings of his vibrational and electro-

dynamic setups show similar geometries (  figure 13.12 ). 

 Six months after his discovery, on March 12, 1832, Faraday deposited in the safe of the 

Royal Society a statement that would  “ take possession as it were of a certain date, and a 

long right, if they are confirmed by experiments, to claim credit for the views of that date, ”  

even though he had already published the full experimental details (including his com-

ments on the electro-tonic state) in November, 1831. The crux of this sealed statement is 

first that  “ magnetic action is progress, and requires time, ”  as does  “ electric induction (of 

tension) [electrostatic induction]. ”  Faraday continues: 

 I am inclined to compare the diffusion of magnetic forces from a magnetic pole, to the vibrations 

upon the surface of disturbed water, or those of air in the phenomena of sound; i.e. I am inclined to 

think the vibratory theory will apply to these phenomena, as it does to sound and most probably 

to light.  40   

 Here the strong relation between sound, electromagnetism, and now also light becomes 

patent: Faraday summarizes his vision of physics, which he correctly anticipated would 

take decades of his life to complete; his entries on electromagnetic induction became the 

first paragraphs of his  Experimental Researches in Electricity  that eventually stretched to 

3,362 paragraphs by 1855. 

 For his part, Wheatstone ’ s work on the velocities of transmission of sound and electric-

ity, combined with electromagnetic induction, led directly to his discovery of telegraphy 

(1837) with William Cooke.  41   Wheatstone reentered Faraday ’ s story memorably on April 

10, 1846. Scheduled to give a solo lecture on his electromagnetic chronoscope, at the very 

last moment Wheatstone panicked and fled, as legend has it; it is said he spotted a notori-

ous heckler in the audience, though his own shyness may have been overwhelmed by the 
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prospect of speaking without Faraday ’ s sympathetic ventriloquism. To fill the evening after 

Wheatstone ’ s flight, Faraday described his own speculations about the nature of electric 

and magnetic phenomena. His impromptu lecture was published as  “ Thoughts on Ray 

Vibrations, ”   “ one of the most singular speculations that ever emanated from a scientific 

mind, ”  as John Tyndall put it.  42   As the story has come down, Wheatstone ’ s part has tended 

to be portrayed as pitiable or even risible, his skittishness merely the embarrassing occa-

sion for Faraday ’ s profound discourse. In fact, Faraday began his own presentation by 

giving an account of Wheatstone ’ s chronoscope, to which he said his further remarks 

were  “ incidental. ”  

 Wheatstone ’ s chronoscope was a descendant of his work in the years immediately fol-

lowing Faraday ’ s discovery of electromagnetic induction. In 1840, he published a  “ Descrip-

tion of an Electro-Magnetic Clock, ”  which accurately linked a master clock with several 

slaves,  “ enabling a single clock to indicate exactly the same time in as many different 

places, distant from each other, as may be required. ”   43   To do this, Wheatstone used similar 

techniques to those he employed for telegraphy, incorporating the master clock into 

the telegraphic circuit using  “ Faraday ’ s magneto-electric currents. ”  Though Wheatstone 

instances the use of these linked clocks in an astronomical observatory to synchronize 

observations, he also notes that a modified form could be used  “ to act at great distances. ”  

Wheatstone ’ s electromagnetic clock was thus the first step in the large process of synchro-

nizing time throughout the world, so important for commercial and military purposes.  44   

 In 1844, Wheatstone extended this invention to allow automated measurements of baro-

metric pressure and temperature every half hour, controlled by his electromagnetic clock 

and recorded automatically on paper.  45   His setup  “ did not need any attention during an 

entire week, during which it recorded 1,008 observations, ”  one of the first completely 

mechanized experiments. Though the emergent processes of industry had often relied on 

prior scientific advances, now Wheatstone applied the automated techniques of industry 

to science. In 1845, Wheatstone described his electromagnetic chronoscope, an extension 

of his 1840 clock allowing measurements of very small times, such as the duration of 

a bullet ’ s passage through a gun.  46   Wheatstone ’ s stopwatch was the direct precursor of 

the Hipp chronoscope, which became the standard instrument for precise measurements 

of duration. 

 Faraday was long aware of Wheatstone ’ s work in all these directions, especially his 

results for the velocity of electricity, which seemed (perplexingly) larger than the velocity 

of light. Yet both were  finite  speeds: both light and electricity took  time  to propagate, as 

did sound.  47   The analogy with sound seemed to imply that electromagnetism and light 

should also propagate through some kind of medium, the ether. Young had begun to discern 

the problems with this imponderable substance, which Faraday now proposed to reject.  48   

Speaking in 1846 in lieu of the missing Wheatstone, Faraday suggested that matter is 

nothing  “ but forces and the lines in which they are exerted ”  and that light radiation is  “ a 

high species of vibration in the lines of force which are known to connect particles and 
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also masses of matter together. ”  Faraday wanted  “ to dismiss the aether, but not the vibra-

tion. ”  His new concept of lines of force suited the  “ lateral ”  (transverse) quality of light 

(especially its polarization), rather than the  “ direct ”  (longitudinal) transmission of sound 

through air or water. Relying on the finite velocities of all these phenomena, Faraday 

preserved the basic analogy with sound while removing the necessity of a material sub-

stratum, whose  “ appalling ”  consequences so troubled Young. Faraday also speculated that 

gravitation likewise propagates over time and involves curved lines of force without 

needing underlying matter.  49   No wonder Einstein kept Faraday ’ s portrait above his work 

table. Wheatstone and Faraday ’ s studies of sound constantly accompanied and inspired 

their work on electromagnetism and light, even as they stepped beyond the material frame-

work to grasp a new world of fields. 

 

 

 

 

 

 

 

 

 

 

 
 





 In the decades after 1850, Hermann von Helmholtz undertook extensive investigations into 

the nature of vision and hearing that rested on his deep interest in music and visual art. 

His unfolding conception of the  “ manifolds ”  or  “ spaces ”  of sensory experience radically 

reconfigured and extended Newton ’ s connection between the musical scale and visual 

perception via Young ’ s theory of color vision. In the process, Helmholtz ’ s studies of 

hearing and seeing led him to compare them as differently structured geometric 

manifolds. 

 Helmholtz ’ s life trajectory, spanning activity and mastery in many fields, was legendary 

in his own time. Though deeply interested in physics from early youth, family circum-

stances dictated his initial career as an army surgeon (1843 – 1848). Even while performing 

his onerous duties, he completed his seminal essay  “ On the Conservation of Energy ”  

(1847), which was of great importance in establishing the fundamental status of that prin-

ciple.  1   In his ensuing activities as professor of physiology at K ö nigsberg (1849 – 1855), 

Helmholtz undertook an extensive study of many aspects of nerve action, which began 

with innovative experimental studies. He succeeded in measuring the velocity of propaga-

tion of nerve impulses (1850), a feat others had doubted was even possible, given the great 

celerity of those impulses.  2   To accomplish this, Helmholtz had to invent a myograph that 

allowed a frog ’ s muscle to record itself (  figure 14.1 ). This led, later that year, to his general 

study of methods of measuring the extremely small time intervals involved in this new 

arena of experimental physiology, for which  time  itself became both an experimental 

desideratum and an avenue to the attendant theoretical and philosophical questions to 

which he and many others had been alerted by the work of Immanuel Kant.  3   Thus, Helm-

holtz designed his tachistoscope (  figure 14.2 ) to obviate the extraneous effects of eye 

movement by illuminating the eye with an extremely short burst of light, giving a nearly 

instantaneous image of the eye ’ s position.       

 The  annus mirabilis  1850 also included Helmholtz ’ s most famed optical invention, the 

opthalmoscope, still in use today to examine the retina and the fundus of the eye.  4   But 

besides this well-known medical instrument, he also introduced many others, including 

the opthalmotrope, a mechanical model to demonstrate eye movements (  figure 14.3 ). Such 

 14  Helmholtz and the Sirens 
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devices helped him develop a  “ sign theory ”  that associated each such movement and its 

muscular state with the attendant visual perceptions, no longer considered as realities in 

themselves but as symbols of underlying physiological states and their external 

correlates.  5      

 Here, as throughout his career, Helmholtz used his experimental findings to ground his 

theoretical work.  6   Thus, his work on the mechanisms of vision led to his paper  “ On the 

Theory of Complex Colors ”  (1852), in which he revived the three-color hypothesis of 

Young and gave it new and fuller support from his own investigations.  7   This substantial 

outpouring of specialized researches on many aspects of human vision finally led to his 

massive  Handbuch der physiologische Optik (Handbook of Physiological Optics , whose 

first edition appeared in three parts during 1856 – 1866), a  summa  whose synthetic breadth 

and systematic rigor put the whole field of physiological optics on a new plane of activity 

by applying physical principles to anatomical structures. 

 In part, Helmholtz accomplished this by including a historical dimension in his work, 

both to establish its sources and to make explicit its fundamental presuppositions. In the 

midst of his experimental studies, he was constantly looking to the larger theoretical 

 Figure 14.1 
 Helmholtz ’ s myograph, used to measure the time required for nerve conduction in the thigh muscle of a frog 

(1873). 
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 Figure 14.2 
 Helmholtz ’ s tachistoscope, used to avoid involuntary movement of the eye by very brief illumination of test 

images (1866). 

questions he hoped to resolve, which historical awareness helped him formulate more 

pointedly. Thus, his awareness of Young ’ s three-color hypothesis helped him formulate the 

relation between human physiology and the purely physical theory of color presented by 

Newton. Helmholtz also provided various geometrical representations of color perception 

(  figure 14.4 ), for which he used the terms  “ curve ”  ( Curven ),  “ color circle ”  ( Farbenkreis ), 

 “ color cone ”  ( Farbenkegel ), or  “ color pyramid ”  ( Farbenpyramide ) in his 1866  Handbuch .  8   

In this edition, he does  not  use the terms  “ manifold ”  or  “ space ”  ( Raum ), to which we 

will return.    

 In such diagrammatic representations, Helmholtz was endeavoring to define three inde-

pendent parameters of perceived color, which we now call hue, value, and saturation and 
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 Figure 14.3 
 Helmholtz ’ s opthalmotrope, a model used to study basic mechanisms of eye movements (built in 1857 by Chris-

tian Theodor Ruete). 

which his work was extremely important in clarifying so as to address pervasive confusion 

about the exact meaning of these terms and the nuances between them. In brief, the linear 

sequence of the Newtonian spectrum, arranged from red to violet, is perceived by the 

human eye in a decidedly nonlinear way. Helmholtz ’ s diagram (  figure 14.4b ) shows that, 

to mix colored lights to form white, a different amount of yellow must be mixed with 

indigo, as compared with the relative amounts of orange and cyan-blue needed to produce 

white. In this diagram, these differences show up in the asymmetric shape of the overall 

curve, whose skew toward the red-orange side reflects the higher sensitivity of human 

daytime vision to those colors, as compared with the blue-violet side. 

 In the course of this work, Helmholtz also devoted attention to the possibility of describ-

ing the perceived distances between colors  “ on the principle of the musical scale, because 

this seemed to be the best method for physiological reasons. Thus, colors whose 
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 Figure 14.4 
 (a) Helmholtz ’ s representations (from his  Handbook of Physiological Optics , 1866) of Newtonian color theory 

using a  “ color circle ”  in which more saturated colors are near the circumference; this leaves out differences in 

luminosity. (b) Helmholtz contrasts this with a markedly asymmetric curve showing the relation between colors 

of equal luminosity. 

A

B

wave-lengths are in the same ratio as the interval of a semi-tone between two musical 

notes are always at equal distances apart in the drawing [  figure 14.5a ]. ”   9   Helmholtz 

approached this parallelism in terms of Newton ’ s imposition of the musical scale on the 

chromatic spectrum (  figure 14.5b ). 

 The different sensations of color in the eye depend on the frequency of the waves of light in the 

same way as sensations of pitch in the ear depend on the frequency of the waves of sound; and so, 

many attempts have been made to divide the intervals of color in the spectrum on the same basis as 

that of the division of the musical scale, that is, into whole tones and semitones. Newton tried it 

first. However, at that time the undulatory theory was still undeveloped and not accepted; and not 

being aware of the connection between the width of the separate colors in the prismatic spectrum 

and the nature of the refracting substance, he divided the visible spectrum of a glass prism, that is, 

approximately the part comprised between the lines  B  and  H  [in figure 14.5a], directly into seven 

intervals, of widths proportional to the intervals in the musical scale  …     ; and so he distinguished 

seven corresponding principal colors:  red ,  orange ,  yellow ,  green ,  blue ,  indigo , and  violet .  10      
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 Helmholtz ’ s spectral diagram (  figure 14.5a ) shows only about nine semitones (hence 

slightly more than a major sixth) between red ( B ) and violet ( H ), rather than the twelve 

needed to span an octave between them, the overall interval Newton had assumed. In his 

diagram, Helmholtz ’ s entire spectrum ( A – R ) spans sixteen semitones, almost an octave 

and a fourth, because his experimental work had shown that the ultraviolet wavelengths 

( L – R )  “ are not invisible, although they certainly do affect the eye comparatively much less 

than the rays of the luminous middle part of the spectrum between the lines  B  and  H . 

When these latter rays are completely excluded by suitable apparatus, the ultra-violet rays 

are visible without difficulty, clear to the end of the solar spectrum. ”   11   Thus, his  “ scale of 

colors analogous to the notes of the piano, ”  with yellow as middle C, extends from the 

 “ end of Red ”  as the F   below middle C to the highest visible ultraviolet frequency as the 

B above it.  12   

 These investigations showed him that  “ this comparison between music and color must 

be abandoned, ”  because  “ the spectrum is broken off arbitrarily at both ends, ”  and hence 

its divisions into colors are  “ more or less capricious and largely the result of a mere love 

of calling things by names. ”   13   Most of all, the eye ’ s sensitivity varies greatly:  “ At both 

ends of the spectrum the colors do not change noticeably for several half-tone intervals, 

whereas in the middle of the spectrum the numerous transition colors of yellow into green 

are all comprised in the width of a single half-tone. This implies that in the middle of the 

spectrum the eye is much keener to distinguish vibration-frequencies than towards the ends 

of the spectrum; and that the magnitudes of the color intervals are not at all like the grada-

tions of musical pitch in being dependent on vibration-frequencies. ”   14   As remarkable as 

visual perception is, Helmholtz ’ s critique brought forward important respects in which it 

falls short of the ear ’ s capabilities to discriminate between audible frequencies. 

 With this in mind, starting in 1852 and overlapping with his ongoing visual researches, 

Helmholtz began a no less sustained and exhaustive series of investigations into the 

physiology of hearing. This was close to his own personal inclinations, for he had played 

the piano since childhood, growing up in a musical household in a music-loving country 

and era.  15   When he went off to university (taking his piano with him), his father warned 

him not to allow  “ his taste for the solid inspiration of German and classical music be viti-

ated by the sparkle and dash of the new Italian extravagances. ”   16   Of course, Helmholtz, as 

a true  Kulturtr ä ger , a bearer of cultural tradition, was also well acquainted with the mas-

terworks of visual arts and later wrote a popular lecture  “ On the Relation of Optics to 

Painting ”  (1876).  17   

 Helmholtz ’ s investigations into music, sound, and hearing began during his K ö nigsberg 

period and grew after he became the professor of anatomy and physiology at Bonn 

(1855 – 1858), where he wrote  “ On Combination Tones ”  (1856), and then professor of 

physiology at Heidelberg (1858 – 1871), where he wrote  “ On Musical Temperament ”  

(1860) and  “ On the Arabic-Persian Scale ”  (1862).  18   These few samples show something 

of the breadth of his investigations, for his interest in music led him to explore beyond the 
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confines of European practice in order to study the cultural determination of hearing. The 

whole project eventuated in his masterwork,  Die Lehre von den Tonempfindungen als 
physiologische Grundlage f ü r die Theorie der Musik  ( On the Sensations of Tone as a 
Physiological Basis for the Theory of Music , first published in 1863), whose title proclaims 

 music  as the true object of his study; in contrast, his  Handbook of Physiological Optics  

makes no mention of painting or the visual arts.  19   His central term  Empfindung  includes 

the meaning  “ sensation ”  but is also the standard term for  “ expression ”  in the artistic sense. 

 As with his studies of vision, Helmholtz developed or improved many instruments to 

undertake experimental examination of the issues that emerged, such as the glass resona-

tors he used to isolate overtones and render them more audible (  figure 14.6 ). The resonator 

acted to amplify a sonic phenomenon to make it more amenable to careful scrutiny. In 

other cases, Helmholtz devised means of translating and recording sonic events in a visual 

form, including their time dependence (  figure 14.7 ). In this way, a tuning fork can be made 

to inscribe its sinusoidal vibrational pattern along a moving strip of paper, producing a 

visible trace that diagrammatically graphs space against time.  20         

 So far, Helmholtz ’ s sonic investigations had stayed with the study of vibrating bodies, 

but he realized (following the earlier example of Young) that sound was not restricted to 

them, however lucid was the classic mathematical analysis of their motion dating back 

to Euler, whose basic connection between the complexity of excitation and dissonance 

Helmholtz acknowledged and confirmed.  21   Where Young had reduced sound to pure 

puffs of air, without any vibrating body as their source, Helmholtz used the nascent tech-

nology of sirens to  “ mechanize ”  this process. He began with such instruments as the 

Seebeck siren, which used a rotating disc to interrupt an air stream to produce its wails 

(  figure 14.8 ).  22      

 Though he did not invent this instrument, Helmholtz explored and exploited its implica-

tions far beyond earlier investigators, particularly because he understood the  theoretical  
implications of its construction and operation: 

  The sensation of a musical tone is due to a rapid periodic motion of the sonorous body; the sensa-
tion of a noise to non-periodic motions .  …  [The siren] is constructed in such a manner as to deter-

mine the pitch number of the tone produced, by a direct observation.  …  It is clear that when the 

pierced disc of one of these sirens is made to revolve with a uniform velocity, and the air escapes 

through the holes in puffs, the motion of the air thus produced must be  periodic  in the sense already 

explained. The holes stand at equal intervals of space, and hence on rotation follow each other at 

equal intervals of time. Through every hole there is poured, as it were, a drop of air into the external 

atmospheric ocean, exciting waves in it, which succeed each other at uniform intervals of time, just 

as was the case when regularly falling drops impinged upon a surface of water.  23   

 Helmholtz, like Young before him, understood that music and noise formed a continuum, 

distinguished by the periodicity of the sound, or the lack thereof. The siren renders this 

periodicity manifest because we  see  it in the pierced disc whose rotation modulates the 

air stream:  “ equal intervals of space ”  between holes directly generate  “ drops ”  of air over 
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 Figure 14.5 
 (a) Helmholtz ’ s plate from his  Handbook of Physiological Optics  (Part II, 1860) showing the solar spectrum 

with the more prominent Frauenhofer lines indicated in capital letters (to the left of the corresponding dark lines) 

and a numerical scale (to the right) showing the correspondence between musical intervals of a semitone (labeled 

by successive numbers) and the spectral colors. The Frauenhofer line  C  roughly corresponds to red;  E , green; 

 F ,  “ cyan-blue ” ;  H  –  L , violet. (b) Isaac Newton,  “ An Hypothesis Explaining the Properties of Light …  ”  (1675 – 76), 

showing his comparison between the musical scale and the spectral colors; he introduced indigo and orange in 

order to fill out the analogy between a complete spectrum and the seven diatonic notes in an octave. 

A B
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 Figure 14.7 
 Helmholtz ’ s illustration of the visual trace made by the motion of a tuning fork, from  Tonempfindungen  (1863). 

 Figure 14.6 
 Resonator to isolate an overtone, from Helmholtz,  Tonempfindungen  (1863). 
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 “ equal intervals of time, ”  audible as pure tones. Thus, Helmholtz uses the siren to map 

visible hole spacings into audible pitches (  figure 14.9 ), bridging space and time through 

the spinning disc and the concept of  frequency , both as the siren ’ s rotational frequency 

and the sound frequencies its disc thereby generates.    

 Helmholtz also advanced the technology of the siren so that it could sound two pitches 

simultaneously, making possible comparisons in perception (  figure 14.10 ). Such a double 

siren could produce  “ combination tones, ”  sounding the difference or sum of two pitches 

more powerfully than any other instrument. Helmholtz himself discovered the faint sum 

tones, which he could produce only with a siren or special harmonium; the stronger dif-

ference (or  “ Tartini ” ) tones had long been known. Helmholtz argued that  “ the greater 

part of the force of the combinational tone is generated in the ear itself, ”  which combines 

the pure superposition of the incoming pitches, heard as two distinct tones, with their 

difference or sum, as predicted by nonlinear differential equations derived from Newto-

nian mechanics.  24   Helmholtz ’ s use of mathematics shows its essential role in his argu-

ment here and in acoustics in general, as he conceives it. Helmholtz ascribed the failure 

of superposition and the resultant combination tones to  “ the unsymmetrical form of the 

[ear] drumskin itself, ”  and, more importantly, to  “ the loose formation of the joint between 

the hammer and anvil ”  ossicles of the middle ear.  “ In this case, the ossicles may  click , ”  

which he hears as a  “ mechanical tingling in the ear ”  when  “ two clear and powerful 

soprano voices executed passages in Thirds, in which case the combinational tone comes 

out very distinctly. ”   25   Here, his musical experience impinged strongly on the formation 

of his mathematical acoustics.    

 Figure 14.8 
 Seebeck siren, from Helmholtz,  Tonempfindungen  (1863);  c  shows the source of the air stream that is periodically 

interrupted by the holes in disc  A , which the cord  f  rotates. 
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 Using the double siren, Helmholtz could produce other varieties of  “ intermittent ”  or 

 “ beat tones, ”  whose sum or difference lies below the frequencies of audible pitches, and 

hence are not hearable as a combination tone but felt viscerally as  “ a jar or rattle. ”  Such 

subsonic phenomena probe the differences between hearing and seeing: 

 A jarring intermittent tone is for the nerves of hearing what a flickering light is to the nerves of 

sight, and scratching to the nerves of touch. A much more intense and unpleasant excitement of the 

organs is thus produced than would be occasioned by a continuous uniform tone.  …   

 When the separate luminous irritations follow one another very quickly, the impression produced 

by each one lasts unweakened in the nerves till the next supervenes, and thus the pauses can no 

longer be distinguished in sensation. In the eye, the number of separate irritations cannot exceed 24 

in a single second without being completely fused into a single sensation. In this respect the eye is 

far surpassed by the ear, which can distinguish as many as 132 intermissions in a second, and prob-

ably even that is not the extreme limit.  …   

 Figure 14.9 
 Disc for an Oppelt siren, made by Rudolph Koenig (ca. 1865) (Collection of Historical Scientific Instruments, 

Harvard University). 
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 The ear is greatly superior in this respect to any other nervous apparatus. It is eminently the organ 

for small intervals of time, and has been long used as such by astronomers.  26   

 This striking comparison shows how far he took comparisons between hearing and seeing 

to illuminate their shared domains of space and time. 

 In an essay entitled  “ The Recent Progress of the Theory of Vision ”  (1868), Helmholtz 

drew attention to another fundamental contrast: vision blends several incoming colors into 

one perceived hue, whereas hearing always leaves several notes distinctly  separate :  “ The 

eye cannot tell the difference if we substitute orange for red and yellow; but if we hear 

the notes C and E sounded at the same time, we cannot put D instead of them, without 

entirely changing the impression upon the ear.  …  The practiced musician is able to catch 

the separate notes of the various instruments among the complicated harmonies of an entire 

orchestra, but the optician cannot directly ascertain the composition of light by means of 

A B

 Figure 14.10 
 (a) Helmholtz ’ s double siren, from  Tonempfindungen  (1863). (b) A double siren built by Sauerwald, ca. 1870 

(Collection of Historical Scientific Instruments, Harvard University). 
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the eye; he must make use of the prism to decompose the light for him. ”   27   Unaided hearing, 

then, can perceive the precise underlying mathematical ratios within a certain harmony in 

ways that sight cannot perform without auxiliary instruments. Thus, his essay  “ On the 

Physiological Causes of Harmony in Music ”  (1857) apostrophized  “ Mathematics and 

music! The most glaring possible opposites of human thought! And yet connected, mutu-

ally sustained! It is as if they would demonstrate the hidden consensus of all the actions 

of our mind, which in the revelations of genius makes us forefeel unconscious utterances 

of a mysteriously active intelligence. ”   28   

 Because of the ear ’ s direct access to these mathematical underpinnings, Helmholtz did 

not rely completely on such mechanical devices as the siren, as useful as they are for 

isolating and illustrating the periodicities that underlie pitch. He constantly turned back to 

music itself as his touchstone of sonic experience, to which all his other experiments and 

speculations refer. As noted above, a sizable part of  Tonempfindungen  is devoted to a rather 

technical exposition of musical theory, including the sophisticated harmonies of aug-

mented sixth chords that were important in the contemporary music of Wagner and 

Brahms. Among the deductions Helmholtz made from music theory, quite apart from 

acoustics, is a kind of principle of relativity, phrased in terms of recognizing a particular 

kind of  invariance : 

 We recognize the resemblance between the faces of two near relations, without being at all able to 

say in what the resemblance consists.  …   

 When a father and daughter are strikingly alike in some well-marked feature, as the nose or 

forehead, we observe it at once, and think no more about it. But if the resemblance is so enigmati-

cally concealed that we cannot detect it, we are fascinated and cannot help continuing to compare 

their countenances. And if a painter drew two such heads having, say, a somewhat different expres-

sion of character combined with a predominant and striking, though indefinable, resemblance, we 

should undoubtedly value it as one of the principal beauties of his painting.  …  

 Now the case is similar for musical intervals. The resemblance of an Octave to its root is so great 

and striking that the dullest ear perceives it; the Octave seems to be almost a pure repetition of 

the root, as it, in fact, merely repeats a part of the compound tone of the root, without adding any-

thing new.  29   

 This passage comes in the final pages of the work, in its section entitled  “ Aesthetic Rela-

tions, ”  as it stood in the first two editions of the book (1863, 1865). In the next chapter, 

we will return to his later (1870) additions that amplify this image; here already Helmholtz 

recognizes a special quality of spatial  “ resemblance ”  or  “ recurrence ”  in related shapes and 

musical intervals that are aesthetically fascinating even (or especially) when  “ enigmati-

cally concealed. ”  This quest echoes Helmholtz ’ s favorite citation from Friedrich Schiller ’ s 

poem  “ Der Spatziergang ” : the wise man  “ seeks a stable pole amid the flight of phenom-

ena ”  ( sucht den ruhenden Pol in der Erscheinungen Flucht ).  30   Following this advice, 

Helmholtz sought the stability of invariance in the welter of visual and musical forms. 

 

 

 

 

 

 





 Already in 1862, in the midst of his detailed investigations of vision and hearing, Helm-

holtz became interested in the more general question of the problem of space itself.  1   At 

first, he was unaware of the seminal work done decades before by Carl Friedrich Gauss 

and Bernhard Riemann. Beginning with practical problems in geodesy that originated 

partly in his work surveying the duchy of Brunswick, in 1827 Gauss had formulated a 

mathematical criterion that calculated the degree of curvature of a two-dimensional surface 

(its  intrinsic  or  Gaussian curvature ) only from surveying data collected within that surface.  2   

Gauss proved the  “ remarkable theorem ”  ( theorema egregium ) that this curvature is invari-

ant no matter what coordinate system is chosen in the surface. 

 In his 1854 lecture  “ On the Hypotheses That Lie at the Foundations of Geometry, ”  

Riemann generalized these ideas to what he called a  “ manifold ”  having an arbitrary 

number of dimensions, not just the two dimensions Gauss had considered.  3   Riemann drew 

the term  “ manifold ”  from Kant, who had already used it in his first published work, 

 “ Thoughts on the True Estimation of Living Forces ”  (1747), continuing through his cel-

ebrated discussion of space and time in his  Critique of Pure Reason .  4   Riemann ’ s lecture 

ends by indicating that his argument leads from geometry and its hypotheses  “ into the 

domain of another science, the realm of physics. ”   5   

 Riemann based his argument on a comparison between manifolds, which he defines 

as comprising  “ multiply extended quantities, ”  such as the coordinates of ordinary space 

generalized to arbitrary dimensions or the parameters describing the mixture of colors: 

 “ The general concept of multiply extended quantities, which include spatial quantities, 

remains completely unexplored.  …  Opportunities for creating concepts whose instances 

form a continuous manifold occur so seldom in everyday life that color and the position 

of sensible objects are perhaps the only simple concepts whose instances form a multiply 

extended manifold. ”   6   Though he does not make explicit his sources, Riemann was prob-

ably referring to Helmholtz ’ s early 1852 paper on color vision, as well as to Young ’ s 

seminal work.  7   Riemann ’ s wording also raises the question of whether or not the mani-

fold of color perception is Euclidean in its geometry, though he does not make this 

explicit. His general concept of manifold included the non-Euclidean possibilities that 

 15  Riemann and the Sound of Space 
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had been revealed decades before by the work of Gauss, Nicolai Ivanovich Lobachevsky, 

and J á nos B ó lyai. 

 Indeed, the whole point of Riemann ’ s lecture was to show that the concept of intrinsic 

curvature can be carried forward into manifolds no longer restricted to three dimensions. 

To do so, Riemann needed to express the  “ line element, ”  the length of a line in the mul-

tidimensional manifold. The easiest way to do so is to generalize the Pythagorean theorem, 

which relates the square of the length of any line to the sum of the squares of its compo-

nents along the orthogonal coordinate axes. In three-dimensional space, there are three 

such components, and likewise there are  n  components for  n -dimensional space. At this 

point, however, Riemann paused to wonder whether there were any other possible expres-

sions for the distance between points on a line. For instance, what about using fourth 

powers instead of squares?  “ Investigation of this more general class would actually require 

no essentially different principles, but it would be rather time-consuming and throw pro-

portionally little new light on the study of space, especially since the results cannot be 

expressed geometrically, ”  so Riemann restricted himself to the Pythagorean distance rela-

tion.  8   His reasoning seems to have been that because the geometry in an infinitesimal 

neighborhood around any point eventually approaches a flat tangent plane at that point, 

the distance function should  locally  always obeys the Pythagorean form. 

 The implications of this visionary lecture excited and startled its 1854 audience, includ-

ing Gauss himself, who had chosen this very topic from Riemann ’ s list of proposals. 

Between then and his death from tuberculosis at the age of forty, Riemann worked inten-

sively on several projects. He had made important strides in understanding electromagne-

tism and in 1858 was the first to formulate a partial differential equation expressing the 

propagation of the electric potential with the velocity of light, thus providing an electro-

dynamic wave equation.  9   By comparison, Maxwell derived such a wave equation only in 

1868,  after  having set forth the field equations that today bear his name and having duly 

acknowledging Riemann ’ s priority.  10   Yet Riemann was able to reach his wave equation 

without having completed what, for Maxwell, was necessary groundwork. 

 It is tempting to speculate that Riemann might have been able to complete an indepen-

dent deduction of the full electromagnetic field theory, had he lived longer. As it was, his 

wave equation explicitly linked the  time  and  space  behavior of the electric potential. His 

1854 lecture had positioned him to consider higher-dimensional manifolds; his electro-

magnetic wave equation offered him a link between the  “ dimensions ”  of space and time. 

If so, one could imagine him entertaining a four-dimensional space-time manifold long 

before Einstein and Minkowski. 

 Though this did not, in fact, happen, this thought experiment in counterfactual history 

may illuminate what Riemann did do. During the period 1854 to 1861, in which he could, 

imaginably, have discovered the full electromagnetic field equations, he produced the 

mathematical work on distribution of prime numbers and the zeta function (see box 9.2), 

which became known as the Riemann Hypothesis (1859), arguably his most famous 
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initiative and the premier unsolved mathematical problem up to the present day.  11   This, by 

itself, surely helps to explain why he might not have placed electromagnetism higher on 

his list of priorities, though his surviving drafts and papers show his continuing interest 

in physics, not to mention his other important mathematical projects. The speculative 

writings and drafts in his posthumous papers show that his attention in natural philosophy 

was directed toward the possible unification of gravitation and electricity.  12   Given the 

general framework of his 1854 lecture, Riemann ’ s project seems to have envisaged using 

his many-dimensional curved manifolds as the framework for a grand unified theory of 

all physical forces. 

 These private theoretical drafts give the context for what remained, at his death, his 

major uncompleted paper entitled  “ The Mechanics of the Ear. ”   13   For both Riemann and 

Helmholtz, the problem of hearing was a significant part of their larger enterprises, an 

intermediate zone in which waves, geometry, and sensation met. Riemann ’ s choice to study 

the ear (rather than the eye) is also noteworthy; surely questions of hearing must have 

seemed very important to him if he set them next to or even ahead of his other ambitious 

projects in electrodynamics, gravitation, and number theory. By comparison with 

Helmholtz, little evidence survives that would give biographical insight into Riemann ’ s 

choice. The son of a pastor and himself deeply religious, Riemann considered  “ daily self-

examination before the face of God ”  to be  “ the main point in religion. ”  Alongside this 

austere, contemplative persona, Riemann evidenced considerable love of art. According to 

his friend Richard Dedekind, Riemann ’ s long stays in Italy after 1862, seeking to recover 

his health,  “ were a true luminous point in his life  …  looking at the glory of this enchanting 

land, of nature and art, made him endlessly happy. ”  The newly married Riemann took 

 “ great interest ”  in the  “ art treasures and antiquities ”  of Italy, also greatly admired by other 

 Kulturtr ä ger , such as Helmholtz.  14   Like most of them, Riemann probably felt deeply the 

power of music. 

 At any rate, Riemann ’ s deep interest in understanding the ear shines through his essay. 

Riemann praises Helmholtz ’ s ingenious experimental work on hearing, while criticizing 

its findings and basic methodology. In Riemann ’ s view, Helmholtz  synthesizes  the ana-

tomical structures of the ear into the functioning of the whole organ, but only at the cost 

of making questionable assumptions about the goals of those structures. Instead, Riemann 

advocates an alternative process of  analysis  that begins with the observed behavior of the 

whole organ and then constructs a mathematical model that would explain those functions 

in necessary, not merely sufficient, terms. By emphasizing the central functions of the 

organ as a whole, Riemann strives to avoid Helmholtz ’ s suppositions about the purposive 

interrelation of its anatomical subunits. Riemann uses anatomical knowledge for clues to 

guide his model-building, not as a definitive level of explanation. 

 The post-Kantian language of analysis and synthesis, the contrast between necessity 

and sufficiency, marks Riemann ’ s approach as essentially mathematical and hypothetical 

in spirit.  “ We do not — as Newton proposes — completely reject the use of analogy (the 
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 ‘ poetry of hypothesis ’ ), but rather afterwards emphasize the conditions that  must  be met 

to account for what the organ accomplishes, and discard any notions that are not essential 

to the explanation, but that have arisen solely through the use of analogy. ”   15   In contrast to 

Newton ’ s famous avoidance of  “ feigning ”  hypotheses, Riemann ’ s remarkable expression 

 “ the  ‘ poetry of hypothesis ’  [ Dichten von Hypothesen ] ”  rhetorically emphasizes the creative 

freedom of imagination, its suggestive power in the formation of analytic representations 

of phenomena, whether aural or geometric, in the form of hypotheses that are not restricted 

by anatomic presuppositions. 

 With this in mind, we can read Riemann ’ s  “ Mechanism of the Ear ”  as a nascent essay 

 “ On the Hypotheses That Lie at the Foundations of Hearing, ”  comparable to his earlier 

work on the hypotheses he considered fundamental to geometry. Enough remains of Rie-

mann ’ s draft to show some general features of his proposed analysis. Against Helmholtz ’ s 

assertion that the ossicles click, Riemann notes that  “ the apparatus within the tympanic 

cavity (in its unspoiled condition) is a mechanical apparatus whose sensitivity is infinitely 

superior to everything we know about the sensitivity of mechanical apparatuses. In fact, 

it is by no means improbable that it faithfully transmits sonic motions that are so small 

that they cannot be observed with a microscope. ”  For instance,  “ the call of the Portsmouth 

sentry is clearly audible at night at a distance of 4 to 5 English miles, ”  so that  “ the ear 

does pick up sounds whose mechanical force is millions of times weaker than that of 

sounds of ordinary intensity. ”   16   This, he feels, negates Helmholtz ’ s claim about the noisi-

ness of the ossicles, which Riemann judges a supposition introduced primarily to support 

Helmholtz ’ s theory of combination tones. 

 Instead, Riemann ’ s approach is much closer to what now is called systems theory: he 

treats the ear as a  “ black box ”  whose overall functioning can be mathematically modeled 

based on its essential parameters, especially its high sensitivity and fidelity.  17   His modeling 

involves pointed comparisons with vision:  “ I find nothing whatsoever [in hearing] analo-

gous to the eye ’ s response to the degree of illumination of the visual field, and have no 

idea what a continuously variable reflex activity of  M. tensor tympani  is supposed to 

contribute to the exact comprehension of a piece of music. ”   18   Here Riemann refers to the 

tensor tympani muscle that attaches to the hammer bone of the middle ear and can dampen 

the vibrations of the tympanic membrane. Though Helmholtz had not explicitly extended 

his sign theory to hearing, Riemann seems to take him to imply that the varying states of 

the tympanic muscle are  “ local signs ”  of the associated sounds, as the movements of the 

eye muscles are signs of what it sees.  19   If so, the variable activity of the tensor tympani 

muscle would correlate with auditory response to varying musical sounds. In contrast, 

Riemann argues that a  constant  tension of this auditory muscle should accompany the 

activity of  “ the alert ear — the ear deliberately prepared for precise perception, ”  whose 

acuity depends on the tympanic muscle to maintain steady contact between the ossicles 

and the inner ear.  20   
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 Riemann ’ s analytic program required that  “ we must now derive from the empirically 

known functions performed by the organ, the conditions which must be met in this trans-

mission  …  [by] seeking a mathematical expression for the nature of the pressure fluctua-

tion upon which timbre depends. ”   21   Though in his 1854 lecture, Riemann held that  “ color 

and the position of sensible objects are perhaps the only simple concepts whose instances 

form a multiply extended manifold, ”  by 1866 he seems poised to treat hearing as a further 

example of such a manifold. Riemann does not provide any mathematical details of his 

approach to hearing, but, based on his work on geometrical hypotheses and his work on 

shock waves in fluids, we may infer that he intended to use some kind of multidimensional 

manifold, analogous to those he proposed to represent the geometric effect of physical 

sources.  22   Where Helmholtz took evidence from hearing and seeing into his geometric 

investigations, Riemann traversed an opposite course, applying geometric insights to 

model the functioning of the ear. 

 In its unfinished form, Riemann ’ s  “ Mechanism of the Ear ”  was published posthu-

mously in a medical journal in 1867. Helmholtz responded in two papers, both entitled 

 “ On the Mechanism of the Ossicles of the Ear ”  (1867, 1869), whose titles once again 

reflects the fundamental contrast between the two men: Helmholtz ’ s  “ facts ”  (or ossicles) 

versus Riemann ’ s  “ poetry of hypothesis ”  (which treated the ear as a high-sensitivity 

sound transducer, regardless of its anatomical details).  23   Though publicly Helmholtz 

wrote respectfully of the  “ great mathematician ’ s ”  foray into his own domain, privately 

he expressed irritation at Riemann the  “ amateur. ”   24   In his printed response, Helmholtz 

did not engage Riemann ’ s philosophical contrast between analytic and synthetic, but 

argued that the ossicles can act  “ practically, as absolutely solid bodies ”  that thereby can 

transmit sound with the high sensitivity Riemann had emphasized. To show that his 

anatomical model could meet Riemann ’ s critique, Helmholtz gave a detailed account of 

the fine structure of the ossicles and their subtle interconnections, as well as of the tensor 

tympani muscle (  figure 15.1 ). Rhetorically, Helmholtz swept away Riemann ’ s theorizing 

under a deluge of anatomical observations, implicitly arguing that only in such terms 

can any physiology of the ear be responsibly phrased. For the time being, Riemann, 

the defunct  “ amateur, ”  was quietly buried under a mountain of Helmholtz ’ s  “ profes-

sional ”  anatomy.  25      

 This controversy about hearing led Helmholtz to devote much attention to Riemann ’ s 

work, though he received Riemann ’ s 1854 lecture only in May 1868, the year after it finally 

appeared in print.  26   Yet even  before  he had read it, Helmholtz had already inferred  “ that 

Riemann came to exactly the same conclusion as myself, ”  as he wrote Ernst Schering on 

April 21, 1868: 

 My starting-point is the question: What must be the nature of a magnitude of several dimensions in 

order that solid bodies (i.e. bodies with unaltered relative measurements) shall everywhere be able 
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to move in it as continuously, monodromously, and freely, as do bodies in actual space? Answer, 

expressed according to our analytical geometry:  “ Let  x, y, z, t  be the rectangular co-ordinates of a 

space of four dimensions, then for every point of our tri-dimensional space it follows that  x  2  +  y  2  + 

 z  2  +  t  2  =  R  2 , where  R  is an undetermined constant, which is infinite in Euclidean space. ”   27    

 This extraordinary statement has received little notice, though (to my knowledge) it may 

be the first explicit use of four dimensions to address the problem of space, aside from a 

few speculative remarks by Jean le Rond d ’ Alembert (in 1754) and Joseph Louis Lagrange 

(in 1797).  28   As we shall see, this formulation remained in Helmholtz ’ s mind. 

 Helmholtz ’ s pursuit of invariance, whether resemblances in the visual field or recur-

rences in music, led directly to his paper  “ On the Factual Foundations of Geometry ”  

(1868), which begins with an explicit connection to his work on the physiology of vision: 

 Investigations into how localization in the visual field comes to pass have led the author also to 

reflect on the origins of spatial intuition in general. This leads first of all to a question whose answer 

definitely belongs to the sphere of exact science, namely, which propositions of geometry express 

truths of factual significance and which, on the contrary, are only definitions or consequences of 

definitions and their particular manner of expression?  …   

 One could follow this direction and find out which analytical characteristics of space and spatial 

magnitudes must be presupposed in order to ground the propositions of analytic geometry completely 

from the beginning.  29   

 Figure 15.1 
 A diagram showing Helmholtz ’ s response to Riemann regarding the precise functioning of the hammer and anvil, 

from  “ Mechanism of the Ossicles of the Ear ”  (1873).  T.t.  is the tendon of the tensor tympani,  P.F.  the processus 

Folianus (part of the hammer),  b  the cog of the anvil, and  aa  shows the straight line transmitting the action of 

the hammer to the tympanum (ear drum). 
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 For Helmholtz, questions about  “ the origins of spatial intuition in general ”  emerge from 

studies of the visual system and lead directly to considerations about the nature of geom-

etry. As a result, he breaches the customary barrier between the propositions of geometry 

and physical reality, previously considered separate from one another. 

 Though during this period he had been mainly working on experimental physiology, 

Helmholtz reveals that he had gone remarkably far in his own self-directed reconsideration 

of the mathematical and philosophical problems concerning the nature of space:  “ The 

author had already begun such an investigation and had completed it in the main when 

Riemann ’ s habilitation lecture  ‘ On the Hypotheses That Lie at the Foundations of Geom-

etry ’  was made public, in which an identical investigation is carried out, having only a 

slightly different formulation of the question. On this occasion, we learned that Gauss had 

also worked on the same subject matter, of which his famous essay on the curvature of 

surfaces is the only published part of that investigation. ”   30   Riemann ’ s argument assumed 

a generalized quadratic line element but did not prove its necessity. Helmholtz asked 

whether there is some fundamental reason that would necessarily mandate this assumption, 

rather than other, more general possibilities. 

 Helmholtz ’ s 1868 paper summarized his response to this problem.  31   Though he shared 

with Riemann the fundamental idea that geometry ultimately rested on physics rather than 

on transcendental ideas, Helmholtz replaced Riemann ’ s  “ hypotheses ”  with  “ facts. ”  Steeped 

in Goethe, like his educated contemporaries, Helmholtz knew by heart Faust ’ s emendation 

of the Gospel of St. John ’ s opening line from  “ In the beginning was the Word ”  to  “ In the 

beginning was the Deed ”  ( “  Im Anfang war die That  ” ); like Faust, Helmholtz moved from 

the Word (or Riemann ’ s  “ hypotheses ” ) to the Deed, understood as the Fact.  32   

 Helmholtz argued that fundamental physical facts necessitate the quadratic form of the 

line element. Specifically, he assumes  “ (1)  continuity and dimensions  ”  (each point in space 

is determined by  n  continuous, independent variables),  “ (2)  the existence of moving and 
rigid bodies , ”   “ (3)  free mobility  ”  ( “ each point can pass over into any other along a continu-

ous path ” ), and finally  “ (4)  the invariance of the form of rigid bodies under rotation . ”  

From these premises, he deduced that  “ if we desire to find the degree of rigidity and 

mobility of natural bodies attributable to our space in a space of otherwise unknown 

properties, the square of the line element  ds  would have to be a homogenous second-degree 

function of infinitely small increments of the arbitrarily chosen coordinates  u ,  v ,  w.  This 

proposition  …  [is] the most general form of the Pythagorean Theorem. The proof of this 

proposition vindicates the assumption of Riemann ’ s investigations into space. ”   33   In his 

original draft, Helmholtz thought this meant that quadratic form had to correspond to 

 Euclidean  geometry, but Eugenio Beltrami and Sophus Lie soon objected to this erroneous 

overspecialization of a more generalized result that Helmholtz should have found: in fact, 

the quadratic form was, in general, non-Euclidean, as Helmholtz acknowledged in a note 

appended to his 1868 paper.  34   In the subsequent literature, this issue became known as the 

Helmholtz – Lie  Raumproblem , the so-called problem of space; not a merely technical 
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matter or a fine point of mathematical rigor, this has deep implications for Einstein ’ s 

geometric account of gravitation because it dictates the fundamental form of the metric, 

the geometrical field created by the bodies immersed in it, which in turn move along its 

shortest (geodesic) paths.  35   

 Helmholtz ’ s oversight probably implies his initial lack of knowledge about non-

Euclidean geometry, confirming that he may not have been aware of the non-Euclidean 

import of his color diagrams (such as figure 14.4) when first he published them in 1866, 

before his enlightenment by Beltrami and Lie.  36   In his 1868 paper, he emphasized that 

 the independence of the congruence of rigid point-systems from place, location, and the system ’ s 

relative rotation is the fact on which geometry is grounded.  

 This becomes even clearer when we compare space with other multiply extended manifolds, for 

example the system of colors. In this case, as long as we have no other method of measurement than 

through the law of color mixing, there exists, unlike in space, no relation of magnitudes between 

any two points that can be compared with that between two other points. Instead, there exists a 

relation between groups of any three points that also must lie in a straight line (that is, in groups of 

any three colors, among which any one is mixable into the other two).  

 We find another difference in the field of vision of a single eye, where no rotations are possible 

so long as we confine ourselves to natural eye movements.  37   

 Under the influence of Riemann ’ s conception of manifold, Helmholtz now reinterprets his 

earlier diagrams of  “ the system of colors ”  as a  “ threefold-extended manifold ”  akin to 

three-dimensional space ( Raum ).  38   Though we have become used to the notion that non-

spatial magnitudes can be described as if they constituted a  “ space, ”  the broadening of the 

concept of space should be credited to Riemann ’ s manifolds.  39   Following on Helmholtz ’ s 

pioneering experimental studies of vision, Riemann adduced space and color as compa-

rable manifolds, terminology Helmholtz then used to categorize the  “ system of colors ”  

more deeply. 

 Overlapping his work on the  “ problem of space, ”  Helmholtz returned to musical con-

cerns as he prepared a third edition of his  Tonempfindungen  (1870). His new additions 

clarified the significance of music for his thinking about geometry in the process of devel-

oping his nascent ideas of resemblance and invariance. In the 1870 version, he expanded 

the concluding passage of the work concerning visual resemblance and musical recurrence, 

adding that this is  “ by no means a merely external indifferent regularity, ”  compared to the 

way  “ rhythm introduced some such external arrangement into the words of poetry. ”  

Instead, he showed  “ that the equality of two intervals lying in different sections of the 

scale would be recognized by immediate sensation.  …  This produces a definiteness and 

certainty in the measurement of intervals for our sensations, such as might be looked for 

in vain in the system of colors, otherwise so similar, or in the estimation of intensity in 

our various sensual perceptions. ”   40   

 The invariance of musical intervals or melodies, when transposed, has no precedent in 

the  “ space ”  of color; we can transpose a Beethoven sonata up a half step and still recognize 
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the work as in some sense still the same, yet we cannot likewise  “ transpose ”  all the colors 

of a Rembrandt (say by shifting all reds to orange, orange to yellow, and so forth): though 

the basic line and surface contours of the painting remain unchanged, its color harmony 

cannot be  “ transposed ”  and remain recognizably identical. Helmholtz extended the special 

quality of spatial  “ resemblance ”  that can be seen in related shapes (the similar profiles of 

father and daughter) and to the characteristic melodic contour of a certain piece of music, 

but  not  to colors. 

 Helmholtz goes on to emphasize the consequences of this resemblance or invariance in 

music: 

 Upon this reposes also the characteristic resemblance between the relations of the musical scale and 

of space, a resemblance which appears to me of vital importance for the peculiar effects of music. 

It is an essential character of space that at every position within it like bodies can be placed, and 

like motions can occur. Everything that is possible to happen in one part of space is equally possible 

in every other part of space and is perceived by us in precisely the same way. This is the case also 

with the musical scale. Every melodic phrase, every chord, which can be executed at any pitch, can 

be also executed at any other pitch in such a way that we immediately perceive the characteristic 

marks of their similarity. On the other hand, also, different voices, executing the same or different 

melodic phrases, can move at the same time within the compass of the scale, like two bodies in 

space, and, provided they are consonant in the accented parts of bars, without creating any musical 

disturbance. Such a close analogy consequently exists in all essential relations between the musical 

scale and space, that even alteration of pitch has a readily recognized and unmistakable resemblance 

to motion in space, and is often metaphorically termed the ascending or descending  motion  or  pro-
gression  of a part. Hence, again, it becomes possible for motion in music to imitate the peculiar 

characteristic of motive forces in space, that is, to form an image of the various impulses and forces 

which lie at the root of motion. And on this, as I believe, essentially depends the power of music to 

picture emotion.  41   

 Because music relies on the recognition of analogy, resemblance, and invariance, Helm-

holtz deduces that it therefore can  “ imitate the peculiar characteristic of motive forces in 

space ” ; though not itself spatial or extended, music can  move  in precise analogy to spatial 

motion, from which Helmholtz boldly identifies the emotive force of music: its virtual 

motion is felt as emotion precisely because of the isomorphism between musical and 

physical space. 

 Over the next few years, Helmholtz extended the implications of his 1868 arguments 

about the  Raumproblem . He presented popular lectures and essays, addressed to a wider 

audience, concerning larger philosophical issues emergent from his own work.  42   Immedi-

ately after completing the additions we have just considered to the 1870 edition of his 

 Tonempfindungen , Helmholtz delivered  “ On the Origin and Meaning of Geometrical 

Axioms, ”  which discussed  “ the philosophical bearing of recent inquiries concerning geo-

metrical axioms and the possibility of working out analytically other systems of geometry 

with other axioms than Euclid ’ s. ”   43   
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 For the first time in his writings on the problem of space, Helmholtz described in detail 

non-Euclidean geometries and the pseudosphere of Beltrami, whose criticisms had first 

moved Helmholtz to address this issue directly. Helmholtz also brought forward a striking 

device for comparing and contrasting these different geometries:  “ Think of the image of 

the world in a convex mirror. ”  In the mirror-world, the theorems of Euclidean geometry 

would instantly be translated into non-Euclidean image-theorems, at least as seen from 

our side of the mirror.  “ In short I do not see how men in the mirror are to discover that 

their bodies are not rigid solids and their experiences good examples of the correctness of 

Euclid ’ s axioms. But if they could look out upon our world as we can look into theirs, 

without overstepping the boundary, they must declare it to be a picture in a spherical 

mirror, and would speak of us just as we speak of them;  …  neither, so far as I can see, 

would be able to convince the other that he had the true, the other the distorted relations. ”  

As further evidence, Helmholtz also adduces the eye ’ s ability to accommodate seeing 

through  “ convex spectacles, ”  of the sort he had experimented with in the course of his 

visual studies:  “ After going about a little the illusion would vanish.  …  We have every 

reason to suppose that what happens in a few hours to anyone beginning to wear spectacles 

would soon enough be experienced in pseudospherical space. In short, pseudospherical 

space would not seem to us very strange, comparatively speaking, ”  once we had gotten 

used to it, just as our eyes would quickly get used to those  “ distorting ”  spectacles.  44   Helm-

holtz ’ s penetrating insight into the relative consistency of these seemingly antithetical 

geometries, Euclidean and non-Euclidean, was directly indebted to his studies of visual 

physiology. 

 Looking back at his recent work, he remarks that  “ while Riemann entered upon this 

new field from the side of the most general and fundamental questions of analytical geom-

etry, I myself arrived at similar conclusions, partly from seeking to represent in space the 

system of colors, involving the comparison of one threefold extended manifold with 

another, and partly from inquiries on the origin of our ocular measure for distances in the 

field of vision. ”   45   As in his 1868 paper, Helmholtz locates his own  “ facts ”  as confirming 

Riemann ’ s  “ hypotheses. ”  

 In his 1870 exposition, besides adducing the three-dimensional manifolds of  “ the space 

in which we live ”  and  “ the system of colors, ”  Helmholtz adds that  “ time also is a manifold 

of one dimension. ”   46   Here, for the first time, time enters the discussion as a manifold, 

albeit one-dimensional.  47   Nor did Riemann include time explicitly in his geometrical 

(hence implicitly spatial) manifolds. Immediately after his mention of time, Helmholtz 

goes on to include the manifold of musical tones, whose time-dependence he had studied 

so closely: 

 In the same way we may consider the system of simple tones as a manifold of two dimensions, if 

we distinguish only pitch and intensity and leave out of account differences of timbre. This gener-

alization of the idea is well-suited to bring out the distinction between space of three dimensions 

and other manifolds. We can, as we know from daily experience, compare the vertical distance of 
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two points with the horizontal distance of two others, because we can apply a measure first to the 

one pair and then to the other. But we cannot compare the difference between two tones of equal 

intensity and different pitch. Riemann showed by considerations of this kind that the essential foun-

dation of any system of geometry is the expression that it gives for the distance between two points 

lying in any direction from one another.  48   

 Helmholtz ’ s concept of manifold includes music and sound in the same arena as space, 

time, color, and vision. Though  simple  tones may be described as a manifold of two dimen-

sions, Helmholtz had investigated the parameters of timbre that distinguish complex 

musical sonorities from simple tones. At this point, the question of dimensionality seems 

open: going beyond the two dimensions of simple tones, how many dimensions are needed 

to describe the full character of musical  “ space ” ? And what then of the dimensional rela-

tions between space and time?  49   Though he does not go further with these questions, 

Helmholtz leaves the  Raumproblem  as the shared heritage of the manifolds of music, 

vision, space, and time. 

 The conclusion of Helmholtz ’ s 1876 revised version of his essay  “ On the Origin and 

Meaning of Geometrical Axioms ”  clarified his current understanding that 

 (1) The axioms of geometry, taken by themselves out of all connection with mechanical propositions, 

represent no relations of real things.  …  They constitute a form into which any empirical content 

whatever will fit and which therefore does not in any way limit or determine beforehand the nature 

of the content. This is true, however, not only of Euclid ’ s axioms, but also of the axioms of spherical 

and pseudo-spherical geometry. 

 (2) As soon as certain principles of mechanics are conjoined with the axioms of geometry we 

obtain a system of propositions which has real import, and which can be verified or overturned by 

empirical observations.  50   

 Helmholtz stepped decisively beyond Kant by including Euclidean and non-Euclidean 

geometries on the same footing, each  “ a form into which any empirical content whatever 

will fit. ”   51   Hence, the axioms of geometry must meet  “ certain principles of mechanics ”  in 

ways that finally rest on empirical observations. Helmholtz ’ s view of this empirical con-

frontation was informed both by optics (and visual physiology) and mechanics (and its 

connection to acoustics and music). 

 In this revised, 1876 version, Helmholtz also added a mathematical appendix on  “ the 

elements of the geometry of spherical space, ”  the same four-dimensional manifold he had 

mentioned to Schering in his 1868 letter, cited above, described by the expression  x  2  + 

 y  2  +  z  2  +  t  2  =  R  2 . Though there is no hint that  t  is not a fourth spatial coordinate, its common 

identification as time pervaded contemporary mathematical physics; Helmholtz also 

allowed  t  to become an imaginary quantity, further increasing the similarity with the 

pseudo-Euclidean space-time later used by Einstein and Hermann Minkowski.  52   

 Such beguiling speculations aside, it would go too far to conclude that Helmholtz had 

(even unknowingly) written down an expression from relativistic physics, fifty years in 

advance. His appendix, however, does illustrate his ability to invoke a four-dimensional 
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manifold to describe mathematically our visual experience looking  “ through a pair of 

convex spectacles ”  that have been specially ground to give a negative focal length. Con-

sonant with his empirical method, Helmholtz showed that we could thereby imagine a 

four-dimensional pseudospherical  “ space, ”  contra Kant. Long before Edwin Abbott ’ s  Flat-
land  (1892), in this essay Helmholtz was probably the first writer to describe  “ reasoning 

beings of only two dimensions ”  who  “ live and move on the surface of some solid body ”  

in order to help us imagine the felt reality of higher dimensions.  53   

 The influence of Riemann and Helmholtz remained crucial in subsequent developments 

of the problem of space. As noted above, Lie embedded his correction of Helmholtz ’ s 

erroneous generalizations in the emergent structure of his theory of continuous groups.  54   

Aside from William Kingdon Clifford ’ s solitary (and visionary) response, Riemann ’ s work 

lay dormant among his immediate successors. The philosophical implications of Helm-

holtz ’ s work were important to Felix Klein in connection with his Erlangen program to 

characterize spaces by their characteristic groups of transformations and respective invari-

ants.  55   As Klein remarked in 1893,  “ Our ideas of space come to us through the senses of 

vision and motion, the  ‘ optical properties ’  of space forming one source, while the  ‘ mechan-

ical properties ’  form another; the former corresponds in a general way to the projective 

properties, the latter to those discussed by Helmholtz. ”   56   

 Henri Poincar é  emphasized Riemann ’ s work and also responded strongly to Helmholtz ’ s 

arguments, in connection with his own view that convention and convenience underlie the 

choice of a geometry for space.  57   Poincar é  also carried forward Helmholtz ’ s thought 

experiment of viewing the Euclidean world through convex mirrors or distorting specta-

cles, which Poincar é  phrased in terms of a  “ dictionary ”  that would translate the terms of 

Euclidean geometry into non-Euclidean terms, one for one, so as to make clear that each 

geometry was no less consistent than the other.  58   Thus, within purely Euclidean geometry, 

a model could be made using Euclidean figures that behaved in every respect like 

Lobachevskian geometry, once the fundamental elements (lines, angles, etc.) had been 

suitably redefined, corresponding to the action of the distorting mirrors or lenses; con-

versely, Lobachevskian geometry could be made to behave as if it were Euclidean by a 

similar set of redefinitions. Poincar é  ’ s argument and Klein ’ s further activities in providing 

other such models were crucial steps in understanding the relationships between the dif-

ferent geometries as not only equally  possible  but equally  consistent . This demonstrated 

equality of status in turn opened the possibility of addressing the empirical observations 

that (as Helmholtz suggested) might then ground the choice between geometries. 

 In the midst of a letter to Mileva Mari ć  written in August 1899, the twenty-four-year-old 

Albert Einstein paused to tell his girlfriend that  “ I admire ever more the original, free 

thinker Helm[holtz]. ”   59   The protean activities of Helmholtz resonated sympathetically with 

Einstein; both were deeply interested in fundamental principles of science, such as the law 

of conservation of energy that Helmholtz advanced so powerfully and which Einstein 

inscribed in relativistic dynamics. Both were devoted to music; both were concerned with 



Riemann and the Sound of Space 243

light, Helmholtz with its physiology, Einstein with its speed and interactions with matter. 

Both were engaged by the  “ problem of space, ”  the general question about the possible 

geometries of space and experience. Around 1903, Einstein and his friends in the  “ Olympia 

Academy ”  read Helmholtz as well as Riemann.  60   

 Einstein ’ s general theory of relativity gave a precise form to Riemann ’ s connection 

between the empirical world (understood as composed of stress-energy) and the geometri-

cal (the invariant curvature of space-time).  61   Rather than ignoring the history of these 

concepts (as he sometimes is represented to have done), in fact Einstein was deeply con-

scious of them and drew not only general inspiration but specific guidance from what went 

before. As he wrote Robert Thornton in 1944,  “ A knowledge of the historical and philo-

sophical background gives that kind of independence of prejudices of his generation from 

which most scientists are suffering. This independence of philosophical insight is — in my 

opinion — the mark of distinction between a mere artisan or specialist and the true seeker 

after truth. ”   62   Einstein ’ s own essays contain a wealth of historical reflection and awareness, 

such as his observation that  “ only the genius of Riemann, solitary and uncomprehended, 

by the middle of the last century already broke through to a new conception of space, in 

which space was deprived of its rigidity and in which its power to take part in physical 

events was recognized as possible. ”  Indeed, Riemann had worked out the curvature tensor 

(now named after him) that was all-important for Einstein ’ s general theory.  63   Einstein ’ s 

tribute pays what he recognizes as a major debt. 

 Einstein ’ s words in praise of Riemann are far better known than his 1917 encomium of 

Helmholtz ’ s Goethe essays —  “ Dear reader! Summarizing would be profanation. Read for 

yourself! ”  — or his 1925  hommage :  “ [that] all propositions of geometry gain the character 

of assertions about real bodies  …  was especially clearly advocated by Helmholtz, and we 

can add that without him the formulation of relativity theory would have been practically 

impossible. ”   64   Einstein considered Helmholtz ’ s connection of geometric hypotheses with 

empirical facts absolutely crucial for the general theory of relativity, whose field equations 

epitomize that connection. To reach that point, Helmholtz connected his work in music 

and vision, hearing and seeing, whose comparison lay at the grounds of his synthetic 

understanding. His dialogue with Riemann reflected and underscored the significance of 

their shared concern with hearing in the context of the problem of space and the physical 

foundations of geometry. 
 





 By the end of the nineteenth century, the Pythagorean quest might have seemed played 

out. With Newtonian and Maxwellian physics securely in place, the metaphorical language 

of harmony, not to mention the details of music theory, might appear to be only a historical 

vestige, a transitional scaffolding that by then could be left behind. But facing the puzzles 

and paradoxes of the nature of matter first raised by the study of spectra, physicists again 

resorted to the precise kinds of numerological-musical theorizing that had many precedents 

in the Pythagorean episodes discussed above. At such moments of trial and disorientation, 

it was as if the scaffolding reemerged from the buildings into which it had seemed 

absorbed, ready once again to help us scale what appeared to be unsurmountable obstacles. 

The story that unfolded was epitomized in  “ the bible of spectroscopists, ”  Arnold Som-

merfeld ’ s  Atomic Structure and Spectral Lines  (1919), which begins by asserting that 

 “ what we are nowadays hearing of the language of spectra is a true  ‘ music of the spheres ’  

within the atom, chords of integral relationships, an order and harmony that becomes ever 

more perfect in spite of the manifold variety. ”   1   How, then, did the music of the spheres 

come to the atoms? 

 Because these developments were the work of many hands, assembling several indi-

vidual portraits may elucidate the different musical facets of the emergence of quantum 

theory. After Helmholtz and Lord Rayleigh had brought the theory of sound and music 

to such a high degree of development, experimentally and mathematically, it stood 

ready, in its new formal generality, to address kinds of problems no one had anticipated 

might by informed by harmonic considerations. Given the universal success of con-

tinuum mechanics in the theory of light and sound, the discovery of discrete spectral 

lines characteristic of each chemical element was a shock. Such dark, discrete lines 

were observed in the sun ’ s spectrum, first by William Wollaston (in 1802), who attrib-

uted them to the boundaries between Newtonian colors, and then by Joseph von Fraun-

hofer (in 1814), who began cataloging them using his newly invented spectrograph 

(  figure 16.1 ).    

 The problem was how such discrete lines could be consistent with the continuous wash 

of spectral colors Newton observed in sunlight. When Anders Jonas  Å ngstr ö m measured 
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 Figure 16.1 
 (a) Richard Wimmer,  Frauenhofer Demonstrating the Spectrograph . (b) Frauenhofer ’ s illustration of the dark 

lines in the solar spectrum. 
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the spectra induced by electrical sparks in tubes containing various elemental gases, begin-

ning with hydrogen in 1853, he observed discrete  bright  lines (  figure 16.2 ). To understand 

the relation between the absorption and diffusion of these dark and bright lines,  Å ngstr ö m 

relied on Euler ’ s theory of light and color, itself (as we have seen) constructed in analogy 

to the wave theory of sound.  Å ngstr ö m began with  “ the fundamental principle of Euler ”  

that  “ the color of a body is produced by the resonance of the oscillations, which can be 

assumed by the particles themselves, ”  so that  “ the same body, when heated so as to become 

luminous, must emit the precise rays which, at its ordinary temperature, is absorbed. ”   2   

Using this principle of resonance,  Å ngstr ö m was able to correlate the dark lines in the 

solar spectrum, considered as formed by absorption, with bright lines he observed in 

the emission spectra of individual elements. Thus, the solar dark lines are evidence for 

the presence of the corresponding elements in the sun (as emerged in subsequent 

A

B

 Figure 16.2 
 (a)  Å ngstr ö m ’ s 1855 comparison of the spectrum of an electric spark passing through air with spectra of various 

elements and compounds. (b)  Å ngstr ö m ’ s 1868 atlas of spectral lines from the sun (above), identifying them 

with various elements (below), in the range 5,400 – 5,700  Å . 
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contributions by Gustav Kirchhoff, Robert Bunsen, and others).  3   But that still avoids the 

question why elemental spectra are discrete, rather than continuous.    

 To address this, the mysterious thicket of spectral lines needed to be cataloged; Frauen-

hofer himself had noted no fewer than 570 dark lines in the solar spectrum, whose distri-

bution seemed to follow some complex but definite pattern, as did the individual elemental 

spectra  Å ngstr ö m produced. Nor was the complexity of the pattern the product of random-

ness or experimental uncertainty, for  Å ngstr ö m ’ s results were accurate to within one part 

in ten thousand, showing the precision that his optical methods could achieve even at the 

beginning of spectroscopic analysis. In the case of hydrogen,  Å ngstr ö m measured the 

wavelengths of the first four spectral lines (all in the visible range), which he called  H  α   , 
 H  β   ,  H  γ   ,  H  δ   .  4   Efforts to find some mathematical order in the lines began in the late 1860s. 

 In 1871, the physicist G. Johnstone Stoney argued that  “ the lines in the spectra of gases 

are to be referred to periodic motions within the individual molecules, and not to the 

irregular journeys of the molecules amongst one another ” ; as was common at the time, 

he used the word  “ molecule ”  where we would say  “ atom, ”  treating it as vibrating in 

response to the incoming waves of light. To describe this, Stoney relied on Helmholtz ’ s 

work on sound:  “ A  pendulous  vibration, according to the meaning which has been given 

to that phrase by Helmholtz, is such a vibration as is executed by the simple cycloidal 

pendulum. ”   5   Indeed, Helmholtz began his  Tonempfindungen  with those pendulous or 

simple vibrations  “ since they cannot be analyzed into a compound of different tones, ”  and 

hence form the basis on which musical tones are built.  6   Stoney was not original in describ-

ing atoms in terms of such simple modes of vibration (which Maxwell and others had 

explored in the preceding decade), but he was the first to do so in the context of spectra, 

for which  “ one periodic motion in the molecules of the incandescent gas may be the source 

of a whole series of lines in the spectrum of the gas, ”  using the exact mathematical form 

of the overtone series.  7   Stoney also used the musical analogy of atomic vibrations to 

explain why many in the  “ overtone series ”  of spectral lines seem to be absent,  “ analogous 

to the familiar case of the suppression of some of the harmonics in music, ”  such as the 

clarinet, whose characteristic timbre is caused by the suppression of even-numbered over-

tones.  8   Stoney then takes the further step of applying this analogy to hydrogen and its 

visible spectral wavelengths  H  α   ,  H  β   ,  H  δ   , which he describes as  “ the 32nd, 27th, and 20th 

harmonics of a fundamental vibration, ”  whose wavelength he calculates as 131,277.14  Å  

(where 1  Å  = 10  – 10  m).  9   Put another way, Stoney expressed the ratio of the wavelengths 

of these lines as 

  H H Hα β δ: : : := 1

20

1

27

1

32
  

 in terms of that implicit fundamental wavelength, which he calculates corresponds to a 

fundamental time of 4.4  ×  10  – 14  seconds, considered as  “ very nearly the periodic time of 
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one of the motions within the molecules of hydrogen. ”  He notes that many other possible 

 “ overtones ”  of this fundamental vibration should be found in the spectrum, though they 

had not observed heretofore, for  “ if the law of this undulation were the same as that of 

the motion of a point near the end of a violin-string, and of a periodic time sufficiently 

long (as, for example, two million-millionths of a second), this undulation, when analyzed 

by the prism, would give a spectrum covered with lines ruled at intervals about the same 

as that between the two [sodium] D lines. ”   10   By considering the atom as essentially analo-

gous to a violin string, Stoney could  “ hear ”  its spectra as comprising the full complement 

of its  “ overtones, ”  thus also predicting the positions of spectral lines still unobserved. 

 Stoney continued to pursue the implications of his violin-string model, but he unfortu-

nately left aside the case of hydrogen, seemingly forgetting to include the other visible 

line,  H  γ   ; instead he and a collaborator went on to try their luck with a much more complex 

molecule (chlorochromic anhydride, CrO 2 Cl 2 ), which gave a much more simple, regular 

spectrum than hydrogen (  figure 16.3 ).  11   Though they were successful in applying 

the violin-string model in this case, Stoney left suspended the full relation between the 

musical model and the observed hydrogen lines; in 1880 he noted that the missing  H  γ    
could be understood as a thirty-fifth harmonic of the same fundamental tone as the other 

hydrogen lines, but did not go further to address other possible overtones and their respec-

tive spectral lines.  12      

 Specifying the structure of the hydrogen  “ overtones ”  was achieved by Johann Balmer, 

a Swiss mathematician who taught at a school for girls in Basel and who was sixty years 

old in 1885 when he published his account of the hydrogen spectral lines, his first paper 

on physics of any kind. Though he was a geometer, a friend directed him to this problem, 

for which Balmer ’ s point of departure was a presentation Helmholtz gave in 1880 at the 

Royal Academy of new measurements of the hydrogen spectral lines, including several 

newly observed lines in the violet and ultraviolet, which also were prominent in the spectra 

of white stars. Balmer emphasizes the importance of  “ hydrogen, the atomic weight of 

which is by far the smallest of all substances known to date and characterizes it as the 

simplest chemical element, that substance through the refraction of analyzed light in solar 

spectrum gives us perceptible knowledge of the powerful motions and forces that the 

 Figure 16.3 
 Stoney and Reynolds ’ s spectrum of chlorochromic anhydride (CrO 2 Cl 2 ), showing its evenly spaced lines in the 

green-yellow (1871). 
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surface areas of our central bodies excite, seems more qualified than any other body to 

open new vistas in the investigation about the nature and properties of matter. In particular, 

the wavelengths of the first four hydrogen lines excite and arrest attention. ”   13   Where Stoney 

had preferred to study a simpler  spectrum , Balmer chose the simplicity and fundamentality 

of the  element , despite its more complex spectrum. 

 Seemingly aware of Stoney ’ s conclusions about hydrogen, Balmer notes that  “ the rela-

tionships of these wavelengths allow themselves to be expressed with surprising accuracy 

through small numbers. Thus, the wavelength of the red hydrogen line is to the violet as 

8 to 5; that of the red to the blue-green as 27 to 20 and that of the blue-green to the violet 

as 32 to 27. ”   14   Though in many texts Balmer is depicted as having guessed his results by 

mere trial and error, he explains that they came from analogies with sound: 

 This circumstance must necessarily recall analogous relations in acoustics, and one believes the 

vibrations of the same spectral lines of a substance ought to be understood almost as overtones of 

the same characteristic fundamental tone [ Grundton ]. Yet all attempts to find such a fundamental 

tone for hydrogen, for example, have not turned out satisfactorily. One would have come with such 

a calculation to such large numbers that would not have yielded thereby a clearer insight. For 

instance, one gets for the first, second, and fourth hydrogen lines the same fundamental tone of 

which the second line represents the twenty-seventh multiple. With every newly included line the 

sought-for fundamental tone will be represented with quite important augmented wavelengths. 

Nevertheless, the idea suggested itself that there should be a simple formula with whose help the 

wavelengths of the four indicated hydrogen lines could be represented.  15   

 From the hypothesis that hydrogen wavelengths represent overtones and using  Å ngstr ö m ’ s 

values for its four visible wavelengths, Balmer deduced that the fundamental wavelength 

(corresponding to the  Grundton ) is 3,645  ×  10  – 7  mm = 3,645  Å ,  “ the  fundamental number  

[ Grundzahl ] of hydrogen, ”  from which he then deduces the observed wavelengths expressed 

as  3 645
2
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  where  m ,  n  are integers. Though Balmer does not detail the  “ various 

grounds on which it is likely ”  that the wavelengths should take this form, we can infer 

from what he has already said that he derived it from his general idea of overtones applied 

to the ratios between  Å ngstr ö m ’ s wavelength values.  

 Based on this assumption, Balmer sought a common fundamental number as their 

 Grundton  but then must have realized that none of the observed lines gave this number 

directly, nor could he infer the wavelengths from the usual simple formulas for overtones 

in terms of the Pythagorean ratios for octave, fifth, and so forth. Even so, his musical 

assumption directed him to find a common number that, multiplied by simple fractions, 

would give the observed  Å ngstr ö m wavelengths, which his following description confirms: 

 “ the wavelengths of the first four hydrogen lines are given if the fundamental number  h  

= 3,645 [ Å ] is multiplied sequentially by the coefficients 9/5, 4/3, 25/21, and 9/8. Clearly 

these four coefficients form no lawful sequence, but as soon as one multiplies the first and 

the last by 4 the lawfulness comes forward and the coefficients maintain as numerator the 
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squares of the numbers 3, 4, 5, 6, and as denominator one of these less one of the four 

smaller numbers [i.e., the squares of 1, 2, 3, 4]. ”   16   Once having set out to find the funda-

mental number, and using the Pythagorean presumption that it would be multiplied by 

simple fractions to give the observed hydrogen lines, Balmer was then led to his coeffi-

cients, thence to their numerators (which he realized could all be expressed as squares of 

integers), making the inference that their denominators were the differences of squares a 

fairly small further step. 

 Nor would Balmer have simply expected that his coefficients all be simple Pythagorean 

ratios, though two of them (4/3 and 9/8) indeed were; his reading of Helmholtz would 

have assured him that more complex bodies than simple vibrating strings have more 

complex overtone structures, yet are still governed by the same mathematical principles. 

For instance, Helmholtz reviewed the harmonic series of a vibrating circular plate, already 

famous from Chladni ’ s experiments and familiar to mathematicians via the special func-

tions devised by Friedrich Bessel describing their modes of vibration.  17   In this case, 

Helmholtz noted that  “ there is no commensurable ratio between the prime tone and the 

other tones. ”  Balmer could also have found precedent for his use of squared integers in 

Chladni ’ s empirical law, which expressed the frequency of vibrating bodies as roughly 

proportionate to the squares of a series of integers.  18   Balmer was probably pleased and 

surprised that the vibrations of hydrogen seem comparable in complexity with those of a 

circular plate. 

 After obtaining these results, Balmer learned from his friend Eduard Hagenbach about 

the new spectroscopic discoveries of Edward Huggins and Hermann Vogel, which he 

mentioned at the beginning of his paper. Evidently, in hot white stars hydrogen reach states 

capable of producing lines not heretofore observed in earthly experiments. Where Stoney 

had merely noted the four  Å ngstr ö m lines as  “ overtones, ”  without considering other pos-

sibilities, Balmer ’ s formula led him to consider the potential infinitude of spectral lines as 

the integers  m  and  n  take on ever larger values. Already in his first publication, Balmer 

explored this possibility and found good agreement with the newly observed lines (  figure 

16.4 ). Although he did not go further still to use his formula to predict as-yet unobserved 

lines, Balmer ends by proposing that his general approach could be extended to other ele-

ments, which he discussed in more detail in his fourth and final publication (1897).  19      

 Though Balmer ’ s initial publication was in a Swiss journal (published in his hometown, 

Basel), when he republished these same results later that year in a well-known German 

journal,  Annalen der Physik , he omitted all the explanatory material that shows the con-

nection of his work with the theory of overtones.  20   Instead, his formula appears to come 

from nowhere, as if plucked from the ether by pure mathematical speculation; this expur-

gated version of his discovery conforms to what was increasingly a preference to erase 

the context of discovery from the published account. In the case of acoustics, music tended 

to recede further into the background as time went on. Whereas in Helmholtz ’ s  Tonemp-
findungen  music figured very prominently, a decade and a half later Lord Rayleigh ’ s 
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 Theory of Sound  (1877) refers only occasionally to musical matters.  21   Rayleigh makes 

clear that his real subject is  “ the theory of Vibrations in general ” ; he stresses  “ the estab-

lishment of general theorems by means of Lagrange ’ s method, ”  a sophisticated mathemati-

cal technique, rather than the far more empirical, musically oriented approach of 

Helmholtz.  22   Rayleigh, and seemingly Balmer also, seemed to think that the sheer physi-

cality of music was best sublimated into disembodied theory, as if the more mathematical 

representation were to be accounted more true, or at least most general. 

 It would be too facile to conclude that they and others were simply ashamed of music 

as atavistic or unscientific; arguably, they treated music as an empirical level on which the 

modern edifice of acoustics was built. But that completed building necessarily would cover 

and hide the foundations on which it rested. Thus, in Balmer ’ s later publications on spectra, 

the musical analogy with which he began faded into the background as he became involved 

in more and more detailed calculations of spectra for elements besides hydrogen; the others 

who followed his lead into this field do not mention acoustics or overtones at all, as if 

they had been merely suggestive scaffolding no longer relevant once they had given birth 

to the mathematical theory, whose general terms carried no reference to its sonic 

beginnings.  23   

 This process might be considered an example of what Edmund Husserl called  “ sedi-

mentation or traditionalization, ”  the modern scientist ’ s constitutional proclivity to assume 

and subsume prior foundational work so as to incorporate  “ the constant presuppositions 

of his [own] constructions, concepts, propositions. ”  He goes on:  “ Are science and its 

method not like a machine, reliable in accomplishing obviously very useful things, a 

machine everyone can learn to operate correctly without in the least understanding the 

 Figure 16.4 
 Balmer ’ s 1885 table showing his calculations, compared to contemporary observations. 
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inner possibility and necessity of this sort of accomplishment? ”   24   Insisting that he does 

not thereby denigrate the achievement of modern science, Husserl nevertheless stresses, 

from the point of view of his phenomenological analysis,  “ that the true meaning of these 

theories — the meaning which is genuine in terms of their origins — remained and had to 

remain hidden from the physicists, including the great and the greatest. ”  His geological 

metaphor implies that the later layers of scientific work necessarily bury and thereby render 

invisible the earlier  “ strata ”  on which they themselves were built. Yet though he thinks 

that, as they build ever further, scientific workers must remain increasingly unaware of the 

buried strata on which their edifice rests, Husserl notes that later readers  “ can make it 

self-evident again, can reactivate the self-evidence ”  by gradually desedimenting the 

impacted layers of assumptions, bringing to light their  “ intentional history ”  and their latent 

implications.  25   

 In these terms, we could be said to be unearthing the sedimented role of music as a 

historically relevant stratum, though one that was, by the late nineteenth century, fairly 

well buried and increasingly irrelevant to contemporary scientific practice. To some extent, 

this is an accurate description of the process just discussed in the cases of Balmer, Ray-

leigh, and their successors. Yet in what follows, Husserl ’ s metaphor and its implications 

will break down because, rather than simply lying buried and ever-more-forgotten, the 

musical theme will break out again more or less overtly and not through self-conscious 

attempts to  “ desediment ”  the layers. To return to the geological metaphor, strata may not 

always remain sedimented beneath the surface but can in fact emerge into view as outcrop-

pings that not only indicate the buried past but also become manifest in the visible land-

scape, the very rocks we see around us.  26   

 

 

 
 





 Though Balmer and Rayleigh did not comment on the disappearance of music as part of 

the foundations of their work, other scientists indicated awareness and even intentionality 

about the process that Husserl summarized by saying that  “ sedimentation is always 

somehow forgetfulness. ”   1   In part, this reflected a widespread decision of scientists to reach 

past the  “ all-too-human, ”  including music and sensation in general. Thus, in 1909 Max 

Planck argued that 

 the characteristic feature of the actual development of the system of theoretical physics is an ever 

extending emancipation from the anthropomorphic elements, which has for its object the most 

complete separation possible of the system of physics and the individual personality of the physicist. 

One may call this the objectiveness of the system of physics.  …  Certainly, I might add, each great 

physical idea means a further advance toward the emancipation from anthropomorphic ideas. This 

was true in the passage from the Ptolemaic to the Copernican cosmical system, just as it is true at 

the present time for the apparently impending passage from the so-called classical mechanics of 

mass points to the general dynamics originating in the principle of relativity.  2   

 Planck had nothing against the sensible grounds of physics — and, as we shall see, he was 

deeply concerned with music — but he felt that physics should aspire to a degree of gen-

erality that rises far above the sense data that originally evoked it or even the experimental 

data that can serve to test it. Given his call to remove anthropomorphic elements from 

physics, one might have inferred that he would have praised the greater generality of 

mathematical physics, which referred to music less and less.  3   

 Planck ’ s own case, however, shows the curious ways in which music could still figure 

in the intellectual life of someone so deeply committed to transcending the anthropomor-

phic and merely personal. An exemplary  Kulturtr ä ger , highly cultivated and especially 

devoted to music, Planck was a pianist of considerable skill. As a student, he composed 

songs and even an entire operetta that was performed in the musical evenings that were 

fixtures of professorial life in those days; he conducted choruses and orchestras, played 

the organ at church services, and studied harmony and counterpoint.  4   He wondered whether 

he should pursue a career in music rather than physics. In 1877, he spent a student year 

in Berlin, where he studied with Helmholtz, reading thermodynamics and eventually 

 17  Planck ’ s Cosmic Harmonium 



256 Chapter 17

becoming a close friend, participating in Helmholtz ’ s musical evenings.  5   That year, Helm-

holtz published the fourth edition of his  Tonempfindungen , including his latest thoughts 

on sound and space; Planck surely studied this work closely, both as a student and admirer 

of Helmholtz and out of his own deep-seated philosophical interests. 

 In later life, after Planck had returned to Berlin in 1889 as a professor, his own home 

music-making included collaborations with such outstanding musicians as the preeminent 

violinist Joseph Joachim and the no less remarkable Albert Einstein. Every other week 

Planck conducted an informal chorus that included his children, neighbors, and friends. 

Ironically, the very sensitivity that made him feel music so deeply also made it hard for 

him to endure anything less than absolute perfection in intonation. His pitch sense was 

especially acute as a child; he remembered not being able to play on a piano tuned to 

lower than normal pitch because of the strong tonal disorientation he felt between the 

nominal pitches and the actual sounds.  6   According to the recollections of his friends, 

Planck ’ s sense of pitch was so acute that he could scarcely enjoy even a professional 

concert, but, in the view of John Heilbron,  “ like his politics and his thermodynamics, his 

ear gradually lost its absolutism and allowed him greater satisfaction. ”   7   What follows will 

examine further these interrelations between music, physics, and Planck ’ s search for 

the absolute. 

 Beginning with his doctoral dissertation (1879), Planck was concerned with the status 

of the first two laws of thermodynamics as absolute laws, exemplars of the nonanthropo-

morphism he was later to state as a guiding principle. Until 1914, far longer than most of 

his peers, Planck maintained that the second law of thermodynamics was an absolute law 

of nature, not merely valid with high probability, as Ludwig Boltzmann had argued. Planck 

was long skeptical of the physical reality of atoms, compared to what he regarded as the 

absolute certainty of the laws of mechanics and thermodynamics. He was largely respon-

sible for showing the practical consequences of the concept of entropy in physical chem-

istry, which occupied him from 1887 until 1893. In the process, Planck gradually became 

convinced that physicists had to rely on the atomic hypothesis to make progress, lacking 

any other fruitful fundamental theory, but in 1893 he still preferred not to make use of the 

atomic hypothesis if at all possible. Because atoms remained for him hypothetical, at that 

point he felt that mechanics and mechanical thermodynamics were  “ the deepest form of 

coherence. ”  

 At this turning point in his scientific biography, Planck entered a curious musical bypath, 

which Erwin Hiebert and Alexandra Hui ’ s pioneering work has illuminated.  8   Planck 

recounts in his scientific autobiography that  “ by a sheer whim of fate, no sooner had I 

reported to my post in Berlin [in 1893] than I was temporarily assigned a task in a field 

quite remote from my self-chosen special branch of physics. Just at that time, the Institute 

for Theoretical Physics happened to receive a large harmonium, of pure untempered 

tuning, a product of the genius of Carl Eitz, a public school teacher in Eisleben, built by 
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the Schiedmayer piano factory of Stuttgart for the Ministry. I was given the task of using 

this musical instrument for a study of the untempered,  ‘ natural ’  scale. ”   9   

 Though this represented a radical departure from any research work he had done before, 

evidently Planck received this task because of his well-known musical interests and acute 

sense of pitch, despite his lack of any prior experimental work in acoustics. Still, he was 

well aware of Helmholtz ’ s reliance on the harmonium, which Helmholtz praised  “ on 

account of its uniformly sustained tone, the piercing character of its quality of tone, and 

its tolerably distinct combinational tones, [which] is particularly sensitive to inaccuracies 

of intonation. And as its vibrators also admit of a delicate and durable tuning, it appeared 

to me peculiarly suitable for experiments on a more perfect system of tones. ”   10   The Eitz 

instrument Planck used was ordered by Helmholtz from the same factory that had earlier 

provided him a two-manual harmonium so precisely tuned that he could experimentally 

compare equal-tempered with  “ perfect ”  just intonation, which he found decisively superior 

(see box 4.1).  

 Using equal temperament, Helmholtz had noted that  “ when moderately slow passages 

in thirds at rather a high pitch are played, [the resulting combination tones] form a hor-

rible bass to them, which is all the more disagreeable for coming tolerably near to the 

correct bass, and hence sounding as if they were played on some other instrument that 

was horribly out of tune. They are heard most distinctly on the harmonium and violin. 

Here every professional and even every amateur musician observes them immediately, 

when his attention is properly directed. ”   11   Helmholtz became a strong advocate of 

 “ perfect ”  (meaning just intonation) rather than equal temperament, which was then 

becoming more and more standard. At the time, he was perceived as crotchety and even 

rather eccentric; despite his assertions about professional musicians sharing his views, 

when Helmholtz met Johannes Brahms and tried to persuade him, Brahms remained 

distinctly unmoved and even dismissive, remarking that  “ in musical things, he is an 

enormous dilettante, ”  though Brahms ’ s close friend, the physician and musician Theodor 

Billroth, was a great admirer of Helmholtz.  12   Nevertheless, Helmholtz ’ s advocacy of 

older temperaments had its day much later as part of the movement to restore the 

 “ authentic ”  performance practices of the past.  13   

 Planck thus was stepping into a lively, if somewhat outr é , controversy. That a full pro-

fessor of physics in Berlin would be seconded to this musical investigation for several 

years shows the continuing importance of Helmholtzian acoustics, with its strong connec-

tion to musical issues of theory and practice that impinged also on the young science of 

musicology. Even though tasked thus by the authorities, Planck said he took to his project 

with  “ keen interest, ”  as if the whole episode were an idyll in which he could function 

simultaneously as performing musician and as physicist.  14   His work during that time shows 

his growing fascination with the possibilities that emerged. He wrote a brief 1893 paper 

describing the Eitz harmonium, which divided the octave into 104 steps (using 52 keys), 



258 Chapter 17

thus allowing the performance of many kinds of temperament. Though the nonstandard 

keyboard required seems dauntingly complicated (  figure 17.1 ), for Planck playing it was 

easy  “ with a little practice, ”  as he modestly put it.    

 Thus far, Planck seemed caught up in Helmholtz ’ s campaign for just intonation as more 

 “ perfect ”  or  “ natural, ”  a loaded term that further underlined its special claim to legitimacy. 

Planck, like his mentor Helmholtz, thought that highly skilled musicians with good ears 

would naturally prefer  “ perfect ”  intervals to the vulgar compromises involved in the stan-

dard equal temperament commonly in use. Here both men extrapolated from their own 

sonic experience to what they thought would hold for other acute hearers. Planck decided, 

though, to put this hypothesis to experimental test, perhaps moved by such stories as 

Brahms ’ s gruff refusal to worship at the altar of  “ natural ”  temperament. His ensuing 

investigation was the only piece of experimental work he ever did, and hence was espe-

cially remarkable at a time when theoretical physics as such had just begun to exist as a 

separate discipline from physics as a basically experimental science. Indeed, Planck 

himself was one of the first of the new breed of theoretical physicists and the first to occupy 

a special chair under that rubric at Berlin. 

 Planck ’ s experiment did not involve (as Helmholtz ’ s did) mechanical equipment of 

various sorts, only different scores and choruses, so that they were decidedly  musical  
experiments. His 1893 paper  “ On Natural Tuning in Modern Vocal Music ”  appeared in a 

musicological journal, putting Planck alongside Helmholtz and Mach as having worked 

in that research world as well as in that of standard physics.  15   Planck ’ s paper is an extraor-

dinary document that shows the great depth of his musical knowledge and his experience 

as a choral conductor; he has at his fingertips a wealth of specialized knowledge about 

musical practice and temperaments that would be worthy of a professional. He begins by 

remarking on the universal acceptance of  “ tempered tuning, ”  as he calls the equal-tempered 

practice of his time. In itself, this is a significant piece of evidence that by 1893 some 

form of equal temperament was expected (a conclusion that has been questioned by some 

of its most passionate critics).  16   On the other hand, Planck finds evidence that performing 

musicians deviate from equal-tempered tuning: perceptive violinists note that a double-

stop (a two-note chord) sounds better if it is not exactly equally tempered, but  “ softened 

[flattened] a little ” ; likewise, directors of a cappella choruses note the tendency for the 

third in a major triad to sound better when very slightly flat, with respect to a perfect 

equal-tempered third. These instinctive practical adjustments seem to show that musicians 

revert to the natural, unequal temperament (now called  “ just intonation ” ) that historically 

preceded equal temperament. Planck notes that  “ some theorists even go so far as to deny 

any justification to [equal] tempered tuning, because it is distant from natural conditions 

and somewhat lies to the ears, so to speak, ”  compared to pure natural tuning.  17   

 To this long-vexed controversy Planck brought the experimental sensibility of a physi-

cist, theorist though he be. He used the Eitz harmonium to produce reliably the various 

equal or naturally tempered intervals and thereby test for himself this dispute between 
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 Figure 17.1 
 A 1911 Eitz harmonium and its keyboard (photo courtesy of Deutsches Museum). 
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tunings. In the more normal setting of a choral rehearsal, he used a piano to give an accu-

rate starting pitch and then allowed a well-trained chorus to sing without any accompani-

ment, in order to observe toward which temperament it naturally tended, the natural or the 

tempered tuning. His first experiments used a passage from a sacred motet by the great 

composer Heinrich Sch ü tz (  figure 17.2 ,  ♪  sound example 17.1), a sophisticated choice that 

reflects both Planck ’ s knowledge of the repertoire of older masterworks as well as his 

ability to choose a telling example.    

 Sch ü tz ’ s collected works had appeared only a few years before, part of a new wave of 

interest in long-forgotten works that involved such serious musicians as Brahms and 

Philipp Spitta, and clearly also Planck. The passage he chooses is an exquisite example 

of Sch ü tz ’ s word-painting, setting long, lulling notes to the word  ruhe , signifying the 

repose of the believer who is awaiting resurrection, using the minor subdominant at that 

point to achieve an effect at once moving and unearthly.  18   Planck attended many rehearsals 

of this work by the chorus of the Royal Musical Hochschule in Berlin, a highly trained 

ensemble. He noticed that, if the piano accompaniment were too soft to be heard, the 

chorus would sink in pitch enough that the conductor would then tap his baton, break off, 

and repeat the passage with the piano. Planck realized that the sound was not only  “ espe-

cially good ”  when supported by the tempered piano but that, in fact, though flat in pitch 

when unaccompanied, the chorus still moved toward a  tempered  triad, not the natural one, 

as Helmholtz would have expected. 

 Figure 17.2 
 Planck ’ s test passage from Heinrich Sch ü tz ’ s motet  “ So fahr ich hin zu Jesu Christ ”  (SWV 379,  Geistliche 
Chorwerke , 1648). Text:  “ Thus I fall asleep and rest soundly ”  ( ♪  sound example 17.1). 
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 To test this surprising result, Planck wrote a short composition (though he modestly 

does not use this term for what he calls his  “ series of chord progressions ” ) specifically 

devised to test whether, when singing without accompaniment, a chorus would gravitate 

toward natural or tempered tuning (  figure 17.3 ;  ♪  sound examples 17.2, 17.3).    

 Planck constructed his first example so that, if the chorus allows every triad to adjust 

itself to natural tuning, then by the end, the final C would be five syntonic commas lower 

than the initial C, a bit more than a half step flat.  19   Planck assembled a chorus of  “ friendly 

musical ladies and gentlemen ”  who sang this passage to him many times, beginning with 

a normal-tempered piano chord at the beginning. He found, indeed, that the pitch sank 

about a half step, as he expected, showing that natural tuning is a significant effect on 

choral singing. But then he arranged a second  “ counter-experiment, ”  as he called it, an 

inversion of the melodic motions of the first example that would, by symmetry, evoke 

a  rise  of five syntonic commas (about a half step) above the starting pitch (  figure 17.4 ; 

 ♪  sound examples 17.4, 17.5), were the chorus constantly to adjust according to 

natural tuning.    

 Using this inverted test-composition, Planck ’ s results seemed contradictory; the pitch 

rise did not materialize as would have been anticipated had the singers always reverted to 

natural tuning. He reasoned that singers tend, when prolonging a note, to go flat, which 

would have canceled out the expected rise in pitch here, though it would have assisted the 

fall in pitch in the previous example (  figure 17.3 ). From his observations, Planck concluded 

 Figure 17.3 
 Planck ’ s first test composition, devised to check whether an unaccompanied chorus would gravitate toward 

natural or tempered tuning; using natural tuning, the tonic C should fall about five syntonic commas (about a 

half step) ( ♪  sound examples 17.2, 17.3). 
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that in certain specific passages such as his first example and especially in the older reper-

tory (such as his Sch ü tz example;   figure 17.2 ), natural tuning is important to the musical 

effect intended by the composer and also comes naturally to the singers. In general, though, 

 “ modern vocal music relies almost completely on tempered tuning  …  through habituation 

to hearing tempered intervals. ”   20   

 This was arguably the first really surprising result Planck had obtained in his research 

career so far, for his result contradicted that of Helmholtz, the great authority in the field, 

as well as Planck ’ s own expectations. The whole episode was significant enough that he 

included it in his scientific autobiography:  “ These studies brought me the discovery, 

unsuspected to a certain degree, that the tempered scale was positively more pleasing to 

the human ear, under all circumstances, than the  ‘ natural, ’  untempered scale. Even in a 

harmonic major triad, the natural third sounds feeble and inexpressive in comparison with 

the tempered third. Indubitably, this fact can be ascribed ultimately to a habituation through 

 Figure 17.4 
 Planck ’ s second test composition, whose tonic should rise about five syntonic commas (about a half step), using 

natural tuning ( ♪  sound examples 17.4, 17.5). 
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years and generations. For before Johann Sebastian Bach, the tempered scale had not been 

at all universally known. ”   21   

 In his autobiography, Planck immediately turns from this description back to his involve-

ment in thermodynamic issues, especially those that emerged the following year (1894) 

concerning black-body radiation, leading to his famous postulation of the quantum of 

action in 1899 – 1900. Though outwardly Planck ’ s musical investigations seem unrelated 

to the culmination of his work in thermodynamics, he treats both as part of his ongoing 

stream of scientific activity. The connections and contrasts that emerge shed a new light 

onto Planck ’ s development, helping us understand how this immensely cautious man found 

himself advancing the most controversial and consequential innovation of modern physics. 

 Until his musical work of 1893 – 94, Planck had been an unalloyed conservative, a 

devotee of absolute laws who (against the powerful arguments of Boltzmann) resolutely 

maintained the absolute validity of the second law of thermodynamics, upholding entropy 

alongside energy as mainstays of deterministic (as opposed to statistical) mechanics. His 

work on the battle between tempered and natural tuning was the first place in which his 

sense of the absolute was truly challenged. Initially prepared to believe in the absoluteness 

of natural tuning, at least for cultivated musicians, his own musical experiments led him 

to the opposite conclusion: the prevalent conventions of tempered tuning, however recent 

in the long view of music history, outweighed the claim of the  “ natural. ”  His results were 

nuanced: though natural tuning does, in fact, have some sway over music, he realized that 

musicians gravitate toward tempered tuning out of habit, and (more surprising still) he 

himself found those  “ unnatural ”  tempered intervals more expressive. This moment of self-

realization was mirrored in his experiences with others. Not only did he observe his singers 

sink into tempered triads, he realized that he himself was not immune, but had been formed 

by the conventions of tempering he too had grown up with. 

 For someone as devoted to the absolute as Planck, these musical results were disquiet-

ingly relativistic. Though he does not use that precise term, in fact he tested the absolutistic 

claims of the advocates of natural tuning and concluded that, far more than he or they ever 

expected, the conventional  “ frame of reference ”  of tempered tuning conditions our expec-

tations and our felt experience. To put the matter provocatively, Planck ’ s musical trials 

were a kind of Michelson – Morley experiment with respect to absolute versus relative 

tuning; he, like they, derived a null result, namely that musicians do not perceive absolute 

natural tuning any more than optical experimenters can observe absolute motion with 

respect to the ether.  22   On the other hand, though the claims of natural tuning had now been 

rebuked by experiment, he does not altogether disavow its power in musical experience, 

even though he showed that natural tuning was overshadowed by the greater practical force 

of habitual tempered tuning. 

 Planck ’ s musical realization resonated through his work as he sought a unified concep-

tion of the forces of nature, in accord with more general Wilhelmian views about the unity 

of knowledge.  23   As Hui put it, his 
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 conception of sound sensation fit into this widening space between the world of physics and the 

sense world based on human mensuration. For one, this increasing distance reinforced Planck ’ s 

framework by revealing the deceptiveness of the senses — a single listener could hear the same 

interval differently depending on her use of accommodation, and a vocalist could only maintain a 

pure interval with careful and sustained concentration … . If passive hearing could shift significantly 

in just a few generations due to material and aesthetic shifts in the music world with the spread of 

equal temperament (that is, very much as a result of human activity), and yet a listener could, with 

accommodation, toggle between tuning systems in their sensory perception of sound, certainly the 

sense world and the real world were not one and the same.  24   

 In the end, Planck was not disillusioned but instead raised his quest for the absolute to 

another venue: that of the highest aims of musical art. This emerged as he confronted 

practical problems of performance:  “ How is one to proceed in such cases as, for example, 

the above-cited composition of Sch ü tz? Should one, in order not to give up the absolute 

pitch level, let the choir sing the third in a triad not in natural tuning, as musical hearing 

suggests, but in tempered tuning? Or should one, yielding to everything, renounce perform-

ing a constant tonic? ”  His conclusion is a judicious triumph of musical sensibility: 

 Above all, in such a question the composer must be consulted; he alone, through the composition 

given us, ought to speak the deciding word. If, though, as in the foregoing case, this court is no 

longer accessible, then other considerations enter in and here it cannot be sufficiently stressed that 

the last, highest decision once and for all ought to rest on the consideration of the artistic effect. For 

art finds its justification in itself and no theoretical system of music, be it ever so logically founded 

and consistently realized, is capable once and for all of meeting all the demands of the human spirit 

as well as of ever-changing art. In this connection, the natural system has absolutely no priority over 

the tempered and there is no justification for performing famous compositions in natural tuning for 

no particular reason.  25   

 Thus, Planck turns to the autonomous realm of music,  “ ever-changing ”  though it be, as a 

new locus of authority:  “ Academic rules must regulate themselves according to art, not 

turn it upside down. ”   26   In the process, he had to reconcile himself to historicity, despite 

his overarching preference for the timeless absolute. For Hui,  “ this conception of physics 

as oscillating between the worlds of sense and reality but also asymptotically approaching 

unity with the real world is a rather delightful solution that allowed Planck room to his-

toricize scientific thought while maintaining an antipositivist stance. ”   27   To her formulation 

I would like to add several new aspects in which Planck ’ s return to the quest for the abso-

lute was affected by his musical encounter with historical relativity. 

 At the most basic level, Planck ’ s musical findings required an implicit confrontation 

with the old authorities, particularly his revered mentor Helmholtz, who had maintained 

the fundamental, absolute status of natural tuning. But in October 1893, when Planck 

delivered his paper on tuning, Helmholtz suffered a serious fall, after which his health 

was never the same until his death the following year. Indeed, Planck called 1894  “ the 

black year of German physics, ”  during which Heinrich Hertz and August Kundt also died 

prematurely.  28   Thus, Planck ’ s struggle with these musical-physical questions notably 
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overlapped with the deaths of three of his most important colleagues, leaving him as the 

sole remaining professor of physics in Berlin by the end of 1894. Arguably, Planck ’ s return 

to issues of thermodynamics and black-body radiation in that year was affected by the 

sudden loss of many of his Berlin colleagues, which required him to take up these other 

physical investigations after their demise. Helmholtz ’ s death effectively forestalled any 

awkward controversy between teacher and student on the musical issues that mattered so 

much to both of them. 

 This was, indeed, the first occasion on which Planck could have experienced what he 

much later described in his autobiography as a generality that has come to be called 

 “ Planck ’ s principle ” :  “ A new scientific truth does not triumph by convincing its opponents 

and making them see the light, but rather because its opponents eventually die, and a new 

generation grows up that is familiar with it. ”   29   Though Planck remarks this in the immedi-

ate context of the struggle between Boltzmann and Wilhelm Ostwald about the reality of 

atoms, his comment immediately follows his description of his musical experiments. We 

lack documentary evidence about the conversations between Helmholtz and Planck in the 

aftermath of his 1893 work on tuning, but they may have been strained and awkward, 

given Planck ’ s well-known deference to authority, and to Helmholtz in particular. Helm-

holtz ’ s passing gave way to new voices expressing contrary views, as had Planck. Those 

onerous encounters with death in the  “ black year ”  of 1894 provided a forceful education 

in dimensions of historicity, which Planck received first of all during his musical struggle 

with tuning and convention. 

 Planck certainly confronted these issues as he participated in the controversy about the 

reality of atoms, during which he changed his views toward those of Boltzmann, a pas-

sionate advocate of real (rather than purely theoretical) atoms and the great champion of 

their statistical nature. During the years 1894 through 1900, Planck ’ s research on the 

equilibrium radiation of black bodies turned on the application of Boltzmann ’ s methods. 

As with his work on the Eitz harmonium, Planck combined his underlying theoretical 

preoccupations with the external demands of practicality: an electric lightbulb manufac-

turer had requested help determining the optimal radiance for their product, which in turn 

devolved on thermodynamic and electrodynamic questions that had emerged already by 

1859, when Gustav Kirchhoff had devised and named the idealization of heating a perfectly 

black oven to a given temperature, allowing some of its radiant light to escape through a 

small hole for observation. Kirchhoff had established that this  “ black-body radiation ”  was 

universal in terms of its distribution of energy over frequency, depending only on the oven ’ s 

temperature, and not its size, shape, or materials. Because of this absolute quality charac-

terizing the energy distribution, Planck was interested in finding what determined the exact 

shape of that distribution, which was becoming ever better known through the efforts of 

his experimental colleagues in Berlin. 

 Approaching this problem, Planck brought to bear the thermodynamics of entropy that 

he had developed in his earlier work. But two elements of his treatment had distinctly 
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musical antecedents. To sample the distribution of energies inside the oven, Planck intro-

duced an imaginary resonator as a probe. This resonator he assumed to be an idealized 

pendulum or harmonic oscillator, and thus an idealization of a vibrating string. This theo-

retical contrivance allowed him to express the relation between the radiant energy in the 

cavity of the oven at a certain frequency (chosen to be the resonant frequency of the 

imaginary resonator itself) and the entropy of that ambient radiation. Then Planck could 

apply the second law of thermodynamics to the entropy by calculating the number of pos-

sible ways in which the available energy might be distributed over a whole ensemble of 

imaginary resonators, each probing the oven ’ s radiation at its own particular resonant 

frequency. 

 In the previous chapter, we saw the prehistory of this hypothesis in Maxwell ’ s assump-

tion that molecules could be treated as vibrating bodies whose modes of resonant oscilla-

tion are then visible as the spectrum of the substance formed by those molecules. Under 

that assumption, the walls of the cavity itself would be formed of an immense number of 

those vibrating molecules. Thinking of their vibrations in terms of sound, the oven (or 

indeed any chunk of matter) is essentially a chorus, an assemblage of many individual 

 “ singers, ”  each sounding its own particular note or resonant frequency. The light inside 

the heated oven, thus, would be like the chord formed by all those individual voices, 

sounding a continuum of pitches, according to classical theory. 

 Planck at times calls these  “ Hertzian oscillators, ”  referring to Heinrich Hertz ’ s 1886 

experiments that used a spark gap and capacitor to induce a rapidly oscillating electric 

spark capable of producing a detectable amount of electromagnetic radiation, as predicted 

by Maxwell ’ s equations (  figure 17.5a ). To produce the rapid interruption of the electric 

spark, Hertz used a vibrating contact that, when operating, generates an audible pitch ( ♪  

sound example 17.6); his electromagnetic vibrator is also in fact a source of ordinary sound 

vibrations. Indeed, the physical structure of these mechanical vibrators is essentially identi-

cal to the reed of a harmonium (  figure 17.5b ), though Hertz used a metal vibrator that 

could conduct the electricity for the spark. Thus, Hertz ’ s physical contrivance has a con-

tinuous lineage with the other imaginary and real oscillators we have already discussed, 

including those envisaged by Stoney and Balmer. As they had used a vibrator to model 

light-emitting atoms and molecules, Planck uses his oscillator to model an idealized probe 

of the ambient radiation emitted by the excited atoms in the oven cavity.    

 Far more often than  “ oscillator, ”  Planck uses the term  “ resonator, ”  the term Helmholtz 

also used for his instrument tuned to resonate sympathetically at a certain pitch (see figure 

14.6). Planck ’ s resonator is likewise coupled with the vibrations it both registers and 

retransmits.  30   As Helmholtz used many resonators to map out the frequency spectrum, each 

tuned to a pitch of interest given by a harmonium, Planck too envisages a whole ensemble 

of resonators, each capable in principle of being tuned to any given pitch.  31   In that sense, 

his thought experiment envisages an imaginary harmonium, an instrument capable of 
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sounding (by thermal excitation) and resounding (by sympathetic vibration) a whole spec-

trum of pitches. By preferring the Helmholtzian and musical term  “ resonator ”  over the 

more neutral  “ oscillator, ”  Planck indicates the acoustic origins of his thought experiment: 

he is doing for electromagnetic vibrations conceptually what Helmholtz did for sound 

experimentally. 

 The climax of this extended comparison between sound and electromagnetic vibrations 

connects Planck ’ s central innovation and his involvement in tuning controversies. Unlike 

the purely continuous possibility of reeds or tubes resonating at any arbitrary length, 

Planck tunes his resonators in an analogous way to the Eitz harmonium he had spent so 

long studying. That is, at a crucial point in his calculations he allows the resonators 

to have only discrete possible energies, just as the harmonium allows only discrete mul-

tiples of the fundamental unit of pitch. For the Eitz harmonium, this unit was  
1

104   of an 

octave; for ordinary  “ tempered tuning, ”  it was the equal-tempered semitone,  112   of an 

octave. In contrast, the  “ natural tuning ”  had no obvious  “ fundamental unit, ”  for it envis-

aged different-sized versions of semitones (major or minor, for instance) and was inher-

ently an unequal temperament. Planck ’ s 1893 argument had led him to accept the 

 “ unnatural ”  equal-tempered scale, even though its number of divisions depended on con-

vention. In his work on black-body radiation, using his resonator, Planck essentially argued 

for the  “ equal temperament ”  of electromagnetic radiation, that is, the equally spaced 

quanta of his expression  E = h ν  , where  E  is their energy,   ν   their frequency, and  h  the 

constant that sets their spacing or  “ temperament .  ”  

A B

 Figure 17.5 
 (a) Heinrich Hertz ’ s illustration of his oscillator, which produces a rapidly oscillating electric spark across the 

gap near  B  ( ♪  sound example 17.6). (b) Harmonium reeds, as illustrated by Helmholtz, which have an essentially 

identical structure to the vibrators Hertz used to interrupt his electric spark. 
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 To be sure, this analogy is not made explicit in any of Planck ’ s own writings and must 

be read judiciously: the equally spaced  energy  quanta need to be distinguished from 

equally spaced semitones in  frequency . But the implicit analogy is strong and, in retro-

spect, less surprising, given Planck ’ s intensive work on the Eitz harmonium and on the 

issue of natural versus tempered tuning in the year just preceding his return to the ther-

modynamics of electromagnetic radiation. Comparing these two consecutive projects, 

Planck ’ s black-body  “ harmonium ”  is set up so that, in terms of a  “ tuning pitch ”    ν  , every 

 “ note ”  on that instrument sounds integer multiples of  E = h ν  . In that sense, the analogy 

is quite exact between harmonium and black body: parallel to Eitz ’ s 104 keys per octave, 

Planck ’ s constant  h  sets the minimum spacing between adjacent  “ notes ”  on the atomic 

harmonium. 

 Planck also kept before him the question of the arbitrariness of the  “ standard pitch ”  for 

his electromagnetic  “ harmonium. ”  In 1899, he realized that his assumption of the  “ tuning 

constant ”   h  led, along with the Newtonian gravitational constant  G  and the speed of light 

 c , to a fundamental and universal set of units that  “ necessarily retain their meaning for all 

times and for all civilizations, even extraterrestrial and non-human ones, and therefore 

[should] be designated as  ‘ natural units. ’  ”   32   The exalted universality of this realization 

moved him at the time to tell his young son Erwin that he had made a great discovery, 

comparable to those made by Newton or Copernicus.  33   By this, Planck seemed to mean 

the disclosure of these  “ natural, ”  universal units, more than his success in fitting the 

experimental data for black-body radiation per se. From the point of view of the extended 

analogy with a cosmic harmonium, he had discovered the natural wavelength of that instru-

ment, the  “ Planck length ”  he calculated to be 4.13  ×  10  – 35  m. Corresponding to this uni-

versal length, Planck also calculated a universal time unit, 5.391  ×  10  – 44  sec. Though he 

did not mention it, its inverse should then be a universal  “ Planck frequency, ”  1.855  ×  10 43  

Hz. If we return to Young ’ s attempt to state the  “ pitch ”  of a light vibration in musical 

terms, Planck ’ s cosmic harmonium is tuned to a quite low A (426 Hz) 135 octaves above 

middle C, according to contemporary equal temperament ( ♪  sound example 17.7).  34   Alter-

natively, we can understand Planck ’ s equation  E  =  h ν   as translating any energy E into a 

frequency   ν   =  E/h , so that energy corresponds to  pitch , with Planck ’ s constant  h  as the 

conversion factor. 

 Planck ’ s term  “ natural ”  brings to mind his foregoing struggle with the problem of 

natural versus equal-tempered tuning. There, he had to yield to conventionality and the 

human feeling (which he shared) for the greater sweetness (as well as familiarity) of 

tempered versus natural intervals. But when he transferred the problem of tuning to the 

black body, Planck was able both to have complete equality of  “ temperament ”  through 

the equally spaced  “ notes ”  of the quantum harmonium as well as naturalness, through the 

fundamental  “ pitch ”  implied by the very temperament itself, the Planck frequency. The 

tuning dilemmas he had faced while playing the Eitz harmonium turned out to be solvable 

in the case of the black-body resonators.  
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 Even if one hesitates to take this analogy as definitive, Planck ’ s experience with musical 

issues arguably had a significant effect on his whole approach to the black-body question. 

Though an avowed champion of what he conceived as the universal, transhuman project 

of physics, he confronted and came to terms with the human aspects of tuning, in untrained 

hearers, skilled musicians, and even in himself, bearing out Heilbron ’ s general observation 

that  “ his ear gradually lost its absolutism and allowed him greater satisfaction. ”   35   At the 

same time, though, his investigation of the musical dilemmas of tuning allowed him to 

return to physics and find a new absolute there: the paradoxes of musical temperament 

gave him new flexibility of mind that helped him take the next step past the impasses of 

black-body theory, while at the same time enabling him to hold on to the absolute at an 

even deeper level, namely his  “ natural units ”  as expressions of the universal constant  h . 

He later described his postulation of the quantum as  “ an act of desperation, ”  undertaken 

in the midst of the greatest crisis of his professional life as a physicist, wrestling with the 

contingent and seeking the absolute.  36   It seems right to look for the sources of the strength 

that saw him through not only in his general Wilhelmian or religious steadfastness (as 

informed his chosen motto,  “ Ye Must Have Faith ” ) but in the particular details of his own 

sensibility, for which music loomed so large in general and for which his musical interlude 

of 1893 – 1894 was so significant.  37   

 However intriguing may be the clues and resemblances that link Planck ’ s musical and 

theoretical work, these musical formations very quickly became embedded in the sedi-

mented strata of mathematical formalism. Whatever unconscious similarities might have 

moved him as he turned from tuning to black bodies, his theoretical formulation soon 

accumulated a growing mathematical vesture that amounted to a kind of  “ body. ”  Hertz 

had observed that, in the end,  “ Maxwell ’ s theory is Maxwell ’ s system of equations, ”  rather 

than the various mechanical models that had moved Maxwell during the process of dis-

covery.  38   Likewise, Planck ’ s theory became his equations of quantization and the attendant 

black-body radiation spectrum. As such, their musical prehistory was for the most part 

embedded deep inside that formalism or even underneath it, in the sense of Husserl ’ s 

geological strata of meaning and intention. So difficult were the conceptual issues and the 

downright paradoxes of the emerging quantum theory that at many points it seemed that 

only formalism could see it through, leaving intuition and visualizability behind as mere 

anthropomorphic illusions. 

 

 

 

 
 





 Many of the physicists in the generation after Planck continued to be enthusiastic  Kultur-
tr ä ger , devoted especially to music. Einstein was famously loyal to his violin and to 

Mozart, yet wrote that  “ music does not influence research work, but both are nourished 

by the same sort of longing, and they complement each other in the satisfaction they offer. ”   1   

Indeed, there is no evidence of direct involvement of music in his work such as we have 

considered earlier in this book. This was not because music was insignificant for him as 

an intellectual or a scientist; as his sister noted, 

 music served as his only distraction. He could already play Mozart and Beethoven sonatas on the 

violin, accompanied by his mother on the piano. He would also sit down at the piano and, mainly 

in arpeggios full of tender feeling, constantly search for new harmonies and transitions of his own 

invention. And yet it is really incorrect to say that these musical reveries served as a distraction. 

Rather, they put him in a peaceful state of mind, which facilitated his reflection. For later on, when 

great problems preoccupied him, he often suddenly stood up and declared:  “ There, now I ’ ve got it. ”  

A solution had suddenly appeared to him.  2   

 His musicality was so deeply embedded in his larger  Weltanschauung  that it could no 

longer be distinguished from his general views. Einstein ’ s philosophical praise of harmony 

and beauty in physical theory may be sublimated expressions of his underlying musical 

feeling, but now so generalized and universalized that only the presence of charged terms 

like  “ harmony ”  bears witness to their underlying origins. 

 We can, though, use this insight to decode what Einstein and others meant by  “ beauty ”  

in mathematics or physical theory — namely, a kind of architectonic proportion and inter-

relation, an intensity of content, coherence, and significance that makes equations  “ elegant ”  

rather than cumbersome, at least in their eyes. Though it is frustratingly difficult to go 

further than this generality, the elusiveness of the physicists ’  and mathematicians ’  idea of 

beauty or harmony is a result of the sedimentation to which Husserl drew attention. Con-

sider, for example, the case of Werner Heisenberg, devoted to the piano from his youth 

onward, whose autobiography enshrines a musical moment that he considered definitive 

of his path in life. Near Munich, during the turbulent revolutionary days of 1919, he was 
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attending a youth meeting at a castle, where his anguish over the lack of any  “ unifying 

center ”  to his life  “ was brought home to me with increasingly painful intensity the longer 

I listened. I was suffering almost physically, but I was quite unable to discover a way 

toward the center through the thicket of conflicting opinions. ”  As he felt more and more 

upset and as the evening shadows grew,  

 quite suddenly, a young violinist appeared on a balcony above the courtyard. There was a hush as, 

high above us, he struck up the first great D minor chords of Bach ’ s Chaconne [ ♪  sound example 

18.1]. All at once, and with utter certainty, I had found my link with the center. The moonlit Altm ü hl 

Valley below would have been reason enough for a romantic transfiguration, but that was not it. The 

clear phrases of the Chaconne touched me like a cool wind, breaking through the mist and revealing 

the towering structures beyond. There had always been a path to the central order in the language 

of music, in philosophy and in religion, today no less than in Plato ’ s day and in Bach ’ s. That I now 

knew from my own experience.  3   

 Plato ’ s  Timaeus  figured largely in Heisenberg ’ s subsequent reflections, which led from 

this musical epiphany to his ultimate decision to study physics. The inner turmoil he 

experienced on the way to finding a new quantum theory also reflected his acute sense of 

the cognitive dissonances of that confusing period, felt as intensely as the tension of 

musical dissonance. Yet his published papers show no recognizable trace of these musi-

cally toned inner experiences precisely because they were so thoroughly transformed and 

embedded into the structure of matrix mechanics that they can no longer be distinctly 

perceived. 

 For Einstein and Heisenberg, as for many others of their and the next generation, the 

musical groundwork had now become part of the mathematical and theoretical structures 

that they tended to take for granted as their point of departure. To revert to our earlier 

metaphor, the instrument of theoretical physics had been built and its tuning already 

worked out in the course of the episodes studied earlier in this book; the newer generations 

played it in their several styles, more or less taking it for granted, often without reflecting 

on that instrument ’ s origins. Even so, the seemingly stratified musical content sometimes 

resurfaced in surprising cases, such as that of Erwin Schr ö dinger, who was distinctly 

unmusical, if not antimusical. As his biographer observed,  “ almost uniquely among theo-

retical physicists, Erwin not only did not play any instrument himself, but even displayed 

an active dislike for most kinds of music, except the occasional love song. He once ascribed 

this antipathy to the fact that his mother died from a cancer of the breast, which he thought 

was caused by mechanical trauma from her violin. More likely he learned this distaste for 

music as a child, echoing his father ’ s lack of response to his mother ’ s art. ”   4   

 On the other hand, Schr ö dinger was deeply interested in color theory.  5   In the 1920s, he 

was recognized as the world authority in this field, the successor to Helmholtz, and was 

asked to write the authoritative monograph on the subject. Schr ö dinger kept publishing 

papers on aspects of color theory through 1925, on the eve of his famous work on the 

quantum-mechanical wave equation that bears his name. Thus, we might compare 
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the color-theoretic episode in his work with Planck ’ s musical investigations of 1893 – 94, 

though these occupied proportionately much less of Planck ’ s career than Schr ö dinger ’ s 

work on color occupied him. 

 Schr ö dinger essentially carried forward the Young – Helmholtz three-color theory by 

bringing to completion Helmholtz ’ s comparison of the manifolds of color and geometric 

space. Helmholtz was moving toward determining the true geometry of color space, 

which Schr ö dinger showed was a non-Euclidean manifold and even determined the exact 

form of its distance function (its  “ metric, ”  in geometric terminology). The curved quality 

of the lines of shortest length in this color space, implicit in Helmholtz ’ s work, came 

forward explicitly in Schr ö dinger ’ s theory (  figure 18.1 ). Helmholtz and Riemann, in their 

complementary ways, had gone from the complexities of color vision to a vision of a 

dynamical space, which Riemann posited as curved. Their dialogue contrasted sound and 

color perception to bring out the implicit geometry behind those modes of perception, 

namely the manifolds involved in seeing and hearing. Riemann in particular envisaged 

a new kind of geometric physics that would involve curved, multidimensional manifolds. 

Einstein accomplished exactly that in his 1916 general theory of relativity, treating gravi-

tation and acceleration as manifestations of curved space-time. In 1920, directly influ-

enced by Einstein ’ s work, Schr ö dinger took the same curved manifolds Einstein had 

drawn from Riemann and went back to the problem of color perception with which the 

whole story had started. Schr ö dinger played in color theory the role Einstein played in 

space-time geometry and gravitation: each applied Riemannian geometry to fulfill the 

intuition of Helmholtz. Einstein showed that space-time, in the presence of matter, was 

non-Euclidean; Schr ö dinger showed that human color perception also obeyed non-

Euclidean geometry.    

 In this d é nouement, it seems at first glance that these developments concerned only 

visual perception, not sound. Yet despite Schr ö dinger ’ s disinterest, music in a particularly 

Pythagorean vein shaped his greatest achievement, his wave equation. His work on color 

theory prepared him to apply Riemannian, curved higher-dimensional manifolds to other 

physical problems. And so when in 1926, just after his color theory work, he took up the 

problem of the behavior of atoms and electrons, he was ready with the tools that had been 

so successful with gravitation and now also with color perception.  6   What happened next 

showed the enduring power of the musical shaping of physical law. Heisenberg ’ s matrix 

mechanics had given numerically satisfactory predictions of atomic processes, but without 

disclosing any intuitable — specifically, visualizable — mode of understanding these results. 

Louis de Broglie had argued, by analogy, that, as light had particle as well as wave quali-

ties, so too should particles have analogous wave properties. In 1926, Schr ö dinger was 

then a young theorist in Zurich; according to an eye-witness report by Felix Bloch, then 

a graduate student, the senior professor Peter Debye said:  “ Schr ö dinger, you are not 

working right now on very important problems anyway. Why don ’ t you tell us some time 

about that thesis of de Broglie, which seems to have attracted some attention. ”   7   At one of 
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B

 Figure 18.1 
 Two figures from Schr ö dinger ’ s  “ Outline of a Theory of Color Measurement for Daylight Vision ”  (1920). 

(a) The color cone, showing the three-dimensional manifold of color vision with the curve of the spectrum. 

(b) The curved geodesics (lines of shortest distance in color space) shown on a chromaticity diagram; the inner 

area corresponds to the range of human daylight vision. 
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the next colloquia, Bloch recalled that Schr ö dinger presented a clear account of de Bro-

glie ’ s reasoning and how it led to an explanation of Bohr and Sommerfeld ’ s quantization 

rules, capable of accounting for the discrete spectral lines whose puzzling spacing we 

considered in the last chapter. 

 When he had finished, Debye casually remarked that he thought this way of talking was rather 

childish. As a student of Sommerfeld he had learned that, to deal properly with waves, one had to 

have a wave equation. It sounded quite trivial and did not seem to make a great impression, but 

Schr ö dinger evidently thought a bit more about the idea afterwards. Just a few weeks later he gave 

another talk in the colloquium which he started by saying:  “ My colleague Debye suggested that one 

should have a wave equation: well, I have found one! ”   8   

 Debye ’ s casual intervention led Schr ö dinger to seek a wave equation for de Broglie waves. 

Essentially, Debye underlined the force of the implicit analogy: what de Broglie called 

waves must require some relation to the wave phenomena of mechanics, acoustics, and 

optics; therefore mathematically it should be possible to express this analogy through a 

wave equation of the sort known to apply in those fields. Schr ö dinger simply took the 

general form of de Broglie ’ s wave and worked backward to see what partial differential 

equation it could satisfy, following the pattern of sound or water waves. He found that he 

was led rather directly to what now is called Schr ö dinger ’ s equation.  9   

 Further, once in possession of that equation, Schr ö dinger began to investigate its 

general properties — even though he admitted he had no idea what was  “ waving. ”  Above 

all, he knew that Bohr ’ s atomic theory, expressed more generally by Sommerfeld ’ s quan-

tization condition, yielded the hydrogen spectral lines, though here again neither Bohr 

nor anyone else knew  why  these quantization conditions held, only that they  “ worked ”  

to explain the spectra. The furthest Bohr and Sommerfeld could go was a simple picture 

in which quantization of atomic energy levels corresponded to an integral number of 

 “ electron waves ”  fitting around the orbit so as to join back on themselves smoothly 

(  figure 18.2 ). But now, with a wave equation in hand, Schr ö dinger realized that these 

quantized energy levels corresponded exactly with the overtone series of the waves, its 

 “ eigenvalues ”  or  “ proper values. ”  As he put it at the beginning of his first seminal paper 

(1926) on the hydrogen atom:  “ The customary quantum conditions can be replaced by 

another postulate, in which the notion of  ‘ whole numbers, ’  merely as such, is not intro-

duced. Rather, when integralness does appear, it arises in the same natural way as it does 

in the case of the  node-numbers  of a vibrating string. ”   10   Despite his aversion to music, 

Schr ö dinger found himself taking the mathematical step from a wave equation to its 

eigenvalues  in terms of a vibrating string . Given de Broglie ’ s proposed wavelength   λ   for 

a particle of momentum  p  (  λ  = h/p ), Schr ö dinger was essentially taking the reverse step 

of Stoney and Balmer, who went from the spectral line to the overtone: Schr ö dinger 

interpreted his overtones as the stationary states that (according to Bohr) were the starting 

and ending points of atomic transitions.    
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 In his later presentations of his argument (beginning with the second installment of 

his 1926 papers), Schr ö dinger characteristically brought forward the optical version of 

his analogy, in which he connected acoustics and optics with mechanics through an 

analogy with the Hamilton – Jacobi equation of dynamics. Given his visual bent, it is not 

surprising that, in those later presentations, he tended to describe his equation in optical 

language, using concepts like rays: lecturing on his theory in 1928, he opined that  “ Ham-

ilton ’ s wave-picture, worked out in the way discussed above, contains  something  that 

corresponds to ordinary mechanics, namely, the  rays  correspond to the mechanical  paths , 

and  signals  move like  mass-points . ”   11   Nevertheless, in his very first 1926 presentation 

of the nascent theory, Schr ö dinger did not use this optical language but instead spoke 

only of vibrating strings. He even found himself in the curious situation of trying to 

express optics in terms of sound, not just by analogy (as had Euler and Young) but 

somehow more literally and directly, invoking the sonic difference tones introduced by 

Helmholtz: 

 Figure 18.2 
 An illustration of the orbits of electrons in the Bohr – Sommerfeld theory for various elements, from H. A. Kramers 

and Helge Holst,  The Atom and the Bohr Theory of Its Structure  (1923). 
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 The emission frequencies [of the hydrogen spectral lines] appear therefore as deep  “ difference tones ”  

of the proper vibrations themselves. It is quite conceivable that on the transition of energy from one 

to another of the normal vibrations,  something  — I mean the light wave — with a  frequency  allied to 

each frequency  difference , should make its appearance. One only needs to imagine that the light 

wave is causally related to the  beats , which necessarily arise at each point of space during the transi-

tion; and that the frequency of the light is defined by the number of times per second the intensity 

maximum of the beat-process repeats itself.  12   

 This extraordinary passage, with its tumultuous language and jumpy italics, expresses 

Schr ö dinger ’ s struggle to yoke together the aspects of light and sound that provide the 

mathematical analogies he used to describe the atomic events underlying spectral emission. 

Above all, he seems forced to these verbal contortions because he is trying to picture 

processes that resolutely defy any visualization. His allusions to sound emerge under the 

pressure of trying to visualize the unvisualizable: in the atomic realm, the extended analogy 

with sound helped him interpret his equation, lacking any other means to connect it to 

visual reality. 

 To be sure, after his initial insight in terms of sound vibrations, Schr ö dinger ’ s visual 

orientation and even his color theory came into play when he considered how an atomic 

field of force might affect the resulting  “ overtones ” ; in that case, the difference between 

relative values of potential and kinetic energies acts to  “ curve ”  the manifold in which 

Schr ö dinger ’ s waves act, which one might compare to the way that the human visual 

system  “ curves ”  the manifold of color perception. Thus, Schr ö dinger ’ s equation represents 

a kind of synthesis that embeds overtones within a  “ curved, ”  non-Euclidean environment 

dependent on the energy of the system and the forces at work there. In that sense, his 

equation combines the idiomatically musical element of overtones with the visual compo-

nent of rays traversing a curved manifold (  figure 18.3 ). Using this generalized wave 

description, Schr ö dinger was able to put forward an extended analogy: the new quantum 

mechanics is to ordinary mechanics as diffractive wave optics is to the geometrical optics 

of rays. Yet despite his free use of optical or visual metaphor, Schr ö dinger frankly acknowl-

edged he had no idea what these  “ waves ”  might be, only that his wave equation plus the 

boundary conditions typical for vibration problems led to overtones corresponding to the 

observed hydrogen spectra. Nor was it clear in what  “ space ”  his wave equation operated; 

at first, he hoped the waves (whatever they were) were physical in the sense of occupying 

ordinary space, but when he began to consider more complex atoms with  N  electrons, 

he realized that instead the wave equation would have to be formulated within a 3 N -

dimensional  “ configuration space. ”     

 So great was the power of the generalized mathematics of the wave equation that, even 

without any concept of the nature of the waves involved, Schr ö dinger could deduce their 

overtones and experimental implications. Though proud of his optical analogies, 

Schr ö dinger was left mainly with negative conclusions about the intuitive or visual meaning 

of his wave equation:  “ no special meaning is to be attached to the electronic path itself, ”  
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so we must relinquish  “ the ideas of  ‘ place of the electron ’  and  ‘ path of the electron. ’  If 

these are not given up, contradictions remain. This contradiction has been so strongly felt 

that it has even been doubted whether what goes on in the atom could ever be described 

within the scheme of space and time ”  — though Schr ö dinger continued to hope that his 

comparison between geometrical and physical optics could provide some kind of intelli-

gibility.  13   But what could not be seen might be heard, so to speak; though Schr ö dinger 

could not give a visual picture of his waves, their overtones were physically manifest in 

atomic transitions and spectral lines. 

 In the years that followed, the increasingly sophisticated mathematical formalism of 

quantum mechanics subsumed such reminiscences of acoustics or optics into abstract 

vectors in a many-dimensional Hilbert space, a mathematical manifold on which the 

machinery of the theory operated and which could be mined for observable predictions. 

Schr ö dinger ’ s sense of the failure of intuition was increasingly borne out; as quantum 

theory became more and more powerful in its predictive ability, it became less and less 

visualizable, until physicists like P. A. M. Dirac and Richard Feynman abandoned any 

pretense of trying to  “ understand, ”  in the sense that we believe we can understand ordinary 

phenomena.  14   All that mattered was that quantum theory  “ works ” : calculations gave exper-

imentally verifiable predictions, however statistical in nature. 

 Yet at the same time, Dirac asserted that  “ it is more important to have beauty in one ’ s 

equations than to have them fit experiment, ”  a criterion he drew from the mathematician 

Hermann Weyl and which led him to formulate the relativistic quantum equation now 

named after him. This aesthetic criterion arguably is a veiled form of the search for 

harmony that, as we have seen, was the heir of Pythagorean longings for a harmonious 

and coherent mathematical theory that would connect with observable phenomena. Among 

 Figure 18.3 
 Schr ö dinger ’ s diagram of curving families of the action function  W , from  “ Quantization as a Problem of Proper 

Values II ”  (1926), showing the non-Euclidean effect of atomic potentials. 
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the themata that Gerald Holton identified as the enduring, recurrent motifs of science, the 

theme of harmony may be the most pervasive and perhaps the deepest.  15   We have seen 

this harmony go from the almost audible music of the spheres, to the soaring (but inau-

dible) polyphony Kepler found in the planetary songs, to the imaginary (yet visible) strains 

of Planck ’ s cosmic harmonium. In between, Chladni, Wheatstone, Faraday, and Helmholtz 

sought harmony in the gritty actualities of human hearing; we are only at the beginning 

of exploring how complex data (such as from stock markets, galaxy surveys, climatic 

studies, and seismometers) might be grasped through  hearing  them, via  “ sonification ”  

rather than visualization.  16   Beyond overtly musical meanings,  “ harmony ”  became a touch-

stone for scientists, a way of stating their deepest, largest goals, their shared (or contested) 

senses of the explanatory order they sought. Still, the elusive sense of world-harmony has 

become a rather ghostly apparition, now so dispersed throughout the mathematical struc-

ture as no longer to be recognizable as music. In that sense, the Pythagorean dream suc-

ceeded to such an extent that it subsumed and even evaporated its own musical content. 

If, as John Keats wrote,  “ heard melodies are sweet, but those unheard / are sweeter, ”  can 

unhearable harmonies be the sweetest of all?  17   Yet what is left of the archaic quest for 

world-harmony if its connection with music becomes purely metaphorical? 

 For example, consider how twentieth-century string theory began with a mathematical 

relation between physical processes, the Veneziano amplitude (1968), which unified 

several important theoretical features of the behavior of high-energy particles. Many 

physicists were struck with the beauty of that expression, whose few symbols related 

several different kinds of physical processes and satisfied a surprising number of theoreti-

cal desiderata. Even more amazing, this amplitude was a function Euler had devised long 

before in an utterly different context.  18   It seemed miraculous that this relic from  “ classical ”  

mathematical physics could be the key to understanding high-energy behavior in the 

extreme quantum realm, two and a half centuries later. A number of theorists extended the 

Veneziano amplitude into the dual resonance model, hoping that it would develop into a 

theory of the strongly interacting particles. Then in 1969 – 70, Yoichiro Nambu, Holger 

Nielsen, and Leonard Susskind independently suggested that the dual resonance model 

could be understood as describing the behavior of relativistic strings. Each found his way 

to this idea through mathematical analogies. 

 For his part, Nambu reexpressed the Euler beta function in an alternative mathematical 

form and then realized that its spectrum of possible values  “ immediately suggested a one-

dimensional harmonic oscillator system, like an oscillating string of some length moving 

in four dimensions. ”  He began hypothetically and analogically, using such phrases as 

 “ suggested, ”   “ could be labeled, ”  and  “ could be interpreted. ”  Gradually, as the analogy 

cohered more compellingly, he shifted to a more direct mode of expression: the number 

of states  “ reminds ”  him of the Hagedorn model of hadrons, in which the rising mass 

spectrum of these strongly interacting particles recalls the rising spectrum of a vibrating 

string. Where Hagedorn thought of the interacting hadrons as  “ fireballs ”  having a common 
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 “ melting temperature, ”  Nambu thought of them as strings. Then,  “ since the external 

hadrons  should also be  strings, I  formed a pictu re that the scattering  is  a process of two 

incoming strings joining ends and separating again. ”   19   In his description, the strings seem 

to come into  physical  existence as the analogy with simple harmonic oscillators coheres 

with more and more facets of the argument. Nambu moved between a hypothetical, math-

ematical view and emergent physical insights about strings joining and separating. 

 Thus, the relativistic string began as an analogy of an analogy of an analogy, first to the 

quantum-mechanical harmonic oscillator (via Planck, Heisenberg, and Schr ö dinger), 

which is an analogical extension of Newtonian mechanics, which itself was a bold (and 

in certain respects counterintuitive) mathematical representation of ordinary physical 

strings. Yet in Nambu ’ s thinking, and in many developments since then, this analogic 

hybrid has increasingly been treated as a candidate model of physical reality. The striking 

accord between the features of the Veneziano amplitude and the dynamics of a hypothetical 

string led to physical pictures of such strings inhabiting 26-dimensional worlds whose 

degree of  “ reality ”  remains hotly debated.  20    

 Though several degrees removed from everyday experience, these analogies can only 

operate by disclosing perceptible resonances between the terms they connect. For instance, 

the experimental detection of a high-energy particle requires the observation of what is 

still called a  resonance , namely finding in particle data the same bell-shaped response 

curve first derived from a glass resonating at its natural frequency (see figure 18.4,  ♪  sound 

example 18.2).  21   Thus, music continues to link vibrating bodies and particle physics, for 

resonance is the hallmark of musical tone. Every effort of quantum field theory, string 

theory, or loop quantum gravity (different as they are) ultimately may be traceable, 

however distantly, to vibrating bodies and their sonorous mathematics. We must weigh the 

continuity of that connection as well as how far it has been stretched. As with Wheatstone ’ s 

Enchanted Lyre (figure 13.3), the faintness of the sound transmitted from its hidden source 

is far less significant than the wonder of hearing it at all, however faintly. Indeed, the 

mysterious faintness of that sound augments its wonder and its beauty; distance lends 

enchantment to a sound heard from afar, no less than to a distant view. So too, I think, the 

stretch to connect vibrating bodies and resonant particles intensifies the felt power of an 

analogy that can sustain itself so far.     

 Long ago, Pythagoras ’ s younger contemporary (and critic) Heraclitus expressed this 

important yet deeply surprising aspect of harmony:  “ The unapparent harmony is stronger 

than the apparent one ”  ( Harmon í  ē  aphan ē s phaner ē s kre í ss ō n ).  22   His words compress 

several senses: hidden (or invisible,  a-phan ē s , un-apparent) harmony is stronger ( kre í ss ō n ), 

more powerful, better than what is visible ( phaner ē s ) or apparent. The ever more hidden 

harmonies that science seeks indeed have ever greater power (with all its promise and 

danger) but are also may be more excellent, more beautiful, if Heraclitus is right.  23   

 For this and many other reasons the harmonic presuppositions of modern physics remain 

subject to question. Kepler ’ s harmonic astronomy excluded the diverse, unrelated solar 
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 Figure 18.4 
 Two examples of resonance: (a) resonance of a wine glass at its natural frequency  f  0  = 454.73 Hz, plotting the 

amplitude of the glass's motion versus the frequency of the sound exciting it ( ♪  sound example 18.2); (b) reso-

nance showing the detection by the ATLAS collaboration at CERN of Z neutral intermediate bosons (mass 90 

GeV) by their decay into an electron-positron pair, plotting the number of detected events versus the invariant 

mass-energy of the observed electron-positron pair. 
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systems that would populate Descartes ’ s infinite space. For a long time, the universality 

of Newtonian law, general relativity, and quantum theory specified the overarching 

harmony of all observed phenomena. But various zones of the universe may have utterly 

different and unrelated local physical  “ laws, ”  as has emerged in the consideration of pos-

sible string theory models. Some have embraced this  “ landscape ”  of different, even diver-

gent or contradictory, universes within a larger  “ multiverse ” ; others have insisted that 

finally the universe must be a unity, with a single set of universal laws.  24   This choice 

between competing antimusical and musical themes mirrors the contrast between the sonic 

worlds of John Cage and Josquin des Prez. Randomness may finally rule, perhaps accord-

ing to an  “ anthropic principle ”  that explains our local laws as merely the coincidence that 

in this region sentient observers happen to be physically possible. Others find this purely 

contingent (even ad hoc) reasoning disturbingly incoherent and opportunistic. Yet harmony 

emanating from a transcendent source seems unified to a troubling degree, requiring a 

single universal pattern, such as Pythagoras heard in the smithy  “ by the favor of a god. ”  

 Even Plato ’ s mighty demiurge did not create the eternal Forms but merely used them 

as patterns, with some discretion.  25   Must cosmic harmony have a unique, essentially divine 

source? Even those open to such ideas may worry about a single power capable of impos-

ing itself on the whole cosmos. Physics is on the verge of its own Darwinian turn: perhaps 

each aspiring universe must struggle with its own inner tensions, as well as with the other 

universes; arguably only a limited number might survive. Could that number be only one? 

If not, do global principles limit or fix the number of universes within the multiverse? For 

instance, consider the principles that constrain the formation of soap bubbles and whose 

analogues might constrain universes considered as cosmic  “ bubbles ”  (  figure 18.5 ).  26   Gen-

eralized considerations of harmony and dissonance may be the decisive factors determin-

ing whether any given universe survives or indeed whether any incoherent assemblage of 

unharmonized universes can endure. In the end, music may be the final and deepest — 

perhaps the only — raison d ’  ê tre.    

 In the beginning, music provided the middle ground, the epistemic interface through 

which natural philosophy could connect with mathematics, bridging the invisible realm of 

number and visible phenomena.  27   In the sisterhood of the quadrivium,  “ music ”  meant the 

dispassionate  “ music of the spheres ”  ( musica mundana ) rather than the expressive art of 

moving the passions, both known since antiquity. Their intertwining histories would 

require another volume.  28   In the examples considered in this book, that passion-laden 

music informed the episodes surrounding the mathematical innovation of  “ irrational 

numbers, ”  Kepler ’ s doleful song of the Earth, Euler ’ s  “ modern ”  mathematics of sadness. 

But for the most part, the impassive, transcendent music of the spheres has remained the 

touchstone of harmony even into the quantum period and beyond: for instance, Planck ’ s 

critique of  “ anthropomorphism ”  and his quest for a truly  “ natural ”  tuning sought an 

unchanging cosmic standard. To a striking extent, the project of natural philosophy, 

modern as well as ancient, has remained faithful to the search for cosmic harmony 
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 Figure 18.5 
 (a) Soap bubbles formed between two plates of glass separated about one centimeter; nowhere do more than 

three films meet one another and all the meeting points have equal angles. (b) A bubble blown within another 

bubble. From C. V. Boys,  Soap-Bubbles and the Forces Which Mould Them  (1890). 
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governed by mathematics. String theory and loop quantum gravity are only the latest 

 “ grand unified theories ”  based on the synthetic power of mathematics. Despite the enor-

mous historical changes across this vastly diverse range of time and theories, this cosmic 

sense of music and quest for universal harmony remains a recurrent theme. Indeed, con-

temporary theoretical physics at every point takes its bearings from the Pythagorean 

project to explain how  all is number , so that even  “ chaos ”  has its mathematical parameters 

and universal exponents. 

 From its beginnings until now, science has followed music, which first connected the 

senses to the invisible realm of mathematical theory. In our treatment, even the  “ scientific 

revolution ”  has been an episode in the larger story of how music, mathematics, and experi-

mental natural philosophy decisively came together. Music, after all, first brought forward 

experiment as well as the mathematical approach to physics, bridging the ancient divide 

between number and magnitude: music harmonized experience with mathematics. Ironi-

cally (or perhaps with poetic justice), the very success of this hybrid enterprise tended to 

bury the musical traces under ever denser, more powerful mathematical formalism. One 

might legitimately wonder whether the ancient quadrivium gave up the ghost, exhausted 

after giving birth to modern science. The language of  “ sedimentation ”  suggests a decorous 

form of burial, with dignified geological overtones; even intentional  “ desedimentation ”  

suggests exhuming graves, however piously. In contrast, though, the examples considered 

in this book show many points at which these ancient musical concepts return to life as 

persistent themes and continuing questions. For music, mathematics, and science, the rest 

is not silence. 
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 2.   In the late twentieth century, many historians of science turned toward a more  “ externalist ”  sociological 

understanding of science, in preference to  “ internalist ”  studies of the evolution of certain concepts within the 

confines of its environing discipline. Turning away from the presumption of objectivity or impersonality, the 

sociological approach treats scientific research as all-too-human, never  “ pure, ”  driven by such social forces as 

affect other human endeavors (thus, e.g.,  Shapin 1994 ,  2010 ). Precisely through its intermediary character, music 

bridges these  “ inside ”  and  “ outside ”  views of natural philosophy. 

 3.   Such an endeavor would consult, revise, and transcend Edmund Husserl ’ s initiatives, applied in  Klein 1985 , 

65 – 84. Among recent efforts to reengage these larger connections, see  Daston and Galison 2007 . Concerning 

the synthetic vocation of the history of science, see  Holton 2009 . 

 4.   The story about his operatic experience is related by his biographer William Stukeley, cited in  Gouk 1999 , 

224. 

 5.   In the vast literature on  “ scientific revolution(s), ”  note especially the thoughtful work of Cohen 1994, 2010, 

which complements his classic treatment of music in Cohen 1984. Note also the thoughtful reinterpretation of 

 “ presentism ”  in Oreskes 2013, which seems to me to make important distinctions. 

 6.   Thus, I leave aside those (such as Christiaan Huygens) mainly occupied with making music into a science, 

which  Cohen (1984 , 205 – 230) has treated so well, and as Kassler (1995; 2001, 83 – 124) and  Gouk (1999 , 

193 – 223) have done for Robert Hooke. I will only add a few thoughts on Francis Bacon to Gouk ’ s ( 1999 , 

157 – 170) pioneering treatment. I barely mention Robert Fludd and Athanasius Kircher, both deeply involved in 

music and natural philosophy, but whose relation to the new philosophy was antagonistic or tangential. 

In Kircher ’ s case, much remains to be done to explore the whole range of his thought and clarify music ’ s place 

in it. For some helpful beginnings, see  Findlen 2004 ;  Engelhardt and Heinemann 2007 ;  Pangrazi 2009 ;  Kircher 

2011 ;  McKay 2012 . 

 7.   For treatments of the relation of music and sound to the biological and medical sciences, see Kassler 1995; 

Horden 2000; Volmar 2012, 2013b. 

 8.   See, e.g.,  Galison 1997 ;  Daston and Lunbeck 2011 . Ford (2004, 314 – 315) notes that Aristotle mostly used 

the term  mousik ē   to denote what we call music, rather than poetry. 

 9.    Walker 1978 ;  Cohen 1984 ;  Gouk 1982 ;  Gouk 1999 ; Kassler 1995, 2001;  Wardhaugh 2008 . 

 10.    Thompson 2002 ;  Sterne 2003 ;  Jackson 2006 ;  Hui 2013a,b . Hui, Kursell, and Jackson 2013 includes a rich 

variety of approaches. 

 11.    Schwartz 2011 ;  Smith 1999  treats an early modern soundscape in rich detail. Jay 1994 investigates the 

modern denigration of vision as the primary modality of knowledge. 

 12.   See Van Wymeersch 1999; Gozza 2000; Moreno 2004;  Kittler 1999,   2006 ;  Erlmann 2010,   2004 ;  Ziemer 

2008 . 

 13.    Panofsky 1954 . See also  Palisca 1961 . 

 Notes 

     



286 Notes to pages 6–15

 14.   See the exchange on Panofsky ’ s thesis, expressed (with some revisions) in  Panofsky 1956a , followed by 

 Rosen 1956  and  Panofsky 1956b . 

 15.   See  Drake 1970a , 43 – 62;  1970b ,  1992 . 

 16.    Drake and Galilei 2000 , 100 – 108 (143 – 150); see also  Walker 1978 , 27 – 33;  Cohen 1984 , 85 – 97. 

 17.    Drake 1970a , 53. 

 1   Music and the Makings of Ancient Science 

 1.   I will restrict myself to Greek developments, but the foundations of Chinese and Indian natural philosophy 

were also deeply involved with music. Indeed, evidence suggests influence flowing from India to Greece; though 

the interrelations with China need further study, the centrality of music in all three traditions is no accident, 

whatever may be the variety of historical influence and parallel invention. See  Burkert 1972 , 471, 477;  Sedlar 

1980 ;  Doshi 1985 ;  Shankman and Durrant 2002 . 

 2.    Barker 1984 , 2:5, 28. Mart í nez 2012 critiques many myths about Pythagoras. 

 3.    Ibid. , 2:29. See also Hagel 2010, 143–151. 

 4.   Philolaus quoted from  Barker 1984 , 2:36;  Odyssey  5.248;  Iliad  22.255. Spitzer 1963, 7 – 19, surveys Greek 

treatments of cosmic harmony. 

 5.    Barker 1984 , 2:38, 36. For  “ unlimited ”  and  “ limiter, ”  see also Burkert 1972, 251 – 269. 

 6.    Barker 1984 , 2:256 – 257; see also the helpful commentary in  Nicomachus 1994 , 13 – 27, 83 – 97. 

 7.    Boethius 1989 , I.10. 

 8.   For a sensitive treatment of the significance of the fifth hammer, see  Heller-Roazen 2011,  who judges that 

 “ one can only speculate as to the reasons ”  for its discord (17). 

 9.   See  Raasted 1979 ;  Lloyd 1987 , 277 – 278. In Nicomachus ’ s version, Pythagoras went home to experiment 

with strings tensed with different weights ( Barker 1984 , 2:257 – 258), which would also prove problematic. For 

another account of sounding  “ discs, ”  see  Barker 1984 , 2:30 – 31. 

 10.    Creese 2010  gives the most complete account of this instrument and its theory, including a valuable discus-

sion of the smithy story (81 – 93). 

 11.   For Ptolemy ( Harmonics  16.32), see  Barker 1984 , 2:291;  Burkert 1972 , 375 – 378. About 1580, Vincenzo 

Galilei adduced experiments showing that the pitch of a string depends linearly on the square root of its tension 

(rather linearly), but did not test the hammer story, which  Mersenne (1972 , 166 – 171) finally rejected as  “ very 

false ”  (1634); see  Galilei 2003 , 326, 329, 339;  Chua 2001 . On the other hand,  Walker (1978 , 23 – 26) argued that 

Galilei himself could not have done the experiments he claimed to have performed. 

 12.   Here following Porphyry ’ s  Commentary , in  Barker 1984 , 2:34 – 35. 

 13.   Philolaus and Aristotle cited in  Barker 1984 , 2:38, 34; for further context, see Heath 1966, 47 – 48, 94 – 97, 

115 – 116, 187 – 189. 

 14.    Timaeus  37a. 

 15.    Laertius 1972 , sec. 8:25. 

 16.    Phaedrus  253b:  “ convincing the boy they love and training [ rhythmizontes ] him to follow their god ’ s pattern. ”  

Translations not otherwise identified are my own. 

 17.    Republic  522c (Plato 2006, 237). 

 18.   The first ten Greek letters, followed by the accent  ́  , denoted the first ten numbers: 1, 2, 3, 4,  …  , 9 were 

 α  ́  ,  β  ́  ,  γ  ́  ,  δ  ́  ,  …  ,  θ  ́  , while 10, 11, 12,  …  were  ι  ́  ,  ι  α  ́  ,  ι  β  ́  ,  …  and 20 was  κ  ́  . Thus, Greek numerals were more 

alphabetic (and harder to use) than Roman. 

 19.    Republic  526a (Plato 2006, 242). 

 20.   For  arithmos , see  Klein 1992 , 46 – 60; for  rhythmos , see Pollitt 1972, 56 – 60. 

 21.    Iliad  23.239. 

 22.   This possibility goes beyond the suggestions of  Tannery (1902 ) and  Szab ó  (1978 , 99 – 184) that  “ all the 

important terms of the theory of proportions have their origins in the theory of music ”  ( Szab ó  1978,  170). See 

also  Borzacchini 2007 . 



Notes to pages 16–25 287

 23.   See  Pesic 2003 , 5 – 21. 

 24.    Laertius 1972 , sec. 8:25. For Plato and the concept of zero, see Pesic 2004. 

 25.   Most interpretations of the Platonic dyad stem from the testimony of Aristotle,  Metaphysics  987b23 – 35 

(Aristotle 1984, 1561 – 1562); see  Watson 1973 . 

 26.    Republic  526d – e (Plato 2006, 243); the identification of the Idea of the Good as the One has also been put 

forward as a central tenet of the so-called unwritten teachings of Plato, as an esoteric continuation of the exoteric 

discourse contained in his extant dialogues; see  Klein 1992 ;  Watson 1973 . 

 27.    Republic  527e (Plato 2006, 244). 

 28.     Ibid., 534d; 525d – e (Plato 2006, 242). 

 29.   For surreal numbers, see  Knuth 1974 ;  Conway 2001 . 

 30.   See  Pesic 2003 , 20. Adrastus (second century C. E.) is quoted from Barker 1984, 2:214; see Creese 2010, 

5, 243.  Psophos  (noise) ironically inverts  sophos  (wise): the unwise merely make noise, as when Plato makes 

fun of those who imitate  “ the sound [ psophos ] of wind ”  ( Republic  327a). 

 31.   Successive musical intervals combine through multiplication because each successive interval acts to shorten 

(or lengthen) the string representing the initial pitch. Thus, five successive rising 9:8 tones will lengthen the 

initial string by (9:8) 5   ≈  1.802  …   <  2:1, less than an octave; six tones overshoot the octave because (9:8) 6   ≈  2.027 

 …   >  2:1. For an overview of the problem of temperament, see  Bibby 2004 .  

 32.    Republic  529a – d (Plato 2006, 246 – 247). 

 33.   Cited in  Barker 1984 , 2:150. For a lively reconsideration and defense of Aristoxenus, see  Levin 2009 . 

 34.   See  Barker 2000 . 

 35.   See Ptolemy,  Harmonics  99.1 – 111.15 (the end of the surviving text), in  Barker 1984 , 2:378 – 391, and the 

commentary in  Barker 2000 , 158 – 191. 

 36.   For the  “ New Music, ”  see  West 1992 , 356 – 372;  Csapo 2004 . See Hagel 2010, 3–10, 17–28, 53–60, for the 

common use of modulation. 

 37.   See  Jaeger 1969 . Spitzer (1963, 10), argues that Democritus first joined together the four studies of the 

quadrivium. 

 2   The Dream of Oresme 

 1.   For an excellent treatment of the whole problem of the transmission of ancient music theory, see  Mathiesen 

1999 ; regarding the transmission of Boethius, see  Mellon 2011 . Concerning the period considered in this chapter 

and following, see  Carpenter 1955 , 24 – 27, 115 – 118, 313 – 315. For the earlier history of music in the quadrivium 

see  Libre 1969 , 175 – 191;  Moyer 1992 , 11 – 35; and  Vendrix 2008 . 

 2.   Zoubov 1961;  Abdounar 2008 . 

 3.   The earliest printed editions of Euclid in Latin date from 1482; vernacular translations were published in the 

1560s and 1570s; see  Grafton 1991 , 23 – 46. 

 4.   Euclid himself had proved that there were an unlimited number of  kinds  (genera) of irrational magnitudes, 

compared to the single genus of rational quantities; see  Pesic 2003 , 18 – 21. 

 5.   See  Timaeus  39d and Campion 1994, 243 – 247. Hipparchus (second century B. C. E.) is credited with the 

discovery that the location of the spring equinox would slowly precess around the zodiac from its initial position, 

returning to its starting point after 26,000 solar years, the  “ Great Year. ”  Observationally, the  “ north star ”  and the 

whole field of stars would change over that time as the north celestial pole traces out a slow circle: the present pole 

star, Polaris, will give way to others but return to its place after 26,000 years. Plato ’ s  “ Great Year ”  seems to have 

been a more general concept of cosmic recurrence based on the completion of the known cycles of the planets. 

 6.    Oresme 1968a , 514 – 515, 340 – 341 For  chorea  and planets, see especially Wright 2001, 129 – 158; for the 

religious context of  chorea  in the church, see also Mews 2009. For the  carole , see Mullaly 2011, 47 – 48.  

 7.    Oresme 1968a , 522 – 523; Oresme attributes this view to  “  La Perpective  de Witelo. ”  

 8.    Ibid. , 530 – 531. For Oresme ’ s relation to the Copernican view, see  Blumenberg 1987 , 158 – 168. 

 9.    Oresme 1968a , 536 – 539. 

 10.    Oresme 1968b , 12. 



288 Notes to pages 29–39

 11.   Oresme 1971, 284 – 289 

 12.   Ibid., 288 – 311, at 295 – 297. 

 13.   Ibid., 310 – 321, at 310 – 311, 316 – 317. See also Zoubov 1961, 96 – 98.  

 14.    Oresme 1971 , 312 – 313. 

 15.   Ibid., 320 – 323. 

 16.    Oresme 1968a , 480 – 481. Zoubov 1961, 102, also thinks that the verdict goes to Geometry; see also Kassler 

2001, 26 – 35. 

 17.   Oresme 1968a, 480 – 481. 

 18.   Apoc. 5:9, 14:3; cf. Ps. 39:4, 143:9, 149:1.  

 19.    Oresme 1968a,  480 – 483. 

 20.   Pesic in preparation-a. 

 21.   The term  ars nova  as a historical epoch was only introduced by Johannes Wolf in 1904, so we cannot assume 

that Oresme would have responded to this term as we would; on the other hand, the very title of de Vitry ’ s treatise 

would suffice to make the connection I am putting forward here. For the  ars nova  and de Vitry, see Hoppin 1978, 

353 – 357. 

 22.    Grant 1965 , 328. De Vitry had become bishop of Meaux, hence dating this work during his bishopric, 

1351 – 1361; see  Oresme 1971 , 328;  1968b , 122 – 123, 447, 471 – 472, 477;  1966 , 12 – 13. For the history of 

Pythagoreanism in the Middle Ages, see  Joost-Gaugier 2006 , 116 – 133. 

 23.   De Vitry and Plantinga 1961. See also  Werner 1956 , 132, who notes that  “ this new, mathematically grounded 

theory of musical measurement proved serviceable to the hitherto blocked development of musical notation. ”  

 24.   For Oresme ’ s references to de Muris, see  Oresme 1968b , 450;  1966 , 58n, 125 – 126, 299;  1971 , 78 – 79, 

97 – 103, 86 – 97. 

 25.   For Gersonides, see  Werner 1956 , which mistakenly refers to Gersonides ’ s work as  Sefer ha-Mispar  ( Book 
of Number ), an earlier and less sophisticated work by Rabbi Abraham ben Meir ibn Ezra (1090 – 1167). 

 26.   For the rhythmic issues, see Hoppin 1978, 354 – 357, 362 – 367. 

 27.    Oresme 1971 , 212 – 215. 

 28.    Ibid. , 294 – 295. 

 29.    Ibid. , 304 – 305. 

 30.    Ibid. , 316 – 317. 

 31.    Oresme 1968b , 222 – 225, 450, which speculates that he may have learned Archimedes ’ s ideas from de Muris. 

In the following century, Nicholas of Cusa argued (incorrectly but ingeniously) that the circle can be squared 

( Boyer 1991 , 271 – 272). For Oresme ’ s general approach to magnitudes and intensities, see Taschow 1999; 2003, 

59 – 199; and Heller-Roazen 2011, 49 – 59. 

 32.    Oresme 1968a , 482 – 483. 

 3   Moving the Immovable 

 1.    Tinctoris 1961 , 77. Regarding the fate of the spheres, see Donahue 1981. 

 2.   For the relation between theory and practice in Gaffurius, see  Westman 2011 , 41 – 42. 

 3.   For its history, see  M. Lundberg 2011 . 

 4.    Glarean 1965 , 87; he discussed this adage with his friend Erasmus, who had included it in his  Adagia . 

 5.   Aristotle,  Politics  1342b9 – 11 (1984, 2129); note that the poet, Philoxenus, is one of the avant-garde practi-

tioners of the New Music. See  Csapo 2004 , 233 – 234. 

 6.   Glareanus 1965, 87. Zarlino lists this motet under mode 4, which  “ accommodates itself marvelously to 

lamentful words which contain sadness or supplicant lamentation ” ; he does not remark on the mode altering in 

this motet. See  Zarlino 1983 , chap. 21. Glarean ’ s attribution of this motet to Josquin is now considered dubious; 

Macey (2009) argues in favor of Nicolas Champion being its composer. Glarean ’ s arguments are not affected, 

however, so my text continues to follow him in referring to the composer as Josquin. Thomas (2009) surveys 

the evidence that  Absalon fili mi  is by Pierre La Rue. 
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 7.   The octave species (to use the modern terminology) gives the pattern of intervals constituting the lower 

pentachord (intervals over a perfect fifth) of the mode; for both Ionian and Aeolian, the octave species is T T S 

T T, compared to Dorian T S T T T and Phyrigan S T T S T. 

 8.   Aristotle,  Physics  224b34 – 35 (1984, 380). 

 9.   See Aristotle,  Physics  254b12 – 26 (1984, 425) and Pesic 2014a. 

 10.    Oresme 1968b . 

 11.   Bacon 1968, 4:216, 2:342; see Pesic 2014a. 

 12.   For the case of Albert the Great, see  Partington 2004 ; for the theory of transmutation, see  Principe 2013 , 

25 – 26, 37 – 38, 125 – 127. 

 13.   For a helpful explanation of degrees of impossibility or improbability involved in such  “ absurdities, ”  see 

 Funkenstein 1975 . For his knowledge of Greek, see Copernicus 1985, 3 – 19; for his relation to the question of 

the ordering of the spheres, see Westman 2011, 48 – 55. 

 14.    Knoll 1975 , 143. 

 15.    Dyer 2007, 2009 ; Ward 2013. 

 16.    Heilbron 2010 , 218. For the relation of Oresme and Buridan to Copernican thought, see  Blumenberg 1987 , 

152 – 168. 

 17.   Copernicus 1985, 90, 126n327 (Martianus). 

 18.  Copernicus 1992 , 22. For the aesthetic issues, see Gingerich 1993, 193 – 204. 

 19.    Ptolemy 1998 , 35, 37. 

 20.    Ibid. , 45. 

 21.   Regarding the meanings and resonances of  symmetria , see  Westman 2011 , 135 – 137, 187 – 190. 

 22.   His published text refers to the Pythagoreans at  Copernicus 1992 , 3. His original text ( Copernicus 1992 , 

25 – 26, 361) expanding these references was deleted before publication (whether by his own or another hand). 

For his relation to Aristarchus, see Gingerich 1993, 185 – 192. 

 23.   Both Galileo and the church authorities referred to  “ Pythagorean ”  heliocentric cosmology; see G.  Galilei 

1890 , 2:198;  Heilbron 2010 , 110 – 111; and  Copernicus and Rh ä ticus 1959 , 138 – 139. For the general history of 

Pythagoreanism during this period, see  Joost-Gaugier 2009 . 

 24.    Copernicus and Rh ä ticus 1959 , 138 – 139. 

 25.   For his final stance on heliocentrism, see  Westman 1975 , 299 – 305. 

 26.    Gilbert 1958 , 215. 

 27.   Quoted from V.  Galilei 2003 , xvii. See  Drake 1992 ;  R. Lundberg 1992 ;  Palisca 1992 ; cf. the critique of 

Vincenzo ’ s originality and importance in  Pirrotta 1984 , 219 – 222. 

 28.   See  Walker 1978 , 14 – 26. 

 29.   I will try to address the larger dimensions and context of this project in Pesic in preparation-b. 

 30.   Referring to the choral antistrophe and epode; V. Galilei, de ’ Bardi, and Mei 1960, 133. 

 31.   V.  Galilei 2003 , 77. As confirmed by Palisca ’ s note, the Italian term  stelle  clearly signifies planets rather 

than fixed stars both because of context (the sentence makes no sense if it were to refer to the stars, which even 

for Copernicus and Kepler were not considered to have any ordering of distance) and also because of the musical 

metaphor described in the text. 

 32.   See  Gingerich 2002 . 

 33.    Zarlino 1579 ,  1588 , vol. 4. For Zarlino ’ s theoretical and mathematical views, see Mambella 2008; Heller-

Roazen 2011, 61 – 73. 

 34.   I thank Owen Gingerich for drawing my attention both to Zarlino ’ s calendrical writings and to his ownership 

of a copy of Copernicus ’ s book, as cataloged in  Gingerich 2002 , 133. 

 35.   G.  Galilei 1890 , 10:68.  Heilbron (2010 , 112) argues that Galileo had adopted this opinion  “ five or six? ”  

years before 1595. 

 36.   The work in question is  Clavius 1999 , first published 1581; for the dating of Galileo ’ s notebook and its 

sources, see G.  Galilei 1977 , 22 – 23, 264 – 265. 
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 37.   G.  Galilei 1977 , 71 – 77. 

 38.   G.  Galilei 1989 , 74 – 75. 

 39.   Ibid., 196. 

 40.   Quoted from Westman 2011, 489; for Hooke ’ s attempts to provide experimental verification of the Coper-

nican view, see 504 – 510. 

 4   Hearing the Irrational 

 1.    Recorde 1557 , sigs. Aiir, Sir, Siv;  Neal 2002 , 49 – 55, at 50. See also Van Wymeersch 2008. 

 2.   See  Boyer 1991 , 304;  Dijksterhuis 1970 , 16 – 19, 21 – 22, 38 – 39;  Bos 2001 , 119 – 143;  Rasch 2008 . In 1585, 

the Flemish mathematician and engineer Simon Stevin also advocated decimal notation; see Klein 1992, 

186 – 197. 

 3.   The seminal work on Vi è te in relation to Greek mathematics is  Klein 1992 , 150 – 185, 321 – 322n10, which 

contains a translation of Vi è te ’ s  Isagoge  (313 – 353). For cryptographic parallels, see  Pesic 1997a,b ;  2000a , 59 – 83; 

 2000b , 73 – 83; and  Panza 2006 . 

 4.    Field 1997 , 67;  2005 , 24 – 31, 282 – 284, 312 – 316. See also  Moyer 2008 ;  Peterson 2011 , 106 – 124. 

 5.    Boyer 1991 , 281 – 282;  Aubel 2008 ;  Neal 2002 , 49. 

 6.    Stifel 1544 , fol. 7v, 55r – 58r. 

 7.    Boethius 1989 , 4.11;  Stifel 1544 , fols. 70r – 75v; for the sources, see  Euclid and Porphyry 1991 , props. 3, 16; 

 Barker 1984 , 2:190 – 208 and  Barbera 1984 ;  Knorr 1975 , chap. 7;  Field 2011 ;  Moyer 2011 . 

 8.   Modern convention has an octave comprise 1,200 cents, of which an equal-tempered semitone would be 100 

cents, a  “ major semitone ”  (2,187:2,048 = 3 7 :2 11 ) 114.7 cents, a  “ minor semitone ”  (256:243 = 2 8 :3 5 ) 90.2 cents, 

and a Pythagorean comma (3 12 /2 19  = 531,441/524,288) 24.5 cents. See  Fauvel, Flood, and Wilson 2004 , 

13 – 27. 

 9.    Stifel 1544 , fol. 76r; for the earlier theorists, see de Muris 1992, 292 – 301, at 294;  Hentschel 1998 , 39 – 60, at 

41. 

 10.   As in its 1482 Latin translation: Busard 2005, 1:160 – 161. 

 11.    Oresme 1966 , 60 – 65, 304 – 309;  1971 , 78 – 161, 296 – 305, at 297; see also  Abdounar 2008 . 

 12.    Lef è vre d ’  É taples and Jordanus 1496 , fol. g6v, cited in  Stifel 1544 , fol. 76v. 

 13.   For details of Stifel ’ s computations, see  Pesic 2010 . 

 14.    Stifel 1544 , fol. 79v. I thank William Donahue for his kind help with the translations from Stifel ’ s Latin. 

 15.    Ibid. , fol. 103r. 

 16.    Cardano 1967 , 10:222, as translated in  Cardano 2007 , 1. 

 17.    Cardano 1967 , 2:337, cited in  Cardano 1973 , 22n36, which also includes the quotation from Miller. 

 18.    Cardano 1973 , 45, cites Lef è vre; see also  Pesic 2010 ;  Barbour 1972 , 7. For a lively introduction to questions 

of temperament, see Duffin 2007. 

 19.    Cardano 1967 , 4:281;  2007 , 204. 

 20.    Boethius 1989 , 1.21. Boethius ’ s semitone 243:256 is not an exact equal division of the tone. The trihemitone 

is 294.1 cents, slightly smaller than the modern minor third, 300 cents. 

 21.   Ibid. The ditone is 407.8 cents, slightly larger than the modern major third, 400 cents. 

 22.    Palisca 1985 , 88 – 110; he comments on Vincenzo on 10 n 35. For Vicentino, see  Berger 1980 ;  Cordes 

2007 . 

 23.    Palisca 1985 , 119; see also  Kaufmann 1966 . 

 24.    Vicentino 1996 , 302 – 314, on 304, discussed in  Moyer 1992 , 168 – 184. Regarding the presence of Lasso, see 

 Kaufmann 1966 , 24n5, though  Hell and Leuchtmann (1982 , 112) think he may have arrived later. In either case, 

Lasso ’ s chromatic  Prophetiae Sibyllarum  dates from 1550 to 1552 and may well show the influence of 

Vicentino. 

 25.    Vicentino 1996 , 313 – 314; see  Boncella 1988 ;  McKinney 2005 . 
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 26.   For the Jesuits ’  reliance on the certainty of mathematics, see  Gatto 1994 , 17 – 64;  Consentino, Homann, and 

Luk á cs 1999 , 50 – 51;  Dear 1995 , 39. In 1591, Robert Parsons denounced the English algebraist Thomas Harriott 

as an Epicurean atheist and conjurer because of his mathematical atomism; see  Neal 2002 , 25 – 27;  Kargon 1966 , 

27. 

 27.   See  Tiella 1975 ;  Rasch 2002 ;  Wright 2002 ;  Barbieri 2002 . The split keys of Vicentino ’ s instrument were 

not unique; other keyboards had earlier used this device. For sound examples, hear the CD attached to  Cordes 

2007 . 

 28.    Cardano (1973 , 194 – 195) described Vicentino ’ s new instruments. 

 29.   Vicentino ’ s contemporaries were most familiar with just intonation (see box 4.2), in which the  “ just diatonic 

semitone ”  (16:15  ≈  1.067, 111.7 cents) was a common solution, but there were other competing possibilities, 

such as the  “ just chromatic semitone, ”  sometimes called the  “ minor semitone of the minor tone ”  (25:24  ≈  1.042, 

70.7 cents). 

 30.   Vicentino defined a minor diesis as  “ one-half of the minor semitone ”  and the major diesis as  “ identical ”  to 

a minor semitone, but then we still have to divide that minor semitone exactly in half. See  Vicentino 1996 , 59 – 62 

(fol. 17r – 18v);  Berger 1980 , 7 – 18. 

 31.   Boethius cites  “ Philolaus, a Pythagorean, ”  who divided the tone unequally. See  Boethius 1989 , 96 – 97; West 

1992, 135 – 136. Boethius argues that the Pythagorean comma is the  “ ultimate interval heard which can really be 

perceived ”  (Boethius 1989, 96 – 97). 

 32.   See Plato,  Republic  531a; Aristotle,  Posterior Analytics  84b37 – 39; and Aristotle,  Metaphysics  1016b18 – 24 

(Aristotle 1984, 1:138, 2:1605), collected in  Barker 1984 , 2:55, 70, 72, 135. See also  Quintilianus 1983 , 81, 95. 

 33.    Quintilianus 1983 , 84;  Strunk and Treitler 1998 , 57. 

 34.   The word  diesis  originally meant a  “ letting through, ”  suggesting the performance practices of wind instru-

ments. See Aristotle,  Politics  134a21; and Longinus,  On the Sublime  39.2, in West 1992, 81 – 107, esp. 

105 – 106. 

 35.   For Aristoxenus ’ s references to the diesis, see  Barker 1984 , 2:135, 140, 143, 145, 154, 165 – 166, 182, 

184. 

 36.   Ibid.,137. 

 37.   See  Levin 2009  for a similar account of Aristoxenus. In Ptolemy ’ s view, Aristoxenus constructed the enhar-

monic genus by essentially assigning the unit of 6 to each diesis, in units where the tone is 24 units; see  Barker 

1984 , 2:384 – 391, 270. 

 38.    Barker 1984 , 2:170n1. Socrates draws a square on the diagonal of a unit square in his conversation with the 

slave boy in Plato ’ s  Meno  84d – 85c. 

 39.    Vicentino 1996 , 6, 12 (fol. 3r, 4v). 

 40.   For the role of Lodovico Fogliano ’ s geometric construction to divide intervals (on the model of   figure 4.1 ), 

see  Pesic 2010 . 

 41.    Vicentino 1996 , 207 (fol. 66v). 

 42.    Zarlino 2011 ;  Strunk and Treitler 1998 , 299. See also  Mambella 2008 . 

 43.   See  Berger 1980 , 15 – 16. 

 44.    Vicentino 1996 , 207 (f.66v). 

 45.   See  Oettinger 2003 . 

 46.   These compositions can be found in  Cardano 1973 , 139, 154 – 171. 

 47.    Vicentino 1996 , 33 (fol. 10v). For commentary on the musical details of his motets vis- à -vis his critics, see 

li – lviii; recordings of this and his other motets are available on the CD accompanying  Cordes 2007 . 

 48.   On the other hand, Vincenzo Galilei noted that enharmonic music  “ was never sung without the instrument 

named above [archicembalo] and if by misfortune one of the singers lost his way while singing, it was impossible 

to put him back on the right track. ”  After Vicentino ’ s death,  “ it was practiced neither by his students nor by 

anybody else ” ; Berger 1980, 73. 

 49.   Cardano was critical of Vicentino ’ s scheme for tuning, which he found  “ not unserviceable, but  …  not entirely 

accurate ” ; see  Cardano 1973 , 194 – 195. Regarding Zarlino, see also  Moyer 1992 , 202 – 225. 
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 50.   See  Berger 1980 , 44 – 56, 88 – 95; he notes that Artusi, like Vincenzo Galilei, found the use of equal tempera-

ment for the harpsichord  “ strange ”  (92). The quotations from  Artusi 1934  are taken from  Lindley 1982 , 

400 – 404. 

 51.    Klein (1992 , 147 – 148) emphasized the connection between Vi è te ’ s mathematical and astronomical works 

but did not recognize the significance of music as a consequential meeting ground between mathematics and 

perception. 

 52.    Gosselin 1577 , fol. 2r, quoted and discussed in  Klein 1992 , 262n225. Gosselin translated  Tartaglia 1578  into 

French, which also experimented with the division of a tone into equal semitones (see  Moyer 1992 , 126 – 134). 

 5   Kepler and the Song of the Earth 

 1.   Strictly, proportional to the semimajor axis of its elliptical orbit. The standard modern edition is  Kepler 1937 , 

to be cited hereafter as KGW, followed by volume number and page, here 6:302. I will cite the translation  Kepler 

1997  as HW 411, in this case. Regarding the  “ third law, ”  see  Field 1988 , 142 – 163;  Gingerich 1993 , 348 – 356, 

388 – 406. The term  “ law ”  is due to later scholars, who thereby emphasized Kepler ’ s anticipation of crucial 

Newtonian results ( Wilson 1989 ). 

 2.   See  Dickreiter 1973 , who emphasizes Kepler as theorist. For the details of Kepler ’ s arguments, see  Stephenson 

1994a ;  Field 1988 , 96 – 166;  Martens 2000 , 112 – 141. See also  Cohen 1984 , 13 – 34;  Field 2004 . I am particularly 

indebted to  Walker 1978 , 34 – 62;  Holton 1988 ;  Werner 1978 ;  Harburger 1980 ; Gingerich 1993, 388 – 406;  Koyr é  

1992 . 

 3.   HW 505 (KGW 6:374). Heller-Roazen (2011, 112 – 140) emphasizes Kepler ’ s self-identification with 

Pythagoras. 

 4.   Ibid. For Fludd, see  Ammann 1967 . 

 5.   See  Dickreiter 1973 , 123 – 138. 

 6.   KGW 6:141, 158 – 159, 162; 15:238, 15:397. 

 7.    Dickreiter (1973 , 124) lists some of the polyphonic music used in W ü rttemberg. 

 8.   Ibid., 125. For a helpful study of Kepler ’ s milieu during this period, see  Methuen 1998 . 

 9.    Dickreiter 1973 , 126. 

 10.    Ibid. , 164. 

 11.    Stephenson 1994b,a;   Pesic 2000a , 87 – 112. 

 12.    Dickreiter 1973 , 129. 

 13.    Ibid . 

 14.    Ibid. , 130; KGW 14:13. Kepler already refers to Lasso ’ s motets in a letter of 1599 (KGW 14:9). 

 15.   Letter to Herwart von Hohenburg of August 6, 1599 (KGW 14:29). For Kepler on tuning, see B ü hler 2013, 

53 – 69.  

 16.    Dickreiter 1973 , 131, citation from  Chytil 1904 , preface. 

 17.   Among recent studies, see  Comberiati 1987 ;  Lindell 1994 ;  Kmetz 1994 ;  Saunders 1995 . 

 18.    Maier 1989 , discussed by  Liessem 1969 ;  Meinel 1986 . 

 19.    Dickreiter 1973 , 132 – 133. 

 20.    Evans 1984 , 190 – 193; see  Yates 1991 , 78 – 83;  Tomlinson 1993 , 45 – 46. 

 21.    Caspar 1993 , 262, from Kepler ’ s letter to Philipp Muller after September 13, 1622, KGW 18:78 – 79, dis-

cussed also in  Pesic 2000b . For Kepler ’ s attitude toward the occult arts, see  Rosen 1984 ;  Vickers 1984 . 

 22.   KGW 17:80, translated by H. Floris Cohen. 

 23.   KGW 6:397. 

 24.    Dickreiter 1973 , 134. 

 25.   Ibid. Though this was a very early foray into ethnomusicology, already in 1578, the Swiss theologian Jean 

de L é ry had transcribed some Brazilian songs (L é ry 1990). 

 26.   HW 217 (KGW 6:158). 
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 27.    Dickreiter 1973 , 135. 

 28.    Ibid. , 137. 

 29.    Caspar 1993 , 248; KGW 17:254. For Kepler ’ s reading of Vincenzo, see Gingerich 1993, 396 – 398. 

 30.    Dickreiter (1973 , 138 – 139) argues that Kepler ’ s knowledge of music theory was  “ not very many-sided. ”  

Indeed, Kepler manuscripts in the Pulkowa library reveal that he had read only three-quarters of Galilei ’ s book. 

 31.    Caspar 1993 , 266. 

 32.   Where Boethius and Macrobius defined the major third as 81:64 (two whole tones, each 9:8) and the minor 

third as 32:27, Kepler advocated the simpler intervals of just intonation (5:4 and 6:5, respectively). 

 33.   HW 137 (KGW 6:99). Though praising Ptolemy for including just intonation, Kepler still criticized him for 

not finally advocating it; HW 138 (KGW 6:99). HW 192 (KGW 6:139) is the unique mention of Zarlino in 

Kepler ’ s text. 

 34.    Walker 1978 , 35 – 53. Here I go beyond Walker ’ s comparison of mathematics and music as  “ parallels ”  (39 – 40) 

drawn from a single archetype. 

 35.   See  Pesic 2000b , 57 – 59. 

 36.   HW 138 (KGW 6:99). 

 37.   Kepler goes past the commonplaces dating back to medieval theorists about allowed melodic intervals; see 

 Hucbald et al. 1978 . 

 38.   HW 217 (KGW 6:158). 

 39.   Here he refers to  “ Euclid ”  for a vocabulary of melodic devices, by which he means the  Introductio harmonica  

now attributed to Cleonides, a student of Aristoxenus. See HW 218n125; there is a parallel passage defining this 

terminology in Aristides Quintilianus ( Barker 2004 , 2:430 – 431). 

 40.   HW 218 (KGW 6:158). In the case of  Victimae paschali , Kepler shows how the direct motion of  agog ē   
(as in the setting of the words  “ paschali laudes ”  or of  “ immolent ” ) sets off the continuous intonation ( ton ē  ) of 

 “ -demit oves Christus in- ”  and the  “ playing ”  alternations ( petteia ) of  “ -cens  …  re-  …  li-  …  peccat-. ”  In contrast, 

the Turkish chant uses  “ a pure  plok ē  , although not a natural one, ”  throughout its course, meaning the continuous 

twisting or twining of the melodic line. 

 41.    Walker 1978 , 38 – 40; see also  Tomlinson 1993 , 76 – 84. 

 42.    Sacrae cantiones quinque vocem  (Lasso 1894, 9:49 – 52), cited at HW 221, 234, 239 (KGW 6:161, 171, 174). 

Kepler mentions Lasso ’ s  Ubi est Abel  and  Tristis est anima mea  at HW 253 (KGW 6:184). 

 43.   HW 243 (KGW 6:177). For the fame of this motet, see  Braun et al. 1994 , 2:139 – 142. See also  Boetticher 

1954 , cited by  Lossius 1570 , book 1, chapter 7, a book in Kepler ’ s school library in Linz ( Dickreiter 1973 , 145). 

 44.    Musica autoschediastik ē   (1601), expanded in his  Musica poetica  (1606); see  Burmeister 1993 , 205 – 206; see 

the translation and commentary  Palisca 1972 . For a discussion of this motet and its performance practice, see 

 Smith 2011 , 111 – 124. Concerning Burmeister, see  Ruhnke 1955 , 130 – 135, 162 – 165. That we possess no specific 

reference to this motet might be explained by the disappearance of some of Kepler ’ s letters to Seth Calvisius in 

which Burmeister might well have been discussed; see  Dickreiter 1973 , 60 – 61. 

 45.   HW 221 (KGW 6:161). Kepler writes the same slightly incorrect rhythm both times he cites this passage, 

probably quoting from memory and indicating how familiar this motet is to him, as noted by  Dickreiter 1973 , 

175 – 176;  Braun et al. 1994 , 141. For the authentic text, see Lasso 1894, 9:49. Even Kepler ’ s mistake is revealing; 

by incorrectly citing the opening e' as dotted, he has the expressive minor sixth e' – c' arrive on the downbeat 

in the cantus, an accented dissonance, whereas the authentic text lacks his dot and consequently arrives on 

the offbeat, resolving by suspension. Thus, Kepler ’ s rhythmic mistake throws the expressive semitonal descent 

c' – b' – a' into higher relief. 

 46.   HW 239 (KGW 6:174). 

 47.   HW 238 (KGW 6:173). 

 48.   HW 441 (KGW 6:323). 

 49.   HW 449 – 450 (KGW 6:329). 

 50.   HW 430 (KGW 6:316). For further discussion of planetary songs, see  Tomlinson 1993 , 63 – 100. 

 51.   HW 423 (KGW 6:311). 
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 52.   HW 439 (KGW 6:322). 

 53.    Walker 1978 , 59 – 60. 

 54.   HW 441 (KGW 6:323). 

 55.   For Kepler ’ s conservative musical tastes, see  Field 1988 , 118;  In me transierunt  sets Ps. 88:16; 38:10, 

17, 21. This motet includes Kepler ’ s  “ planetary ”  chords E  mollis  and C  durus  (in modern terms, E minor first 

inversion and C major second inversion) in mm. 15, 28, 30, 31, 58. 

 56.   HW 440 (KGW 6:322). Kepler assigns Earth the Phrygian mode whose final note is  mi ,  “ because its motions 

revolve within a semitone [16:15]. ”  

 57.   Though  Gouk (1999 , 129) asserts that the modern tonic sol – fa system was transmitted to English scholars 

via Kepler, there is no evidence of this modern system to be found anywhere in his work. The present sol – fa 

system began to be used only about 1600 in France. In earlier solmization, each pitch derives its name from its 

place in a hexachord (a group of six sequential pitches, beginning either on C, G, or F); hence,  In me transierunt  
begins e la  mi , c sol  fa , b fa  mi , whose terminal syllables are  mi fa mi . In contrast, if the motet began with a 

semitone (as in e – f – e: e la  mi , f fa  ut , e la  mi ), the solmization would be changed (in this case, to  mi ut mi ). 

 58.   To be sure, other examples of  “  mi fa mi  ”  would have worked as well, such as Josquin ’ s  “ Miserere mei Deus, ”  

probably the most famous example in the sixteenth century, but Kepler nowhere mentions Josquin. Lasso ’ s 

 Locutus sum  also begins with a prominent  “ mi fa mi, ”  but only after an initial leap of a fifth. 

 59.   Several ancient stories connect erotic excitement with music; see  West 1992 , 31. Plato ’ s  “ nuptial number ”  

( Republic  546b – 547a) probably inspired Kepler ’ s discussion of the  “ progeny ”  of geometrical figures (HW 253; 

KGW 6:184). In his  Harmonie Universelle  (1636), Mersenne remarked on this passage, though omitting the 

detailed sexual imagery ( Mersenne 1963 , 3:188); in 1577, Salinas (1958, 56) used much milder sexual imagery 

about music ( Cohen 1984 , 64). 

 60.   May 12, 1608, to Joachim Tanckius, a Leipzig physician (KGW 16:154 – 165, at 157). 

 61.   HW 241 (KGW 6:175). 

 62.   HW 242 (KGW 6:176). 

 63.   Ibid. 

 64.   Although  ekphusis  can mean  “ bursting out, ”  as HW glosses, its far more direct meaning here is ejaculation 

as the act of begetting. 

 65.   HW 354 (KGW 6:265); for the cube and octahedron as  “ spouses, ”  see HW 407 (KGW 6:299). 

 66.    Walker 1978 , 53 – 57, at 57. 

 67.   HW 360 (KGW 6:266); cf.  Georgics  2:326. 

 68.   See  Pesic 2000a , 108 – 112. 

 69.   HW 444 – 445 (KGW 6:325 – 326). 

 70.   HW 442 – 46 (KGW 6:324 – 328).  Stephenson (1994a , 170 – 185) emphasizes this point. 

 71.   HW 446 (KGW 6:328). 

 72.   Ibid. 

 73.    Zarlino 1968 , 151. Kepler refers to Artusi, Zarlino ’ s student, at HW 254 (KGW 6:185), though never to 

Zarlino directly. 

 74.    Palisca (1972 , 42 – 46) also brings in Francis Bacon ’ s description (1605) of what Thomas Morley called the 

 “ false close. ”  

 75.   HW 447 – 48 (KGW 6:328). 

 76.   HW 442 – 43 (KGW 6:324). 

 77.   HW 449 – 450 (KGW 6:329). 

 78.   HW 417 (KGW 6:306). 

 79.    Kepler 1981 , 223 (KGW 1:79). 

 80.   Ibid. (KGW 8:127). 

 81.   For Kepler ’ s relations with different Christian denominations, see  Caspar 1993 , 77 – 85, 111 – 115, 146 – 148; 

for detailed discussion of his beliefs, see  H ü bner 1975 . 
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 82.   HW 491 (KGW 6:363). 

 83.   HW 488 – 489 (KGW 6:360 – 361). 

 84.   KGW 7:330, cited in  Panofsky 1954 , 29 – 31 as translated in  Kepler 1995 , 932. 

 85.    Kepler 1981 , 223 (KGW 1:79); discussed in  Pesic 2000a , 112. 

 6   Descartes ’ s Musical Apprenticeship 

 1.    Descartes 1961 , 53. 

 2.   The exemplary treatment of Beeckman, to which I am much indebted, is  Cohen 1984 , 116 – 161. 

 3.    Koyr é  1978 , 117;  Gaukroger, Schuster, and Sutton 2000 , 4 – 59. 

 4.    Beeckman 1939 , 4:62. 

 5.   V an Berkel 2000  also discusses Descartes ’ s debt to Beeckman. 

 6.    Brown 1991  and Dear 1995, 32 – 62, treating the status of music at 39. 

 7.    Descartes 1996 , 1:21. 

 8.    Cohen 1984 , 163; see also the commentary of  Erlmann 2010 , 37 – 47. 

 9.    Descartes 1996 , 2:23;  Clark and Rehding 2001 , 6. 

 10.   Descartes 1961, 11 – 12. Augst (1965, 125) connects the  Compendium  with the beginnings of Descartes ’ s 

new science.  Van Wymeersch (1999)  judges the  Compendium   “ the first field of application of the new epistemo-

logical approach which Descartes systematized ten years later ”  (163); she too connects Descartes ’ s language of 

 “ clear and distinct ideas ”  with the  Compendium  (101 – 108) .  

 11.   Descartes 1961, 12 – 13. 

 12.    Cohen 1984 , 163. 

 13.    Descartes 1961 , 14. 

 14.    Ibid. , 15. 

 15.    Ibid . 

 16.    Ibid. , 21; he also notes octave overblowing in pipes (18). Cf. the Aristotelian discussion of how a note 

 “ contains ”  the sound of note an octave higher, as when boys and men sing together:  Problems  19:8, 918a19 – 21 

( Aristotle 1984 , 2:1430). 

 17.   For the philosophical consequences, see  Van Wymeersch 1999 ; for the effect on the Cartesian concept of 

the self, see  Moreno 2004 . 

 18.    Descartes 1996 , 1:21. The addressee is this letter is not explicit, but the editors infer Mersenne. All transla-

tions from Descartes ’ s letters are mine. 

 19.    Ibid. , 1:142. 

 20.   For the larger context of Descartes ’ s attitude toward  “ wonders, ”  see Daston and Park 2001, 292 – 331. 

 21.    Descartes 1996 , 2:23 – 29, 31. 

 22.    Ibid. , 1:70. 

 23.    Ibid. , 1:74. 

 24.    Ibid. , 1:85 – 86. 

 25.    Ibid. , 1:83, 85 – 86. 

 26.    Ibid. , 1:88. 

 27.    Ibid. , 1:87. 

 28.    Ibid. , 1:100, and elsewhere Descartes also refers Mersenne to the  Compendium.  

 29.    Descartes 1996 , 1:101 – 102. 

 30.    Ibid. , 1:102; on sunspots, see  Schuster and Brody 2013 . 

 31.    Cohen 1984 , 166 – 169. 
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 32.    Descartes 1996 , 1:142; cf.  Pirro (1973), who  judged Descartes to be  “ held back by ignorance of [musical] 

practice, ”  uncertain in his musical judgments. 

 33.    Descartes 1996 , 1:223 – 224. 

 34.    Descartes 1979 , 1 – 7. Augst (1965, 120) describes the  Compendium  as giving  “ the first in a series of geo-

metrical models leading to the design of the cosmic machine ”  in  Le Monde . 

 35.    Gaukroger 2000 ,  1995 , 234 – 237. 

 36.    Descartes 1996 , 1:270 – 271. 

 37.   For his later presentation of the arguments against the void, see  Descartes 1983 , 46 – 49. 

 38.    Walker 1978 , 81 – 110, at 102; cf.  Pirro 1973 , 100 – 120, which is more critical of Descartes ’ s musical 

discernment. 

 39.   For Kepler on the infinite universe, see Koyr é  1957, 58 – 87; Harrison 1987, 46 – 49; Heller-Roazen 2011, 

131 – 140. 

 7   Mersenne ’ s Universal Harmony 

 1.    Beaulieu 1995 , 87. 

 2.   Quoted in  Beaulieu 1995 , 25. 

 3.   For the larger context of the Republic of Letters, see  Grafton 1991  and Bots and Waquet 1997. For treatments 

of Mersenne, see  Cohen 1984 , 97 – 114, 191 – 201;  Gouk 1999 , 170 – 178;  Dear 1988 . For his role as intelligencer, 

see Grosslight 2013. 

 4.    Beaulieu 1995 , 173 – 185; for the development of the Acad é mie, see Brown 1967; Cohen 1981, 3 – 5. 

 5.   Mersenne 1623, question 9, article 1, column 869. See Hine 1973; Lewis 2006, 113 – 140. 

 6.    Egan 1962 , 63 – 64, 70. 

 7.    Ibid. , 94. 

 8.   Ibid., 103. 

 9.    Ibid. , 105 – 107. Mersenne consistently capitalizes  Soleil , which I have followed only when he refers to God. 

 10.   Quoted in  Beaulieu 1995 , 256 – 257. 

 11.    Egan 1962 , 154. 

 12.    Ibid. , 202. 

 13.   For the French reaction to Galileo, see Lewis 2006. In 1634, Mersenne published his own description of 

Galileo ’ s mechanical propositions,  Les m é chaniques de Galil é e , and even planned writing a defense of Galileo, 

though he later gave this up. 

 14.    Beaulieu 1995 , 103 – 104. 

 15.   On the musicality of sloths, see  Clark and Rehding 2001 , 2 – 4. 

 16.   He cites Psalms 83:8. Mersenne includes a concluding  “ Livre de l ’ utilit é  de l ’ harmonie ”  as a kind of appendix 

to the whole work; see  Mersenne 1963 , vol. 3 (following the  “ Livre des instrumens de percussion ” ). 

 17.    Mersenne 1963 , 2:103, 107. 

 18.    Ibid. , 1:169. Note that he uses French feet (0.325 m = 12.8 in). 

 19.    Mersenne 1963 , 3:208; Mersenne had read Vincenzo Galilei ’ s experiments relating string pitch to the square 

root of the tension. 

 20.   Regarding the accuracy of this determination, see  Dostrovsky 1975 , 197 – 198. 

 21.    Mersenne 1963 , 3:251 – 252. 

 22.    Sauveur 1987 ;  Maxham 1976 . 

 23.    Mersenne 1963 , 3:209. 

 24.    Ibid. , 1:213. 

 25.    Ibid. , 3:211. 



Notes to pages 114–124 297

 26.   For Huygen ’ s work on music, see  Cohen 1984 , 209 – 230. For the controversy about Huygen ’ s role in the 

discovery of the pendulum watch, see Iliffe 1992, 39 – 52. 

 27.    Dear 1988 , 139. 

 28.    Mersenne 1963 , 3:208. 

 29.    Ibid . Descartes (1996, 1:88, 102) mentions his  “ little treatise ”  (clearly the  Compendium ) in two 1629 letters 

to Mersenne. 

 30.   See, e.g.,  Christensen 2002 , 249 – 252;  2011 ;  Van Wymeersch 2011 . For the perspectives of Hugo Riemann 

and Heinrich Schenker, see  Rehding 2003 ;  Jonas 1982 , 18. 

 31.    Mersenne 1963 , 3 ( “ Livre des instrumens de percussion ” ):36 – 37. 

 32.    Ibid. , 3:209. 

 33.    Ibid. , 3:211;  Dear 1988 , 187 – 188. Cf. Darrigol 2012, vi, who judges that  “ the basic concept of sound as a 

compression wave was not available until the last third of the seventeenth century. ”   

 34.    Mersenne 1963 , 3 ( “ Livre des instrumens de percussion ” ):37. 

 35.   For his work on organs, see  Gauvin 2013 . Cf. Darrigol 2012, 39 – 49, who considers that Descartes ’ s mechani-

cal medium theory of light  “ needed neither sound nor waves ”  (30). 

 36.    Mersenne 1963 , 3 ( “ Livre des instrumens de percussion ” ):37 – 38;  1957 , 535 – 536. 

 37.    Mersenne 1963 , 3 ( “ Livre des instrumens de percussion ” ):36 – 37. 

 38.    Ibid.,  37 – 38;  Mersenne 1957 , 535 – 536. See also  Beaulieu 1995 , 70 – 81. Maury 2003, 179 – 238, treats the 

issue of the vacuum. 

 39.    Mersenne 1957 , 3 ( “ Livre des instrumens de percussion ” ):8 – 39;  Mersenne 1957 , 536 – 537. 

 40.    Mersenne 1957 , 3 ( “ Livre des instrumens de percussion ” ):8 – 39;  Mersenne 1957 , 536 – 537. 

 41.    Mersenne 1963 , 3:211. 

 8   Newton and the Mystery of the Major Sixth 

 1.    Newton 1983 , 388 – 391. 

 2.   For these notebooks, see  Westfall 1980 , 83n52; for a transcription and discussion of  Newton 1665 , see  Pesic 

2006 . Newton ’ s only other writings on music are brief comments in Add. Ms. 39582, fol. 30 v  and  “ Questiones 

quaedam Philosophiae, ”  Add. MS. 3996, fol. 33, transcribed in  Newton 1983 , 388 – 391. 

 3.   See  Newton 1665 , fol. 104 – 113, especially the circular diagrams on fol. 109r – 109v that strongly resemble 

those in  Descartes 1961 , 34, 36; see also B ü hler 2013, 73 – 79. For Newton ’ s study of Descartes, see  Westfall 

1980 , 88 – 105; Wardhaugh 2008, 53 – 56. For Newton ’ s circular tonometer and colorimeter, see Adams 2013. 

 4.    Gouk 1999 , 224 – 257, is the pioneering study of Newton ’ s  “ Of Musick. ”  For a detailed treatment of Newton ’ s 

study of scales, see B ü hler 2013, 97 – 121. 

 5.    Newton 1665 , fol. 138; I here regularize the spelling, compared to the original orthography in  Pesic 2006 . 

 6.   For Hooke ’ s 1672 letter to Oldenburg, see  Newton 1959 , 1:111; relying on it,  Gouk (1999 , 241) claims that 

Hooke  “ first suggested to Newton the analogy between colour and musical tone, ”  though in this letter Hooke 

does not discuss color explicitly. Of course, the whole analogy between light and sound has a much longer 

history, excellently surveyed in  Darrigol 2009; 2010 ; 2012, 58 – 66, 86 – 93, 144 – 152. 

 7.   See  Republic  516d. In  De sensu  ( Sense and Sensibilia ), Aristotle compares ratios in music with colors at 

439b20 – 440b25 (Aristotle 1984, 698). For alchemical comparisons, see  Gouk 1999 , 231. 

 8.    Pesic 2006 , fol. 139. For Newton ’ s use of square brackets, see  Shapiro 2002 , 253n24. Though he made pre-

liminary calculations about equal temperament, Newton does not refer further to them in  “ Of Musick ”  but (like 

Kepler) restricts himself to just intonation; see  Gouk 1999 , 252. 

 9.   In his reading of Kepler, Newton would have found references to Aristoxenus (e.g., HW 197). 

 10.   Add. Ms. 3996, fol. 33, in  Newton 1983 , 388 – 391. 

 11.   For Newton ’ s association of idolatry and corruption with geocentric cosmology, see  Gouk 1999 , 252.  

 12.   See  Newton 1978 , 177 – 235;  1959 , 2:418 – 419;  Guilford and Kassler 2004 , 175 – 178. For Newton ’ s applica-

tion of these arguments to the color of the sky, see  Pesic 2005 , 45 – 52. 
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 13.   Newton, second letter on light and colors for the Royal Society (1675), quoted in  Pesic 2005 , 192 – 193. 

 14.   For Newton ’ s  “ analogy of nature, ”  see  Armstrong 1972 ;  Newton 1984 , 1:537 – 549, especially 545, 550n10; 

 McLaren 1985 ;  Hall 1993 , 56 – 57, 112 – 113;  Sepper 1994 , 95 – 99, 205 – 270;  Shapiro 1994 . 

 15.   See  Newton 1979,  Book III, 317 – 339, which ends inconclusively with Newton ’ s remark that he was  “ inter-

rupted, and cannot now think of taking these things into farther Consideration, ”  followed by his long series of 

 “ Queries, in order to a farther search to be made by others. ”   

 16.   See  Kepler 1997 , 138 and above.  Gouk (1999 , 232 – 237) suggests that Newton ’ s choice of the Dorian mode 

reflects his preference for a symmetric, palindromic sequence of ratios (namely T S T T T S T), which she 

discerns in his  “ ideal ”  scale; see also  Pesic 2006  and B ü hler 2013, 121 – 129. 

 17.   For his extensive experiments following  “ Grimaldo, ”  see  Newton 1979,  Book III, 317 – 339. See also  Shapiro 

2001 . For Grimaldi, Pardies, and Ango, see Darrigol 2012, 58 – 64. 

 18.   For Newton ’ s  “ fits ”  and his concept of  “ bigness, ”  see  Sabra 1963 ;  1981 , 231 – 250, 273 – 342;  Westfall 1967 ; 

 Hall 1993 , 163 – 179;  Shapiro 1993, 2001 ,  2002 . 

 19.    “ An Hypothesis hinted at for explicating all the aforesaid properties of light, ”  Add. Ms. 3970, fol. 528 v . 

 20.   Ibid., fol. 521 v .  Newton 1984 , 1:546 – 547n28 contains a helpful account of the development of Newton ’ s 

thinking on this issue. 

 21.    Newton 1979 , 200 – 201. 

 22.   Certain insects apparently have a full octave (or more) of color perception and may find what seems a 

behaviorally similar identity in two wavelengths of frequency ratio 2:1 to that identity our ear perceives in 

D and d. For instance, Frisch 1971, 10, notes that the spectral sensitivity of honey bees is 300 – 650 nm, which 

implies the possibility of their experiencing a  “ color octave ”  denied to human vision (400 – 700 nm). 

 23.   This is also the view of  Sepper 1994 , 123 – 127, at 123. Cf. Darrigol 2012, 80 – 85, 89 – 108, which does not 

comment on the problem of the color octave. 

 24.   For musical analogies in Newton ’ s cosmology, see  McGuire and Rattansi 1966 ;  Gouk 1999 , 251 – 257;  Toni-

etti 2000 . 

 25.    Malebranche 1997 , 689, 716 – 717. 

 26.    Voltaire 1967 , 149 – 158. 

 27.    McGuire and Rattansi 1966 ;  Westfall 1980 , 510n136. 

 9   Euler: The Mathematics of Musical Sadness 

 1.    Yushkevich, Bogolyubov, and Mikha ĭ lov 2007 , 375. 

 2.   See  Tserlyuk-Askadskaya 2007 . For a reproduction of Euler ’ s notebook, see  Bredekamp and Velminski 2010 , 

39 – 64. 

 3.    “ Dissertatio physico de sono, ”  E2, III.1.183 – 196. The original text of this and other works by Euler may also 

be found in  Euler 1911 . For convenience, I will cite them by the standard Enestr ö m number of each item, here 

E2, and its place in the  Opera omnia  by series, volume, and pages, here III.1.183 – 296. These works (along with 

helpful listing of translations and secondary literature) can be found at the online Euler Archive at   http://www

.math.dartmouth.edu/~euler/  . Euler ’ s very first published paper,  “ Constructio linearum isochronarum in medio 

quocunque resistente, ”  E1, II.6.1 – 3, concerned the brachistochrone problem, finding a curve along which a 

particle falls with the shortest time; see  Sandifer 2007a , 3 – 5. 

 4.   All my citations of E2 are from the translation by Bruce 2013. 

 5.   In his time, the flute was notably different in shape (with a U-shaped bend near the mouthpiece) than Mer-

senne ’ s straight (transverse) flute. Though he only begins to consider the effect of temperature (whose full 

treatment came with Laplace and the beginnings of thermodynamics at the end of the century), Euler includes 

the relative effects of varying air pressure and density, following Newton. 

 6.    Ronald 1996 , 147 – 148. On Euler ’ s work in naval science, see  Sandifer 2007b; 2007c , 219 – 222. 

 7.   See  Busch 1970 ; Muzzulini 1994;  Gertsman 2007 ; Warusfel 2009, 165 – 185; Velminski 2009b, 150 – 171. For 

the context of Euler ’ s other early Petersburg works, see Calinger 1996. 

 8.    Smith 1960 , 24 (preface). 
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 9.    Ibid. , 37. 

 10.    Ibid. , 42. 

 11.    Pelseneer 1951 , 480 – 482, at 482. Recall that superparticular ratios have the form  n :( n+1 ); see above, 32. 

 12.    Smith 1960 , 119 – 122 (IV.35 – 39). 

 13.   Among the very few other attempts, note  Birkhoff 1933.  For a brief summary, see  Newman 1956 , 4:2185 – 

2208. Birkhoff ’ s basic equation,  M
O

C
=   (where  M  is the aesthetic measure,  O  the order, and  C  the complexity), 

is consistent with Euler ’ s approach. 

 14.    Smith 1960 , 27 – 28 (E33, III.1.197 – 427). 

 15.    Helmholtz 1954 , 229 – 233. 

 16.   As pointed out by  Jeans (1968 , 155 – 156). 

 17.    Smith 1960 , 68 (II.7). 

 18.    Ibid. , 71 (II.12). 

 19.    Ibid. , 71 – 72 (II.13). 

 20.    Ibid. , 72 (II.14). 

 21.   Aristotle,  Poetics  1453b10 – 12 ( Aristotle 1984 , 2326); his terms are  tragik ē  hedon ē   and  katharsis.  

 22.    Smith 1960 , 73 (II.15 – 16). 

 23.    Ibid. , 23. See also  Tserlyuk-Askadskaya 2007 . 

 24.   For instance, we learn that the standard musical pitch he knew was a full major second lower than the present 

standard (A440);  Smith 1960 , 42. 

 25.    Ibid. , 119 – 122 (IV.35 – 39). Euler seems unaware of earlier work on logarithms in music; see Wardhaugh 

2008, 43 – 56; B ü hler 2013, 39 – 41. 

 26.   Recall (box 4.1) that equal temperament divides the octave into twelve equal semitones, each given by the 

irrational factor  212  . For instance, J. S. Bach ’ s  Well-Tempered Keyboard  (1722) required a temperament capable 

of playing in all twenty-four major and minor keys, though not necessarily equally; see  Duffin 2007 . Euler 

discusses equal temperament in his early  “ Adversaria mathematica ”  (1726, fol. 45r), cited in B ü hler 2013, 225, 

and reproduced in Bredekamp and Velminski 2010, 53. Euler ’ s  Tentamen  mentions equal temperament briefly 

at  Smith 1960 , 204 – 205 (IX.17); the rest of the book uses just intonation. 

 27.    Ibid. , 121 (IV.38). 

 28.   John Wallis devised its name in 1695; see  Gowers 2008 , 192 – 193, 315 – 317. 

 29.    Euler 1985 , 302 – 305 (E71, I.14.187 – 216). 

 30.   For his argument, see  Euler 1985  and  Sandifer 2007a , 234 – 248;  2007c , 185 – 190. 

 31.   Cited in  Weil 1984 , 172; Dunham 1999, 7. Calinger 1996, 130 – 133, argues that the Bernoullis were a more 

important influence on Euler ’ s turn to number theory than Goldbach. 

 32.   See  Leibniz 1989 , 212;  Tserlyuk-Askadskaya 2007 . 

 33.    Weil 1984 , 267. For Leibniz ’ s work on music, see  B ü hler 2010 ; 2013, 130 – 175; for the Euler/Leibniz con-

nection, see also Downs 2012. 

 34.   The  proper  divisors of a number exclude that number itself. 

 35.   See E152, I.2.86 – 162 ( Dunham 1999 , 7 – 12);  Sandifer 2007c , 49 – 62. 

 36.   For Euler ’ s work on harmonic progressions, see  McKinzie 2007.  For the general history of the harmonic 

series, see  Green 1969 . See also Bullynck 2010. 

 37.    Weil 1984 , 267. 

 38.   Cited in  Hakfoort 1995 , 60 – 65, at 61. See also Sachs, Stiebitz, and Wilson 1988. 

 39.    “ The Seven Bridges of K ö nigsberg, ”  in  Newman 1956 , 1:573 – 580 (E53, I.7.1 – 10). 

 40.   Euler ’ s 1736 paper is generally regarded as the origin of graph theory, a field introduced by J. J. Sylvester 

in 1878 whose terminology was codified by George P ó lya and others about 1936; see  Biggs, Lloyd, and Wilson 

1986 . 
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 41.    “ Elementa doctrina solida, ”  E230, I.26.71 – 93;  “ Demonstratio nonnullarum insignium proprietatum, quibus 

solida hedris planis inclusa sunt praedita ”  E231, I.26.94 – 109. For commentary, see  Sandifer 2007c , 9 – 18. 

Velminski 2009a collects these papers, highlighting their connection with Euler ’ s work on the K ö nigsberg 

problem, though Sachs, Stiebitz, and Wilson 1988 point out that Euler did not note this connection. See also 

Mahr and Velminski 2010. Later proofs of Euler ’ s formula exploited the analogy with an Euler walk; see 

Fajtlowicz and Mathew 2012.  

 42.   For an excellent presentation of the details of both arguments and their connections, see  Richeson 2008 ; see 

also  Debnath 2010 , 153 – 173. 

 43.   For a closed, orientable surface of genus  g ,  χ  = 2  –  2 g ; for example, M ö bius strips are nonorientable because 

their  “ inside ”  is not distinct from their  “ outside. ”  See also Blatter and Ziegler 2010. 

 44.   For instance, comparing superparticular ratios [ n: ( n  + 1)] or multiples [1: n ] to other classes of ratios. 

 45.   Thus, a quadratic equation has degree 2 because it contains no power of  x  higher than  x  2 ; a cubic equation 

has degree 3 and no power higher than  x  3 ; and so on. 

 10   Euler: From Sound to Light 

 1.   For an excellent overview of the reception of Newton ’ s theory, see  Hakfoort 1995 , 11 – 71. 

 2.    Ibid. , 79 – 80. 

 3.   For the connection with de Mairan ’ s work in 1717, see  Hakfoort 1995 , 63, 37 – 42. For Malebranche ’ s use of 

the analogy with sound, see 56. See also the excellent treatment in  Darrigol 2009 , 115 – 185; 2012, 152 – 161, 

treating Malebranche, de Mairan, and Bernoulli at 136 – 152. 

 4.    Hakfoort 1995 , 80 – 82. 

 5.   Quoted in  Hakfoort 1995 , 72; regarding Euler ’ s theory, see also  Home 1988 ;  Pedersen 2008 . 

 6.   My translation, from the manuscript cited in  Hakfoort 1995 , 79 – 80. 

 7.   The assessment of the response to the 1744 lecture follows  Hakfoort 1995 , 80 – 82;  Pedersen (2008 , 393) 

considers the analogy between sound and light to be  “ the hard core of Euler ’ s optical research program. ”  Euler ’ s 

extended 1746 presentation of his theory was  “ Nova theoria lucis et colorum ”  (E88, III.5.1 – 45). 

 8.    Hakfoort 1995 , 98. 

 9.   Quoted in Jean Formay ’ s summary of Euler ’ s 1744  “ Pens é es ”  in  Hakfoort 1995 , 90 – 91. 

 10.   See  Pesic 2005 , 42 – 52. 

 11.   Hakfoort 1995, 111. 

 12.    Ibid. , 113. Note that here  f  has been substituted for Euler ’ s original notation of  α  for frequency. 

 13.   This quote from Rameau ’ s  G é n é ration harmonique  (1737) is cited in  Cohen 2001 , 68 – 92, at 73 – 74. 

 14.   See  Rehding 2003 , 15 – 35. 

 15.    “ Du v é ritable caractere de la musique moderne ”  (E315, III.1.516 – 539). See Knobloch 2008. 

 16.   I thank Noam Elkies for pointing out to me these problems in Euler ’ s voice-leading. 

 17.    “ De harmoniae veris principiis per speculum musicum repraesentatis ”  (E457, III.1.568 – 587). In 1840, F é tis 

(1994, 97) noted the priority of Euler ’ s analysis of the dominant seventh, but was in general very critical of 

Euler ’ s approach (69 – 84). 

 18.    Euler 1837 , 2:71, 1:112, 1:109. See also Welsh 2010. 

 11   Young ’ s Musical Optics 

 1.    Peacock 1855 , 128. 

 2.    Ibid. , 12, and  Gurney 1831 , which both rely on Young ’ s autobiographical notes; see also  Hilts 1978 . The most 

complete modern biography is  Wood and Oldham 1954 , which notes that Young ’ s father and grandmother  “ were 

not merely nominal Quakers, but active members of the Society ”  and adduces  “ a certain affinity between the 

Quaker pursuit of truth, with its emphasis on verification in personal experience, and the scientific method ”  (3). 

More recently, see  Robinson 2006 . Regarding the Quaker background, see  Isichei 1970 ;  Cantor 2004 ;  2005 , 64, 

82 – 83, 111;  Mathieson 2007 . 
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 3.    Peacock 1855 , 7, 22 – 23. 

 4.    Ibid. , 35 – 41;  Robinson 2006 , 36 – 40. 

 5.    Cantor 2004 , 147 – 149. 

 6.   Regarding a Quaker doctor of the generation before Young, it was noted that  “ music, dancing, the theatre, 

the opera, wine, women and song, gambling, attendance at cock-fights, bull-baitings, race meetings, all the rough 

hearty joys of the Englishman of the time were incompatible with the Quaker costume he wore ”  ( Wood and 

Oldham 1954 , 35). 

 7.    Darrigol 2009 , 188n140; 2012, 167 – 168. 

 8.    Wood and Oldham 1954 , 49 – 50. 

 9.    Ibid. , 49. 

 10.    Peacock 1855 , 114.  

 11.    Ibid. , 115 – 120, at 118, 120. 

 12.    Ibid. , 121. Young himself attributed  “ the ultimate extent of his uncle ’ s protection ”  to Burke ’ s  “ friendly and 

indulgent ”  interest and his  “ good offices ”  ( Hilts 1978 , 251). 

 13.    Wood and Oldham 1954 , 50. 

 14.    Peacock 1855 , 129. 

 15.    Wood and Oldham 1954 , 65. 

 16.    Young 2002 , 4:613 – 631. 

 17.   See  Euler 1837 , 1:34 – 56, 83 – 87, which first appeared in English in 1795, and  Cantor 1983 , 117 – 123. 

 18.   The superb accounts in  Darrigol 2009;  2012, 166 – 187, place Young in the larger context of this analogy.  

 19.    Young 2002 , 4:543. 

 20.    Ibid . For Euler ’ s statement of the analogy between sound and light, see  Euler 1837 , 1:85. 

 21.   Newton ’ s rings appear even with incoherent light, thus allowing Young ’ s analogy with coherent musical 

tones to go forward, whereas other optical setups would depend on the issue of coherence. The centrality of 

coherence in Young ’ s thought is particularly emphasized in  Kipnis 1991 . 

 22.    Young 2002 , 4:565; he discusses the history of the organ at 1:404. 

 23.    Ibid. , 4:627. 

 24.    Ibid. , 4:544. For Tartini, see Polzonetti 2001; for his combination tones, see Helmholtz 1954, 152 – 159. 

 25.    Ibid. , 4:627. 

 26.    Ibid. , 4:546 – 547. 

 27.    Jackson 2006 , 172 – 176. 

 28.   See  Young 2002 , 4:562 – 572, here quoted at 562, 565 – 567;  Pesic 2013c  gives a detailed discussion of Young ’ s 

treatment of this issue. 

 29.    Young 2002 , 4:633. 

 30.   See  Pesic 2005 , 167 – 169. 

 31.    Young 2002 , 4:633; for his optometer, see 575 – 577. 

 32.   For his  “ Letter to Mr. Nicholson  …  Respecting Sound and Light, ”  see  Young 2002 , 4:607 – 612; for  “ On the 

Theory of Light and Colours, ”  see  Young 2002 , 4:613 – 631. 

 33.    “ On the Theory of Light and Colours ”  ( Young 2002 , 4:618 – 620); see also  Cantor 1970a . 

 34.    Young 2002 , 4:617. In his next paper,  “ An Account of Some Cases of the Production of Colours, ”  Young 

will change these three primaries to red, green, and violet, whose ratios are as 7, 6, and 5, to meet Wollaston ’ s 

corrections of the spectral ratios. 

 35.   The Newton quote about  “ the analogy of nature ”  is cited at  Young 2002 , 4:617; the following quotes come 

from 618. 

 36.    Young 2002 , 4:624 – 626 (emphasis in original). For the development of the technology of these gratings, see 

 Jackson 2000 . 
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 37.   See  Hilts 1978 , 252. 

 38.   See  Pesic 2006 ; see also  Shapiro 1980 . 

 39.    Young 2002 , 4:627. 

 40.    Ibid. , 4:624 – 626. 

 41.   See  Pesic 2006 . 

 42.    Young 2002 , 4:633 – 638. 

 43.    Ibid. , 4:624 – 626. 

 44.    Ibid. , 4:633. He also adduces  “ coloured atmospherical halos ”  and supernumerary rainbows as meteorological 

examples of his colored fringes, writ large in the heavens;  ibid. , 4:634 – 635, 643 – 645. 

 45.    “ Experiments and Calculations Relative to Physical Optics ”  ( Young 2002 , 4:639 – 648, at 639). See also 

 Mollon 2002  and  Kipnis 1991 . 

 46.    Young 2002 , 4:624 – 626. 

 47.   Oddly, Young does not calculate the value of the incident wavelength of light for any of these cases, as he 

had done in his 1801 paper for Newton ’ s rings and for the diffraction grating. Though some have therefore 

questioned whether he really performed the measurements, the table shown seems perfectly definite, unless one 

doubts that the numbers listed there really were observed by Young (rather than cooked up after the fact). See 

 Worrall 1976 ; cf.  Kipnis 1991 , 118 – 124. Young may have thought it sufficient to show the consistency of his 

new experiment with those of Newton, relying on his 1801 determination of wavelength from Newton ’ s rings 

and diffraction gratings to establish that number ’ s value. 

 48.   All quotes in this paragraph from  Young 2002 , 4:645. 

 49.   See  Jones 1975 . 

 50.   Cited in  Hilts 1978 , 252. 

 51.   Regarding Young ’ s work at the Royal Institution, see  Peacock 1855 , 134 – 137,  Cantor 1970b , and  Robinson 

2006 , 85 – 94. For details of his exposition of music and light in these lectures, see  Pesic 2013c . 

 52.   Young ’ s penchant for encyclopedism led him to contribute articles not just on optics but also on Egypt (a 

seminal work in the beginnings of Egyptology), bridges, and tides, among many others; see  Robinson 2006 , 

179 – 188, which discusses the reception of Young by the French school at 165 – 178. See also  Arago 1832 ;  Frankel 

1976 ;  James 1984 . 

 53.   For Malus and polarization, see  Pesic 2005 , 84 – 89. See also  Park 1997 , 252 – 253, 273 – 274, and especially 

Darrigol 2012, 187 – 224. 

 54.    Young 1855 , 383. 

 55.    Young 2002 , 380. 

 56.    Young 1855 , 383. 

 57.   For detailed discussion, including the work of Fresnel and Arago, see  Buchwald 1989 , 205 – 232. 

 58.    Ibid. , 203 – 214. 

 59.   See  Wood and Oldham 1954 , 186, quoted and echoed by  Robinson 2006 , 173. 

 60.    Young 1855 , 1:412 – 417, at 414, 415. 

 61.   For Fresnel ’ s final understanding of transversality, see  Buchwald 1989 , 228 – 231. 

 62.   See  Gordon 1982 , 27 – 30; Buchwald and Josefowicz 2010, 316 – 327. 

 63.   Cited in  Hilts 1978 , 254. 

 64.    For further references and details on topics discussed throughout this chapter, see Pesic 2013c. 

 12   Electric Sounds 

 1.   Cited in  Mautner and Miller 1952 , 225. 

 2.    Ibid. , 228. 

 3.    Lichtenberg 2000 , 180. 



Notes to pages 182–198 303

 4.    Lichtenberg 1997 , 151. 

 5.   Carlson 1965; Takahashi 1979; Schiffer 2003, 244. 

 6.    Chladni 1809 , v – vii. For Hooke ’ s earlier discovery of similar figures, see Gouk 1999, 219 – 221; Wardhaugh 

2008, 106 – 110. 

 7.   For an outstanding treatment of these and other aspects of Chladni ’ s works, see  Jackson 2006 , 13 – 44; see 

also  Schwartz 2011 , 177 – 180.  

 8.    Koertge 2008 , sec. on Chladni. 

 9.   The committee ’ s report is included in  Savart 1819 , 114 – 188, at 115. 

 10.     Ø rsted 1998 , 180. In 1802,  Ø rsted had noted that Chladni had discovered that  “ the notes a flute sound far 

higher in hydrogen gas than in oxygen gas ”  (130). See also Christensen 2013, 207 – 213; for  Ø rsted ’ s relation to 

Ritter, see 108 – 112, 147 – 155, 242 – 244. 

 11.   For Ritter as Romantic, see  Wetzels 1990 . 

 12.     Ø rsted 1998 , 183. 

 13.    Strickland 1998 , 457. 

 14.    Ritter 1806 , 3:115 – 116;  Strickland 1998 , 458. 

 15.    Ritter 1806 , 2:124;  Strickland 1998 , 458. 

 16.     Ø rsted 1998 , 183 – 184. 

 17.   For  Ø rsted ’ s writings on music, see Christensen 2013, 214 – 220. Benjamin cited in  Ritter 2010 , 4 – 5, 

470 – 507, at 477, 479. 

 18.    Rosen 1995 , 58 – 78, at 59; see also  Ritter 2010 , 301 – 303, 330 – 331, 335, 444 – 447, 477 – 485. 

 19.    Ritter 1806 , 1:160, 2:232;  Str ä ssle 2004 , 32 – 33; my translation. 

 20.    Christensen 1995 , 167; for Benjamin ’ s reading of this passage, see  Str ä ssle 2004  and the brilliant commen-

tary of  Erlmann 2010 , 185 – 202. 

 21.   Cited in  Rosen 1995 , 59. 

 22.     Ø rsted 2011 , 136 – 210, which describes many visits to the Parisian theaters and several encounters with Biot 

(163, 184, 209). 

 23.     Ø rsted 1998 , 185 – 191, at 191. 

 24.    Ibid. , 279. 

 25.    Ibid. , 274. 

 26.    Ibid. , 280. 

 27.    Ibid. , 420. See Christensen 2013, 336 – 349. 

 28.     Ø rsted 1998 , 417 – 418; see also  Snelders 1990 . 

 29.    Biot and Savart 1820 ;  Hashimoto 1983 . 

 13   Hearing the Field 

 1.    Faraday 1991 , 1:53; for his love of music, see  Williams 1971 , 10. A  “ serpent ”  here denotes a bass wind 

instrument of curving shape, the ancestor of a tuba. 

 2.    Hirshfeld 2006 , 4; on Davy, see  Lawrence 1990 . 

 3.    Amp è re 1936 , 2:562. 

 4.    Faraday 1821 ; for his misunderstanding, see  Williams 1971 , 151 – 152. 

 5.    Faraday 1818 .  “ Singing flames ”  continued to fascinate many savants; see  Tyndall 1898 , 244 – 286;  Jones 1945 . 

 6.    Faraday 1991 , 1:221 – 223. 

 7.    Faraday 1821 , 196. 

 8.    Ibid. , 197. 

 9.    Faraday 1932 , 1:279 – 280. For a helpful survey of the history, see  Williams 1971 , 169 – 183. 



304 Notes to pages 198–215

 10.    Williams 1971 , 175. 

 11.    Ibid. , 176.  

 12.   Cited in  Bowers 2001 , 7. 

 13.    Wheatstone 1879 , 1 – 12; see also  Bowers 2001 , 15 – 31. 

 14.    Wheatstone 1879 , 5. For the meeting with  Ø rsted, see Christensen 2013, 212. 

 15.    Ibid. , 8. 

 16.    Ibid. , 21 – 29. 

 17.    Ibid. , 21. 

 18.    Ibid. , 36 – 46. 

 19.    Faraday 1991 , 1:448. 

 20.    Wheatstone 1879 , 42; emphasis in the original. 

 21.   Ibid., 44. 

 22.   Proceedings of the Royal Institution 1829. 

 23.    Williams 1971 , 177. 

 24.    Bowers 2001 , 35 – 41, at 37;  Atlas 1996 , 28 – 34;  Chladni 1821 . 

 25.   As per his 1834 account,  Wheatstone 1879 , 84 – 96, at 84; see also  Bowers 2001 , 57 – 68;  Canales 2009 , 138, 

151, 159. 

 26.    Wheatstone 1879 , 58 – 59. 

 27.    Williams 1971 , 178. 

 28.   Ibid., 179. 

 29.    Faraday 1932 , 329 – 359; see also  Faraday 1831 . 

 30.    Faraday 1831 , 309. See the helpful discussion in Tweney 1992a,b. 

 31.    Ibid. , 336. 

 32.    Faraday 1991 , 1:556 – 557. 

 33.    Faraday 1831 , 337 – 338. See also Coleridge ’ s poem  “ The Eolian Harp ”  (1795) and  Abrahms 1957 ;  Bidney 

1985 . 

 34.    Faraday 1831 , 328. 

 35.    Faraday 1932 , 1:353. 

 36.   Ibid., 1:358 – 359. 

 37.    Faraday 1965 , 1:3. 

 38.    Faraday 1932 , 1:368;  1965 , 1:4. 

 39.    Faraday 1965 , 1:16, 18, 19. 

 40.   From a manuscript in the Royal Institution included in  Williams 1971 , 181, which notes the analogy between 

sound and electricity, as does  Hirshfeld 2006 , 117 – 118. 

 41.   See  Hubbard 1968 , 27 – 67;  Bowers 2001 , 117 – 138. 

 42.    Tyndall 1961 , 149. 

 43.    Wheatstone 1879 , 138 – 140, at 138. 

 44.   For this development, see  Galison 2003 , which mentions Wheatstone on 30. 

 45.    Wheatstone 1879 , 141 – 142. 

 46.    Ibid. , 143 – 151. 

 47.   On the different values for this speed, see  Faraday 1965 , 3:515 – 516, 575 – 579. 

 48.   Though Faraday was well aware of Young ’ s work, he shows no awareness of the private letter in which 

Young had recorded his misgivings about the ether. 

 49.    Faraday 1965 , 3:449 – 451, 161 – 168. 



Notes to pages 217–231 305

 14   Helmholtz and the Sirens 

 1.    Helmholtz 1882 , 1:12 – 75; see also  Bevilacqua 1993 . 

 2.    Helmholtz 1882 , 2:760 – 839. 

 3.    Ibid. , 2:858 – 880; see also  Debru 2001;  see  Meulders 2010 , 89 – 106. 

 4.    Helmholtz 1882 , 2:229 – 260. 

 5.    Helmholtz 1971 , 144 – 22, at 213 – 222;  Hatfield 1990 ;  Lenoir 1993 , 124 – 126;  Hui 2008 , 77 – 79. 

 6.   For the relation between his physiological, mathematical, and philosophical work, see  Richards 1977 . 

 7.    Helmholtz 1882 , 2:45 – 70; on the relation between visual color and sound-color ( Klangfarbe ), see  Kursell 

2013 . 

 8.    Helmholtz 1867 , 282 – 288, 293, which incorporated the work of  Grassmann 1854 ;  MacAdam 1970 , 53 – 60. 

 9.    Helmholtz 1962a , 2:64; see also  Lenoir 1993 . 

 10.    Helmholtz 1962a , 2:76. 

 11.    Ibid. , 2:66. 

 12.    Ibid. , 2:77, originally published in  Helmholtz 1882 , 2:78 – 82. 

 13.    Helmholtz 1962a , 2:117. 

 14.    Ibid. , 2:77. 

 15.   For excellent discussions of Helmholtz within his larger musical and cultural milieus, see Hiebert and Hiebert 

1994;  Jackson 2006 , 146 – 148;  Hui 2008 , 39 – 82;  Erlmann 2010 , 217 – 270;  Hui 2013a . 

 16.    Koenigsberger 1965 , 14;  Helmholtz 1993 , 43n2, 68. 

 17.    Helmholtz 1962b , 250 – 286. Regarding the relation between painting and visual science in Helmholtz, see 

 Hatfield 1993 , 522 – 588, at 535 – 540. On the significance of the  Kulturtr ä ger  in science, see  Sonnert 2005 . 

 18.    Helmholtz 1882 , 1:256 – 302, 420 – 423, 424 – 426. 

 19.   For helpful overviews of his project, see  Vogel 1993 ;  Meulders 2010 , 153 – 199;  Fowler 2004 . 

 20.   For Helmholtz ’ s use of  “ instruments as agents of change, ”  see  Pantalony 2009 , 20 – 36. For Weber ’ s anticipa-

tion of Helmholtz ’ s recording technique, see Kittler 1999, 26. 

 21.    Helmholtz 1954 , 229 – 233. 

 22.   For the larger context of this instrument, see Rehding 2014. See also  Kursell 2013 . 

 23.    Helmholtz 1954 , 8, 11, 13. 

 24.    Ibid. , 155 – 159, at 157, with mathematical details at 411 – 413, 418 – 420. See also Jackson 2006, 178 – 179. 

 25.    Helmholtz 1954 , 158. 

 26.    Ibid. , 170, 173. 

 27.    Helmholtz 1903 , 1:265 – 365, at 309;  Helmholtz 1962b , 93 – 185, at 130 – 131. 

 28.    Helmholtz 1903 , 1:120 – 155, at 122;  Helmholtz 1962b , 22 – 58, at 23. 

 29.    Helmholtz 1954 , 369 – 370. In the second edition, following this paragraph the text then cuts to the final 

paragraph on 371. Regarding the importance of invariance in his thinking, see  Hatfield 1993 , 552 – 553. 

 30.    Meulders 2010 , 71. 

 15   Riemann and the Sound of Space 

 1.    Koenigsberger 1965 , 207 – 208. 

 2.    Gauss 2005 . 

 3.    Riemann 1990 , 304 – 319; quoted in  Pesic 2007 , 23 – 45. 

 4.   See  Pesic 2007 , 2; see also  Scholz 1982 ;  Nowak 1989 . 

 5.    Riemann 1990 , 318; quoted in  Pesic 2007 , 33; see also  Grattan-Guinness and Cooke 2005 , 506 – 520. 

 6.    Riemann 1990 , 304, 306; quoted in  Pesic 2007 , 23, 24. 



306 Notes to pages 231–238

 7.    Helmholtz 1867 , 288 – 297. Young 2002, 4:617. 

 8.    Riemann 1990 , 309 – 310; quoted in  Pesic 2007 , 26 – 27. In modern notation, Riemann generalized the quadratic 

Euclidean line element  ds  2   = dx  1  
2   +dx  2  

2   +dx  3  
2  (in terms of three spatial coordinates  x  1 ,  x  2,   x  3 ) to a general quadratic 

form  ds  2   = g  11   dx  1  
2   + g  12   dx  1  dx  2   +g  22   dx  2  

2 +  …  =  Σ    μ  ν   g  μ  ν   dx  μ   dx  ν    (summed over all  n  dimensions,   μ ,  ν   = 1,  …    , 

 n ), where  g  μ  ν    is the  “ metric tensor. ”  

 9.    Riemann 1990 , 320 – 325; see also  Ionescu-Pallas and Sofonea 1986 ;  Archibald 1991 ;  Laugwitz 1999 , 254 –

 263, 269 – 272. 

 10.    Maxwell 1868 ;  1890 , 2:125 – 143. 

 11.    Riemann 1990 , 168 – 176. 

 12.   See  Pesic 2007 , 41 – 45. 

 13.    Riemann 1990 , 370 – 382;  1984 ;  Laugwitz 1999 , 281 – 287. 

 14.   Riemann 1990, 587 – 589; Laugwitz 1999, 2 – 3. 

 15.   Riemann 1990, 373; 1984, 32 – 33. 

 16.   Riemann 1990, 375; 1984, 35. 

 17.   See  Ritchey 1991 ;  Tonietti 2011 . 

 18.    Riemann 1990 , 376;  1984 , 35. 

 19.    Helmholtz 1971 , 366 – 408, at 370 – 377;  Hui 2008 , 78 – 79. For Ernst Mach ’ s sign theory of hearing, see  Hui 

2013a . 

 20.    Riemann 1990 , 380;  1984 , 37. For the developing concept of attention, see  Crary 1999 , 30, 64, 104 – 105; 

 Steege 2012 , 82 – 155. 

 21.    Riemann 1990 , 374; 1984, 34. 

 22.   Jacob Henle, the friend and editor who published Riemann ’ s paper posthumously, noted that  “ Riemann 

thought that the mathematical problem to be solved was in fact hydraulic [ hydraulisches ] ” ; quoted in Riemann 

1990, 370n. See also Riemann 1990, 807 – 810, and Gallagher 1984. 

 23.    Helmholtz 1882 , 2:503 – 514, 515 – 581, collected in  Helmholtz 1873 . 

 24.    Koenigsberger 1965 , 267. 

 25.   Eventually, Helmholtz ’ s detailed description of the ear was superseded by later anatomical findings, particu-

larly because the larger context of the processing of hearing became understood as involving the auditory system 

of the brain as well. Rather than being a kind of  “ nerve piano, ”  its separate cilia sympathetically responding to 

incoming pitches, the cochlea currently is considered to comprise a series of chambers of variable resonant 

frequency, in which the cilia respond to the local amplitude of vibration, rather than its frequency. As Riemann 

surmised, the overall functioning of hearing may be described in terms of inputs and outputs of a complex 

electrical network. Cf.  Sterne 2003 , 62 – 67; Erlmann 2010, 312 – 314. 

 26.    Riemann 1867 ;  Dedekind 1990 . 

 27.    Koenigsberger 1965 , 254 – 255.  “ Monodromous ”  means that two congruent bodies remain congruent after 

one of them has undergone a complete rotation around any axis. 

 28.   For d ’ Alembert ’ s and Lagrange ’ s remarks, see  Archibald 1914 ;  Bork 1964 . 

 29.    Helmholtz 1868 ;  1882 , 2:610 – 617, at 610 – 611, as translated in  Pesic 2007 , 47 – 52, at 47, though the date 

of publication of this paper should be listed as 1868, as shown by  Volkert (1993 ). 

 30.   Helmholtz 1868; 1882, 2:611; Pesic 2007, 47 – 48. 

 31.   See also Helmholtz ’ s longer 1868 paper on this subject:  Helmholtz 1977 , 39 – 58;  1882 , 2:618 – 639. For a 

helpful modern account of Helmholtz ’ s argument, see  Adler, Bazin, and Schiffer 1975 , 7 – 16; also  Rosenfeld 

1987 , 333 – 338;  Wahsner 1994 ;  Darrigol 2003 ;  Darrigol 2007 . 

 32.   Goethe,  Faust , Part I, line 1237. Helmholtz devoted two major essays to Goethe:  Helmholtz 1995 , 1 – 17, 

393 – 412. 

 33.   Helmholtz 1868; 1882, 2:617; Pesic 2007, 51. 

 34.   For Beltrami, see  Gray 1989 , 147 – 154. 

 35.    Torretti 1978 , 155 – 179;  Sch ü ller 1994 ;  Volkert 1996 . 



Notes to pages 238–248 307

 36.   For the non-Euclidean character of color space, see chapter 18. 

 37.   Helmholtz 1868; 1882, 2:616 – 617;  Pesic 2007 , 50 – 51; see also  Heinzmann 2001 . 

 38.   The second edition (1885) of the  Handbuch  mentions Riemann and describes color perception as a three-

dimensional manifold comparable to space;  Helmholtz 1896 , 336. 

 39.   For the role of Heinrich Grassmann, see  Torretti 1978 , 109;  Scholz 1980 . 

 40.    Helmholtz 1954 , 370, based on the fourth German edition (1877); cf.  Helmholtz 1865 , 560;  Helmholtz 1870 , 

576. See also  Vogel 1993 , 273. 

 41.    Helmholtz 1954 , 370. 

 42.   See  Helmholtz 1995 , 76 – 95. 

 43.   Quoted in  Pesic 2007 , 53 – 70, at 53. 

 44.    Ibid. , 64. 

 45.    Ibid. , 61. 

 46.    Ibid. , 59. 

 47.   For Immanuel Kant on space as a manifold, see  Critique of Pure Reason  B50; see also  Lenoir 2006 . 

 48.   Quoted in  Pesic 2007 , 59. 

 49.   See  Helmholtz 1977 , 159 – 160;  Hyder 1999 . 

 50.   Quoted in Pesic 2007, 68. 

 51.   See, e.g.,  Fullinwider 1990 . 

 52.   Helmholtz writes his four-dimensional line element as  ds  2  =  dx  2  +  dy  2  +  dz  2  +  dt  2 , in which he then allows 

 t  to become imaginary ( t = i τ  ), so that the four-dimensional manifold is now pseudospherical and hence 

 ds  2  =  dx  2  +  dy  2  +  dz  2   −   d τ   2 , exactly the form of the Lorentzian line-element used by Einstein and Minkowski, if 

  τ  =ct , where  c  is the speed of light. 

 53.   Abbott 1992;  Pesic 2007 , 54 – 55;  Reichenbach 1970, 308 . 

 54.   See  Hawkins 1994 ;  2000 , 124 – 130. 

 55.   See  Hawkins 2000 , 34 – 42;  Rowe 1992 . For Clifford ’ s response, see Pesic 2007, 71 – 87. 

 56.   Quoted in  Pesic 2007 , 109 – 116, at 110. 

 57.    Heinzmann 1992 ,  2001 . 

 58.   See  Pesic 2007 , 100; for the Poincar é  and Klein models, see  Rosenfeld 1987 , 236 – 246. 

 59.    Einstein 1987 , 1:220. 

 60.    Solovine and Einstein 1956 , viii;  Holton 1996 , 205;  Cahan 2000 , 59 – 74. 

 61.   See  Stein 1977 ;  Carrier 1994 ;  Friedman 2002 ;  Ferreiros 2006 . 

 62.   Quoted in  Howard 2005 , 34. 

 63.   Einstein as quoted in Pesic 2007, 190. The mathematical details not given in his 1854 lecture are provided 

in  Riemann 1990 , 423 – 436;  Farwell and Knee 1990 . 

 64.    Einstein 1987 , 6:569; second Einstein quote from  Pesic 2007 , 161. 

 16   Tuning the Atoms 

 1.    Sommerfeld 1934 , v. 

 2.     Å ngstr ö m 1855 , 327. 

 3.   See  Pais 1986 , 166 – 205. 

 4.    H  α    6562.1  Å ,  H  β    4860.7  Å ,  H  γ    4340.1  Å ,  H  δ    4101.2  Å . 

 5.    Stoney 1871 , 291. 

 6.    Helmholtz 1954 , 23 – 24. 



308 Notes to pages 248–257

 7.   Stoney here instances the Fourier series, so that  “ the  n th of these lines is represented by the term  C nxn nsin( ),+ α   

in which  C n   is the amplitude of the vibration; and consequently  C n   2  represents the brightness of the line ”  ( Stoney 

1871 , 293). 

 8.    Ibid. ; on the clarinet, see  Helmholtz 1954 , 98 – 99. 

 9.    Stoney 1871 , 295. 

 10.    Ibid. , 296. 

 11.   See  Stoney and Reynolds 1871 , which explicitly mentions Helmholtz and the violin string on 47. 

 12.   There is only a brief mention of this result in  Stoney 1880 . 

 13.    Balmer 1885a , 551. 

 14.   Ibid.  McGucken (1969,  131) notes that  “ certainly Balmer knew of Stoney ’ s earlier work. ”  

 15.   Balmer 1885a, 551 – 552.  Pais 1986 , 172, though generally useful as a summary, misleadingly translates 

 Grundton  as  “ keynote. ”  

 16.    Balmer 1885a , 553. 

 17.    Helmholtz 1954 , 40 – 41. Balmer would have known these as  “ cylinder functions [ Zylinderfunktionen ]. ”  

 18.   The frequency goes as  C m n p+( )2  , where  C  is a coefficient depending on the plate,  m  and  n  are integers, 

and  p  is roughly 2 for a circular plate. The coefficient  p  can vary between 1.4 and 2.4 for other, more complicated 

shapes, such as cymbals, hand bells, or church bells. As a mathematician, Balmer would also have known the 

approximate expression of Bessel functions involving squares; see  Rayleigh 1945 ;  Airey 1910 . 

 19.   His second publication ( Balmer 1885b ) extends his first results to several more recently discovered hydrogen 

lines, which, compared with his formula for  n  = 2,  m  = 5 – 16, he finds  “ agreement that must surprise to the 

highest degree ” ; his fourth and final paper ( Balmer 1897 ) addresses a number of elemental spectra and, in an 

addendum, discusses the work of  Johannes Rydberg (1890) .  Pais (1986 , 173) implies misleadingly that Balmer 

did not address other elements besides hydrogen until this publication, whereas he does at least mention his 

thoughts in  Balmer 1885a , 559 – 560. 

 20.    Balmer 1885c . 

 21.   Rayleigh 1945. In the whole work, the word  “ music ”  is only used explicitly five times. For the distinction 

between discovery and justification, see Reichenbach 2006, 382. 

 22.    Rayleigh 1945 , vi – vii. 

 23.   This is true, for example, of  Rydberg 1890 . 

 24.    Husserl 1970 , 52 – 53. 

 25.    Ibid. , 360 – 361. For discussions of this process, see  Klein 1985 , 65 – 84;  Derrida 1989 , 98 – 107. 

 26.   I have discussed this in  Pesic 2000a , 2 – 3, and applied it throughout that work. 

 17   Planck ’ s Cosmic Harmonium 

 1.    Husserl 1939 , 212. The phrase is not included in the standard edition and translation ( Husserl 1970 );  Klein 

(1985 , 372) concludes that  “ this sentence is based on Husserl ’ s own words, uttered in conversation with Fink, ”  

the editor who first published the essay in 1939. 

 2.    Planck 1998 , 7. 

 3.   For his comments on Helmholtz and energy, see  Planck 1998 , 19 – 20, 99 – 107. 

 4.   This and the following general information about Planck ’ s musical life come from the excellent account in 

 Heilbron 1986 , 3, 34. For a superb account of the  “ singing savants ”  in the earlier part of the century, see  Jackson 

2006 , 45 – 74. 

 5.   For Planck ’ s personal recollections of Helmholtz, see  Planck 1949 , 15, 24 – 25. 

 6.    Planck 1893 , 428;  Pesic 2014c . 

 7.    Heilbron 1986 , 34. 

 8.    Hui 2013b ;  Hiebert 2003 . 

 9.    Planck 1949 , 26. 

 10.    Helmholtz 1954 , 316. 



Notes to pages 257–271 309

 11.    Ibid. , 314. 

 12.   See  Swafford 1997 , 509 – 510. 

 13.   See, e.g.,  Duffin 2007 . 

 14.    Planck 1949 , 26 – 27. 

 15.    Planck 1893 , translated in  Pesic 2014c . Note that this paper does not appear in Planck ’ s collected physics 

papers ( Planck 1958 ), indicating the disciplinary divide as perceived by his editors. 

 16.   See the discussion of this issue in  Duffin 2007 . 

 17.   Planck 1893, 418; Pesic 2014c. 

 18.   The passage in question comes from the eighth volume of Sch ü tz ’ s  S ä mmtliche Werke , edited by Spitta and 

published in 1889, only four years before. 

 19.   For an explanation of how exactly these five commas result, see  Pesic 2014c . 

 20.    Planck 1893 , 439 – 440;  Pesic 2014c . 

 21.    Planck 1949 , 27. 

 22.   Planck later became the first champion of Einstein ’ s relativity theory, on the grounds that it revealed a deeper, 

less anthropomorphized absolute; see  Planck 1998 , 112 – 130, and  Gorham 1991 . 

 23.   See  Heilbron 1986 , 4. 

 24.    Hui 2013b , 141 – 142. 

 25.    Planck 1893 , 438; Pesic 2014c. 

 26.    Planck 1893 , 439. 

 27.    Hui 2013b , 142. 

 28.   Planck wrote this in 1935, during the even blacker years of the Nazi period; see  Mulligan 1994 . 

 29.    Planck 1949 , 33 – 34. For Planck ’ s principle and its historical ramifications, see  Gorham 1991 . 

 30.   For a thorough discussion of Planck ’ s use of the resonator concept, see  Kangro 1976 , 132 – 148. 

 31.   Helmholtz mentions his use of the harmonium to generate exact pitches for his resonator experiments in 

 Helmholtz 1954 , 56. 

 32.    Planck 1899 , 479 – 480. 

 33.    Hermann 1973 , 39. 

 34.   The Planck length is  
hG

c2 3π
 , the only quantity with units of length that can be formed from Planck ’ s 

constant  h , the Newtonian gravitational constant  G , and the speed of light  c  (the factor 2  π   generally divides 

 h  as unit of angular momentum, though Planck himself did not include this factor). In contemporary physics, 

this length is often taken to give the scale at which quantum effects enter into the fundamental structure of 

space-time itself, which may no longer be a continuum at that scale. Likewise, the Planck time  
hG

c2 5π
  = 

5.391  ×  10  – 44  sec, corresponds to a  “ Planck frequency ”   
2 5πc

hG
  = 1.855  ×  10 43  Hz. My calculation of the 

corresponding  “ pitch ”  assumes concert A as 440 Hz. 

 35.    Heilbron 1986 , 34. 

 36.    Hermann 1971 , 21. 

 37.    Planck 1981 , 214. 

 38.    Hertz 1962 , 21. 

 18   Unheard Harmonies 

 1.   Letter to Paul Plaut, October 23, 1928, quoted in Einstein 1979, 78. 

 2.    Einstein 1987 , 1:lxiii (translation: xxi). 



310 Notes to pages 272–282

 3.    Heisenberg 1971 , 10 – 11. 

 4.    Moore 1989 , 18. 

 5.    Ibid. , 120 – 129. Schr ö dinger ’ s writings on color are collected in  MacAdam 1970 , 134 – 193. 

 6.   In 1922, Schr ö dinger also was influenced by Hermann Weyl ’ s work on extending general relativity to a  “ gauge 

theory ”  including electromagnetism; see  O ’ Raifeartaigh 1997 , 77 – 106;  Moore 1989 , 146 – 148. 

 7.    Bloch 1976 , 23. 

 8.    Ibid. , 23 – 24. 

 9.   He initially used relativistic expressions and found an equation (now called the Klein – Gordon equation) that 

he could not immediately interpret; in its place, he then put forward a nonrelativistic expression, now called the 

Schr ö dinger equation. See  Pais 1986 , 288 – 289. 

 10.    Schr ö dinger 1982 , 1. 

 11.    Schr ö dinger 1928 , 7. 

 12.    Schr ö dinger 1982 , 10. 

 13.    Ibid. , 26. 

 14.   Regarding the problem of visualization, see  Pesic 2002 , 97 – 99. A  Hilbert space  comprises vectors (which 

may be real or complex) having a positive measure of distance (given by their  “ inner product ” ) and is  complete , 

meaning that any Cauchy sequence (in which the successive terms become arbitrarily close to each other as the 

sequence progresses) converges to a limit within the space. 

 15.   Dirac 1963, 47; Weyl 2009, 11 – 12;  Holton 1988 . 

 16.    Kramer 1994 ;  Kramer et al. 2010 ;  Hermann, Hunt, and Neuhoff 2011 ;  Volmar 2012, 2013a,b ;  Supper 2012 . 

 17.    “ Ode to a Grecian Urn, ”  lines 11 – 14. For a later physicist ’ s expression of such longings, see  Wilczek and 

Devine 1988 . 

 18.   For an overview, see  Vecchia 2008 ;  Cappelli et al. 2012 , 221 – 235. In a 1730 letter to Goldbach, Euler first 

defined what was only named the  “ beta function ”  by Jacques Binet in 1839; see Cajori 2011, 271 – 272. 

 19    Nambu 2012 , 279; emphasis added.  Susskind (2012 ) also relied on the analogy with the harmonic oscillator. 

 Nielsen (2012 ) traversed a different, but finally convergent, metaphorical path, realizing that the Feynman 

diagrams for the processes described by the Veneziano amplitude could be understood in terms of the behavior 

of an elastic sheet. 

 20.   In popular writings, Smolin 2006 and Woit 2006 challenge the rhapsodic string encomium of Greene 2000. 

 21.    Erlmann 2010  places this resonance in the larger context of the history of reason. 

 22.   Brann 2011, 42 – 43. 

 23.   I address science and the hiddenness of nature in Pesic 2000. 

 24.   See  Susskind 2005 ;  Carr 2007 . 

 25.   The demiurge even  “ outsourced ”  to the young gods the creation of human beings; see  Timaeus  42d – e. 

 26.   A growing literature considers cosmology in terms of bubbles; see Kleban 2011, Salem 2011. 

 27.   The valuable accounts in  Daston and Galison 2007  and  Daston and Lunbeck 2011  remain centered on visual 

and material modalities and evidence. The present work may complement these accounts and help situate issues 

of  “ objectivity ”  and  “ observation ”  (as post-Kantian concerns) within the larger historical and metaphysical 

framework that aural issues require. 

 28.   Pesic in preparation-b. 

     



   Abbott ,  Edwin A.   1992 .   Flatland: A Romance of Many Dimensions  .  New York :  Dover .  

   Abdounar ,  Oscar Jo ã o .  2008 .  Ratios and music in the Late Middle Ages: A preliminary survey . In   Music and 
Mathematics: In Late Medieval and Early Modern Europe  , ed.  Philippe   Vendrix , 23 – 69.  Turnhout :  Brepols .  

   Abrahms ,  M. H.   1957 .  The correspondent breeze: A romantic metaphor.    Kenyon Review    19 : 113  –  130 .  

   Adams ,  Charles R.   2013 .   “  In Experiments Where Sense Is Judge  ” : Isaac Newton ’ s tonometer and colorimeter . 

  Journal of the Oughtred Society    22 : 41  –  45 .   

   Adler ,  Ronald ,  Maurice   Bazin , and  Menahem   Schiffer .  1975 .   Introduction to General Relativity  ,  2nd ed.   New 

York :  McGraw-Hill .  

   Airey ,  John R.   1910 .  The vibrations of circular plates and their relation to bessel functions.    Proceedings of the 
Physical Society of London    23 : 225  –  232 .  

   Ammann ,  Peter J.   1967 .  The musical theory and philosophy of Robert Fludd.    Journal of the Warburg and Cour-
tauld Institutes    30 : 198  –  227 .  

   Amp è re ,  Andr é -Marie .  1936 .   Correspondance du Grand Amp è re  .  Paris :  Gauthier-Villars .  

    Å ngstr ö m ,  Anders Jonas .  1855 .  Optical researches.    Philosophical Magazine    9 : 327  –  342 .  

   Arago ,  F.   1832 .    É loge historique du Docteur Young  .  Paris .  

   Archibald ,  R. C.   1914 .  Time as a fourth dimension .   Bulletin (New Series) of the American Mathematical Society 
   20 : 409  –  412 .  

   Archibald ,  Thomas .  1991 .  Riemann and the theory of electrical phenomena: Nobili ’ s rings.    Centaurus   

 34 : 247  –  271 .  

   Aristotle .  1984 .   The Complete Works of Aristotle  . Ed.  Jonathan   Barnes .  Princeton, NJ :  Princeton University Press .  

   Armstrong ,  H. L.   1972 .  Comment on Newton ’ s inclusion of indigo in the spectrum.    American Journal of Physics   

 40 : 1709 .  

   Artusi ,  Giovanni Maria .  1934 .   Discorso secondo mvsicale di Antonio Braccino [pseud.] Da Todi. Per la dichiara-
tione della lettera posta ne ’  Scherzi Musicali del Sig. Claudio Monteuerde   .   Venice :  G. Vincenti .  

   Atlas ,  Allan W.   1996 .   The Wheatstone English Concertina in Victorian England  .  Oxford :  Clarendon Press .  

   Aubel ,  Matthias .  2008 .   Michael Stifel: Ein Mathematiker im Zeitalter des Humanismus und der Reformation  . 

 Augsburg :  Rauner .  

   Augst ,  Bertrand .  1965 .  Descartes ’ s compendium on music .   Journal of the History of Ideas    26 : 119  –  132 .  

   Bacon ,  Francis .  1968 .   The Works of Francis Bacon  . Ed.  James   Spedding ,  Robert Leslie   Ellis , and  Douglas   Denon  

 Heath .  New York :  Garrett .  

   Balmer ,  J. J.   1885a .  Notiz  ü ber die Spectrallinien des Wasserstoffs .   Verhandlungen der naturforschenden Gesell-
schaft in Basel    7 : 548  –  560 .  

   Balmer ,  J. J.   1885b .  Zweite Notiz  ü ber die Spectrallinien des Wasserstoffs .   Verhandlungen der naturforschenden 
Gesellschaft in Basel    7 : 750  –  752 .  

 References 



312 References

   Balmer ,  J. J.   1885c .  Notiz  ü ber die Spectrallinien des Wasserstoffs.    Annalen der Physik    261 : 80  –  87 .  

   Balmer ,  J. J.   1897 .  Eine neue Formel f ü r Spektralwellen .   Verhandlungen der naturforschenden Gesellschaft in 
Basel    11 : 448  –  463 .  

   Barbera ,  Andr é  .  1984 .  Placing  Sectio Canonis  in historical and philosophical contexts.    Journal of Hellenic Studies   

 104 : 157  –  161 .  

   Barbieri ,  Patrizio .  2002 .  The evolution of open-chain enharmonic keyboards c. 1480 – 1650.    Schweizer Jahrbuch 
f ü r Musikwissenschaft    22 : 145  –  184 .  

   Barbour ,  J.   Murray .  1972 .   Tuning and Temperament: A Historical Survey  .  New York :  Da Capo Press .  

   Barker ,  Andrew , ed.  1984 .   Greek Musical Writings  .  Cambridge :  Cambridge University Press .  

   Barker ,  Andrew .  2000 .   Scientific Method in Ptolemy ’ s Harmonics  .  Cambridge :  Cambridge University Press .  

   Beaulieu ,  Armand .  1995 .   Mersenne: Le grand Minime  .  Brussels :  Fondation Nicolas-Claude Fabri de Peiresc .  

   Beeckman ,  Isaac .  1939 .   Journal tenu par Isaac Beeckman, de 1604  à  1634  . Ed.  Cornelis   De Waard .  La Haye : 

 M. Nijhoff .  

   Berger ,  Karol .  1980 .   Theories of Chromatic and Enharmonic Music in Late 16th Century Italy  .  Ann Arbor, MI : 

 UMI Research Press .  

   Bevilacqua ,  Fabio .  1993 .  Helmholtz ’ s  Ueber die Erhaltung der Kraft : The emergence of a theoretical physicist . 

In   Hermann von Helmholtz and the Foundations of Nineteenth-Century Science  , ed.  David   Cahan ,  291  –  333 . 

 Berkeley, CA :  University of California Press .  

   Bibby ,  Neal .  2004 .  Tuning and temperament: Closing the spiral . In   Music and Mathematics: From Pythagoras 
to Fractals  , ed.  John   Fauvel ,  Raymond   Flood , and  Robin   Wilson ,  13  –  27 .  New York :  Oxford University 

Press .   

   Bidney ,  Martin .  1985 .  The Aeolian harp reconsidered: Music of unfulfilled longing in Tjutchev, M ö rike, Thoreau, 

and others.    Comparative Literature Studies    22 : 329  –  343 .  

   Biggs ,  Norman   E. ,  Keith   Lloyd , and  Robin J.   Wilson .  1986 .   Graph Theory, 1736 – 1936  .  Oxford :  Clarendon Press .  

   Biot ,  Jean-Baptiste , and  F é lix   Savart .  1820 .  Note sur le magnetisme de la pile de Volta.    Annales de Chimie et 
de Physique    15 : 222  –  223 .  

   Birkhoff ,  George David .  1933 .   Aesthetic Measure  .  Cambridge, MA :  Harvard University Press .  

   Blatter ,  Christian , and  G ü nter M.   Ziegler .  2010 .  Eulers Polyederformel und die Arithmetisierung der Gestalt . In 

  Mathesis  &  Graph é : Leonhard Euler und die Entfaltung der Wissensystems  , ed.  Horst   Bredekamp  and  Wladimir  

 Velminski , 243 – 256.  Berlin :  Akademie Verlag .  

   Bloch ,  Felix .  1976 .  Heisenberg and the early days of quantum mechanics.    Physics Today    29 ( 12 ): 23 – 27 .  

   Blumenberg ,  Hans .  1987 .   The Genesis of the Copernican World  .  Cambridge, MA :  MIT Press .  

   Boethius .  1989 .   Fundamentals of Music  . Ed.  Claude V.   Palisca , trans. Calvin M. Bower.  New Haven :  Yale Uni-

versity Press .  

   Boetticher ,  W.   1954 . Orlando di Lasso als Demonstrationsobject in der Kompositionslehre des 16. und 17. Jah-

rhunderts. In  Bericht  ü ber den Internationalen Musikwissenschaftlichen Kongress, Bamberg, 1953 , ed. Wilfried 

Brennecke, Willi Kahl, Rudolf Steglich, 124 – 127. Kassel: B ä renreiter-Verlag.  

   Boncella ,  Paul Anthony Luke .  1988 .  Denying ancient music ’ s power: Ghiselin Danckerts ’  essays in the  “ Generi 

Inusitati. ”     Tijdschrift van de Vereniging voor Nederlandse Muziekgeschiedenis    38 : 59  –  80 .  

   Bork ,  Alfred M.   1964 .  The fourth dimension in nineteenth-century physics.    Isis    55 : 326  –  338 .  

   Borzacchini ,  Luigi .  2007 .  Incommensurability, music, and continuum: A cognitive approach.    Archive for History 
of Exact Sciences    61 : 273  –  302 .  

   Bos ,  H. J. M.   2001 .   Redefining Geometrical Exactness: Descartes ’  Transformation of the Early Modern Concept 
of Construction  .  New York :  Springer .  

   Bots ,  Hans , and  Fran ç oise   Waquet .  1997 .   La R é publique des lettres  .  Paris :  De Boeck .  

   Bowers ,  Brian .  2001 .   Sir Charles Wheatstone FRS: 1802 – 1875  ,  2nd ed.   Stevenage :  Institution of Electrical 

Engineers in association with the Science Museum .  

   Boyer ,  Carl B.   1991 .   A History of Mathematics  . Ed.  Uta C.   Merzbach .  New York :  Wiley .  



References 313

   Brain ,  R. M. ,  R. S.   Cohen , and  O.   Knudsen , eds.  2007 .   Hans Christian  Ø rsted and the Romantic Legacy in 
Science: Ideas, Disciplines, Practices   .   Dordrecht :  Springer .  

   Brann ,  Eva T. H.   2011 .   The Logos of Heraclitus: The First Philosopher of the West on Its Most Interesting Term  . 

 Philadelphia :  Paul Dry Books .  

   Braun ,  Werner ,  Theodor   G ö llner ,  Heinz   von Loesch , and  Klaus Wolfgang   Niem ö ller .  1994 .   Deutsche Musiktheo-
rie des 15. bis 17. Jahrhunderts  .  Darmstadt :  Wissenschaftliche Buchgesellschaft .  

   Bredekamp ,  Horst , and  Wladimir   Velminski , eds.  2010 .   Mathesis und Graph é : Leonhard Euler und die Entfaltung 
der Wissenssysteme  .  Berlin :  Akademie Verlag .  

   Brown ,  Gary I.   1991 .  The evolution of the term  “ mixed mathematics. ”     Journal of the History of Ideas   

 52 : 81  –  102 .  

   Brown ,  Harcourt .  1967 .   Scientific Organizations in Seventeenth Century France  .  New York :  Russell  &  Russell .  

   Bruce ,  Ian , ed.  2013 . Euler ’ s dissertation  De sono .  http://www.17centurymaths.com/contents/euler/e002tr.pdf .  

   Buchwald ,  Jed Z.   1989 .   The Rise of the Wave Theory of Light: Optical Theory and Experiment in the Early 
Nineteenth Century  .  Chicago :  University of Chicago Press .  

   Buchwald ,  Jed Z. , and  Diane Greco   Josefowicz .  2010 .   The Zodiac of Paris: How an Improbable Controversy 
Over an Ancient Egyptian Artifact Provoked a Modern Debate between Religion and Science  .  Princeton, NJ : 

 Princeton University Press .  

   B ü hler ,  Walter .  2010 .  Musikalische Skalen und Intervalle bei Leibniz unter Einbeziehung bisher nicht ver ö ff-

tentlichter Texte. I.    Studia Leibnitiana    42 : 129  –  161 .  

   B ü hler ,  Walter .  2013 .   Musikalische Skalen bei Naturwissenschaftlern der fr ü hen Neuzeit: Eine elementarmath-
ematische Analyse  .  Frankfurt :  Peter Lang .  

   Bullynck ,  Maarten .  2010 .  Leonhard Eulers Weg zur Zahlentheorie . In   Mathesis  &  Graph é : Leonhard Euler und 
die Entfaltung der Wissensystems  , ed.  Horst   Bredekamp  and  Wladimir   Velminski ,  157  –  175 .  Berlin :  Akademie 

Verlag .  

   Burkert ,  Walter .  1972 .   Lore and Science in Ancient Pythagoreanism  .  Cambridge, MA :  Harvard University Press .  

   Burmeister ,  Joachim .  1993 .   Musical Poetics  . Trans. Benito V. Rivera.  New Haven :  Yale University Press .  

   Busard ,  H. L. L.,  ed.  2005 .   Campanus of Novara and Euclid ’ s Elements  .  Stuttgart :  Steiner .  

   Busch ,  Hermann Richard .  1970 .   Leonhard Eulers Beitrag zur Musiktheorie  .  Regensburg :  G. Bosse .  

   Cahan ,  David , ed.  1993 .   Helmholtz and the Foundations of Nineteenth-Century Science  .  Berkeley, CA :  University 

of California Press .  

   Cahan ,  David .  2000 .  The Young Einstein ’ s physics education: H. F. Weber, Hermann von Helmholtz, and the 

Zurich Polytechnic Physics Institute . In   Einstein: The Formative Years, 1879 – 1909  , ed.  Don   Howard  and  John  

 Stachel , 43 – 82.  Basel :  Birkh ä user .  

   Cajori ,  Florian .  2011 .   A History of Mathematical Notations  .  Mineola, NY :  Dover .  

   Calinger ,  Ronald .  1996 .  Leonhard Euler: The first St. Petersburg years (1727 – 1741).    Historia Mathematica   

 23 : 121  –  166 .  

   Campion ,  Nicholas .  1994 .   The Great Year: Astrology, Millenarianism, and History in the Western Tradition  . 

 London :  Arkana .  

   Canales ,  Jimena .  2009 .   A Tenth of a Second: A History  .  Chicago :  University of Chicago Press .  

   Cantor ,  G. N.   1970a .  The changing role of Young ’ s ether.    British Journal for the History of Science    5 : 44  –  62 .  

   Cantor ,  G. N.   1970b .  Thomas Young ’ s lectures at the Royal Institution.    Notes and Records of the Royal Society 
of London    25 : 87  –  112 .  

   Cantor ,  G. N.   1983 .   Optics After Newton: Theories of Light in Britain and Ireland, 1704 – 1840  .  Manchester : 

 Manchester University Press .  

   Cantor ,  G. N.   2004 .  Real disabilities? Quaker schools as  “ nurseries ”  of science . In   Science and Dissent in 
England, 1688 – 1945  , ed.  Paul   Wood , 147 – 166.  Aldeshot :  Ashgate .  

   Cantor ,  G. N.   2005 .   Quakers, Jews, and Science: Religious Responses to Modernity and the Sciences in Britain, 
1650 – 1900  .  Oxford :  Oxford University Press .  



314 References

   Cappelli ,  Andrea ,  Elena   Castellani ,  Filippo   Colomo , and  Paolo   Di Vecchia , eds.  2012 .   The Birth of String Theory  . 

 Cambridge :  Cambridge University Press .  

   Cardano ,  Girolamo .  1967 .   Opera omnia  .  New York :  Johnson Reprint .  

   Cardano ,  Girolamo .  1973 .   Writings on Music  . Trans. Clement A. Miller.  Rome :  American Institute of 

Musicology .  

   Cardano ,  Girolamo .  2007 .   The Great Art; or, The Rules of Algebra  . Trans. T. Richard Witmer.  Mineola, NY : 

 Dover .  

   Carlson ,  Chester F.   1965 .  History of electrostatic recording . In   Xerography and Related Processes  , ed.  John H.  

 Dessauer  and  Harold E.   Clark ,  15  –  49 .  New York :  Focal Press .  

   Carpenter ,  Nan Cooke .  1955 .  Music in the medieval universities.    Journal of Research in Music Education   

 3 : 136  –  144 .  

   Carr ,  Bernard , ed.  2007 .   Universe or Multiverse?    Cambridge :  Cambridge University Press .  

   Carrier ,  Martin .  1994 .  Geometric facts and geometric theory: Helmholtz and 20th-century philosophy of physical 

geometry . In   Universalgenie Helmholtz: R ü ckblich nach 100 Jahren  , ed.  Lorenz   Kr ü ger ,  276  –  291 .  Berlin :  Akad-

emie Verlag .  

   Caspar ,  Max .  1993 .   Kepler  . Trans. Clarisse Doris Hellman.  New York :  Dover .  

   Chladni ,  Ernst Florens Friedrich .  1809 .   Trait é  d ’ acoustique  .  Paris :  Courcier .  

   Chladni ,  Ernst Florens Friedrich .  1821 .  Weitere Nachrichten von dem neulich in der musikalischen Zeitung 

erw ä hnten Chinesischen Blasinstrumente Tscheng oder Tschiang.    Allgemeine Musikalische Zeitung   

 23 ( 22 ): 369  –  374 .  

   Christensen ,  Dan C. H.   1995 .  The Orsted – Ritter partnership and the birth of Romantic natural philosophy.    Annals 
of Science    52 : 153 .  

   Christensen ,  Dan Charly .  2013 .   Hans Christian  Ø rsted: Reading Nature ’ s Mind  .  Oxford :  Oxford University 

Press .  

   Christensen ,  Thomas Street , ed.  2002 .   The Cambridge History of Western Music Theory  .  Cambridge :  Cambridge 

University Press .  

   Christensen ,  Thomas Street .  2011 .  Mersenne and the mechanics of musical proportion . In   Proportions: Science, 
musique, peinture  &  architecture  ,   ed.  Sabine   Rommevaux ,  Philippe   Vendrix , and  Vasco   Zara , 247 – 260.  Turnhout : 

 Brepols .  

   Chua ,  Daniel K. L.   2001 .  Vincenzo Galilei, modernity, and the division of nature . In   Music Theory and Natural 
Order from the Renaissance to the Early Twentieth Century  , ed.  Suzannah   Clark  and  Alexander   Rehding ,  17  –  29 . 

 Cambridge :  Cambridge University Press .  

   Chytil ,  Karel .  1904 .   Die Kunst in Prag zur Zeit Rudolf II   .   Prague :  Verlage des Kunstgewerblichen Museums der 

Handels- und Gewerbe-Kammer .  

   Clark ,  Suzannah , and  Alexander   Rehding , eds.  2001 .   Music Theory and Natural Order from the Renaissance to 
the Early Twentieth Century  .  Cambridge :  Cambridge University Press .  

   Clavius ,  Christoph .  1999 .   In Sphaeram Ioannis de Sacro Bosco commentarius  .  Hildesheim :  Olms-Weidmann .  

   Cohen ,  Albert .  1981 .   Music in the French Royal Academy of Sciences: A Study in the Evolution of Musical 
Thought  .  Princeton, NJ :  Princeton University Press .  

   Cohen ,  David E.   2001 .  The  “ Gift of Nature ” : Musical  “ instinct ”  and musical cognition in Rameau . In   Music 
Theory and Natural Order from the Renaissance to the Early Twentieth Century  , ed.  Suzannah   Clark  and  Alex-

ander   Rehding , 68 – 92.  Cambridge :  Cambridge University Press .  

   Cohen ,  H. Floris .  1984 .   Quantifying Music: The Science of Music at the First Stage of the Scientific Revolution, 
1580 – 1650  .  Dordrecht :  Reidel .  

   Cohen ,  H. Floris .  1994 .   The Scientific Revolution: A Historiographical Inquiry   .   Chicago :  University of Chicago 

Press .  

   Cohen ,  H. Floris .  2010 .   How Modern Science Came into the World: Four Civilizations, One 17th-Century 
Breakthrough   .   Amsterdam :  Amsterdam University Press .  



References 315

   Comberiati ,  Carmelo Peter .  1987 .   Late Renaissance Music at the Habsburg Court: Polyphonic Settings 
of the Mass Ordinary at the Court of Rudolf II (1576 – 1612)  .  New York :  Gordon and Breach Science 

Publishers .  

   Consentino ,  Giuseppe ,  Frederick A.   Homann , and  Ladislaus   Luk á cs .  1999 .   Church, Culture, and Curriculum: 
Theology and Mathematics in the Jesuit Ratio Studiorum  .  Philadelphia :  Saint Joseph ’ s University Press .  

   Conway ,  John Horton .  2001 .   On Numbers and Games  ,  2nd ed.   Natick, MA :  A. K. Peters .  

   Copernicus ,  Nicolaus .  1985 .   Minor Works  . Trans. Edward Rosen.  Baltimore, MD :  Johns Hopkins University 

Press .  

   Copernicus ,  Nicolaus .  1992 .   On the Revolutions  . Ed.  Jerzy   Dobrzycki , trans. Edward Rosen.  Baltimore, MD : 

 Johns Hopkins University Press .  

   Copernicus ,  Nicolaus , and  Georg Joachim   Rh ä ticus .  1959 .   Three Copernican Treatises  . Trans. Edward Rosen. 

 Mineola, NY :  Dover .  

   Cordes ,  Manfred .  2007 .   Nicola Vicentinos Enharmonik: Musik mit 31 T ö nen  .  Graz :  Akademische Druck- und 

Verlags-Anstalt .  

   Crary ,  Jonathan .  1999 .   Suspensions of Perception: Attention, Spectacle, and Modern Culture  .  Cambridge, MA : 

 MIT Press .  

   Creese ,  David E.   2010 .   The Monochord in Ancient Greek Harmonic Science  .  Cambridge :  Cambridge University 

Press .  

   Csapo ,  Eric .  2004 .  The politics of the new music . In   Music and the Muses: The Culture of  “ Mousik ē  ”  in the 
Classical Athenian City  , ed.  Penelope   Murray  and  Peter   Wilson ,  207  –  248 .  Oxford :  Oxford University Press .  

   Cunningham ,  Andrew , and  Nicholas   Jardine , eds.  1990 .   Romanticism and the Sciences  .  Cambridge :  Cambridge 

University Press .  

   Darrigol ,  Olivier .  2003 .  Number and measure: Hermann von Helmholtz at the crossroads of mathematics, physics, 

and psychology.    Studies in History and Philosophy of Science    34 : 515  –  573 .  

   Darrigol ,  Olivier .  2007 .  A Helmholtzian approach to space and time.    Studies in History and Philosophy of Science   

 38 : 528  –  542 .  

   Darrigol ,  Olivier .  2009 .  The analogy between light and sound in the history of optics from Malebranche to 

Thomas Young.    Physis    46 : 111  –  217 .  

   Darrigol ,  Olivier .  2010 .  The analogy between light and sound in the history of optics from the Ancient Greeks 

to Isaac Newton. Part 1.    Centaurus    52 : 117  –  155 .  

   Darrigol ,  Olivier .  2012 .   A History of Optics from Greek Antiquity to the Nineteenth Century  .  Oxford :  Oxford 

University Press .  

   Daston ,  Lorraine , and  Peter   Galison .  2007 .   Objectivity  .  New York :  Zone Books .  

   Daston ,  Lorraine , and  Elizabeth   Lunbeck , eds.  2011 .   Histories of Scientific Observation  .  Chicago :  University of 

Chicago Press .  

   Daston ,  Lorraine , and  Katharine   Park .  2001 .   Wonders and the Order of Nature, 1150 – 1750  .  New York :  Zone 

Books .  

   Dear ,  Peter .  1988 .   Mersenne and the Learning of the Schools  .  Ithaca :  Cornell University Press .  

   Dear ,  Peter .  1995 .   Discipline and Experience: The Mathematical Way in the Scientific Revolution  .  Chicago : 

 University of Chicago Press .  

   Debnath ,  Lokenath .  2010 .   The Legacy of Leonhard Euler: A Tricentennial Tribute  .  London :  Imperial College 

Press .  

   Debru ,  Claude .  2001 .  Helmholtz and the psychophysiology of time.    Science in Context    14 : 471  –  492 .  

   Dedekind ,  Richard .  1990 .  Analytische Untersuchungen zu Bernhard Riemann ’ s Abhandlungen  ü ber die Hypoth-

esen, welche der Geometrie zu Grunde liegen.    Revue d ’ histoire des sciences    43 : 237  –  294 .  

   de Muris ,  Johannes.   1992 .   Die Musica Speculativa des Johannes de Muris: Kommentar zur  Ü berlieferung und 
kritische Edition  . Ed. Christoph Falkenroth.  Stuttgart :  F. Steiner .  

   Derrida ,  Jacques .  1989 .   Edmund Husserl ’ s Origin of Geometry: An Introduction  .  Lincoln :  University of Nebraska 

Press .  



316 References

   Descartes ,  Ren é  .  1961 .   Compendium of Music  . Trans. Walter Robert.  Rome :  American Institute of 

Musicology .  

   Descartes ,  Ren é  .  1979 .   Le Monde, ou, Trait é  de La Lumi è re  . Trans. Michael Sean Mahoney.  New York :  Abaris 

Books .  

   Descartes ,  Ren é  .  1983 .   Principles of Philosophy  . Trans. Reese P. Miller and Valentine Rodger Miller.  Dordrecht : 

 D. Reidel .  

   Descartes ,  Ren é  .  1996 .   Oeuvres de Descartes  . Ed.  Charles   Adam  and  Paul   Tannery .  Paris :  Vrin .  

   de Vitry ,  Philippe , and  Leo   Plantinga .  1961 .  Philippe de Vitry ’ s  “ Ars Nova ” : A translation.    Journal of Music 
Therapy    5 : 204  –  223 .  

   Dickreiter ,  Michael .  1973 .   Der Musiktheoretiker Johannes Kepler  .  Bern :  Francke .  

   Dijksterhuis ,  E. J.   1970 .   Simon Stevin: Science in the Netherlands around 1600  .  The Hague :  Martinus Nijhoff .  

   Dirac ,  Paul A. M.   1963 .  The evolution of the physicist ’ s picture of nature.    Scientific American    208 ( 5 ): 45  –  53 .  

   Donahue ,  William H.   1981 .   The Dissolution of the Celestial Spheres 1595 – 1650  .  New York :  Arno Press .  

   Doshi ,  Saryu , ed.  1985 .   India and Greece: Connections and Parallels  .  Bombay :  Marg Publications .  

   Dostrovsky ,  Sigalia .  1975 .  Early vibration theory: Physics and music in the seventeenth century.    Archive for 
History of Exact Sciences    14 : 169  –  218 .  

   Downs ,  Benjamin .  2012 . Sensible pleasures, rational perfection: Leonhard Euler and the German rationalist tradi-

tion.  Mosaic: Journal of Music Research  2.  http://mosaicjournal.org/index.php/mosaic/article/viewFile/41/51 .  

   Drake ,  Stillman .  1970a .   Galileo Studies: Personality, Tradition, and Revolution  .  Ann Arbor :  University of Michi-

gan Press .  

   Drake ,  Stillman .  1970b .  Renaissance music and experimental science.    Journal of the History of Ideas   

 31 : 483  –  500 .  

   Drake ,  Stillman .  1992 .  Music and philosophy in early modern science . In   Music and Science in the Age of Galileo  , 

ed. Victor Coelho, 3 – 16. Dordrecht: Kluwer Academic.  

   Drake ,  Stillman , and  Galileo   Galilei .  2000 .   Two New Sciences, Including Centers of Gravity and Force of Percus-
sion  .  Toronto :  Wall  &  Emerson .  

   Duffin ,  Ross W.   2007 .   How Equal Temperament Ruined Harmony (and Why You Should Care)  .  New York :  W. 

W. Norton .  

   Dunham ,  William .  1999 .   Euler: The Master of Us All  .  Washington, DC :  Mathematical Association of America .  

   Dyer ,  Joseph .  2007 .  The place of  musica  in medieval classifications of knowledge.    Journal of Musicology   

 24 : 3  –  71 .  

   Dyer ,  Joseph .  2009 .  Speculative  “  musica  ”  and the medieval university of Paris.    Music  &  Letters    90 : 177  –  204 .  

   Egan ,  John Bernard .  1962 . Marin Mersenne:  Traite de l ’ Harmonie universelle : Critical translation of the second 

book. PhD diss., Indiana University.  

   Einstein ,  Albert .  1979 .   Albert Einstein: The Human Side  . Ed.  Helen   Dukas  and  Banesh   Hoffmann .  Princeton, 

NJ :  Princeton University Press .  

   Einstein ,  Albert .  1987 .   The Collected Papers of Albert Einstein  . Ed.  John J.   Stachel et al .  Princeton, NJ :  Princeton 

University Press .  

   Engelhardt ,  Markus , and  Michael   Heinemann,  eds.  2007 .   Ars Magna musices — Athanasius Kircher und die 
Universalit ä t der Musik  .  Laaber :  Laaber-Verlag .  

   Erlmann ,  Veit , ed.  2004 .   Hearing Cultures: Essays on Sound, Listening, and Modernity  .  Oxford :  Berg .  

   Erlmann ,  Veit .  2010 .   Reason and Resonance: A History of Modern Aurality  .  New York :  Zone Books .  

   Euclid  and  Porphyry .  1991 .   The Euclidean Division of the Canon   .  Trans. Andr é  Barbera.  Lincoln :  University of 

Nebraska Press .  

   Euler ,  Leonhard .  1837 .   Letters on Different Subjects in Natural Philosophy: Addressed to a German Princess  . 

 New York .  

   Euler ,  Leonhard .  1911 .   Opera omnia  .  Leipzig :  B. G. Teubner .  



References 317

   Euler ,  Leonhard .  1985 .  An essay on continued fractions.  Trans. Myra F. Wyman and Bostwick F. Wyman.   Theory 
of Computing Systems    18 : 295  –  328 .  

  Euler Archive. n.d.  http://www.math.dartmouth.edu/~euler/ .  

   Evans ,  Robert John Weston .  1984 .   Rudolf II and His World: A Study in Intellectual History, 1576 – 1612  .  Oxford : 

 Clarendon Press .  

   Fajtlowicz ,  Siemion , and  Stephanie   Mathew .  2012 .  Three new proofs of Euler ’ s Characteristic Formula.    Congres-
sus Numerantium    212 : 165  –  170 .  

   Faraday ,  Michael .  1818 .  On the sounds produced by flame in tubes,  & c.    Quarterly Journal of Science   

 5 : 274  –  280 .  

   Faraday ,  Michael .  1821 .  Historical sketch of electro-magnetism .   Annals of Philosophy    18 : 195  – 200, 274 –  290 .  

   Faraday ,  Michael .  1831 .  On a peculiar class of acoustical figures; and on certain forms assumed by groups of 

particles upon vibrating elastic surfaces.    Philosophical Transactions of the Royal Society of London   

 121 : 299  –  340 .  

   Faraday ,  Michael .  1932 .   Faraday ’ s Diary  . Ed.  Thomas   Martin .  London :  Bell .  

   Faraday ,  Michael .  1965 .   Experimental Researches in Electricity  .  New York :  Dover .  

   Faraday ,  Michael .  1991 .   The Correspondence of Michael Faraday  .  London :  Institution of Electrical Engineers .  

   Farwell ,  Ruth , and  Christopher   Knee .  1990 .  The missing link: Riemann ’ s  “ Commentatio, ”  differential geometry, 

and tensor analysis.    Historia Mathematica    17 : 223  –  255 .  

   Fauvel ,  John ,  Raymond   Flood , and  Robin   Wilson , eds.  2004 .   Music and Mathematics: From Pythagoras to 
Fractals  .  New York :  Oxford University Press .  

   Ferreiros ,  Jose .  2006 .  Riemann ’ s Habilitationsvortrag at the crossroads of mathematics, physics, and philosophy . 

In   The Architecture of Modern Mathematics: Essays in History and Philosophy  , ed.  Jose   Ferreiros  and  Jeremy  

 Gray ,  67  –  96 .  Oxford :  Oxford University Press .  

   F é tis ,  Fran ç ois-Joseph .  1994 .   Esquisse de l ’ histoire de l ’ harmonie  . Trans. Mary I. Arlin.  Stuyvesant, NY :  Pen-

dragon Press .  

   Field ,  J. V.   1988 .   Kepler ’ s Geometrical Cosmology  .  Chicago :  University of Chicago Press .  

   Field ,  J. V.   1997 .   The Invention of Infinity: Mathematics and Art in the Renaissance  .  Oxford :  Oxford University 

Press .  

   Field ,  J. V.   2004 .  Musical cosmology: Kepler and his readers . In   Music and Mathematics: From Pythagoras to 
Fractals  , ed.  John   Fauvel ,  Raymond   Flood , and  Robin   Wilson ,  29  –  44 .  New York :  Oxford University Press .  

   Field ,  J. V.   2005 .   Piero Della Francesca: A Mathematician ’ s Art  .  New Haven :  Yale University Press .  

   Field ,  J. V.   2011 .  Ratio and proportion in the Renaissance . In   Proportions: Science, musique, peinture  &  archi-
tecture  ,   ed.  Sabine   Rommevaux ,  Philippe   Vendrix , and  Vasco   Zara , 29 – 50.  Turnhout :  Brepols .   

   Findlen ,  Paula , ed.  2004 .   Athanasius Kircher: The Last Man Who Knew Everything  .  New York :  Routledge .  

   Finocchiaro ,  Maurice A. , ed.  1989 .   The Galileo Affair: A Documentary History  .  Berkeley, CA :  University of 

California Press .  

   Ford ,  Andrew .  2004 .  Catharsis: The Power of Music in Aristotle ’ s Poetics . In   Music and the Muses: The Culture 
of  “ Mousik ē  ”  in the Classical Athenian City  , ed.  Penelope   Murray  and  Peter   Wilson ,  309  –  336 .  Oxford :  Oxford 

University Press .  

   Fowler ,  David .  2004 .  Helmholtz: Combinational tones and consonance . In   Music and Mathematics: From 
Pythagoras to Fractals  , ed.  John   Fauvel ,  Raymond   Flood , and  Robin   Wilson ,  77  –  88 .  New York :  Oxford Univer-

sity Press .  

   Frankel ,  Eugene .  1976 .  Corpuscular optics and the wave theory of light: The science and politics of a revolution 

in physics.    Social Studies of Science    6 : 141  –  184 .  

   Friedman ,  Michael .  2002 .  Geometry as a branch of physics: Background and context for Einstein ’ s  “ Geometry 

and Experience. ”   In   Reading Natural Philosophy  , ed.  David B.   Malament ,  193  –  229 .  Chicago :  Open Court .  

   von Frish ,  Karl .  1971 .   Bees: Their Vision, Chemical Senses, and Language  .  Ithaca, NY :  Cornell University Press .  

   Fullinwider ,  S. P.   1990 .  Hermann von Helmholtz: The problem of Kantian influence.    Studies in History and 
Philosophy of Science    21 : 41  –  55 .  



318 References

   Funkenstein ,  Amos .  1975 .  The dialectical preparation for scientific revolutions: On the role of hypothetical 

reasoning in the emergence of Copernican astronomy and Galilean mechanics . In   The Copernican Achievement  , 
ed.  Robert S.   Westman ,  165  –  203 .  Berkeley, CA :  University of California Press .  

   Galilei ,  Galileo .  1890 .   Le opere di Galileo Galilei  . Ed.  Antonio   Favaro .  Florence :  G. Barb è ra .  

   Galilei ,  Galileo .  1977 .   Galileo ’ s Early Notebooks: The Physical Questions  . Trans. William A. Wallace.  Notre 

Dame, IN :  University of Notre Dame Press .  

   Galilei ,  Vincenzo .  2003 .   Dialogue on Ancient and Modern Music  . Trans. Claude V. Palisca.  New Haven :  Yale 

University Press .  

   Galilei ,  Vincenzo ,  Giovanni   de ’ Bardi , and  Girolamo   Mei .  1960 .   Letters on Ancient and Modern Music to Vin-
cenzo Galilei and Giovanni Bardi: A Study with Annotated Texts  . Ed.  Claude V.   Palisca .  Rome :  American Institute 

of Musicology .  

   Galison ,  Peter .  1997 .   Image and Logic: A Material Culture of Microphysics  .  Chicago :  University of Chicago 

Press .  

   Galison ,  Peter .  2003 .   Einstein ’ s Clocks, Poincar é  ’ s Maps: Empires of Time  .  New York :  W. W. Norton .  

   Gallagher ,  Robert .  1984 .  Riemann and the G ö ttingen School of Physiology.    Fusion    6 ( 3 ): 24  –  30 .  

   Gatto ,  Romano .  1994 .   Tra scienza e immaginazione: Le matematiche presso il Collegio Gesuitico Napoletano 
(1552 – 1670 Ca.)  .  Florence :  L. S. Olschki .  

   Gaukroger ,  Stephen .  1995 .   Descartes: An Intellectual Biography  .  Oxford :  Clarendon Press .  

   Gaukroger ,  Stephen .  2000 .  The foundational role of hydrostatics and statics in Descartes ’  natural philosophy . In 

  Descartes ’  Natural Philosophy  , ed.  Stephen   Gaukroger ,  John   Schuster , and  John   Sutton ,  60  –  80 .  London : 

 Routledge .  

   Gaukroger ,  Stephen ,  John   Schuster , and  John   Sutton , eds.  2000 .   Descartes ’  Natural Philosophy  .  London : 

 Routledge .  

   Gauss ,  Carl Friedrich .  2005 .   General Investigations of Curved Surfaces  . Ed.  Peter   Pesic .  Mineola, NY :  Dover .  

   Gauvin ,  Jean-Fran ç ois .  2013 . Organ making and natural philosophical knowledge in Mersenne ’ s  Harmonie 
Universelle . Unpublished manuscript.  

   Gertsman ,  E. V.   2007 .  Euler and the history of a certain musical-mathematical idea . In   Euler and Modern Science  , 

ed.  A. P.   Yushkevich ,  N. N.   Bogolyubov , and  G. K.   Mikha ĭ lov , trans. Robert Burns, 335 – 347.  Washington, DC : 

 Mathematical Association of America .  

   Gilbert ,  William .  1958 .   De Magnete  . Trans. P. Fleury Mottelay.  New York :  Dover .  

   Gingerich ,  Owen .  1993 .   The Eye of Heaven: Ptolemy, Copernicus, Kepler  .  New York :  American Institute of 

Physics .  

   Gingerich ,  Owen .  2002 .   An Annotated Census of Copernicus ’  De Revolutionibus (Nuremberg, 1543 and Basel, 
1566)  .  Leiden :  Brill .  

   Glarean ,  Heinrich  ( Glareanus ,  Henricus) .  1965 .   Dodecachordon  . Trans. Clement A. Miller.  Rome :  American 

Institute of Musicology .  

   Gordon ,  Cyrus Herzl .  1982 .   Forgotten Scripts: Their Ongoing Discovery and Decipherment  .  New York :  Basic 

Books .  

   Gorham ,  Geoffrey .  1991 .  Planck ’ s principle and Jeans ’ s conversion.    Studies in History and Philosophy of Science   

 22 : 471  –  497 .  

   Gosselin ,  Guillaume .  1577 .   De arte magna, seu de occulta parte mumerorum, quae  &  Algebra,  &  Almucabala 
vulgo dicitur  .  Paris :  Aegidium Beys .  

   Gouk ,  Penelope .  1982 .   Music in the Natural Philosophy of the Early Royal Society  .  London :  University of 

London .  

   Gouk ,  Penelope .  1999 .   Music, Science, and Natural Magic in Seventeenth-Century England  .  New Haven :  Yale 

University Press .  

   Gowers ,  Timothy , ed.  2008 .   The Princeton Companion to Mathematics  .  Princeton :  Princeton University Press .  

   Gozza ,  Paolo .  2000 .  A Renaissance mathematics: The music of Descartes . In   Number to Sound: The Musical 
Way to the Scientific Revolution  , ed.  Paolo   Gozza .  Dordrecht :  Kluwer Academic .  



References 319

   Grafton ,  Anthony .  1991 .   Defenders of the Text: The Traditions of Scholarship in an Age of Science, 1450 – 1800  . 

 Cambridge, MA :  Harvard University Press .  

   Grant ,  Edward .  1965 .  Part I of Nicole Oresme ’ s Algorismus Proportionum.    Isis    56 : 327  –  341 .  

   Grassmann ,  Hermann .  1854 .  On the theory of compound colours.    Philosophical Magazine    7 ( 4 ): 254  –  264 .  

   Grattan-Guinness ,  I. , and  Roger   Cooke , eds.  2005 .   Landmark Writings in Western Mathematics 1640 – 1940  . 

 Amsterdam :  Elsevier .  

   Gray ,  Jeremy .  1989 .   Ideas of Space: Euclidean, Non-Euclidean, and Relativistic  ,  2nd ed.   Oxford :  Clarendon 

Press .  

   Green ,  Burdette Lamar .  1969 . The Harmonic Series from Mersenne to Rameau: An historical study of circum-

stances leading to its recognition and application to music. PhD diss., Ohio State University.  

   Greene ,  Brian .  2000 .   The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate 
Reality  .  New York :  Vintage Books .  

   Grosslight ,  Justin .  2013 .  Small skills, big networks: Marin Mersenne as mathematical intelligencer.    History of 
Science    51 : 337  –  374 .  

   Guilford ,  Francis North , and  Jamie Croy   Kassler .  2004 .   The Beginnings of the Modern Philosophy of Music in 
England: Francis North ’ s A Philosophical Essay of Musick (1677) with Comments of Isaac Newton, Roger North, 
and in the Philosophical Transactions  .  Aldershot :  Ashgate .  

   Gurney ,  Hudson .  1831 .   Memoir of the Life of Thomas Young  .  London :  John  &  Arthur Arch .  

   Hagel ,  Stefan .  2010 .   Ancient Greek Music: A New Technical History  .  Cambridge :  Cambridge University Press .  

   Hakfoort ,  Casper .  1995 .   Optics in the Age of Euler: Conceptions of the Nature of Light, 1700 – 1795  .  Cambridge : 

 Cambridge University Press .  

   Hall ,  A.   Rupert .  1993 .   All Was Light: An Introduction to Newton ’ s  Opticks .  Oxford :  Clarendon Press .  

   Harburger ,  W.   1980 .   Johannes Keplers kosmische Harmonie  .  Frankfurt :  Insel .  

   Harrison ,  Edward .  1987 .   Darkness at Night: A Riddle of the Universe  .  Cambridge, MA :  Harvard University 

Press .  

   Hashimoto ,  T.   1983 .  Amp è re vs. Biot: Two mathematizing routes to electromagnetic theory.    Historia Scientiarum   

 24 : 29  –  51 .  

   Hatfield ,  Gary.   1990 .   The Natural and the Normative: Theories of Spatial Perception from Kant to Helmholtz  . 

 Cambridge, MA :  MIT Press .  

   Hatfield ,  Gary .  1993 .  Helmholtz and classicism: The science of aesthetics and the aesthetics of science . In 

  Helmholtz and the Foundations of Nineteenth-Century Science  , ed.  David   Cahan ,  522  –  558 .  Berkeley, CA :  Uni-

versity of California Press .  

   Hawkins ,  Thomas .  1994 .  The birth of Lie ’ s theory of groups.    Mathematical Intelligencer    16 : 6  –  17 .  

   Hawkins ,  Thomas .  2000 .   The Emergence of the Theory of Lie Groups: An Essay in the History of Mathematics, 
1869 – 1926  .  New York :  Springer .  

   Heath ,  Thomas Little .  1966 .   Aristarchus of Samos, the Ancient Copernicus  .  Oxford :  Clarendon Press .  

   Heilbron ,  J. L.   1986 .   The Dilemmas of an Upright Man: Max Planck as Spokesman for German Science  .  Berke-

ley, CA :  University of California Press .  

   Heilbron ,  J. L.   2010 .   Galileo  .  Oxford :  Oxford University Press .  

   Heinzmann ,  Gerhard .  1992 .  Helmholtz and Poincar é  ’ s considerations on the genesis of geometry . In   1830 – 
1930: A Century of Geometry  , ed.  L.   Boi ,  D.   Flament , and  J.-M.   Salanskis ,  245  –  249 .  Berlin :  Springer-

Verlag .  

   Heinzmann ,  Gerhard .  2001 .  The foundations of geometry and the concept of motion: Helmholtz and Poincar é .  

  Science in Context    14 : 457  –  470 .  

   Heisenberg ,  Werner .  1971 .   Physics and Beyond: Encounters and Conversations  .  New York :  Harper  &  Row .  

   Hell ,  Helmut , and  Horst   Leuchtmann , eds.  1982 .   Orlando di Lasso: Musik der Renaissance am M ü nchner 
F ü rstenhof  .  Wiesbaden :  Reichert .  

   Heller-Roazen ,  Daniel .  2011 .   The Fifth Hammer: Pythagoras and the Disharmony of the World  .  New York :  Zone 

Books .  



320 References

   Helmholtz ,  Hermann von .  1865 .   Die Lehre von den Tonempfindungen als physiologische Grundlage f ü r die 
Theorie der Musik  ,  2nd ed.   Braunschweig :  Vieweg .  

   Helmholtz ,  Hermann von .  1867 .   Handbuch der physiologischen Optik  .  Leipzig :  L. Voss .  

   Helmholtz ,  Hermann von .  1868 .  Ueber die thats ä chlichen Grundlagen der Geometrie.    Verhandlungen des 
Naturhistorisch-medicinischen Vereins zu Heidelberg    4 : 197  –  202 .  

   Helmholtz ,  Hermann von .  1870 .   Die Lehre von den Tonempfindungen als physiologische Grundlage f ü r die 
Theorie der Musik  ,  3rd ed.   Braunschweig :  Vieweg .  

   Helmholtz ,  Hermann von .  1873 .   The Mechanism of the Ossicles of the Ear and Membrana Tympani  . Trans. 

Albert H. Buck and Normand Smith.  New York :  William Wood .  

   Helmholtz ,  Hermann von .  1882 .   Wissenschaftliche Abhandlungen  .  Leipzig :  J. A. Barth .  

   Helmholtz ,  Hermann von .  1896 .   Handbuch der Physiologischen Optik  , 2nd ed. Ed.  Arthur   K ö nig .  Hamburg : 

 L. Voss .  

   Helmholtz ,  Hermann von .  1903 .   Vortr ä ge und Reden  .  Vieweg .  

   Helmholtz ,  Hermann von .  1954 .   On the Sensations of Tone as a Physiological Basis for the Theory of Music  , 

 2nd. English ed.  Ed.  Alexander John   Ellis .  New York :  Dover .  

   Helmholtz ,  Hermann von .  1962a .   Helmholtz ’ s Treatise on Physiological Optics  . Ed.  James P. C.   Southall .  New 

York :  Dover .  

   Helmholtz ,  Hermann von .  1962b .   Popular Scientific Lectures  .  New York :  Dover .  

   Helmholtz ,  Hermann von .  1971 .   Selected Writings of Hermann von Helmholtz  . Ed.  Russell   Kahl .  Middletown, 

CT :  Wesleyan University Press .  

   Helmholtz ,  Hermann von .  1977 .   Epistemological Writings  . Ed.  Paul   Hertz ,  Moritz   Schlick ,  R. S.   Cohen , and 

 Yehuda   Elkana , trans. Malcolm F. Lowe.  Dordrecht :  D. Reidel .  

   Helmholtz ,  Hermann von .  1993 .   Letters of Hermann von Helmholtz to His Parents: The Medical Education of 
a German Scientist, 1837 – 1846  . Ed.  David   Cahan .  Stuttgart :  Franz Steiner Verlag .  

   Helmholtz ,  Hermann von .  1995 .   Science and Culture: Popular and Philosophical Essays  . Ed.  David   Cahan . 

 Chicago :  University of Chicago Press .  

   Hentschel ,  Frank , ed.  1998 .   Musik und die Geschichte der Philosophie und Naturwissenschaften in Mittelalter: 
Fragen zur Wechselwirkung von  “ Musica ”  und  “ Philosophia ”  in Mittelalter  .  Leiden :  Brill .  

   Hermann ,  Armin .  1971 .   The Genesis of Quantum Theory (1899 – 1913)  .  Cambridge, MA :  MIT Press .  

   Hermann ,  Armin .  1973 .   Max Planck in Selbstzeugnissen und Bilddokumenten  .  Reinbek bei Hamburg :  Rowohlt .  

   Hermann ,  Thomas ,  Andy   Hunt , and  John G.   Neuhoff , eds.  2011 .   The Sonification Handbook  .  Berlin :  Logos 

Verlag .  

   Hertz ,  Heinrich .  1962 .   Electric Waves: Being Researches on the Propagation of Electric Action with Finite 
Velocity through Space  .  New York :  Dover .  

   Hiebert ,  Elfrieda,  and  Erwin   Hiebert .  1994 .  Musical thought and practice: Links to Helmholtz ’ s Tonempfindun-

gen . In   Universalgenie Helmholtz: R ü ckblich nach 100 Jahren  , ed.  Lorenz   Kr ü ger , 295 – 311.  Berlin :  Akademie 

Verlag .  

   Hiebert ,  Erwin .  2003 .  Science and music in the culture of late 19th century physicists: The role and limits of the 

scientific analysis of music . In   Science and Cultural Diversity: Proceedings of the XXIst International Congress 
of History of Science, Mexico City, 7 – 14 July 2001  , ed.  Juan Jos é    Salda ñ a , 97 – 109.  Mexico City :  Sociedad 

Mexicana de Historia de la Ciencia y la Tecnolog í a .  

   Hilts ,  Victor L.   1978 .  Thomas Young ’ s  “ Autobiographical Sketch. ”     Proceedings of the American Philosophical 
Society    122 : 248  –  260 .  

   Hine ,  William L.   1973 .  Mersenne and Copernicanism.    Isis    64 : 18  –  32 .  

   Hirshfeld ,  Alan .  2006 .   The Electric Life of Michael Faraday  .  New York :  Walker .  

   Holton ,  Gerald .  1988 .   Thematic Origins of Scientific Thought: Kepler to Einstein  . Rev. ed.  Cambridge, MA : 

 Harvard University Press .  

   Holton ,  Gerald .  1996 .   Einstein, History, and Other Passions: The Rebellion Against Science at the End of the 
Twentieth Century  .  Reading, MA :  Addison-Wesley .  



References 321

   Holton ,  Gerald .  2009 .  George Sarton, his Isis, and the aftermath.    Isis    100 : 79  –  88 .  

   Home ,  R. W.   1988 .  Leonhard Euler ’ s  “ anti-Newtonian ”  theory of light.    Annals of Science    45 : 521  –  533 .  

   Hoppin ,  Richard .  1978 .   Medieval Music  .  New York :  W. W. Norton .  

   Horden ,  Penelope , ed.  2000 .   Music as Medicine: The History of Music Therapy since Antiquity  .  Aldershot : 

 Ashgate .  

   Howard ,  Don .  2005 .  Albert Einstein as a philosopher of science .   Physics Today    58 ( 12 ): 34  –  40 .  

   Hubbard ,  Geoffrey .  1968 .   Cooke and Wheatstone and the Invention of the Electric Telegraph  .  New York :  Augus-

tus M. Kelley .  

   H ü bner ,  J ü rgen .  1975 .   Die Theologie Johannes Keplers zwischen Orthodoxie und Naturwissenschaft  .  T ü bingen : 

 Mohr .  

   Hucbald of Saint Amand ,  Guido d ’ Arezzo , and  Johannes Afflighemensis .  1978 .   Hucbald, Guido, and John on 
Music: Three Medieval Treatises  . Ed. Claude V. Palisca, trans. Warren Babb.  New Haven :  Yale University Press .  

   Hui ,  Alexandra .  2008 . Hearing sound as music: Psychophysical studies of sound sensation and the music culture 

of Germany, 1860 – 1910. PhD diss., UCLA.   

   Hui ,  Alexandra .  2013a .   The Psychophysical Ear: Musical Experiments, Experimental Sounds, 1840 – 1910  .  Cam-

bridge, MA :  MIT Press .  

   Hui ,  Alexandra .  2013b .  Changeable ears: Ernst Mach ’ s and Max Planck ’ s studies of accommodation in hearing.  

  Osiris    28 : 119  –  145 .  

   Hui ,  Alexandra ,  Julia   Kursell , and  Myles W.   Jackson , eds.  2013 .  Music, Sound, and the Laboratory from 
1750 – 1980.   Osiris  28.  

   Husserl ,  Edmund .  1939 .  Der Ursprung der Geometrie als intentional-historisches Problem.    Revue internationale 
de philosophie    1 : 203  –  225 .  

   Husserl ,  Edmund .  1970 .   The Crisis of European Sciences and Transcendental Phenomenology: An Introduction 
to Phenomenological Philosophy  .  Evanston :  Northwestern University Press .  

   Hyder ,  David Jalal .  1999 .  Helmholtz ’ s naturalized conception of geometry and his spatial theory of signs.  

  Philosophy of Science    66 : 273  –  286 .  

   Ionescu-Pallas ,  Nicholas , and  Liviu   Sofonea .  1986 .  Bernhard Riemann: A forerunner of classical electrodynam-

ics.    Organon    22 : 219  –  272 .  

   Isichei ,  Elizabeth Allo .  1970 .   Victorian Quakers  .  London :  Oxford University Press .  

   Jackson ,  Myles W.   2000 .   Spectrum of Belief: Joseph von Fraunhofer and the Craft of Precision Optics  .  

Cambridge, MA :  MIT Press .  

   Jackson ,  Myles W.   2006 .   Harmonious Triads: Physicists, Musicians, and Instrument Makers in Nineteenth-
Century Germany  .  Cambridge, MA :  MIT Press .  

   Jaeger ,  Werner Wilhelm .  1969 .   Paideia: The Ideals of Greek Culture  ,  2nd ed.   New York :  Oxford University Press .  

   James ,  Frank A. J. L.   1984 .  The physical interpretation of the wave theory of light.    British Journal for the History 
of Science    17 : 47  –  60 .  

   Jay ,  Martin .  1994 .   Downcast Eyes: The Denigration of Vision in Twentieth-Century French Thought  .  Berkeley, 

CA :  University of California Press .  

   Jeans ,  James .  1968 .   Science and Music  .  New York :  Dover .  

   Jonas ,  Oswald .  1982 .   Introduction to the Theory of Heinrich Schenker: The Nature of the Musical Work of Art  . 
Trans. John Rothgeb.  New York :  Longman .  

   Jones ,  Arthur Taber .  1945 .  Singing flames.    Journal of the Acoustical Society of America    16 : 254  –  266 .  

   Jones ,  Bence .  1975 .   The Royal Institution: Its Founder and Its First Professors  .  New York :  Arno Press .  

   Joost-Gaugier ,  Christiane L.   2006 .   Measuring Heaven: Pythagoras and His Influence on Thought and Art in 
Antiquity and the Middle Ages  .  Ithaca :  Cornell University Press .  

   Joost-Gaugier ,  Christiane L.   2009 .   Pythagoras and Renaissance Europe: Finding Heaven  .  Cambridge :  Cam-

bridge University Press .  

   Kangro ,  Hans .  1976 .   Early History of Planck ’ s Radiation Law  .  London :  Taylor and Francis .  



322 References

   Kargon ,  Robert Hugh .  1966 .   Atomism in England from Hariot to Newton  .  Oxford :  Clarendon Press .  

   Kassler ,  Jamie C.   1995 .   Inner Music: Hobbes, Hooke, and North on Internal Character  .  Madison :  Fairleigh 

Dickinson University Press .  

   Kassler ,  Jamie C.   2001 .   Music, Science, Philosophy: Models in the Universe of Thought  .  Aldershot :  Ashgate .  

   Kaufmann ,  Henry W.   1966 .   The Life and Works of Nicola Vicentino, 1511 – c. 1576  .  Washington, DC :  American 

Institute of Musicology .  

   Kepler ,  Johannes .  1937 .   Gesammelte Werke  . Ed.  Walther   von Dyck ,  Max   Caspar , and  Franz   Hammer .  Munich : 

 C. H. Beck .  

   Kepler ,  Johannes .  1981 .   The Secret of the Universe: Mysterium Cosmographicum  . Ed.  E. J.   Aiton , trans. 

A. M. Duncan.  New York :  Abaris Books .  

   Kepler ,  Johannes .  1995 .   Epitome of Copernican Astronomy;  &  Harmonies of the World  . Trans. Charles Glenn 

Wallis.  Amherst, NY :  Promethus Books .  

   Kepler ,  Johannes .  1997 .   The Harmony of the World  . Trans. E. J. Aiton, A. M. Duncan, and J. V. Field.  Philadel-

phia :  American Philosophical Society .  

   Kipnis ,  Naum S.   1991 .   History of the Principle of Interference of Light  .  Basel :  Birkh ä user .  

   Kircher ,  Athanasius .  2011 .   A Study of the Life and Works of Athanasius Kircher,  “ Germanus Incredibilis. ”    Ed. 

 Elizabeth   Fletcher , trans. G. W Trompf and John Edward Fletcher.  Leiden :  Brill .  

   Kittler ,  Friedrich A.   1999 .   Gramophone, Film, Typewriter  .  Stanford, CA :  Stanford University Press .  

   Kittler ,  Friedrich A.   2006 .   Musik und Mathematik  .  Munich :  Wilhelm Fink .  

   Kleban ,  Matthew .  2011 . Cosmic bubble collisions.  http://arxiv.org/abs/1107.2593 .  

   Klein ,  Jacob .  1985 .   Lectures and Essays  . Ed.  Robert B.   Williamson  and  Elliott   Zuckerman .  Annapolis, MD :  St. 

John ’ s College Press .  

   Klein ,  Jacob .  1992 .   Greek Mathematical Thought and the Origin of Algebra  . Trans. Eva Brann.  New York :  Dover .  

   Kmetz ,  John .  1994 .   Stefano Rosetti at the Imperial Court  .  Florence :  Olschki .  

   Knobloch ,  Eberhard .  2008 .  Euler transgressing limits: The infinite and music theory.    Quaderns d ’ Hist ò ria de 
l ’ Enginyeria    9 : 9  –  24 .  

   Knoll ,  Paul W.   1975 .  The arts faculty of the University of Cracow at the end of the fifteenth century . In   The 
Copernican Achievement  , ed.  Robert S.   Westman ,  137  –  156 .  Berkeley, CA :  University of California Press .  

   Knorr ,  Wilbur Richard .  1975 .   The Evolution of the Euclidean Elements: a Study of the Theory of Incommensu-
rable Magnitudes and Its Significance for Early Greek Geometry  .  Dordrecht :  D. Reidel .  

   Knuth ,  Donald Ervin .  1974 .   Surreal Numbers: How Two Ex-students Turned On to Pure Mathematics and Found 
Total Happiness  .  Reading, MA :  Addison-Wesley .  

   Koenigsberger ,  Leo .  1965 .   Hermann von Helmholtz  .  New York :  Dover .  

   Koertge ,  Noretta .  2008 .   New Dictionary of Scientific Biography  .  Detroit :  Charles Scribner ’ s Sons .  

   Koyr é  ,  Alexandre .  1957 .   From the Closed World to the Infinite Universe  .  Baltimore, MD :  Johns Hopkins Uni-

versity Press .  

   Koyr é  ,  Alexandre .  1978 .   Galileo Studies  .  Atlantic Highlands, NJ :  Humanities Press .  

   Koyr é  ,  Alexandre .  1992 .   The Astronomical Revolution: Copernicus, Kepler, Borelli  .  New York :  Dover .  

   Kramer ,  Gregory , ed.  1994 .   Auditory Display: Sonification, Audification, and Auditory Interfaces  .  Reading, MA : 

 Addison-Wesley .  

   Kramer ,  Gregory ,  Bruce   Walker ,  Perry   Cook , and  Nadine   Miner,  eds.  2010 .  Sonification Report: Status of the 
Field and Research Agenda . DigitalCommons@University of Nebraska – Lincoln.  http://digitalcommons.unl.edu/

psychfacpub/444 .  

   Kr ü ger ,  Lorenz , ed.  1994 .   Universalgenie Helmholtz: R ü ckblich nach 100 Jahren  .  Berlin :  Akademie Verlag .  

   Kursell ,  Julia .  2013 .  Experiments on sound color in music and acoustics: Helmholtz, Schoenberg, and Klang-

farbenmelodie.    Osiris    28 : 191  –  211 .  

   Laertius ,  Diogenes .  1972 .   Lives of Eminent Philosophers  . Trans. Robert Drew Hicks.  Cambridge, MA :  Harvard 

University Press .  



References 323

   Lasso ,  Orlando di .  1894 .   S ä mtliche Werke  . Ed.  Fr. X.   Haberl  and  Adolf   Sandberger .  Leipzig :  Breitkopf  &  H ä rtel .  

   Laugwitz ,  Detlef .  1999 .   Bernhard Riemann, 1826 – 1866: Turning Points in the Conception of Mathematics  .  Basel : 

 Birkh ä user .  

   Lawrence ,  Christopher .  1990 .  The power and the glory: Humphrey Davy and Romanticism . In   Romanticism and 
the Sciences  , ed.  Andrew   Cunningham  and  Nicholas   Jardine , 213 – 227.  Cambridge :  Cambridge University Press .  

   Lef è vre d ’  É taples ,  Jacques , and  Nemorarius   Jordanus .  1496 .   Elementa Musicalia  .  Paris .  

   Leibniz ,  Gottfried Wilhelm .  1989 .   Philosophical Essays  . Trans. Roger Ariew and Daniel Garber.  Indianapolis : 

 Hackett .  

   Lenoir ,  Timothy .  1993 .  The eye as mathematician: Clinical practice, instrumentation, and Helmholtz ’ s construc-

tion of an empiricist theory of vision . In   Helmholtz and the Foundations of Nineteenth-Century Science  , ed. 

 David   Cahan , 109 – 153.  Berkeley, CA :  University of California Press .  

   Lenoir ,  Timothy .  2006 .  Operationalizing Kant: Manifolds, models, and mathematics in Helmholtz ’ s theories of 

perception . In   The Kantian Legacy in Nineteenth-Century Science  , ed.  Michael   Friedman  and  Alfred   Nordmann , 

 141  –  210 .  Cambridge, MA :  MIT Press .  

   L é ry ,  Jean de .  1990 .   History of a Voyage to the Land of Brazil, Otherwise Called America  .  Berkeley, CA :  Uni-

versity of California Press .  

   Levin ,  Flora R.   2009 .   Greek Reflections on the Nature of Music  .  Cambridge :  Cambridge University Press .  

   Lewis ,  John .  2006 .   Galileo in France: French Reactions to the Theories and Trial of Galileo  .  New York :  Peter 

Lang .  

   Libre ,  Pearl .  1969 .  The quadrivium in the thirteenth century universities (with special reference to Paris) . In   Arts 
lib é raux et philosophie au Moyen Age  , 175 – 191.  Montreal :  Institut d ’  é tudes m é di é vales .  

   Lichtenberg ,  Georg Christoph .  1997 .   Observationes: die lateinischen Schriften  .  G ö ttingen :  Wallstein .  

   Lichtenberg ,  Georg Christoph .  2000 .   The Waste Books  . Trans. R. J. Hollingdale.  New York :  New York Review 

of Books .  

   Liessem ,  Franz .  1969 .   Musik und Alchemie  .  Tutzing :  H.   Schneider .  

   Lindell ,  Robert .  1994 .  Music and patronage at the Court of Rudolf II . In   Music in the German Renaissance: 
Sources, Styles, and Contexts  , ed.  John   Kmetz ,  254  –  271 .  Cambridge :  Cambridge University Press .  

   Lindley ,  Mark .  1982 .  Chromatic systems (or non-systems) from Vicentino to Monteverdi.    Early Music History   

 2 : 377  –  404 .  

   Lloyd ,  G. E. R.   1987 .   The Revolutions of Wisdom: Studies in the Claims and Practice of Ancient Greek Science  . 

 Berkeley, CA :  University of California Press .  

   Lossius ,  Lucas .  1570 .   Erotema musicae practicae  .  Nuremberg .  

   Lundberg ,  Mattias .  2011 .   Tonus Peregrinus: The History of a Psalm-Tone and Its Use in Polyphonic Music  . 

 Farnham, Surrey :  Ashgate .  

   Lundberg ,  Robert .  1992 .  In tune with the universe: The physics and metaphysics of Galileo ’ s lute . In   Music and 
Science in the Age of Galileo  , ed.  Victor   Coelho , 211 – 239.  Dordrecht :  Kluwer Academic .  

   MacAdam ,  David L. , ed.  1970 .   Sources of Color Science  .  Cambridge, MA :  MIT Press .  

   Macey ,  Patrick .  2009 .  Josquin and Champion: Conflicting attributions for the Psalm Motet  De profundis clamavi  . 
In  Uno gentile et subtile ingenio:  Studies in Renaissance Music in Honour of Bonnie J. Blackburn  , ed.  Gioia  

 Filocamo  and  M. Jennifer   Bloxam , 453 – 468.  Turnhout :  Brepols .  

   Mahr ,  Bernd , and  Wladimir   Velminski .  2010 .  Denken in Modellen: Zur L ö sung des K ö nigsberger Br ü ckenprob-

lems . In   Mathesis  &  Graph é : Leonhard Euler und die Entfaltung der Wissensystems  , ed.  Horst   Bredekamp  and 

 Wladimir   Velminski ,  85  –  100 .  Berlin :  Akademie Verlag .  

   Maier ,  Michael .  1989 .   Atalanta Fugiens: An Edition of the Fugues, Emblems, and Epigrams  . Ed.  Hildemarie  

 Streich , trans. Joscelyn Godwin.  Grand Rapids, MI :  Phanes Press .  

   Malebranche ,  Nicolas .  1997 .   The Search after Truth   .  Trans. Thomas M. Lennon and Paul J. Olscamp.  Cambridge : 

 Cambridge University Press .  

   Mambella ,  Guido .  2008 .  Corpo sonoro, geometria e temperamenti: Zarlino e la crisi del fondamento numerico 

della musica . In   Music and Mathematics: In Late Medieval and Early Modern Europe  , ed.  Philippe   Vendrix , 

185 – 234.  Turnhout :  Brepols .  



324 References

   Martens ,  Rhonda .  2000 .   Kepler ’ s Philosophy and the New Astronomy  .  Princeton, NJ :  Princeton University Press .  

   Mart í nez ,  Alberto A .  2012 .   The Cult of Pythagoras: Math and Myths  .  Pittsburgh, PA :  University of Pittsburgh 

Press .  

   Mathiesen ,  Thomas J.   1999 .   Apollo ’ s Lyre: Greek Music and Music Theory in Antiquity and the Middle Ages  . 

 Lincoln :  University of Nebraska Press .  

   Mathieson ,  Genevieve .  2007 . Thomas Young, Quaker scientist. MA thesis, Case Western Reserve University.   

   Maury ,  Jean-Pierre .  2003 .   A l ’ origine de la recherche scientifique: Mersenne  . Ed.  Sylvie   Taussig .  Paris :  Vuibert .  

   Mautner ,  Franz H. , and  Franklin   Miller .  1952 .  Remarks on G. C. Lichtenberg, humanist-scientist.    Isis   

 43 : 223  –  231 .  

   Maxham ,  Robert Eugene.   1976 . The contributions of Joseph Sauveur (1653 – 1716) to acoustics. PhD diss., 

University of Rochester.  

   Maxwell ,  James Clerk .  1868 .  On a method of making a direct comparison of electrostatic with electromagnetic 

force; with a note on the electromagnetic theory of light.    Philosophical Transactions of the Royal Society of 
London    158 : 643  –  657 .  

   Maxwell ,  James Clerk .  1890 .   The Scientific Papers of James Clerk Maxwell  .  Cambridge :  Cambridge University 

Press .  

   McGucken ,  William .  1969 .   Nineteenth-Century Spectroscopy: Development of the Understanding of Spectra, 
1802 – 1897  .  Baltimore :  Johns Hopkins Press .  

   McGuire ,  J. E. , and  P. M.   Rattansi .  1966 .  Newton and the  “ Pipes of Pan. ”     Notes and Records of the Royal Society 
of London    21 : 108  –  143 .  

   McKay ,  John Zachary .  2012 . Universal music-making: Athanasius Kircher and musical thought in the seventeenth 

century. PhD diss., Harvard University.  

   McKinney ,  Timothy R.   2005 .  Point/counterpoint: Vicentino ’ s musical rebuttal to Lusitano.    Early Music   

 33 : 393  –  411 .  

   McKinzie ,  Mark .  2007 .  Euler ’ s observations on harmonic progressions . In   Euler at 300: An Appreciation  , ed. 

 Robert E.   Bradley ,  Lawrence A.   D ’ Antonio , and  C. Edward   Sandifer , 131 – 141.  Washington, DC :  Mathematical 

Association of America .  

   McLaren ,  K.   1985 .  Newton ’ s indigo.    Color Research and Application    10 : 225  –  229 .  

   Meinel ,  Christoph , ed.  1986 .  Alchemie und Musik . In   Die Alchemie in der Europ ä ischen Kultur- und Wissen-
schaftsgeschichte  , 201 – 227.  Wiesbaden :  O. Harrassowitz .  

   Mellon ,  Elizabeth A.   2011 . Inscribing sound: Medieval remakings of Boethius ’ s  “ De Institutione Musica. ”  PhD 

diss., University of Pennsylvania.  

   Mersenne ,  Marin .  1623 .   Quaestiones Celeberrimae in Genesim  .  Paris :  Sebastian Cramoisy .  

   Mersenne ,  Marin .  1957 .   Harmonie Universelle: The Books on Instruments  . Trans. Roger E. Chapman.  The 

Hague :  M. Nijhoff .  

   Mersenne ,  Marin .  1963 .   Harmonie Universelle: Contenant la th é orie et la pratique de la musique   .   Paris :  Centre 

national de la recherche scientifique .  

   Mersenne ,  Marin .  1972 .   Questions Harmoniques  .  Stuttgart :  F. Frommann .  

   Methuen ,  Charlotte .  1998 .   Kepler ’ s T ü bingen: Stimulus to a Theological Mathematics  .  Aldershot :  Ashgate .  

   Meulders ,  Michel .  2010 .   Helmholtz: From Enlightenment to Neuroscience  .  Cambridge, MA :  MIT Press .  

   Mews ,  Constant J.   2009 .  Liturgists and dance in the twelfth century: the witness of John Beleth and Sicard of 

Cremona.    Church History    78 : 512  –  548 .  

   Mollon ,  J. D.   2002 .  The origins of the concept of interference.    Philosophical Transactions: Mathematical, Physi-
cal, and Engineering Sciences    360 : 807  –  819 .  

   Moore ,  Walter John .  1989 .   Schr ö dinger: Life and Thought  .  Cambridge :  Cambridge University Press .  

   Moreno ,  Jairo .  2004 .   Musical Representations, Subjects, and Objects the Construction of Musical Thought in 
Zarlino, Descartes, Rameau, and Weber  .  Bloomington :  Indiana University Press .  



References 325

   Moyer ,  Ann E.   1992 .   Musica Scientia: Musical Scholarship in the Italian Renaissance  .  Ithaca :  Cornell University 

Press .  

   Moyer ,  Ann E.   2008 .  Music, mathematics, and aesthetics: The case of the visual arts in the Renaissance . In   Music 
and Mathematics: In Late Medieval and Early Modern Europe  , ed.  Philippe   Vendrix , 111 – 146.  Turnhout : 

 Brepols .  

   Moyer ,  Ann E.   2011 .  Reading Boethius on proportion: Renaissance editions, epitomes, and versions of the 

arithmetic and music . In   Proportions: Science, musique, peinture  &  architecture  , ed.  Sabine   Rommevaux , 

 Philippe   Vendrix , and  Vasco   Zara , 51 – 68.  Turnhout :  Brepols .  

   Mullaly ,  Robert .  2011 .   The Carole: A Study of a Medieval Dance  .  Farnham, Surrey :  Ashgate .  

   Mulligan ,  Joseph F.   1994 .  Max Planck and the  “ Black Year ”  of German physics.    American Journal of Physics   

 62 : 1089  –  1097 .  

   Muzzulini ,  Daniel .  1994 .  Leonhard Eulers Konsonanztheorie.    Musiktheorie    9 : 135  –  146 .  

   Nambu ,  Yoichiro .  2012 .  From the S-matrix to string theory . In   The Birth of String Theory  , ed.  Andrea   Cappelli , 

 et al. ,  275  –  282 .  Cambridge :  Cambridge University Press .  

   Neal ,  Katherine .  2002 .   From Discrete to Continuous: The Broadening of Number Concepts in Early Modern 
England  .  Dordrecht :  Kluwer Academic .  

   Newman ,  James Roy , ed.  1956 .   The World of Mathematics  .  New York :  Simon and Schuster .  

   Newton ,  Isaac .  1665 . Cambridge University Library Add. Ms. 4000.  

   Newton ,  Isaac .  1959 .   The Correspondence of Isaac Newton  . Ed.  H. W.   Turnbull  and  J. F.   Scott .  Cambridge : 

 Published for the Royal Society at the University Press .  

   Newton ,  Isaac .  1978 .   Isaac Newton ’ s Papers  &  Letters on Natural Philosophy and Related Documents  ,  2nd ed.  

Ed.  I. Bernard   Cohen ,  Robert   E.   Schofield , and  Marie Boas   Hall .  Cambridge, MA :  Harvard University Press .  

   Newton ,  Isaac .  1979 .   Opticks: Or A Treatise of the Reflections, Refractions, Inflections, and Colours of Light  . 
 New York :  Dover .  

   Newton ,  Isaac .  1983 .   Certain Philosophical Questions: Newton ’ s Trinity Notebook  . Ed.  Martin   Tamny  and  J. E.  

 McGuire .  Cambridge :  Cambridge University Press .  

   Newton ,  Isaac .  Shapiro ,  Alan E. , ed.  1984 .   The Optical Papers of Isaac Newton  .  Cambridge :  Cambridge Uni-

versity Press .  

   Nicomachus  of Gerasa.  1994 .   The Manual of Harmonics of Nicomachus the Pythagorean  . Trans. Flora R. Levin. 

 Grand Rapids, MI :  Phanes Press .  

   Nielsen ,  Holger G.   2012 .  The string picture of the Veneziano model . In   The Birth of String Theory  , ed.  Andrea  

 Cappelli ,  et al. ,  266  –  274 .  Cambridge :  Cambridge University Press .  

   Nowak ,  Gregory .  1989 .  Riemann ’ s Habilitationsvortrag and the synthetic a priori status of geometry . In   The 
History of Modern Mathematics  , ed.  David E.   Rowe  and  John   McCleary .  Boston :  Academic Press .  

   O ’ Raifeartaigh ,  Lochlainn , ed.  1997 .   The Dawning of Gauge Theory  .  Princeton :  Princeton University Press .  

   Oettinger ,  Rebecca Wagner .  2003 .  Thomas Murner, Michael Stifel, and songs as polemic in the early Reforma-

tion.    Journal of Musicological Research    22 : 45  –  100 .  

   Oreskes ,  Naomi .  2013 .  Why I am a presentist.    Science in Context    26 : 595  –  609 .  

   Oresme ,  Nicole .  1966 .   De Proportionibus Proportionum and Ad Pauca Respicientes  . Trans. Edward Grant. 

 Madison :  University of Wisconsin Press .  

   Oresme ,  Nicole .  1968a .   Le livre du ciel et du monde  .  Madison :  University of Wisconsin Press .  

   Oresme ,  Nicole .  1968b .   Nicole Oresme and the Medieval Geometry of Qualities and Motions: A Treatise on the 
Uniformity and Difformity of Intensities Known as Tractatus de configurationibus qualitatum et motuum  . 

 Madison :  University of Wisconsin Press .  

   Oresme ,  Nicole .  1971 .   Nicole Oresme and the Kinematics of Circular Motion: Tractatus de commensurabilitate 
vel incommensurabilitate motuum celi  .  Madison :  University of Wisconsin Press .  

    Ø rsted ,  Hans Christian .  1998 .   Selected Scientific Works of Hans Christian  Ø rsted  .  Princeton, NJ :  Princeton 

University Press .  



326 References

    Ø rsted ,  Hans Christian .  2011 .   The Travel Letters of H. C.  Ø rsted  . Trans. Karen Jelved and Andrew D. Jackson. 

 Copenhagen :  Det Kongelige Danske Videnskabernes Selskab .  

   Pais ,  Abraham .  1986 .   Inward Bound: Of Matter and Forces in the Physical World  .  Oxford :  Clarendon Press .  

   Palisca ,  Claude V.   1961 .  Scientific empiricism in musical thought . In   Seventeenth Century Science and the Arts  , 

ed.  Stephen Edelston   Toulmin  and  Hedley Howell   Rhys ,  91  –  137 .  Princeton :  Princeton University Press .  

   Palisca ,  Claude V.   1972 .   Ut Oratoria Musica : The rhetorical basis of musical mannerism . In   The Meaning of 
Mannerism  , ed.  Stephen G.   Nichols  and  Franklin Westcott   Robinson ,  37  –  65 .  Hanover, NH :  University Press of 

New England .  

   Palisca ,  Claude V.   1985 .   Humanism in Italian Renaissance Musical Thought  .  New Haven :  Yale University Press .  

   Palisca ,  Claude V.   1992 .  Was Galileo ’ s father an experimental scientist?  In   Music and Science in the Age of 
Galileo  , ed.  Victor   Coelho , 143 – 151.  Dordrecht :  Kluwer Academic .   

   Pangrazi ,  Tiziana .  2009 .   La Musurgia Universalis di Athanasius Kircher: Contenuti, fonti, terminologia  .  Flor-

ence :  Olschki .  

   Panofsky ,  Erwin .  1954 .   Galileo as a Critic of the Arts  .  The Hague :  M. Nijhoff .  

   Panofsky ,  Erwin .  1956a .  Galileo as a critic of the arts: Aesthetic attitude and scientific thought.    Isis    47 : 3  –  15 .  

   Panofsky ,  Erwin .  1956b .  More on Galileo and the arts.    Isis    47 : 182  –  185 .  

   Pantalony ,  David .  2009 .   Altered Sensations: Rudolph Koenig ’ s Acoustical Workshop in Nineteenth-Century Paris  . 

 Dordrecht :  Springer .  

   Panza ,  Marco .  2006 .  Fran ç ois Vi è te: Between analysis and cryptanalysis.    Studies in History and Philosophy of 
Science    37 : 267  –  289 .  

   Park ,  David Allen .  1997 .   The Fire within the Eye: A Historical Essay on the Nature and Meaning of Light  . 
 Princeton, NJ :  Princeton University Press .  

   Partington ,  J. R.   2004 .  Albertus Magnus on alchemy . In   Alchemy and Early Modern Chemistry: Papers from 
Ambix  , ed.  Allen G.   Debus ,  45  –  62 .  London :  Jeremy Mills .  

   Peacock ,  George .  1855 .   Life of Thomas Young, M.D., F.R.S.,  & c.; and One of the Eight Foreign Associates of 
the National Institute of France  .  London :  J. Murray .  

   Pedersen ,  Kurt M ø ller .  2008 .  Leonhard Euler ’ s wave theory of light.    Perspectives on Science    16 : 392  –  416 .  

   Pelseneer ,  Jean .  1951 .  Une lettre in é dite d ’ Euler  à  Rameau.    Bulletin de la Classe des sciences: Acad é mie royale 
de Belgique    5 : 480  –  482 .  

   Pesic ,  Peter .  1997a .  Fran ç ois Vi è te, father of modern cryptanalysis — two new manuscripts.    Cryptologia   

 21 : 1  –  29 .  

   Pesic ,  Peter .  1997b .  Secrets, symbols, and systems: Parallels between cryptanalysis and algebra, 1580 – 1700.    Isis   

 88 : 674  –  692 .  

   Pesic ,  Peter .  2000a .   Labyrinth: A Search for the Hidden Meaning of Science  .  Cambridge, MA :  MIT Press .  

   Pesic ,  Peter .  2000b .  Kepler ’ s critique of algebra.    Mathematical Intelligencer    22 ( 4 ): 54  –  59 .  

   Pesic ,  Peter .  2002 .   Seeing Double: Shared Identities in Physics, Philosophy, and Literature  .  Cambridge, MA : 

 MIT Press .  

   Pesic ,  Peter .  2003 .   Abel ’ s Proof: An Essay on the Sources and Meaning of Mathematical Unsolvability  .  Cam-

bridge, MA :  MIT Press .  

   Pesic ,  Peter .  2004 .  Plato and zero.    Graduate Faculty Philosophy Journal    25 ( 2 ): 1  –  18 .  

   Pesic ,  Peter .  2005 .   Sky in a Bottle  .  Cambridge, MA :  MIT Press .  

   Pesic ,  Peter .  2006 .  Isaac Newton and the mystery of the major sixth: A transcription of his manuscript  “ Of 

Musick ”  with commentary.    Interdisciplinary Science Reviews    31 : 291  –  306 .  

   Pesic ,  Peter , ed.  2007 .   Beyond Geometry: Classic Papers from Riemann to Einstein  .  Mineola, NY :  Dover .  

   Pesic ,  Peter .  2010 .  Hearing the irrational: Music and the development of the modern concept of number.    Isis   

 101 : 501  –  530 .  

   Pesic ,  Peter .  2013a .  Euler ’ s musical mathematics.    Mathematical Intelligencer    35 ( 2 ): 35  –  43 .  



References 327

   Pesic ,  Peter .  2013b .  Helmholtz, Riemann, and the sirens: Sound, color, and the  “ problem of space. ”     Physics in 
Perspective    15 : 256  –  294 .  

   Pesic ,  Peter .  2013c .  Thomas Young ’ s musical optics: Translating between hearing and seeing.    Osiris    28 : 15  –  39 .  

   Pesic ,  Peter .  2014a . Bacon, violence, and the motion of liberty: The Aristotelian background.  Journal of the 
History of Ideas   75 : 69  –  90 .  

   Pesic ,  Peter .  2014b .  Thomas Young and eighteenth century tempi.    Performance Practice Review    18 ( 1 )  http://

scholarship.claremont.edu/ppr/vol28/iss1/2 .  

   Pesic ,  Peter .  2014c .  Max Planck ’ s writings on music: A translation and commentary.    Theoria   21.  

   Pesic ,  Peter .  In preparation -a.  The Polyphonic Mind .  

   Pesic ,  Peter .  In preparation -b.  Music, Science, Passion .   

   Peterson ,  Mark A.   2011 .   Galileo ’ s Muse: Renaissance Mathematics and the Arts  .  Cambridge, MA :  Harvard 

University Press .  

   Pirro ,  Andr é  .  1973 .   Descartes et la musique  .  Geneva :  Minkoff Reprint .  

   Pirrotta ,  Nino .  1984 .   Music and Culture in Italy from the Middle Ages to the Baroque: a Collection of Essays  . 

 Cambridge, MA :  Harvard University Press .  

   Planck ,  Max .  1893 .  Die nat ü rliche Stimmung in der modernen Vokalmusik.    Vierteljahrsschrift f ü r Musikwis-
senschaft    9 : 418  –  444 .  

   Planck ,  Max .  1899 .   Ü ber irreversible Strahlungsvorg ä nge.    Sitzungsberichte der K ö niglich Preu ß ischen Akademie 
der Wissenschaften zu Berlin    5 : 440  –  480 .  

   Planck ,  Max .  1949 .   Scientific Autobiography and Other Papers  .  New York :  Philosophical Library .  

   Planck ,  Max .  1958 .   Physikalische Abhandlungen und Vortr ä ge  .  Braunschweig :  Vieweg .  

   Planck ,  Max .  1981 .   Where Is Science Going?    Woodbridge, CT :  Ox Bow Press .  

   Planck ,  Max .  1998 .   Eight Lectures on Theoretical Physics  . Ed.  Peter   Pesic , trans. A. P Wills.  Mineola, NY : 

 Dover .  

   Plato .  2006 .   The Republic  . Trans. R. E. Allen.  New Haven, CT :  Yale University Press .  

   Pollitt ,  J. J.   1972 .   Art and Experience in Classical Greece  .  Cambridge :  Cambridge University Press .  

   Polzonetti ,  Pierpaolo .  2001 .   Tartini e la musica secondo natura   .   Lucca :  LIM .  

   Principe ,  Lawrence .  2013 .   The Secrets of Alchemy  .  Chicago :  University of Chicago Press .  

  Proceedings of the Royal Institution.  1829 .   Quarterly Journal of Science    27 : 379  –  380 .  

   Ptolemy .  1998 .   Ptolemy ’ s Almagest  . Trans. G. J. Toomer.  Princeton, NJ :  Princeton University Press .  

   Quintilianus ,  Aristides .  1983 .   On Music, in Three Books  . Trans. Thomas J. Mathiesen.  New Haven :  Yale Uni-

versity Press .  

   Raasted ,  J ø rgen .  1979 .  A neglected version of the anecdote about Pythagoras ’ s hammer experiments .   Cahiers de 
l ’ Institut du moyen- â ge grec et latin    31a – 31b : 1  –  9 .  

   Rasch ,  Rudolf .  2002 .  Why were enharmonic keyboards built? From Nicola Vicentino (1555) to Michael 

Bulyowsky (1699).    Schweizer Jahrbuch f ü r Musikwissenschaft    22 : 35  –  93 .  

   Rasch ,  Rudolf .  2008 .  Simon Stevin and the calculation of equal temperament . In   Music and Mathematics: In 
Late Medieval and Early Modern Europe  , ed.  Philippe   Vendrix , 253 – 320.  Turnhout :  Brepols .  

   Rayleigh ,  John William Strutt .  1945 .   The Theory of Sound  ,  2nd ed.   New York :  Dover .  

   Recorde ,  Robert .  1557 .   The Whetstone of Witte  .  London .  

   Rehding ,  Alexander .  2003 .   Hugo Riemann and the Birth of Modern Musical Thought  .  Cambridge :  Cambridge 

University Press .  

   Rehding ,  Alexander .  2014 .  Of sirens old and new . In   The Oxford Handbook of Mobile Music  , ed.  Sumanth S.  

 Gopinath  and  Jason   Stanyek .  Oxford :  Oxford University Press .  

   Reichenbach ,  Hans .  1970 .  The philosophical significance of the theory of relativity . In   Albert Einstein: Philos-
opher-Scientist  , ed.  Paul Arthur   Schilpp ,  3rd ed. , 289 – 311.  La Salle, IL :  Open Court .  



328 References

   Reichenbach ,  Hans .  2006 .   Experience and Prediction: An Analysis of the Foundations and the Structure of 
Knowledge  .  Notre Dame, IN :  University of Notre Dame Press .  

   Richards ,  Joan L.   1977 .  The evolution of empiricism: Hermann von Helmholtz and the foundations of geometry.  

  British Journal for the Philosophy of Science    28 : 235  –  253 .  

   Richeson ,  David S.   2008 .   Euler ’ s Gem: The Polyhedron Formula and the Birth of Topology  .  Princeton, NJ : 

 Princeton University Press .  

   Riemann ,  Bernhard .  1867 .  Ueber die Hypothesen, welche die Geometrie zu Grunde Liegen.    Abhandlungen der 
K ö niglichen Gesellschaft der Wissenschaften in G ö ttingen    13 : 133  –  152 .  

   Riemann ,  Bernhard .  1984 .  The mechanism of the ear.  Trans. David Cherry, Robert Gallagher, and John Siegerson. 

  Fusion    6 ( 3 ): 31  –  38 .  

   Riemann ,  Bernhard .  1990 .   Gesammelte mathematische Werke, wissenschaftlicher Nachlass und Nachtr ä ge: Col-
lected Papers  . Ed.  Heinrich   Weber ,  Richard   Dedekind , and  Raghavan   Narasimhan .  Berlin :  Springer-Verlag .  

   Ritchey ,  Tom .  1991 .  On scientific method — based on a study by Bernhard Riemann.    Systems Research   

 8 : 21  –  41 .  

   Ritter ,  Johann Wilhelm .  1806 .   Physisch-chemische Abhandlungen in chronologischer Folge  .  Leipzig :  Reclam .  

   Ritter ,  Johann Wilhelm .  2010 .   Key Texts of Johann Wilhelm Ritter (1776 – 1810) on the Science and Art of Nature  . 

Trans. Jocelyn Holland.  Leiden :  Brill .  

   Robinson ,  Andrew .  2006 .   The Last Man Who Knew Everything: Thomas Young, the Anonymous Polymath Who 
Proved Newton Wrong, Explained How We See, Cured the Sick, and Deciphered the Rosetta Stone, Among Other 
Feats of Genius  .  New York :  Pi Press .  

   Ronald ,  Calinger .  1996 .  Leonhard Euler: The first St. Petersburg years (1727 – 1741).    Historia Mathematica   

 23 : 121  –  166 .  

   Rosen ,  Charles .  1995 .   The Romantic Generation  .  Cambridge, MA :  Harvard University Press .  

   Rosen ,  Edward .  1956 .  Review of Panofsky,  Galileo as a Critic of the Arts .    Isis    47 : 78  –  80 .  

   Rosen ,  Edward .  1984 .  Kepler ’ s attitude toward astrology and mysticism . In   Occult and Scientific Mentalities in 
the Renaissance  , ed.  Brian   Vickers , 253 – 272.  Cambridge :  Cambridge University Press .  

   Rosenfeld ,  B. A.   1987 .   The History of Non-Euclidean Geometry: Evolution of the Concept of a Geometric Space  . 

Trans. Abe Shenitzer.  New York :  Springer-Verlag .  

   Rowe ,  David E.   1992 .  Klein, Lie, and the  “ Erlanger Programm. ”   In   1830 – 1930: A Century of Geometry  , ed. 

 L.   Boi ,  D.   Flament , and  J.-M.   Salanskis ,  45  –  54 .  Berlin :  Springer-Verlag .  

   Ruhnke ,  Martin .  1955 .   Joachim Burmeister: Ein Beitrag zur Musiklehre um 1600  .  Kassel :  B ä renreiter .  

   Rydberg ,  J. R.   1890 .  Recherches sur la constitution des spectres d ’  é mission des  é l é ments chimiques .   Kongliche 
Svenska vetenskaps-akademiens handlingar    23 ( 11 ): 1  –  155 .  

   Sabra ,  A. I.   1981 .   Theories of Light, from Descartes to Newton  .  Cambridge :  Cambridge University Press .  

   Sabra ,  A. I.   1963 .  Newton and the  “ bigness ”  of vibrations.    Isis    54 : 267  –  268 .  

   Sachs ,  Horst ,  Michael   Stiebitz , and  Robin J.   Wilson .  1988 .  An historical note: Euler ’ s K ö nigsberg letter.    Journal 
of Graph Theory    12 : 133  –  139 .  

   Salem ,  Michael P.   2011 . Bubble collisions and measures of the multiverse.  http://arxiv.org/abs/1108.0040 .  

   Salinas ,  Francisco .  1958 .   De musica libri septem  .  Kassel :  B ä renreiter-Verlag .  

   Sandifer ,  C.   Edward .  2007a .   The Early Mathematics of Leonhard Euler  .  Washington, DC :  Mathematical Associa-

tion of America .  

   Sandifer ,  C.   Edward .  2007b .  Euler rows the boat . In   Euler at 300: An Appreciation  , ed.  Robert E.   Bradley , 

 Lawrence A.   D ’ Antonio , and  C.   Edward Sandifer ,  273  –  279 .  Washington, DC :  Mathematical Association of 

America .  

   Sandifer ,  C.   Edward .  2007c .   How Euler Did It  .  Washington, DC :  Mathematical Association of America .  

   Saunders ,  Steven .  1995 .   Cross, Sword, and Lyre: Sacred Music at the Imperial Court of Ferdinand II of Habsburg 
(1619 – 1637)  .  Oxford :  Clarendon Press .  

   Savart ,  F é lix .  1819 .   M é moire sur la construction des instruments  à  cordes et  à  archet  .  Paris :  Librairie Encyclo-

p é dique de Roret .  



References 329

   Schiffer ,  Michael B.   2003 .   Draw the Lightning Down: Benjamin Franklin and Electrical Technology in the Age 
of Enlightenment  .  Berkeley, CA :  University of California Press .  

   Scholz ,  Erhard .  1980 .   Geschichte des Mannigfaltigkeitsbegriffs von Riemann bis Poincar é   .  Basel :  Birkh ä user .  

   Scholz ,  Erhard .  1982 .  Riemanns fr ü he Notizen zum Mannigfaltigkeitsbegriff und zu den Grundlagen der Geom-

etrie.    Archive for History of Exact Sciences    27 : 213  –  282 .  

   Schr ö dinger ,  Erwin .  1928 .   Four Lectures on Wave Mechanics  .  London :  Blackie .  

   Schr ö dinger ,  Erwin .  1982 .   Collected Papers on Wave Mechanics: Together with His Four Lectures on Wave 
Mechanics  .  New York :  Chelsea .  

   Sch ü ller ,  Volkmar .  1994 .  Das Helmholtz-Liesche Raumproblem und seine ersten L ö sung . In   Universalgenie 
Helmholtz: R ü ckblich nach 100 Jahren  , ed.  Lorenz   Kr ü ger ,  260  –  275 .  Berlin :  Akademie Verlag .  

   Schuster ,  John A. , and  Judit   Brody .  2013 .  Descartes and sunspots: Matters of fact and systematizing strategies 

in the  Principia Philosophiae .    Annals of Science    70 : 1  –  45 .  

   Schwartz ,  Hillel .  2011 .   Making Noise: From Babel to the Big Bang  &  Beyond  .  Brooklyn, NY :  Zone Books .  

   Sedlar ,  Jean W.   1980 .   India and the Greek World: A Study in the Transmission of Culture  .  Totowa, NJ :  Rowman 

 &  Littlefield .  

   Semmens ,  Richard .  1987 . Joseph Sauveur ’ s  “ Treatise on the Theory of Music ” : A study, diplomatic transcription, 

and annotated translation. PhD diss., University of Western Ontario.  

   Sepper ,  Dennis L.   1994 .   Newton ’ s Optical Writings: A Guided Study  .  New Brunswick, NJ :  Rutgers University 

Press .  

   Shankman ,  Steven , and  Stephen W.   Durrant , eds.  2002 .   Early China/Ancient Greece: Thinking through Com-
parisons  .  Albany :  SUNY Press .  

   Shapin ,  Steven .  1994 .   A Social History of Truth: Civility and Science in Seventeenth-Century England  .  Chicago : 

 University of Chicago Press .  

   Shapin ,  Steven .  2010 .   Never Pure: Historical Studies of Science as If It Was Produced by People with Bodies, 
Situated in Time, Space, Culture, and Society, and Struggling for Credibility and Authority  .  Baltimore :  Johns 

Hopkins University Press .  

   Shapiro ,  Alan E.   1980 .  The evolving structure of Newton ’ s theory of white light and color.    Isis    71 : 211  –  235 .  

   Shapiro ,  Alan E.   1993 .   Fits, Passions, and Paroxysms: Physics, Method, and Chemistry and Newton ’ s Theories 
of Colored Bodies and Fits of Easy Reflection  .  Cambridge :  Cambridge University Press .  

   Shapiro ,  Alan E.   1994 .  Experiment and mathematics in Newton ’ s theory of color.    Physics Today    37 ( 9 ): 34  –  42 .  

   Shapiro ,  Alan E.   2001 .  Newton ’ s experiments on diffraction and the delayed publication of the  Opticks  . In   Isaac 
Newton ’ s Natural Philosophy  , ed.  Jed Z.   Buchwald  and  I.   Bernard Cohen ,  47  –  76 .  Cambridge, MA :  MIT Press .  

   Shapiro ,  Alan E.   2002 .  Newton ’ s optics and atomism . In   The Cambridge Companion to Newton  , ed.  I. Bernard  

 Cohen  and  George E.   Smith , 227 – 255.  Cambridge :  Cambridge University Press .  

   Smith ,  Anne .  2011 .   The Performance of 16th-Century Music: Learning from the Theorists  .  New York :  Oxford 

University Press .  

   Smith ,  Bruce R.   1999 .   The Acoustic World of Early Modern England: Attending to the O-factor  .  Chicago :  Uni-

versity of Chicago Press .  

   Smith ,  Charles Samuel .  1960 . Leonhard Euler ’ s  Tentamen novae theoriae musicae : A translation and commen-

tary. PhD diss., Indiana University.  

   Smith ,  Robert .  1749 .   Harmonics, or The Philosophy of Musical Sounds  .  Cambridge :  J. Bentham .  

   Smolin ,  Lee .  2006 .   The Trouble with Physics: The Rise of String Theory, the Fall of a Science, and What Comes 
Next  .  Boston :  Houghton Mifflin .  

   Snelders ,  H. A. M.   1990 .  Oersted ’ s discovery of electromagnetism . In   Romanticism and the Sciences  , ed.  Andrew  

 Cunningham  and  Nicholas   Jardine , 228 – 240.  Cambridge :  Cambridge University Press .  

   Solovine ,  Maurice , and  Albert   Einstein .  1956 .   Lettres  à  Maurice Solovine  .  Paris :  Gauthier-Villars .  

   Sommerfeld ,  Arnold .  1934 .   Atomic Structure and Spectral Lines  ,  3rd ed.  Trans. Henry L. Brose.  London : 

 Methuen .  



330 References

   Sonnert ,  Gerhard .  2005 .   Einstein and Culture  .  Amherst, NY :  Humanity Books .  

   Spitzer ,  Leo .  1963 .   Classical and Christian Ideas of World Harmony: Prolegomena to an Interpretation of the 
Word  “ Stimmung. ”   .  Baltimore, MD :  Johns Hopkins University Press .  

   Steege ,  Benjamin .  2012 .   Helmholtz and the Modern Listener  .  Cambridge :  Cambridge University Press .  

   Stein ,  Howard .  1977 .  Some philosophical prehistory of general relativity . In   Foundations of Space-Time Theories  , 

ed.  John S.   Earman ,  Clark N.   Glymour , and  John J.   Stachel , 3 – 49.  Minneapolis, MN :  University of Minnesota 

Press .  

   Stephenson ,  Bruce .  1994a .   The Music of the Heavens: Kepler ’ s Harmonic Astronomy  .  Princeton, NJ :  Princeton 

University Press .  

   Stephenson ,  Bruce .  1994b .   Kepler ’ s Physical Astronomy  .  Princeton, NJ :  Princeton University Press .  

   Sterne ,  Jonathan .  2003 .   The Audible Past: Cultural Origins of Sound Reproduction  .  Durham :  Duke University 

Press .  

   Stifel ,  Michael .  1544 .   Arithmetica Integra  .  Nuremburg :  J. Petreium .  

   Stoney ,  G. Johnstone .  1871 .  On the cause of the interrupted spectra of gases.    Philosophical Magazine   

 41 : 291  –  296 .  

   Stoney ,  G. Johnstone .  1880 .  On a new harmonic relation between the lines of hydrogen.    Nature    21 : 508 .  

   Stoney ,  G. Johnstone , and  J. Emerson   Reynolds .  1871 .  An inquiry into the cause of the interrupted spectra 

gases — part II. On the absorption-spectrum of chlorochromic anhydride.    Philosophical Magazine    42 : 41  –  52 .  

   Str ä ssle ,  Thomas .  2004 .   “ Das H ö ren ist ein Sehen von und durch Innen ” : Johann Wilhelm Ritter and the aesthet-

ics of music . In   Music and Literature in German Romanticism  , ed.  Siobh á n   Donovan  and  Robin   Elliott ,  27  –  42 . 

 Rochester, NY :  Camden House .  

   Strickland ,  Stuart Walker .  1998 .  The ideology of self-knowledge and the practice of self-experimentation.  

  Eighteenth-Century Studies    31 : 453  –  471 .  

   Strunk ,  W. Oliver , and  Leo   Treitler , eds.  1998 .   Source Readings in Music History  .  New York :  Norton .  

   Supper ,  Alexandra .  2012 . Lobbying for the ear: The public fascination with and academic legitimacy of the 

sonification of scientific data. PhD diss., Maastricht University.  

   Susskind ,  Leonard .  2005 .   Cosmic Landscape: String Theory and the Illusion of Intelligent Design  .  New York : 

 Little, Brown .  

   Susskind ,  Leonard .  2012 .  The first string theory: Personal recollections . In   The Birth of String Theory  , ed.  Andrea  

 Cappelli ,  et al. ,  262  –  265 .  Cambridge :  Cambridge University Press .  

   Swafford ,  Jan .  1997 .   Johannes Brahms: A Biography  .  New York :  Alfred A. Knopf .  

   Szab ó  ,   Á rp á d .  1978 .   The Beginnings of Greek Mathematics  .  Dordrecht :  D. Reidel .  

   Takahashi ,  Yuzo .  1979 .  Two hundred years of Lichtenberg figures.    Journal of Electrostatics    6 : 1  –  13 .  

   Tannery ,  Paul .  1902 .  Du r ô le de la musique greque dans le d é veloppement de la math é matique pure .   M é moire 
scientifique    3 : 161  –  175 .  

   Tartaglia ,  Niccol ò  .  1578 .   L ’ arithmetiqve  . Trans. Guillaume Gosselin.  Paris :  Gilles Beys .  

   Taschow ,  Ulrich .  1999 .  Die Bedeutung der Musik als Modell f ü r Nicoles Oresme Theorie.    Early Science and 
Medicine    4 : 37  –  90 .  

   Taschow ,  Ulrich .  2003 .   Nicole Oresme und der Fr ü hling der Moderne: Die Urspr ü nge unserer modernen 
quantitativ-matrischen Weltaneignungsstrategien und neuzeitlichen Bewusstseins- und Wissenschaftskultur  . 

 Halle :  Avox Medien-Verlag .  

   Thomas ,  Jennifer .  2009 .   Absalon fili mi , Josquin, and the French royal court: Attribution, authenticity, context, 

and conjecture . In  Uno gentile et subtile ingenio:  Studies in Renaissance Music in Honour of Bonnie J. Blackburn  , 

ed.  Gioia   Filocamo  and  M. Jennifer   Bloxam , 477 – 489.  Turnhout :  Brepols .  

   Thompson ,  Emily Ann .  2002 .   The Soundscape of Modernity: Architectural Acoustics and the Culture of Listening 
in America, 1900 – 1933  .  Cambridge, MA :  MIT Press .  

   Tiella ,  Marco .  1975 .  The Archicembalo of Nicola Vicentino.    English Harpsichord Magazine    1 : 134  –  144 .  



References 331

   Tinctoris ,  Johannes .  1961 .   The Art of Counterpoint: Liber de Arte Contrapuncti  . Trans. Albert Seay.  Rome : 

 American Institute of Musicology .  

   Tomlinson ,  Gary .  1993 .   Music in Renaissance Magic: Toward a Historiography of Others  .  Chicago :  University 

of Chicago Press .  

   Tonietti ,  Tito M.   2000 .  Does Newton ’ s musical model of gravitation work? A mistake and its meaning.    Centaurus   

 42 : 135  –  149 .  

   Tonietti ,  Tito M.   2011 . Music between hearing and counting (a historical case chosen within continuous long-

lasting conflicts). In  Mathematics and Computation in Music , ed. Carlos Agon, Moreno Andreatta, G é rard 

Assayag, Emmanuel Amiot, Jean Bresson, and John Mandereau, 285 – 296. Berlin: Springer.  http://www

.springerlink.com/content/a576762u0w2j4608/ .  

   Torretti ,  Roberto .  1978 .   Philosophy of Geometry from Riemann to Poincar é   .  Dordrecht, Holland :  D. Reidel .  

   Tserlyuk-Askadskaya ,  S. S.   2007 .  Euler ’ s music-theoretical manuscripts and the formation of his conception of 

the theory of music . In   Euler and Modern Science  , ed.  A. P.   Yushkevich ,  N. N.   Bogolyubov , and  G. K.   Mikha ĭ lov , 

trans. Robert Burns, 349 – 360.  Washington, DC :  Mathematical Association of America .  

   Tweney ,  Ryan D .  1992a .  Stopping time: Faraday and the scientific creation of perceptual order .   Physis   

 29 : 149  –  164 .  

   Tweney ,  Ryan D .  1992b .  Inventing the field: Michael Faraday and the creative engineering of electromagnetic 

field theory . In   Inventive Minds: Creativity in Technology  , ed.  D.   Perkins  and  R.   Weber ,  31  –  47 .  Oxford :  Oxford 

University Press .  

   Tyndall ,  John .  1898 .   Sound  ,  3rd ed.   New York :  D. Appleton .  

   Tyndall ,  John .  1961 .   Faraday as a Discoverer  .  New York :  Crowell .  

   Van Berkel ,  Klaas .  2000 .  Descartes ’  debt to Beeckman: Inspiration, cooperation, conflict . In   Descartes ’  Natural 
Philosophy  , ed.  Stephen   Gaukroger ,  John   Schuster , and  John   Sutton ,  46  –  59 .  London :  Routledge.   

   Van Wymeersch ,  Brigitte .  1999 .   Descartes et l ’  é volution de l ’ esth é tique musicale  .  Sprimont :  Mardaga .  

   Van Wymeersch ,  Brigitte .  2008 .  Qu ’ entend-on par  “ nombre sourd ” ?  In   Music and Mathematics in Late Medieval 
and Early Modern Europe  , ed.  Philippe   Vendrix , 97 – 110.  Turnhout :  Brepols .  

   Van Wymeersch ,  Brigitte .  2011 .  Proportion, harmonie et beaut é  chez Mersenne: entre lecture analogique et 

lecture physico-math é matique de la musique . In   Proportions: Science, musique, peinture  &  architecture  , ed. 

 Sabine   Rommevaux ,  Philippe   Vendrix , and  Vasco   Zara , 261 – 274.  Turnhout :  Brepols .  

   Varadarajan ,  V. S.   2006 .   Euler through Time: A New Look at Old Themes  .  Providence, RI :  American Mathemati-

cal Society .  

   Vecchia ,  P .  Di.   2008 .  The birth of string theory . In   String Theory and Fundamental Interactions  ,  vol. 737 . ed. 

 Maurizio   Gasperini  and  Jnan   Maharana ,  59  –  118 .  Lecture Notes in Physics .  Berlin :  Springer .  

   Velminski ,  Wladimir , ed.  2009a .   Leonhard Euler: Die Geburt der Graphentheorie  .  Berlin :  Kulturverlag Kadmos .  

   Velminski ,  Wladimir .  2009b .   Form, Zahl, Symbol: Leonhard Eulers Strategien der Anschaulichkeit  .  Berlin : 

 Akademie-Verlag .  

   Vendrix ,  Philippe , ed.  2008 .   Music and Mathematics: In Late Medieval and Early Modern Europe  .  Turnhout : 

 Brepols .  

   Vicentino ,  Nicola .  1996 .   Ancient Music Adapted to Modern Practice  , ed.  Claude V.   Palisca , trans. Maria Rika 

Maniates.  New Haven :  Yale University Press .  

   Vickers ,  Brian .  1984 .  Analogy versus identity: The rejection of occult symbolism, 1580 – 1680 . In   Occult and 
Scientific Mentalities in the Renaissance  , ed.  Brian   Vickers , 273 – 296.  Cambridge :  Cambridge University Press .  

   Vogel ,  Stephan .  1993 .  Sensations of tone, perception of sound, and empiricism . In   Helmholtz and the Founda-
tions of Nineteenth-Century Science  , ed.  David   Cahan,  259 – 287.  Berkeley, CA :  University of California Press .  

   Volkert ,  Klaus .  1993 .  On Helmholtz ’  paper  “ Ueber die thats ä chlichen Grundlagen der Geometrie. ”     Historia 
Mathematica    20 : 307  –  309 .  

   Volkert ,  Klaus .  1996 .  Hermann von Helmholtz und die Grundlagen der Geometrie . In   Hermann von Helmholtz: 
Vortr ä ge eines Heidelberger Symposium anl ä sslich des einhundersten Todestages  , ed.  Wolfgang U.   Eckart  and 

 Klaus   Volkert , 177 – 207.  Pfaffenweiler  : Centaurus-Verlagsgesellschaft .  



332 References

   Volmar ,  Axel .  2012 . Klang-Experimente: Eine Geschichte der auditiven Kultur der Naturwissenschaften seit 

1800. PhD diss., University of Siegen.  

   Volmar ,  Axel .  2013a .  Listening to the cold war: The nuclear test ban negotiations, seismology, and psychoacous-

tics, 1958 – 1963.    Osiris    28 : 80  –  102 .  

   Volmar ,  Axel .  2013b .  Sonic facts for sound arguments: Medicine, experimental physiology, and the auditory 

construction of knowledge in the 19th century.    Journal of Sonic Studies    4 ( 1 ).  http://journal.sonicstudies.org/

vol04/nr01/a13 .  

   Voltaire .  1967 .   The Elements of Sir Isaac Newton ’ s Philosophy  .  London :  Cass .  

   Wahsner ,  Renate .  1994 .  Apriorische Funktion und aposteriorische Herkunft: Hermann von Helmholtz ’  Untersu-

chungen zum Erfahrungsstatus der Geometrie . In   Universalgenie Helmholtz  , ed.  Lorenz   Kr ü ger , 245 – 259.  Berlin : 

 Akademie Verlag .  

   Walker ,  D. P.   1978 .   Studies in Musical Science in the Late Renaissance  .  London :  Warburg Institute, University 

of London .  

   Ward ,  Tom R.   2013 .  Music and music theory in the universities of central Europe during the fifteenth century . 

In   Musical Theory in the Renaissance  , ed.  Cristle Collins   Judd , 563 – 571.  Farnham, Surrey :  Ashgate .  

   Wardhaugh ,  Benjamin .  2008 .   Music, Experiment, and Mathematics in England, 1653 – 1705  .  Farnham :  Ashgate .  

   Warusfel ,  Andr é  .  2009 .   Euler: Les math é matiques et la vie  .  Paris :  Vuibert .  

   Watson ,  Gerard .  1973 .   Plato ’ s Unwritten Teaching  .  Dublin :  Talbot Press .  

   Weil ,  Andr é  .  1984 .   Number Theory: An Approach through History from Hammurapi to Legendre  .  Basel : 

 Birkh ä user .  

   Welsh ,  Caroline .  2010 .   Ä therschwingungen und Nervenvibrationen: Leonhard Eulers Seele in der camera obscura 

des K ö rpers und die Probleme der Wahrnehmung im 18. Jahrhundert . In   Mathesis  &  Graph é : Leonhard Euler 
und die Entfaltung der Wissensystems  , ed.  Horst   Bredekamp  and  Wladimir   Velminski ,  224  –  237 .  Berlin :  Akad-

emie Verlag .  

   Werner ,  Eric .  1956 .  The mathematical foundation of Philippe de Vitri ’ s  “ Ars Nova. ”     Journal of the American 
Musicological Society    9 : 128  –  132 .  

   Werner ,  Eric .  1978 .  The last Pythagorean musician: Johannes Kepler . In   Aspects of Medieval and Renaissance 
Music: A Birthday Offering to Gustave Reese  , ed.  Jan   LaRue , 867 – 882.  New York :  Pendragon   Press .  

   West ,  M. L.   1992 .   Ancient Greek Music  .  Oxford :  Clarendon Press .  

   Westfall ,  Richard S.   1967 .  Uneasily fitful reflections on fits of easy transmission.    Texas Quarterly   

 10 : 86  –  107 .  

   Westfall ,  Richard S.   1980 .   Never at Rest: A Biography of Isaac Newton  .  Cambridge :  Cambridge University 

Press .  

   Westman ,  Robert S.   1975 .  Three responses to the Copernican Theory: Johannes Praetorius, Tycho Brahe, and 

Michael Maestlin . In   The Copernican Achievement  , ed.  Robert S.   Westman ,  285  –  345 .  Berkeley, CA :  University 

of California Press .  

   Westman ,  Robert S.   2011 .   The Copernican Question: Prognostication, Skepticism, and Celestial Order  .  Berkeley, 

CA :  University of California Press .  

   Wetzels ,  Walter D.   1990 .  Johann Wilhelm Ritter: Romantic physics in Germany . In   Romanticism and the Sci-
ences  , ed.  Andrew   Cunningham  and  Nicholas   Jardine , 199 – 212.  Cambridge :  Cambridge University Press .  

   Weyl ,  Hermann .  2009 .   Mind and Nature: Selected Writings on Philosophy, Mathematics, and Physics   .  Ed. Peter 

Pesic.  Princeton, NJ :  Princeton University Press .  

   Wheatstone ,  Charles .  1879 .   The Scientific Papers of Sir Charles Wheatstone  .  London :  Taylor  &  Francis .  

   Whitehead ,  Alfred North .  1967 .   Science and the Modern World  .  New York :  Free Press .  

   Wilczek ,  Frank , and  Betsy   Devine .  1988 .   Longing for the Harmonies: Themes and Variations from Modern 
Physics  .  New York :  Norton .  

   Williams ,  L.   Pearce .  1971 .   Michael Faraday: A Biography  .  New York :  Simon  &  Schuster .  

   Wilson ,  Curtis .  1989 .   Astronomy from Kepler to Newton: Historical Studies  .  London :  Variorum Reprints .  



References 333

   Woit ,  Peter .  2006 .   Not Even Wrong: The Failure of String Theory and the Search for Unity in Physical Law  . 

 New York :  Basic Books .  

   Wood ,  Alexander , and  Frank   Oldham .  1954 .   Thomas Young, Natural Philosopher, 1773 – 1829  .  Cambridge : 

 Cambridge University Press .  

   Worrall ,  John .  1976 .  Thomas Young and the  “ refutation ”  of Newtonian optics: A case-study in the interaction 

of philosophy of science and history of science . In   Method and Appraisal in the Physical Sciences  , ed.  Colin  

 Howson .  Cambridge :  Cambridge University Press .  

   Wright ,  Craig .  2001 .   The Maze and the Warrior: Symbols in Architecture, Theology, and Music  .  Cambridge, MA : 

 Harvard University Press .  

   Wright ,  Denzil .  2002 .  The cimbalo cromatico and other Italian string keyboard instruments with divided acci-

dentals.    Schweizer Jahrbuch f ü r Musikwissenschaft    22 : 105  –  136 .  

   Yates ,  Frances Amelia .  1991 .   Giordano Bruno and the Hermetic Tradition  .  Chicago :  University of Chicago 

Press .  

   Young ,  Thomas .  1855 .   Miscellaneous Works of the Late Thomas Young  .  London :  J. Murray .  

   Young ,  Thomas .  2002 .   Thomas Young ’ s Lectures on Natural Philosophy and the Mechanical Arts  .  Bristol : 

 Thoemmes .  

   Yushkevich ,  A. P. ,  N. N.   Bogolyubov , and  G. K.   Mikha ĭ lov , eds.  2007 .   Euler and Modern Science  . Trans. Robert 

Burns.  Washington, DC :  Mathematical Association of America .  

   Zarlino ,  Gioseffo .  1579 .   Discorso del reverendo M. Gioseffo Zarlino  …  intorno il vero anno,  &  il vero giorno, 
nel quale fu crucifisso Il N.S. Giesv Christo redentor del mondo   .   Venice :  Domenico Nicolini .  

   Zarlino ,  Gioseffo .  1588 .   De tutte l ’ opere del r.m. Gioseffo Zarlino  .  Venice :  Francesco de ’  Franceschi Senese .  

   Zarlino ,  Gioseffo .  1968 .   The Art of Counterpoint. Part Three of  Le istitutioni harmoniche , 1558  .  New Haven : 

 Yale University Press .  

   Zarlino ,  Gioseffo .  1983 .   On the Modes: Part Four of  Le istitutioni harmoniche , 1558  . Ed.  Claude V.   Palisca , 

trans. Vered Cohen.  New Haven :  Yale University Press .  

   Zarlino ,  Gioseffo .  2011 .   L ’ istituzioni armoniche  .  Treviso :  Diasteme .  

   Ziemer ,  Hansjakob .  2008 .   Die moderne H ö ren: Das Konzert als urbanes Forum, 1890 – 1940  .  Frankfurt :  Campus .  

   Zoubov ,  V. P.   1961 .  Nicole Oresme et la musique.    Mediaeval and Renaissance Studies    5 : 96  –  107 .  





 Portions of this book appeared originally in the following journals, which have kindly 

given permission for the appearance of the material here:  Interdisciplinary Science Reviews  

( ©  2006 Institute of Materials, Minerals, and Mining);  Isis  and  Osiris  ( ©  The History 

of Science Society, University of Chicago Press, 2010, 2013);  Journal of Seventeenth-
Century Music  (http://www.sscm-jscm.org/) [11, 1 (2005)] ( ©  2005 University of Illinois 

Press);  Mathematical Intelligencer  ( ©  2000, 2013 Springer Science + Business Media 

New York); and  Physics in Perspective  ( ©  2013 Springer Basel AG). 

 Permission for the use of the figures has kindly been given by the following: The 

American Institute of Musicology, Verlag Corpusmusicae, GmbH (boxes 3.1, 3.2); ATLAS 

experiment  ©  2013 CERN (fig. 18.4b); Biblioth è que nationale de France (figs. 2.1, 2.2); 

British Museum (fig. 4.6); John Carter Brown Library at Brown University (fig. 3.2b); 

Syndics of the Cambridge University Library (fig. 8.1); Collection of Historical Scientific 

Instruments, Harvard University (figs. 6.1, 14.9, 14.10b); Deutsches Museum, Munich 

(figs. 12.3, 17.1); Keith B. MacAdam (fig. 18.1); George Peabody Library, The Sheridan 

Libraries, The Johns Hopkins University (figs. 9.4, 9.5, 10.2, 12.5a – b, 13.8a – c, 13.9a, 

13.10a – c, 13.11, 16.1b); Huntington Library, San Marino, California (figs. 4.1 [Hunting-

ton, RB67813], 4.2 [Huntington, RB 707254]); Royal Institution (fig. 13.12); Anne Smith, 

 The Performance of Sixteenth-Century Music  (2011), by permission of Oxford University 

Press, USA (figs. 5.2b, 5.5); Springer-Verlag (fig. 8.3a); Marco Tiella (fig. 4.5a); and 

Warburg Institute (fig. 7.2a). Special thanks to Alexei Pesic for his expert help in preparing 

the figures. 

 Sources and Illustration Credits 





 I thank Marguerite Avery and her colleagues at the MIT Press for their wonderful support 

and collaboration, including Judy Feldmann, Gita Manaktala, Cristina Sanmartin, and 

many others. I feel very fortunate to have worked with them now over five books and 

many years, beginning with Larry Cohen, the editor who gave me my first chance 

and never stopped supporting and helping me. My admiration and thanks know no bounds. 

 St. John ’ s College in Santa Fe has been an ideal home in which the questions and 

thoughts that led to this book could grow in an open, sympathetic environment. The 

emphasis on questioning and discussion, the absence of the usual disciplinary barriers, the 

great books we read together all encouraged me in my quest. I am profoundly grateful to 

my colleagues and fellow students; I hope this book can show something of what this 

remarkable college can foster. 

 I thank the John Simon Guggenheim Memorial Foundation for their support at a forma-

tive stage in this project. Melissa Franklin, Alexander Rehding, and Anne Shreffler gra-

ciously welcomed me as a visitor to Harvard, enabling me to use their libraries, swim in 

their pools, and discuss my ideas with new interlocutors. 

 I sincerely thank those who kindly read and commented on parts of the book: Jed 

Buchwald, H. Floris Cohen, Sean Gallagher, Jean-Fran ç ois Gauvin, Owen Gingerich, 

Marie Louise G ö llner, Justin Grosslight, James Haar, Myles Jackson, Thomas Mathiesen, 

Andrei Pesic, Benjamin Wardhaugh, and especially Curtis Wilson, whose memory I here 

honor with deep gratitude. Special thanks to Veit Erlmann, Alexandra Hui, Julia Kursell, 

and Victoria Tkaczyk, who generously read the whole work and gave me good advice. 

I especially thank Gerald Holton for his continued encouragement over many years. 

 This book owes a special debt to Alexei Pesic, whose creativity and skill has opened 

new doors in allowing readers to have direct access to the sound examples through a single 

touch in the iBook version he designed. These new possibilities owe everything to his hard 

and devoted work. 

 Andrei, Ssu, and Alexei are the inspirations for all I do and the ones whose love and 

support make it possible and worthwhile. 

 Acknowledgments 





 Abbott, Edwin (1838 – 1926), 242 

 Acoucryptophone.  See  Enchanted Lyre 

 Acoustics, 4, 112, 158, 184, 250 – 252, 257, 

275 – 277 

 Adrastus of Aphrodisias (second century C.E.), 17, 

287n30 

 Alchemy, 45, 74 

 Algebra, 3, 55 – 56, 59 – 60, 70, 72, 77, 93, 148 – 149, 

179 

 Amp è re, Andr é -Marie (1775 – 1836), 178 – 179, 194, 

196, 198, 213 

 Amp è re ’ s law, 196 

  Å ngstr ö m, Anders Jonas (1814 – 1874), 245, 247 – 248, 

250 – 251 

 Anthropic principle, 282 

 Apollo, 28 – 34 

 Arago, Fran ç ois Jean Dominique (1786 – 1853), 

177 – 179 

 Archicembalo, 62 – 63, 65 

 Archytas (428 – 347 B.C.E.), 9, 14 

 Aristarchus, 53, 104 

 Aristides Quintilianus (late third to early fourth 

century C.E.), 65 

 Aristotle (384 – 322 B.C.E.), 21, 35, 40, 58, 95, 123 

 on cosmology, 14, 22, 27, 45, 90 

 on music, 18, 25, 38, 66, 114, 116, 285n8 

 on physics, 31, 44 – 46, 58, 98 

 on tragedy, 140 

 Aristoxenus (fl. 335 B.C.E.), 18, 66 – 67, 135 

 Arithmetic, 1 – 2, 9, 14 – 22, 28 – 35, 47, 56 – 60, 68 – 69, 

72, 90 – 92, 144 – 145 

  Arithmos .  See  Number 

  Ars antiqua , 31 – 32 

  Ars nova , 2, 31 – 33, 288n21 

 Arts 

 fine, 135 

 liberal, 19, 135 

 Artusi, Giovanni Maria (ca. 1540 – 1613), 70, 72 

 Astrolabe, 90 – 91 

 Astronomy, 55, 109, 181 – 182, 280.  See also  

Cosmology 

 Copernican controversy, 19, 22, 24, 27, 30, 33, 40, 

46 – 52 

 and Kepler, 73, 86 – 89 

 in Oresme, 18 – 29, 33 

 in quadrivium, 2 – 3, 9, 14, 18, 54 

 Atomic theory, 3, 5, 98, 119 – 120, 245, 248 – 249, 

256, 265, 268, 273, 274 

 Bohr – Sommerfeld theory, 275 – 276 

 Augustine (354 – 430 C.E.), 24 

 Aulos, 66 – 67 

 Bach, Johann Sebastian (1685 – 1750), 263, 272, 

299n26 

 Bacon, Francis (1561 – 1626), 6, 45, 90, 203, 211, 

285n6 

 Balmer, Johann (1825 – 1898), 5, 249 – 255, 266, 275 

 Balmer formula, 250 – 251 

 Barker, Andrew, 19 

 Battery (Voltaic pile), 189, 211 

 Beat, 92, 111 – 114, 144, 164, 166, 170, 227, 277 

 Beauty, 29 – 30, 33, 47, 57, 59, 61, 85, 88, 136, 144, 

191, 196, 200, 203, 207, 209 – 210, 271, 

278 – 280 

 Beeckman, Isaac (1588 – 1637), 89 – 90, 103, 111 

 Bells, 12, 118 – 119, 182 

 Beltrami, Eugenio (1835 – 1899), 237 – 238, 240 

 Benedetti, G. B. (1530 – 1590), 111 

 Benjamin, Walter (1892 – 1940), 190 

 Bernoulli, Daniel (1700 – 1782), 134 – 135 

 Bernoulli, Johann I (1667 – 1748), 133 

 Bernoulli, Johann II (1710 – 1790), 133, 152 – 153, 

182 

 Bessel, Friedrich (1784 – 1846), 251 

 Billroth, Theodor (1829 – 1894), 257 

 Biot, Jean-Baptiste (1774 – 1862), 181, 185, 194 

 Biot-Savart law, 181, 194 

 Black body radiation, 5, 263 – 269 

 Blacksmith shop, myth of, 9 – 13, 60, 117, 282, 

286n9, 286n11 

 Bloch, Felix (1905 – 1983), 273, 275 

 Bodies, rigid, 237 – 238, 240, 243 

 Index 



340 Index

 Boethius, Anicius Manlius Severinus (ca. 480 – 526 

C.E.), 1 – 2, 10 – 13, 18 – 21, 27, 32, 35, 50, 56, 

60 – 63, 66, 77, 117, 123, 135 

 Bohr, Niels (1885 – 1962), 275 – 276 

 Boltzmann, Ludwig (1844 – 1906), 256, 263, 265 

 B ó lyai, J á nos (1802 – 1860), 232 

 Brahe, Tycho (1546 – 1601), 104 

 Brahms, Johannes (1833 – 1897), 229, 257 – 258, 260 

 Brentano, Clemens (1778 – 1842), 188 

 Broglie, Louis de (1892 – 1987), 273, 275 

 Bruno, Giordano (1548 – 1600), 63 

 Bubbles, 156, 282 – 283 

 Bunsen, Robert (1811 – 1899), 248 

 Buridan, Jean (ca. 1300 – after 1358), 46, 293n44 

 Burmeister, Joachim (ca. 1566 – 1629), 78 

 Cadence, 3, 39 – 45, 80, 82, 84 – 88, 158 

 Cage, John (1912 – 1992), 282 

 Calendar, 49, 52 

 Camerata, 48, 70 

 Cardano, Girolamo (1501 – 1576), 3, 55 – 60, 69 – 70 

  Carole , 22, 46 

 Cassiodorus, Flavius Magnus Aurelius Senator (ca. 

485 – ca. 585 C.E.), 27 

 Champollion, Jean-Fran ç ois (1790 – 1832), 179 

 Chant 

 Gregorian, 31, 38, 76 – 78 

 Turkish, 75 – 78, 80 – 81, 84 

 Charles V (king of France; 1338 – 1380), 21 – 22 

 Chemistry, 188 – 191, 195, 245, 249 

 Chladni, Ernst (1756 – 1827), 4, 178, 181 – 193, 198, 

200, 205, 207, 251, 279 

 Chords, 4, 84, 229, 272 

 hexachord, 36 

 seventh, 70, 72, 136 – 137, 158 – 159 

 Christianity, 25, 32, 63, 77 – 78, 105 

 Circle, 14, 22, 33, 49, 97 – 98, 200, 211, 219, 221, 

288n31 

 Clark, Suzannah, 90 

 Clavius, Christopher (1538 – 1612), 53 

 Clifford, William Kingdon (1845 – 1879), 242 

 Clio, 81 

 Clock, 114, 214 

 Cohen, H. Floris, 6, 90, 92, 97 

 Color 

 analogy with sound, 3, 121 – 130, 153 – 160, 164, 

173 – 176, 189, 203, 222, 247 

 parameters of, 219 – 220 

 vision, 172 – 174, 217 – 222, 228, 231, 235, 238 – 241, 

272 – 277 

 Combination tones, 166, 226 – 227, 234 

 Comedy, 139 – 140 

 Commensurability, 15, 21 – 22, 28 – 33, 66 – 67 

 Concertina, 205 

 Consonance, 10, 17, 29, 35, 47, 53, 60, 71, 73, 78, 

80, 93, 96 – 97, 105, 109, 114, 135 – 137 

 Cooke, William (1806 – 1879), 213 

 Copernicus, Nicolaus (1473 – 1543), 2, 22 – 25, 46 – 53, 

100, 104 – 107 

 Cosmology 

 Copernican, 19, 22, 24, 27, 30, 33, 40, 46 – 52 

 geocentric, 2, 19 – 28, 36, 49 – 52 

 heliocentric, 2, 19, 22, 24, 28, 46 – 49, 52, 105, 109 

 Coulomb, Charles-Augustine de (1736 – 1806), 185, 

188, 196 

 Counterpoint, 35, 255 

 Counting, 14 – 17, 144 

 Culture 

 aural, 1, 6 

 material, 6 

 Curvature, 215, 233, 273 – 274, 277 

 Gaussian, 231 

 D ’ Alembert, Jean le Rond (1717 – 1783), 236 

 Dance, 4, 9, 15, 22, 24, 34, 46, 67, 74, 92, 133, 

162 

 Dante, 38 

 Davy, Humphrey (1778 – 1829), 177, 195, 205 

 Deaf, music for the, 97, 112 – 113 

 Debye, Peter (1884 – 1966), 273, 275 

 Dedekind, Richard (1831 – 1916), 233 

 Degree of agreeableness, 4, 135 – 142 

 de la Rive, Charles Gaspard (1770 – 1834), 196 

 de Muris, Johannes (ca. 1290 – ca. 1355), 22, 32, 46 

 Descartes, Ren é  (1596 – 1650), 3, 6, 89 – 102, 116, 

121, 137, 151, 155, 196, 280 

 and Mersenne, 90, 93 – 103, 116, 137 

 Desedimentation, 284 

 des Prez, Josquin (ca. 1450 – 1521), 2, 35, 38 – 45, 

282, 288n6 

 de Vitry, Phillipe (1291 – 1361), 32 

 Dimensionality, 5, 191, 207, 231 – 242, 273, 274, 278, 

279 – 280, 307 

 Dirac, P. A. M. (1902 – 1984), 278 

 Dissonance, 11, 47, 53 – 54, 105, 109, 114, 223, 272, 

282 

 and Euler, 135, 137, 139 – 140, 158 

 and Kepler, 78, 80, 84, 86 

 Drake, Stillman (1910 – 1993), 6 – 7 

 Dyad, concept of, 16 

 Dynamics, 96, 188, 191, 193, 198, 200, 242, 255, 

273, 276, 280 

  e , 143 

 Ear 

 accommodation of, 264 

 drum, 226, 236 

 ossicles, 226, 234 – 236 

 physiology of, 98, 156, 172, 189, 226, 233 – 236, 

306n25 

 Earth, 2 – 3, 22, 24 – 25, 27 – 28, 31, 35 – 38, 46 – 49, 

53 – 55, 73, 80 – 87, 99 – 101, 104 – 105, 116, 124, 

188, 282 

 Education, 2, 9, 14, 19 – 20, 179, 195, 158, 265 



Index 341

 Einstein, Albert (1879 – 1955), 5, 215, 232, 238, 

241 – 243, 256, 271 – 273 

 and Helmholtz, 242 – 243 

 and history of science, 243 

 and Riemann, 243 

 Eitz, Carl (1848 – 1924), 257 – 259, 265, 267 – 268 

 Electricity, 4, 181 – 196, 205 – 206, 210 – 214, 233, 266 

 electric conflict, 193 

 fluid theory of, 182, 196 

 velocity of, 205 – 206, 210, 214 

 Electromagnetic chronoscope, 213 – 214 

 Electromagnetic clock, 214 

 Electromagnetism, 4, 181, 193 – 198, 207, 213 – 215, 

233 

 electromagnetic rotation, 197 – 198 

 Electron, 46, 273, 275 – 278, 281 

 Electrophorus, 182 – 183 

 Electro-tonic state, 196, 213 

 Enchanted Lyre, 200 – 201, 206, 280 

 Energy, 217, 242 – 243, 263, 265 – 268, 275 – 281 

 Engineering, 89, 107, 134, 144 

 Equation 

 differential, 226, 232, 275 

 Hamilton-Jacobi, 276 

 Schr ö dinger, 272 – 278 

 Ergodic hypothesis, 87 

 Erlangen program, 242 

 Erlmann, Veit, 6 

  É taples, Jacques Lef è vre de (ca. 1455 – 1536), 57 

 Ether, 93, 124, 151 – 152, 155, 172, 179, 214 – 215, 

263 

 Euclid, 17, 22, 28, 32, 55, 57, 66, 77, 172, 231, 

236 – 242 

 Euler, Leonhard (1707 – 1783), 4, 131 – 160, 162 – 164, 

172 – 174, 182, 203, 223, 279, 282 

 Euler characteristic, 148 

 Euler ’ s formula, 146 – 148 

 and Newton, 133 – 134, 151 – 157 

 number theory, 143 – 145 

 theory of light, 151 – 158, 247, 276 

 theory of music, 134 – 142, 158 – 160 

 topology, 145 – 149 

 Evans, R. J. W., 74 

 Experiment, origin of, 9 – 13 

 Eye 

 accommodation of, 162 – 163, 170, 172 

 compared to ear, 127, 156, 160, 162 – 163, 172 – 175, 

189, 227, 229 

 physiology of, 162 – 163, 170 – 177, 217 – 222, 

228 – 229, 234 

 Faraday, Michael (1791 – 1867), 4 – 5, 195 – 215, 279 

 discovery of electromagnetic induction, 207, 

212 – 214 

 field theory of light, 214 – 215 

 work on sound, 207 – 211 

 Farina, Carlo (ca. 1600 – 1639), 80 

  Faust  (Goethe), 237 

 Fermat primes, 143 

 Feynman, Richard (1918 – 1988), 278 

 Fifth hammer, problem of, 17, 117 

 Figured bass, 141 – 142 

 Fizeau, Hippolyte (1819 – 1896), 206 

 Fludd, Robert (1574 – 1637), 3, 73, 104 – 108, 285n6 

 Flute, 13, 108, 134, 162, 200, 206, 298n5 

 Force, 4, 44, 89, 109, 120, 164, 185, 190 – 191, 193, 

233 – 234, 239, 249 

 lines of, 194, 196, 208 – 215, 277 

 Foucault, L é on (1819 – 1868), 206 

 Fraction, 17, 55, 58, 69, 93 

 continued, 141 – 143 

 Fraunhofer, Joseph von (1787 – 1826), 244, 246 

 Frequency 

 light, 172, 174, 178, 193, 221 – 222, 265 – 268, 277 

 resonant, 203, 280 – 281 

 sound, 3, 97, 111, 114, 131, 155 – 158, 166, 226, 

251 

 Fresnel, Augustin-Jean (1788 – 1827), 177 – 179, 

198 

 Frogs, 189, 217 – 218 

 Gabrieli, Andrea (1532 – 1585), 74 

 Gaffurius, Francinus (1451 – 1522), 12, 35 – 36 

 Galilei, Galileo (1564 – 1642), 2, 6 – 7, 24 – 25, 63, 89, 

93, 96, 99, 107 111 – 114, 203 

 and Copernicus, 2, 52 – 54 

 Galilei, Vincenzo (ca. 1520 – 1591), 2, 48 – 49, 52 – 53, 

59, 70, 76, 111, 158 

 and Copernicus, 2, 35, 53 

 and Galileo, 6 

 Galvanism, 193 

 Gassendi, Pierre (1592 – 1655), 119 – 120 

 Gauss, Carl Friedrich (1777 – 1855), 231 – 232, 237 

  G é nder , 203 – 204 

 Genus 

 chromatic, 60 – 63, 68 – 69, 158 

 diatonic, 36, 40, 60 – 61, 68 – 69, 96, 121, 123 – 124, 

126, 224 

 enharmonic, 61 – 63, 66 – 70, 291n48 

  Geometria situs. See  Topology 

 Geometry, 1 – 2, 5, 9, 14 – 35, 56, 59, 68 – 70, 77, 84, 

90, 93, 145 – 149, 210, 231 – 243, 273 

 Euclidean, 77, 231, 236 – 242 

 Lobachevskian, 242 

 non-Euclidean, 231, 237 – 242, 273, 277 – 278 

 Gerson, Levi ben (Gersonides; 1288 – 1344), 32 – 33 

 Gilbert, William (1544 – 1603), 48, 53 

 Glarean, Heinrich (1488 – 1563), 2, 36 – 40, 49, 52, 74, 

78, 289n7 

 Glass, vibrating, 11 – 12, 45, 182, 198, 200, 208, 

211 – 212, 223 280 – 281 

 Glissando, 80 – 81 

 God, 10, 23 – 24, 29 – 33, 75, 77, 80, 82 – 83, 86 – 87, 

105 – 107, 110, 120, 181, 233, 282 



342 Index

 Goethe, Johann Wolfgang von (1749 – 1832), 181, 

188, 237, 243 

 Goldbach, Christian (1690 – 1764), 143 – 144 

 Golden ratio, 83, 141 

 Gosselin, Guillaume (ca. 1536 – ca. 1600), 70 – 71 

 Gouk, Penelope, 6 

 Gozza, Paolo, 6 

 Gradus suavitatis.  See  Degree of agreeableness 

 Grating, diffraction, 173 – 174 

 Gravity, 89, 131, 280, 282 

 Great Year, 22, 287n5 

 Greek music, 6, 18, 35, 38, 48 – 49, 52, 56, 158 

 Greek natural philosophy, 1 – 2 

 Grimaldi, Francesco Maria (1618 – 1663), 125, 128, 

175 

  Grundton  (fundamental tone), 250 

  Guimbarde , 203 – 204 

  Gymnastik ē  , 14 

 Hadrons, Hagedorn model of, 279 

 Hakfoort, Casper, 155 

  Hamlet , 1 – 2, 284 

 Handel, Georg Friedrich (1685 – 1759), 170 

  Harmonia , 9 – 10, 14, 46 – 47, 61 

 Harmonica, 205 

 Harmonic series, 145 

 Harmonium, 5, 205, 226, 256 – 259, 265 – 269, 279 

 Harmony 

 cosmic, 2, 5, 14, 21, 29 – 35, 46 – 48, 53 – 54, 76, 

80 – 86, 102, 104 – 111 

 as criterion, 190, 193, 200, 229, 239, 245, 271, 

278 – 284 

 practical, 134 – 145, 156, 158 – 159, 173, 255 

 Hassler, Hans Leo (1564 – 1612), 74 

 Haydn, Joseph (1732 – 1809), 170 

 Heat, 123, 181, 188, 193, 247, 265 – 266 

 Heilbron, John, 256, 269 

 Heisenberg, Werner (1901 – 1976), 5, 271 – 273, 280 

 Helmholtz, Hermann von (1821 – 1894), 4 – 5, 137, 

217 – 252, 255 – 267, 272 – 273, 276 – 277, 279 

 on hearing, 223 – 229, 235 

 on space, 235 – 242 

 on vision, 219 – 222 

 Heptagon, 77 

 Heraclitus (ca. 535 – ca. 475 B.C.E.), 280 

 Herschel, Sir John (1792 – 1871), 161 

 Herschel, William (1738 – 1822), 188 

 Hertz, Heinrich (1857 – 1894), 264, 266 – 267, 269 

 Hiebert, Erwin (1919 – 2012), 256 

 Hieroglyphics, 4, 177, 179 

 Hoffmann, E. T. A. (1776 – 1822), 190 

 Holton, Gerald, 278 – 279 

 Homer (seventh or eighth century B.C.E.), 9 – 10, 

14 – 15, 19 

 Hooke, Robert (1635 – 1703), 6, 54, 123, 127, 285n6, 

297n6 

 Horatio, 1 – 2, 284 

 Hui, Alexandra, 6, 256, 263 – 264 

 Humboldt, Alexander von (1769 – 1859), 

188 – 189 

 Husserl, Edmund (1859 – 1938), 252 – 253, 255, 269, 

271, 285n3 

 Huygens, Christiaan (1629 – 1695), 114, 151 – 155, 

285n6 

 Huygens ’ s principle, 151 – 153 

 Hydrogen, 5, 190, 196, 247 – 252, 275 – 277 

 Incommensurability, 22, 28 – 34, 57, 140 

 Indexing, 4, 137, 146, 148 – 149 

 Induction 

 electrical, 182 – 183 

 electromagnetic, 4, 196, 198, 207, 212 – 214 

 Infinitesimal, 232, 237 

 Infinity, 3, 16, 22, 55, 58, 69, 77, 79, 81, 86 – 88, 95, 

98, 143, 152, 236, 251 

 Instruments 

 optical, 158, 168 

 percussion, 112, 134 

 string, 109, 112, 116 – 118, 135, 153, 166, 168, 187, 

210 

 wind, 112, 117, 134 – 135 

 Interference, 125, 152 – 154, 161, 168, 176 

 Internalism, 285n2 

 Intervals 

 comma, 56, 167, 261 – 262 

 diesis, 59, 61, 63 – 69, 84, 291n34 

 fifth, 10 – 13, 17, 19, 33, 42 – 43, 60, 78, 93, 97, 

116 – 17, 136, 141, 250 

 fourth, 10 – 11, 13, 33, 60, 83 – 84, 93, 159, 167, 

173 – 174 

 octave, 3, 9 – 13, 17, 33, 36, 40, 49, 56, 60, 75, 

77 – 78, 91, 93, 97, 116 – 117, 121 – 127, 131, 135, 

141, 156 – 159, 164, 167 – 169, 173 – 174, 193, 222, 

224, 229, 250, 257, 267 – 268 

 overtone, 167, 221 

 quarter tone, 3, 59, 61, 63, 66 – 69, 123 ( see also  

Intervals, diesis) 

 semitone, 36, 42, 49, 56 – 61, 63, 67 – 68, 71, 78, 

81 – 84, 123, 125, 135, 221, 224, 267 – 268 

 third, 42 – 43, 60, 76, 83, 93, 116 – 117, 159, 167, 

173, 226, 257 – 258, 262, 264 

 tone (whole step), 11, 17, 33, 36, 55 – 63, 123 

 tritone, 17, 158 

 Invariance, 149, 229, 236 – 239, 243 

 Ippolito II d ’ Este (1509 – 1572), 61, 63, 69 

 Iridescence, 156 

 Irrational, 2 – 3, 9, 15 – 17, 28 – 32, 38, 55 – 72, 87, 92, 

137, 141, 143, 282 

 Jackson, Myles, 6 

 Jesuits (Society of Jesus), 53, 63, 104 

 Jew ’ s harp.  See Guimbarde  

 Joshua, miracle in, 24 

 Jupiter, 80 



Index 343

 Kabbalism, 75 

 Kaleidophone, 200, 202, 210 

 Kant, Immanuel (1724 – 1804), 170, 181, 185, 217, 

231, 233, 241 – 242 

 Kassler, Jamie, 6 

 Keats, John (1795 – 1821), 279 

 Kepler, Johannes (1571 – 1630), 3, 6, 46, 48, 73 – 88, 

99 – 100, 102 – 107, 116, 123, 127, 131, 279 – 280, 

282 

 and Descartes, 99 – 100 

 and Galileo Galilei, 6, 52 

 and Mersenne, 102 – 107, 116 

 Kircher, Athanasius (1601 – 1680), 285n6 

 Kirchhoff, Gustav (1824 – 1887), 248, 265 

 Kittler, Friedrich (1943 – 2011), 6 

 Klein, Felix (1849 – 1925), 242 

 K ö nigsberg bridge problem, 4, 145 – 149 

  Kulturtr ä ger , 222, 233, 255, 271 

 Lagrange, Joseph Louis (1736 – 1813), 236, 252 

 Languages, 4, 161, 163, 170, 179, 190 

 Laplace, Pierre-Simon (1749 – 1827), 190 

 Lasso, Orlando di (1532 – 1594), 3, 63, 73 – 75, 78 – 82, 

85 – 86, 102 

 Leibniz, Gottfried (1646 – 1716), 144 – 146, 151, 179 

 Lichtenberg, Georg Christoph (1742 – 1799), 162, 

181 – 185, 188, 190 

 Lichtenberg figures, 182 – 183, 185, 188, 190 

 Lie, Sophus (1842 – 1899), 237 – 238, 242 

 Light 

 emission theory of, 151 – 154 

 infrared, 157, 188 

 medium theory, 152 – 155 

 polarization of, 177 – 178, 215 

 speed of, 151, 206, 214, 243, 268 

 transverse nature of, 4, 153, 178 – 179, 193, 196, 

198, 206 – 209, 215 

 ultraviolet, 157, 188, 222, 249 

 wave theory of, 3 – 4, 7, 125, 127, 131, 151 – 155, 

161 – 179, 221 

 Lines of force.  See  Force, lines of 

 Lobachevsky, Nicolai Ivanovich (1792 – 1856), 232, 

242 

 Logarithms, 141, 143 

  Logos , 15 – 16 

 Lusitano, Vincente (d. after 1561), 61, 63 

 Luther, Martin (1483 – 1546), 56, 69, 82 

 Magnetism 

 Amp è re ’ s law, 4, 181, 185, 191 – 198, 207, 211 – 215, 

233 196 

 Biot-Savart law, 181, 194 

 Magnitude ( pl ē thos ), 15, 17 – 18, 30, 55, 66, 69 

 Maier, Michael (1568 – 1622), 74 

 Mairan, Dortous de (1678 – 1771), 153 

 Malebranche, Nicolas (1638 – 1715), 131 

 Malus,  É tienne-Louise (1775 – 1812), 177 – 178 

 Manifold, 5, 148, 217, 219, 231 – 235, 238, 240 – 242, 

273 – 274, 278 

 Mari ć , Mileva (1875 – 1948), 242 

 Mars, 33, 39, 84 

 Martianus Capella (fifth century C.E.), 46 

 Mathematics, 1 – 2, 5 – 9, 181, 271, 277 – 278, 280, 282, 

284.  See also  Algebra; Arithmetic; Geometry; 

Topology 

 ancient, 9, 16, 18, 27, 45 

 Euler and Continental, 133 – 158, 163, 179 

 and Helmholtz, 226, 229 

 Renaissance, 49, 55, 59, 63, 69, 72, 74, 89 – 90, 93, 

103, 120 

 and Young, 161, 163, 176 

 Matrix, 25 – 27, 272 – 273 

 Maxwell, James Clerk (1831 – 1879), 22, 245, 248, 

266, 269 

 Means (arithmetic, geometric, harmonic), 18, 56 

 Mechanics, 3, 94, 96, 114, 134, 136, 151, 256 

 celestial, 73, 89 

 classical, 226, 241, 255 

 continuum, 3, 89, 98, 151, 223, 266 

 matrix, 272 

 quantum, 245, 263, 272 – 278 

 statistical, 263 

 wave, 5, 272 – 277 

 Mei, Girolamo (1519 – 1594), 48 – 49 

 Melody, 34, 40, 48, 60 – 61, 66, 69, 73, 77 – 78, 83, 

86 – 87, 92, 134, 173 

 Mersenne, Marin (1588 – 1648), 3, 90, 93 – 120 

 and Descartes, 90, 93 – 103, 116, 137 

 Metaphysics, 89, 134, 136 

 Metric, 273, 306n8 

 Miller, Clement, 59 

 Miracles, 13, 24, 39, 93 

 Mode, 14, 19, 35 – 36, 39 – 45, 83, 109, 123 – 126 

 Aeolian, 40 – 45, 137, 139 

 change of, 19, 35 – 40 

 Dorian, 124 

 Ionian, 40 – 45, 137 

 Lydian, 38 

 Mixolydian, 124 

 Phrygian, 38 – 40, 43 – 45, 78, 81, 288n6 

  tonus peregrinus , 38 

 vibrational, 198, 202, 205, 211 – 212, 248, 251 

 Modulation, 19, 35, 124, 137 

 Molecules, 248 – 249, 266 

 Monochord, 13, 21, 106, 116 – 117 

 Monodromy, 236, 306n27 

 Monteverdi, Claudio (1567 – 1643), 48, 70, 72 

 Moreno, Jairo, 6 

 Motet, 2, 31 – 32, 39 – 40, 43 – 45, 61, 69, 74, 78 – 82, 

86, 102, 106 

  Mousik ē  , 6 – 10, 14 

 Mozart, Wolfgang Amadeus (1756 – 1791), 170, 271 

 Multiverse, 282 

 Murner, Thomas (1475 – ca. 1537), 69 



344 Index

 Muses, 9, 28 

 Music 

  “ ancient, ”  2, 4, 34 – 35, 45, 49, 67, 92, 158 – 159 

 and mathematics, 2, 18, 55, 133 – 140, 144 – 153 

  “ modern, ”  4, 63, 67, 79 – 80, 158 – 160 

 practical, 55 – 56, 60, 67, 73, 79, 90, 109, 112, 134, 

158, 256 

 theory of, 3 – 6, 18, 20 – 21, 25, 56, 77, 92, 109, 117, 

124, 137, 144, 229 

  Musica instrumentalis , 78 

  Musica mundana , 49, 78, 109, 282 

 Musicians 

 amateur, 70, 76, 82, 257 

 professional, 75 – 76, 256 – 258 

 Muslim music, 75, 77 

 Myograph, 217 – 218 

 Nambu, Yoichiro, 279 – 280 

 Napoleon Bonaparte (1769 – 1821), 179, 185 – 186 

 Natural philosophy, 1 – 5, 21, 25, 89 – 90, 94 – 97, 100, 

103, 109, 131, 134, 156, 158, 164, 176 – 177, 185, 

198, 233, 282 – 284 

 Nature, unity of, 4, 181 – 182, 188, 190, 193, 263, 

282 

  Naturphilosophie , 4, 181, 185, 188 – 189, 194, 

196 

 Neoplatonism, 73, 105 – 106 

 Neutron, 46 

 New Music (Athenian), 19, 38 

 New philosophy, 1 – 2, 5, 6, 21, 89, 94, 96, 103 

 Newton, Isaac (1642 – 1727), 3, 6 – 7, 20, 46, 73, 

121 – 131 

 and Descartes, 121 

 Newton ’ s rings, 127 – 131, 156, 164, 174, 176, 

301n21 

 theory of light, 7, 125 – 131 

 Nicomachus (ca. 60 – ca. 120 C.E.), 10 – 11 

 Nielsen, Holger, 279 

 Node, 185, 275 

 Notre Dame, school of, 31 

 Novalis (Friedrich von Hardenberg; 1772 – 1801), 

188, 190 

 Number.  See also  Arithmetic 

 amicable, 144 – 145 

 concept of, 2 – 4, 9 – 17, 29 – 30, 56 – 72, 82 – 83 

 irrational, 2 – 3, 9, 15 – 17, 28 – 32, 55 – 87, 137, 141, 

143, 282 

 perfect, 144 – 145 

 theory, 4, 133 – 137, 143 – 145, 233 

 Occult arts, 74 – 75, 93, 189 

 One, concept of, 14 – 16 

 Ophelia, 1 – 2 

 Ophthalmoscope, 217 

 Ophthalmotrope, 217, 220 

 Optics – music analogy, 124 – 131, 133 – 134, 151 – 157, 

161, 164, 170 – 179 

 Oresme, Nicole (ca. 1320 – 1382), 2 – 3, 21 – 35, 45 – 46, 

57, 87, 145 

 Organ, 74, 105, 112, 118 – 119, 134, 164, 174, 203, 

205, 210 

 Organic forms, 190 – 191 

 Orpheus, 106, 109 

  Ø rsted, Hans Christian (1777 – 1851), 4, 181, 

185 – 192, 200, 207, 209 

 Oscillator, 201, 266 – 267, 279 – 280 

 Ossicles (hammer, anvil, and stirrup), 226, 234 – 236 

  Ouranos , 99 

 Overtone, 3 – 4, 93, 116 – 120, 137, 156 – 157, 164, 

170, 200, 223, 225, 248 – 252, 275, 277 

 Painting, 56, 93, 135, 185, 195, 222 – 223, 229, 239, 

260 

 Palisca, Claude (1921 – 2001), 6, 85 

 Panofksy, Erwin (1892 – 1968), 6 

 Paradox, 24 – 25, 46, 53, 66 – 68, 95, 140, 154, 179, 

245, 269 

 Parhelia (mock suns), 93 – 94 

 Particle, 7, 127, 135, 151 – 156, 164, 173, 176 – 178, 

191, 198, 207 – 209, 214, 247, 273, 275, 279, 

280 

 Pendulum, 93 – 96, 114, 167, 203, 209, 248, 266 

 Pentagon, 77, 83 

 Perpendicular effect 

 of currents, 190 – 191 

 of sounds, 209, 211 

 Philolaus (ca. 470 – ca. 385 B.C.E.), 9 – 12, 14, 48 

 Phosphorescence, 160 

 Physicist, 5, 90, 196, 255, 258 

 Physics 

 Aristotelian, 21, 38, 46, 99 

 Maxwellian, 232, 245, 248, 266, 269 

 Newtonian, 121 – 131, 133 – 134, 177, 196, 245, 280, 

282 

  Physis , 90, 99 

 Piano, 157, 268, 200 – 201, 206, 210, 222, 256 – 257, 

260 – 261, 271 

 Pictet, Marc Auguste (1752 – 1825), 188 – 189 

 Pipe, vibrations of, 11 – 13, 66, 112, 119, 134, 

163 – 168, 174, 203, 210 

 Planck, Max (1858 – 1947), 5, 255 – 271, 273, 

279 – 282 

 and anthropomorphism, 255 – 256, 269, 282, 309n22 

 and Helmholtz, 255 – 258, 262, 264 – 265 

 music experiments, 258 – 263 

 Planck constant, 267 – 268 

 Planck units, 268, 309n34 

 and thermodynamics, 256, 263, 265 – 268 

 Planets, 2, 6, 19, 22, 27, 30, 33 – 36, 46 – 49, 73, 

78 – 88, 99, 101 – 106, 116, 127, 131, 279 

 Plato (429 – 347 B.C.E.), 2, 9, 14 – 22, 29, 35, 47, 66, 

76, 82, 92, 104, 120, 123, 272, 282 

  Republic , 14, 19, 123 

  Timaeus , 14, 120, 272 



Index 345

 Pleasure, 29 – 30, 38, 59, 84, 86, 90, 92, 120, 135, 

139 – 140, 158, 189 

 Poetry, 9, 111, 121, 143, 234 – 235, 238 

 Poincar é , Henri (1854 – 1912), 242 

 Polyhedra, 4, 146 – 149 

 Polyphony, 3, 31, 38, 48, 76, 78, 80 – 83, 158, 205, 

279 

 Praetorius, Johannes (1537 – 1616), 47 – 48, 53 

 Proclus, 105 

 Protestantism, 74 

 Proton, 46 

 Pseudosphere, 240, 242, 307n52 

 Ptolemy, Claudius (ca. 90 – ca. 168 C.E.) 

 astronomical writings, 30, 47, 105 

 harmonics, 13, 18 – 19, 76 

 Pulse theory of sound, 97, 135, 137, 151 – 156, 164 

 Pythagoras (ca. 570 – ca. 495 B.C.E.), 9 – 12, 17, 32, 

35, 73, 131, 280, 282 

 Pythagorean 

 cosmology, 14, 22, 24 

 distance relation, 232 

 ratios, 9 – 17, 135, 203, 250 

 theorem, 232, 237 

 thought, 2, 5, 9 – 24, 47 – 48, 73, 135, 245, 251, 

278 – 279, 284 

 tuning, 60, 77 

 Quadrivium, 2, 19 – 22, 29, 46, 49, 54, 58, 76, 121, 

282, 284 

 Quakers (Society of Friends), 4, 161 – 162, 300n2, 

301n6 

 Quantization, 269, 275, 278 

 Radioactivity, 46 

 Rainbow, 93, 176 

 Rameau, Jean-Philipe (1683 – 1764), 135, 156 – 158 

 Ratio, 4, 10 – 18, 26 – 33, 47, 69, 73, 77, 82, 115 – 116, 

127, 135, 141, 149, 155, 159, 174, 182, 203, 221, 

229 

 superparticular, 32 – 33, 135 

 Rational, 3, 10, 28, 32 – 33, 55 – 66, 70, 123, 141 

  Raumproblem .  See  Space, problem of 

 Ray, 100, 151 – 156, 188 – 190, 214, 222, 247, 

276 – 277 

 Rayleigh, Lord (John William Strutt; 1842 – 1919), 

245, 251 – 252, 255 

 Recorde, Robert (ca. 1512 – 1558), 55 – 56 

 Recurrence, cosmic, 22, 31 

 Reed, 13, 205, 266 – 267 

 Regiomontanus (Johannes M ü ller von K ö nigsberg; 

1436 – 1476), 107 

 Rehding, Alexander, 90, 296n15, 297n39 

 Relativity, 206, 229, 243, 255, 264, 273, 282 

 Renaissance, 21, 75, 90 

 Republic of Letters, 103, 296n3 

 Resonance, 6, 168, 182, 200, 205 – 206, 247, 279 – 281 

 sympathetic, 152, 200, 203 

 Resonator, 5, 200, 203, 223, 225, 266 – 268 

 Revolution, scientific, 5, 90, 284 

 Rheticus (Georg Joachim de Porris; 1512 – 1574), 

47 

 Rhetoric, 19, 24, 47 – 49, 68, 74, 77 – 78, 172, 

234 – 235 

 Rhythm, 14 – 15, 32, 92, 166, 168, 238 

 Riemann, Bernhard (1826 – 1866), 5, 145, 231 – 243, 

273 

 and Helmholtz, 231 – 234 

 on foundations of geometry, 231 – 232 

 on mechanics of the ear, 233 – 235 

 Riemann, Hugo (1849 – 1919), 157 

 Ritter, Johann (1776 – 1810), 4, 181, 188 – 193 

 Roman Catholic Church, 38, 40, 87, 104 – 105 

 Roman thought, 13, 15, 18 – 19, 105 

 Romanticism, 4, 170, 188 – 190, 272 

 Rotation, 205 – 206, 237 – 238, 306 

 of Earth, 25 

 electrodynamic, 197 – 198 

 of planets, 86 

 of sirens, 223, 226 

 Royal Institution, 176 – 177, 195, 198, 205 – 207 

 Rudolf II (Holy Roman Emperor; 1552 – 1612), 

74 – 75 

 Rumford, Count (Benjamin Thompson; 1753 – 1814), 

176 – 177 

 Sadness, 4, 92, 139 – 140, 282 

 Saturn, 35, 80 

 Sauveur, Joseph (1653 – 1716), 112 

 Savart, F é lix (1791 – 1841), 181, 185, 187, 194, 207, 

210 

 Schelling, Friedrich Wilhelm Joseph von 

(1775 – 1854), 191 

 Schr ö dinger, Erwin (1887 – 1961), 5, 272 – 278, 

280 

 Schumann, Robert (1810 – 1856), 190 

 Sch ü tz, Heinrich (1585 – 1672), 260, 262, 264 

 Schwartz, Hillel, 6 

 Sedimentation, 255, 271, 284 

 Sexuality, 3, 82 – 84, 88, 294n59 

 Shakespeare, William (1564 – 1616), 161, 179, 

195 

  Sh ē ng , 205 

 Singing, 31, 70, 74, 77, 81, 109, 168, 

261 

 tubes, 196 

 Siren, 81, 205, 223, 226 – 229 

 Skeleton, melodic, 76 – 78 

 Skepticism, 25, 30, 198, 256 

 Smith, Robert (1689 – 1768), 164, 172 – 173 

 Socrates (469 – 399 B.C.E.), 9, 14 – 16, 18 

 Sodium, 249 

 Sommerfeld, Arnold (1868 – 1951), 245 

 Sonification, 279 

 Sound, speed of, 3, 112 – 113, 155, 214 



346 Index

 Space 

 empty, 93, 95, 99, 119 ( see also  Vacuum) 

  n -dimensional, 232 

 problem of, 4, 191, 193, 217, 219, 226, 228, 

231 – 243 

 Space-time, 232, 241, 243, 273 

 Spectrum 

 elemental, 247, 266 

 mass, 279 

 solar, 3, 5, 121, 125, 127, 188, 190, 220 – 224, 

245 – 250, 266, 269, 274 

 Spheres, celestial, 22, 81 

 music of the, 27 – 28, 30 – 37, 46 – 50, 78, 131, 245, 

279, 282 

 Spitta, Philipp (1841 – 1894), 260 

 Sterne, Jonathan, 6 

 Stifel, Michael (1487 – 1567), 3, 55 – 60, 69 – 70, 77 

 Stoney, G. Johnstone (1826 – 1911), 5, 248 – 251, 266, 

275 

 String, vibrating, 3, 45, 182, 187, 249, 251, 266, 

275 – 276 

 ancient accounts, 11 – 13, 17 

 and Descartes, 93 – 98 

 and Euler, 134 – 135, 152 – 157 

 and Faraday, 208, 210 

 and Kepler, 77 

 and Mersenne, 107 – 120 

 and Newton, 125 

 Renaissance, 5, 47, 56 – 57, 66 – 68 

 and Young, 163, 166, 168, 174 

 String theory, 5, 279 – 282 

 Sun, 24, 33 – 40, 46 – 49, 53 – 54, 73, 80 – 84, 96, 99, 

102, 105 – 106, 127, 245, 247 

 Superposition, 173, 175, 226 

 Susskind, Leonard, 279 

 Sweetness, 123 – 124, 136, 268 

 Symmetry, 46 – 47, 157, 185, 188 – 189, 193, 261 

 Tachistoscope, 217, 219 

 Tartini tones, 166, 226 

 Telegraphy, 4, 207, 213 – 214 

 Temperament 

 equal, 5, 59 – 60, 70 – 71, 137, 169, 257, 264, 

267 – 269 

 just intonation, 60, 77, 117, 137, 258, 291n29 

 Pythagorean, 104 – 107, 116 

 Young, 168 – 169 

 Tempo, 114, 170 

 Tennis, 99, 111 

 Thermodynamics, 255 – 256, 263, 265 – 266 

 Thompson, Emily, 6 

 Thornton, Robert (1898 – 1982), 243 

 Thunderstorms, 134, 193 

 Timbre, 164, 168, 235, 240 – 241, 248 

 Time, 86 – 87, 223, 226, 228, 231, 240 – 243, 248 

 Tinctoris, Johannes (ca. 1435 – 1511), 35 

 Topology, 4, 133, 145 – 149 

 Tragedy, joy of, 139 – 140 

 Translation, 179, 181 

 Transmutation, 45 – 46 

 Triads, 78, 117, 136 – 139, 170, 203, 258, 260 – 264 

 Trissino, Giovanni Giorgio (1478 – 1550), 61 

 Trumpet, 75, 117 – 118, 195 

 Tuning, 5, 47, 59 – 60, 63, 70, 74 – 75, 77, 84, 168, 

256, 258 – 269, 272, 282.  See also  Temperament 

 Tuning fork, 203, 206, 223, 225 

 Tyndall, John (1820 – 1893), 13, 184, 214 

 Undertone, 4, 156 – 157, 203 

 Unity of nature, 4, 173, 182, 188, 193, 263 

 Universe, 3, 22, 33 – 36, 46, 75, 98 – 99, 102, 104 – 111, 

282 

 Urania, 79, 81 

 Vacuum, 3, 94 – 98, 119 

 Valla, Giorgio (1447 – 1500), 35 – 36 

 Van Wymeersch, Brigitte, 6, 295n10 

 Veneziano amplitude, 279 – 280 

 Ventriloquism, 168, 198, 200, 214 

 Venus, 80 – 81, 84 

 Vibration 

 longitudinal, 97, 152 – 153, 178, 191, 193, 198, 207, 

209, 215 

 of plates, 175, 178, 181 – 182, 185, 190 – 193, 203, 

207, 308n18 

 transverse, 4, 153, 178 – 179, 193, 196, 198, 

206 – 209, 215 

 Vicentino, Nicola (1511 – ca. 1575), 55, 60 – 70, 76, 

123 

 Vi è te, Fran ç ois (1540 – 1603), 55 – 56 

 Violence, 44 – 45, 77 

 Violin, 75, 166, 182, 185, 18 – 188, 191 – 195, 206, 

208, 249, 256 – 258, 271 – 272 

 Virgil (70 – 19 B.C.E.), 74, 84, 113 

 Voice, physiology of, 162, 168 

 Volmar, Axel, 6 

 Vortex, 89, 99 – 102, 152 – 153 

 Wagner, Richard (1813 – 1883), 229 

 Walker, D. P. (1914 – 1985), 6, 81, 83, 100 

 Wardhaugh, Benjamin, 6 

 Wave, 111, 136 

 electrical, 213, 232 

 equation, 232, 272 – 273, 276 – 277 

 light, 3 – 4, 7, 125, 127, 131, 151 – 155, 161 – 179, 221 

 mechanics, 5, 275 – 277 

 vs. pulse, 151 

 sound, 97, 137, 188, 198, 200 

 Wavelength, 127, 155, 173 – 175, 178, 222, 248, 250, 

268, 275 

 Weil, Andr é  (1906 – 1998), 145 

 Weyl, Hermann (1885 – 1955), 278, 310n6 

 Wheatstone, Charles (1802 – 1875), 4, 195, 198 – 207, 

210, 213 – 215, 279 – 280 



Index 347

 Whewell, William (1794 – 1866), 5 

 Whitehead, Alfred North (1861 – 1947), 1 

 Widmann, Erasmus (1572 – 1634), 74 

 Willaert, Adrian (ca. 1490 – 1562), 61 

 Williams, L. Pearce, 198, 205, 207 

 Wolff, Christian (1679 – 1754), 146, 151 

 Wollaston, William (1766 – 1828), 245 

 Wonder, 29, 93, 280 

  Wunderkammer , 205 

 Xerography, 182 

 Young, Thomas (1773 – 1829), 4, 161 – 181, 198, 200, 

205, 210, 276 

 and color vision, 172 – 173, 217 – 219, 223, 231, 273 

 and ether, 172, 178 – 179, 214 – 215 

 and Euler, 131, 154 

 Zarlino, Gioseffo (1517 – 1590), 48 – 53, 70 – 71, 

77 – 78, 85, 137 

 Z boson, 281 

 Zero, concept of, 14 – 16, 148 

 Zeta function, 145, 232 


	Contents
	Introduction
	1 Music and the Origins of Ancient Science
	2 The Dream of Oresme
	3 Moving the Immovable
	4 Hearing the Irrational
	5 Kepler and the Song of the Earth
	6 Descartes’s Musical Apprenticeship
	7 Mersenne’s Universal Harmony
	8 Newton and the Mystery of the Major Sixth
	9 Euler: The Mathematics of Musical Sadness
	10 Euler: From Sound to Light
	11 Young’s Musical Optics
	12 Electric Sounds
	13 Hearing the Field
	14 Helmholtz and the Sirens
	15 Riemann and the Sound of Space
	16 Tuning the Atoms
	17 Planck’s Cosmic Harmonium
	18 Unheard Harmonies
	Notes
	References
	Sources and Illustration Credits
	Acknowledgments
	Index



