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TRANSLATOR'S PREFACE 

The work of which this is an English translation appeared originally in 
French as Precis de logique mathematique. In 1954 Dr. Albert Menne 
brought out a revised and somewhat enlarged edition in German (Grund­
riss der Logistik, F. Schoningh, Paderborn). In making my translation 
I have used both editions. For the most part I have followed the original 
French edition, since I thought there was some advantage in keeping 
the work as short as possible. However, I have included the more 
extensive historical notes of Dr. Menne, his bibliography, and the 
two sections on modal logic and the syntactical categories (§ 25 and 27), 
which were not in the original. I have endeavored to correct the typo­
graphical errors that appeared in the original editions and have made a 
few additions to the bibliography. 
In making the translation I have profited more than words can tell 
from the ever-generous help of Fr. Bochenski while he was teaching at 
the University of Notre Dame during 1955-56. 

OTTO BIRD 

Notre Dame, 1959 



I 

GENERAL PRINCIPLES 

§ O. INTRODUCTION 

0.1. Notion and history. Mathematical logic, also called 'logistic', 
·symbolic logic', the 'algebra of logic', and, more recently, simply 
'formal logic', is the set of logical theories elaborated in the course of 
the last century with the aid of an artificial notation and a rigorously 
deductive method. Leibniz (1646-1716) is generally recognized as the 
first mathematical logician; but it was George Boole (1815-1864) and 
Augustus De Morgan (1806-1878) who first presented systems in a 
form like those known today. Their work was taken up and furthered 
by C. S. Peirce (1839-1914), Gottlob Frege (1848-1925) and Giuseppe 
Peano (1858-1932), and then by Alfred North Whitehead and Bertrand 
Russell in their monumental work, Principia Mathematica (1910-1913). 
Since then active schools of mathematical logic have arisen in numerous 
countries, especially in America, Germany, and Poland. Progress has 
been rapid and is still continuing. 

0.2. Logic and mathematics. Mathematical logic is called 'mathematical' 
because of its origin, since it has been developed particularly with the 
aim of examining the foundations of this science. There is moreover 
a certain external resemblance between its formulas and those of 
mathematics. Certain logicians also claim that mathematics is only a 
part oflogic, although this opinion is far from receiving general approval. 
However, mathematical logic does not consider either numbers or 
quantities as such, but any objects whatsoever. 

0.3. Applications. Mathematical logic has been successfully applied 
not only to mathematics and its foundations (G. Frege, B. Russell, 
D. Hilbert, P. Bernays, H. Scholz, R. Carnap, L. Lesniewski, T. Skolem), 
but also to physics (R. Carnap, A. Dittrich, B. Russell, C. E. Shannon, 
A. N. Whitehead, H. Reichenbach, P. F6vrier), to biology (1. H. Woodger, 
A. Tarski), to psychology (F. B. Fitch, C. G. Hempel), to law and morals 
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(K. Menger, U. KIug, P. Oppenheim), to economics (J. Neumann, 
O. Morgenstern), to practical questions (E. C. Berkeley, E. Stamm), 
and even to metaphysics (J. Salamucha, H. Scholz, I. M. Bochenski). 
Its applications to the history of logic have proven extremely fruitful 
(J. Lukasiewicz, H. Scholz, B. Mates, A. Becker, E. Moody, J. Salamucha, 
K. Durr, Z. Jordan, P. Boehner, I. M. Bochenski, S. T. Schayer, D. 
Ingalls. 
In particular, Lukasiewicz, Salamucha, and others, have shown by the 
use of the methods of mathematical logic that the modem epoch has 
misunderstood the true sense of numerous texts of Aristotle, of almost 
all the logic of the Stoics, Scholastics, and the Hindus. Applications 
have also been made to theology (P. Drewnoswki, J. Salamucha, 
I. Thomas). However, it appears that we are only at the beginning. 
It seems certain that the logic so far developed has been used only to 
a small extent and that, furthermore, a very considerable development 
of the existing theories is possible and is in fact in the course of being 
accomplished. 

HISTORY: The history of formal logic is a recent science, begun primarily by 
J. Lukasiewicz (1921) and H. Scholz (1931). - Discussions of the relation between 
logic and mathematics date from Leibniz and his notion of a 'mathesis universalis'; 
although the problem was not posed fully until Peano. - Applications and discussion 
of the philosophical implications of modern logic also belong to the 20th century. 

LITERATURE: For the history of logic: Scholz 1; Lukasiewicz 5; Bochenski 7, 8; 
Beth 3; Lewis 1; Jorgensen 1; Jorgensen 2; Jordan 1. - Logic and mathematics; 
Gonseth 2; PM; Russell 3; Heyting 2; Dubislav 2. - Mathematical and traditional 
logic: Lewis 1; Greenwood 1; Banks; Dopp. - Introductions: Carnap 1, 8; Hilbert A; 
Tarski 6; Reichenbach 1. Treatises: PM (the classical work, outmoded in some 
respects, but still the indispensable source); Hilbert B; Quine 3; Feys 5; Scholz 5; 
Prior; Church 6. Bibliography: Church 1 (complete for the period from 1666-1935, 
continued in JSL); Church 5; Beth 4 (excellent, methodically selected); cf. also bibliog­
raphies in Quine 3 and Feys 5. 
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§ 1. FUNDAMENTAL EXPRESSIONS AND OPERATIONS 

The aim of this chapter is to enumerate the names of the fundamental 
logical expressions, to explain their meaning without attempting to 
define them strictly, and to describe some of the fundamental operations 
of logic. All the present chapter bears on the names of expressions and 
not on the expressions themselves. It is for this reason a metalogical 
theory (cf. 2.16). 

1.1. Expression, Constant, Variable 

1.11. 'Expression' - 'a graphic sign or group of graphic signs'. 
1.12. 'Expression of the system S' - 'an expression formed in accord 
with the rules of system S'. 
1.13. 'Constant of the system S' - 'an expression which is considered to 
have a definite meaning in the system S'. 
Examples: 'Peter', 'Napoleon', 'Paris', 'this book', etc. 
Explanation: In defining the constant, it is necessary to add 'of the 
system S', because an expression which is a constant in a given system 
(e.g. in the English language) may not be a constant in another system, 
since the meaning of human expressions is arbitrary or conventional. 
The same remark applies to the expressions 'variable' (1.14), 'name' 
(1.33), 'functor' (1.34), 'individual variable' (1.42), etc. For the sake of 
simplicity this clause is omitted in most of the definitions in this section. 
However, it should be constantly kept in mind in understanding the 
definitions. 
1.14. 'Variable' - 'an expression which has no definite meaning in the 
system S, but which serves exclusively to indicate a blank where a 
constant can be placed'. 
1.15. 'Equiform' - two expressions are said to be 'equiform', when 
they have the same graphic shape, i.e. when in ordinary language they 
are said to be the 'same expression'. 

1.2. Substitution, syntactical category 

1.21. 'To substitute b for a in c' or 'a by b in c' means: 'to form an 
expression d which is equiform with c in everything except that in the 
place corresponding to a in c there is in d an expression equiform.with b'. 
Example: 'To substitute 'Paul' for 'Peter' in 'Peter is smoking a pipe" 
means: 'form the expression: 'Paul is smoking a pipe". 
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1.22. 'Syntactical category of the system S' - 'the set of expressions 
which can be substituted for one another in every expression of the 
system S such that the expression formed by this substitution is itself 
an expression of the system S'. 
Example: 'Peter' and 'Paul' belong to the same syntactical category 
of the English language, since in substituting 'Peter' for 'Paul', or vice 
versa, in any expression of the English language, one obtains a new 
expression of the English language. This is not so, for example, for 
'Peter' and 'sleeps', since in substituting 'sleeps' for 'Peter' in 'Peter is 
smoking a pipe', one obtains 'sleeps is smoking a pipe', which is not an 
expression of the English language. 
1.23. 'Correct substitution of variables' - a substitution of a variable in 
an expression is correct when all the equiform variables of this expres­
sion have substituted for them expressions which are (1) equiform 
with each other and which (2) belong to the same syntactical category 
as the variable. 
Example: The substitution of 'Peter' for 'x' in the expression 'x = x' 
is correct, if two 'Peter's' are substituted for the two 'x's' by forming 
the expression 'Peter = Peter'. The substitution would not be correct if 
substitution were made only for the first 'x' by forming the expression 
'Peter = x'. 

1.3. Sentence, Name, Functor 

1.31. 'Sentence of the system S' - 'an expression which can stand (or 
be asserted) by itself in the system S'. 
1.32. 'Sentential function of the system S' - 'an expression containing 
variables which becomes a sentence of the system S when constants 
are substituted for all the variables'. 
Explanation: 'Peter is smoking a pipe' is a sentence; but 'x is smoking 
a pipe' is not a sentence and is neither true nor false. It becomes a sentence 
when a constant is substituted for 'x'. A sentence is a graphic sign or a 
group of graphic signs. What is meant by a sentence is called a 'proposi­
tion'. 
1.33. 'Name' - 'an expression which signifies a thing (substance),. 
Examples: 'Peter', 'Paris', 'this pencil'. 
1.34. 'Functor' - 'an expression which determines another expression'. 
Examples: 'Beautiful', 'runs', 'loves', 'it is not true that'. 
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Explanation: Instead of 'functor' 'operator' is sometimes used, or simply 
'predicate' (Quine). The expression 'operation', frequently used, is not 
to be recommended, since it may lead to confusing an operation of the 
mind (a psychical act) with a written symbol of an extramental reality. 
1. 35 'Argument oJthe Junctor F' -'an expression determined by the functor F'. 
Examples: 'Sky' is the argument of 'beautiful' in 'beautiful sky'; 'Peter' 
of 'runs' in 'Peter runs'; 'John' and 'pipe' are arguments of 'loves' in 
'John loves a pipe'; 'John is sleeping' is the argument of 'it is not true 
that' in the sentence, 'It is not true that John is sleeping'. 

1.4. Classification oj variables and Junctors 

1.41. 'Sentential variable' - 'a variable for which only a sentence or a 
sentential function can be substituted'. 
Example: In 'if p, then Eve is smoking a pipe', the 'p' is a sentential variable. 
1.42. 'Individual variable' - 'a variable for which only a name of an 
individual can be substituted'. 
Example: In 'x is smoking a pipe', 'x' is an individual variable. 
1.43. 'Sentential Junctor' - 'a functor which can have only sentences or 
sentential functions for arguments'. 
Example: 'If ... then' is a sentential functor. 
1.44. 'Individual Junctor' - 'a functor which can have only names of 
individuals or individual variables for arguments'. 
Examples: 'Drinks', 'smokes', 'detests'. 
1.45. 'N-adic Junctor' (where some positive integer is substituted for n) 
- 'a functor which determines n arguments'. 
Examples: Monadic functors: 'runs', 'is untrustworthy'; dyadic functors: 
'loves', 'smokes' ('John loves a pipe', 'John smokes a pipe'); triadic func­
tors: 'gives' ('Isidore gives a pipe to Boniface'); tetradic functors: 'is situated 
between' ('Holland is situated between Germany, Belgium, and the sea'). 

1.5. Definition 

1.51. 'x for y' - "x' is an abbreviation for 'y". 
1.52. 'Definition' - 'an expression formed by substitution for the variables 
in 'x for y". 

HISTORY: The idea of variables comes from Aristotle, and the idea of syntactical 
categories from Husser!. The other ideas and the systematic development of the whole 
is the work of contemporary metalogic (Carnap, G6del, Lesniewski, Tarski). 

LITERATURE: Tarski 2; Carnap 4; a good resume in Quine 3; Church 6. 
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§ 2. RULES OF WRITING 

Dealing with highly abstract and complex concepts, logic has come to 
use artificial symbols, since words are either lacking for its concepts or, 
where they do exist, they are not readily usable with exactness. Logic 
attaches great importance to the rules of writing. This section provides 
two groups of rules of this kind. The first relates to the distinction between 
two suppositions, and the second to the technique of writing logical 
expressions. 

2.1. Supposition 

2.11. 'The expression X is in formal supposition' for: 'the expression X 
signifies something different from X and from all expressions equiform 
with X'. 
Examples: Almost all the words of ordinary language are in formal 
supposition. Thus when one says 'Peter is sleeping', the word 'Peter' 
is taken as signifying the man, Peter. 
2.12. 'The expression X is in material supposition' for: 'X stands as a 
symbol of the expression X and all expressions equiform with X'. 
Examples: In "cat' is a substantive', the word 'cat' is in material suppo­
sition, since it signifies, not the animal, cat, but the word 'cat'. 
2.13. Rule: Expressions in material supposition must be written between 
inverted commas, and expressions in formal supposition without them. 
Example: The expression 'the cat is drinking milk' is correct, whereas 
'the 'cat' is drinking milk' is not, since by putting 'cat' between inverted 
commas, it is affirmed that the word 'cat' is drinking milk. Likewise 
'cat is a substantive' is incorrect, whereas' 'cat' is a substantive' is correct. 
- Strict application of this rule is sometimes difficult in informal language, 
but should be striven for. 
W. V. O. Quine has proposed the employment of corners, "', in addition 
to inverted commas for expressions in material supposition which 
contain variables, such as 2.12. His reason is that, since inverted commas 
change an expression to the name of an expression which must be consid­
ered as a whole (commas included), substitution in such an expression 
is not admissable. 
2.14. Rule: Expressions in material supposition should be symbolized 
by expressions which are not equiform with the expressions them­
selves. 
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2.15. 'Metatheory of T' for: 'a theory which treats of the expressions 
of the theory T'. 
2.16. 'Metalogic' for: 'metatheory of logic'. 
Examples: The set of sentences of § 1 belong to metalogic. 

2.2. The placing of functors 

2.21. Rule for the Lukasiewicz system: All functors are placed imme­
diately before (to the left of) their arguments. 
Examples: 'loves: Peter, pipe'; 'situated between: Holland, Belgium, 
Germany, sea'. 
2.22. In the Lukasiewicz system no parentheses are necessary. 
Examples: The mathematical expression 'a + a = 2a' is written, 
according to 2.21: '= + aa2a'. The functor '+', being dyadic, has as 
arguments the first two 'a's'; and we then have '+ aa = 2a'; the functor 
'=' is also dyadic and has as its first argument '+ aa' and as its second 
argument '2a'; thus we finally obtain '= + aa2a'. 
2.23. Rule for the Peano-Russell system: Dyadic functors are placed 
between their arguments; for more complex expressions parentheses or 
dots are used to avoid ambiguity. 
Example: In the expression '2 + 2 X 3' it is necessary to use paren­
theses, since without them the expression can have two different meanings: 
'(2 + 2) X 3' and '2 + (2 X 3)'. 

2.3. Parentheses 

2.31. 'Parenthesis of the first degree' for: '('and')'. 
2.32. 'Parenthesis of the second degree' for: '['and']'. 
2.33. 'Parenthesis of the third degree' for: '{'and'}'. 
2.34. 'Convex parenthesis' for: '(', or '[' or '{'. 
2.35. 'Concave parenthesis' for: ')', or ']', or '}'. 
2.36. Rule: A functor placed before a convex parenthesis has as argument 
the part of the expression which extends from this parenthesis to a 
concave parenthesis of the same degree; a functor placed after a concave 
parenthesis has as argument the part of the expression which extends 
from a convex parenthesis of the same degree up to this parenthesis. 

2.4. Dots 

2.41. Rule: A parenthesis of n-degree can be replaced by a group of 

7 



A PRECIS OF MATHEMATICAL LOGIC 

n dots. Two expressions next to each other are considered to be separated 
by a group of 0 dots. 
2.42. Rule: Dots are placed only next to functors (to which quantifiers 
also belong - § 11.2), and not at the beginning or end of an expression. 
Example: The expression '(2 + 2) X 3' is not written as '. 2 + 2· X ·3', 
but as '2 + 2· X 3'. For reasons of symmetry it may also be written 
'2 + 2· X ·3'. 
2.43. 'Group of dots of the first class' for: 'group of dots which stand 
for the functor of conjunction (§ 3.7),. 
2.44. 'Group of dots of the second class' for: 'group of dots placed to 
the right of a quantifier (§ 11.21-22)'. 
2.45. 'Group of dots of the third class' for: 'group of dots placed to the 
right or left of a functor other than that of conjunction or quantification'. 
2.46. Rule: A functor preceded or followed by a group of n dots of 
class m refers to the part of the expression which extends from this 
group to the place where there occurs (1) an equal group of dots of 
the same class m or of a higher class, or (2) a group of more than n 
dots of a lower class. 
2.47. Rule: Conventions for subdividing the classes of dots (2.43-5) 
can be established as needed. 

RISTOR y: The theory of supposition is very old. The remainder of this section is an 
acquisition of the late 19th and 20th centuries. Dots were substituted for parentheses 
by Peano; the system of Lukasiewicz is still more recent, since it dates from 1920. 

LITERATURE: 2.1; cf. preceeding §. 2.21: since the original work of Lukasiewicz is 
hard to obtain, one can consult: Feys 5; Bochenski 4; PM, p. 9 If. or any of the 
introductions and textbooks. Further developments: Curry 2; Turing. 
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II 

THE LOGIC OF SENTENCES 

§ 3. TRUTH FUNCTORS 

This chapter contains the theory of the connections between unanalysed 
sentences formed by functors corresponding to the English words 'not', 
'or', 'if ... then', 'and', etc. These functors are called 'truth functors', 
because the truth of a sentence formed with them depends exclusively 
on the truth and not on the meaning of their arguments. 

3.1. Truth Values 

3.11. 'Truth value' for: '1' or '0'. 
Explanation: Generally, '1' is interpreted as 'true' and '0' as false, which 
accounts for the current definition of value: 'the value of a sentence is 
its truth or its falsity' (Frege). 
We will consider values as symbols (in material supposition, 2.12) and 
not as interpreted values. 
3.12. 'p = x' for: 'the truth value of 'p' is 'x". 
Example: 'p = l' is read: 'the value of 'p' is truth'. 
3.13. 'F is a truth Junctor' for: 'the truth value of every expressions 
formed from F and arguments of F depends exclusively on the value of 
these arguments'. 
Example: 'Excludes' is a truth functor, since the truth of the sentence 
formed from it, namely 'p excludes q', depends only on the value of 
'p' and 'q'; when 'p' and 'q' both have the val.ue '1', the sentence 'p 
excludes q' is false, and in all other cases it is true, independently of the 
meaning of 'p' and 'q'. 

3.2. Negation 

3.21. '{x, y}" where truth values are to be substituted for 'x' and 'y'. 
for: 'a monadic truth functor in which an argument with the value 'I> 
gives 'x' and the value '0' gives 'y". 
Remark: This may be written: {x, y}1 = x and {x, y}O = y. 
3.22. There are 4 monadic truth functors: '{l, I}', '{I, O}', 
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'{O, I}', and '{O, O}'. In general, there are 22n n-adic truth functors. 
3.23. '", p (or 'p') or 'Np' for: '{O,I}p'. 
Explanation: Read 'not p'. This functor is called 'negation'. Placed 
before a true sentence, it forms a false sentence; and placed before a 
false sentence, it forms a true sentence. The negation of a true sentence 
is thus false, and the negation of a false sentence is true. This is represented 
in the following table: 
3.24. p '" p 

1 0 
o 1 

3.3. Dyadic Truth Functors 

3.31. 'x, y, Z, t', where truth values are substituted for 'x', 'y', 'z', and 
't' for: 'the dyadic functor such that: 

if p = 1 and q = 1, {x, y, z, t}pq = x 
if p = 1 and q = 0, {x, y, z, t}pq = Y 
if p = 0 and q = 1, {x, y, z, t}pq = Z 

if p = 0 and q = 0, {x,y, z, t}pq = t'. 

Or in a table thus: or in abbreviated form: 

10 

p q I x, y, z, t pq 

1 1 
1 0 

x 
y 

o 1 z 
o 0 t 

{x, y, z, t}pq I 1 0 

1 
o 

xy 
z t 



THE LOGIC OF SENTENCES 

3.32. There are 22' = 16 dyadic truth functors: 

1 2 3 4 5 6 7 8 
p q V A B C D E F G 

1 1 1 1 1 1 0 1 0 0 
1 0 1 1 1 0 1 0 0 1 
0 1 1 1 0 1 1 0 1 0 
0 0 1 0 1 1 1 1 1 1 

1 1 0 0 0 0 1 0 1 1 
1 0 0 0 0 1 0 1 1 0 
0 1 0 0 1 0 0 1 0 1 
0 0 0 1 0 0 0 0 0 0 

p q 0 X M L K J I H 
16 15 14 13 12 11 10 9 

3.4. Alternation or Logical Sum 

3.41. 'p V q' or 'Apq' for: '{1, 1, 1, O}pq'. 
Explanation: In our ordinary speech the alternation corresponds to 'or' 
taken in the non-exclusive sense (Latin 'vel'). E.g. 'he is a priest or a 
religious'. Such a sentence is true when one of its arguments is true, 
and it is false only when both are false. 
3.42. 

p q Ipv q 

1 1 1 
101 
o 1 1 
000 

V 1 0 

1 1 1 
010 

Explanation: 3.42 resembles an addition table in arithmetic: 

1+1=2 
1+0=1 
0+1=1 
0+0=0 

11 
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except for the first line, where 3.42 has '1', since there is no value higher 
than '1' in our system. For this reason the name 'logical sum' has been 
given to expressions of the type 'p V q' or 'Apq'. 

3.5. Material Implication 

3.51. 'p :) q' (or 'p -+q') or 'Cpq' for: '{I, 0,1, I} pq'. 
Explanation: This functor corresponds more or less to the English 
'if ... then'. 
3.52. 

3.6. Disjunction 

p q [p :)q 

1 1 1 
100 
o 1 1 
001 

3.61. 'p 1 q' or 'Dpq' for: '{O, 1, 1, I} pq'. 
3.62. 

p q [p 1 q 

1 1 0 
101 
011 
001 

:) 1 0 

1 1 0 
o 1 1 

[ 1 0 

Explanation: The English word most closely corresponding to the 
functor 'I' or 'D', also called 'Sheffer's functor', is 'either ... or'. For 
example, 'he is either German or French', i.e. he cannot be both at 
once, although he may be neither, but English. 

3.7. Conjunction or logical product 

3.71. 'p. q' (or 'p & q') or 'Kpq' for: '1,0, 0,0 pq'. 
3.72. 

12 

p q [p. q 

1 1 1 
100 
o 1 0 
000 

[ 1 0 
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Explanation: The functor '.' or 'K' corresponds to the English 'and'. 
3.72. resembles the multiplication table: 

1 X 1 = 1 
IxO=O 
Oxl=O 
OxO=O 

Hence an expression of the type 'p' q' is called a 'logical product'. 
3.73. Rule: When dots are used for punctuation (2.41), the functor of 
conjunction is replaced by the most numerous groups of dots which 
should preceed or follow it. 
Example: 'p and (q or r)' is written: 'p' q V r'. For 'p' q' we write: 
'pq' (group of zero dots). 

3.8. Equivalence or Bi-conditional 

3.81. 'p _ q' (or 'p '" q') or 'Epq' for: '{I, 0, 0, I}'. 
3.82. 

p q Ip=q 
1 1 1 
100 
o 1 0 
001 

I 1 0 

~ I ~ ~ 

Explanation: The '=' functor corresponds to the English' ... if and 
only if .. .'. 

3.9. Gonseth's Graphical Representation. Terminology. 

3.91. Make a square corresponding to the abbreviated tables 3.4-7: 

q=1 q=O 

p=1 

p=O 

13 
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By filling in the small square corresponding to '1' in the abbreviated 
tables, the following graphic representation is obtained: 

p -:Jq plq p.q 

3.92. Terminology of Traditional Logic 
If Apq (p V q), 'p' and 'q' are called 'sub-contraries'. 
If Cpq (p -:J q), 'p' and 'q' are called 'subalterns'. 
If Jpq (p - - q), 'p' and 'q' are called 'contradictories'. 
If Dpq(p I q), 'p' and 'q' are called 'contraries'. 
From this we get the following logical square: 

3.93. Comparative Table of Notations: 

Definition Peano-Russell Lukasiewicz 

3.23 -p Np 
3.41 p Vq Apq 
3.51 p -:Jq Cpq 
3.61 plq Dpq 
3.71 p.q Kpq 
3.81 p=q Epq 

14 
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P 
p Vq 
p-+q 

plq 
p&q 
p-q 



THE LOGIC OF SENTENCES 

Examples: 
Peano-Russell: 
p.p Vr 
p vq·q-:Jr 
p -:Jq. -:J. "'" q -:J "'" p 

p -:Jq: -:J: q -:Jr· -:J·p-:Jr 

Lukasiewicz: 
KpApr 
KApqCqr 
CCpqCNqNp 

CCpqCCqrCpr 

Ordinary speech: 
p and: p or r 
p or q, and: if q, thenr 
if (if p then q), then: 
(if not-q, then not-p) 
if: (if p, then q), then: 
if (if q, then r), then: 
(if p, then r). 

The last example shows the necessity of using an artificial notation. 

HISTORY: The theory was known as early as the Stoics, who gave, among others, 
3.52. It was further developed by the Scholastics. It was rediscovered and further 
developed by Peirce in the 19th century, followed by Wittgenstein, Post and 
Lukasiewicz in the 20th century. The method given here is that of Feys, and the 
graphical representation that of Gonseth. 

LITERATURE: Most of the introductions and textbooks, especially: Feys 5; Wittgen­
stein; Lukasiewicz T; Lukasiewicz 6. - 3.8.: Gonseth 2. On history: Lukasiewicz 5; 
Bochenski 2, 8; Boehner. 
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§ 4. EVALUATION 

The problem discussed in this chapter is that of determining whether 
an expression is a 10gica11aw, i.e. what are the correct substitutions of 
its variables for it to become a true sentence. Many solutions have been 
given to this problem. The method of evaluation by substitution ex­
pounded here has been the most fully perfected and is the easiest. 

4.1. Definitions 

4.11. 'Logical law' for: 'a sentential function which becomes a true 
sentence when constants have been correctly subtituted (1.23) for all 
its variables'. 
4.12. 'Evaluate' for: 'to show that an expression is or is not a law'. 
4.13. 'Elementary expression' for: 'an expression composed of '",' 
(or 'N') and one truth value, or of 'V', 'J', '.', 'I', or ,-, (respectively 
'A', 'C', 'K', 'D', or 'E') and two truth values'. 

4.2. The Technique of Evaluation 

4.21. Rule of evaluation: (a) Determine all the possible combinations of 
truth values; (b) substitute the truth values of the first combination for 
the variables of the expression to be evaluated; (c) for the elementary 
expressions so obtained substitute their values according to the definitions 
of § 3; (d) repeat this operation until only one numeral remains; (3) if 
this numeral is '0', the expression is not a law, (f) if it is '1', substitute in 
the other combinations in the same way; and (g) if all the combinations 
have '1' as their result, the expression is a law. 
4.22. The possible combinations of truth values are 2n for n non­
equiform variables. 
If all variables are equiform, there are 2 values: p = 1, p = 0. 

For 2 non-equiform variables, there are 4 values: 

16 

(1) P = 1, q = 1 
(2) p = 1, q = ° 
(3)p = 0, q = 1 
(4)p = 0, q = ° 
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For 3 non-equiform variables, there are 8 values: 

(1)p = 1, q = 1, r=I 
(2)p = 1, q= 1, r=O 
(3)p = 1, q=O, r=I 
(4) p = 1. q=O, r=O 
(5)p = 0, q = 1, r=I 
(6)p = 0, q= 1, r=O 
(7) p = 0, q=O, r=I 
(8)p = 0, q=O, r=O 

For 4 non-equiform variables, there are 16 values, etc. 
4.23. Truth values of the elementary expressions: The following table 
facilitates the substitution of values for the elementary expressions: 

Expr. I Val.l Expr. I val.l Expr. I val.l Expr. I val.l Expr. I Val. 

1 VI 1 1 ::) 1 1 1 11 0 1· 1 1 1_1 1 
1 VO 1 1 ::) 0 0 1 10 1 1·0 0 1=0 0 
o V 1 1 o ::) 1 1 011 1 0·1 0 0=1 0 
o VO 0 o ::) 0 1 01 0 1 0·0 0 0=0 1 

'" 1 0 
",0 1 

All 1 Cll 1 Dll 0 Kll 1 Ell 1 
AlO 1 CI0 0 DIO 1 KIO 0 EIO 0 
AOI 1 COl 1 DOl 1 KOI 0 EOI 0 
AOO 0 COO 1 DOO 1 KOO 0 EOO 1 

Nl 0 
NO 1 

Example: Evaluate the following expression: 'CCpqCNqNp'. 
There are two non-equiform variables: 'p' and 'q'; hence there are 
4 substitutions: 

17 
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(a) p = 1, q = 1 (b)p = 1, q = 0 (c)p = 0, q = 1 (c)p = 0, q = 0 

CCpqCNqNp CCpqCNqNp CCpqCNqNp CCpqCNqNp 
CCIICNINI CCIOCNONI CCOICNINO CCOOCNONO 

'-v-' '-v-''-v-' '-v-' '-v-''-v-' '-v-' '-v-''-v-' '-v-' '-v-''-v-' 

C 1 COO C 0 C 1 0 C 1 COl C 1 C 1 1 
~ ~ 

C 1 1 C 0 0 C 1 1 C 1 1 
~ ~ ~ ~ 

1 1 1 1 

Since all 4 substitutions yield the truth value '1', the expression is always 
true and hence a logical law (4.21). 
For the Peano-Russell notation the technique of evaluation is the same, 
except that it is necessary to omit the dots and parentheses. For this 
reason it is easier to evaluate expressions in the Lukasiewicz notation. 

HISTORY: Cf. §3. 

LITERATURE: The clearest expositions are: Scholz 5; Quine 3; Feys 5. 
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§ 5. EQUIVALENCES 

This chapter contains the simplest and most useful logical laws in the 
form of equivalences. They are given in two notations, first that of 
Peano-Russell, and then that of Lukasiewicz. 
5.1. contains laws in which all the variables are equiform. 
5.2-6. contains laws with two or three non-equiform variables grouped 
according to the functor of the first argument. 

5.1. Laws in which all the variables are equiform 

5.11. p - p Epp Principle ofIdentity 
5.12. '" '" p - p ENNpp Principle of Double Negation 
5.13. '" '" '" p = '" P ENNNpNp Principle of Triple Negation 
5.14. '" p = pip ENpDpp Reduction of Negation (cf. 5.45) 
5.15. p V p . - . P EAppp 1st law of Tautology 
5.16. pp P EKppp 2nd law of Tautology 

5.2. Laws of the Sum (Alternation) 

5.211. p V q . - . '" p -:J q 

5.212. P V q . . '" pi'" q 

5.213. p V q . - . '" . '" p '" q 

5.214. P V q: _:p -:J q. -:J q 
5.22. P V q . - . q V p 

5.23. p. V· q V r : = : p V q. V· r 

5.24. p. V· qr: -:p V q. p V r 

5.25. p. V . p V q: = : p V q 

5.26. p. V . pq : - : p 

EApqCNpq 
Cf.5.311 

EApqDNpNq 
Cf.5.41 
Reduction of Alternation 

EApqNKNpNq 
De Morgan's 3rd Law 

EApqCCpqq 
EApqAqp 

Commutative Law of the Sum 
EApAqr AApqr 

Associative Law of the Sum 
EApKqr KApqApr 

Distributive Law of the Sum 
EApApqApq 

1st law of Simplification of 
the Sum 

EApKpqp 
2nd Law of Simplification of 
the Sum 
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5.27. ,...,. p V q . = . ,..., p . ,..., q 

5.3. Laws of Implication 

5.311. p :J q . = . ,..., p V q 
5.312. p :J q' _ . pi,..., q 

5.313. p :J q' _ . ,..., . p ,..., q 

5.314. p :J q' . p _pq 

5.315. p :J q: = : q . = . p V q 
5.32. p:J q . _ . ,..., q :J ,..., p 

5.321. p :J ,..., q' . q :J ,..., p 

5.322. ,..., p :J q . . ,..., q :J p 

ENApqKNpNq 
De Morgan's 1st Law 

ECpqANpq 
ECpqDpNq 

Reduction of Implication 
ECpqNKpNq 
ECpqEpKpq 
ECpqEqApq 
ECpqCNqNp 

Law of Simple 
Contraposition 

ECpNqCqNp 
2nd Law of Simple 
Contraposition 

ECNpqCNqp 
3rd Law of Simple 
Contraposition 

5.33. p.:J. q :J r : _ : q' :J. p :J r ECpCqrCqCpr 

5.34. pq:J r: - : p' :J. q :J r 

5.35. pq:J r: _ : q' :J. p :J r 

5.36. p' :J. p :J q: = : p :J q 
5.37. pq:J r' _ . ,..., rq :J "" p 

5.38. pq:J r . = . p "" r :J "" q 

5.39. "". p :J q . = . p "" q 

5.4. Laws of Disjunction 

5.41. p I q' = . ,..., p V "" q 
5.42. p I q . = . p :J "" q 

20 

Law of Simple Commutation 
ECKpqrCpCqr 

1st Law of Exportation 
ECKpqrCqCpr 

2nd Law of Exportation 
ECpCpqCpq 
ECKpqrCKNrqNp 

1st Law of Syllogistic 
Contraposition 

ECKpqrCKpNrNq 
2nd Law of Syllogistic 
Contraposition 

ENCpqKpNq 

EDpqANpNq 
EDpqCpNq 
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5.43. pi q' _.,.., 'pq EDpqNKpq 
5.44. plq'='qlp EDpqDqp 

Commutation of Exclusion 
5.45. pip' ''''' p EDppNp 

Reduction of Negation 
5.46. ,.., . pi q' - 'pq ENDpqKpq 

5.5. Laws of the Product (Conjunction) 

5.511. pq' _. ,.., . ,.., p V"" q EKpqNANpNq 

5.512. pq' = . ,.., . p :J ,.., q 
5.513. pq' _ . ,.., . p I q 

5.52. pq= qp 

5.53. p' qr . _ . pq . r 

5.54. p' q V r . . pq V pr 

5.55. p' p V q . = . p 

5.56. p' pq ~ = . pq 

5.57. ,..,. pq . _ . ,.., p V ,.., q 

5.58. ,..,. pq . - . p I q 

5.6. Laws of Equivalence 

5.611. p q' _ . pq V ,.., p ,.., q 

5.612. P = q' = . p :J q . q :J P 
5.62. P q . - . q = p 

De Morgan's 4th Law 
EKpqNCpNq 
EKpqNDpq 

Reduction of Conjunction 
EKpqKqp 

Commutative Law of the 
Product 

EKpKqr KKpqr 
Associative Law of the 
Product 

EKpAqr AKpqKpr 
Distributive Law of the 
Product 

EKpApqp 
1st Law of Simplifying the 
Product 

EKpKpqKpq 
2nd Law of Simplifying the 
Product 

ENKpqANpNq 
De Morgan's 2nd Law 

ENKpqDpq 

EEpqAKpqKNpNq 
EEpqKCpqCqp 
EEpqEqp 

Commutative Law of 
Equivalence 
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5.63. p. ·q=r:=:p=q·_·r EEpEqrEEpqr 
Associative Law of 

5.64. p = q . _ . '" p = '" q 

5.65. p - q . _ . '" q - '" p 

5.66. '" p = q . = . '" q = p 

5.67. p _ '" q. _ . q _ '" p 

Equivalence 
EEpqENpNq 

Inversion of Equivalence 
EEpqENqNp 

1st Contraposition of 
Equivalence 

EENpqENqp 
2nd Contraposition of 
Equivalence 

EEpNqEqNp 
3rd Contraposition of 
Equivalence 

5.7. Rules of Transformation by which these laws can be developed so 
as to yield still further laws. 

5.71. 'Chief functor of X' for 'the largest point-group of '=' in X'. 
5.72. Rule for Inversion: If X is one of the laws of § 5, left column, the 
expression for~ed by substituting the part of X which follows the chief 
functor for that which preceeds it, and vice versa, is itself a logical law. 
Example: Since (5.16) 'pp p' is a law, 'p = pp' is also a law. 
5.73. Rule for substitution of implication: If X is a law of § 5, left column, 
the expression formed by substituting ':)' for its chief functor is also 
a law. Or, in Lukasiewicz notation, the expression formed by substituting 
'C' for its first 'E' is also a law. 
Example: Since (5.11) 'p =p', or 'Epp' is a law, so also 'p J p' or 'Cpp' 
is a logical law. 

HISTORY: Almost all the laws of this section were known to the Scholastics, including 
those wrongly named after De Morgan (5.27, 5.57, 5.213, 5.511). 

LITERATURE: An all but complete enumeration of the laws used in practice is given 
in PM *2 - *5 and in the textbooks, especially Feys 5. 
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§ 6. 'FIRST PRINCIPLES' AND IMPLICATIONS 

The laws enumerated here are, together with the equivalences of § 5, 
the most important. 6.1. contains three laws which, with 5.11. are known 
as the 'first principles' of traditional logic; they are presented in the 
notation of the Sentential Calculus. The arrangement is the same as 
that of § 5. 

6.1. 'First Principles' 

6.11. ",' p '" P 

6.12. pi'" P 

6.13. p V '" p 

NKpNp 
DpNp 
ApNp 

Principle of Non-Contradiction 

Principle of Excluded Middle 
6.2. Characteristic Laws of Implication 
6.21. p' :). q :) p CpCqp 1st Paradoxical law 

('Verum sequitur ad quodlibet') 
6.22. '" p' :). p :) q CNpCpq 2nd Paradoxical law 

('Ex falso sequitur quodlibet') 
1st Reductio ad absurdum 6.23. p:) '" p' :). '" P 

6.24. p' :). '" p :) q 

6.25. p '" p :) '" P 

6.26. p' :). p V q 

CCpNpNp 
CpCNpq 
CKpNpNp 
CpApq 
CKpqp 
CKpqq 
CKpqCpq 
CEpqCpq 

2nd Reductio ad absurdum 
Law of the new factor 

6.27. pq:) p 
6.271. pq :) q 
6.281. pq' :). p :) q 
6.282. p = q' :). p :) q 

6.3. Laws of the Syllogism 

1st law of the afortiori 
2nd law of the a fortiori 

6.31. q:) r: :):p :) q' :). p :) r CCqrCCpqCpr 
6.32. p:) q: :): q :) r' :). p :) r CCpqCCqrCpr 
6.33. p:) q:' :):. q :) r: :): r :) s' :). p :) s 

CCpqCCqrCCrsCps 
6.34. p:) q :: :):: q :) r :. :):. r :) s: :): s :) t· :). p :) t 

CCpqCCqrCCrsCCstCpt 
6.35. p:) q . q :) r' :). p :) r CKCpqCqrCpr 
6.36. p:) q . q :) r . r :) s' :). p :) s CKKCpqCqrCrsCps 
6.37. p:) q' q :) r' r :) s' s :) t· :). p :) t CKKKCpqCqrCrsCstCpt 
6.38. p:) q: :): r V p' :). r V q CCpqCArpArq 
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6.4. Modes of the Hypothetical Syllogism 

6.41. p: -:J: p -:J q. -:J. q CpCCpqq Modus ponendo ponens 10 

6.42. p -:J q . p. -:J. q CKCpqpq Modus ponendo ponens 20 

6.421. p -:J '" q. po -:J. '" q CKCpNqpNq 
6.422. '" p -:J q. '" p. -:J. q CKCNpqNpq 
6.423. '" p -:J '" q. '" po -:J. '" q CKCNpNqNpNq 
6.43. '" q: -:J: p -:J q. -:J. '" p CNqCCpqNp 

6.44. p -:J q. '" q. -:J. '" p 
Modus tollendo tollens 10 

CKCpqNqNp 
Modus tollendo tollens 20 

6.441. p -:J '" q. q. -:J. '" p CKCpNqqNp 
6.442. '" p -:J q. '" q. -:J. p CKCNpqNqp 
6.443. '" p -:J '" q. q. -:J. p CKCNpNqqp 

6.5. Modes of the Disjunctive and Copulative Syllogism 

6.51. '" p: -:J:p Vq· -:J.q 

6.511. "'q: -:J:p Vq· -:J.p 
6.52. p V q. '" po -:J. q 

6.521. p V q . '" q. -:J. P 

6.522. p V '" q. '" p. -:J. '" q 
6.523. '" p V q . po -:J. q 
6.524. '" p V '" q. po -:J. '" q 
6.53. p: -:J: p I q. -:J. '" q 

6.531. q: -:J: p I q. -:J. '" P 
6.532. p: -:J: '" • pq. -:J. '" q 
6.54. p I q . po -:J. '" q 
6.541. pi'" q. po -:J. q 
6.542. '" p I q. '" p. -:J. '" q 
6.543. '" pi'" q. '" po -:J. q 

CNpCApqq 
Modus tollendo ponens 10 

CNqCApqp 
CKApqNpq 

Modus tollendo ponens 20 

CKApqNqp 
CKApNqNpNq 
CKANpqpq 
CKANpNqpNq 
CpCDpqNq 

Modus ponendo tollens 10 

CqCDpqNp 
CpCNKpqNq 
CKDpqpNq Modus ponendo tollens 20 

CKDpNqpq 
CKDNpqNpNq 
CKDNpNqNpq 

6.6. Laws of Composition and Dilemmas 

6.61. p -:Jq.p -:Jr· -:J.p -:Jqr CKCpqCprCpKqr 
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6.62. p' J' q J pq 
6.63. p J q . r J s: J: pr J qs 

6.64. p J q' r J s: J: p V r' J' q V s 

6.65. p Jr'q Jr: J:p Vq' J'r 

6.66. p Jr' '" p Jr' J' r 

CpCqKpq 
CKCpqCrsCKpr Kqs 

Multiplication of both 
sides 

CKCpqCrsCApr Aqs 
Addition of both sides 

CKCprCqrCApqr 
1st constructive 
dilemma 

CKCprCNprr 
2nd constructive 
dilemma 

6.67. '" q '" r:' J:' p' J' q V r : J: '" p CKNqNrCCpAqrNp 
1st destructive 
dilemma 

6.671. p' J' qr: '" q '" r: J: '" p 

6.68. p J q . p J '" q' J' '" p 

CKCpKqrKNqNrNp 
2nd destructive 
dilemma 

CKCpqCpNqNp 
3rd reductio ad 
absurdum 

HISTORY: 6.24 is found as early as Democritus and Plato; 6.11, 6.13, 6.35, 6.44 were 
known to Aristotle; 6.41, 6.43, 6.52, 6.532 were posited by the Stoics as 'indemon­
strable' laws. Almost all of the laws of this and the preceeding sections were reached 
by the Scholastics, clearly independently of the Stoics. 6.63 (along with some others) 
was discovered, or rather re-discovered, by Leibniz and pleased him so much that he 
called it the 'praeclarum theorema'. 

LITERATURE: Cf. § 5. 
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§ 7. AXIOMATIC SYSTEM 

The theory of an axiomatic system represents an ideal of deductive 
method which has always been taught by logic. This method was first 
applied in full rigor to logic itself and at present has been so fully devel­
oped that it can be applied to many other domains. This chapter presents 
the theory in succinct form by sacrificing rigor for clarity; a rigorous 
development would call for long explanations. 

7.1. Definitions 

7.11. 'Axiomatic System' for 'the set of expressions falling into two 
classes such that the elements of the second are derived from the first 
by the application of explicitly formulated rules'. 
7.12. An axiomatic system contains terms, sentences, and laws, rules of 
definition for terms, rules of formation for sentences, and rules of 
deduction for laws. 

7.2. Terms and Definitions 

7.21. 'Term of the system S' for: 'expression of the system S of which 
no part is an expression of the system S'. 
Example: 'V' (or 'A'), 'p', 'q' are terms of the Sentential Calculus, 
whereas 'p V q' is not, since it contains parts which are sentences, 
namely 'p' and 'q'. 
7.22. 'To define X by Y' for: 'to form an expression which indicates 
that X can be substituted for Y'. Definition in this sense is not the 
determination or explanation of an essence, a concept, or a word, 
but only the positing that one sign can be used for another; in general 
it is the abbreviation of a longer series of signs. 
7.23. 'Primitive term of the system S' for: 'term of the system S which 
is not defined in the System S'. 
7.24. 'Derived term of the system S' for: 'term defined in system S'. 
7.25. 'Rule of definition of the system S' for: 'rule which indicates the 
correct way of defining the derived terms of the system S'. 
7.26. Rule: All primitive terms and rules of definition of the axiomatic 
system must be stated explicitly, and all terms which are not primitive 
must be explicitly defined. 

7.3. Sentences and Rules of Formation 
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7.31. 'Rule of formation of the system S' for: 'rule which indicates how 
the terms of the system S can be formed into sentences of the system S'. 
Example: One of the rules of the Lukasiewicz system is 'a group of terms 
composed of 'C' and two variables is a sentence'. In many systems all 
expressions are sentences. 
7.32. General rule of formation: All sentences in the system S must be 
formed exclusively from terms of S according to the manner indicated 
by the formation rules of S. 

7.4. Laws and Deduction 

7.41. 'Law of the system S' for: 'sentence asserted in the system S'. 
7.42. 'To deduce Y from X in the system S' for: 'to show that if X is a 
law of S, the rules of S allow the assertion of Y'. 
7.43. 'Axiom of the system S' for: 'law of the system S which is not 
deduced in the system S'. 
7.44. 'Theorem of the system S' for: 'law of the system S deduced from 
the axions of S by the application of the rules of S'. 
7.45. 'Rule of deduction of the system S' for: 'rule which indicates the 
correct way of deducing in the system S'. 
7.46. Rule: All axioms and all rules of deduction of the axiomatic system 
must be stated explicitly; all other asserted sentences must be deduced 
explicitly. 
7.47. Rule: The application of laws and definitions in the deduction of 
a theorem must be formulated explicitly in a special expression called 
the 'proof', 'probative verse', or 'derivational line' . 
Example: § 8 contains several examples of this with explanations. 
7.48. 'X implies Yinferentially in the system S' for: 'the rules of deduction 
of the system Sallow Y to be deduced from X'. 
Explanation: Material implication must not be confused with inferential 
implication. The former, for example, holds among all true sentences, 
which is not the case, however, for the latter. The 'if' of ordinary English 
is closer to inferential than to material implication. 

7.5. Formalism 

7.51. 'Formalized system' for: 'axiomatic system whose rules concern 
exclusively the graphical form of expressions and all of whose axioms 
and rules are explicitly formulated'. 
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7.52. Rule: The formalized system, once its axioms and rules are 
established, must be developed solely in virtue of its rules and without 
any reference to the semantic meaning of the expressions that are used. 
7.53. The formalized axiomatic system as such has no semantic meaning 
and can receive diverse interpretations. 
Example: The system expounded in §§ 4-6 must be considered as a set 
of letters which symbolize nothing. For example, the 'C' must not be 
taken as the symbol for implication according to the ordinary meaning 
of 'if', but it must be taken exclusively as a functor defined according to 
table 3.52. In §§ 9, 12, and 16 we will give three different interpretations 
to it which facilitate the understanding of § 3. 

7.6. Consistency 

7.61. 'Non-contradictory system' for: 'axiomatic system whose rules of 
deduction do not allow a sentence to be deduced along with the negation 
of this sentence'. 
7.62. In a complete system which is contradictory any sentence can be 
deduced. 
Explanation: In virtue of 6.24 a sentence asserted at the same time as 
its negation allows us to deduce 'q'. By substitution we can then obtain 
any sentence we want. As a result the distinction between true and false 
sentences vanishes, and science is no longer possible. It is this that led 
Aristotle to say that the principle of non-contradiction (6.11) is the 
first principle of logic. 

7.7. Completeness and Independence 

7.71. 'Complete system in a wide sense' for: 'axiomatic system which 
contains all the true sentences of a given domain'. It can also be said 
that no sentence of a given domain is true if it is not derivable in the 
system. 
7.72. 'Complete system in a strict sense' for: 'axiomatic system in which 
each sentence which is not a law is the negation of one of its laws'. 
7.73. 'System with independent axioms' for: 'axiomatic system in which 
no axiom can be deduced from other axioms of the system by the 
application of the rules of the system'. 
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7.8. Rules 

7.81. Every axiomatic system must be formalized and non-contradictory. 
7.82. One must attempt to establish complete systems in the strict sense 
with independent axioms. 

HISTORY: The axiomatic system is one of the discoveries due to the genius of 
Aristotle (Posterior Analytics); especially cultivated by mathematicians (Euclidian 
system), it has received formal and rigorous elaboration from contemporary meta­
logicians (cf. § 26.3). 

LITERATURE: Elementary expositions: Camap 1; Tarski 6; Hilbert A; Prior. 
Rigorous metalogical elaborations: Cf. § 26; also Bemays; Schroter 1; Schroter 2; 
Woodger 3; Camap 5. There is an extensive literature on methods for proving 
consistency, completeness, and independence of axioms, of which tlIe most notable 
is the work of Godel. 

29 



A PRECIS OF MATHEMATICAL LOGIC 

§ 8. A SYSTEM OF THE LOGIC OF SENTENCES 

This section provides by way of example an axiomatic system of the 
sentential calculus. The method employed for developing it is the most 
rigorous of those that are known. Only the foundations (definitions, 
axioms, rules, etc.) and some of the beginning demonstrations are given 
here. 

8.1. Primitive Terms, Rule of Definition and Rules of Formation 

8.11. Primitive terms: 'D' - dyadic functor; 'p', 'q', 'r', 's' - sentential 
variables. 
8.12. Rule of Definition: A new term can be introduced into the system 
by formulating a group of terms, called the 'definition', and consisting 
of: (1) an expression which contains the new term and in which all the 
others are terms of the system; (2) '='; (3) an expression which contains 
only primitive terms or terms already defined. 
8.13. Rules of Formation: (1) a variable is a sentence; (2) a group of terms 
consisting of 'N' followed by one sentence is a sentence; (3) a group 
of terms consisting of 'A', 'C', 'D', 'E', or 'K' followed by two sentences 
is a sentence. 

8.2. Definitions 

8.21. Np = Dpp (cf. 5.14) 
8.22. Apq = DNpNq (cf. 5.213) 
8.23. Cpq = ANpq (cf. 5.311) 
8.24. Kpq = NANpNq (cf. 5.511) 
8.25. Epq = KCpqCqp (cf. 5.612) 

8.3. Rules of Deduction 

8.31. Rule of Substitution: A sentence may be substituted for a variable, 
but the same sentence must be substituted for all equiform occurrences 
of variables in the expression. 
8.32. Rule of substitution by definition: A definition may be substituted 
for the expression which it defines in a sentence, and reciprocally, 
without being substituted for all equiform occurrences of that 
expression. 
8.33. Rule of detachment: If a sentence consisting of 'C' followed by 
two sentences is a law of the system, and if a sentence equiform with 
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the first of these sentences is a law of the system, a sentence equiform 
with the second can be posited as a law of the system. 

8.4. Axioms 

8.41. CAppp (cf. 5.15) 
8.42. CpApq (cf. 6.26) 
8.43. CApqAqp (cf. 5.22) 
8.44. CCpqCArpArq (cf. 6.38) 

8.5. Deduction: 

8.44 rlNr X 8.23 plr, qlp X 8.23 plr = 8.51 
8.51. CCpqCCrpCrq (cf. 6.38) 
Explanation: The probative verse or derivational line of theorem 8.51 
is to be read as follows: Take axiom 8.44; for or' substitute 'Nr'; apply 
definition 8.23 after substituting Or' for 'p' and 'p' for 'q'; apply the same 
definition 8.23 again but this time substitute Or' for 'p'; and one will thus 
obtain the theorem to be proved 8.51. Or to write it out in full, we have: 
8.44. CCpqCAr pAr q 
rlNr (substitute 'Nr' for Or') CCpqCANrpANrq 
8.23 Cpq = ANpq 
plr Crq = ANrq 
qlp Crp = ANrp 
We can now put 'Crp' for 'ANrp' in our rewritten 8.44 and have: 

CCpqC CrpANrq 
8.23 
plr Crq = ANrq 
For 'ANrq' put 'Crq': CCpqC Crp Crq, which is 8.51. 
8.51. plApp, qlp, rip = C8.41 - C8.42 qlp - 8.52 

8.52. Cpp 
Explanation: After carrying out the substitutions indicated at the 
beginning, we obtain the expression: 

CCApppCCpAppCpp 
which is composed of (1) 'C', (2) 'CAppp' which is an expression equi­
form with 8.41, (3) 'C' followed by (4) 'CpApp' which is equiform 
with 8.42 after 'p' is substituted for 'q', and (5) the theorem 'Cpp' which 
is deduced by a double application of the rule of detachment (8.33). 

8.52 X 8.23 qlp = 8.53 
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8.53. ANpp 
8.43 p/Np, q/p = C8.53 - 8.54 

8.54. ApNp 
8.54 p/Np x 8.23 q/NNp = 8.55 

8.55. CpNNp 
8.44 p/Np, q/NNNp, rip = C8.55 pjNp, - C8.54 - 8.56 

8.56. ApNNNp 
8.43 q/NNNp x 8.23 p/NNp, q/p = C8.56 - 8.57 

8.57. CNNpp 
8.44 q/NNp, r/Nq = C8.55 - 8.58 

8.58. CANqpANqNNp 
8.51 p/ANqNNp, q/ANNpNq, r/ANqp = C8.43 pjNq, qjNNp -
C8.58 - 8.59 

8.59. CANqpANNpNq 
8.59 p/q, q/p x 8.23 x 8.23 p/Nq, q/Np = 8.60 

8.60. CCpqCNqNp 
8.41 p/Np x 8.23 q/Np = 8.61 

8.61. CCpNpNp 
8.51 p/Apq, q/Aqp, rip = C8.43 - C8.42 - 8.62 

8.62. CpAqp 
8.62 q/Nq x 8.23 p/q, q/p = 8.63 

8.63. CpCqp 
8.63 q/Np = 8.64 

8.64. CpCNpp 
8.44 p/r, q/Apr, r/q = C8.62 p/r, q/p - 8.65 

8.65. CAqrAqApr 
8.44 p/Aqr, q/AqApr, rip = C8.65 - 8.66 

8.66. CApAqr ApAqApr 
8.51 p/ApAqApr, q/AAqAprp, r/ApAqr = C8.43 q/AqApr - C8.66 
- 8.67 

8.67. CApAqrAAqAprp 
8.51 p/Apr, q/AqApr, rip = C8.62 p/Apr - C8.42 q/r - 8.68 

8.68. CpAqApr 
8.44 q/AqApr, r/AqApr = C8.68 - 8.69 

8.69. CAAqAprpAAqAprAqApr 
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8.70. CAAqAprpAqApr 
8.51 p/AAqAprp, q/AqApr, r/ApAqr = C8.70 - C8.67 - 8.71 

8.71. CApAqrAqApr 
8.44 p/Aqr, q/Arq, rip = C8.43 p/q, q/r = 8.72 

8.72. CApAqrApArq 
8.51 p/ApArq, q/ArApq, r/ApAqr = C8.71 q/r, r/q - C8.72 - 8.73 

8.73. CApAqrArApq 
8.51 p/ArApq, q/AApqr, r/ApAqr = C8.43 p/r, q/Apq - C8.73 -
8.74 

8.74. CApAqrAApqr 
8.51 p/AqApr, q/AqArp, r/ApAqr = C8.72 p/q, q/p - C8.71 - 8.75 

8.75. CApAqrAqArp 
8.51 p/ArApq, q/ArAqp, r/ApAqr = C8.72 p/r, q/p, r/q - C8.73 -
8.76 

8.76. CApAqrArAqp 

HISTORY: The axiomatization of the logic of sentences was undertaken by Frege 
and Peano and completed in PM, which employs five axioms. This number was 
reduced to four by Hilbert, to three by Lukasiewicz, to one by Nicod, and this one 
was notably shortened by Lukasiewicz and Sobocinski. 

LITERATURE: The system expounded in § 8 is that of Hilbert-Ackerman, but the 
method of deduction, which is not very rigorous in these authors, has been replaced 
by that of Lukasiewicz. The definitions are based on a discovery of Sheffer. For the 
systems that have been developed, see the text-books of § O. The use of truly rigorous 
methods is still somewhat rare in the literature of this kind. 
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§ 9. A SYSTEM OF THE RULES OF DEDUCTION 

The theory explained in this chapter shows how it is possible to translate 
logical laws into metalogical rules. In practice, the rules, which show 
how to proceed in deduction, are much more important than the laws, 
which declare not what can be done, but what is. For example, the 
modus ponendo ponens (6.42) declares that if p :) q and p, then q, but it 
does not at all permit one to pass from the assertion of 'p :) q' and of 
'p' to the assertion of 'q'. However, by means of a certain few principles 
each law can be translated into a rule. These principles are given here 
without justification, although that is not hard to give. 

9.1. Definitions 

9.11. 'System 8' for: 'system explained in § 8 and certain theorems given 
in §§ 5 and 6'. 
9.12. 'Expression 8' for: 'Expression of System 8'. 
9.13. 'Law 8' for: 'law of system 8'. 
9.14. 'Rule 9' for: 'rule obtained by the application of the principles of 
§ 9 to laws 8'. 

9.2. Names of the expressions 8: 

9.21. 'Negation of x' or 'not-X' for: 'group composed of 'N' and X'. 
9.22. 'Alternation X - Y' or 'alternation of X and Y' for: 'group composed 
of 'A', X, and Y'. 
9.23. 'Implication X - Y' or 'implication of Y by X' for: 'group composed 
of 'C', X, and Y'. 
9.24. 'Disjunction X - Y' or 'disjunction of X and Y' for: 'group com­
posed of 'D', X and Y'. 
9.25. 'Equivalence X - Y' or 'equivalence of X and Y' for: 'group com­
posed of 'E', X, and Y'. 
9.26. 'Conjunction X - Y' or 'conjunction of X and Y' for: 'group composed 
of 'K', X, and Y'. 
Remark: The letters 'X' and 'Y' are variables for which only the names 
of expressions 8 can be substituted. 

9.3. Rules of Translation 

9.31. If X is a law 8, the expression composed of (1) the name of X 
and (2) of 'can be asserted' is a rule 9. 
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9.32. If the equivalence of X and Y is a law 8, the expression is a rule 9 
which is composed successively of (1) the name of X, (2) of 'can be 
substituted for', (3) of the name of Y, (4) of 'and inversely'. 
9.33. If the implication X - Y is a law 8, the expression is a rule 9 which 
is composed successively of (1) 'if', (2) of the name of X, (3) of 'is asserted, 
then', (4) of the name of Y, (5) of 'can be asserted'. 
9.34. If the implication of the implication Y - Z by Xis a law 8, then the 
expression is a rule 9 which is composed successively of (1) 'if', (2) of 
the name of X, (3) of 'is asserted and', (4) of the name of Y, (5) of 'is 
asserted, then', (6) of the name of Z, (7) of 'can be asserted'. 
9.35. If the implication of Z by the conjunction X - Y is a law 8, then the 
expression is a rule 9 which is composed successively of (1) 'if', (2) of 
the name of X, (3) of 'is asserted and', (4) of the name of Y, (5) of 'is 
asserted then', (6) of the name of Z, (7) of 'can be asserted'. 

9.4. Examples of Rules 9 

9.41. For the negation of the negation of X we may substitute X (5.12). 
9.42. For the alternation X - Y we may substitute Y - X (5.22). 
9.43. For the negation of the alternation X - Y we may substitute the 
conjunction of not-X and not-Yo (5.27). 
9.44. For the implication X - Y we may substitute the implication 
not-Y - not-X. (5.32). 
9.45. For the implication of the implication Y - Zby Xwe may substitute 
the implication of the implication X - Z by Y (5.33). 
9.46. If X is asserted, the alternation X - Y can be asserted (6.26). 
9.47. If the implication X - Y is asserted and X is asserted, Y can be 
asserted (6.42). 
9.48. If the implication X - Yis asserted and the negation of Yis asserted, 
the negation of X can be asserted (6.44). 

9.5. The schematic notation and method of Gentzen 

9.51. The rules 9 can be represented schematically by translating the 
expressions utilized in 9.2. and 9.3 as follows: 
9.511. '-X' for: 'not-X'. 
9.512. 'X + Y' for: 'alternation X - Y'. 
9.513. 'X --+ Y' for: 'implication X - Y'. 
9.514. 'X = Y' for: 'equivalence X - Y'. 
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9.515. 'X I Y' for: 'disjunction X - Y'. 
9.516. 'X X Y' for: 'conjunction X - Y'. 
9.517. 'f- X' for: 'X is asserted'. 
9.5171. 'f- X f- Y'for: 'Xis asserted and Yis asserted'. 
9.518. 'X 00 Y' for: 'for X we may substitute Y'. 
9.519. 'f- X' for: 'if Xis asserted, then Ycan be asserted'. 

f-Y 
Rules 9.42-48 can be written in this notation as follows with corre­
sponding end ciphers 9.52-58: 
9.52. X + y. 00' Y + X. 
9.53. - . X + y. 00 • - X X - Y. 
9.54. X ~ y. 00 • - Y ~ - X. 
9.55. X'~' Y ~Z: 00: y.~. X ~Z. 
9.56. foX 

f-X+ Y 
9.57. f-'X~Yf-X 

f-Y 
9.58. f-. X ~ Y f- - Y 

f--X 
9.59. By establishing a small number of rules of this type (9.4 or 9.5) 
all of system 8 can be constructed without axioms and without recourse 
to the method given in § 3. 

HIS TOR Y: The distinction between laws and rules seems to go back to Husser!. 
The indispensability of 'rules of procedure' for the construction of a calculus was 
especially emphasized by Dingler. It is interesting that Aristotle considered his theorems 
as laws, whereas the Stoics and Scholastics took them as rules. The most notable 
works on rules are those of Gentzen (1934) and Iaskowski (1934). The above elabora­
tion of this idea is based on more recent works of the metalogicians (cf. § 26.3). 

LITERATURE: Gentzen 1; Iaskowski 1; Carnap 3; Feys 6; Popper. 
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III 

THE LOGIC OF PREDICATES AND CLASSES 

A. The Logic of Terms 

§ 10. SYLLOGISTIC 

This chapter considers the highpoint of 'classical' logic, syllogistic, 
which is a simple system, but one that is very important in practice. It is 
a system of what is called the logic of 'terms', i.e. for the variables 
which appear in it we can substitute terms only, and not sentences. It can 
be axiomatized on the basis of the sentential calculus with the help of 
some special axioms and 'syllogistic functors'. 

10.0. Primitive Terms and Rules 

10.001. Primitive terms: (a) all the primitive and defined terms of system 8 
(§ 8.11-12); (b) 'a', 'b', and 'm' - nominal variables, i.e. variables for 
which only names can be substituted; (c) dyadic functors 'A' and '1' -
the syllogistic functors, whose arguments are the letters 'a', 'b', and 'm'. 
Explanation: 'a' will be used for the major term, 'b' for the minor term, 
'm' for the middle term. 'A' and 'I' (as also 'E' and '0', cf. 10.01) are 
similar in meaning to that in classical logic, where they show the quantity 
and quality of a proposition. It should be noted that 'A' and 'E' are here 
nominal functors and hence are totally different from those defined in 
§ 3. To avoid confusion the sentential functors 'A' and 'E' will not be 
used in this chapter. 
10.002. Sentences: (1) All the sentences of system 8. (2) Groups composed 
of 'A', 'E', '/', or '0' and two of the letters 'a', 'b', 'm'. (3) Sentences of 
system 8 in which sentences have been substituted for the variables. 
10.003. Rules: 8.31-32-33. 
10.004. Rule: For a variable 'a', 'b', or 'm' we may substitute 'a', 'b', or'm'. 
This rule enables us to change the letters. 
Explanation: In stating this rule as well as 8.31 it is often specified that 
we must not substitute for the variables the names of empty classes 
(cf. 15.42). With regard to this, however, it should be remarked: (1) that 
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this problem has nothing to do with the structure of system 10 and 
bears exclusively on its interpretation (cf. 7.53); in fact, rules 8.31 and 
10.004 do not allow us to substitute for the variables any other expressions 
than the sentences given in 10.002. (2) This problem, known as the 
'problem of the empty or null class' raises philosophical questions and is 
extremely complicated. Cf. the literature. 

10.1. Definitions and Axioms 

10.01. 'Eba' for: 'NIba' 
10.02. 'Oba' for: 'NAba' 

Axioms assumed from the sentential calculus: 
10.03. Cpp A form of the principle of identity 
10.04. CCpNqCqNp Simple contraposition 1 ° 
10.05. CCpqCNqNp Simple contraposition 2° 
10.06. CCpqCCqrCpr Principle of the (hypothetical) syllogism 
10.07. CNNpp Double Negation 
10.08. CCKpqrCKNrqNp Law for indirect reduction 1 ° 
10.09. CCKpqrCCspCKsqr Law for direct reduction 1 ° 

-10.10. CCKpqrCpCqr Law of exportation 1 ° 
10.11. CCKpqrCqCpr Law of exportation 2° 
10.12. CCKpqrCCsqCKpsr Law for direct reduction 2° 
10.13. CCKpqrCKpNrNq Law for indirect reduction 2° 
10.14. CCKpqrCKqpr Syllogistic commutation 
Remark: All these axioms are theorems demonstrable in the sentential 
calculus. 

Special axioms: 
10.15. Aaa 
10.16. Iaa 
10.17. CKAmaAbmAba 
10.18. CKEmaIbmOba 

('all a's are a's') 
('some a's are a's') 
(Barbara) 
(Ferio) 

10.2. Logical Square and Conversion 

In the following deductions the integral part of the numeral, i.e. the 
'10' in '10.20', will be omitted to simplify the probative verses, and 
also zero when it appears in the decimal part, i.e. '10.0' in '10.03'. 
In the proofs the 'ro' and 'lIO' indicate to which part of the expression 
the definition must be applied. 
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Laws of Contradiction 
3p/Eba X 1 Ire =20 

10.20. CEbaNlba 
3 p/Nlba X 1 n° = 21 

10.21. CNlbaEba 
4 p/Eba, q/lba = C20 - 22 

10.22. ClbaNEba 
5 p/Nlba, q/Eba = C21 - (1) 

(1) CNEbaNNlba 
6 p/NEba, q/NNlba, r/lba = C(1) - C7 p/lba - 23 

10.23. CNEbalba 
3 p/Oba X 2 no = 24 

10.24. CObaNAba 
3 p/Oba X 2 re = 25 

10.25. CNAbaOba 
4 p/Oba, q/Aba = C24 - 26 

10.26. CAbaNOba 
5 p/NAba, q/Oba = C25 - (1) 

(1) CNObaNNAba 
6 p/NOba, q/NNAba, r/Aba = C(1) - C7 p/Aba - 27 

10.27. CNObaAba 

To prove the other laws of the logical square and those of conversion it 
is first necessary to deduce Datisi: 

8 p/Eba, q/lmb, r/Oma = C18 b/m, m/b - (1) 
(1) CKNOmalmbNEba 

9 p/NOma, q/lmb/ r/NEba, slAma = C(1) - C26 b/m - (2) 
(2) CKAmalmbNEba 

6 p/KAmalmb, q/NEba, r/lba = C(2) - C23 - 30 
10.30. CKAmalmblba (Datisi) 

10 p/Abb, q/lba, r/lab = C30 alb, bfa, m/b - C15 alb - 31 
10.31. Clbalab 

11 p/Aba, q/lbb, r/lba = C30 m/b - C16 alb - 32 
10.32. CAbalba 

6 p/Aba, q/lba, r/lab = C32 - C31 - 33 
10.33. CAbalab 

5 p/lab, q/lba X 1 X 1 alb, b/a = C31 alb, b/a - 34 
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10.34. CEbaEab 
5 p/Aba, q/lba x 1 x 2 = C32 - 35 

10.35. CEbaOba 
6 p/Eba, q/Eab, r/Oab = C34 - C35 alb, b/a - 36 

10.36. CEbaOab 
5 p/Aba, q/lba = C32 - 37 

10.37. CNlbaNAba 
5 p/Eba, q/Oba = C35 - 38 

10.38. CNObaNEba 
6 p/Aba, q/NOba, r/NEba = C26 - C38 - 39 

10.39. CAbaNEba 
6 p/Eba, q/Nlba, r/NAba = C20 - C37 - 40 

10.40. CEbaNAba 
6 p/Nlba, q/NAba, r/Oba = C37 - C25 - 41 

10.41. CNlbaOba 
6 p/NOba, q/NEba, r/lba = C38 - C23 - 42 

10.42. CNObalba 
In addition to the laws of conversion (10.31-33-34-36), there are others 
for obversion, contraposition, etc., which are frequently studied. They 
can be deduced in the system by adding two axioms and certain defini­
tions, but since their practical and theoretical importance is slight, they 
have been omitted. 

10.5. The Moods of the Syllogism 

6 p/KAmaAbm, q/Aba, r/lba = C17 - C32 - 50 
10.50. CKAmaAbmlba (Barbari) 

12 p/Ama, q/lmb/ r/lba, s/Ibm = C30 - C31 aim - 51 
10.51. CKAmalbmlba (Darii) 

9 p/Ema, q/lbm, r/Oba, s/Eam = C18 - C34 aim, b/a - 52 
10.52. CKEamlbmOba (Festino) 

13 p/Ema, q/lba, r/Obm X 1 = C52 aim, m/a - (1) 
(1) CKEmaNObmEba 

12 p/Ema, q/NObm, r/Eba, s/Abm = C(1) - C26 aim - 53 
10.53. CKEmaAbmEba (Ce1arent) 

6 p/KEmaAbm, q/Eba, r/Oba = C53 - C35 - 54 
10.54. CKEmaAbmOba (Celaront) 

13 p/Aam, q/Aba, r/Abm X 2 aim X 2 = C17 aim, m/a - 55 
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10.55. CKAamObmOba (Baroco) 
9 plEma, qlAbm, rlEba, slEam = C53 - C34 aim, bla - 56 

10.56. CKEamAbmEba (Cesare) 
6 plKEamAbm, qlEba, rlOba = C56 - C35 - 57 

10.57. CKEamAbmOba (Cesaro) 
14 plEma, qlAbm, rlEba = C53 - (1) 

(1) CKAbmEmaEba 
12plAam, qlEmb, rlEab, slEbm = C(1) alb, bla- C34 aim - (2) 

(2) CKAamEbmEab 
6 plKAamEbm, qlEab, rlEba = C(2) - C34 alb, bla - 58 

10.58. CKAamEbmEba (Camestres) 
6 plKAamEbm, qlEba, rlOba = C58 - C35 - 59 

10.59. CKAamEbmOba (Camestrop) 
8 plAba, qlAmb, rlAma X 2 blm X 2 = C17 blm, mlb - 60 

10.60. CKOmaAmbOba (Bocardo) 
14 plAmb, qllma, rllab = C30 alb, bla - (1) 

(1) CKlmaAmblab 
6 pIKlmaAmb, qllab, rllba = C(l) - C31 alb, bla - 61 

10.61. CKlmaAmblba (Disamis) 
12 plAma, qllmb, rllba, slAmb = C30 - C32 alb, blm - 62 

10.62. CKAmaAmblba (Darapti) 
12 plEma, qllbm, rlOba, sllmb = C18 - C31 alb, blm - 63 

10.63. CKEmalmbOba (Ferison) 
12 plEma, qllbm, rlOba, slAmb = C18 - C33 alb, blm - 64 

10.64. CKEmaAmbOba (Felapton) 
12 plEam, qllbm, rlOba, sllmb = C52 - C31 alb, blm - 65 

10.65. CKEamlmbOba (Fresison) 
12 plEam, qllbm, rlOba, slAmb = C52 - C33 alb, blm - 66 

10.66. CKEamAmbOba (Fesapo) 
9 pllma, qlAmb, rllba, sllam = C61 - C31 aim, bla - 67 

10.67. CKlamAmblba (Dimaris) 
9 pllma, qlAmb, rllba, slAam = C61 - C33 aim, bla - 68 

10.68. CKAamAmblba (Bamalip) 
12 plAam, qlEbm, rlEba, slEmb = C58 - C34 alb, blm - 69 

10.69. CKAamEmbEba (Camenes) 
6 plKAamEmb, qlEba, rlOba = C69 - C35 - 70 

10.70. CKAamEmbOba (Camenop) 
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HISTORY: Syllogistic is a discovery of Aristotle. It was further developed by his 
followers and the Scholastics, to whom we owe the mnemonic verse, 'Barbara, 
Celarent, etc.' A rigorous axiomatization of syllogistic was first undertaken by 
Lukasiewicz in 1929. 

LITERATURE: The best non-mathematical exposition is that of Keynes. History: 
Bochenski 7,8. Axiomatization: Lukasiewicz 3, 7; Bochenski 3,5; Thomas 2,3,4; 
Wedberg; Menne 4. Other methods: Ajdukiewicz 1; Black 2; Curry 3; Peys 5; 
Greenwood; Miller; Moisil2. 
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B. The Logic of Predicates 

§ 11. MONADIC PREDICATES 

Whereas the syllogistic (cf § 10) analyses the sentence into subject 
and predicate and conceives both as arguments of a dyadic functor 
'A', 'J', 'E', or '0', the logic of monadic predicates conceives the predicate 
as a functor and the subject as its argument. The quantity of the expres­
sion is indicated by a special expression, called the 'quantifier'. Onto­
logically speaking, we may say that we are dealing with 'individuals', 
'properties', and the extent to which the 'properties' apply to 'individuals', 
i.e. their 'quantity'. But logically speaking, we consider the predicate 
only as a nominal functor which with a name as argument forms a 
sentence whose quantity is indicated by the 'quantifier'. 

11.1. Definitions 

11.11. 'Individual constant' for: 'letter 'a', 'b', 'c', or'd'.' 
11.12. 'Individual variable' for: 'letter 'x', 'y', 'z', or 't'.' 
11.13. 'Individualfunctor' for: 'letter 'rp', 'Iff', 'X', '0'.' 
11.14. 'Individual sentence' for: 'expression composed of an individual 
functor and individual constants'. 
Explanation: 'rpa' is an individual sentence, which is read as 'rp of a' 
and which signifies that the property rp belongs to the individual a. 
11.15. 'Matrix' for: 'individual functor followed by individual variables'. 
Explanation: 'rpx' is a matrix. It is not a sentence, but it can become one 
if an individual constant is substituted for the variable or if the expression 
is quantified. 

11.2. Quantifiers 

11.21. 'Universal quantifier' for: 'one or more variables, separated by 
commas, between round parentheses, in the Peano-Russell notation, or 
preceeded by 'II' in the Lukasiewicz notation, the whole placed before 
a matrix.' 
Explanation: In '(x)rpx' or'IIxrpx' the '(x)' or 'IIx' is the universal quanti­
fier. The whole is read: 'for all x: rp of x'; for example if 'rp' is 'smokes', 
we have 'for all x: smokes of x', i.e. 'everything smokes'. Note that 
when the matrix is so quantified, it becomes a sentence, since it is true or 
false. 
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11.22. 'Existential quantifier' for: "E' followed by one or more variables 
separated by commas, between round parentheses, in the Peano-Russell 
notation, or proceeded by 'I' in the Lukasiewicz notation, the whole 
placed before a matrix'. 
Explanation: In '(Ex)rpx' or 'Ixrpx' the '(Ex)' or 'Ix' is the existential 
quantifier. The whole is read: 'there is at least one x such that rp of x'; 
for example, if 'rp' is 'smokes', we have 'there is at least one x such that 
smokes of x', i.e. 'there is one being that smokes'. 
N.B. In PM the 'E' of the existential quantifier is reversed, thus '(3)'. 
11.23. 'Quantifier' for: 'universal quantifier or existential quantifier'. 

11.3. Free and Bound Variables 

11.31. 'Free variable' or 'real variable' for: 'variable contained in a 
matrix not preceeded by a quantifier which contains a letter of the 
same shape'. 
Example: the variable 'x' in 'rpx ~ !f/X'. 
11.32. 'Bound variable' or 'apparent variable' for: 'variable contained in 
a matrix which is preceeded by a quantifier containing a letter of the 
same shape as the variable'. 
Example: 'x' is a bound variable in: '(x)rpx ~ !f/X', since the matrix in 
question is preceeded by '(x)'. 
11.33. Rule: Substitution cannot be made for a bound variable. 
11.34. 'X is bound by the quantifier Y' for: 'X is a variable which is 
part of a matrix preceeded by Y, and Y contains a letter of the same 
shape as X'. 
11.35. Rule: No variable can be bound by more than one quantifier. 
11.36. 'Universal closure of x' or 'universalization of x' for: 'expression 
of the same shape as X, preceeded by universal quantifiers binding all 
the variables of X, where X is a matrix'. 
11.37. 'Existential closure of x' or 'particularization of x' for: 'expression 
of the same shape as X, preceeded by existential quantifiers binding all 
the variables of X, where X is a matrix'. 
11.38. 'Closure of x' or 'generalization of x' for: 'universalization or 
particularization of X'. 
Examples: '(x)rpx' is a universal closure or universalization of 'rpx'. 
«Exy) . rpx· !f/y' an existential closure or particularization of rpx . !f/Y. 
Both are generalizations. 

44 



THE LOGIC OF PREDICATES AND CLASSES 

Explanation: A closure is not a matrix, but a sentence; there can be no 
substitution for its variables; it has a value, whereas the matrix does 
not. - The laws of 8 should all be preceeded by quantifiers; if they are 
omitted it is because in the logic of sentences all the quantifiers are 
universal, and there is no risk of equivocation. Nevertheless, it is possible 
even in this domain to construct a theory with existential quantifiers. 
11.39. 'Formal implication' for: 'universal closure of an expression 
composed of a matrix, of ':J', and of another matrix, where the variables 
of the first matrix are of the same shape as those of the second'. 
Example: '(x) • rpx :J IjIX'. 

Explanation: Formal implication (with constant functors) corresponds 
more or less to the universal affirmative sentence of ordinary language: 
'All logicians are pipe-smokers' can be written: '(x) . logician (x) :J pipe­
smoker (x)'. - Thus there are three implications to be distinguished: 
material implication (3.5), formal implication (11.39), and inferential im­
plication (7.48). 

HISTORY: The analysis of a sentence into a predicate functor and its argument as 
well as formal implication is found in Aristotle; by the time of Albert the Great it was 
further developed and used in modal logic. However, the idea of writing the sentence 
as a function with constant use of quantifiers and the invention of a notation for it 
is the work of Frege 1. This was the decisive step towards the formation of formal 
logic in its present state. The theory has recently received considerable development 
in the 'combinatory' logic founded by Schonfinkel and Curry (cf. § 26.2). 

LITERATURE: The classical theory of the predicate calculus and the enumeration 
of its laws is found in all good textbooks, in particular in PM *9 - *10. 
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§ 12. LAWS OF MONADIC PREDICATES 

This chapter contains, without demonstration, the most fundamental 
laws of the logic of monadic predicates. These laws form the basis of 
the logical theories that follow. 
In this and the following chapters we will sometimes use a greater number 
of points than is strictly necessary in order to facilitate understanding. 

12.1. Methodological principle 

All the Jaws of monadic predicates can be deduced from the laws 8 
and the two following definitions: 
12.11. '(x)tpx' for: 'tpa· tpb· tpc· tpd· .. .', 
12.12. '(Ex)tpx' for: 'tpa V tpb V tpc V tpd V ... ', where the number of 
arguments is taken as indefinite. 
Explanation: 12.11 supposes that 'all x's possess the property tp' signifies 
the same thing as 'a possesses the property tp, and b possesses it, and c, 
etc.'. 12.12 says that 'some x possesses the property tp' signifies that 
'a possesses the property tp, or b possesses it, or c, etc.'. These definitions 
run into very serious logical difficulties, since the notion of 'etc' is very 
complicated and cannot be defined without the aid of expressions of the 
type used here. But they are useful in practice. Furthermore, the great 
majority of the laws of predicates can be deduced by still more restricted 
definitions: 

'(x)tpx' for:' tpa . tpb' 
'(Ex)tpx' for: 'tpa V tpb'. 

In fact, all the sentences deduced from these definitions by the use of 
rules 9 are true, as long as individual constants are not introduced. 

12.2. Negation of quantified monadic predicates 

12.21. (x)tpx _ '" (Ex) '" tpx EIlxtpxNIxNtpx 
12.22. '" (x)tpx = (Ex) '" tpx ENIlxtpxIxNtpx 
12.23. (x) '" tpx = '" (Ex)tpx EIlxNtpxNIxtpx 
12.24. '" (x) '" tpx - (Ex)tpx ENIlxNtpxIxtpx 

12.25. Rule: Negating all the quantifiers and matrices and substituting 
existential for universal quantifiers, and inversely, does not change the 
value of the sentence. 
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12.3. Fundamental laws 

12.31. (x)qJx ::) qJY CIlxqJxqJY 
12.32. qJY ::) (Ex)qJx CqJy};xqJx 
12.33. (x)qJx ::) (Ex)qJx CIlxqJx};xqJx 
Explanation: 12.31 signifies: 'if qJ (universally) of all x, then qJ of y', 
this law is deduced from 12.11 by 6.27. 12.32 signifies: 'if qJ of y, then 
there is at least one x such that qJ of x'; it is deduced from 12.12 by 
6.26. 12.33 is the well known law of subalternation, which is obtained 
by the law of the syllogism (6.31 sq.) from 12.31 and 12.32. 
12.34. Laws 12.31-32 added as axioms to system 8, with certain new 
rules and definitions, suffice to establish the axiomatic system of predi­
cates. 

12.4. Rules of deduction 

12.41. The universal quantifier placed at the beginning of an asserted 
sentence can be omitted if it extends to all the expressions which follow 
in the sentence. 
12.411. If the universal closure of the matrix X is asserted, the expression 
formed by substituting constants for the variables of X can be asserted 
(12.31). 
Example: Take as asserted 'all x's are moral', i.e. '(x) mortal x'. Then 
by 12.31 the sentence 'Peter is mortal' can be asserted. 
12.42. If the matrix X is asserted, the existential closure of X can be 
asserted (12.32). 
12.421. If the individual sentence X is asserted, the existential closure of 
the matrix formed by substituting variables for the constants of X can 
be asserted (12.32). 
Example: Take the individual sentence 'Peter smokes', i.e. 'smokes 
(Peter),. Then by 12.32 '(Ex) smokes x', i.e. the sentence 'there is one x 
which smokes' can be asserted. 
12.43. If the universal closure of X is asserted, the existential closure of 
X can be asserted (12.33). 
12.44. If the matrix X is asserted, the universal closure of X can be 
asserted. 
Explanation: 12.44 is not founded on a law, as are 12.41-42-43. But it 
can be justified either by the application of method 12.1 or by the 
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following consideration: 'rpx' asserts that rpx belongs to any x; rp then 
belongs to all x; which is what is expressed by '(x)rpx'. 

12.5. Analogous laws 

12.51. 'X is an expression analogous (12.5) to Y' for: 'X is an expression 
formed from Y by substituting 'rpx' for 'p', 'lfIX' for 'q', 'xx' for or', 
'Ox' for's' and preceeded by '(x)' or by 'IIx". 

12.52. Every expression analogous to a law 8 is a law. 
12.53. (x)· rpx _ rpx IIxErpxrpx 

12.54. (x)· rpx I '" rpx 

12.55. (x): '" . rpx· '" rpx 

12.56. (x)· rpx V '" rpx 

Principle of identity 
for predicates (cf. 5.11) 

IIxDrpxNrpx 

IIxNKrpxNrpx 

Principle of non-contradiction 
for predicates (cf. 6.11-12) 

IIxArpxNrpx 
Principle of excluded middle 
for predicates (cf. 6.13) 

12.57. (x):· rpx :) lfIX: :): lfIX :) Xx· :). rpx :) Xx 

IIxCCrpXlflXCClfIxxxCrpxxx 
(cf. 6.32) 

Principle of syllogism 
for predicates 

12.58. (x): rpx :) lfIX· rpx· :). lfIX IIxCKCrpXlflxrpXlflX 
Modus ponendo ponens 
for predicates (cf. 6.42). 

12.6. Laws for the movement of quantifiers 

12.61. (x)· rpx· lfIX· . (X)rpx . (X)lfIX EIIxKrpxlflxKIIxrpxIIxlflX 

Example: If all men are mammals and bipeds, then all men are mammals 
and all men are bipeds. The inverse is true. 
12.62. (Ex)· rpx· lfIx· :). (Ex)rpx· (Ex)lfIX EExKrpxlflXKExrpxExlflX 

Example: If there is a man who is a logician and a pipe smoker, there 
is a man who is a logician and there is a man who is a pipe-smoker; 
the inverse is not true. 
12.63. (Ex)· rpx V lfIx· _ . (Ex)rpx V (Ex)lfIX EExArpXlflXAExrpxExlflX 

12.64. (x)rpx· V . (X)lfIX: :): (x) . rpx V lfIX CAIIxrpxIIxlflXIIxArpxlflX 
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Example: If all locomotives are large or all locomotives are small, all 
locomotives are large or small. The inverse is not true. 
12.65. (x)· rpx :::> If/x: :::>: (x)rpx' :::>. (x)lf/X CIIxCrpxlf/xCIIxrpxIlxlf/x 
12.66. (x) . rpx = If/x: :::>: (x)rpx . = . (x)lf/x CIIxErpxlf/xEIIxrpxIIxlf/x 
The inverse is not true. 
The following laws, under 12.7, allow for the movement of the quantifier 
when there is a sentence 'p' not containing 'x'. 
12.71. (x)· rpx V p: = : (x)rpx' V' p EIIxArpxpAIIxrpxp 
12.72. (Ex)' rpx V p: =: (Ex)rpx' V' p EExArpxpAExrpxp 
12.73. (x)· p :::> rpx: _ : p' :::>. (x)rpx EIIxCprpxCpIIxrpx 
12.74. (Ex)' p :::> rpx: = : p' :::>. (Ex)rpx EExCprpxCpExrpx 
On the other hand we also have: 
12.75. (x)· rpx :::> p: - : (Ex)rpx' :::>. p EIIxCrpxpCExrpxp 
12.76. (Ex)' rpx :::> p: _ : (x)rpx· :::>. p EExCrpxpCIIxrpxp 
Explanation: The apparent paradox of these last laws, by which we 
have the equivalence of universal and existential sentences, disappears 
upon consideration of 12.21, 12.22, and 5.311. 

12.8. Syllogistic laws 

12.81. (x)· rpx :::> If/x: (x) . Xx :::> rpx: :::>: (x) . Xx :::> If/X 
CKIIxCrpx'f/xIIxCxxrpxIIxCxxlf/x (cf. 10.17) 

12.82. (x)· rpx :::> If/x: (Ex)rpx: :::>: (Ex)lf/x 
CKIIxCrpx'f/xExrpxExlf/x (cf. 10.51) 

12.83. (x) . rpx :::> If/x: (Ex) '" If/x: :::>: (Ex) '" rpx 
CKIIxCrpxlf/xExNlf/xExNrpx (cf. 10.55) 

12.84. (x) . rpx V If/x: (Ex) '" rpx: :::>: (Ex)lf/x 
CKIIxArpxlf/xExNrpxEx'f/x (cf. 6.52) 

12.85. (x) . rpx Ilf/x: (Ex)rpx: :::>. (Ex) '" If/x 
CKIIxDrpxlf/xExrpxExNlf/x (cf.6.54) 

12.86. (x) . rpx = If/X: (Ex)rpx: :::>: (Ex)'f/x 
CKIIxErpxlf/xExrpxEx'f/x 

12.87. (x)· rpx _ '" If/X: (Ex)rpx: :::>: (Ex) '" If/X 
CKIIxErpxNlf/xExrpxExN'f/x 

12.9. Laws with individual constants 

12.91. (x)· rpx :::> If/x: rpa: :::>: If/a CKIIxCrpxlf/xrpalf/a 
Explanation: Both 12.81 and 12.91 were represented in the tradi-
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tionallogic by Barbara (10.17), although there is a considerable difference 
between them. 
12.92. (x)· rpx -:J IfIx: '" lfIa: -:J :'" rpa CKIIxCrpxlf/xNlf/aNrpa 
Explanation: 12.92 is another form of Baraca (10.55); cf. 12.83. 
12.93. (x)· rpx V IfIx: '" rpa: -:J: lfIa CKIIxArpxlflxNrpalf/a (cf.12.84) 
12.94. (x)· rpx IlfIx: rpa: -:J: '" lfIa CKIIxDrpxlflxrpaNlf/a (cf.12.85) 
12.95. (x)· rpx - If/x: rpa: -:J: lfIa CKIIxErpxlf/xrpalf/a (cf. 12.86) 
12.96. (x)· rpx _ '" If/x: rpa: -:J: '" lfIa CKIIxErpxNlflxrpaNlfla (cf.12.87) 
12.97. The theory explained in this chapter is called the 'predicate calculus 
of the first order' or 'lower calculus'. There is also a 'higher calculus' 
which considers the predicates of predicates where the predicates them­
selves are quantified. This calculus, although indispensable for analysis, 
has not yet been developed formally. 

LITERATURE: PM, Scholz 5; Hilbert A, Hilbert B; on 12.97: Hilbert A; Chwistek 3; 
Ackermann 1; Bernays 1; Quine 5. 
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§ 13. DYADIC PREDICATES 

In the sciences as in daily life we often employ dyadic predicates (for 
example, 'Isodore smokes a pipe') and, what is more important, with 
both arguments quantified, as for example in the sentence, 'there are men 
who love all living things'. The theory of these predicates is readily 
obtained from the basis afforded by § 12. 

13.1. Definitions 

13.11. 'rp(x, y)' for: 'rp of x and y'. 
13.12. '(x, y)rpx(x, y)' for: '(x), (y)rp(x, y),. 

'IIxyrpyx' for: 'IIxIIyrpxy'. 
13.13. '(Ex, y)rp(x, y)' for: '(Ex) . (Ey)rp(x, y),. 

'Ixyrpxy' for: 'IxIyrpxy'. 
13.14. '(x)(Ey)rp(x, y)' for: '(x)· (Ey)rp(x, y),. 
13.15. '(Ex)(y)rp(x, y)' for: '(Ex) . (y)rp(x, y),. 

13.2. Laws for the movement of quantifiers 

13.21. (x, y)rp(x, y) . _ . (y, x)rp(x, y) EIIxyrpxyIIyxrpxy 
13.22. (Ex, y)rp(x, y) . - . (Ey, x)rp(x, y) EIxyrpxyIyxrpxy 
13.23. Rule: If the quantifiers of a sentence binding the arguments of 
the same individual functor are all universal or all existential, their 
order can be changed without changing the value of the sentence. 
13.24. (Ex)(y)rp(x, y). :). (y)(Ex)rp(x, y) CIxIIyrpxyIIyIxrpxy 
Explanation: This law is only an implication, and not an equivalence, 
since its inverse: 

(x)(Ey)rp(x, y). :). (Ey)(x)rp(x, y) 
is false, as can be seen from the following example. Let 'rp(x, y)' be 
an abbreviation for 'x resembles y'. Then '(x)(Ey)rp(x, y)' reads: 'for all 
x there is at least one y such that x resembles y', i.e. 'each thing has 
something which resembles it'. But '(Ey)(x)rp(x, y)' reads: 'there exists 
at least one y such that, for all x, x resembles y', i.e. 'there is at least one 
thing which resembles everything'. The first sentence seems to be true, 
while the second is manifestly false. 

13.3. Analogous laws 

13.31. 'X is an expression analogous (13.3) to Y' for: 'X is an expression 
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formed by substituting for all 'x' in Y '(x, y)' in the arguments and 
'x, y' in the quantifiers'. 
13.32. Every expression analogous (13.3) to a law of § 12 is a law. 
13.33. Rule: By constructing a definition like 13.31 for triadic and 
higher functors, a rule of the same kind can be formed for the establishing 
analogous laws for these predicates. 

HISTORY: The first appearance of the logic of dyadic predicates seems to be in the 
work of Frege and Peano. It is one of the most important acquisitions of mathematical 
logic. 

LITERATURE: Hilbert A; PM *11; and the other textbooks. 
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§ 14. IDENTITY AND DESCRIPTION 

Two rather different theories are brought together in this chapter. That 
of identity serves as a preamble to the logic of classes and plays a consid­
erable role in the further developments of logic; it considers the notion 
'x is the same as y'. - The theory of description is a kind of logical 
grammar of the definite article, 'the'. It enables us to formulate and 
axiomatize such expressions as 'the x such that. .. '. It is of great impor­
tance in the application of logic. 

14.1. Identity 

14.11. 'x = y' for: 'x is identical with y'. 
Explanation: Identity can be defined as follows: 

'x = y' for: '(qJ) . qJX ::::> qJy 
But this definition, based on the principle of indiscernibles of Leibniz 
and called the 'thesis of extensionality', involves serious difficulties in 
applying logic to other domains. For this reason it is better to introduce 
identity as a primitive or undefined term. 
14.12. 'x :f. y' for: '", . x = y'. 
Explanation: 14.12. defines diversity. 
14.13. (x)· x = x. 
Explanation: 14.13 is another form of the principle of identity (cf. 5.11 
and 12.53). 
14.14. (x, y): x = y' - . y = x. 
14.15. (x, y, z): x = y . y = z· ::::>. x = z. 
Explanation: These three laws formulate the principal characteristics 
of identity: it is reflexive (14.13), symmetrical (14.14) and transitive (14.15) 
Cf. § 22. 
14.16. 'xIy' for: 'x = y'. 
14.17. 'xly' for: 'x :f. y'. 
14.18. (x, y): x = y' ::::>. (qJ) . qJx ::::> qJy. 
Explanation: If x and yare identical, y possesses all the predicates that 
x does. 

14.2. Descriptions 

14.21. 'Description' for: 'a monadic matrix, preceeded by '1' (inverted 
iota) and a variable of the same shape as that in the matrix between 
parentheses'. . 
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14.22. '(1X)(o/X)' for: 'the x such that o/x'. Description. 
Explanation: The description functor '(1X)' is like the quantifier in taking 
only a matrix for argument. With it an individual name is formed. 
Examples: if '0/' is 'author of Quo Vadis', then '(1X)(qJX)' is 'the author 
of Quo Vadis'. In the same way we could have 'the square of 9', 'the 
first king of Hungary', 'John's automobile'. 
14.23. 'E!{1x)(qJx)' for: '(Eb)(x): o/X' = . x = b: qJb'. 
Explanation: According to this definition, 'E!(1X)(qJX)' signifies that the 
thing described by '(1x)( qJx)' exists and is unique; it exists, as is shown 
by '(Eb)'; it is unique, since according to the definition every x which 
possesses the property 0/ is identical with this b. To describe by 'the' a 
class which has more than one element is without meaning; for example, 
the expression 'the English general' without further qualification is 
without meaning since there is more than one English general. 
14.24. \1/[( 1X)( o/x)]' ::). E!( 1X)( o/x). 
Explanation: the assertion that the thing described possesses a property 
implies its existence. Example: 'the author of the Divine Comedy was 
Italian' implies that its author existed; 'John's automobile is a Vauxhall' 
implies that there is an automobile which John has. 

HISTORY: The theory of identity was investigated by Leibniz and developed by 
Peano. The theory of description, known to Frege and Peano, was elaborated most 
by Russell. It involves difficult philosophical problems which have not yet been 
completely cleared up. 

LITERATURE: § 14.1: PM *13; Scholz 5,3; on the difficulties of Leibniz's definition 
PM I, p. 659 sq.; Ajdukiewicz 3 § 14.2: PM *14; Russell 2; Moore; a different 
point of view in Hilbert B; Quine 3. 
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C. The Logic of Classes 

§ 15. CLASSES 

Whereas the calculus of predicates considers the comprehension of 
terms (functors), the calculus of classes examines their extension. The 
two are perfectly analogous. The Peano-Russell system will be followed 
here. However, it should be noted that there is a newer theory elaborated 
by Lesniewski (which he calls 'ontology') which does not admit the 
null class and which bases itself on only one primitive term, 'is'. 

15.1. Fundamental definitions 

15.11. 'x(tpx), for 'the x's such that: tpx'. 
Examples: 'The x's such that: x smokes a pipe', i.e. 'pipesmokers'; 
'the x's such that: x lives in London', i.e. 'the inhabitants of London'. 
Explanation: 15.11 defines a class by a sentential function; The functor 
, A ',called 'Abstractor' or 'Comprehensor', has as argument a sentence, 
from which it forms a class. This operation is called 'abstraction': the 
class of pipe-smokers is an abstraction from the function 'x smokes a 
pipe'. 
15.111. 'Axtpx' for: 'x(tpx)'. 
Explanation: 'The expression 'Ax', which is called the 'lambda operator' 
is often substituted, especially in recent times', for the x with circumflex 
used in PM. 
15.12. 'CIs' for: 'a{(Etp) . a = x(tpx),. 
Explanation: This is the definition of the class of classes: it is composed 
of all the a such that a = x(tpx) for any tp, i.e. according to 15.11 
for all classes. 
15.13. 'yex(tpx)' for: 'tpy'. 
Explanation: To say: 'y is an element of the class of those x's for which 
tpx holds' amounts to saying 'tpy'. The 'e' here is a dyadic functor which, 
in the Peano-Russell notation, is written between the arguments, and 
which forms a sentence. The first argument must be the name of an 
individual (constant or variable) and the second a class. 
Example: If 'y is an element of the class of those x's for which being-a­
Swiss holds for x', then we can say 'y is a Swiss'. Thus each man who 
smok es a pipe is an element of the class of smokers and each mountain 
of the Alps is an element of the class called 'Alps', etc. 
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15.14. 'x'" ea' for: '", . xea'. 
15.15. 'x, yea' for: 'xea· yea'. 

15.2. Relations between classes 

15.21. '-a' for: 'i(x'" ea)'. The complementary class of a. 
Explanation: The complementary class of a includes as elements all 
things that are not elements of u. Example: The complementary 
class of the class of elephants is the class of non-elephants. It is 
evident that the world is full of non-elephants. 
15.22. 'a U fJ' for: 'i(xea· V· xefJ)'. The logical sum of classes. 
15.23. 'a n fJ' for: 'i(xea· xefJ)'. The product of classes. 
15.24. 'a II fJ' for: 'i(xea· I . xefJ)'. The disjunction of classes. 
Explanation: Let a be the class of pipe-smokers and fJ that of logicians. 
In this case a U fJ is the class of all those who are either pipe-smokers 
or logicians. a n fJ is the class of logicians who are pipe-smokers. 
a II fJ is the class of those who are not both logicians and pipe-smokers. 
15.25. 'a C fJ' for: '(x): xea· ::). xefJ'. Inclusion of classes. 
15.26. 'a = fJ' for: '(x) : xea· . xefJ'. Equality of classes. 
Examples: The class of pipe-smokers is included in the class of smokers; 
that of French citizens who are 21 or older is equal to the class of men 
who have the right to vote in France. Note that 'a C fJ' and 'a = fJ' 
are sentences whereas 'a U fJ' and 'a n fJ' are names of classes. 
15.27. Rule of points: A group of points placed next to a truth functor 
has a higher rank than a group of points placed next to one of the 
functors defined in 15.21-26. 

15.3. Graphical representation 

-a aU~ 
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aC~ 

15.4. Existence 

15.41. 'V' for: 'x(x = x)'. Universal class. 
15.42. '/\' for: 'x(x =I- x)'. Null Class. 
Explanation: The universal class is the class of all x's that are identical 
with themselves, i.e. of all x in general, since everything is identical with 
itself. The null class is the class of all x's which are not identical with 
themselves, i.e. of objects which do not exist. Examples: the class of 
Swiss kings, of wives of Copernicus, of fathers of Adam, of the auto­
mobiles of a man who has none, all belong to the null class. 
15.43. '3!a' for: '(Ex) . xea'. 
Explanation: '3 la' signifies that the class a is not a null class, i.e. that 
there is at least one element in a. The existence of the class itself must 
be distinguished from the existence of elements of the class, even in the 
case where ,.., 3 la, i.e. where a = 1\, the class a exists even though it is 
empty. 

15.5. The meaning of the word 'is' 

15.51. The English word 'is' (and the corresponding words in other 
European languages) has two groups of very different meanings: 
existential and copulative. 
15.52. There are, among others, two existential meanings of the word 
'is' (both of which are defined by means of the existential quantifier, 
'(Ex)', 11.22): 
15.521. The existence of a described object ('E!', 14.23). 
15.522. The non-emptiness of a class ('3 !', 15.43). 
15.53. There are, among others, four copulative meanings of the word 
'is' : 
15.531. The associating of a predicate with an individual ('rpa', 11.14). 

15.532. An element's belonging to a class ('e', 15.13), which is defined 
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by means of a matrix ('([lX', 11.15 sq.). 
15.533. The inclusion of one class in another ('C', 15.25). 
15.534. Identity ('=', 14.11). 

15.6. The unit and dual classes 

15.61. '[x]' for: '.Y(y = x)' Unit class. 
Explanation: The class [x] is the class which has only one x for element; 
e.g. the unit class of terrestrial moons. In spite of this, the class must be 
distinguished from its element, since it possesses properties which the 
element does not, such as that of containing an element. 
15.62. '[x, y]' for: '[x] U [y]', Dual class. 
15.63. '1' for: a{(Ex)· a = [xl} Cardinal number 1. 
Explanation: The cardinal number one is the class of all unit classes. 
When I say that I have one pencil, I qualify, not the pencil, but the 
class of my pencils; this is particularly clear when one goes on to higher 
numbers: a number is attributed only to a class (Frege). 
15.64. '2' for: 'a{(Ex, y): a = [x, y] . x of. y},. 
Explanation: 2 is the class of all dual classes whose elements are not 
identical with each other. 

HIS TOR Y: The Syllogistic of Aristotle can be interpreted as a logic of classes, although 
it seems to be largely arbitrary whether a distinction between classes and predicates 
can be attributed to him. The same holds for the Scholastics. The real creator of the 
logic of classes was Boole. His 'algebra of logic' was the first part of mathematical 
logic to be fully elaborated. He used the signs (' x', '+', etc.) and operations similar 
to those of mathematics. Frege, and after him Peano, defined the class on the basis 
of the sentential and predicate calculus. 

LITERATURE: PM *20, *22, *24; for the algebra of logic, Lewis 1; Schroder; 
modern elaborations: Moisil 1; another system: Lesniewski 1. 
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§ 16. THE CALCULUS OF CLASSES 

16.1. Analogous laws 

16.11. 'X is an analogous expression (16.1) of Y' for: 'X is an expression 
formed by substituting 'xea' for 'rpx', 'xefJ' for 'lfIX', 'xey' for 'xx' in Y, 
in which a point is added to each group of points'. 
Example: '(x): xea' . Xea' is an analogous expression (16.1) for 
'(x) . rpx _ rpx' (12.53),. 
16.12. Every analogous expression (16.1) of a law in § 12 or obtained 
by virtue of the rules of § 12.5 is itself a law. 

16.2. Principal laws 

16.211. a U fJ· = . fJ U a (5.22) 
16.212. a n fJ· = . fJ n a (5.52) 
16.221. a' U . fJ U y: =: a U fJ· U Y (5.23) 
16.222. a' n . fJ n y: = :a n fJ· n y (5.53) 
16.231. a U a' = a (5.15) 
16.232. a n a' = a (5.16) 
16.241. a = a (5.11) 
16.242. a C a (5.11) 
16.243. - - a = a (5.12) 
16.25. a C fJ _ - fJ C - a (5.32) 
16.26. a C fJ: -:J: fJ C y' -:J. a C y (6.32) 
16.27. a C fJ· . a n fJ = . a (5.314) 
16.28. a C fJ . _ • a U fJ = . fJ (5.315) 

16.29. a C fJ· xea' -:J xefJ (12.91) 

16.3. Laws of the universal and the null class 

16.311. A = - V 
16.312. A of. V 
16.313. V = - A 
16.321. (x) . Xe V 
16.322. (x)· x '" e A 
16.323. (a)' a C V 
16.324. (a) . A C a 
16.331. (x) . Xea • _ . a = V 
16.332. (x)· x '" ea' . a = A 
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16.341. a = V . = . - a = /\ 
16.342. aU - a = V 
16.343. a n - a = /\ 

16.344. a U /\ = a 
16.345. a n /\ = /\ 
16.346. a U V = V 
16.347. a n V = a 
16.351. a C p. - . - aU p = V 
16.352. a C p . . a n - P = /\ 
16.353. - a C p. a up· = . V 
16.354. a C - P . = . a n p. = . /\ 
16.361. a Up· = . /\ : = : a = /\ . P = /\ 
16.362. a n p. = . /\ : _ : a' = . a n - P 
16.363. an p. = . /\ : = : (x, y): xea . yeP' :). x # Y 
16.371. a: =: a n p. U . a n - P 
16.372. pCa'::):'a: =:p. u·an-P 

16.4. Laws of existence 

16.411. '" 3!a'='a'=/\ 
16.412. 3!a' . a # /\ 
16.421. 3! V 
16.422. '" 3! /\ 
16.431. 3!(a uP): =: 3!a' V' 3!P 
16.432. 3 !(a n P): :): 3 !a . 3!P 
16.433. aCp: :):3!a' :)·3!P 

The inverse of the two above is not true 
16.44. ",' a C p: - : 3 !(a n - p) 
16.451. an p. = . /\ : :): 3!a' :). a # p 
16.452. 3!a' a = p. :). 3 !(a n P) 
16.453. a C p. a # p. _ . 3 !( - a n P) 
16.461. '" 3!P' :). a up· = . a 
16.462. '" 3!P' :). a n p. = . /\ 

HISTORY and LITERATURE: See § 15. 
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§ 17. ANTINOMIES AND THE THEORY OF TYPES 

This chapter presents a short, elementary, and non-formalized exposition 
of the antinomies (also called 'paradoxes') which arise in logical systems 
and of the rules for avoiding them. One group of these rules is known 
as the 'theory of types'. 

17.1. Antinomies 

17.11. 'Antinomy' for: 'the logical product of a sentence and the negation 
of its equiform or an equivalent expression'. 
Examples: 'p' '" p', '(x)qJx' (Ex) '" qJx' are antinomies. 
17.12. In any sufficiently formalized logical system an indefinite number 
of antinomies can be deduced, if special precautions are not observed. 
17.13. The antinomies can be divided into logical and metalogical or 
semantic antinomies. 
17.14. 'Logical antinomy' for: 'antinomy which arises within the logical 
system itself without any use of metalogical expressions'. 
17.15. 'Metalogical' or 'Semantic antinomy' for: 'antinomy which arises 
from the use of metalogical expressions'. 
Examples: 17.14: antinomy of the class of classes (cf.17.2); 17.15: 
antinomy of the liar (cf. 17.7). 

17.2. The antinomy of the class of classes 

17.21. We form the class of all classes which do not contain themselves 
and then pose the question, whether this class contains itself. From 
the affirmative answer we can deduce that it does not contain itself and 
from the negative answer that it does contain itself. This antinomy is 
called after its discoverer, Russell's Paradox. 
Justification: If 'a e a' is an expression, we can define (15.11) a class p 
such that, for all a 

(1) a e p. = . '" . a e a 
Substituting 'p' for 'a', we obtain 

(2) pep' = . '" . pep 
and from this we get 

(3) pep' '" . pep 
which is an antinomy (17.11). 

Example: A library catalogue provides a record of the books in the 
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library. The catalogue itself can be considered a book and catalogued 
accordingly. If now we were to draw up a complete catalogue of all the 
catalogues which do not include themselves, the question would arise 
whether we should include the catalogue we were making. If we do, 
then we no longer have a catalogue which does not include itself, and 
it must be excluded. But if we exclude it, then we have a catalogue which 
does not contain itself, and it qualifies for inclusion In either case we 
derive the opposite of our assumed condition. 
17.22. The expression 'a 8 a' is meaningless. 
Proof: If it were meaningful, (1) would be true or not true; it could not 
be both. It appears to be a sentence, but is not. It is a group of signs 
signifying nothing. 

17.3. The Theory of Types 

17.31. 'Theory of Types' for: 'the set of rules which, by dividing objects 
or logical expressions into numbered classes (types), makes it possible 
to avoid the logical antinomies'. 
17.32. 'Theory of ontological types' for: 'the theory of types which 
divides objects into types'. 
Explanation: A theory of ontological types has as 1st type the set of 
individuals, as 2nd that of classes of individuals, as 3rd that of classes 
of classes of individuals, etc. 
17.33. 'Theory of syntactical types' for: 'the theory of types which divides 
expressions into types'. 
Example: 17.4. 

17.4. Rules of syntactical types 

17.41. Rule: All expressions are divided into numbered classes which 
are mutually exclusive, called 'Type 1', 'Type 2', ... , 'Type n'. These 
'Types' are another way of dividing the syntactical categories (1.22). 
17.42. Rule: All equiform expressions of the same system belong to 
the same type. 
17.43. Rule: If F is a functor of X and X belongs to type n, F belongs to. 
type n + 1. 
17.44. Rule: If X is followed by '8' followed by Y, and X belongs to 
type n, then Y belongs to type n + 1. 

17.5. Quine's Method of Verification 
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17.51. To verify whether rule 17.44 has been followed, one may proceed 
as follows: 
(a) for all equiform variables arbitrarily chosen substitute '0'; (b) if 
a variable is immediately followed by 'e' followed immediately by a 
numeral, substitute for this variable a numeral smaller by one (positive, 
'0', negative); (c) repeat this operation until all the variables are replaced 
by numerals; if necessary, start over with a new variable ; (d) if then the 
numeral which immediately follows each 'e' is always larger by one than 
that which preceeds it, the expression conforms to the rule of types; 
if not, it does not. 
17.52. To verify whether rule 17.43 has been followed, first substitute 
for the expressions 'rpx', '/fiX', 'xx' respectively 'xea' 'xep', 'xey', and 
then apply 17.51. 

17.6. The Principle of Analogy 

17.61. The application of the rule of types makes it necessary to distin­
guish as different types of constant functors 'e', '=', '¥', etc. and the 
expressions 'V', '/\'. 
Explanation: The rule of types applies also to dyadic functors such as 
'='. Consequently, if '=' in 'x = x' belongs to type n, and if we also 
have 'xea', we cannot according to the rule of types write 'a = a' since 
'a' being of a higher type than x, the '=' which unites the two 'a' must 
also be of a higher type than the first '=', which is opposed to rule 17.42. 
17.62. To avoid the multiplication of expressions and laws for each 
type rule 17.42 is not applied to the functors enumerated in 17.61. 
17.63. Principle of analogy or systematic ambiguity: The functors 'e', 
'=', '¥', etc. and the expressions' V ' and' /\ ' are systematically ambig­
uous with respect to type. 
Explanation: Expressions of this form have a different meaning according 
to their type, but their formal properties remain the same; e.g. laws 
14.13-15 remain valid when the individual names (variables) that they 
contain are replaced by class names. 

17.7. The Antinomy of the Liar 

17.71. 'Antinomy of the liar' for: 'the antinomy which results from 
introducing into the system expressions of the type 'X is false". 
17.72. In any system of formalized logic which contains the laws and rules 
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given in the preceeding chapters it is possible to deduce the antinomy ofthe 
liar by introducing 'X is false', unless special precautions are observed. 
Justification: Form the sentence 'c is false' and take 'c' as the typo­
graphical abbreviation of this sentence. We then have 

(1) c is false = c 
However, according to the current definition of the truth of a sentence, 
we have 

(2) X is true' = . X 
Substituting 'c is false' for 'X'in (2), we obtain 

(3) c is false is true . = . c is false 
Substituting, from the identity (1), 'c' for 'c is false', we obtain from (3) 

(4) c is true' = . c is false 
Using the definition of falsity 

(5) c is false' = . ,.., . c is true 
we obtain from (4) the antinomy 

(6) c is true: = : ,.., . c is true 

17.8. Solution of the metalogical antinomies 

17.81. Rule: To avoid the metalogical antinomies it is necessary to 
observe strictly the rules of supposition (2.13 or 2.14). 
17.82. If rule 2.13 is followed, the antinomy of the liar does not appear. J us­
tification: In this case instead of (1) and (2) in 17.72 we obtain respectively 

(1') c is false = c 
(2') 'X'is true' = . X. 

But we can proceed no further, since the 'X' at the beginning of (2') is 
the name of the latter and nothing can be substituted for it. 
A fully satisfactory solution of the antinomy of the liar demands an 
elaboration of the definition of truth. 

HISTORY: The antinomies were known in antiquity; and were rediscovered and 
thoroughly studied by the Scholastics. Around 1900 the paradoxes of set theory 
shook the foundations of mathematics. In 1908 Russell and Zermelo both offered 
different solutions of the problem. The 'simple theory of types' of Russell, taken 
up in PM, was developed into a 'ramified theory' (PM 1st edit.). Later (PM 2nd 
edit.) a tendency towards simplification appears and a laying aside of the restrictions 
imposed by the theory of types. Some, like Ushenko, think that it is possible to do 
without a general theory of types. Type-free systems of logic have been developed 
by Bemays and Ackermann. 
- The distinction between the logical and semantic paradoxes comes from Ramsey. 
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LITERA TURE: Russell 3, Russell 4, PM (lntrod. 2nd edit.); Zermelo; Chwistek 1; 
Ramsey; Tarski 2; Quine 2, Quine 3; Church 2; Fraenkel B; Fitch 1; Ackermann 1 ; 
Bemays 1; Behmann 1; Ushenko 1. 
- History: Riistow; Salamucha. 
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IV 

THE LOGIC OF RELATIONS 

§ 18. RELATIONS 

The calculus of relations bears the same relation to the theory of dyadic 
predicates (§ 13) that the calculus of classes (§ 15) does to the theory of 
monadic predicates (§ 12). It is the newest and also the most important 
part of modern logic. Developed originally for the' foundations of 
mathematics, it has gone beyond this science to embrace the whole of 
knowledge. Despite the fact that it occupies a major place in the treatises 
of logic, it is still relatively little developed. 

18.1. Definitions 

18.11. 'xY{IPX, y)}' for: 'the x's and y's such that lP(x, y)'. 
Explanation: Cf. 15.11; the couples so defined are called 'relations'. Thus 
'relation' is here taken in extension. 
18.12. 'ReI' for: 'R{(EIP) . R = xY[lP(xy)]}'. 
Explanation: Cf. 15.12. Rel is the class of relations, i.e. of the couples 
defined in 18.11. 
18.13. 'u{xY[lP(xy)]}v' for: 'lP(u, v)'. 
18.14. 'uRv' for: 'u{xy[qy(x, y)]}v'. 
Explanation: 18.13-14 serve to introduce the new notation 'xRy'. 
18.15. 'Antecedent of R' for: 'The object which has the relation R to 
something' . 
18.16. 'Consequent of R' for: 'the object to which something has the 
relation R'. 
18.17. 'Term of R' for: 'antecedent or consequent of R'. 

18.2. Relations between relations 

18.21. '-'-R' for: 'xY('" xRy)'. 
Explanation: -'- R is the complementary relation of R (cf. 15.21), i.e. 
the class of all couples not joined by the relation R. Example: the 
complementary relation of 'brother' is the set of couples who are friends, 
neighbors, larger than, superior to, similar to, etc., but are not brothers. 
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18.22. 'R U S' for: 'xy(xRy V xSy)' 
18.23. 'R n S' for: 'xY(xRy· xSy)' 
18.24. 'R il S' for: 'xy(xRy I xSy)' 
18.25. 'R C S' for: '(x, y) . xRy :J xSy' 
18.26. 'R ~ S' for: '(x, y) . xRy = xSy' 

18.27. 'V' for: 'xy(x = x' y = y)' 

18.28. 'f\' for: 'xy(x i= x . y i= y)' 

18.29. '3!R' for: '(Exy)xRy' 

(15.22) 
(15.23) 
(15.24) 
(15.25) 
(15.26) 

(15.41) 

(15.42) 

(15.43) 
The names of these functors are the same as for classes: 'sum of relations', 
'null relation', etc. 

18.3. Analogous Laws 

18.31. 'X is an analogous expression (18.3) of Y' for: 'X is an expression 
formed by substituting for 
'a' 'P' 'y' '(5' '-' 'r.' 'u' 'II' ':J' '=' 'V' '/\' , , , , ,II, , , , , , , 

respectively 

'P' 'Q' 'R' 's' '-'-.' 'n·' ',.,' '1'1' 'C' '==' 'V: '/\" in Y' , , , , , ,\....I, , , , , , . 
18.32. Every analogous expression (18.3) of a law in the class calculus 
(§ 16, including the laws formed by 16.11) is itself a law. 

HISTORY: The elements of a theory of relations are found first in the Topics of 
Aristotle, but its full development does not come until the 19th century. The idea of 
defining relation as a class of couples comes from Peirce; it was further developed 
by Frege and Peano. Its present form is due to PM. Wiener and Kuratowski have 
provided a new basis for the theory. 

LITERATURE: PM *21, *23, *25, and other textbooks. For new developments: 
Wiener; Kuratowski; Tarski 5; Quine 3, § 36. An exceptionally clear elementary 
exposition is in Carnap 1, 8. 
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§ 19. RELATIVE DESCRIPTIONS; CONVERSE 

Descriptions are of particular importance when they concern dyadic 
predicates (relations). Most current expressions, for example in theology, 
law, and mathematics, are, in fact, relative descriptions. Several different 
kinds of these descriptions are known. - At the end of the section 
another important theory is given, that of the converse of a relation. 

19.1. Individual and Plural Descriptions 

19.11. 'R)y' for: '(1x)(xRy)'. 

Explanation: Read 'R of y'. This expression is called the 'individual 
relative description', since it describes only one individual which has a 
given relation to one other object (cf. 14.22). Example: if 'R' signifies 
'author of' and 'a' the 'Iliad', 'R>a' signifies: 'the author of the Iliad'. 
This expression will be meaningless on the theory of Wolff that the Iliad 
had several authors. 

19.12. 'R.>y' for: 'i(xRy)'. 

19.13. 'R>x' for: 'Y(xRy)'. 
Explanation: These two expressions are called 'plural relative descrip­
tions', since they signify the class of objects which have the relation R 

to a given individual ('lh') or to which a given individual has the 

relation R ('R>x'). Example: If'R' signifies 'author of' and 'a' the 'Bible', 

'R>a' is 'the class of authors of the Bible'. If 'a' signifies 'Homer', 'R>a' 
signifies 'the works (the class of works') of Homer'. 

Graphical representation 

x = R>y y 

-----7-. 

R 

19.14. 'sg>R' for: 'R'. 
19.15. 'gs>R' for: 'R'. 
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Explanation: 'sgIR' (from sagitta) and 'gsIR' (sagitta backwards) 

serve to replace 'R' and 'R' in longer formulas, e.g. sums, products, of 
relations, etc. 

19.2. Bi-plural Descriptions 

19.21. 'R»{J' for: 'x{(Ey)· ye{J· xRy}'. 
Explanation: R»{J is the class of individuals which have the relation R 
to any element of the class {J. Example: If 'R' is 'author of' and fJ is the 
class of writings in verse, R»{J is the class of authors of writings in verse, 
or as some think wrongly, of poets. 
Graphical representation: 

R 
R 

R 

19.22. (a, (J, R): a C (J. :). R»a C R»{J. 
Examples: If horses are animals, the heads of horses are heads of animals. 

19.3. Converse 

19.31. 'xRy' for: 'yRx'. 
Example: If'R' is 'author of', 'R' is 'the work of'. If 'R' is 'to the right 
of', 'R' is 'to the left of'. 
19.32. 'CnvIR' for: 'R'. 
Explanation: Cnv is a relation which holds between Rand R. The 
description 'Cnv'R' serves to replace 'R' when a longer expression is 
substituted for 'R'. 
Graphical representation: 

19.4. Laws of the Converse 

19.41. R == S· = . R ....:... S 

x y 

Cnv I 
R---~IR 

t t 
y x 
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19.42. Cn)vCnv)R -=- R 
19.43. 3!Cnv)R 
19.44. Cnv)(R L:J S)' ='= • Cnv)R L:J Cnv)S 
19.45. Cnv)(R n S)' ='= • Cnv)R n Cnv)S 
19.46. Cnv) ...!... R ='= --'- Cnv)R 

19.47. R ='= S· _ . S -=- R 
19.48. R C· S· = . S C· R 

HISTORY: The theory of relative descriptions was considered as early as the time of 
De Morgan, who gave 19.22. The theory of the converse was elaborated by mathe­
maticians in connection with the theory of sets. It was examined by Cayley in 1854. 
Frege and Peano, the founders of contemporary logic, and the authors of PM provided 
its present form. 

LITERATURE: PM *30 - *32 and all the textbooks. 
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§ 20. DOMAINS AND FIELDS 

Besides the expressions given in § 19, there are also similar but more 
general notions; we not only use expressions such as 'the mother of', 
'the neighbor of', but also the more general expressions, 'the mothers', 
'the neighbors'. The theory of such expressions is given in this chapter, 
followed by certain information regarding relations that are limited 
from one or two sides to a unit class. 

20.1. Domains and Fields 

20.11. 'D)R' for: 'x{(Ey)xRy},. 
Explanation: D) R is the domain of R, i.e. the set of objects which stand 
in the relation R to any object. Example: If 'R' signifies 'father of', 
'D) R' is the class of all fathers. 
20.12. 'a)R' for: 'Y{(Ex)xRy}'. 
Explanation: a)R is the converse domain of R, i.e. the set of objects to 
which any other objects stand in the relation R. 
Example: If'R' is 'husband of', 'a)R' is the class of all wives. 
20.13. oCR' for: 'D)R u a)R'. 

Explanation: CR is the field (from campus) of R, i.e. the logical sum 
of the domain and the converse-domain of R. Examples: If 'R' is 
'military superior of', 'D)R' is the class of all those who are military 
superiors, i.e. all the officers of all armies; 'a) R' is the class of all those 
who have military superiors, i.e. of all soldiers save the commanders-in­
chief; finally oCR' is the class consisting of both. If'R' is 'parent of', 
'D)R' is the class of all men and women who have children; 'a)R' is the 
class of all those who have parents, i.e. of all human beings except 
Adam and Eve. 

The difference between D) Rand R)y and R»a consists in this that R)y 
is the class of objects which have the relation R to a definite individual y, 
and R»a that of objects which have this relation to the elements of a 
definite class a, whereas D)R is the class of all objects having the relation 
R to any object. 

20.2. Laws of Domains and Fields 

20.21. (x, y): xRy' :::). xeD)R' yea)R 

20.22. (y) . R)y C D)R 
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20.23. (x)· R)x C a)R 
20.24. D) R = a) R 
20.25. OR = OR 
20.26. OR = O(R l:J R) 
20.27. D)R C a)R' = . rr)R = OR 
Explanation: If the domain of R is included in the converse domain of R, 
the latter is equal to the field of R. In this case the series formed by R has 
no beginning, since for any term of R there is always an element of 
a) R, i.e. there is an antecedent. 
20.28. rr)R C D)R' =. D)R = OR 
Explanation: In this case the series has no end, since for any term of R 
there is always an element of D) R, i.e. there is a consequent. 

20.3. Relations with Limited Domains 

20.31. 'a 1 R' for: 'xy(xea' xRy)' 
20.32. 'R r P' for: 'xy(yep, xRy)' 
20.33. 'a 1 R r P' for: 'xy(xea . yeP' xRy)' 
20.34. 'R ~ a' for: 'a 1 R r a' 
Explanation: 20.31-34 introduce the notion of a relation with limited 
domains and fields. Thus a 1 R is the relation R limited in its domain 
to the class a, R r P the same relation limited in its converse domain to 
the class p, a 1 R r P the relation R limited in its domain to the class a 
and in its converse domain to the class P; finally, R ~ a is the relation R 
whose field is limited the class a. Example: If'R' is 'author of' and 'a' 
is 'Italian', a 1 R is the relation of author restricted in its domain to 
Italians; in this case, D)(a 1 R) is the class of Italian authors and 
a)(R r a) that of Italian works. 
20.35. 'a t P' for: 'xy(xea . yeP), 

20.36. a t P = a 1 V r P 
Explanation: a t P is the relation which exists between x and y by the 
very fact that x is an element of a and y an element of P; it is the meaning 

that 'a 1 R r P' obtains if' V' is substituted for 'R'. This notion plays 
an important role in the theory of series. 
20.37. 'x t y' for: '[x] t [y]' 
Explanation: 20.37 gives the definition of the ordinal couple. 

2004. One-One Relations 
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20.41. '1 --+ Cls' for: 'R{(x, y, z): xRz' yRz' :>. x = y}' 
20.42. 'Cls --+ l' for: 'R{(x, y, z): xRy· xRz' :>. y = z}' 
20.43. '1 --+ l' for: '(1 --+ Cls) n (Cls --+ 1)' 
Explanation: 20.41 defines the one-many relation, i.e. restricted in its 
domain to unit classes; 20.42 defines the many-one relation, which is 
restricted in the same way in its converse-domain; 20.43 defines the 
one-one relation in which both domain and converse-domain are restricted 
to unit classes. 20.41 says in effect that whenever xRz and yRz occur 
there is identity between x and y so that there can never be but one 
antecedent for R; 20.42 says the same thing of the consequent. Examples: 
The relation 'father' is one-many, for the same father can have several 
children, but a child can have only one father. For Mohammedans the 
relation 'husband of' would be one-many and 'wife' many-one, but for 
Christians both relations are one-one. 
20.44. Re(1 --+ CIs) . . R e(CIs --+ 1) 

LITERATURE: §20.1-2: PM *33; §20.3; PM *35; §20.4; PM *71; Carnap 1,8. 
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§ 21. RELATIVE PRODUCT; SERIES 

The notion of a relative product is important for all sciences which, 
like mathematics and theology, use the concept of series. This chapter 
presents the fundamental notions and some elementary applications of 
the theory of series. An analysis of series by itself would form an 
extensive treatise. 

21.1. Relative Product 

21.11. 'R/S' for: 'x2{(Ey)· xRy' ySz}' 
Explanation: R/S is the relative product of Rand S, i.e. the relation 
which exists between x and z if there is a y such that xRy and ySz. 
Example: If'R' is 'father' and'S' is 'brother', 'R/S' is 'uncle', namely 
the y such that 'x is the father of y' and 'y is the brother of z'. The 
relative product of the square and the half is the square of the half. 
21.12. 'R2' for: 'RjR' 
21.13. 'R3' for: 'R2jR' 
21.14. 'Rn' for: 'Rn-l/R' 
21.15. 'Ro' for: 'J r OR' 
Explanation: Expressions 21.12-15 are called 'relative powers' ('relative 
square', 'relative cube', etc.). RO is identity (cf. 14.16) restricted to the 
field of R, i.e. the relation of identity that each element of OR has to 
itself; this notion has a role in series similar to that of zero in mathe­
matics. Examples: If 'R' signifies 'father of', 'R2' is 'paternal grand­
father of'. The adage 'the friends of my friends are my friends' would 
translate as 'R2 C R', where 'R' is 'friend of'. 

21.2. Ancestral Relation 

21.21. 'her' for: 'a(3R)(R»a C a)' 
Explanation: A class is called 'hereditary' with respect to the relation R 
(her is the class of hereditary classes), when the consequents of R in 
relation to the elements of a are elements of a. 
Examples: The class of Hungarians is hereditary with respect to the 
relation of father, for if x is the father of y and x belongs to the class 
of Hungarians, i.e. if he is a Hungarian, then y is also a Hungarian. 
21.22. 'R*' for: 'xy{xeOR: . (a): R»a Ca' xea' ::). yea}' 
Explanation: 21.22 is an ingenious definition of the vague notion 
'Ro L:J R L:J R2 L:J R3 etc.', and hence of the relation which exists when 
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some power of R is given. It is called the 'ancestral relation'. Examples: 
If 'R' is 'father of', 'R*' is 'paternal ancestor'; if 'R' is 'immediately to 
the left of', 'R*' is 'to the left of (at any distance),; if 'R' is 'immediate 
superior', 'R*' is 'superior (immediate or otherwise),. 

21.23. 'Rpo'for:'xy{(a):R))a :)a·R)xea· :)·yea}' 

Explanation: Rpo is distinguished from R* by the fact that it excludes RO. 
It is the equivalent of 'R U R2 U R3 etc.'. 

21.3. First and last terms 

21.31. 'B' for: 'xR{xe· D)R n - a)R}' 
Explanation: 'B' (from 'beginning') is the relation between the first 
term x of the series formed by Rand R itself; 21.31 says in effect that x 
belongs to domain but not to the converse-domain of R. The class of 
first terms of R is sg)B)R, and that of the last terms sg)B)Cnv)R. 
21.32. 'MinR' for: 'xa{xe· a n C>R n - R))a}' 
21.33. 'MaxR' for: 'Min-R' 
Explanation: MinR is B restricted to one class; it is the minimum of 
this class with respect to R. MaxR is the maximum. 

21.4. Isomorphic relations 

21.41. 'R t S' for: 'R/S/R' 
Explanation: The relation R t S holds between x and t when one has 
(3y, z)xRy . ySz . zRt; or graphically 

S 
y -------»-) z 

t t 
R 

x------'?t 

P=RtS 

R t S is the image of S on the base R. 

R 

21.42. 'Psmor S' for: 'R{R e 1 --'? 1 . C>S = a)R . P = R t S' 
21.43. 'Smor' for: 'FS{3 !Psmor S}' 
Explanation: The relation P is said to be 'isomorphic' ('smor' from the 
latin 'similis ordine') to S when there exists at least one one-one relation 
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R such that P = R t S. (The isomorphy of relations should not be 
confused with that of terms; cf. 1.15). 
Examples: The relation holding between the fathers of two school­
friends is isomorphic to that which exists between the boys, if they 
are only sons. 

LITERATURE: §21.1: PM *34; §21.2; PM *90, *91; §21.3: PM *93; §21.4: PM 
*150, *151; Carnap 1, 8. 
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§ 22. PROPER TIES OF RELATIONS 

This chapter provides elementary definitions of certain properties com­
mon to large groups of relations, such as reflexivity, transitivity, con­
nexity, etc. This theory is of great importance in the higher branches of 
logic and mathematics and has numerous applications in other fields. 

22.1. Reflexivity 

22.11. 'refl' for: 'R(RO C· R)' 
22.12. 'irr' for: 'R(RO C· -'- R)' 
22.13. R e refl· _ . (x): xeCR· :J. xRx 
22.14. R e irr· - . (x) '" xRx 
Explanation: refl is the class of reflexive relations, i.e. such that if an x 
belongs to their field, these relations hold between x and x. On the 
other hand, irr is the class of irreflexive relations. 
Examples: Identity and love (according to Aristotle) are reflexive 
relations, since, according to this philosopher every being is identical 
with itself and loves itself. On the other hand, the relations of being the 
father of, greater than, neighbor of, etc. are irreflexive. Note that there 
are relations which are neither reflexive nor irreflexive, e.g. that of 
cooking food for. 

22.2 Symmetry 

22.21. 'sym' for: 'Rei? ='= R)' 
22.22. 'as' for: 'R(i? ='= -'- R)' 
22.23. R e sym . . (x) . xRy yRx 
22.24. R e as .. (x) . xRy '" yRx 
Explanation: sym is the class of symmetrical relations, as that of asym­
metrical relations. As in the case of reflexivity, there are relations which 
are neither one nor the other. 
Examples: The relation of being a colleague or a neighbor is symmetrical, 
whereas the relations of being greater than, smaller than, father, daughter, 
etc. are asymmetrical. 

22.3. Transitivity 

22.31. 'trans' for: 'R(R2 C· R)' 
22.32. 'intr' for: 'R(R2 C· -'- R)' 
22.33. R e trans: _ : (x, y): (Ez) . xRz . zRy· :J. xRy 
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22.34. R e intr : : (x, y, z) : xRy . yRz· ::J. '" xRz 
Explanation: trans is the class of transitive relations, i.e. those which 
'pass over' from one term to another; intr is the class of intransitive 
relations. Here again there are relations which are neither one nor the other. 
Examples: The relations of being to the right of, greater than, smaller 
than, equal to, identical with, ::J, _, =, C, are transitive, whereas 
the relations of being father, son, husband, wife, the square of, etc. 
are intransitive. 
22.35. trans n sym . C . refl 
22.36. as C irr 

22.4. Similarity and Equality 

22.41. 'sim' for: 'sym n refl' 
Explanation: sim (from the Latin similis) is the class of relations of 
similarity, i.e. of 'nearly the same', as 'nearly equal', 'nearly the same 
color', etc. All such have the properties of symmetry and reflexivity. 
22.42. 'aeq' for: 'trans n sym' 
Explanation: aeq (from aequalis) is the class of relations of equality, 
i.e. of the same form, color, size, etc.). These relations are transitive and 
symmetrical. 
22.43. aeq C refl 
22.44. aeq C sim 

22.5. Connexity 

22.51. 'connex' for: 'R(J ~ DR· C· R l:J R)' 
Explanation: A relation R is said to be 'connected' or 'connex' when R 
or R always holds between any two different objects belonging to the 
field ofthe relation. Example: 'greater than' is connex in the field of num­
bers, since of any two different numbers one is always greater than the other. 
22.52. 'ser' for: 'irr n trans n connex' 
Explanation: A relation forms a 'series' when it is irreflexive, transitive, 
and connex. This relation is of the greatest importance in mathematics 
and other sciences. 
22.53. ser C irr 
22.54. ser C as 
22.55. Reser· = . Reser 

LITERATURE: PM *201, *202, *204; Carnap 1. 
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§ 23. POLYADIC RELATIONS 

The theory of dyadic relations (with two arguments), although very 
important, is not sufficient for even the most elementary analysis in the 
non-mathematical sciences. Unfortunately, it is the only part of the 
logic of relations that has been developed. This chapter provides some 
of the fundamental definitions for a general theory of relations. 

23.1. Fundamental Definitions 

In the following definitions 'n' is a variable for which positive integers 
are to be substituted. 
23.11. 'Xl, ... Xn tp(Xl, ... Xn)' for: 'the Xl, ... Xn such that 
tp(Xl, ... xn)'. Cf. IS.I1. 
23.12. 'Rein' for: 'R.{(Etp)· R = Xl, ... Xn[tp(XI, ... Xn]}'. Cf.IS.12. 
23.13. 'xIR(X2, ... Xn)' for: 'R(Xl, ... Xn)' 
23.14. 'Term of R' for: 'an object entering in any way in the relation R 
with other terms'. 
Explanation: If R has more than 2 terms, one can no longer speak of the 
antecedents and consequents of R (cf. 18.15-16), but only of the nth 

term of R. The same holds for the converse domain, etc. 
23.15. The relations between relations of more than two terms are 
analogous to those of dyadic relations (cf. IS.2). 
Examples: For a triadic relation R 

'-,- R' is 'Xl, X2, X3{ "" R(Xl, X2, X3)}'; 
for two triadic relations Rand S 

'R l:J S' is 'Xl, X2, x3{R(Xl, X2, X3) V S(Xl, X2, X3)}'. 
The meaning of the functors here is obviously different from that defined 
in § IS.2, but the principle of analogy (17.6) can be applied without 
trouble. 
23.16. Rule 18.32 applies to relations of more than two terms. 

23.2. Relative descriptions 

23.21. 'Rl'(X2, ... xn)' for: '(lXI){R(Xl' ... Xn)}'. Cf. 19.11. 
23.22. 'Rk'(Xl, ... Xk-l, Xk+l ... xn)' for: '(lXk){R(Xl' ... Xk, ... Xn))'. 

23.23. 'Rl)(X2, ... xn)' for: 'xl{R(Xl, ... Xn)}'. Cf. 19.12. 

23.24. 'Rk'(XI, ... Xk-l, Xk+l, ... Xn)' for: 'xk{R(XI, ... Xk, ... Xn)}'. 

23.25. 'sgk'R' for: 'Rk'. Cf. 19.14. 
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The theory of multi-plural descriptions (corresponding to bi-plural 
descriptions 19.2) is very complex. A simple limiting case is the following: 
23.26. 'R» (a2, ... an)' for: 'XI{(EX2, ... Xn) . X2 B a2 . Xa B aa ... 

. . . Xn B an . R(XI, ... Xn)}'. Cf. 19.21. 

23.3. Converses 

23.31. A relation with n terms has n! - 1 converses. 
Explanation: n! = 1·2· ... n; thus for n = 3, n! = 1 ·2·3 = 6; a 
triadic relation thus has 6 - 1 = 5 converses, namely those holding 
between the following arguments: (1): 1, 3, 2; (2): 2, 1, 3; (3): 2, 3, 1; 
(4): 3, 1,2; (5): 3,2, 1. 
23.32. 'R(a ... k ••• u)' where 'a, k, u' are variables for numbers between 
1 and n, for: 'Xa, ... Xk, ... Xu{R(XI' ... Xn)}'. 
Example: 'R(231)' for: 'X2, X3, Xl {R(XI' X2, xa)}' 

23.4. Domains and Fields 

23.41. 'DIlR' for: 'xI{(Ex2, ... Xn)R(XI, ... Xn)}'. Cf. 20.11 
23.42. 'Dkl R' for: 'xk{(ExI, ... Xk-l, Xk+l, ... Xn)R(XI, ... Xk, ... Xn)}' 
23.43. If R has n terms, 'CR' for: 'DIlR U D2lR U ... DnlR' 

23.44. 'R r k a' for: 'Xl, ... Xn{Xk B a· R(XI, ... Xn)}' 
23.45. 'R r a' for: 'Xl, ... Xn{Xl, ... Xn B a . R(XI, ... Xn)}' 

23.5. Partial Relations 

23.51. A relation with n terms contains (;) partial relations with m 

terms. 

E I . (n) = n·(n-I)·(n-2), ... {(n-(m-l)} xp anatlOn: 
m m! 

It is the theorem used for calculating the coefficients of the binomial 
theorem or Pascal's triangle. For nand m from I to 10 one obtains the 
following table: 
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23.52. Number of partial relations: 

n= m=2 3 4 5 6 7 8 9 10 

2 
3 3 1 
4 6 4 1 
5 10 10 5 1 
6 15 20 15 6 1 
7 21 35 35 21 7 1 
8 28 56 70 56 28 8 1 
9 36 84 126 126 84 36 9 1 

10 45 120 210 252 210 120 45 10 1 

Example: A relation with 4 terms R(x, y, z, t) contains 6 partial dyadic 
relations (between x - y, x - z, x - t, Y - z, Y - t, and z - t), 
4 triadic relations (between x - y - z, x - y - t, x - z - t, and 
y - z - t), and 1 tetradic relation (R). Moreover, each has its converse. 

23.53. '( R:)' for: 'the nth partial relation of m terms contained in R'. 
Example: '( R~) , for: 'the second triadic relation contained in R'. 
LITERATURE: Camap 1, 8. 
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§ 24. CANONIC OR NORMAL FORM 

Besides the method of evaluation given in § 4, there is another known 
as the 'canonic' or 'normal' form. Since it cannot be developed before 
the theory of rules (§ 9), the exposition of it has been postponed until 
now. Only a summary of the method is given here without any claim to 
rigor. 

24.11. 'Canonic or normal form' for: 'a logical product of which each 
argument is a logical sum of variables or of negations of variables'. 
Example: '(p V '" q). (p V q) . ('" p V r)' is a normal form. 
24.12. Every sentence of system 8 can be transformed into an equivalent 
normal form in which each argument contains variables equiform 
with all the variables ofthe sentence. This transformation is accomplished 
by means of the rules which correspond (by the procedures of § 9) to 
the associative and distributive laws of the sum and the product 
(5.23-4, 5.53-4), the principle of double negation (5.12), the laws of 
De Morgan (5.27, 5.57), and laws 5.311 and 5.612. 
Explanation: In practice this means that one must 'multiply' with 'V' 
and '.', as in algebra; substitute 'p' for '", '" p', '", p. '" q' for 
'", . p V q', '", p V'" q' for '", . pq', '", p V q' for 'p ~ q', and 
'p ~ q . q ~ p' for 'p _ q'; and repeat these operations until the normal 
form is obtained. In this it is better to use the Peano-Russell notation 
with parentheses, since its similarities to algebra facilitate the 'multi­
plication' . 

Example: Put in normal form the sentence '(p ~ q) ~ ('" q ~ '" p)'. 
Applying 5.311 we obtain (1) ('" p V q) ~ (q V "'p); 
applying it again: (2) '" ('" p V q) V (q V '" p); 
by De Morgan's law: (3) (p. '" q) V (q V '" p); 
'multiplying' (4) (p V q V '" p)('" q V q V '" p), 

which is the normal form of the sentence. 
24.13. Rule: the normal form is a law if and only if each argument of 
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the product contains at least one variable with its equiform preceeded 
by a negation. 
Explanation: In virtue of the rule founded on 6.13, 'p V'" p' is always 
true; on the other hand, by 6.26, if any argument of an alternative is 
true the whole is true; finally the product of true sentences is itself true 
(cf. 4.23). - Rule 24.13 thus enables us to evaluate a sentence. 

LITERATURE: Hilbert A; Scholz 5; Quine 4; Lukasiewicz 7. 
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§ 25. MODAL LOGIC 

This chapter contains the fundamental notions of a modal logic of 
sentences, i.e. of sentences stating necessary, possible, impossible, or 
contingent facts or on an alternative metaiogical explanation, whose 
truth or falsity is necessary, possible, impossible or contingent. 

25.1. Monadic modal functors 

25. 11.'Lp' or'Dp'for: 'pisnecessary'or 'the sentence 'pis necessarily true". 
Explanation: 'L' (from 'logical' since what is logically true is necessarily 
true) is taken as the undefined functor in terms of which the remaining 
are defined. 
25.12. 'Mp' or '0 p' for: 'NLNp' or '", D '" p' 
Explanation: Read 'p is possible'. 'M' is from the German 'moglich'; 
'0' was introduced by C. I. Lewis in 1918. 
25.13. 'Up' or '", 0 p' for: 'LNp' 
Explanation: Read: 'p is impossible'. 
25.14. 'Zp' or '", Dp' for: 'NLp' 
Explanation: Read: 'p is contingent'. Although defined here in terms of 
not being necessary, the contingent functor is sometimes defined in 
terms of possibility: KMpMNp; or in another sense: 'p is contingent' 
for' '" Lp . '" UP'. 
25.15. The 4 monadic functors L, M, U, Z give the 4 fundamental 
modalities; Land M are said to be positive, and U and Z negative 
modalities. 

25.2. Laws of Modals 

25.21. CLpMp 
Explanation: This says that what is necessary is also possible. Taken as 
an axiom along with the definitions of 25.1 it yields the following laws: 
25.22. CUpZp 
25.23. DLpUp 
25.24. AMpZp 
25.25. JLpZp 
25.26. ELpNMNp 
25.27. EMpNLNp 
25.28. EUpLNp 
25.29. EZpNLp 
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25.3. Dyadic modal functors 

25.31. 'Cpq' or 'p --3 q' for: 'LCpq' 
Explanation: This is usually read: 'p strictly implies q', which is, however, 
a metalogical interpretation. Called the functor of 'strict implication', 
it was introduced by Lewis in 1918 to assimilate material implication 
to the every-day notion of implication and to show that the consequences 
of the paradoxes are unobjectionable. 
25.32. 'Epq' for: 'KCpqCqp' 
Explanation: This gives us a 'strict equivalence'. 

HIS TOR y: Modal logic was founded by Aristotle and further developed by his school 
and the Scholastics. In modern logic it was introduced by C. I. Lewis in 1918 with his 
system of 'strict implication', which posited S distinct systems SI - SS. Since then 
still further systems have been developed. 

LITERATURE: Lewis 1, Lewis L; Feys 3, Feys 4;Emch; Becker 1, Becker 2; Behmann 
2; Lukasiewicz 8; Carnap 6, Carnap 7; Wright 1, Wright 2. - For history: Becker A; 
Bochenski 1, Bochenski 8. 
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§ 26. POLYVALENT LOGIC; COMBINATORY LOGIC; FORMALIZED 

METALOGIC 

This chapter contains brief indications about three fields which logical 
research has recently developed. The fields have nothing more in common. 
Polyvalent logics are still being discussed. Combinatory logic is some­
what less discussed, partly because it is not so well known. Formalized 
metalogic, on the other hand, is a well established discipline. 

26.1. Polyvalent Logic 

By admitting only 2 values, a bivalent logic is formed; by admitting 
3 values (' 1', 'r, '0', or '1', '2', '3'), a trivalent logic is obtained; in 
general, n admitted values (where 'n' stands for any positive integer) 
gives a logic of n values. The number of n-adic truth functors in a logic 
with m values is mmo, from which we can form the following table: 

values 

monadic functors 
dyadic functors 

2 

4 
16 

3 

27 
19,683 

4 

256 
4,294,967,296 

Thus in logics of more than two values it is possible to define many 
functors not translatable in terms of bivalent logic, e.g. the modal 
functors. On the other hand, certain laws of bivalent logic cease to be 
laws in trivalent or higher logics. For example, the principle of excluded 
middle does not hold in trivalent logic, since by substitution of p/~ and 
q/~ one obtains '~ V r, which according to the definition of Lukasiewicz, 
gives T. 
The principal functors of trivalent logic are defined, according to 
Lukasiewicz, as follows: 

N A 1 ~ 0 C 1 0 K 1 l.. 0 2 2 

1 0 1 1 1 1 0 1 1 l.. 0 2 2 

t l.. ~ 1 ~ 1 t 1 1 1 l.. 1 ~ 0 2 2 2 2 2 
l.. 0 1 ~ 0 0 1 1 0 0 0 0 2 

26.2. Combinatory Logic 

Combinatory logic is the theory of functors called 'combinators', which 
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indicate a formal operation performed upon any type of expression. 
The principal combinators are the following: 'B', called 'compositor', 
transforms an expression composed of 3 terms by grouping the 2nd and 
3rd in a parenthesis. 'C', called 'permutator', transforms an expression 
composed of 3 terms by inverting the order of the 2nd and 3rd terms. 
'I', called the 'identity functor', transforms a term into itself. oW', called 
'repetitor', transforms an expression composed of two terms by doubling 
the 2nd term. 
Application of these combinators is not made directly to the expressions 
of classical mathematical logic, but to formulas in which the lambda 
.(' A') functor appears. This functor plays a role similar to that of variables 
'with a circumflex accent ('x') (15.111) but generalized. The expression 
'Aa[M]', for example, represents the operation which, applied to 'a', 
transforms it into the expression 'M'. 
Combinators can be combined with one another, thereby giving rise 
to great possibilities for the simplification and generalization of logic. 

26.3. Formalized Metalogic 

Metalogic (cf. 2.16), also called 'semiotics', contains 3 parts: (1) logical 
syntax: the theory of the relations between signs; (2) semantics: the theory 
of the relations between signs and what they signify; (3) pragmatics: the 
thepry of the relations between signs and their users. The first two parts 
have been formulated in conventional terms and formalized (7.51). 
This procedure has the following advantages: it enables us to make a more 
exact analysis of logical notions, to axiomatize metalogic, to make a 
rigorous study of systems with respect to completeness and non­
contradiction (7.6) and the independence of axioms (7.7), and to define 
with precision the metalogical terms that are constantly used in logic, 
such as 'system', 'deduction', 'term', 'variable', 'expression', etc. Systems 
are then treated as classes. 
The technical procedure consists generally of giving a double translation 
to the terms of the system being examined, as was done in § 9. With 
each term a metalogical sign is coordinated, and the fact that term Y 
follows term X is expressed by a special symbol. 
Metalogic has shown itself to be fruitful in philosophical conclusions, 
notably with respect to the definition of such terms as 'truth', 'signif­
ication', etc. 
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HISTORY: Polyvalent logic was discovered independently by Lukasiewicz (1920) 
and Post (1921). It was cultivated particularly in Poland, where Wajsberg gave the 
first axiomatization of it (1931). It has been discussed more recently in relation to the 
calculus of probabilities and to its philosophical implications. Reichenbach has 
developed it for quantum mechanics. - Combinatory logic, which is the most recent 
branch of our science, was begun by Schonfinkel in 1924 and developed by Curry 
and Kleene; Church in 1936 provided a synthesis of previous work. - Metalogic 
(called also 'semantics') has precursors in the theory of supposition and the treatises 
'de modis significandi' of mediaeval logic. But as an exact discipline its history is 
very recent. The 'metamathematics' of Hilbert (1905), the speculations of the Vienna 
circle on language (1929 ff.), the rigorous axiomatization of the Polish system are 
the three main sources of the new discipline. Its development is due primarily to the 
work of Carnap, Godel, Lesniewski, and Tarski. 

LITERA TURE: § 26.1 : Post; Lukasiewicz 1, Lukasiewicz 4; Feys 3; Wajsberg; Hempel; 
Rosser T; Reichenbach 2. 
§ 26.2: Schonfinkel; Curry 1,4; Church 4; Feys 7. 
§ 26.3: Carnap 3, Carnap 4,7; Tarski4; a good resume in Quine 3; Schroterl; Scholz 2, 
Scholz 6; Church 6. 
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§ 27. THE SYNTACTICAL CATEGORIES 

This chapter provides a further example of metalogic. The syntactical 
categories, mentioned in 1.22, which are of great importance for 
philosophy, are defined and their various kinds enumerated. 

27.1. Definitions 

27.11. 'SS(x, y, I)' for: '(u, v):: Fl(u, I):· ::::> :. P(x, u, I)· 
. Sb(y, x, u, v) . V . P(y, u, I) . Sb(x, y, u, v): ::::>: FI(v, I)' 

Explanation: SS(x, y, I) is the triadic relation mentioned in 1.22 whereby 
x and y can be mutually substituted for one another in the language I; 
this is exactly defined in what follows. 'FI(u, I)' says that u is a formula or 
expression (1.11) in the language I; 'P(x, u, I)' that x is a part of u in the 
language I, i.e. either x is a sign in the language I or one of a series of 
signs in I; 'Sb(y, x, u, v)' says that v is a substitution of y for x in u. 
27.12. 'Sqa/)' for: '(x, y). x, y, e a ::::> SS(x, y, I)' 
Explanation: 'sc' for 'syntactical category'; but what is here defined 
is not this, but the relation 'a is an SC of the language 1', i.e. the case 
in which all elements of a can be mutually substituted for one another 
in the language. SC generically is the class of all classes a such that for 
some I we have Sqa/), i.e. it is the domain of SC. 

27.2. Division of SC 

27.21. 'ESC' for: 'Elementary or fundamental SC, which appears only 
as an argument and never as a functor' . 
Explanation: Signs belonging to ESC mean something which may have 
a property but cannot be a property. 
The most common ESC are: 
27.211. on' for: 'individual name' (cf. 1.33) 
27.212. os' for: 'sentence' (cf. 1.31) 
27.213. 'u' for: 'universal or class name' (cf. 15.11) 
27.22. 'FSC' for: 'Functional SC whose elements appear as both functors 
and arguments'. 
Explanation: The elements of FSC are called 'functors' (cf. 1.34). 
They may be classified according to 3 criteria: 
27.221. According to the SC of their arguments, we can distinguish: 
name-determining functors, sentence-determining functors, and universal 
or class-determining functors. 
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Examples: The predicates rp, 1jI, X are name-determining functors; 
V, =>, "', are sentence-determining functors; -, U, (") are class­
determining functors. 
27.222. According to the number of their arguments, we can distinguish: 
monadic, dyadic, triadic, ... n-adic functors (cf. 1.45) 
Examples: '" is monadic, V is dyadic, SS in 27.11 is triadic, Sb in 
27.11 is tetradic. 
27.223. According to the SC of the whole formula resulting from the 
functor and its arguments, we can distinguish: 
name-jorming, sentence-forming, and universal or class-jorming functors. 
Examples: The description functor (14.22) is a name-forming, monadic, 
sentence-determining functor; the relation R in 18.14 is a sentence­
forming, dyadic, name-determining functor; the antecedent-class 

description in 19.12 R>y is a class-forming, monadic, sentence-deter­
mining functor. 
27.23. The Ajdukiewicz method for determining the SC of a functor: 
Form a fraction, the numerator of which represents the SC of the for­
mula which it forms, and the denominator the SC of the arguments 
which it determines; if more than one argument is determined, the 
letters representing each are written in the denominator separated by 
commas. 
Examples: The examples of 27.223 would be presented, according to 

n s u 
-,-.-
s n,n' s' 

this method, as follows: 

For CNpCpNq we would have s 
---
s s -, 
s s, s 

s 

In this the's' in the numerator indicates that the whole expression thilt 
is formed is a sentence; the first fraction in the denominator represents 
'Np', a monadic, sentence-determining, sentence-forming functor, while 
the second fraction represents 'CpNq', which is itself a sentence formed 
by determining a sentence 'p' and another sentence 'Nq' formed out of 
another sentence 'q' and a monadic, sentence-determining functor 'N'. 
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27.3. Fundamental law of SC 

27.31. (x, I): FI(x, I)· :). (Ea) . Sqa, I) . x e a 
Explanation: All formulas or expressions of a language belong to a 
SC of that language. 

HISTORY: The idea of SC comes from Husserl, although something like it is found 
in Aristotle and the Scholastics. The rigorous development of the theory is due to 
Lesniewski and Ajdukiewicz. 

LITERA TURE: Lesniewski 2, Ajdukiewicz 2; Bochenski 7. 
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2.13. .. ., 13.11. rp(x, y) 18.22. U 
2.3. (), [], {} 13.12. (x, y), !Ixy 18.23. n 
2.4. . . ' .. 13.13. (Ex, y), .Exy 18.24 . il ,., -, .. 
3.11. 1,0 14.11. 18.25. C 
3.12. 14.12. # 18.26. -
3.23. -,"',N 14.16. I 

. 
18.27. V 

3.32. V, A, B, 14.17. J 18.28. II 
C, D, E, 14.22. (1X) 

18.29. 3! 
F, G, 0, 14.23. El 

19.11. Rly 
X, M, L, 15.11. X 

~ 

K, J, I, H 15.111. A 19.12. Rly 

3.41. V,A 15.12. CIs, a, p, y 19.13. RlX 
3.51. :J, -+, C 15.13. e 19.14. sglR 
3.61. I,D 15.14. "'e 19.15. gslR 
3.71. ',&,K 15.21. -a 19.21. Rllp 
3.81. =,"',E 15.22. u 19.31. R 
8.11. p, q, r, s 15.23. n 19.32. Cnv 
8.51. / 15.24. II 20.11. DlR 
9.5. -, +, -*, =, 15.25. C 20.12. qlR 

/, X, 15.26. 20.13. OR 
I-X 15.41. V 20.31. a1 R 

1-, I- Y' 00 15.42. A 20.32. RIP 
10.001. a, b, m, 15.43. 3! 20.34. R~a 

A 15.61. [x] 20.35. t 
E, 1,0 15.62. [x, y] 20.37. t 

11.11. a, b, c, d 15.63. 1 20.41. 1-+ CIs 
11.12. x, y, Z, t 15.64. 2 20.42. CIs -+1 
11.13. rp,Ij/,X 18.11. xy{rpx,y} 20.43. 1-+1 
11.15. rpx 18.12. ReI 21.11. RIS 
11.21. (x), !Ix, 18.14. xRy 21.12. R2 

11.22. (Ex), (3x), .Ex 18.21. - 21.13. R3 
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21.14. Rn 22.41. sim 23.45. R~a 
21.15. RO 22.42. aeq 23.53. (R;;') 
21.21. her 22.51. connex 25.11. L,D 
21.22. R* 22.52. ser 25.12. M,O 
21.23. Rpo 23.12. ReIn 25.13. U 
21.31. B 23.21. R 1 )(X2, ••• xn) 25.14. Z 

21.32. MinR 23.22. Rk) 25.31. C>,--3 
21.33. MaxR ..... 25.32. E) 

23.23. R) 
21.41. RtS 

1 26.2. A, ..... 
21.42. smor 23.24. Rk) B, C, I, W 
21.43. Smor 23.25. sgk)R 27.11. SS 
22.11. refl 23.26. R»(a2, ••• an) 27.12. SC 
22.12. irr 23.32. R(a ... k .. u) 27.21. ESC 
22.21. sym 23.41. D/R 27.211. n 
22.22. as 23.42. Dk)R 27.212. s 
22.31. trans 23.43. C>R 27.213. u 
22.32. intr 23.44. R r ka 27.22. FSC 

93 



BIBLIOGRAPHY 

Abbreviations: 'JSL' 'The Journal of Symbolic Logic'. 
'PM' 'Principia Mathematica'. 

ACKERMANN, W. (1) Ein System der typenfreien Logik I, Leipzig, 1941. 
ACKERMANN, W. (2) Solvable Cases of the Decision Problem, Amsterdam, 1955. 

Cf. Hilbert 
AJDUKIEWICZ, K. (1) Zaloienia [ogiki tradycyjnej, (Presuppositions of trad. Logic), 

Przegl. Filozoficzny 29, 1926/7. 
NDUKlEWICZ, K. (2) Die syntaktische Konnexitiit, Studia Philosophica, (Lw6w) I, 1935. 
NDUKlEWICZ, K. (3) tJber die Anwendbarkeit der reinen Logik auf philosophische 

Probleme. Actes du VIe Congr. Int. de Philos. Prague, 1936. 
ARISTOTLE, Prior and Posterior Analytics, ed. D. Ross, Oxford, 1949. 
BANKS, P. On the philosophical interpretation of Logic: an Aristotelian Dialogue, 

Dominican Studies, (Oxford) HI/2 (1950), p. 139 if. 
BECKER, A. Die Aristotelische Theorie der MoglichkeitsschlUsse, Berlin, 1933. 
BECKER, O. (1) Zur Logik der Modalitiiten, Jahrb. f. Phil. u. Philn. Forsch. 11 (1930). 
BECKER, O. (2) Untersuchungen uber den Modalkalkiil, Meisenheim, 1952. 
BEHMANN, H. (1) Zu den Widerspruchen der Logik und Mengenlehre, Jahresber. d. 

Math. Ver. 40 (1931). 
BEHMANN, H. (2) Die typenfreie Logik und die Modalitiit, Actes du XIeme Congr. d. 

Philos. Bruxelles, XIV (1953), p. 88 if. 
BENNET, A. A. and CR. A. BAYLIS, Formal Logic, New York, 1939. 
BERKELEY, E. C. Conditions affecting the application of symbolic logic, JSL 7, 1942. 
BERNAYS, P. A System of axiomatic Set Theory, JSL 2,1937; 6,1941; 7,1942; 8, 1943. 
BETH, E. W. (1) Inleiding tot de wijsbegeerte der wiskunde, Antwerp, 1940; 2nd edit. 

1948. 
BETH, E. W. (2) Summulae Logicales, Groningen, 1942. 
BETH, E. W. (3) Geschiedenis der Logica, Den Haag, 1944. 
BETH, E. W. (4) Symbolische Logik und Grundlegung der exakten Wissenschaften. 

(Bib!. Einf. i. d. Stud. d. Philos. ed. I. M. Bochenski, N. 3) Bern, 1948. 
BETH, E. W. (5) Les fondements de mathematique, Louvain, 1950. 
BLACK, H. (1) The Nature of Mathematics, New York 1934, repro 1952. 
BLACK, H. (2) A New Method of Presentation of the Theory of the Syllogism, Journal 

of Philosophy, 1945. 
BOCHENSKl, J. M. (1) Notes historiques sur les propositions modales, Revue des Sciences 

Philos et Theol. 26. 1937. 
BOCHENSKl, J. M. (2) De consequentiis Scholasticorum earumque origine, Angelicum 15, 

1938. 
BOCHENSKI, J. M. (3) La logique de Theophraste, Fribourg, 1947. 
BOCHENSKl, J. M. (4) On the Categorical Syllogism, Dominican Studies (Oxford) I 

1948, p. 35 if. 
BOCHENSKI, J. M. (5) On Analogy. The Thomist XI/4 (1948) p. 424 if. 

94 



BIBLIOGRAPHY 

BOCHENSKI, J. M. (6) On Syntactical Categories. New Scholasticism 23/5 (1949), p. 
257 ff. 

BOCHENSKI, J. M. (7) Ancient Formal Logic, Amsterdam, 1951. 
BOCHENSKI, J. M. (8) Formale Logik: Problemgeschichte, Freiburg-i-B, 1956, Eng. 

trans. by Ivo Thomas, Notre Dame, 1960. 
BOEHNER, P. Medieval Logic. An Outline of Its Development from 1250-c.I400, 

Manchester, 1952. 
BooLE, G. (1) The Mathematical Analysis of Logic, Cambridge, 1847, repro 1947. 
BOOLE, G. (2) An Investigation of the Laws of Thought, London, 1854,repr. New York, 

n.d. Cf, Celebration of the centenary of the LAWS OF THOUGHT, Royal Irish 
Acad. 57/6, 1955. 

CARNAP, R. (1) Abriss der Logistik, Wien, 1929. 
CARNAP, R. (2) Logische Syntax der Sprache, Wien, 1934, trans. The Logical Syntax 

of Language, New York, 1937. 
CARNAP, R. (3) Foundations of Logic and Mathematics. Intern. Encycl. of Unified 

Science 1/3, Chicago, 1939. 
CARNAP, R. (4) Introduction to Semantics, Cambridge Mass. 1942 3rd edit. 1948. 
CARNAP, R. (5) Formalization of Logic, Cambridge Mass. 1943. 
CARNAP, R. ( 6) Modalities and quantification. JSL 11, 1946. 
CARNAP, R. (7) Meaning and Necessity: A Study in Semantics and Modal Logic, 

Chicago 1947; 2nd edit. 1956. 
CARNAP, R. (8) Introduction to Symbolical Logic and its Applications, New York, 1958. 
CHURCH, A. (1) A Bibliography of Symbolic Logic, JSL 1, 1936, 3, 1938. 
CHURCH, A. (2) A Formulation of the Simple Theory of Types, JSL 5,1940. 
CHURCH, A. (3) Conditioned Disjunction as a primitive Connective for the Propositional 

Calculus. Portugaliae Math 7/2 (1948) p. 87 ff. 
CHURCH, A. (4) The Calculus of Lambda Conversion. Princeton, 1941. 
CHURCH, A. (5) A Brief Bibliography of Formal Logic, Proc. Amer. Acad. Arts and 

Sci, 80, 1952. 
CHURCH, A. (6) Introduction to Mathematical Logic, Vol I, Princeton, 1956. 
CHWISTEK, L. (1) Antynomie Logikiformalnej. Przegl. Filozoficzna 24,1921. 
CHWISTEK, L. (2) The Theory of Constructive Types. Ann. de la soc. Pol. des mathem. 

2,1924. 
CHWISTEK, L. (3) New Foundations of fomwl Metamathematics, JSL 3, 1938. 
COOLEY, J. C. A Primer of Formal Logic, New York, 1942. 
COPI, I. Symbolical Logic, New York, 1954. 
COUTURAT, L. La logique de Leibniz d'apres des documents inedits. Paris, 1901. 
CURRY, H.B. (1) GrundlagenderkombinatorischenLogik.A1ner. Journ. of Math. 52,1930. 
CURRY, H.B.(2) On the Use of Dots as Brackets in Logical Expressions, JSL 2, 1937. 
CURRY, H. B. (3) A Mathematical Treatment of the Rules of the Syllogism, Mind, 45 

(1936) p. 209 ff. 
CuRRY, H.B.(4) R. FEYS, W. CRAIG, Combinatory Logic, Amsterdam, 1958. 
Dopp, J. Lec;:ons de logique formelle, 3 vols. Louvain, 1950. 
DUBLISLAV, W. (1) Die Definition, 2nd edit. Berlin 1927. 
DUBLISLAV, W. (2) Die Philosophie der Mathematik in der Gegenwart, Berlin, 1932. 
DURR, K. (1) Aussagenlogik im Mittelalter, Erkenntnis 7, 1938. 
DURR, K. (2) Lehrbuch der Logistik, Basel, 1954. 
EMCH, A. F. Deducibility with respect to Necessary and Impossible Propositions, 

JSL2,1937. 

95 



BIBLIOGRAPHY 

FEYS, R. (1) La transcription logistique du raisonnement, Rev. NeoscoI. d. Philos. 
26-27, 1924-25. 

FEYS, R. (2) La raisonnement en termes de faits dans la logique russellienne, ibid. 
29-30,1927-28. 

FEYS, R. (3) Les logiques nouvelles de la modalite, ibid. 40-41, 1937-38. 
FEYS, R. (4) Directions nouvelles de fa logistique aux Etats-Unis, ibid. 44, 1946. 
FEYS, R. (5) Logistiek 1. Antwerpen-Nijmegen, 1944. 
FEYS, R. (6) Les methodes recentes de deduction naturelle, Rev. philos. de Louvain 44, 

1946. 
FEYS, R. (7) La technique de la logique combinatoire, ibid. 44, 1946. Cf. Curry 4. 
FITCH, F. B. (1) A System of Formal Logic without an analogue to the Curry W-Operator, 

JSL 1, 1936. 
FITCH, F. B. (2) Symbolic Logic, New York, 1952. 
FRAENKEL, A. et Y. BAR-HILLEL, Le probleme des antinomies et ses developpements 

recentes, Rev. d. metaphys et d. morale, 46, 1939. 
FREGE, G. (1) Begriffsschri/t, Halle 1879. 
FREGE, G. (2) Grundlagen der Arithmetik, Breslau, 1884; Foundations of Arithmetic, 

trans. by J. Austin, Oxford, 1953. 
FREGE, G. (3) Funktion und Begriff, Jena, 1891, trans. in Philosophical Writings of 

Gottlob Frege, by P. Geach, M. Black, Oxford, 1952. 
FREGE, G. (4) Grundgesetze der Arithmetik, Jena I 1893, II 1903. 
GENTZEN, G. Untersuchungen uber das logische Schliessen, Math. Zeitschr. 39, 1934. 
GODEL, K. Ober formal unentscheidbare Siitze der Principia Mathematica und ver-

wandter Systeme, Monatshefte Math. Phys. 38, 1930. 
GONSETH, F. (1) Les fondements des mathematiques, Paris, 1926. 
GONSETH, F. (2) Qu'est-ce que la logique, Paris, 1937. 
GONSETH, F. (3) Les entretiens de Zurich sur les fondements et la methode des sciences 

mathematiques, Zurich, 1941. 
GOODSTEIN, R. L. Mathematical Logic, Leicester, 1957. 
GREENWOOD, TH. Les fondements de la logique symbolique, 2 vols., Paris, 1938. 
HEMPEL, C. G. A purely topological form of non-Aristotelian Logic, JSL 2, 1937. 
HEYTING, A. (1) Die formalen Regeln der intuitionistischen Logik, Sitzungsber. d. 

Preuss. Ak. d. Wiss. Math. Phys. KI. 1930. 
HEYTING, A. (2) Die intuitionistische Grundlegung der Mathematik, Erkenntnis 2, 1932. 
HEYTING, A. (3) Mathematische Grundlagenforschung: Intuitionismus - Beweistheorie. 

Erg. d. Math. III. 4, Berlin, 1934. 
HEYTING, A. (4) Intuitionism: An Introduction, Amsterdam, 1956. 
HILBERT, D. und W. ACKERMANN, Grundzuge der theoretischen Logik, Berlin, 1928, 

trans. Principles of Mathematical Logic, New York, 1950. 
HILBERT, D. und P. BERNAYS, Grundlagen der Mathematik, Berlin, I, 1934; II, 1939, 

repr. Ann Arbor, Mich. 1944. 
HUNTINGTON, E. V. Sets of Independent Postulates for the Algebra of Logic, Trans. 

Amer. Math. Soc. 5, 1904. 
HUSSERL, E. Logische Untersuchungen, Halle, I, 1900; II, 1901. 
JASKOWSKI, S. On the rules of Suppositions in Formal Logic, Studia Logica 1, Warsaw, 

1934. 
JORGENSEN, J. (1) A Treatise of Formal Logic, 3 vols. London-Copenhagen, 1931. 
JORGENSEN, J. (2) Einige Hauptpunkte der Entwicklung der formalen Logik seit Boole, 

Erkenntnis 5, 1935. 

96 



BIBLIOGRAPHY 

JORDAN, Z. The Development of Mathematical Logic and of Logical Positivism in 
Poland, London, 1945. 

KEYNES, J. N. Studies and Exercises in Formal Logic, London 1894; 4th edit. 1906. 
KLEENE, S. C. (1) A theory of positive integers informal logic, Am. Journ. of Math. 57, 

1935. 
KLEENE, S. C. (2) Introduction to Metamathematics, New York, 1952. 
KLuG, U. Juristische Logik, Berlin, 1951. 
KURATOWSKI, K. Sur la notion de l'ordre dans la theorie des ensembles, Fundamenta 

Math. 2, 1921. 
LADRIERE, J. Les limitations internes des formalismes, Louvain, 1957. 
LEBLANC, H. An Introduction to Deductive Logic, New York, 1955. 
LESNIEWSKI, S. (1) Ober die Grundlagen des Ontologie, C. r. de la Soc. des Sc. et d. 

Lettres de Varsovie, 61, III, 1930. 
LESNIEWSKI, S. (2) Grundziige eines neuen Systems der Grundlagen der Mathematik, 

Warschau, 1938. 
LESNIEWSKI, S. (3) Einleitende Bemerkungen zur Fortsetzung meiner Mitteilung u. d. T. 

'Grundziige . . .', Warschau, 1938. 
LEWIS, C. I. (1) A Survey of Symbolic Logic, Berkeley, 1918. 
LEWIS, c.1. (2) and C. H. LANGFORD, Symbolic Logic, New York 1936, repro 1952. 
LUKASIEWICZ, J. (1) 0 Logice trojwartosciowej (On three-valued logic), Ruch Filo-

zoficzny 5, 1920. 
LUKASIEWICZ, J. (2) Logika dwuwartosciowa (Two-valued logic), Przeglad Filozo­

ficzny 23, 1931. 
LUKASIEWICZ, J. (3) Elementy logiki matematycznej, Warszawa, 1929. 
LUKASIEWICZ, J. (4) Philosophische Bemerkungen zu mehrwertigen Systemen des 

Aussagenkalkiils, C.r. Soc. d. Sc. et d. Lettres Varsovie, C. III, 23, 1930. 
LUKASIEWICZ, J. (5) Zur Geschichte der Aussagenlogik, Erkenntnis 5, 1935-36. 
LUKASIEWICZ, J. (6) Die Logik und das Grundlagenproblem, in Gonseth 3. 
LUKASIEWICZ, J. (7) Aristotle's Syllogistic from the Standpoint of Modern Formal 

Logic, Oxford, 1951; 2nd edit. 1955. 
LUKASIEWICZ, J. (8) A system of Modal Logic, Actes du Xlcme Congr. Int. d.Philos. 

Bruxelles, 1953, Vol. XIV, p. 82, ff. 
LUKASIEWICZ, J. (9) A System of Modal Logic, in Journ. of Computing Systems 1,1953. 
LUKASIEWICZ, J. and A. TARSKI, Untersuchungen iiber den Aussagenkalkiil, C. R. Soc. 

d. Sc. et d. Lettres Varsovie, Cl. III, 23, 1930. 
MATES, B. Stoic Logic (Diss), Berkeley, Los Angeles, 1953. 
MENGER, K. Moral, Wille, Weltgestaltung, Grundlegung der Logik der Sitten, Wien, 

1934. 
MENNE, A. Logik und Existenz, Meisenheim, 1954. 
MILLER, J. W. The Structure of Aritotelian Logic, London, 1938. 
MOISIL, G. C. (1) Recherches sur l'algebre de la logique, Ann. scient. de l'Universite 

de Jassy 22, 1936. 
MOISIL, G. C. (2) Recherches sur Ie syllogisme, ibid. 25, 1939. 
MOODY, E. Truth and Consequence in Mediaeval Logic, Amsterdam, 1953. 
MOORE, G. E. Russell's 'Theory of Descriptions' in The Philosophy of Bertrand Russell, 

edit. P. A. Schilpp, Evanston, Chicago, 1944. 
MORGAN, A. DE (1) Formal Logic, London 1847; repro 1926. 
MORGAN, A. DE (2) On the Syllogism No. IV and on the Logic of Relations, Trans. 

Cambro Philos. Soc. 10, 1864. 

97 



BIBLIOGRAPHY 

MOSTOWSKI, A. Sentences Undecidable in Formalized Arithmetic, Amsterdam, 1952. 
NICOD, J. A. A reduction in the number of primitive propositions of logic, Proc. Cambro 

Philos. Soc. 19, 1917/20. 
OPPENHEIM, F. E. Outline of a logical Analysis of Law, Philos. of Science 11, 1944. 
PEANO, G. (1) Formulaire mathematique, I Turin, 1895; II/I Turin, 1897; 11/2 Turin 

1898; 11/3 Turin 1899; III Paris, 1901; IV Turin, 1902-03. 
PEANO, G. (2) Formulario matematico, V Torino, 1905-08. 
PEIRCE, C. S. Collected Papers, Vols. 1-6 edit. C. Hartshorne and P. Weiss; Vols. 7-8 

edit. A. Burks, Cambridge, 1931-36; 1958. 
P.M., A. N. WHITEHEAD and B. RUSSELL, Principia Mathematica, Cambridge, I, 1910, 

11,1912, III, 1913; 2nd edit. 1925-27; repro 1950. 
POPPER, K.R. New Foundations for Logic, Mind, 56, 1947. 
POST, E. L. Introduction to a general theory of propositions, Am. Journ. of Math, 43, 

1921. 
PRIOR, A. N. Formal Logic, Oxford, 1955. 
QUINE, W. V. O. (1) A System of Logistic, Cambridge, Mass. 1934. 
QUINE, W. V. O. (2) On the Theory of Types, JSL 3, 1938. 
QUINE, W. V. O. (3) Mathematical Logic, New York, 1940; 2nd edit. Cambridge, 1951. 
QUINE, W. V. O. (4) Elementary Logic, Boston, 1941. 
QUINE, W. V. O. (5) On the Logic of Quantification, JSL 10, 1945. 
QUINE, W. V. O. (6) New Foundations of Mathematical Logic, Am. Math. Monthly 44, 

1937. 
QUINE, W. V. O. (7) Three grades of Modal Involvement, Actes du XIeme Congr. Int. 

Philos. BruxeIles, 1953, Vol. XIV, p. 65 If. 
QUINE, W. V. O. (8) Methods of Logic, New York, 1950. 
QUINE, W. V. O. (9) From a Logical Point of View, Cambridge, 1953. 
RAMSEY, F. P. The Foundations of Mathematics and Other Essays, London, 1931; 

repro 1954. 
REICHENBACH, H. (1) Elements of Symbolic Logic, New York, 1947. 
REICHENBACH, H. (2) Philosophische Grundlagen der Quantenmechanik, Zurich, 1949. 
ROSENBLOOM, P. C. The Elements of Mathematical Logic, New York, 1950. 
ROSSER, J. B. Logicfor Mathematicians, New York, 1953. 
ROSSER, J. B. and A. R. TURQUETTE, Many-valued Logics, Amsterdam, 1952. 
RUSSELL, B. A. W. (1) The Principles of Mathematics, Cambridge, 1903; 2nd edit. 

1938; repro 1951. 
RUSSELL, B. A. W. (2) On Denoting, Mind 14, 1905; repro in Logic and Knowledge; 

Essays 1901-1950, New York, 1956. 
RUSSELL, B. A. W. (3) Introduction to. Mathematical Philosophy, London, 1919. 
RUSSELL, B. A. W. (4) Mathematical Logic as based on the Theory of Types, Am. Journ. 

of Math. 3, 1908, p. 222 If. 
Cr. P.M. 

RusTow, A. Der Lugner, Theorie, Geschichte und Auflosung, (Diss. Erlangen), Leipzig, 
1910. 

SALAMUCHA, J. Pojawienie sie zagadnien antynominalnych na gruncie Logiki sred­
niowiecznej (Appearance of the problem of paradoxes in mediaeval logic ), Przeglad 
Filozoficzny,40, 1937. 

SCHMIDT, A. Mathematische Grundlagenforschung, Enz. d. math. Wiss. Bd. 1,1, Heft 1, 
Teil II. 

SCH()NFINKEL, M. Ober die Bausteine der mathematischen Logik, Math. Ann. 42, 1925. 

98 



BIBLIOGRAPHY 

SCHOLZ, H. (1) Geschichte der Logik, Berlin, 1931. 
SCHOLZ, H. (2) Leibniz und die mathematische Grundlagenforschung, Jahresber. d. 

deutsch. Math. Verso 52, 1942. 
SCHOLZ, H. (3) Metaphysik als strenge Wissenschaft, Koln, 1941. 
SCHOLZ, H. (4) Logik, Grammatik, Metaphysik, Arch. f. Rechts- u. Soz.-Philos. 

XXXVI/3, p. 393 if. 
SCHOLZ, H. (5) Grundziige der mathematischen Logik. 2 Bde. MUnster, 1950-51. 
SCHOLZ, H. (6) Zur Erhellung des Verstehens, in Geistige Gestalten und Probleme. 

Eduard Spranger zum 60 Geburtstag. Leipzig, 1942, p. 291. 
SCHOLZ, H. und H. HERMES, Mathematische Logik, Enz. d. math. Wiss. Bd. I I, 

Heft I, Teil 1. 
SCHRODER, E. Vorlesungen iiber die Algebra der Logik, Leipzig I, 1890; II I, 1891; 

II 2, 1905; III, 1895. 
SCHROTER, K. (1) Ein allgemeiner Kalkiilbegriff, Leipzig, 1941. 
SCHROTER, K. (2) Axiomatisierung der Fregeschen Aussagekalkiile, Leipzig, 1943. 
SKOLEM, T. Ober einige Grundlagenfragen der Mathematik, Skrifter utgitt av Det 

Norske Videnskaps-Akademi, Oslo, 1929. 
SOBOCINSKI, B. (1) Aksjomatyzacja implikacyjno-Konjunkcyjnej teorii dedukcji, Przegl. 

Filozoficzny, 38, 1935. 
SOBOCINSKI, B. (2) Aksjomatyzacja pewnych wielowartosciowych system6w teorii 

deduckji (Axiomatization of some polyvalent systems of the theory of deduction) 
Rocznicki Zrzesz. asyst. Uniw. J. P. Warszawa, 1936. 

SOBOCINSKI, B. (3) An Investigation of Protothetic, Edit. de l'Instit. d'Etudes Polon. 
en Belgique, Brussels, 1949. 

SUPPES, P. Introduction to Logic, New York, 1957. 
TARSKI, A. (1) Fundamentale Begriffe der Methodologie der deduktiven Wissenschaften, 

Monatshefte, f. Math. u. Phys. 37, 1930. 
TARSKI, A. (2) Der Wahrheitsbegriff in den formalisierten Sprachen, Studia Philos. 

(Lw6w) I, 1935. 
TARSKI, A. (3) Wahrscheinlichkeitslehre und mehrwertige Logik, Erkenntnis 5, 1936. 
TARSKI, A. (4) Grundziige des Systemenkalkiils I, Fundam. Math. 25-26,1935-36. 
TARSKI, A. (5) On the Calculus of Relations, JSL 6, 1941. 
TARSKI, A. (6) Introduction to Logic and to Methodology of deductive Sciences, New 

York,1941. 
TARSKI, A. (7) Logic, Semantics, Metamathematics. Papers from 1923 to 1938, trans. 

J. H. Woodger, Oxford, 1956. 
TARSKI, A. (8) and R. ROBINSON, Undecidable Theories, Amsterdam, 1953. 
THOMAS, Ivo (1) Logic and Theology, Dominican Studies I (1948). 
THOMAS, Ivo (2) CS(n): An extension ofCS, Dominican Studies II (1949). 
THoMAS, Ivo (3) A New Decision Procedure for Aristotle's Syllogistic, Mind, 61, 1952. 
THOMAS, Ivo (4) The Faris System and Syllogistic, JSL 20, 1955. 
'fuRING, A. M. The Use of Dots as Brackets in Church's System, JSL 7, 1942. 
USHENKO, A. M. The Problems of Logic, London, 1941. 
WAJSBERG, M. Aksjomatyzacja trojwartsciowego rachunku zdafl (Axiomatization of 

the three-valued calculus of sentences), C. r. Soc. Sc. et Lettres de Varsovie, 24, 
1931. 

WEDBERG, A. The Aristotelian Theory of Classes, Ajatus, Eripainos Filosofisen 
Yhdistuksa, Vuosikirjada (Helsinki) V (1948), p. 299 if. 

WHITEHEAD, Cf. PM. 

99 



BIBLIOGRAPHY 

WIENER, N. A Simplification of the Logic of Relations, Proc. Cambr. Philos. Soc. 17, 
1912/14. 

WITTGENSTEIN, L. Tractatus Logico-Philosophicus, London, 1922, repro London 1951. 
WRIGHT, G. H. VAN (1) An Essay in Modal Logic, Amsterdam, 1951. 
WRIGHT, G. H. VAN (2) A New System of Modal Logic, Actes du Xleme Congr. Int. 

de Philos. Bruxelles, 1953, Vol. V, p. 59 ff. 
WOODGER, J. H. (1) The Axiomatic Method in Biology (with appendix by Tarski), 

Cambridge, 1937. 
WOODGER, J. H. (2) The Formulation of a Psychological Theory, Erkenntnis 7, 1937. 
WOODGER, J. H. (3) The Technique of Theory Construction, Intern. Encyc. Unified Sci. 

Il/5, Chicago, 1935. 
WOODGER, J. H. (4) Biology and Language, Cambridge, 1952. 
ZERMELO, E. Untersuchungen iiber die Grundlagen der Mengenlehre, Math. Ann. 65, 

1908. 

100 




