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Preface

This Gentle Introduction is work in progress, developing my earlier ‘Notes on

Basic Category Theory’ (2014–15).

The gadgets of basic category theory fit together rather beautifully in mul-

tiple ways. Their intricate interconnections mean, however, that there isn’t a

single best route into the theory. Different lecture courses, different books, can

quite appropriately take topics in very different orders, all illuminating in their

different ways. In the earlier Notes, I roughly followed the order of somewhat

over half of the Cambridge Part III course in category theory, as given in 2014

by Rory Lucyshyn-Wright (broadly following a pattern set by Peter Johnstone;

see also Julia Goedecke’s notes from 2013). We now proceed rather differently.

The Cambridge ordering certainly has its rationale; but the alternative ordering

I now follow has in some respects a greater logical appeal. Which is one reason

for the rewrite.

Our topics, again in different arrangements, are also covered in (for example)

Awodey’s good but uneven Category Theory and in Tom Leinster’s terrific –

and appropriately titled – Basic Category Theory. But then, if there are some

rightly admired texts out there, not to mention various sets of notes on category

theory available online (see here), why produce another introduction to category

theory?

I didn’t intend to! My goal all along has been to get to understand what light

category theory throws on logic, set theory, and the foundations of mathematics.

But I realized that I needed to get a lot more securely on top of basic category

theory if I was eventually to pursue these more philosophical issues. So my earlier

Notes began life as detailed jottings for myself, to help really fix ideas: and then

– as can happen – the writing has simply taken on its own momentum. I am still

concentrating mostly on getting the technicalities right and presenting them in a

pleasing order: I hope later versions will contain more motivational/conceptual

material.

What remains distinctive about this Gentle Introduction, for good or ill, is

that it is written by someone who doesn’t pretend to be an expert who usually

operates at the very frontiers of research in category theory. I do hope, however,

that this makes me rather more attuned to the likely needs of (at least some)

beginners. I go rather slowly over ideas that once gave me pause, spend more
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Preface

time than is always usual in motivating key ideas and constructions, and I have

generally aimed to be as clear as possible (also, I assume rather less background

mathematics than Leinster or even Awodey). We don’t get terribly far: however,

I hope that what is here may prove useful to others starting to get to grips

with category theory. My own experience certainly suggests that initially taking

things at a rather gentle pace as you work into a familiarity with categorial ways

of thinking makes later adventures exploring beyond the basics so very much

more manageable.
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0 A very short introduction

In putting together the present version of this Gentle Introduction, my first

concern is to get the treatment of some basic category theory into decent shape.

I eventually want to provide rather more scene-setting, and say something at the

outset about the concept of a mathematical structure and also about the non-

set-theorist’s everyday working conception of sets. But these extras will have to

wait. I’m therefore going to be very brisk in this introductory chapter – but I

hope forgivably so for now.

0.1 Why categories?

Here is a fundamental insight: we can think of a family of mathematical struc-

tures equipped with structure-preserving maps/morphisms/functions between

them as itself forming a further mathematical structure.

Take a basic example. Any particular group is a structure which comprises

some objects equipped with a ‘multiplication’ operation on them obeying certain

familiar axioms. But we can also think of a whole family of groups, taken together

with appropriate maps between them (the homomorphisms which preserve group

structure), as forming a further structure-of-structures.

Take another example. A particular topological space is a structure, this time

comprising some objects, ‘points’, equipped with a topology, i.e. a collection of

sets of points, with the collection obeying certain closure conditions. But again

we can also think of a whole family of topological spaces, taken together with

certain maps between them (the continuous functions which preserve topological

structure), as forming another structure-of-structures.

We can now go on to investigate such structures-of-structures. And indeed,

we can go further and consider certain structure-preserving maps – or as they

say, functors – between them. Then going up another level, we can talk in turn

about operations mapping one such functor to another.

Category theory, crucially, gives us a way of dealing with these layers of in-

creasing abstraction. So if modern mathematics already abstracts (moving, for

example, from concrete geometries to abstract metric and topological spaces),

category theory comes into its own when we abstract again and then again. But

what, if anything, do we gain by going up another level or two of abstraction?
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A very short introduction

Tom Leinster gives a very nice answer:

Category theory takes a bird’s eye view of mathematics. From high

in the sky, details become invisible, but we can spot patterns that

were impossible to detect from ground level. (Leinster, 2014, p. 1)

Which already shows that there is reason enough for many mathematicians to

be interested in category theory.

What is the attraction for others? Well, category theory can be thought of as

a kind of generalized theory of maps or operations or functions. It is no surprise

then that it should be of concern to theoretical computer scientists whose stock

in trade is exactly such things.

Again, those philosophers interested in questions about the sense in which

modern pure mathematics is a study of abstract structures will want to know

what light category theory can shed. Rather more generally, the theory should

perhaps appeal to a certain philosophical temperament. For many philosophers,

pressed for a short characterization of their discipline, like to quote a famous

remark by Wilfrid Sellars,

The aim of philosophy, abstractly formulated, is to understand how

things in the broadest possible sense of the term hang together in

the broadest possible sense of the term. (Sellars, 1963, p. 1)

This conception sees philosophy not as the self-indulgent pursuit of linguistic

games or as providing obscurely edifying discourse but as continuous with other

serious enquiries, seeking to develop an overview of how their various subject-

matters are interrelated. Category theory has a claim to provide part of that

overview, as it explores the logical geography of aspects of abstract mathematics.

There are solid reasons, then, for theorists pursuing various disciplines to take

an interest in category theory. However, some advocates have made much grander

claims for the novelty and fundamental importance of categorial insights. For

example, some proponents have suggested that category theory should replace

set theory in the role of, so to speak, the official foundations of mathematics. I

certainly make no such claims here at the outset. But after all, we can only be

in a position to assess the ambitions of such enthusiasts after we have made a

decent start on understanding category theory for its own sake.

0.2 What do you need to bring to the party?

Legend has it that over the doorway to Plato’s Academy was written ‘Let no one

ignorant of mathematics enter here’. The doorway to category theory needs to be

similarly inscribed. You will not be well placed to appreciate how category theory

gives us a story about the way different parts of modern abstract mathematics

hang together if you don’t already know some modern abstract mathematics.

2



0.3 Theorems as exercises

But don’t be sacred off! In fact, in this Gentle Introduction, we need not

presuppose any very detailed background. We’ll at most take it that you have

some very fragmentary snippets of knowledge e.g. of what a group is, what a

Boolean algebra is, what a topological space is, and some similar bits and pieces.

And if some later illustrative examples pass you by, don’t panic. I usually try to

give multiple examples of important concepts and constructs; so feel free simply

to skip those examples that don’t work for you.

I hope in due course to say a little more about the background that here we

have to take for granted. And it would be illuminating and relevant to explore

just how much set theory is or isn’t presupposed by mathematicians working

on (say) group theory or topology. After all, a group is standardly said to be

a set equipped with an operation obeying certain axioms (and conventionally,

operations or functions are also identified with sets): but how seriously do we

need to take this conventional set talk? But as I have indicated, such questions

will have to be shelved until a later version of this Gentle Introduction. For now,

we will talk about groups, topological spaces, etc. in the conventional way and

see where we get.

0.3 Theorems as exercises

There are currently no exercises in what follows – or at least, there are none

explicitly labeled as such. Maybe that’s another omission to be rectified later.

However, almost all the proofs of theorems in basic category theory are easy.

Very often, you just have to ‘do the obvious thing’: there’s little ingenious trickery

needed. But of course, what’s obvious will depend on your grasp on what going

on: that’s why I spend quite a bit of time on motivational asides. And even

when a result like the Yoneda Lemma takes a bit more work, I try to break

things down using intermediate lemmas so that each stage is as straightforward

to prove as possible.

So you can think of almost every theorem as in fact presenting you with an

exercise which you could, even should, attempt in order to fix ideas. The ensuing

proof which I spell out is then the answer (or at least, an answer) to the exercise.

For a few tougher theorems, I sometimes give preliminary hints about how the

argument ought to go. And I almost always work through proofs at a distinctly

gentle pace, as befits a Gentle Introduction.

0.4 Notation and terminology

I try to keep to settled notation and terminology, and where there are standard

alternatives often mention them too: so what I say here should match up easily

with other modern discussions of the same material.

‘Iff’, as usual, abbreviates ‘if and only if’. In addition to using the familiar ‘�’

as an end-of-proof marker, I use ‘C’ as an end-of-definition marker.
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1 Categories defined

We are going to be investigating the general idea of a family of structures with

structure-preserving maps between them: such a family is the paradigm of a

category.

But what can we say about a family-of-structures in the abstract? One very

general thought is this: if, within a family, we have a structure-preserving map

from A to B, and another structure-preserving map from B to C, then we should

to be able to compose these maps. That is to say, the first map followed by the

second should together count as a structure-preserving map from A to C.

What principles will govern such composition of maps? Associativity, surely.

Using obvious notation, given maps

A B C D
f g h

it really ought not matter how we carve up the journey from A to D. It ought

not matter whether we apply f followed by the composite g-followed-by-h, or

alternatively apply the composite f -followed-by-g and then afterwards apply h.

What else can we say at the same level of stratospheric generality about

structure-preserving maps? Very little indeed. Except that there presumably

will always be the limiting case of a ‘do nothing’ identity map, which applied to

any structure A leaves it untouched.

That apparently doesn’t give us very much to go on! But in fact it is already

enough to guide this chapter’s definition of categories, abstracting from the idea

of families-of-structures-with-maps-between-them. We then present some first

examples, and introduce categorial diagrams.1

1.1 The very idea of a category

Definition 1. A category C comprises two kinds of things:

(1) C -objects (which we will typically notate by ‘A’, ‘B’, ‘C’, . . . ).

(2) C -arrows (which we typically notate by ‘f ’, ‘g’, ‘h’, . . . ).

1Logicians already have a quite different use for ‘categorical’. So when talking about cat-
egories, I much prefer the adjectival form ‘categorial’, even though it is the minority usage.
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1.1 The very idea of a category

These objects and arrows are governed by the following axioms:

Sources and targets For each arrow f , there are unique associated objects src(f)

and tar(f), respectively the source and target of f, not necessarily distinct.

We write ‘f : A → B’ or ‘A
f−→ B’ to notate that f is an arrow with

src(f) = A and tar(f) = B.

Composition For any two arrows f : A→ B, g : B → C, where src(g) = tar(f),

there exists an arrow g ◦ f : A → C, ‘g following f ’, which we call the

composite of f with g.

Identity arrows Given any object A, there is an arrow 1A : A → A called the

identity arrow on A.

We also require the arrows to satisfy the following further axioms:

Associativity of composition. For any f : A → B, g : B → C, h : C → D, we

have h ◦ (g ◦ f) = (h ◦ g) ◦ f.
Identity arrows behave as identities. For any f : A → B we have f ◦ 1A = f =

1B ◦ f . C

Six quick remarks on terminology and notation:

(a) The objects and arrows of a category are very often called the category’s

data. That’s a helpfully neutral term if you don’t read too much into it,

and we will follow the common practice here.

(b) The labels ‘objects’ and ‘arrows’ for the two kinds of data are standard.

But note that the ‘objects’ in categories needn’t be objects at all in the

logician’s strict sense, i.e. in the sense which contrasts objects with entities

like relations or functions. There are categories whose ‘objects’ – in the

sense of the first type of data – are actually relations, and other categories

where they are functions.

(c) Borrowing familiar functional notation ‘f : A→ B’ for arrows in categories

is entirely natural given that arrows in many categories are (structure-

preserving) functions: indeed, that’s the paradigm case. But again, as we’ll

soon see, not all arrows are functions. Which means that not all arrows are

morphisms either, in the usual sense of that term. Which is why I rather

prefer the colourless ‘arrow’ to the equally common term ‘morphism’ for

the second sort of data in a category. (Not that that will stop me often

talking of morphisms or maps when context makes that natural!)

(d) In keeping with the functional paradigm, the source and target of an arrow

are very often called, respectively, the ‘domain’ and ‘codomain’ of the

arrow. But that usage has the potential to mislead when arrows aren’t

(the right kind of) functions, which is again why I prefer our terminology.

(e) Note the order in which we write the components of a composite arrow

(some from computer science do things the other way about). Our standard
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Categories defined

notational convention is again suggested by the functional paradigm. In a

category where f : A→ B, g : B → C are both functions, then (g ◦f)(x) =

g(f(x)). Occasionally, to reduce clutter, we may later allow ourselves to

write simply ‘gf ’ rather than ‘g ◦ f ’.

(f) In early chapters we will explicitly indicate which object an identity arrow

has as source and target, as in ‘1A’; eventually, again to reduce clutter,

we will allow ourselves simply write 1 when context makes it clear which

identity arrow is in question.

Our axioms suffice to ensure our first mini-result:

Theorem 1. Identity arrows on a given object are unique; and the identity arrows

on distinct objects are distinct.

Proof. Suppose A has identity arrows 1A and 1′A. Then applying the identity

axioms for each, 1A = 1A ◦ 1′A = 1′A.

For the second part, we simply note that A 6= B entails src(1A) 6= src(1B)

which entails 1A 6= 1B .

(As this illustrates, I will cheerfully label the most trivial of lemmas, the run-of-

the-mill propositions, the interesting corollaries, and the weightiest of results all

‘theorems’ without distinction.)

So every object in a category is associated with one and only one identity

arrow. And we can in fact pick out such identity arrows by the special way they

interact with all the other arrows. Hence we could in principle give a variant def-

inition of categories which initially deals just in terms of arrows. For an account

of how to do this, see Adámek et al. (2009, pp. 41–43). But I find this technical

trickery rather unhelpful. The central theme of category theory is the idea that

we should probe the objects in a category by considering the morphisms be-

tween them; but that surely need not mean writing the objects out of the story

altogether!

1.2 The category of sets

As noted in the Introduction, it is standard to think of a structure like a group

or a Boolean algebra or a topological space as being a set equipped with some

widgets (such as functions or relations or a collection of subsets or the like).

So, we will expect some paradigm examples of categories to have as objects

sets-equipped-with-widgets, and the arrows between such objects will then be

suitable functions between these carrier sets which in some good sense ‘preserve

structure’.

We start in this section with an extremal case, where the sets in fact come

equipped with no additional structure. So:

(1) Set is the category with

6



1.2 The category of sets

objects: all sets.

arrows: given sets X,Y , every (total) set-function f : X → Y is an

arrow.

There’s an identity function on any set. Set-functions f : A→ B, g : B → C

(where the source of g is the target of f) always compose. And then the

axioms for being a category are evidently satisfied.

Three quick remarks:

(a) Note that the arrows in Set, like any arrows, must come with determi-

nate targets/codomains. But the standard way of treating functions set-

theoretically is simply to identify a function f with its graph f̂ , i.e. with

the set of pairs (x, y) such that f(x) = y. This definition is lop-sided in

that it fixes the function’s source/domain, the set of first elements in the

pairs, but it doesn’t determine the function’s target. (For a quite trivial

example, consider the Set-arrows z : N → N and z′ : N → {0} where both

send every number to zero. Same graphs, but functions with different tar-

gets and correspondingly different properties – the second is surjective, the

first isn’t.)

Perhaps set theorists themselves ought really to identity a set-function

f : A → B with a triple (A, f̂ , B). But be that as it may, that’s how

category theorists can officially regard arrows f : A→ B in Set.

(b) We should remind ourselves why there is an identity arrow for ∅ in Set.
Vacuously, for any target set Y , there is exactly one set-function f : ∅ → Y ,

i.e. the one whose graph is the empty set. Hence in particular there is a

function 1∅ : ∅ → ∅.
Note that in Set, the empty set is in fact the only set such that there

is exactly one arrow from it to any other set. This gives us a nice first

example of how we can characterize a significant object in a category not

by its internal constitution, so to speak, but by what arrows it has to and

from other objects. Much more on this sort of point later.

(c) The function idA : A → A defined by idA(x) = x evidently serves in the

category Set as the (unique) identity arrow 1A.

We can’t say that, however, in pure category-speak. Still, we can do

something that comes to the same. Note first that we can define singletons

in Set by relying on the observation that there is exactly one arrow from

any object to a singleton. So now choose a singleton, it won’t matter which

one. Call your chosen singleton ‘1’. And consider the possible arrows (i.e.

set-functions) from 1 to A.

We can represent the arrow from 1 to A which sends the element of the

singleton 1 to x ∈ A as ~x : 1→ A (the over-arrow here is simply a helpful

reminder that we are indeed notating an arrow). Then there is evidently a

one-one correspondence between these arrows ~x and the elements x ∈ A.

7



Categories defined

So talk of such arrows ~x is available as a category-speak surrogate for

talking about elements x of A. Hence now, instead of saying idA(x) = x

for all elements x of A, we can say that for any arrow ~x : 1 → A we have

1A ◦ ~x = ~x.

Again, more on this sort of thing in due course: but it gives us another

glimpse ahead of how we might trade in talk of sets-and-their-elements for

categorial talk of sets-and-arrows-between-them.

So far, so straightforward. But there is a more substantive issue about this

standard first example of a category that we really shouldn’t just pass by in

silence. For we can ask: exactly what category do we have in mind here when

talking about Set? – we haven’t been explicit. For a start, what kind of sets are

its objects? Pure sets, or do we allow sets with urelements, i.e. with members

which aren’t themselves sets? And are these sets to be thought of as governed by

the axioms of ZFC (or the version of this that allows urelements)? What about

taking a universe of sets better described by a rival set theory like Quine’s NF

(or NFU, the version with urelements again)?

The answers will matter later for various purposes. But we cannot pause over

them now or we’ll never get started! So take your favoured conception of the

universe of sets needed by working mathematicians: its objects and functions

should assuredly satisfy at least the modest requirements for constituting a cat-

egory. Therefore, for the moment, you can just interpret our talk of sets and the

category Set in your preferred way. But we will need to return to the issue.

1.3 More examples

Let’s continue, then, with our examples of categories. And now we can go more

briskly:

(2) There is a category FinSet whose objects are the hereditarily finite sets (i.e.

sets with at most finitely many members, these members in turn having

at most finitely many members, which in turn . . . ), and whose arrows are

the set-functions between such objects.

(3) Pfn is the category of sets and partial functions. Here, the objects are

all the sets again, but an arrow f : A → B is a function not necessarily

everywhere defined on A (one way to think of such an arrow is as a total

function f : A′ → B where A′ ⊆ A). Given arrows-qua-partial-functions

f : A → B, g : B → C, their composition g ◦ f : A → C is defined in the

obvious way, though you need to check that this indeed makes composition

associative.

(4) Set? is the category (of ‘pointed sets’) with

8



1.3 More examples

objects: all the non-empty sets, with each set A having a distinguished

member ?A (or equivalently, think of each A as equipped with a zero-

place function picking out some ?A ∈ A).

arrows: all the total functions f : A→ B which map the distinguished

member ?A to the distinguished member ?B , for any objects A,B.

As we’ll show later, Pfn and Set? are in a good sense equivalent categories (it is

worth pausing to think why we should expect that).

Now, picking out a single distinguished object, as in Set?, is about the least

we can do by way of imposing structure on a set. We turn next to consider cases

of sets equipped with rather more structure:

(5) Here’s the usual definition of a monoid (M, ·, 1M ). It is a pointed setM with

a distinguished element 1M , equipped with a two-place ‘multiplication’

function mapping elements to elements. It is required that (i) this function

is associative, i.e. for all elements a, b, c ∈M , (a · b) · c = a · (b · c), and (ii)

the designated element 1M acts as a unit, i.e. is such that for any a ∈M ,

1M · a = a = a · 1M . Then Mon is a category with

objects: all monoids,

arrows: for (M, ·, 1M ), (N,×, 1N ) among the monoids, any monoid

homomorphism f : M → N is an arrow – where a monoid homomor-

phism is a map between the carrier sets which respects ‘multiplica-

tion’, i.e. for any x, y ∈M , f(x ·y) = f(x)×f(y), and which preserves

identity elements, i.e. f(1M ) = 1N .

In this category, the identity arrow on (M, ·, 1M ) is the identity function

on the carrier set M (which is trivially a homomorphism from the monoid

to itself); and composition of arrows is, of course, composition of homo-
morphisms.

Now, equip any non-empty set with a distinguished element and with the trivial

multiplication operation which sends any two elements to that distinguished

element and, lo and behold, we have a monoid. Hence, on natural assumptions,

there are at least as many monoids as sets. Therefore any questions about which

sets to believe in carry over to become questions about which structures are

covered by ‘all monoids’. But again for now we are shelving such issues.

To continue:

(6) Mon is just the first of a family of similar algebraic cases, where the objects

are sets equipped with some functions and the arrows are maps preserving

that structure. We also have:

(i) Grp, the category of groups (the family of structures we mentioned at

the very outset, in §0.1 – except we now officially think of a group as

comprising a pointed set of objects equipped with a suitable opera-

tion). Here, we have

9
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objects: all groups,

arrows: group homomorphisms (preserving group structure)

(ii) Ab, the category with

objects: all abelian groups,

arrows: group homomorphisms.

(iii) Rng, the category with

objects: all rings,

arrows: ring homomorphisms.

(iv) Bool, the category with

objects: all Boolean algebras,

arrows: structure-preserving maps between these algebras.

And so it goes!

(7) The category Rel again has naked sets as objects, but this time an arrow

A→ B in Rel is (not a function but) any relation R between A and B. We

can take this officially to be a triple (A, R̂,B), where the graph R̂ ⊂ A×B
is the set of pairs (a, b) such that aRb.

The identity arrow on A is then the diagonal relation with the graph

{(a, a) | a ∈ A}. And S ◦R : A→ C, the composition of arrows R : A→ B

and S : B → C, is defined by requiring aS◦Rc if and only if ∃b(aRb∧bSc).
It is easily checked that composition is associative.

So here we have our first example where the arrows in a category are

not functions.

(8) The monoids as objects together with all the monoid homomorphisms as

arrows form a (very large!) category Mon. But now observe the impor-

tant fact that any single monoid taken just by itself can be thought of as

corresponding to a (perhaps very small) category.

Thus take the monoid (M, ·, 1M ). Define M to be the corresponding

category with data

the sole object of M : just some object – choose whatever you like,

and dub it ‘?’.

arrows of M : the elements of the monoid M .

The identity arrow 1? of M is then the identity element 1M of the monoid

M . And the composition m ◦ n : ? → ? of two arrows m : ? → ? and

n : ? → ? (those arrows being just the elements m,n ∈ M) is m · n. It is

trivial that the axioms for being a category are satisfied. So we can think

of any monoid as a one-object category.

Conversely, a one-object category gives rises to an associated monoid,

and we can think of categories as, in a sense, generalized monoids.

Note in this case, unless the elements of the original monoid M are

themselves functions, the arrows of the associated category M are again

not themselves functions or morphisms in any ordinary sense.

10



1.3 More examples

(9) Ord is a category, with

objects: the pre-ordered sets. Recall, a set S is pre-ordered iff equipped

with an order 4 where for all x, y ∈ S, x 4 x, and x 4 y ∧ y 4 z →
x 4 z. We represent the resulting pre-ordered set (S,4).

arrows: monotone maps – i.e. maps f : S → T , from the carrier set of

(S,4) to the carrier set of (T,v), such that if x 4 y then f(x) v f(y).

(10) Note too that any single pre-ordered set can also itself be regarded as a

category (this time, a category with at most one arrow between any two

objects). For corresponding to the pre-ordered set (S,4), we will have a

category S , where

the objects of S are just the members of S,

an arrow from S from source C to target D is just an ordered pair

of objects (C,D) such that C 4 D.

We then put 1C = (C,C) and define composition by setting (D,E) ◦
(C,D) = (C,E).

It is trivial that this satisfies the identity and associatively axioms. Con-

versely, any category S whose objects form a set S and where there is

at most one arrow between objects can be regarded as a pre-ordered set

(S,4) where for C,D ∈ S, C 4 D just in case there is an arrow from C to

D of S .

We can thus call a category with at most one arrow between objects a

pre-order category or simply a thin category.

(11) A closely related case to Ex. (9): Poset is the category with

objects: the posets – S is a poset iff equipped with a partial order

4, i.e. with a pre-order which satisfies the additional anti-symmetry

constraint, i.e. for x, y ∈ S, x 4 y ∧ y 4 x→ x = y.

arrows: monotone maps.

And exactly as each pre-ordered set can be regarded as category, so each

individual poset can be regarded as a category, a poset category.

(12) Now for another paradigm case, as central to the developement of category

theory as the cases of algebraic categories like Mon and Grp. Top is the

category with

objects: all the topological spaces,

arrows: the continuous maps between spaces.

(13) Met is also a category: this has

objects: metric spaces, which we can take to be a set of points S

equipped with a real metric d,

arrows: the non-expansive maps, where – in an obvious shorthand no-

tation – f : (S, d)→ (T, e) is non-expansive iff d(x, y) ≥ e(f(x), f(y)).

11



Categories defined

(14) Vectk is a category with

objects: vector spaces over the field k (each such space is a set of

vectors, equipped with vector addition and multiplication by scalars

in the field k),

arrows: linear maps between the spaces.

(15) A logical example. Suppose T is a formal theory (the details don’t matter

for our example, so long as you can chain proofs in a standard sort of way).

Then there is a category DerT with

objects: sentences ϕ,ψ, . . . of the formal language of T ,

arrows: there is an arrow d : ϕ→ ψ iff T, ϕ ` ψ, i.e. there is a formal

derivation in the formal theory T of the conclusion ψ given ϕ as

premiss.

For those who already know about such beasts as e.g. sheaves, schemes, or sim-

plicial sets, there are categories of those too, in each case comprising the relevant

objects equipped with predictable structure-preserving maps as arrows. But we

won’t pause over such exotica: instead let’s finish with a few much simpler cases:

(16) For any collection of objects M , there is a discrete category on those ob-

jects. This is the category whose objects are just the members of M , and

which has as few arrows as possible, i.e. just the identity arrow for each

object in M .

(17) For convenience, we allow the empty category, with zero objects and zero

arrows. Otherwise, the smallest discrete category is 1 which has exactly

one object and one arrow (the identity arrow on that object). Let’s picture

it in all its glory!

•

But should we talk about the category 1? Won’t different choices of

object make for different one-object categories? Well, yes and no! We

can have, in our mathematical universe, different cases of single objects

equipped with an identity arrow – but they will be indiscernible from within

category theory. So as far as category theory is concerned, they are all ‘the

same’.

Compare a familiar sort of case from elsewhere in mathematics. There

will be many concrete groups which have the right structure to be e.g. a

Klein four-group. But they are group-theoretically indiscernible by virtue

of being isomorphic. So we take them, for many purposes, to be ‘the same’

and talk of the Klein four-group. (We’ll need to say more about this.)
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1.4 Diagrams

(18) And having mentioned the one-object category 1, here’s another very small

category, this time with two objects, the necessary identity arrows, and one

further arrow between them. We can picture it like this:

• ?

Call this category 2. We can think of the von Neumann ordinal 2, i.e.

the set {∅, {∅}}, as giving rise to this category when it is considered as a

poset with the subset relation as the ordering relation. Other von Neumann

ordinals, finite and infinite, similarly give rise to other poset categories.

And that will do for the moment as an introductory list. There is no shortage

of categories, then!

Indeed we might well begin to wonder whether it is just too easy to be a

category. If such very different sorts of structures as e.g. a particular small poset

on the one hand and the whole universe of topological spaces on the other hand

equally count as categories, how much mileage can there be general theorizing

about categories and their interrelations? Well, that’s exactly what we hope to

find out over the coming chapters.

1.4 Diagrams

We can graphically represent categories in a very natural way – we’ve just seen a

couple of trivial mini-examples. And in particular, we can represent facts about

the equality of arrows using so-called commutative diagrams. We’ll be using

diagrams a great deal: so we’d better say something about them straight away.

Talk of diagrams is in fact used by category theorists in three related ways.

In §15.1 we will give a sharp formal characterization of one notion of diagram.

For the moment, we can be more informal and work with two looser but more

immediately intuitive notions:

Definition 2. A representational diagram is a ‘graph’ with nodes representing

objects from a given category C , and drawn arrows between nodes representing

arrows of C . Nodes and drawn arrows are usually labelled.

Two nodes in a diagram can be joined by zero, one or more drawn arrows. A

drawn arrow labelled ‘f ’ from the node labeled ‘A’ to the node labeled ‘B’ of

course represents the arrow f : A → B of C . There can also be arrows looping

from a node to itself, representing the identity arrow on an object or some other

‘endomorphism’ (i.e. other arrow whose source and target is the same). C

Definition 3. A diagram in a category C is what is represented by a represen-

tational diagram – i.e. is some C -objects and C -arrows between them. C

I’m being a little pernickety in distinguishing the two ideas here, the diagram-as-

picture, and the diagram-as-what-is-pictured. But having made the distinction,

13
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we will rarely need to fuss about it, and can let context determine a sensible

reading of informal claims about diagrams.

An important point is that diagrams (in either sense) needn’t be full. That is

to say, a diagram-as-a-picture need only show some of the objects and arrows

in a category; and a diagram-as-what-is-pictured need only be a fragment of the

category in question.

Now, within a drawn diagram, we may be able to follow a directed path

through more than two nodes, walking along the connecting drawn arrows (from

source to target, of course). So a path in a representational diagram from node

A to node E (for example) might look like this

A
f−→ B

g−→ C
h−→ D

j−→ E

And we will call the represented composite arrow j ◦h◦g ◦f the composite along

the path. (We know that the composite must exist, and also that because of the

associativity of composition we needn’t worry about bracketing here. Indeed,

henceforth we freely insert or omit brackets, doing whatever promotes local clar-

ity. And for convenience, we’ll allow ‘composite’ to cover the one-arrow case.)

Then we say:

Definition 4. A category diagram commutes if for any two directed paths along

edges in the diagram from a node X to the node Y , the composite arrow along

the first path is equal to the composite arrow along the second path. C

Hence, for example, the associativity law can be represented by saying that the

following diagram commutes:

A B

C D

f

g ◦ f
g

h ◦ g

h

Each triangle commutes by definition of composition; and the commutativity

axiom amounts then to the claim that we can paste such triangles together to

get a larger commutative diagram.

But note: to say a given diagram commutes is just a vivid way of saying that

certain identities hold between composites – it is the identities that matter. And

note too that merely drawing a diagram with different routes from e.g. A to D in

the relevant category doesn’t always mean that we have a commutative diagram

– the identity of the composites along the paths in each case has to be argued

for!
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2 Categories beget categories

We have already seen that categories are very plentiful. But we certainly aren’t

done yet in giving examples of categories. And in this chapter we describe a

number of general methods for constructing new categories from old, methods

which can then be applied and re-applied to our existing examples to get many

more. (We’ll meet further construction methods later, but these first ones will

be enough to be going on with.)

2.1 Duality

An easy but particularly important way of getting one category from another is

to reverse all the arrows. More carefully:

Definition 5. Given a category C , then its opposite or dual C op is the category

such that

(1) The objects of C op are just the objects of C again.

(2) If f is an arrow of C with source A and target B, then f is also an arrow

of C op but now it is assigned source B and target A.

(3) Identity arrows remain the same, i.e. 1opA = 1A.

(4) Composition-in-C op is defined in terms of composition-in-C by putting

f ◦op g = g ◦ f . C

It is trivial to check that this definition is in good order and that C op is indeed

a category. And it is trivial to check that (C op)op is C . So every category is the

opposite of some category.

Do be careful here, however. Take for example Setop. An arrow f : A → B

in Setop is the same thing as an arrow f : B → A in Set, which is of course

a set-function from B to A. But this means that f : A → B in Setop typically

won’t be a function from its source to its target – it’s an arrow in that direction

but usually only a function in the opposite one! (This is one of those cases

where talking of ‘domains’ and ‘codomains’ instead of ‘sources’ and ‘targets’

could initially encourage confusion, since the ‘domain’ of an arrow in Setop is its

codomain as a function.)
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Setop is in fact a very different sort of category to Set; and indeed, in general,

taking the opposite category gives us something essentially new. But not always.

Consider the category Relop, for example, and just remember that every relation

comes as one of a pair with its converse or opposite.

Take L to be the elementary pure language of categories. This will be a

two-sorted first-order language with identity, with one sort of variable for ob-

jects, A,B,C . . ., and another sort for arrows f, g, h, . . .. It has built-in function-

expressions ‘src’ and ‘tar ’ (denoting two operations taking arrows to objects),

a built-in relation ‘. . . is the identity arrow for . . . ’, and a two place function-

expression ‘. . . ◦ . . . ’ which expresses the function which takes two composable

arrows to another arrow.

Definition 6. Suppose ϕ is a wff of L . Then its dual ϕop is the wff you get by

(i) swapping ‘src’ and ‘tar ’ and (ii) reversing the order of composition, so ‘f ◦ g’

becomes ‘g ◦ f ’, etc. C

Now, the claim that C op is a category just reflects the fact that the duals of

the axioms for a category are also axioms. And that observation gives us the

following duality principle:

Theorem 2. Suppose ϕ is an L -sentence (a wff with no free variables) – so

ϕ is a general claim about objects/arrows in an arbitrary category. Then if the

axioms of category theory entail ϕ, they also entail the dual claim ϕop.

Since we are dealing with a first-order theory, syntactic and semantic entailment

come to the same, and we can prove the theorem either way:

Syntactic proof. If there’s a first-order proof of ϕ from the axioms of category

theory, then by taking the duals of every wff in the proof we’ll get a proof of

ϕop from the duals of the axioms of category theory. But those duals of axioms

are themselves axioms, so we have a proof of ϕop from the axioms of category

theory.

Semantic proof. If ϕ always holds, i.e. holds in every category C , then ϕop will

hold in every C op – but the C ops comprise every category again, so ϕop also

holds in every category.

The duality principle is very simple but also a hugely labour-saving result;

we’ll see this time and time again, starting in the next chapter.

2.2 Subcategories, product and quotient categories

Three familiar ways of getting new widgets from old are by taking subwidgets,

forming products of widgets, and quotienting by an equivalence relation. We can

do all these with categories.
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2.2 Subcategories, product and quotient categories

(a) The simplest way of getting a new category is by slimming down an old

one:

Definition 7. Given a category C , if S consists of the data

(1) objects: some or all of the C -objects,

(2) arrows: some or all of the C -arrows,

subject to the conditions

(3) for each S -object C, the C -arrow 1C is also an S -arrow,

(4) for any S -arrows f : C → D, g : D → E, the C -arrow g ◦ f : C → E is

also an S -arrow,

then, with composition of arrows in S defined as in the original category C , S
is a subcategory of C . C

Plainly, the conditions in the definition – containing identity arrows for the

remaining objects and being closed under composition – are there to ensure that

the slimmed-down S is indeed still a category.

Some cases where we prune an existing category will leave us with unnatural

constructions of no particular interest. Other cases can be more significant, and

indeed we have already met some examples:

(1) Set is a subcategory of Pfn,

(2) FinSet is a subcategory of Set,

(3) Ab is a subcategory of Grp,

(4) The discrete category on the objects of C is a subcategory of C for any

category.

So, we can shed objects and/or arrows in moving from a category to a subcat-

egory. In examples (1) and (4) we keep all the objects but shed some or all of the

non-identity arrows. But cases (2) and (3) are ones where we drop some objects

while keeping all the arrows between those objects retained in the subcategory,

and there is a standard label for such cases:

Definition 8. If S is a subcategory of C where, for all S -objects A and B, the

S -arrows from A to B are all the C -arrows from A to B, then S is said to be

a full subcategory of C . C

We’ll meet more cases of full subcategories later.

(b) It is also easy to form products of categories:

Definition 9. If C and D are categories, then the product category C × D is

such that:

(1) Its objects are pairs (C,D) where C is a C -object and D is a D-object;
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(2) Its arrows (f, g) : (C,D)→ (C ′, D′) are pairs (f, g) where f : C → C ′ is a

C -arrow and g : D → D′ is a D-arrow.

(3) For each pair (C,D) we define the identity arrow on this object by putting

1(C,D) = (1C , 1D);

(4) Composition is defined componentwise in the obvious way: (f, g)◦(f ′, g′) =

(f ◦C f ′, g ◦D g′). C

It is trivial to check that this is a category.

(c) For quotients, we first say:

Definition 10. The relation ∼ is a congruence on the arrows of the category C iff

it is an equivalence relation which respects composition. That is to say, f ∼ g is

an equivalance such that (i) if f ∼ g, then src(f) = src(g) and tar(f) = tar(g),

and (ii) if f ∼ g, then f ◦ h ∼ g ◦ h and k ◦ f ∼ k ◦ g whenever the composites

are defined. C

Then things again go as you would expect:

Definition 11. Suppose C is a category, and suppose ∼ is a congruence on its

arrows. Then C /∼ is the category whose objects are the same as those of C and

whose arrows are the ∼-equivalence classes (with such a class having its source

and target as an arrow inherited from the arrows in the class). C

We’ve defined the notion of congruence so that it becomes trivial to check that

C /∼ is indeed a category (assuming that our ambient set theory indeed allows

us to form the required equivalence classes).

For a natural example, take the category Top; and consider the congruence ∼
which holds between two of its arrows, i.e. two continuous maps between spaces,

when one map can be continuously deformed into the other, i.e. there is a so-

called homotopy between the maps. Then Top/∼ is the important homotopy

category hTop.

2.3 Arrow categories and slice categories

(a) For the moment, for future reference, we will mention just two more ways

of deriving a new category from an old one. First:

Definition 12. Given a category C , the derived arrow category C→ has the

following data:

(1) C→’s objects, its first sort of data, are simply the arrows of C ,

(2) Given C→-objects f1, f2 (i.e. C -arrows f1 : X1 → Y1, f2 : X2 → Y2), a

C→-arrow f1 → f2 is a pair (j, k) of C -arrows such that the following

diagram commutes:
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X1 X2

Y1 Y2

j

f1 f2

k

The identity arrow on f : X → Y is defined to be the pair (1X , 1Y ). And com-

position of arrows (j, k) : f1 → f2 and (j′, k′) : f2 → f3 is then defined in the

obvious way to be (j′ ◦ j, k′ ◦ k) : f1 → f3 (just think of pasting together two of

those commuting squares). C

It is straightforward to check that this definition does indeed characterize a

category.

There are moderately fancy examples of arrow categories which do arise toler-

ably naturally e.g. in topology, but we won’t delay over them now. We mention

such categories here mainly to reinforce the point that what makes given data

count as objects rather than arrows in a category is not a matter of intrinsic

nature but of the role they play.

(b) Suppose next that C is a category, and I a particular C -object. We next

define a new category from C , the so-called ‘slice’ category C /I, where each of

the new category’s objects involves pairing up C ’s objects A with a C -arrow

f : A→ I.

Now, if C /I’s objects are pairs (A, f), what can be a C /I-arrow from (A, f)

to (B, g)? Well, we’ll surely need a C -arrow j which sends A to B. However, not

any old arrow j : A→ B will do: we’ll need j to interact appropriately with the

arrows f and g.

This leads to the following definition (and to keep things clear but brief, let’s

use ‘arrowC ’ to refer to the old arrows and reserve plain ‘arrow’ for the new

arrows to be found in C /I):

Definition 13. Let C be a category, and I be a C -object. Then the category

C /I, the slice category over I, has the following data:

(1) The objects are pairs (A, f) where A is an object in C , and f : A → I is

an arrowC .

(2) An arrow from (A, f) to (B, g) is an arrowC j : A→ B such that g ◦ j = f

in C .

(3) The identity arrow on (A, f) is the arrowC 1A : A→ A.

(4) Given arrows j : (A, f)→ (B, g) and k : (B, g)→ (C, h), their composition

k ◦ j : (A, f)→ (C, h) is the arrowC k ◦ j : A→ C. C

Of course, we need to check that these data do indeed together satisfy the axioms

for constituting a category. So let’s do that.
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A

I

B

f

j

g

Take the arrowsC f : A → I, g : B → I. There are corre-

sponding objects (A, f), (B, g) of C /I. And the arrows of C /I
from (A, f) to (B, g) will be the arrowsC like j : A→ B which

make our first diagram commute. (Note an important point:

the source and target of j as an arrow in C are respectively

A, B. But the source and target of j as an arrow in the slice

category C /I are respectively (A, f) and (B, g).)

A

B I

C

f
j

g

k
h

We now need to confirm that our definition of k ◦ j for

composing C /I-arrows works. We are given that j : A → B

is such that g ◦ j = f , and likewise that k : B → C is such

that h ◦ k = g. So putting things together we get our second

commutative diagram. Or in equations, we have (h◦k)◦j = f

in C , and therefore h◦(k◦j) = f . So (k◦j) does indeed count

as an arrow in C /I from f to h, as we require.

The remaining checks to confirm C /I satisfies the axioms

for being a category are then trivial.

(c) There’s a dual notion we can define here, namely the idea of a co-slice

category I/C (or the slice category under I). This category has as objects pairs

(A, f) where this time the arrow goes in the opposite direction, i.e. we have

f : I → A. Then the rest of the definition is as you would predict given our

explanation of duality: just go through the definition a slice category reversing

arrows and the order of composition. (Check that this works!)

(d) Here are two quick examples of slice and co-slice categories, one of each

kind (unlike arrow categories, naturally arising examples are easy to come by):

(1) Pick a singleton set ‘1’. We have mentioned before the idea that we can

think of any element x of X as an arrow ~x : 1→ X.

So now think about the co-slice category 1/Set. Its objects are the pairs

(X,~x). We can think of such a pair (X,~x) as a set with a selected distin-

guished element x; in other words, it’s a pointed set. And then the arrows

1/Set from some (X,~x) to (Y, ~y) are all the maps f : X → Y in Set such

that f ◦ ~x = ~y: so we can think of such maps as the maps which preserve

basepoints.

Hence 1/Set is (or at least, in some strong sense to be later explained,

comes to the same as) the category Set∗ of pointed sets.

(2) Second, take an n-membered index set In = {c1, c2, c3, . . . , cn}. Think of

the members of In as ‘colours’. Then a pair (S, c), where c is a morphism

S → In, can therefore be thought of as a set whose members are coloured

from that palette of n colours.

Hence we can think of FinSet/In as the category of n-coloured finite sets,

exactly the sort of thing that combinatorialists are interested in.
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More generally, we can think of a slice category Set/I as a category of

‘indexed’ sets, with I providing the indices.

(e) Defining the objects of a slice category C /I to be pairs (A, f) where the

arrow f has source A and target I involves, you might well think, a certain

inelegant redundancy. After all, the first element of the pair is required to be

the source of the second: so we wouldn’t lose anything if we defined the object

data of C /I more economically, just to be C -arrows f with target I.

True. And it is indeed at least as common officially to define slice categories

that way. Obviously nothing hangs on this, and we’ll in future treat the objects

in slice categories either way, as locally convenient.
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3 Kinds of arrows

This chapter characterizes a number of kinds of arrows in terms of how they in-

teract with other arrows in the relevant category. This will give us some elemen-

tary but characteristic examples of categorial, arrow-theoretic, (re)definitions of

familiar notions.

3.1 Monomorphisms, epimorphisms

(a) Take a set-function f : A→ B living as an arrow in Set: how could we say

that it is injective, i.e. one-one, using just category-speak about arrows?

We noted that we can think of elements x of f ’s domain A as arrows ~x : 1→ A

(where 1 is some singleton). Injectiveness then comes to this: f ◦~x = f ◦~y implies

~x = ~y, for any element-arrows ~x, ~y. Hence if a function is more generally ‘left-

cancellable’ in Set – meaning that, for any g, h, f ◦ g = f ◦ h implies g = h –

then it certainly has to be an injection.

Conversely, if f is injective as a set-function, then for all x, f(g(x)) = f(h(x))

implies g(x) = h(x) – which is to say that if f ◦ g = f ◦ h then g = h, i.e. f is

left-cancellable.

So that motivates introducing a notion with the following definition (the ter-

minology comes from abstract algebra):

Definition 14. An arrow f : C → D in the category C is a monomorphism (is

monic) if and only if it is left-cancellable, i.e. for every ‘parallel’ pair of maps

g : B → C and h : B → C, if f ◦ g = f ◦ h then g = h. C

We have just proved

Theorem 3. The monomorphisms in Set are exactly the injective functions.

And the same applies in many, but not all, other categories where arrows are

functions. For example, we have:

Theorem 4. The monomorphisms in Grp are exactly the injective group homo-

morphisms.

Proof. We can easily show as before that the injective group homomorphisms

are monomorphisms in Grp.
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3.1 Monomorphisms, epimorphisms

For the other direction, suppose that f : C → D is a group homomorphism

between the groups (C, ·, eC) and (D, ?, eD) but is not an injection.

We must then have f(c) = f(c′) for some c, c′ ∈ C where c 6= c′. Note that

f(c−1 · c′) = f(c−1) ? f(c′) = f(c−1) ? f(c) = f(c−1 · c) = f(eC) = eD.

So c−1 · c′ is an element in K ⊆ C, the kernel of f (i.e. K is the set of elements

that f sends to the unit of (D, ?, eD)). Since c 6= c′, we have c−1 · c′ 6= eC , and

hence K has more than one element.

Now define g : K → C to be the obvious inclusion map (which send an element

of K to the same element of C), while h : K → C sends everything to eC . Since

K has more than one element, g 6= h. But obviously, f ◦ g = f ◦ h (both send

everything in K to eD). So the non-injective f isn’t left-cancellable.

Hence, contraposing, if f is monic in Grp it is injective.

(b) Next, here is a companion definition:

Definition 15. An arrow f : C → D in the category C is an epimorphism (is

epic) if and only if it is right-cancellable, i.e. for every pair of maps g : D → E

and h : D → E, if g ◦ f = h ◦ f then g = h. C

Evidently, the notion of an epimorphism is dual to that of a monomorphism.

Hence f is right-cancellable and so epic in C if and only if it is left-cancellable

and hence monic in C op. And, again predictably, just as monomorphisms in the

category Set are injective functions, we have:

Theorem 5. The epimorphisms in Set are exactly the surjective functions.

Proof. Suppose f : C → D is surjective. And consider two functions g, h : D → E

where g 6= h. Then for some d ∈ D, g(d) 6= h(d). But by surjectivity, d = f(c)

for some c ∈ C. So g(f(c)) 6= h(f(c)), whence g ◦ f 6= h ◦ f . So contraposing, the

surjectivity of f in Set implies that if g ◦ f = h ◦ f , then g = h, i.e. f is epic.

Conversely, suppose f : C → D is not surjective, so f [C] 6= D. Consider two

functions g : D → E and h : D → E which agree on f [C] ⊂ D but disagree

on the rest of D. Then g 6= h, even though by hypothesis g ◦ f and h ◦ f will

agree everywhere on C, so f is not epic. Contraposing, if f is epic in Set, it is

surjective.

A similar result holds in many other categories, but in §3.3, Ex. (2), we’ll en-

counter a case where we have an epic function which is not surjective.

As the very gentlest of exercises, let’s add for the record a mini-theorem:

Theorem 6. (1) Identity arrows are always monic. Dually, they are always

epic too.

(2) If f , g are monic, so is f ◦ g. If f , g are epic, so is f ◦ g.

(3) If f ◦ g is monic, so is g. If f ◦ g is epic, so is f .
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Kinds of arrows

Proof. (1) is trivial.

For (2), we need to show that if (f ◦g)◦ j = (f ◦g)◦k, then j = k. So suppose

the antecedent. By associativity, f ◦ (g ◦ j) = f ◦ (g ◦ k). Whence, assuming f

is monic, g ◦ j = g ◦ k. Whence, assuming g is monic, j = k. Which establishes

that if f and g are monic, so is (f ◦ g).

Interchanging f and g, if f and g are monic, so is (g ◦f): applying the duality

principle it follows that f and g are epic, so is (f ◦ g).

For (3) assume f ◦g is monic. Suppose g◦j = g◦k. Then f ◦(g◦j) = f ◦(g◦k),

and hence (f ◦ g) ◦ j = (f ◦ g) ◦ k, so j = k. Therefore if g ◦ j = g ◦ k then j = k;

i.e. g is monic. Dually again for epics.

(c) We should note a common convention of using special arrows in repre-

sentational diagrams, a convention which we will follow occasionally but not

religiously:

f : C � D or C D
f

represents a monomorphism f ,

f : C � D or C D
f

represents an epimorphism.

As a useful mnemonic (well, it works for me!), just think of the alphabetic prox-

imity of ML and of PR: a monomorphism is left cancellable and its representing

arrow has an extra fletch on the left; while an epimorphism is r ight cancellable

and its representing arrow has an extra head on the r ight.

3.2 Inverses

(a) We define some more types of arrow:

Definition 16. Given an arrow f : C → D in the category C ,

(1) g : D → C is a right inverse of f iff f ◦ g = 1D.

(2) g : D → C is a left inverse of f iff g ◦ f = 1C .

(3) g : D → C is an inverse of f iff it is both a right inverse and a left inverse

of f . C

Three remarks. First, on the use of ‘left’ and ‘right’. Note that if we represent

the situation in (1) like this

D C D
g

1D

f

then f ’s right inverse g appears on the left! It is just a matter of convention that

we standardly describe handedness by reference to the representation ‘f ◦g = 1D’

rather than by reference to our diagram. (Similarly, of course, in defining left-

cancellability, etc.)
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3.2 Inverses

Second, note that g ◦ f = 1C in C iff f ◦op g = 1C in C op. So a left inverse in

C is a right inverse in C op. And vice versa. The ideas of a right inverse and left

inverse are therefore, exactly as you would expect, dual to each other; and the

idea of an inverse is dual to itself.

Third, if f has a right inverse g, then it is itself a left inverse (of g, of course!).

Dually, if f has a left inverse, then it is a right inverse.

It is obvious that an arrow f need not have a left inverse: just consider, for

example, those arrows in Set which are many-one functions. An arrow f can also

have more than one left inverse: for a miniature example in Set again, consider

f : {0, 1} → {0, 1, 2} where f(0) = 0, f(1) = 1. Then the map g : {0, 1, 2} →
{0, 1} is a left inverse so long as g(0) = 0, g(1) = 1, which leaves us with two

choices for g(2), and hence we have two left inverses.

By the duality principle, an arrow can also have zero or many right inverses.

However,

Theorem 7. If an arrow has both a right inverse and a left inverse, then these

are the same and are the arrow’s unique inverse.

Proof. Suppose f : C → D has right inverse r : D → C and left inverse s : D →
C. Then

r = 1C ◦ r = (s ◦ f) ◦ r = s ◦ (f ◦ r) = s ◦ 1D = s.

Or, to put it diagrammatically, the following commutes:

D C D Cr

1D

r

s

f

1C

s

Hence r = s and r is an inverse.

Suppose now that f has inverses r and s. Then in particular, r will be a right

inverse and s a left inverse for f , so as before r = s. Therefore inverses are

unique.

(b) By way of an aside, let’s remark that just as we can consider a particular

monoid as a category, in the same way we can consider a particular group as a

category. Take a group (G, ·, e) and define G to be the corresponding category

whose sole object is whatever you like, and whose arrows are the elements g of

G, with e the identity arrow. Composition of arrows in G is defined as group-

multiplication of elements in G. And since every element in the group has an

inverse, it follows immediately that every arrow in the corresponding category

has an inverse. So in sum, a group-as-a-category is a category with one object and

whose every arrow has an inverse. (And generalizing, a category with perhaps

more than one object but whose arrows all still have inverses is called a groupoid.)
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Kinds of arrows

(c) Now, how does talk of an arrow as a right inverse/left inverse hook up to

talk of an arrow as monic/epic?

Theorem 8. (1) In general, not every monomorphism is a right inverse; and

dually, not every epimorphism is a left inverse.

(2) But every right inverse is monic, and every left inverse is epic.

Proof. (1) can be shown by a toy example. Take the category 2 which we met

back in §1.3, Ex. (18) – i.e. take as a category the two-object category which

has just one non-identity arrow. That non-identity arrow is trivially monic and

epic, but it lacks both a left and a right inverse.

For (2), suppose f is a right inverse for e, which means that e◦f = 1 (suppress-

ing unnecessary labellings of domains and codomains). Now suppose f ◦g = f ◦h.

Then e◦f ◦ g = e◦f ◦h, and hence 1◦ g = 1◦h, i.e. g = h, so indeed f is monic.

Similarly for the dual.

So monics need not in general be right inverses nor epics left inverses. But how

do things pan out in the particular case of the category Set? Here’s the answer:

Theorem 9. In Set, every monomorphism is a right inverse apart from arrows

of the form ∅ → D. Also in Set, the proposition that every epimorphism is a left

inverse is (a version of) the Axiom of Choice.

Proof. Suppose f : C → D in Set is monic. It is therefore one-to-one between C

and f [C], so consider a function g : D → C that reverses f on f [C] and maps

everything in D−f [C] to some particular object in C. Such a g is always possible

to find in Set unless C is the empty set. So g ◦ f = 1C , and hence f is a right

inverse.

Now suppose f : C → D in Set is epic, and hence a surjection. Assuming the

Axiom of Choice, there will be a function g : D → C which maps each d ∈ D to

some chosen one of the elements c such that f(c) = d (but note that this time,

in the general case, we do have to make an infinite number of choices, picking

out one element among the pre-images of d for every d ∈ D: that’s why Choice

is involved). Given such a function g, f ◦ g = 1D, so f is a left inverse.

Conversely, suppose we have a partition of C into disjoint subsets indexed

by (exactly) the elements of D. Let f : C → D be the function which sends an

object in C to the index of the partition it belongs to. f is surjective, hence epic.

Suppose f is also a left inverse, so for some g : D → C, f ◦ g = 1D. Then g is

evidently a choice function, picking out one member of each partition. So the

claim that all epics have a left inverse gives us (one version of) the Axiom of

Choice.

(d) There is an oversupply of other jargon hereabouts, also in pretty common

use. We should note the alternatives for the record.

Assume we have a pair of arrows in opposite directions, f : C → D, and

g : D → C.
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3.3 Isomorphisms

Definition 17. If g ◦ f = 1C , then f is also called a section of g, and g is a

retraction of f . (In this usage, f is a section iff it has a retraction, etc.) C

Definition 18. If f has a left inverse, then f is a split monomorphism; if g has a

right inverse, then g is a split epimorphism. (In this usage, we can say e.g. that

the claim that every epimorphism splits in Set is the categorial version of the

Axiom of Choice.) C

Note that Theorem 8 tells us that right inverses are monic, so a split monomor-

phism is indeed properly called a monomorphism. Dually, a split epimorphism

is an epimorphism.

3.3 Isomorphisms

(a) Before we ever encounter category theory, we are familiar with the notion

of an isomorphism between structured sets (between groups, between topolog-

ical spaces, whatever): it’s a bijection between the sets which preserves all the

structure. In the extremal case, in the category Set of sets with no additional

structure, the bijections are the arrows which are both monic and epic. Can

we generalize from this case and define the isomorphisms of any category to be

arrows which are monic and epic there?

No. Isomorphisms properly so called need to have inverses. But being monic

and epic doesn’t always imply having an inverse. We can use again the toy case

of 2, or here’s a generalized version of the same idea:

(1) Take the category S corresponding to the pre-ordered set (S,4). Then

there is at most one arrow between any given objects of S . But if f ◦ g =

f ◦h, then g and h must share the same object as domain and same object

as codomain, hence g = h, so f is monic. Similarly f must be epic. But no

arrows other than identities have inverses.

The arrows in that example aren’t functions, however. So here’s a revealing case

where the arrows are functions but where being monic and epic still doesn’t

imply having an inverse:

(2) Consider the category Mon of monoids. Among its objects areN = (N,+, 0)

and Z = (Z,+, 0) – i.e. the monoid of natural numbers equipped with ad-

dition and the monoid of positive and negative integers equipped with

addition.

Let i : N → Z be the map which sends a natural number to the corre-

sponding positive integer. This map obviously does not have an inverse in

Mon. We can show, however, that it is both monic and epic.

First, suppose M = (M, ·, 1M ) is some monoid and we have two arrows

g, h : M→N , where g 6= h. There is then some element m ∈M such that

the natural numbers g(m) and h(m) are different, which means that the
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Kinds of arrows

corresponding integers i(g(m)) and i(h(m)) are different, so i ◦ g 6= i ◦ h.

Contraposing, this means i is monic in the category.

Second, again take a monoidM and this time consider any two monoid

homomorphisms g, h : Z →M such that g ◦ i = h ◦ i. Then g and h must

agree on all integers from zero up. But then note

g(−1) = g(−1) · 1M = g(−1) · h(0) = g(−1) · h(1 +−1)

= g(−1) · h(1) · h(−1) = g(−1) · g(1) · h(−1)

= g(−1 + 1) · h(−1) = g(0) · h(−1) = 1M · h(−1) = h(−1).

But if g(−1) = h(−1), then

g(−2) = g(−1+−1) = g(−1)·g(−1) = h(−1)·h(−1) = h(−1+−1) = h(−2),

and the argument iterates, so we have g(j) = h(j) for all j ∈ Z, positive

and negative. Hence g = h and i is right-cancellable, i.e. epic.

So in sum: we can’t define an isomorphism as an epic monic if isomorphisms are

to have the essential feature of invertibility.

(b) What to do? Build in invertibility from the start, and say:

Definition 19. An isomorphism (in category C ) is an arrow which has an inverse.

We conventionally represent isomorphisms by decorated arrows, thus: −→∼ . C

From what we have already seen, we know or can immediately check that

Theorem 10. (1) Identity arrows are isomorphisms.

(2) An isomorphism f : C −→∼ D has a unique inverse which we can call

f−1 : D −→∼ C, such that f−1 ◦ f = 1C , f ◦ f−1 = 1D, (f−1)−1 = f ,

and f−1 is also an isomorphism.

(3) If f and g are isomorphisms, then g ◦ f is an isomorphism if it exists,

whose inverse will be f−1 ◦ g−1.

Let’s immediately give some simple examples of isomorphisms in different cate-

gories:

(1) In Set, the isomorphisms are the bijective set-functions.

(2) In Grp, the isomorphisms are the bijective group homomorphisms.

(3) In Vectk, the isomorphisms are invertible linear maps.

(4) In a group treated as a category, every arrow is an isomorphism.

(5) But as we noted, in a pre-order category, the only isomorphisms are the

identity arrows.
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3.4 Isomorphic objects

(c) Isomorphisms are monic and epic by Theorem 8. And we now know that

arrows which are monic and epic need not be isomorphisms. However, we do

have this:

Theorem 11. If f is both monic and split epic (or both epic and split monic),

then f is an isomorphism.

Proof. If f is a split epimorphism, it has a right inverse, i.e. there is a g such

that f ◦ g = 1. Then (f ◦ g) ◦ f = f , whence f ◦ (g ◦ f) = f ◦ 1. Hence, given

that f is also mono, g ◦ f = 1. So g is both a left and right inverse for f , i.e. f

has an inverse. Dually for the other half of the theorem.

We will also mention another easy result in the vicinity:

Theorem 12. If f and g are both monic arrows with the same target, and each

factors through the other, i.e. there are i, j such that f = g ◦ i and g = f ◦ j,
then the factors i and j are isomorphisms and inverse to each other.

In other words, if each of the triangles in the following diagram commutes, then

so does the whole diagram:

X Y

Z

i

f

j

g

Proof. We have f ◦1X = f = g ◦ i = f ◦ j ◦ i. Hence, since f is monic, j ◦ i = 1X .

Similarly, i ◦ j = 1Y . So i and j are each other’s two-sided inverse, and both are

isomorphisms.

(d) Finally, we should mention a bit of standard terminology:

Definition 20. A category C is balanced iff every arrow which is both monic and

epic is in fact an isomorphism.

Then we have seen that some categories like Set are balanced, while others like

Mon are not. Top is another example of an unbalanced category.

3.4 Isomorphic objects

(a) Finally in this chapter, we introduce another key notion:

Definition 21. If there is an isomorphism f : C −→∼ D in C then the objects

C,D are said to be isomorphic in C , and we write C ∼= D. C

From the ingredients of Theorem 10, we immediately get the desirable result

that
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Kinds of arrows

Theorem 13. Isomorphism between objects in a category C is an equivalence

relation.

An isomorphism between objects in a category also induces a bijection between

the arrows to (or from) those objects:

Theorem 14. If C ∼= D in C , then there is a one-one correspondence between

arrows X → C and X → D for all objects X in C , and likewise a one-one

correspondence between arrows C → X and D → X.

Proof. If C ∼= D then there is an isomorphism j : C −→∼ D. Consider the map

which sends an arrow f : X → C to f̂ = j ◦ f : X → D. This map f 7→ f̂ is

injective (for f̂ = ĝ entails j−1◦ f̂ = j−1◦ ĝ and hence f = g). It is also surjective

(for any g : D → X, put f = j−1◦g then f̂ = g). Similarly for the other part.

(b) We might wonder how far the notion of isomorphism between objects ac-

tually captures the idea of two objects amounting to the same as far as their

ambient category is concerned.

We mentioned before the example where we have, living in Grp, lots of in-

stances of a Klein four-group which are group-theoretically indiscernible by

virtue of being isomorphic (indeed, between any two instances, there is a unique

isomorphism). And yes, we then cheerfully talk about the Klein four-group.

There is a real question, however, about just what this way of talking amounts

to, when we seemingly identify isomorphic objects. Some claim that category

theory itself throws a lot of light on this very issue (see e.g. Mazur 2008). And

certainly, category theory typically doesn’t care about distinguishing isomorphic

objects in a category. But note that it would, for example, initially strike us as

odd to say that, just because all the instances of singleton sets are isomorphic

(indeed, between any two instances, there is a unique isomorphism), we can al-

ways happily talk about the singleton. There are contexts where any singleton

will do, as for example when we associate elements x of a set X with arrows

~x : 1 → X. But in other contexts, the pairwise distinctness of singletons is im-

portant, e.g. when we treat {∅}, {{∅}}, {{{∅}}}, {{{{∅}}}}, . . . as a sequence of

distinct sets in one possible construction (Zermelo’s) for the natural numbers.

But we can’t delay to explore this issue any further at the moment: we are just

flagging up that there are questions we’ll at some point want to discuss around

and about the idea of isomorphism-as-sameness.
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4 Initial and terminal objects

Any introduction to the theory of categories is going to start with the definition

of a category, a catalogue of examples, an explanation of duality (and perhaps

of other ways of getting new categories from old), and a categorial definition

of isomorphisms and other kinds of arrow. But now the possible onward paths

begin to fork. We could take the steep ascent and start talking straight away

about functors, i.e. maps between categories, and then quickly climb up again to

discuss transformations between these functors. This can be very illuminating;

but it can also make things unnecessarily tough for the beginner. So instead

we will set out by taking a more pedestrian route through the foothills for the

moment, and over the following chapters think a lot more about what happens

inside a category, before we begin to consider relations between categories in

Chapter 13.

Now, when we defined an isomorphism, we characterized a type of arrow not

by (so to speak) its internal workings – not by how it operated on on its source

domain – but by reference to its interaction with another arrow, its inverse. This

is entirely typical of a category-theoretic (re)definition of a familiar notion: we

look for similarly external, relational, characterizations of arrows and/or struc-

tured objects.

Here is Awodey, offering some similarly arm-waving

. . . remarks about category-theoretical definitions. By this I mean

characterizations of properties of objects and arrows in a category in

terms of other objects and arrows only, that is, in the language of

category theory. Such definitions may be said to be abstract, struc-

tural, operational, relational, or external (as opposed to internal).

The idea is that objects and arrows are determined by the role they

play in the category via their relations to other objects and arrows,

that is, by their position in a structure and not by what they ‘are’

or ‘are made of’ in some absolute sense. (Awodey, 2006, p. 25)

We proceed, then, to give some further examples of external category-theoretic

definitions of a range of familiar notions. A prime exhibit will be the illuminating

treatment of products, starting in the next chapter. In this chapter, however, we

warm up by considering a particularly simple pair of cases.
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Initial and terminal objects

4.1 Initial and terminal objects, definitions and examples

Definition 22. The object I is an initial object of the category C iff, for every

C -object X, there is a unique arrow I → X.

Dually, the object T is a terminal object of C iff, for every C -object X, there

is a unique arrow X → T .1 C

It is common to use the likes of ‘! : I → X’ or ‘! : X → T ’ for the unique arrow

from an initial object or to a terminal object. If we want explicitly to indicate

e.g. the source of such a unique arrow to a terminal object, we can write !X .

Some examples:

(1) In the poset (N,6) thought of as a category, zero is trivially the unique

initial object and there is no terminal object. The poset (Z,6) has neither

initial nor terminal objects.

More generally, a poset-(S,4)-treated-as-a-category has an initial object

iff the poset has a minimum, an object which 4-precedes all the others.

Dually for terminal objects/maxima.

(2) In Set, the empty set is an initial object (cf. the comment in §1.2).

And any singleton set {?} is a terminal object. (For if X has members,

there’s a unique Set-arrow which sends all the members to ?; while if X is

empty, then there’s a unique Set-arrow to any set, including {?}).
(3) In Set? – the category of pointed sets, non-empty sets equipped with a dis-

tinguished member – each singleton is both initial and terminal. (A one-

membered pointed set’s only member has to be the distinguished member.

Arrows in Set? are functions which map distinguished elements to dis-

tinguished element. Hence there can be one and only one arrow from a

singleton pointed set to some some other pointed set.)

(4) In Poset, the empty poset is initial, and any singleton equipped with the

only possible order relation on it (the identity relation!) is terminal.

(5) In Rel, the category of sets and relations, the empty set is both the sole

initial and sole terminal object.

(6) In Top, the empty set (considered as a trivial topological space) is the

initial object. Any one-point singleton space is a terminal object.

(7) In Grp, the trivial one-element group is an initial object (a group has to

have at least one object, the identity; now recall that a group homomor-

phism sends identity elements to identity elements; so there is one and

only one homomorphism from the trivial group to any given group G).

The same one-element group is also terminal.

1Warning: some call terminal objects final ; and then that frees up ‘terminal’ to mean initial
or final.
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4.2 Uniqueness up to unique isomorphism

(8) In the category Bool, the trivial one-object algebra is terminal. While the

two-object algebra on {0, 1} familiar from propositional logic is initial –

for a homomorphism of Boolean algebras from {0, 1} to B must send 0 to

the bottom object of B and 1 to the top object, and there’s a unique map

that does that.

(9) Recall: in the slice category C /X an object (defined the more economical

way) is a C -arrow like f : A → X, and an arrow from f : A → X to

g : B → X is a C -arrow j : A → B such that g ◦ j = f in C . Consider

the C /X-object 1X : X → X. A C /X arrow from f : A → X to 1X is a

C -arrow j : A → X such that 1X ◦ j = f , i.e. such that j = f – which

exists and is unique! So 1X is terminal in C /X.

Such various cases show that a category may have zero, one or many initial ob-

jects, and (independently of that) may have zero, one or many terminal objects.

Further, an object can be both initial and terminal.

There is, incidentally, a standard bit of jargon for the last case:

Definition 23. An object O in the category C is a null object of the category C
iff it is both initial and terminal. C

4.2 Uniqueness up to unique isomorphism

A category C , to repeat, may have no initial objects, or only one, or have many.

However, we do have the following key result:

Theorem 15. Initial objects, when they exist, are ‘unique up to unique isomor-

phism’: i.e. if the C -objects I and J are both initial in the category C , then there

is a unique isomorphism f : I −→∼ J in C . Dually for terminal objects.

Further, if I is initial and I ∼= J , then J is also initial. Dually for terminal

objects.

Proof. Suppose I and J are both initial objects in C . By definition there must be

unique C -arrows f : I → J , and g : J → I. Then g◦f is an arrow from I to itself.

Another arrow from I to itself is the identity arrow 1I . But since I is initial,

there can only be one arrow from I to itself, so g ◦ f = 1I . Likewise f ◦ g = IJ .

Hence the unique arrow f has a two-sided inverse and is an isomorphism. (Note

this pattern of argument: we’ll be using it a lot!)

Now suppose I is initial and I ∼= J , so that there is an isomorphism i : I → J .

Then for any X, there is a unique arrow f : I → X, and hence there is an arrow

f ◦ i−1 : J → X. Assume we also have g : J → X. Then g ◦ i : I → X, and so

g ◦ i = f , hence g = f ◦ i−1. In sum, for any X there is a unique arrow from J

to X, thus J is also initial.

Duals of these two arguments deliver, of course, the dual results.
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Initial and terminal objects

It is standard to introduce notation for an arbitrary initial and terminal ob-

jects (since categorically, we usually won’t care about distinctions among in-

stances):

Definition 24. We use ‘0’ to denote an initial object of C (assuming one exists),

and likewise ‘1’ to denote a terminal object. C

Note that in Set, 0 is ∅, the only initial object – and ∅ is also the von Neumann

ordinal 0. While the von Neumann ordinal 1 is {∅}, i.e. a singleton, i.e. a terminal

object 1. Which perhaps excuses the recycling of the notation.

By the way, null objects (objects which are both initial and terminal) are often

alternatively called ‘zero’ objects. But that perhaps doesn’t sit happily with

using ‘0’ for an initial object: for 0 (in the sense of an initial object) typically

isn’t a zero (in the sense of null) object. Hence our preference for ‘null’.

4.3 Elements and generalized elements

(a) Consider the category Set again. As we have remarked before, arrows

~x : 1 → X correlate one-to-one with elements x ∈ X: so in Set we can think

of talk of such arrows ~x : 1→ X as the categorial version of talking of members

of X. We now carry this idea over to other categories more generally:

Definition 25. In a category C with a terminal object 1, an element or point of

the C -object X is an arrow f : 1→ X.2 C

We immediately see, however, that in categories C other than Set, these ‘ele-

ments’ 1→ X won’t always line up nicely with the elements of X in the intuitive

sense. In Grp, for example, a homomorphism from 1 (the one-element group) to

a group X has to send the only group element of 1 to the identity element e of

X: so there is only one possible homomorphism ~e : 1→ X, independently of how

many elements there are in the group X.

We can put this last observation in more categorial terms. First, some standard

terminology:

Definition 26. Suppose the category C has a terminal object. And suppose that

for any objects X,Y in C , and parallel arrows f, g : X → Y , f = g if for all

~x : 1→ X, f ◦ ~x = g ◦ ~x. Then C is said to be well-pointed. C

Then Set is, in this sense, well-pointed. There are enough elements-as-arrows to

ensure that parallel arrows with domain X which act identically on all relevant

elements of X are indeed identical. By contrast, we have just noted that Grp
is not well-pointed. Take any two group homomorphisms f, g : X → Y where

f 6= g: for all possible ~e : 1→ X, both f ◦~e and g ◦~e must send the sole member

of 1 to the identity element of the group Y , so are equal.

2Other standard terminology for such an element is ‘global element’, picking up from a
paradigm example in topology – but we won’t fuss about that.
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4.3 Elements and generalized elements

(b) Our definition of well-pointedness invokes a choice of the terminal object

1 in terms of which we define elements ~x : 1 → X. But whether a category is

well-pointed doesn’t actually depend on that choice:

Theorem 16. Take two terminal objects 1 and 1′ and define two different types

of elements of X in C as arrows 1 → X and 1′ → X. C is well-pointed with

respect to elements of the first kind iff it is well-pointed with respect to elements

of the second kind.

Proof. We need only prove one direction. Since 1 and 1′ are terminal, there is

a unique isomorphism i : 1′ → 1, and we can set up a one-one correspondence

between elements ~x : 1→ X and ~x′ : 1′ → X by putting ~x′ = ~x ◦ i.
Assume C is well-pointed with respect to elements of the first kind. Then, for

all f, g : X → Y , if f ◦ ~x′ = g ◦ ~x′, then f ◦ ~x = f ◦ ~x′ ◦ i−1 = g ◦ ~x′ ◦ i−1 = g ◦ ~x,
and therefore f = g.

That proves well-pointedness with respect to the second sort of element.

(c) We have just seen that, even when arrows in a category are functions, acting

the same way on elements (in the sense of Defn. 25) need not imply being the

same arrow. Can we generalize the notion of an element so that acting the same

way on generalized elements does imply being the same arrow?

Well, suppose we say:

Definition 27. A generalized element (of shape S) of the object X in C is an

arrow e : S → X. C

Generalized elements give us more ways of interacting with the data of a category

than the original point elements. And now we indeed have

Theorem 17. Parallel arrows in a category C are identical if and only if they

act identically on all generalized elements.

Proof. If f, g : X → Y act identically on all generalized elements, they act iden-

tically on 1X : X → X: therefore f ◦ 1X = g ◦ 1X , and so f = g. The converse is

trivial.

(d) A final remark. Note that

Theorem 18. Point elements ~x : 1→ X in a category are monic.

Proof. Suppose ~x◦f = ~x◦g; then, for the compositions to be defined and equal,

both f and g must be morphisms Y → 1, for the same Y . Hence f = g since 1

is terminal.

Obviously, in most categories, not all generalized elements e : S → X will be

monic. The special monic case will, however, turn out to be significant: see

§10.1.
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5 Products introduced

Our discussion of the notions of initial and terminal objects provides an in-

troduction to a number of categorial themes which will now keep recurring in

rather more exciting contexts, starting in this chapter where we introduce our

next main topic, products.

We are familiar with constructing products for all kinds of widgets. The

paradigm case, of course, is in Set where we take sets X and Y and form their

Cartesian product, the set of ordered pairs of their elements. But what are or-

dered pairs? We’ll start by considering this basic question as our route in to a

categorial treatment of products.

5.1 Real pairs, virtual pairs

A word of caution first. We have fallen into a familiar modern practice of using

a single notation for talking about pairs in two different senses. I didn’t want

to pause distractingly to remark on this before: but we should now draw an

important distinction relevant to our current concerns.

(1) We have, as is standard, used parentheses as in ‘(x, y)’ or ‘(f, g)’ to refer to

ordered pairs, where an ordered pair is to be thought of as a single object.

Here, the parentheses do essential work, expressing constructors taking

two given items and outputting a pair-object. In other words, the expres-

sion ‘(. . . , )’, with its two slots waiting to be filled, here serves as a

two-place function expression, a handy formal substitute for the expres-

sion ‘the ordered pair whose first member is . . . and whose second member

is ’.

(2) But we have also used parentheses in contexts where we can take them as

providing no more than helpful punctuation. For example, when talking

informally of the pre-ordered set ‘(S,4)’, we are talking about a pair only

in the sense of talking of two things: we are referring to the set S and to

the ordering 4 defined over S, and we are not – or at least, not straight

off – referring to some further pair-object.

For example, if we talk of a function f as ‘a monotone map between the

posets (S,4) and (T,v)’, this can be unpacked into talk of a set-function
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5.2 Pairing schemes

f : S → T which is such that x 4 y implies f(x) v f(y) – so here, the

superficial appearance of reference to a pair-object can be translated away.

Likewise for other elementary contexts where we talk of posets.

Now here’s a nice question: in which contexts does an apparent reference to

pairs really commit us to real pair-objects as a single entities; and when can

the apparent reference be translated away, so we are at best only countenancing

merely virtual pair-objects?

For example, perhaps at some point we do need to treat a poset as if it is a

single pair-object over and above the relevant set and order-relation. But when?

It might be suggested that when we start talking about the category Poset whose

objects are posets, then that commits us to thinking of the likes of ‘(S,4)’ as

referring to single objects. But we must be careful here not just to rely on a pun

on ‘object’. After all, if the objects in a category (in the sense of the first kind of

data for the category) can already be as diverse as objects (in the logical sense),

relations, functions, arrows from other categories, etc., why they shouldn’t they

also be plural, with each Poset-‘object’ being in fact two items, a set and an

order relation?

Fortunately we don’t need to tangle with such questions of logical grammar

yet. For the moment, we flag that there are non-trivial issues lurking here, and

merely say this. It may be that at some point we do need to start the likes

of ‘(S,4)’, ‘(M, ·, 1M )’, etc., as referring to single objects, over and above the

relevant sets and relations/functions, i.e. treat them as denoting real rather

than virtual pairs or triples, etc. But the stronger interpretation need not be

understood as built into our notation from the very start. The principle should

always be: read notations such as ‘(S,4)’, ‘(M, ·, 1M )’, etc., as noncommittally

as possible.

In this chapter, however, we are going to be concerned with cases where we

indeed want to deal with ordered-pairs-as-single-objects. But what objects are

they?

5.2 Pairing schemes

(a) Suppose for a moment that we are working in a theory of arithmetic and

we need to start considering ordered pairs of natural numbers. Perhaps we want

to go on to use such pairs in constructing integers or rationals.

Well, we can easily handle such pairs of natural numbers as single objects, and

without taking on any new commitments, by using code-numbers. For example,

if we want a bijective coding between pairs of naturals and all the numbers, we

could adopt the scheme of coding the ordered pair (m,n) by the single number

〈m,n〉 = {(m+n)2 +3m+n}/2. Or, if we don’t insist on every number coding a

pair, we could adopt the simpler policy of using 〈m,n〉 =def 2m3n, which allows

simpler decoding functions for extracting m and n from 〈m,n〉. Relative to a

given coding scheme, we can call such code-numbers 〈m,n〉 pair-numbers. Or,
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by a slight abuse of terminology, we can call them simply pairs, and we can refer

to m as the first element of the pair, and n as the second element.

Why should this way of handling ordered pairs of natural numbers be regarded

as somehow inferior to other, albeit more familiar, coding devices such as ex-

plicitly set-theoretic ones? Well, it might be said that (i) a single pair-number

is really neither ordered nor a twosome; (ii) while a number m is a member of

(or is one of) the pair of m with n, a number can’t be a genuine member of a

pair-number 〈m,n〉; and in any case (iii) such a coding scheme is pretty arbitrary

(e.g. we could equally well have used 3m5n as a code for the pair m,n).

Which is all true. But we can lay exactly analogous complaints against e.g.

the familiar Kuratowski definition of ordered pairs that we all know and love.

This treats the ordered pair of m with n as the set 〈m,n〉K = {{m}, {m,n}}.
But (i) that set is not intrinsically ordered (after all, it is a set !), nor is it always

two-membered (consider the case where m = n). (ii) Even when it is a twosome,

its members are not the members of the pair: in standard set theories, m cannot

be a member of {{m}, {m,n}}. And (iii) the construction again involves pretty

arbitrary choices: thus {{n}, {m,n}} or {{{m}}, {{m,n}}} etc., etc., would have

done just as well. On these counts, at any rate, coding pairs of numbers by using

pair-numbers involves no worse a trick than coding them using Kuratowski’s

standard gadget.

There is indeed a rather neat symmetry between the adoption of pair numbers

as representing ordered pairs of numbers and another very familiar procedure

adopted by the enthusiast for working in standard ZFC. For remember that

standard ZFC knows only about pure sets. So to get natural numbers into the

story at all – and hence to get Kuratowski pair-sets of natural numbers – the

enthusiast for sets has to choose some convenient sequence of sets to implement

the numbers (or to ‘stand proxy’ for numbers, ‘simulate’ them, ‘play the role’ of

numbers, or even ‘define’ them – whatever your favourite way of describing the

situation is). But someone who, for her purposes, has opted to play the game this

way, treats pure sets as basic and is dealing with natural numbers by selecting

some convenient sets to implement them, is hardly in a position to complain

about someone else who, for his purposes, goes in the opposite direction and

treats numbers as basic, and deals with ordered pairs of numbers by choosing

some convenient code-numbers to implement them. Both theorists are in the

implementation game.

It might be retorted that the Kuratowski trick at least has the virtue of being

an all-purpose device, available not just when you want to talk about pairs of

numbers, while e.g. the powers-of-primes coding is of much more limited use.

Again true. Similarly you can use sledgehammers to crack all sorts of things,

while nutcrackers are only useful for dealing with nuts. But that’s not particu-

larly to the point if it happens to be nuts you currently want to crack, efficiently

and with light-weight resources. If we want to implement pairs of numbers with-

out ontological inflation – say in pursuing the project of ‘reverse mathematics’

(with its eventual aim of exposing the minimum commitments required for e.g.
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5.2 Pairing schemes

doing classical analysis) – then pair-numbers are exactly the kind of thing we

need.

(b) Pair-numbers and Kuratowski pairs belong to two different schemes for

pairing up numbers, each of which works (though a particular surrounding con-

text might lead us to prefer one to the other). So what does it take to have such

a workable scheme for pairing numbers with numbers, or more generally to have

a scheme for pairing up Xs with Y s?

Evidently, we need some objects O to serve as ordered pairs, a pairing function

that sends a given x from the Xs and a given y from the Y s to a particular pair-

object o, and (of course!) a couple of functions which allow us to recover x

and y from o. And the point suggested by the case of rival pairing schemes for

numbers is that maybe we shouldn’t care too much about the ‘internal’ nature of

the objects O, so long as we associate them with suitable pairing and unpairing

functions which fit together in the right way (for example, pairing and then

unpairing gets us back to where we started).

Which motivates the following general definition (where we now use the infor-

mal set idiom because of its familiarity, though we could recast this by continuing

to use plural talk of the Xs rather talk of the set X, etc.):

Definition 28. Suppose X, Y and O are sets of objects (these can be the same

or different). Let pr : X,Y → O be a two-place function, while π1 : O → X, and

π2 : O → Y, are one-place functions. Then [O, pr , π1, π2] form a pairing scheme

for X with Y iff

(a) (∀x ∈ X)(∀y ∈ Y )(π1(pr(x, y)) = x ∧ π2(pr(x, y)) = y),

(b) (∀o ∈ O) pr(π1o, π2o) = o.

The members of O will be said to be the pair-objects of the pairing scheme, with

pr the associated pairing function, while π1 and π2 are unpairing or projection

functions. C

Evidently, if O is the set of naturals of the form 2m3n and pr(m,n) = 2m3n,

with π1o (π2o) returning the exponent of 2 (3) in the factorization of o, then

[O, pr , π1, π2] form a pairing scheme for N with N. And if O′ is the set of Kura-

towski pairs {〈m,n〉K | m,n ∈ N}, with pr′(m,n) = 〈m,n〉K , and π1 (π2) taking

a pair 〈m,n〉K and returning its first (second) element, then [O′, pr ′, π′1, π
′
2] form

another pairing scheme for N with N
By the way, in accord with our maxim in §5.1, don’t over-interpret the square

brackets in the definition: they need be read as no more than punctuation. After

all, we are in the business of characterizing ordered-pairs-as-single-objects; so

we certainly don’t want to presuppose e.g. that we already know about ordered-

quadruples-as-single-objects!

Two simple facts about pairing schemes:
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Theorem 19. If [O, pr , π1, π2] is a pairing scheme, then (i) different pairs of

objects are sent by pr to different pair-objects, and (ii) pr , π1 and π2 are all

surjective.

Proof. For (i) suppose pr(x, y) = pr(x′, y′). Then by condition (a) on pairing

schemes, x = π1(pr(x, y)) = π1(pr(x′, y′)) = x′, and likewise y = y′.

For (ii) it is immediate that pr is surjective by (b). The projection function π1

is surjective because, given x ∈ X, we can take any y ∈ Y and put o = pr(x, y),

and then by (a), x = π1o. Similarly for π2.

As we’d also expect, a given pairing function fixes the two corresponding pro-

jection functions, and vice versa, in the following sense:

Theorem 20. (1) If [O, pr , π1, π2] and [O, pr , π′1, π
′
2] are both pairing schemes

for X with Y , then π1 = π′1 and π2 = π′2.

(2) If [O, pr , π1, π2] and [O, pr ′, π1, π2] are both pairing schemes for X with

Y , then pr = pr′.

Proof. For (1), take any o ∈ O. There is some (unique) x, y such that o =

pr(x, y). Hence, applying (a) to both schemes, π1o = x = π′1o. Hence π1 = π′1,

and similarly π2 = π′2.

For (2), take any x ∈ X, y ∈ Y , and let pr(x, y) = o, so π1o = x and

π2o = y. Then by (b) applied to the second scheme, pr′(π1o, π2o) = o. Whence

pr′(x, y) = pr(x, y).

Further, there is a sense in which all schemes for pairing X with Y are equiv-

alent up to isomorphism. More carefully,

Theorem 21. If [O, pr , π1, π2] and [O′, pr ′, π′1, π
′
2] are both schemes for pairing X

with Y, then there is a unique bijection f : O → O′ such that for all x ∈ X, y ∈ Y ,

pr′(x, y) = f(pr(x, y)).

Putting it another way, there is a unique bijection f such that, if we pair x with

y using pr (in the first scheme), use f to send the resulting pair-object o to o′,

and then retrieve elements using π′1 and π′2 (from the second scheme), we get

back to the original x and y.

Proof. Define f : O → O′ by putting f(o) = pr ′(π1o, π2o). Then it is immediate

that f(pr(x, y)) = pr′(x, y).

To show that f is injective, suppose f(o) = f(o′), for o, o′ ∈ O. Then we have

pr ′(π1o, π2o) = pr ′(π1o
′, π2o

′). Apply π′1 to each side and then use principle (a),

and it follows that π1o = π1o
′. And likewise π2o = π2o

′. Therefore pr(π1o, π2o) =

pr(π1o
′, π2o

′). Whence by condition (b), o = o′.

To show that f is surjective, take any o′ ∈ O′. Then put o = pr(π′1o
′, π′2o

′).

By the definition of f , f(o) = pr ′(π1o, π2o); plugging the definition of o twice

into the right hand side and simplifying using rules (a) and (b) confirms that

f(o) = o′.
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So f is a bijection with the right properties. And since every o ∈ O is pr(x, y)

for some x, y, the requirement that f(pr(x, y)) = pr′(x, y) fixes f uniquely.

(c) Here’s another simple theorem, to motivate the final definition in this sec-

tion:

Theorem 22. Suppose X,Y,O are sets of objects, and the functions π1 : O → X,

π2 : O → Y are such that there is a unique two-place function pr : X,Y → O

satisfying the condition (a):

(∀x ∈ X)(∀y ∈ Y )(π1(pr(x, y)) = x ∧ π2(pr(x, y)) = y).

Then [O, pr , π1, π2] also satisfies (b) and so forms a pairing scheme.

Proof. We argue that the uniqueness of pr ensures that the function pr is sur-

jective, and then that its surjectivity implies that condition (b) from Defn. 28

holds as well as the given condition (a).

Suppose pr is not surjective. Then for some o ∈ O, there is no x ∈ X, y ∈ Y
such that pr(x, y) = o. So pr(π1o, π2o) = o′ 6= o. Consider then the func-

tion pr′ which agrees with pr on all inputs except that pr′(π1o, π2o) = o.

For all cases other than x = π1o, y = π2o we still have π1(pr′(x, y)) = x ∧
π2(pr′(x, y)) = y, and by construction for the remaining case π1(pr′(π1o, π2o)) =

π1o ∧ π2(pr′(π1o, π2o)) = π2o. So condition (a) holds for pr′, where pr′ 6= pr.

Contraposing, if pr uniquely satisfies the condition (a), it is surjective.

Because pr is surjective, every o ∈ O is pr(x, y) for some x, y. But then by (a)

π1o = x∧π2o = y, and hence pr(π1o, π2o) = pr(x, y) = o. Which proves (b).

Pairing up X with Y through a pairing scheme, then, gives us a set-of-pair-

objects O: so we can think of O as a serving as product of X with Y (relative

to that scheme). But we don’t want to identify the resulting product simply

with the set O, for it depends crucially on the rest of the pairing scheme that

O can play the right role. Our last theorem, however, makes the following an

appropriate definition:

Definition 29. IfX,Y are sets, then [O, π1, π2] form a product of X with Y , where

O is a set, and π1 : X → O, π2 : Y → O are functions, so long as there is a unique

two-place function pr : X,Y → O such that (∀x ∈ X)(∀y ∈ Y )(π1(pr(x, y)) =

x ∧ π2(pr(x, y)) = y). C

5.3 Binary products, categorially

(a) We have characterized pairing schemes and the resulting products they cre-

ate in terms of a set of objects O being the source and target of some appropriate

morphisms satisfying the principles in Defns. 28 and 29. Which all looks highly

categorial, very much in the spirit of the preamble to the previous chapter.
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But note that one crucial ingredient of our story so far, namely the pairing

function pr : X,Y → O, is a binary function (taking two objects as input, of

course, not a single pair-object). And we can’t just transport this over to a

categorial setting. For an arrow in a category is always unary, with just one of

the category’s objects as its source. So how can we turn our very natural story

about pairing schemes into a properly categorial account of products?

(b) Suppose for a moment that we are working in a well-pointed category like

Set, where ‘elements’ in the sense of Defn. 25 do behave sufficiently like how

elements intuitively should behave. In this case, instead of talking informally

of two elements x of X and y of Y , we can talk of two arrows ~x : 1 → X and

~y : 1→ Y .

Now, suppose that there is an object O and two arrows, π1 : O → X and

π2 : O → Y such that for every ~x and ~y there is a unique arrow ~u : 1 → O such

the following commutes:

1

X O Y

~u
~x ~y

π1 π2

Our arrow ~u serves to pick out an element in O to serve as the product-object

pr(x, y). And the requirement that, uniquely, π1 ◦ ~u = ~x ∧ π2 ◦ ~u = ~y is an

instance of the condition in Defn. 29, now re-written in terms of elements-as-

arrows. Which therefore gives us a categorial way of saying that [O, π1, π2] form

a product of X with Y .

So far, so good. But this will only give us what we want in well-pointed

categories with ‘enough’ elements-as-arrows; for think what would happen if

we were working e.g. in the category Grp. However, we know a potential way

of generalizing claims to non-well-pointed categories: just replace talk about

point elements with talk of generalized elements. Which motivates, at last, the

following key definition:

Definition 30. In any category C , a (binary) product [O, π1, π2] for the objects X

with Y is an object O together with ‘projection’ arrows π1 : O → X,π2 : O → Y ,

such that for any object S and arrows f1 : S → X and f2 : S → Y there is

always a unique ‘mediating’ arrow u : S → O such that the following diagram

commutes:

S

X O Y

u
f1 f2

π1 π2 C
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Note, by the way, that we are falling into the following common convention: in

a category diagram, we use a dashed arrow 99K to indicate an arrow which is

uniquely fixed by the requirement that the diagram commutes.

(c) True, you can just stare at Defn. 36 if it is presented without ceremony, and

‘see’ that it is the sort of thing we need in a categorial context. But it has been

worth taking the slow route, and so finding that it does arise entirely naturally

from general considerations about what we want from a pairing scheme.

Let’s now have some examples of products in categories.

(1) In Set, as you would certainly hope, the usual Cartesian product treated a

the setX×Y of Kuratowksi pairs 〈x, y〉 of elements fromX and Y , together

with the obvious projection functions 〈x, y〉 π17−→ x and 〈x, y〉 π27−→ y, form

a binary product.

Let’s just confirm this. Suppose we are given any set S and functions

f1 : S → X and f2 : S → Y . Then if, for s ∈ S, we put u(s) = 〈f1(s), f2(s)〉,
the diagram evidently commutes. Now trivially, for any pair p ∈ X × Y ,

p = 〈π1p, π2p〉. Hence if u′ : S → X×Y is another candidate for completing

the diagram, u(s) = 〈f1(s), f2(s)〉 = 〈π1u
′(s), π2u

′(s)〉 = u′(s). So u is

unique.

Motivated by this paradigm case, we will henceforth often use the notation X×Y
for the object O in a binary product [O, π1, π2] for X with Y .

Continuing our examples:

(2) In group theory, we construct the direct product of two groups G =

(G, ·, eG) and H = (H,�, eH) as follows. Take group elements to pairs

in G×H, the usual Cartesian product of the underlying sets; and then de-

fine the new group operation × component-wise, i.e. put 〈g, h〉× 〈g′, h′〉 =
〈g ·g′, h�h′〉. It is immediate that the direct product of G and H, equipped

with the obvious two projection functions which send 〈g, h〉 to g and to h

respectively, is a categorial product of these groups in Grp.

(3) Similarly a product of topological spaces defined in the usual way, equipped

with the trivial projection functions recovering the original spaces, is a

categorial product of topological spaces in Top.

(4) Here’s a new example of a category, call it PropL – its objects are proposi-

tions, wffs of a given first-order language L , and there is a unique arrow

from X to Y iff X � Y , i.e. iff X semantically entails Y . The reflexiv-

ity and transitivity of semantic entailment means we get the identity and

composition laws which ensure that this is a category.

In this case, the obvious categorial product of X with Y will be their

logical product, i.e. the conjunction X∧Y , taken together with the obvious

projections X ∧ Y → X, X ∧ Y → Y .
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So far, then, so good: intuitive cases of products and categorial products are

lining up nicely. One more example to be going on with:

(5) Take a poset (P,4) considered as a category (so there is an arrow p → q

iff p 4 q). Then a product of p and q would be an object c such that

c 4 p, c 4 q and such that for any object d with arrows from it to p and q,

i.e. any d such that d 4 p, d 4 q, there is a unique arrow from d to c, i.e.

d 4 c. That means the categorial product of p and q must be their ‘meet’

or greatest lower bound (equipped with the obvious two arrows).

A simple moral from the last example: since pairs of objects in posets need not

in general have greatest lower bounds, this shows that a category in general need

not have products (other than some trivial ones, as we shall see).

(d) We noted at the beginning of this section that arrows in categories are

unary. We don’t have true binary maps of the type f : X,Y → Z which we

appealed to in the preceding section. We now know how to get round this issue,

at least in a category with appropriate products. We can use instead arrows

f : X × Y → Z.

But we won’t say more about this device now, but wait until we start putting

it to real work later, beginning in Chapter 11.

5.4 Products as terminal objects

Here’s a slightly different way of putting things. Let’s say

Definition 31. A wedge to X and Y (in category C ) is an object S and a pair

of arrows f1 : S → X, f2 : S → Y . C

A wedge

X

O

Y

π1

π2

is a product for X with Y iff, for any other wedge

X

S

Y

f1

f2

to X and Y , there exists a unique morphism u such that the following diagram

commutes:

X

S O

Y

f1

f2

u

π1

π2
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5.5 Uniqueness up to unique isomorphism

We can say f1 ‘factors’ as π1 ◦ u and f2 as π2 ◦ u, and hence the whole wedge

from S into X and Y (uniquely) factors through the product via the mediating

arrow u.

This definition of a product, now using the notion of wedges, can in turn be

reframed as follows. First, we say:

Definition 32. Given a category C and objects C -objects X,Y , then the derived

wedge category CW (XY ) has the following data. Its object-data are all the wedges

[O, f1, f2] to X,Y.1 And an arrow from [O, f1, f2] to [O′, f ′1, f
′
2] is a C -arrow

g : O → O′ such that the two resulting triangles commute: i.e. f1 = f ′1 ◦ g,

f2 = f ′2 ◦ g. The identity arrow on [O, f1, f2] is 1O, and the composition of

arrows in CW (XY ) is the same as their composition as arrows of C . C

It is easily confirmed that CW (XY ) is indeed a category.

With our new notion of the derived category CW (XY ) to hand, then the pre-

vious definition of a product is elementarily equivalent to

Definition 33. A product of X with Y in C is a terminal object of the derived

category CW (XY ). C

5.5 Uniqueness up to unique isomorphism

As noted, products need not exist for arbitrary objects X and Y in a given

category C ; and when they exist, they need not be strictly unique. However,

when they do exist, they are ‘unique up to unique isomorphism’ (compare The-

orem 21). That is to say,

Theorem 23. If both [O, π1, π2] and [O′, π′1, π
′
2] are products for X with Y in the

category C , then there is a unique isomorphism f : O −→∼ O′ commuting with

the projection arrows (i.e. such that π′1 ◦ f = π1 and π′2 ◦ f = π2).

Note the statement of the theorem carefully. It is not being baldly claimed

that there is a unique isomorphism between any objects O and O′ which are

parts of products for some given X,Y. That’s false. For a very simple example,

in Set, take the standard product object X × X comprising Kuratowski pairs:

there are evidently two isomorphisms between it and itself, given by the maps

〈x, x′〉 7→ 〈x, x′〉, and 〈x, x′〉 7→ 〈x′, x〉. The claim is, to repeat, that there is

a unique isomorphism between any two product objects for X with Y which

commutes with their associated projection arrows.

Plodding proof from basic principles. Since [O, π1, π2] is a product, every wedge

factors uniquely through it, including itself. In other words, there is a unique u

such that this diagram commutes:

1Does regarding [O, f1, f2] as comprising an item of data in the category automatically
mean treating it as single object in the logician’s sense, a real triple, meaning something over
an above its components? Again, why so?
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O

X O Y

u
π1 π2

π1 π2

But evidently putting 1O for the central arrow trivially makes the diagram com-

mute. So by the uniqueness requirement we know that

(i) Given an arrow u : O → O, if π1 ◦ u = π1 and π2 ◦ u = π2, then u = 1O.

Now, since [O′, π′1, π
′
2] is a product, [O, π1, π2] has to uniquely factor through it:

O

X O′ Y

f
π1 π2

π′1 π′2

In other words, there is a unique f : O → O′ commuting with the projection

arrows, i.e. such that

(ii) π′1 ◦ f = π1 and π′2 ◦ f = π2.

And since [O, π1, π2] is also a product, the other wedge has to uniquely factor

through it. That is to say, there is a unique g : O′ → O such that

(iii) π1 ◦ g = π′1 and π2 ◦ g = π′2.

Whence,

(iv) π1 ◦ g ◦ f = π′1 ◦ f = π1 and π2 ◦ g ◦ f = π2.

From which it follows – given our initial observation (i) – that

(v) g ◦ f = 1O

The situation with the wedges is symmetric so we also have

(vi) f ◦ g = 1O′

Hence f has a two-sided inverse, i.e. is an isomorphism.

However, you’ll recognize the key proof idea here is akin to the one we used

in proving that initial/terminal objects are unique up to unique isomorphism.

And we indeed can just appeal to that earlier result:

Proof using the alternative definition of products. [O, π1, π2] and [O′, π′1, π
′
2] are

both terminal objects in the wedge category CW (XY ). So by Theorem 15 there

is a unique CW (XY )-isomorphism f between them. But, by definition, this has

to be a C -arrow f : O → O′ commuting with the projection arrows. And it is

immediate than an isomorphism in CW (XY ) is also an isomorphism in C .
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5.6 ‘Universal mapping properties’

5.6 ‘Universal mapping properties’

Let’s pause for a moment. We have defined a binary product for X with Y

categorially as a special sort of wedge to X and Y .

Now, that doesn’t fix a product absolutely; but we have now seen that prod-

ucts will be ‘unique up to unique isomorphism’. And what makes a wedge a

product for X with Y is that it has a certain universal property – i.e. any other

wedge to X and Y factors uniquely through a product wedge via a unique arrow.

Since arrows are typically functions or maps, we can therefore say that prod-

ucts are defined by a universal mapping property. We’ve already met other ex-

amples of universal mapping properties: terminal and initial objects are defined

by how any other object has a unique map/arrow to or from them. We will meet

lots more examples.

It is perhaps too soon, however, to attempt a formal definition of what it is to

be defined by a universal mapping property. So for the moment take the notion

as an informal gesture towards a common pattern of definition which we will

recognize when we come across it.

5.7 Coproducts

(a) We are going now to discuss the duals of products. But first, we should

note a common terminological device:

Definition 34. Duals of categorially defined widget are very often called co-

widgets. Thus a co-widget of the category C is a widget of Cop. C

For example, we have met co-slice categories, the duals of slice categories. We

could (and a few do) call initial objects ‘co-terminal’. Likewise we could (and

a few do) call sections ‘co-retractions’. True, there is a limit to this sort of

thing – no one, as far as I know, talks e.g. of ‘co-monomorphisms’ (instead of

‘epimorphisms’). But still, the general convention is used very widely.

In particular, it is absolutely standard to talk of the duals of products as

‘co-products’ – though in this case, as in some others, the hyphen is usually

dropped.

(b) The definition of a coproduct is immediately obtained, then, by reversing

all the arrows in our definition of products. Thus:

Definition 35. In any category C , a (binary) coproduct [O, ι1, ι2] for the objects

X with Y is an object O together with two ‘injection’ arrows ι1 : X → O, ι2 : Y →
O, such that for any object S and arrows f1 : X → S and f2 : Y → S there is

always a unique ‘mediating’ arrow v : O → S such that the following diagram

commutes:
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S

X O Y

f1

ι1

v

ι2

f2

The object O in a coproduct for X with Y can be notated ‘X⊕Y ’ or ‘X qY ’.C

Note, however, that the ‘injections’ in this sense need not be injective or even

monic.

Let’s say that objects and arrows arranged as X O Yι1 ι2
form a

corner (or we could say ‘co-wedge’ !) from X and Y with vertex O. Then a co-

product of X with Y can be thought of as a corner from X and Y which factors

through any other corner from X and Y via a unique map between the vertices

of the corners.

We could now go on to define a category of corners from X and Y on the

model of a category of wedges to X and Y , and then redefine a coproduct of X

with Y as an initial object of this category. It is a useful reality check to work

through the details.

(c) Let’s have some examples of coproducts. Start with easy cases:

(1) In Set, disjoint unions are instances of coproducts.

Given sets X and Y , let X⊕Y be the set with members 〈x, 0〉 for x ∈ X
and 〈y, 1〉 for y ∈ Y . And let the injection arrow ι1 : X → X ⊕ Y be the

function x 7→ 〈x, 0〉, and similarly let ι2 : Y → X ⊕ Y be the function

y 7→ 〈y, 1〉. Then [X ⊕ Y, ι1, ι2] is a coproduct for X with Y .

To show this, take any object S and arrows f1 : X → S and f2 : Y → S,

and then define the function v : X ⊕ Y → S as sending an element 〈x, 0〉
to f1(x) and an element 〈y, 1〉 to f2(y).

By construction, this will make both triangles commute in the diagram

in the definition above.

Moreover, if v′ is another candidate for completing the diagram, then

v′(〈x, 0〉) = v′◦ι1(x) = f1(x) = v(〈x, 0〉), and likewise v′(〈y, 1〉) = v(〈y, 1〉),
whence v′ = v, which gives us the necessary uniqueness.

(2) In PropL (which we met in §5.3) the disjunction X ∨ Y (with the obvious

injections X → X ∨ Y , Y → X ∨ Y ) is a coproduct of X with Y .

(3) Take a poset (P,4) considered as a category (so there is an arrow p → q

iff p 4 q). Then a coproduct of p and q would be an object c such that

p 4 c, q 4 c and such that for any object d such that p 4 d, q 4 d there is

a unique arrow from c to d, i.e. c 4 d. Which means that the coproduct of

p and q, if it exists, must be their least upper bound (equipped with the

obvious two arrows).
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5.7 Coproducts

(d) In some cases, however, the story about coproducts gets more complicated.

We’ll mention a couple of examples: but the details here aren’t going to matter,

so by all means skip:

(4) In the category Grp, coproducts are (isopmorphic to) the so-called ‘free

products’ of groups.

Take the groups G = (G, ·), H = (H,�).2 If necessary, now doctor the

groups to equate their identity elements while ensuring the sets G and H

are otherwise disjoint. Form all the finite ‘reduced words’ G?H you get by

concatenating elements from G∪H, and then multiplying out neighbouring

G-elements by · and neighbouring H-elements by � as far as you can.

Equip G ? H with the operation � of concatenation-of-words-followed-by-

reduction. Then G?H = (G?H, �) is a group – the free product of the two

groups G and H – and there are obvious ‘injection’ group homomorphisms

ι1 : G→ G ? H, ι2 : H → G ? H.

Claim: [G ? H, ι1, ι2] is a coproduct for the groups G and H. That is to

say, for any group K = (K, ∗) and morphisms f1 : G → K, f2 : H → K,

there is a unique v such that this commutes:

K

G G ?H H

f1

ι1

v

ι2

f2

Put v : G?H → K to be the morphism that sends a word g1h1g2h2 · · · gr
(gi ∈ G, hi ∈ H) to j(g1)∗k(h1)∗j(g2)∗k(h2)∗· · ·∗j(gr). By construction,

v ◦ ι1 = j, v ◦ ι2 = k. So that makes the diagram commute.

Let v′ be any other candidate group homomorphism to make the dia-

gram commute. Then, to take a simple example, consider gh ∈ G ? H.

Then v′(gh) = v′(g) ∗ v′(h) = v′(i1(g)) ∗ v′(i2(h)) = f1(g) ∗ f2(g) =

v(i1(g)) ∗ v(i1(g)) = v(i1(g) ∗ i1(g)) = v(gh). Similarly v′(hg) = v(hg).

So by induction over the length of words w we can go on to show quite

generally v′(w) = v(w). Hence, as required, v is unique.

(5) So what about coproducts in Ab, the category of abelian groups? Since

the free product of two abelian groups need not be abelian, the same

construction won’t work again as it stands.

OK: hit the construction with the extra requirement that words in G?H

be treated as the same if one can be shuffled into the other (in effect, further

reduce G?H by quotienting by the obvious equivalence relation). But that

2If you are feeling pernickety, you might prefer to continue writing e.g. G = (G, ·), thus
more carefully signalling when you are talking about the group and when you are referring to
its carrier set. Fine. Be my guest. But the conventional overloading of notation makes for less
visual clutter and context always disambiguates.
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means that we can take a word other than the identity, bring all the G-

elements to the front, followed by all the H elements: now multiply out

the G-elements and the H-elements and we are left with two-element word

gh. So we can equivalently treat the members of our further reduced G?H

as ordered pairs (g, h) belonging to G × H. Equip these with the group

operation × defined component-wise as before (in §5.3): this gives us an

abelian group G×H if G and H are abelian. Take the obvious injections,

g
ι1−→ (g, 1) and h

ι2−→ (1, h). Then we claim [G×H, ι1, ι2] is a coproduct

for the abelian groups G and H.

Take any abelian groupK = (K, ∗) and morphisms f1 : G→ K, f2 : H →
K. Put v : G×H → K to be the morphism that sends (g, h) to f1(g)∗f2(h).

This evidently makes the coproduct diagram (with G×H for G?H) com-

mute. And a similar argument to before shows that it is unique.

So, in the case of abelian groups, the same objects can serve as both

products and coproducts, when equipped with appropriate projections and

injections respectively.
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6 Products explored

We continue to explore binary products, before going on to discuss products of

more than two objects. Of course, everything in this chapter dualizes: but we can

leave it as an exercise to supply all the further dual results about coproducts.

6.1 More properties of binary products

(a) We check that binary products, as defined, have various properties, includ-

ing some obviously desirable ones:

Theorem 24. In a category which has a terminal object 1,

(1) Products 1×X and X × 1 exist, and 1×X ∼= X ∼= X × 1.

In a category where the relevant products exist,

(2) X × Y ∼= Y ×X,
(3) X × (Y × Z) ∼= (X × Y )× Z.

Proof for (1). We prove half the result. Note the wedge (V) 1 X X
1X!X

exists for some unique arrow !X since 1 is terminal. Take any other wedge to 1

and X, namely 1 Y X.
f!Y Then the following diagram always triv-

ially commutes:

Y

1 X X

!Y f
f

!X 1X

(the triangle on the left commutes because there can only be one arrow from Y

to 1 which forces !X ◦f = !Y ). And obviously f is the only vertical, i.e. mediating,

arrow which makes this commute. Hence [X, !X , 1X ] satisfies the conditions for

being a product of 1 with X. So, by Theorem 23, given any product [1×X,π1, π2],

we have 1×X ∼= X.
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Laborious proof for (2). Given products [X×Y, π1, π2] and [Y ×X,π′1, π′2], then

consider the following diagram:

X X × Y Y

X Y ×X Y

X X × Y Y

1X

π1 π2

o 1Y

1X o′

π′2 π′1

1Y

π1 π2

Here the wedge Y X × Y X
1Y ◦π2 1X◦π1 factors uniquely through the

product Y × X via o. Similarly for o′. Hence, putting things together and ab-

sorbing the identities, the wedge X X × Y Y
π1 π2 factors uniquely

through itself via o′ ◦ o. But of course that wedge factors through itself via

1X×Y , so o′ ◦ o = 1X×Y . Similarly o ◦ o′ = 1Y×X . Therefore o and o′ are inverse

to each other, so isomorphisms, and hence X × Y ∼= Y ×X.

Snappy proof for (2). If [X × Y, π1, π2] is a product of X with Y , then [X ×
Y, π2, π1] will obviously serve as a product of Y with X. Hence, by Theorem 23

again, there is an isomorphism between the object in that product and the object

Y ×X of any other product of Y with X.

Proof for (3) postponed. It is a just-about-useful reality check to prove this by

appeal to our initial definition of a product, using brute force. You are invited

to try! But we give a slicker proof in §6.5.

(b) Do we similarly have 0×X ∼= 0 in categories with an initial object and the

relevant product? Not always:

Theorem 25. There are categories where the product 0 × X or X × 0 always

exists but is not generally isomorphic to 0.

Proof. Take a category which has a null object, so here we can set 0 = 1. Then

since every product 1×X exists, so does 0×X. Now suppose 0×X ∼= 0. Then

we would have X ∼= 1×X = 0×X ∼= 0.

Take then a category like Grp which has a null object (and so all products

0×X exist), but which also has other non-isomorphic objects, so we don’t always

have X ∼= 0. It follows that in Grp it can’t always be the case that 0×X ∼= 0.

6.2 And two more results

We pause to note two fiddly results, which you are very welcome to skip for now

and return to when you need them. First:
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6.2 And two more results

Theorem 26. If 1 1×X Xi!X is a product, then i is an isomor-

phism. Similarly for the mirror image result.

We’ve shown that there is an isomorphism between 1×X and X; but there could

also be other arrows between them. So it takes another argument to show that in

any product wedge (W) 1 1×X X,i!X i has to be an isomorphism.

Proof. Consider, then, the following diagram:

1×X

X

1 1×X X

!1×X i

i

!X 1X
u

i!1×X

This commutes. The wedge (V) 1 X X
1X!X must factor through the

product (W) via a unique mediating arrow u, and then i ◦ u = 1X .

Similarly (W) factors through (V) as shown. But putting the triangles together

means that (W) factors through (W) via the (unique) mediating arrow u◦ i. But

since (W) also factors through itself via 11×X , it follows that u ◦ i = 11×X .

Having a inverses on both sides, i is therefore an isomorphism.

And now second, again for future use, we should remark on a non-theorem.

Suppose we have a pair of parallel composite arrows built up using the same

projection arrow like this: X × Y X X ′.
π1

f

g
In Set, the projection

arrow here just ‘throws away’ the second component of pairs living in X × Y ,

and all the real action happens on X, so if f ◦ π1 = g ◦ π1, we should also have

f = g. Generalizing, we might then suppose that, in any category, projection

arrows in products are always right-cancellable, i.e. are epic.

This is wrong. Here’s a brute-force counterexample. Consider the mini cat-

egory with just four objects together with the following diagrammed arrows

(labelled suggestively but noncommittally), plus all identity arrows, and the

necessary two composites:

X ′ X V Y
g

f π1 π2

If that is all the data we have to go on, we can consistently stipulate that in this

mini-category f 6= g but f ◦ π1 = g ◦ π1.
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Now, there is only one wedge of the form X ? Y , so trivially

all wedges of that shape uniquely factor through it. In other words, the wedge

X V Y
π1 π2 is trivially a product and π1 is indeed a projection arrow.

But by construction it isn’t epic.

6.3 More on mediating arrows

We introduce some natural notation for mediating arrows in products, and then

gather together a handful of further simple results.

Definition 36. Suppose [O, π1, π2] is a binary product for the objects X with Y ,

and suppose the wedge X S Y
f1 f2

factors through it via the unique

mediating arrow u : S → O so the following diagram commutes:

S

X O Y

u
f1 f2

π1 π2

Then the unique mediating arrow u will be represented by ‘〈f1, f2〉’. C

We should check that our product-style notation 〈f1, f2〉 for mediating arrows

here doesn’t mislead. But indeed we have:

Theorem 27. If 〈f1, f2〉 = 〈g1, g2〉, then f1 = g1 and f2 = g2.

Proof. Being equal, 〈f1, f2〉 and 〈g1, g2〉 must share as target the object in some

product [X×Y, π1, π2]. We therefore have fi = πi◦〈f1, f2〉 = πi◦〈g1, g2〉 = gi.

We also have:

Theorem 28. Given a product [X×Y, π1, π2] and arrows S X × Y,
u

v
then,

if π1 ◦ u = π1 ◦ v and π2 ◦ u = π2 ◦ v, it follows that u = v.

Proof. We have in fact already seen this result for the special case where v is the

identity arrow. Another diagram shows all we need to prove the general case:

S

X X × Y Y

vu
π1◦u/π1◦v π2◦u/π2◦v

π1 π2

The same wedge X ← S → Y factors through X × Y both via u and v hence,

by uniqueness of mediating arrows, u = v.
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6.3 More on mediating arrows

Definition 37. Suppose we are working in a category with the relevant products.

Then the wedge X X X
1X 1X must factor uniquely through the prod-

uct X ×X via an arrow δX : X → X ×X. That unique arrow δX , i.e. 〈1X , 1X〉,
is the diagonal morphism on X. C

In Set, thinking of X ×X in the usual way, δX sends an element x ∈ X to 〈x, x〉
(imagine elements 〈x, x〉 lying down the diagonal of a two-dimensional array of

pairs 〈x, y〉: hence the label ‘diagonal’ and the notation δ).

Theorem 29. Given an arrow q : S → X, δX ◦ q = 〈q, q〉.

Proof. Consider the following diagram:

S

X

X X ×X X

q

〈q,q〉
q q

1X 1X
δX

π1 π2

The inner triangles commute, hence δX ◦ q is a mediating arrow factoring the

wedge X S X
q q

through the product X × X. But by definition,

the unique mediating arrow which does that is 〈q, q〉.

Theorem 30. Assuming 〈f, g〉 and e compose, 〈f, g〉 ◦ e = 〈f ◦ e, g ◦ e〉.

Proof. Another, rather similar, diagram gives the proof:

R

S

X X × Y Y

e

〈f◦e,g◦e〉

f◦e g◦e

f g〈f,g〉

π1 π2

Again the inner triangles commute, hence 〈f, g〉◦e is a mediating arrow factoring

the wedge with apex R through the product X×Y . But by definition, the unique

mediating arrow is 〈f ◦ e, g ◦ e〉.

Theorem 31. Given parallel arrows S X
f1

f2
, with f1 6= f2, there are (at

least) four distinct arrows S → X ×X.
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Proof. By definition of the product, for each pair of indices i, j ∈ {1, 2} there is

a unique map 〈fi, fj〉 which makes the product diagram commute,

S

X X ×X X

〈fi,fj〉
fi fj

π1 π2

It is immediate from Theorem 27 that if 〈fi, fj〉 = 〈fk, fl〉, then i = k, j = l. So

each of the four different pairs of indices tally different arrows 〈fi, fj〉.

6.4 Maps between two products

(a) Suppose we have two arrows f : X → X ′, g : Y → Y ′. Then we might want

to characterize an arrow between products, f × g : X × Y → X ′ × Y ′, which

works component-wise – i.e., putting it informally, the idea is that f × g sends

the product of elements x and y to the product of f(x) and g(y).

In more categorial terms, we require f×g to be such that the following diagram

commutes:

X X × Y Y

X ′ X ′ × Y ′ Y ′

f

π1 π2

f×g g

π′1 π′2

Note, however, that the vertical arrow is then a mediating arrow from the wedge

X ′ X × Y Y ′
f◦π1 g◦π2

through the product X ′ × Y ′. Therefore f × g is

indeed fixed uniquely by the requirement that that diagram commutes, and must

equal 〈f ◦ π1, g ◦ π2〉. This warrants the following definition as in good order:

Definition 38. Given the arrows f : X → X ′, g : Y → Y ′, and the products

[X ×Y, π1, π2] and [X ′×Y ′, π′1, π′2], then f × g : X ×Y → X ′×Y ′ is the unique

arrow such that π′1 ◦ f × g = f ◦ π1 and π′2 ◦ f × g = g ◦ π2. C

(b) By way of reality checks, let’s prove a pair of theorems which should look

obvious if you have been following the various definitions.

Theorem 32. Suppose we have arrows f : X → X and g : Y → Y , and an

order-swapping isomorphism o : X × Y → Y ×X. Then o ◦ (f × g) = (g× f) ◦ o.

Proof. Suppose we have products [X × Y, π1, π2] and [Y × X,π′1, π
′
2], and an

isomorphism o : X × Y → Y ×X, as in the proof of Theorem 24 (2). And now

consider the following pair of diagrams:
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X X × Y Y

X X × Y Y

X Y ×X Y

f

π1 π2

f×g g

1X o

π1 π2

1Y

π′2 π′1

X X × Y Y

X Y ×X Y

X Y ×X Y

1X

π1 π2

o 1Y

f g×f

π′2 π′1

g

π′2 π′1

(Careful with the directions of the projection arrows!). Both diagrams commute,

revealing that the same wedge factors through the bottom product via both

o◦(f×g) and (g×f)◦o. Those arrows must therefore be equal by the uniqueness

of mediating arrows.

Theorem 33. Suppose we have parallel arrows f, g : X → Y in a category with

binary products. Then the arrow 〈f, g〉 is equal to the composite (f × g) ◦ δX .

Proof. The idea is that it should not matter whether we apply f and g separately

to an element of X and take the product, or take the product of that element

with itself and apply f and g componentwise. So take the diagram

X

X X ×X X

Y Y × Y Y

δX
1X 1X

f

π1 π2

f×g g

π′1 π′2

This commutes by the definitions of δX and f × g. Hence the following also

commutes:

X

Y Y × Y Y

(f×g)◦δX
f g

π′1 π′2

Which makes (f × g) ◦ δX the mediating arrow in a product diagram, so by

uniqueness and the definition of 〈f, g〉, we have (f × g) ◦ δX = 〈f, g〉.

(c) Here’s a special case: sometimes we have an arrow f : X → X ′ and we want

to define an arrow from X×Y to X ′×Y which applies f to the first component

of a product and leaves the second alone. Then f × 1Y will do the trick.
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It is tempting to suppose that if we have parallel maps f, g : X → X ′ and f ×
1Y = g×1Y , then f = g. But this actually fails in some categories – for example,

in the toy category we met in §6.2, whose only arrows are as diagrammed

X ′ X V Y
g

f π1 π2

together with the necessary identities and composites, and where by stipulation

f 6= g but f ◦ π1 = g ◦ π1 (and hence f × 1Y = g × 1Y ).

(d) Later, we will also need the following (rather predictable) general result:

Theorem 34. Assume that there are arrows

X X ′ X ′′

Y Y ′ Y ′′

f j

g k

Assume there are products [X×Y, π1, π2], [X ′×Y ′, π′1, π′2] and [X ′′×Y ′′, π′′1 , π′′2 ].

Then (j × k) ◦ (f × g) = (j ◦ f)× (k ◦ g).

Proof. By the defining property of arrow products applied to the three different

products we get,

π′′1 ◦ (j × k) ◦ (f × g) = j ◦ π′1 ◦ (f × g) = j ◦ f ◦ π1 = π′′1 ◦ (j ◦ f)× (k ◦ g).

Similarly

π′′2 ◦ (j × k) ◦ (f × g) = π′′2 ◦ (j ◦ f)× (k ◦ g)

The theorem then immediately follows by Theorem 28.

6.5 Finite products more generally

(a) So far we have talked of binary products. But we can generalize in obvious

ways. For example,

Definition 39. In any category C , a ternary product [O, π1, π2, π3] for the objects

X1, X2, X3 is an object O together with projection arrows πi : O → Xi (for

i = 1, 2, 3) such that for any object S and arrows fi : S → Xi there is always a

unique arrow arrow u : S → O such that fi = πi ◦ u. C

And then, exactly as we would expect, using just the same proof ideas as in the

binary case, we can prove

Theorem 35. If both the ternary products [O, π1, π2, π3] and [O′, π′1, π
′
2, π
′
3] exist

for X1, X2, X3 in the category C , then there is a unique isomorphism f : O −→∼
O′ commuting with the projection arrows.
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We can safely leave filling in the details as an exercise.

We now note that if C has binary products for all pairs of objects, then it

automatically has ternary products too, for

Theorem 36. (X1×X2)×X3 together with the obvious projection arrows forms

a ternary product of X1, X2, X3.

Proof. Assume [X1 × X2, π1, π2] is a product of X1 with X2, and also that

[(X1 ×X2)×X3, ρ1, ρ2] is a product of X1 ×X2 with X3.

Take any object S and arrows fi : S → Xi. By our first assumption, (a) there

is a unique u : S → X1 × X2 such that f1 = π1 ◦ u, f2 = π2 ◦ u. And by our

second assumption, (b) there is then a unique v : S → (X1×X2)×X3 such that

u = ρ1 ◦ v, f3 = ρ2 ◦ v.

Therefore f1 = π1 ◦ ρ1 ◦ v, f2 = π2 ◦ ρ1 ◦ v, f3 = ρ2 ◦ v
Now consider [(X1 ×X2) ×X3, π1 ◦ ρ1, π2 ◦ ρ1, ρ2]. This, we claim, is indeed

a ternary product of X1, X2, X3. We’ve just proved that the cone with vertex S

and arrows fi : S → Xi factors through the product via the arrow v. It remains

to confirm v’s uniqueness in this new role.

Suppose we have w : S → (X1×X2)×X3 where f1 = π1◦ρ1◦w, f2 = π2◦ρ1◦w,

f3 = ρ2 ◦ w. Then ρ1 ◦ w : S → X1 × X2 is such that f1 = π1 ◦ (ρ1 ◦ w),

f2 = π2 ◦ (ρ1 ◦w). Hence by (a), u = ρ1 ◦w. But now invoking (b), that together

with f3 = ρ2 ◦ w entails w = v.

Of course, an exactly similar argument will show that the product X1×(X2×
X3) together with the obvious projection arrows will serve as another ternary

product of X1, X2, X3. Hence we are now at last in a position to neatly prove

Theorem 24. (3) X × (Y × Z) ∼= (X × Y )× Z.

Proof. Both (X1×X2)×X3 and X1× (X2×X3) (with their projection arrows)

are ternary products of X1, X2, X3. So Theorem 35 entails that X1×(X2×X3) ∼=
(X1 ×X2)×X3.

(b) What goes for ternary products goes for n-ary products defined in a way

exactly analogous to Defn. 39. If C has binary products for all pairs of objects it

will have quaternary products such as ((X1×X2)×X3)×X4, quinary products,

and n-ary products more generally, for any finite n ≥ 2.

To round things out, how do things go for the nullary and unary cases?

Following the same pattern of definition, a nullary product in C would be an

object O together with no projection arrows, such that for any object S there

is a unique arrow u : S → O. Which is just to say that a nullary product is a

terminal object of the category.

And a unary product of X would be an object O and a single projection arrow

π1 : O → X such that for any object S and arrow f : S → X there is a unique

arrow u : S → O such that π ◦ u = f . Putting O = X and π = 1X evidently

fits the bill. So the basic case of a unary product of X is not quite X itself, but
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rather X equipped with its identity arrow (and like any product, this is unique

up to unique isomorphism). Trivially, unary products for all objects exist in all

categories.

In sum, suppose we say

Definition 40. A category C has all binary products iff for all C -objects X and

Y , there exists a binary product of X with Y in C .

C has all finite products iff C has n-ary products for any n objects, for all

n ≥ 0. C

Then our preceding remarks establish

Theorem 37. A category C has all finite products iff C has a terminal object

and has all binary products.

6.6 Infinite products

We can now generalize still further in an obvious way, going beyond finite prod-

ucts to infinite cases.

Definition 41. Suppose that we are dealing with C -objects Xj indexed by items

j in some suite of indices J (not now assumed finite). Then the product of the Xj ,

if it exists in C , is an object O together with a projection arrow πj : O → Xj for

each index j. It is required that for any object S and family of arrows fj : S → Xj

(one for each index), there is always a unique arrow arrow u : S → O such that

fj = πj ◦ u. C

For the same reasons as before, such a generalized product will be unique up to

unique isomorphism.

Now, we are in fact only going to be really interested in cases where the suite

of indices J can be treated as a set in standard set theory. In other words, we are

really only going to be interested in cases where we take products of set-many

objects. Ignoring the over-sized cases, we then say:

Definition 42. A category C has all small products iff for any C -objects Xj , for

j ∈ J where J is some index set, these objects have a product. We notate the

object in the product of such Xj for j ∈ J by ‘
∏
j∈J

Xi’. C

Here, ‘small’ is a joke. It doesn’t mean small by any normal standards – it just

indicates that we are taking products over collections of objects that are not too

many to form a set. We’ll be returning to such issues of size in Chapter 14.
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7 Equalizers

Terminal and initial objects, products and coproducts, are defined by universal

mapping properties. In this chapter, we look at another dual pair of constructs

defined by such mapping properties, so-called equalizers and co-equalizers.

7.1 Equalizers

It was useful, when defining products, to introduce the idea of a ‘wedge’ (Defn. 31)

for a certain configuration of objects and arrows in a category. Here’s a similar

definition that is going to be useful in defining the equalizers:

Definition 43. A fork (from S through X to Y ) consists of arrows k : S → X

with f : X → Y and g : X → Y , such that f ◦ k = g ◦ k. C

So a fork is a commuting diagram S X Y,k
f

g
with the composite

arrows from S to Y being equal.

Now, as we saw, a product wedge from O to X and Y is a limiting case: it’s a

wedge such that any other wedge from S to X and Y uniquely factors through

it. Likewise, an equalizing fork from E through parallel arrows f, g : X → Y

is another limiting case: it’s a fork such that any other fork from an object S

through f, g uniquely factors through it. In other, clearer, words:

Definition 44. Let C be a category and f, g : X → Y be a pair of parallel arrows

in C . Then the object E and arrow e : E → X form an equalizer in C for those

arrows iff f ◦ e = g ◦ e (so E X Ye
f

g
is indeed a fork), and for any

fork S X Yk
f

g
there is a unique mediating arrow u : S → E such

the following diagram commutes:

S

X Y

E

k

u
f

g

e

C
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We now note that, just as with products (see Defn. 32), we can give an al-

ternative definition which defines equalizers in terms of a terminal object in a

suitable category. First we say

Definition 45. Given a category C and parallel arrows f, g : X → Y , then the

derived category of forks CF (fg) has as objects all forks S X Y.k
f

g

And an arrow from S
k−→ · · · to S′

k′−→ · · · in CF (fg) is a C -arrow g : S → S′

such that the resulting triangle commutes: i.e. such that k = k′ ◦ g.

The identity arrow in CF (fg) on the fork S
k−→ · · · is the identity arrow 1S in

C ; and the composition of arrows in CF (fg) is defined as the composition of the

arrows as they feature in C . C

It is again easily checked that this indeed defines a category. Our definition of

an equalizer then comes to this:

Definition 46. An equalizer of f, g : X → Y in C is some [E, e] (E a C -object,

e a C -arrow E → X) such the resulting fork E X Ye
f

g
is terminal

in CF (fg). C

Here, then, are a few examples of equalizers:

(1) Suppose in Set we have parallel arrows X Y.
f

g
Then let E ⊆ X be

the set such that x ∈ E iff fx = gx, and let e : E → X be the simple

inclusion map. By construction, f ◦ e = g ◦ e. So E X Ye
f

g
is

a fork. We show that [E, e] is in fact an equalizer for f and g.

Suppose S X Yk
f

g
is any other fork through f, g, which

requires f(k(s)) = g(k(s)) for each s ∈ S and hence k[S] ⊆ E ⊆ X.

Defining the mediating arrow u : S → E to agree with k : S → X on

all inputs will make the diagram for equalizers commute. And this is the

unique possibility: for the diagram to commute we need k = e ◦ u, and the

inclusion e doesn’t affect the values of the function (only its codomain), k

and u must indeed agree on all inputs.

(2) Equalizers in categories whose objects are sets-with-structure behave simi-

larly. Take as an example the category Mon. Given a pair of monoid homo-

morphisms (X, ·, 1X) (Y, ∗, 1Y ),
f

g
take the subset E of X on which

the functions agree. Evidently E must contain the identity element of X

(since f and g agree on this element: being homomorphisms, both must

send 1X to the 1Y ). And suppose e, e′ ∈ E: then f(e · e′) = f(e) ∗ f(e′) =

g(e) ∗ g(e′) = g(e · e′), which means that E is closed under products of

members.
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So take E together with the monoid operation from (X, ·, 1X) restricted

to members of E. Then (E, ·, 1X) is a monoid – for the shared identity

element still behaves as an identity, E is closed under the operation, and

the operation is still associative. And if we take (E, ·, 1X) and equip it with

the injection homomorphism into (X, ·, 1X), this will evidently give us an

equalizer for f and g.

(3) Similarly, take Top. What is the equalizer for a pair of continuous maps

X Y
f

g
? Well, take the subset of (the underlying set of) X on which

the functions agree, and give it the subspace topology. This topological

space equipped with the injection into X is then the desired equalizer.

(This works because of the way that the subspace topology is defined – we

won’t go into details).

(4) A special case. Suppose we are in Grp and have a group homomorphism,

f : X → Y . There is also another trivial homomorphism o : X → Y which

sends any element of the group X to the identity element in Y , i.e. is the

composite X → 1→ Y of the only possible homomorphisms. Now consider

what would constitute an equalizer for f and o.

Suppose K is the kernel of f , i.e. the subgroup of X whose objects are the

elements which f sends to the identity element of Y , and let i : K → X be

the inclusion map. Then K X Yi
f

o
is a fork since f ◦ i = o◦ i.

Let S X Yk
f

o
be another fork. Now, o ◦ k sends every ele-

ment of S to the unit of Y . Since f ◦ k = o ◦ k, k must send any element of

S to some element in the kernel K. So let k′ : S → K agree with k : S → X

on all arguments.

Then the following commutes:

S

X Y

K

k

k′
f

o

i

And evidently k′ is the only possible homomorphism to make the diagram

commute.

So the equalizer of f and o is f ’s kernel K equipped with the inclusion

map into the domain of X. Or putting it the other way about, we can

define kernels of group homorphisms categorially in terms of equalizers.

(5) Finally we remark that the equalizer of a pair of maps X Y
f

g
where

in fact f = g is simply [X, 1X ].

Consider then a poset (P,4) considered as a category whose objects

are the members of P and where there is a unique arrow X → Y (for
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X,Y ∈ P ) iff X 4 Y . So the only cases of parallel arrows from X to Y are

cases of equal arrows which then, as remarked, have equalizers. So in sum,

a poset category has all possible equalizers.

7.2 Uniqueness again

Just as products are unique up to unique isomorphism, equalizers are too. That

is to say,

Theorem 38. If both the equalizers [E, e] and [E′, e′] exist for X Y,
f

g

then there is a unique isomorphism j : E −→∼ E′ commuting with the equalizing

arrows, i.e. such that e = e′ ◦ j.

Plodding proof from first principles. We can use an argument that goes along

exactly the same lines as the one we used to prove the uniqueness of products

and equalizers. This is of course no accident, given the similarity of the definitions

via a unique mapping property.

Assume [E, e] equalizes f and g, and suppose e◦h = e. Then observe that the

following diagram will commute

E

X Y

E

e

h
f

g

e

Now obviously, h = 1E makes that diagram commute. But by hypothesis there is

a unique arrow E → E which makes the diagram commute. So we can conclude

that if e ◦ h = e, then h = 1E .

Now suppose [E′, e′] is also an equalizer for f and g. Then [E, e] must factor

uniquely through it. That is to say, there is a (unique) mediating j : E → E′

such that e′ ◦ j = e. And since [E′, e′] must factor uniquely though [E, e] there

is a unique k such that e ◦ k = e′. So e ◦ k ◦ j = e, and hence by our initial

conclusion, k ◦ j = 1E .

A similar proof shows that j ◦ k = 1E′ . Which makes the unique j an isomor-

phism.

Proof using the alternative definition of equalizers. [E, e] and [E′, e′] are both

terminal objects in the fork category CF (fg). So by Theorem 15 there is a unique

CF (fg)-isomorphism j between them. But, by definition, this has to be a C -arrow

j : E −→∼ E′ commuting with the equalizing arrows. And j is easily seen to be

an isomorphism in C too.

Let’s add two further general results about equalizers. First:

Theorem 39. If [E, e] constitute an equalizer, then e is a monomorphism.
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Proof. Assume [E, e] equalizes X Y,
f

g
and suppose e ◦ g = e ◦ h, where

D E.
g

h
Then the following diagram commutes,

D

X Y

E

e◦g=e◦h

hg
f

g

e

So D X Y
e◦g/e◦h f

g
is a fork factoring through the equalizer. But by the

definition of an equalizer, it has to factor uniquely, and hence g = h. So e is

left-cancellable in the equation e ◦ g = e ◦ h; i.e. e is monic.

Second, in an obvious shorthand,

Theorem 40. In any category, an epic equalizer is an isomorphism

Proof. Assume again that [E, e] equalizes X Y,
f

g
so that f ◦ e = g ◦ e. So

if e is epic, it follows that f = g. Then consider the following diagram

X

X Y

E

1X

u
f

g

e

Because e equalizes, we know there is a unique u such that (i) e ◦ u = 1X .

But then also e ◦u ◦ e = 1X ◦ e = e = e ◦ 1E . Hence, since equalizers are mono

by the last theorem, (ii) u ◦ e = 1E .

Taken together, (i) and (ii) tell us that e has an inverse. Therefore e is an

isomorphism.

7.3 Co-equalizers

(a) Dualizing, we get the notion of a co-equalizer. First we say:

Definition 47. A co-fork (from X through Y to S ) consists of parallel arrows

f : X → Y , g : X → Y and an arrow k : Y → S, such that k ◦ f = k ◦ g. C

(Plain ‘fork’ is often used for the dual too: but the ugly ‘co-fork’ keeps things

clear.) Diagrammatically, a co-fork looks like this: X Y S,
f

g

k with

the composite arrows from X to S being equal. Then, as you would expect:
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Definition 48. Let C be a category and f : X → Y and g : X → Y be a pair of

parallel arrows in C . The object C and arrow c : Y → S form a co-equalizer in

C for those arrows iff c ◦ f = c ◦ g, and for any co-fork from X through Y to S

there is a unique arrow u : C → S such the following diagram commutes:

S

X Y

C

f

g

k

c

u

C

(b) We need not pause to spell out the dual arguments that co-equalizers

are unique up to a unique isomorphism or that co-equalizers are epic. Instead,

we turn immediately to consider one central example by asking: what do co-

equalizers look like in Set?
Suppose we are given parallel arrows f, g : X → Y in Set. These arrows in-

duce a relation Rfg (or R for short) on the members of Y , where yRy′ holds

when there is an x ∈ X such that f(x) = y ∧ g(x) = y′. Now, given a co-fork

X Y S,
f

g

k then yRy′ implies k(y) = k(y′). And trivially, having

equal k-values is an equivalence relation ≡k on members of Y.

So, in sum, we’ve shown that given a co-fork via k : Y → S from the parallel

arrows f, g : X → Y , there is a corresponding equivalence relation ≡k on Y such

that if yRfgy
′ then y ≡k y′.

Now what’s the limiting case of such an equivalence relation? It will have to

be R∼, the smallest equivalence relation containing Rfg. So we’ll expect that the

limiting case of a cofork will comprise an arrow c : Y → C such that ≡c = R∼.

In other words, we want c to be such that c(y) = c(y′) iff yR∼y′.

Which motivates the following:

Theorem 41. Given functions f, g : X → Y in Set, let R∼ be the smallest equiv-

alence relation containing R – where yRy′ iff (∃x ∈ X)(f(x) = y ∧ g(x) = y′).

Let C be Y/R∼, i.e. the set of R∼-equivalence classes of Y ; and let c map

y ∈ Y to the R∼-equivalence class containing y. Then [C, c], so defined, is a

co-equalizer for f and g.

Proof. We just have to do some routine checking. First we show c ◦ f = c ◦ g.

But the left-hand side sends x ∈ X to the R∼-equivalence class containing

f(x) and the right-hand side sends x to the R∼-equivalence class containing

g(x). However, f(x) and g(x) are by definition R-related, and hence are R∼-

related: so by construction they belong to the same R∼-equivalence class. Hence

X Y C
f

g

c is indeed a co-fork.

Now suppose there is another co-fork X Y S
f

g

k We need to show

the co-fork ending with c factors through this via a unique mediating arrow u.
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By assumption, k ◦ f = f ◦ g. And we first outline a proof that if yR∼y′ then

k(y) = k(y′).

Start with R defined as before, and let R′ be its reflexive closure. Obviously

we’ll still have that if yR′y′ then k(y) = k(y′). Now consider R′′ the symmetric

closure of R′: again, we’ll still have that if yR′′y′ then k(y) = k(y′). Now note

that if yR′′y′ and y′R′′y′′, then k(y) = k(y′′). So if we take the transitive closure

of R′′, we’ll still have a relation which, when it holds between some y and y′′,

implies that k(y) = k(y′′). But the transitive closure of R′′ is R∼.

We have shown, then, that k is constant on members of a R∼-equivalence class,

and so we can well-define a function u : C → S which sends an equivalence class

to the value of k on a member of that class. This u is the desired mediating arrow

which makes the diagram defining a co-equalizer commute. Moreover, since c is

surjective and C only contains R∼-equivalence classes, u is the only function for

which u ◦ c = k.

In a slogan then: in Set, quotienting by an equivalence relation is (up to unique

isomorphism) the same as taking an associated co-equalizer. In many other cate-

gories co-equalizers behave similarly, corresponding to ‘naturally occurring’ quo-

tienting constructions. But we won’t go into more detail here.
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A terminal object is defined essentially in terms of how all the other objects in

the category relate to it (by each sending it a unique arrow). A product wedge is

defined in terms of how all the other wedges in a certain family relate to it (each

factoring through it via a unique arrow). An equalizing fork is defined in terms

of how all the other forks in a certain family relate to it (each factoring through

it via a unique arrow). In an informal sense, terminal objects, products, and

equalizers are limiting cases, defined in closely analogous ways using universal

mapping properties. Likewise for their duals.

In this chapter, we now formally capture what’s common to terminal objects,

products and equalizers by defining a general class of limits, and confirming that

terminal objects, products and equalizers are indeed examples. We also define a

dual class of co-limits, which has initial objects, coproducts and co-equalizers as

examples.

We then give a new pair of examples, one for each general class, the so-called

pullbacks and pushouts.

8.1 Cones over diagrams

(a) We start by defining the notion of a cone over a diagram; then in the next

section we can use this to define the key notion of a limit cone.

Way back in Defn. 3, we loosely characterized a diagram D in a category

C as being what is represented by a representational diagram – i.e. as simply

consisting in a bunch of objects with, possibly, some arrows between some of

them. We now need some more systematic scheme for labelling the objects in a

diagram. So henceforth we’ll assume that the objects in D can be labelled by

terms like ‘Dj ’ where ‘j’ is an index from some suite of indices J . For convenience,

we’ll allow double counting, permitting the case where Dj = Dk for different

indices. We allow the limiting cases of diagrams where there are no arrows, and

even the empty case where there are no objects either. So:

Definition 3* A (labelled) diagram in a category C is some (or no) objects Dj

for indices j in the suite of indices J , and some (or no) C -arrows between these

objects. C
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8.1 Cones over diagrams

(We eventually, in §15.1, give a tauter definition of diagrams, but this will do to

be getting on with.)

Definition 49. Let D be a diagram in category C . Then a cone over D comprises

a C -object C, the vertex or apex the cone, together with C -arrows cj : C →
Dj (often called the legs of the cone), one for each object Dj in D, such that

whenever there is an arrow d : Dk → Dl in D, cl = d ◦ ck, i.e. the following

diagram commutes:

C

Dk Dl

clck

d

We use ‘[C, cj ]’ as our notation for such a cone. C

Think of it diagrammatically(!) like this: arrange the objects in the diagram D

in a plane, along with whatever arrows there are between them in D. Now sit

the object C above the plane, with a quiverful of arrows from C zinging down,

one to each object Dj in the plane. Those arrows form the ‘legs’ of a skeletal

cone. And the key requirement is that any triangles thus formed with C at the

apex must commute.

We should note, by way of aside, that some authors prefer to say more

austerely that a cone is not a vertex-object-with-a-family-of-arrows-from-that-

vertex but simply a family of arrows from the vertex. Since we can read off the

vertex of a cone as the common source of all its arrows, it is very largely a matter

of convenience whether we speak austerely or explicitly mention the vertex. But

for the moment, we’ll take the less austere line.

(b) For later use, but also to help check understanding now, here is another

definition and then two theorems:

Definition 50. The (reflexive, transitive) closure of a diagram D in a category

C is the smallest diagram with includes all the objects and arrows of D, but

which also has an identity arrow on each object, and for any two composable

arrows it contains, contains their composition. C

In other words, the closure of a diagram D in C is what you get by adding

identity arrows where necessary, forming composites of any composable arrows

you now have, then forming composites of what you have at the next stage, and

so on and so forth. Since the associativity of the composition operation will be

inherited from C , it is immediate that

Theorem 42. The closure of a diagram D in C is a subcategory of C .

A little more interestingly, though almost equally easily, we have:

Theorem 43. If [C, cj ] is a cone over D, then it is a cone over the closure of D.
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Proof. The closure of D has no additional objects, so [C, cj ] still has a leg from

the vertex C to each object in the closure. It is trivial that, given an identity

arrow 1k : Dk → Dk, we have ck = 1k ◦ ck. So we just need to show a cone over

composable arrows is still a cone when their composite is added. So suppose we

have a cone over a diagram including the arrows d : Dk → Dl and d′ : Dl → Dm.

That means cl = d ◦ ck and cm = d′ ◦ cl. Hence cm = (d′ ◦ d) ◦ l. So the cone is

still a cone if we add the composite arrow d′ ◦ d : Dk → Dm.

8.2 Defining limit cones

(a) There can be many cones, with different vertices, over a given diagram D.

But, in just the same spirit as our earlier definitions of products and equalizers,

we can define a limiting case, by means of a universal mapping property:

Definition 51. A cone [L, λj ] over a diagram D in C is a limit (cone) over D iff

any cone [C, cj ] over D uniquely factors through it, so there a unique mediating

arrow u : C → L such that for each index j, λj ◦u = cj . In other words, for each

Dj in D, the corresponding triangle whose other vertices are C and L commutes:

C

L

Dj Dk Dl · · ·

cj

u

ck cl

λj λk

λl

C

(b) Let’s immediately confirm that our three announced examples of limits so

far are indeed limit cones in the sense just defined.

(1) We start with the null case. Take the empty diagram in C – zero objects

and so, necessarily, no arrows. Then a cone over the empty diagram is

simply an object C, a lonely vertex (there is no further condition to fulfil),

and an arrow between such minimal cones C,C ′ is just an arrow C → C ′.

Hence L is a limit cone just if there is a unique arrow to it from any other

object – i.e. just if L is a terminal object in C !

(2) Consider now a diagram which is just two objects we’ll call ‘D1’, ‘D2’, still

with no arrow between them. Then a cone over such a diagram is just a

wedge into D1, D2; and a limit cone is simply a product of D1 with D2.

(We could equally have considered the reflexive transitive closure of this

two object diagram, i.e. the discrete category with two objects plus their

identity arrows: by our last theorem, it would make no difference.)

70



8.2 Defining limit cones

(3) Next consider a diagram which again has just two objects, but now with

two parallel arrows between them, which we can represent D1 D2

d

d′
.

Then a cone over this diagram, or over its closure, is a commuting diagram

like this:

C

D1 D2

c2c1

d

d′

If there is such a diagram, then we must have d◦c1 = d′◦c1: and vice versa,

if that identity holds, then we can put c2 = d ◦ c1 = d′ ◦ c1 to complete

the commutative diagram. Hence we have a cone from the vertex C to our

diagram iff C D1 D2
c1 d

d′
is a fork. Since c1 fixes what c2 has

to be to complete the cone, we can focus on the cut-down cone consisting

of just [C, c1].

What is the corresponding cut-down limit cone? It consists in [E, e] such

there is a unique u such that c1 = e ◦ u. Hence [E, e] is an equalizer of the

parallel arrows D1 D2.
d

d′

(c) We can now give a direct proof, along now hopefully entirely familiar lines,

for the predictable result

Theorem 44. Limit cones over a given diagram D are unique up to a unique

isomorphism commuting with the cones’s arrows.

Proof. As usual, we first note that a limit cone [L, λj ] factors through itself via

the mediating identity 1L : L → L. But by definition, a cone over D uniquely

factors through the limit, so that means that

(i) if λj ◦ u = λj for all indices j, then u = 1L.

Now suppose [L′, λ′j ] is another limit cone over D. Then [L′, λ′j ] uniquely factors

through [L, λj ], via some f , so

(ii) λj ◦ f = λ′j for all j.

And likewise [L, λj ] uniquely factors through [L′, λ′j ] via some g, so

(iii) λ′j ◦ g = λj for all j.

Whence

(iv) λj ◦ f ◦ g = λj for all j.

Therefore
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(v) f ◦ g = 1L.

And symmetrically

(vi) g ◦ f = 1L′ .

Whence f is not just unique (by hypothesis, the only way of completing the

relevant diagrams to get the arrows to commute) but an isomorphism.

8.3 Limit cones as terminal objects

We have already seen that

(1) A terminal object in C is . . . wait for it! . . . terminal in the given category

C .

(2) The product of X with Y in C is a terminal object in the derived category

CW (X,Y ) of wedges to X and Y.

(3) The equalizer of parallel arrows throughX to Y in C are (parts of) terminal

objects in the derived category CF (XY ) of forks through X to Y.

Predictably, limit cones more generally are terminal objects in appropriate cat-

egories.

To spell this out, we first note that the cones [C, cj ] over a given diagram D

in C form a category in a very natural way:

Definition 52. Given a diagram D in category C , the derived category CC(D) –

the category of cones over D – has the following data:

(1) Its objects are the cones [C, cj ] over D.

(2) An arrow from [C, cj ] to [C ′, c′j ] is any C -arrow f : C → C ′ such that

c′j ◦ f = cj for all indices j. In other words, for each Dj , Dk, Dl, . . . , in D,

the corresponding triangle with remaining vertices C and C ′ commutes:

C

C ′

Dj Dk Dl · · ·

cj

f

ck cl

c′j c′k

c′l

The identity arrow on a cone [C, cj ] is the C -arrow 1C . And composition for

arrows in CC(D) is just composition of the corresponding C -arrows. C

It is entirely routine to confirm that CC(D) is indeed a category. We can then

recast our earlier definition of a limit cone as follows:
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Definition 53. A limit cone for D in C is a cone which is a terminal object in

CC(D). C

And we now have an alternative proof of our last uniqueness result, Theorem 44:

Proof. Since a limit cone over D is terminal in CC(D), it is unique in CC(D)

up to a unique isomorphism. But such an isomorphism in CC(D) must be an

isomorphism in C commuting with the cones’s arrows.

8.4 Results about limits

(a) Let’s first prove two further simple theorems:

Theorem 45. Suppose [L, λj ] is a limit cone over a diagram D in C , and [L′, λ′j ]

is another cone over D which factors through [L, λj ] via an isomorphism f . Then

[L′, λ′j ] is also a limit cone.

Proof. Take any cone [C, cj ] over D. We need to show that (i) there is an arrow

v : C → L′ such that for all indices j for objects Dj in D, cj = λ′j ◦ v, and (ii) v

is unique.

But we know that there is a unique arrow u : C → L such that for j, cj = λj◦u.

And we know that f : L′ → L and λ′j = λj ◦ f (so λj = λ′j ◦ f−1).

Therefore put v = f−1 ◦ u, and that satisfies (i).

Now suppose there is another arrow v′ : C → L′ such that cj = λ′j ◦ v′. Then

we have f ◦v′ : C → L, and also cj = λj ◦f ◦v′. Therefore [C, cj ] factors through

[L, λj ] via f ◦ v′, so f ◦ v′ = u. Whence v′ = f−1 ◦ u = v. Which proves (ii).

Theorem 46. Suppose [L, λj ] is a limit cone over a diagram D in C . Then the

cones over D with vertex C correspond one-to-one with C -arrows from C to L.

Proof. Take any arrow u : C → L. If there is an arrow d : Dk → Dl in the diagram

D, then (since [L, λj ] is a cone), λl = d ◦λk, whence (λl ◦u) = d ◦ (λk ◦u). Since

this holds generally, [C, λj ◦u] is a cone over D. But (again since [L, λj ] is a limit)

every cone over D with vertex C is of the form [C, λj ◦ u] for unique u. Hence

there is indeed a one-one correspondence between arrows u : C → L and cones

over D with vertex C. (Moreover, the construction is a natural one, involving

no arbitrary choices.)

(b) We pause for a fun exercise and reality check, by remarking that the whole

category C can be thought of as the limiting case of a diagram in itself, and

then

Theorem 47. A category C has an initial object if and only if C , thought of as

a diagram in C , has a limit.
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Proof. Suppose C has an initial object I. Then for every C -object C, there is

a unique arrow λC : I → C. [I, λC ] is a cone (since for any arrow f : C → D,

the composite f ◦ λC is an arrow from I to D and hence has to be equal to the

unique λD. Further, [I, λC ] is a limit cone. For suppose [A, aC ] is any other cone

over the whole of C . Then since it is a cone, the triangle

A

I C

aCaI

λC

has to commute for all C. But that’s just the condition for [A, aC ] factoring

through [I, λC ] via aI . And moreover, suppose [A, aC ] also factors through by

some u. Then in particular,

A

I I

aIu

1I

commutes, and so u = aI . So the factoring is unique, and [I, λC ] is a limit cone.

Now suppose, conversely, that [I, λC ] is a limit cone over the whole of C . Then

there is an arrow λC : I → C for each C in C . If we can show it is unique, I will

indeed be initial.

Suppose then that there is an arrow k : I → C for a given C. Then since

[I, λC ] is a cone, the diagram

I

I C

λCλI

k

has to commute. Considering the case where k = λC , we see that [I, λC ] factors

through itself via λI ; but it also factors via 1D, so the uniqueness of factorization

entails λI = 1D. Hence the diagram shows that for any k : I → C has to be

identical to λC . So I is initial.

(c) Before proceeding further, let’s introduce some standard notation:

Definition 54. We denote the limit object at the vertex of a given limit cone for

the diagram D with objects Dj by ‘Lim
←j

Dj ’. C

Do note, however, that since limit cones are only unique up to isomorphism,

different but isomorphic objects can be denoted in different contexts by ‘Lim
←j

Dj ’.

The projection arrows from this limit object to the various objects Dj will

then naturally be denoted ‘λi : Lim
←j

Dj → Di’, and the limit cone could therefore
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be represented by ‘[Lim
←j

Dj , λj ]’. (The direction of the arrow under ‘Lim’ in this

notation is perhaps unexpected, but we just have to learn to live with it.)

8.5 Colimits defined

The headline, and thoroughly predictable, story about duals is: reverse the rel-

evant arrows and you get a definition of colimits.

So, dualizing §8.2 and wrapping everything together, we get:

Definition 55. Let D be a diagram in category C . Then a cocone under D is

a C -object C, together with an arrow cj : Dj → C for each object Dj in D,

such that whenever there is an arrow d : Dk → Dl in D, the following diagram

commutes:

Dk Dl

C

d

ck cl

The cocones under D form a category with objects the cocones [C, cj ] and an

arrow from [C, cj ] to [C ′, c′j ] being any C -arrow f : C → C ′ such that c′j = f ◦ cj
for all indexes j. A colimit for D is an initial object in the category of cocones

under D. It is standard to denote the object at the vertex of the colimit cocone

for the diagram D by ‘Lim
→j

Dj ’. C

It is now routine to confirm that our earlier examples of initial objects, co-

products and co-equalizers do count as colimits.

(1) The null case where we start with the empty diagram in C gives rise to a

cocone which which is simply an object in C. So the category of cocones

over the empty diagram is just the category C we started with, and a limit

cocone is just an initial object in C !

(2) Consider now a diagram which is just two objects we’ll call ‘D1’, ‘D2’, still

with no arrow between them. Then a cocone over such a diagram is just

a corner from D1, D2 (in the sense we met in §5.7); and a limit cocone in

the category of such cocones is simply a coproduct.

(3) And if we start with the diagram D1 D2

d

d′
then a limit cocone over

this diagram gives rise to a co-equalizer.

8.6 Pullbacks

(a) Let’s illustrate all this by briefly exploring another kind of limit (in this

section) and its dual (in the next section).
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A co-wedge or, as I prefer to say (§5.7), a corner D in category C is a diagram

which can be represented like this:

D2

D1 D3

e

d

Now, a cone over our corner diagram has a rather familiar shape, i.e. it is a

commutative square:

C D2

D1 D3

c1
c3

c2

e

d

Though note, we needn’t really draw the diagonal here, for if the sides of the

square commute thus ensuring d◦c1 = e◦c2, then we know a diagonal c3 = d◦c1
exists making the triangles commute.

And a limit for this type of cone will be a cone with vertex L = Lim
←j

Dj and

three projections λj : L → Dj such that for any cone [C, cj ] over D, there is a

unique u : C → L such that this diagram commutes:

C

L D2

D1 D3

u

c2

c1
λ1

λ2

e

d

And note that if this commutes, there’s just one possible λ3 : L → D3 and one

possible c3 : C → D3 which can add to make a diagram that still commutes

Definition 56. A limit for a corner diagram is a pullback. The square formed

by the original corner and its limit, with or without its diagonal, is a pullback

square. C

(b) Let’s immediately have a couple of examples of pullback squares living in

the category Set.

(1) Changing the labelling, consider a corner comprising three sets X,Y, Z and

a pair of functions which share the same codomain, thus:
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8.6 Pullbacks

Y

X Z

g

f

We know from the previous diagram that the limit object L must be

product-like (with any wedge over X,Y factoring through the wedge with

vertex L). Hence to get the other part of the diagram to commute, the

pullback square must have at its apex L something isomorphic to {〈x, y〉 ∈
X × Y | f(x) = g(y)} with the obvious projection maps to X and Y .

So suppose first that in fact both X and Y are subsets of Z, and the

arrows into Z are both inclusion functions. And we then get a pullback

square

L Y

X Z

i2

i1

with L ∼= {〈x, y〉 ∈ X ×Y | x = y} = {〈z, z〉 | z ∈ X ∩Y } ∼= X ∩Y . Hence,

in Set, the intersection of a pair of sets is their pullback object (fixed, as

usual, up to isomorphism).

(2) Take another case in Set. Suppose we have a corner as before but with

Y = Z and g = 1Z . Then

L ∼= {〈x, z〉 ∈ X × Z | f(x) = z} ∼= {x | ∃zf(x) = z} ∼= f−1[Z],

i.e. a pullback object for this corner is, up to isomorphism, the inverse

image of Z, and we have a pullback square

f−1[Z] Z

X Z

1Z

f

Hence in Set, the inverse image of a function is also a pullback object.

We will meet another simple example of pullbacks in Set in §10.4

(c) Why ‘pullback’? Look at e.g. the diagram in (2). We can say that we get

to f−1[Z] from Z by pulling back along f – or more accurately, we get to the

arrow f−1[Z]→ X by pulling back the identity arrow on Z along f .

In this sense,

Theorem 48. Pulling back a monomorphism yields a monomorphism.

In other words, if we start with the same corner X Z Y
f g

with g

monic, and can pullback g along f to give a pullback square
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L Y

X Z

a

b

g

f

then the resulting arrow a is monic. (Note, this does not depend on the character

of f .)

Proof. Suppose, for some arrows C L,
j

k
a ◦ j = a ◦ k. Then g ◦ b ◦ j =

f ◦ a ◦ j = f ◦ a ◦ k = g ◦ b ◦ k. Hence, given that g is monic, b ◦ j = b ◦ k.

It follows that the two cones over the original corner, X C Y
a◦j b◦j

and X C Ya◦k b◦k are in fact the same cone, and hence must factor

through the limit L via the same unique arrow C → L. Which means j = k.

In sum, a ◦ j = a ◦ k implies j = k, so a is monic.

Here’s another result about monomorphisms and pullbacks:

Theorem 49. The arrow f : X → Y is a monomorphism in C if and only if the

following is a pullback square:

X X

X Y

1X

1X

f

f

Proof. Suppose this is pullback diagram. Then any cone X C Xa b

over the corner X Y X
f f

must uniquely factor through the limit

with vertex X. That is to say, if f ◦a = f ◦b, then there is a u such that a = 1X ◦u
and b = 1X ◦ u, hence a = b – so f is monic.

Conversely, if f is monic, then given any cone X C Xa b over the

original corner, f ◦ a = f ◦ b, whence a = b. But that means the cone factors

through the cone X X X
1X 1X via the unique a, making that cone a

limit and the square a pullback square.

(d) We’ve explained, up to a point, the label ‘pullback’. It should now be noted

in passing that a pullback is sometimes called a fibered product (or fibre product)

because of a construction of this kind on fibre bundles in topology. Those who

know some topology can chase up the details.

But here’s a way of getting products into the story, using an idea that we

already know about. We show

Theorem 50. A pullback of a corner with vertex Z in a category C is a product

in the slice category C /Z.
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Proof. Recall, an object of C /Z, on the economical definition, is a C -arrow

f : C → Z, and an arrow of C /Z from f : X → Z to g : Y → Z is a C -arrow

h : X → Y such that f = g ◦ h in C .

Now the pullback of the corner with vertex Z formed by f and g in C is a

pair of arrows a : L→ X and b : L→ Y such that f ◦ a = g ◦ b (= k) and which

form a wedge such that any other wedge a′ : L′ → X, b′ : L′ → Y such that

f ◦ a′ = g ◦ b′ (= k′) factors uniquely through it.

Looked at as a construction in C /Z, this means taking two C /Z-objects f

and g and getting a pair of C /Z-arrows a : k → f , b : k → g. And this pair of

arrows forms a wedge such that any other wedge a′ : k′ → f , b′ : k′ → g factors

uniquely through it. In other words, the pullback in C constitutes a product in

C /Z.

(e) Because of that kind of connection, product notation is often used for pull-

backs, thus:

X ×Z Y Y

X Z

y

with the subscript giving the vertex of the corner we are taking a limit over,

and with the little corner-symbol in the diagram conventionally indicating it is

indeed a pullback square.

8.7 Pushouts

Pullbacks are limits for corners. What is a colimit for a corner? Check the rele-

vant diagram and it is obviously the corner itself. So the potentially interesting

dualization of the notion of a pullback is when we take the colimit of ‘co-corners’,

i.e. wedges.

Suppose then we take a wedge D, i.e. a diagram D1 D3 D2.
d e A

cocone under this diagram is another commutative square (omitting again the

diagonal arrow which is fixed by the others).

D3 D2

D1 C

d

e

c2

c1

And a limit cocone of this type will be a cocone with apex L = Lim
→j

Dj and

projections λj : L → Dj such that for any cocone [C, cj ] under D, there is a

unique u : L → C such that the obvious dual of the whole pullback diagram

above commutes.
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Definition 57. A limit for a wedge diagram is a pushout. C

Now, in Set, we get the limit object for a corner diagram X Z Y
f g

by taking a certain subset of a product X×Y . Likewise we get the colimit object

for a wedge diagram X Z Y
f g

by taking a certain quotient of a

coproduct X q Y . We won’t, however, pause further over this now. Though it

does again illustrate how taking colimits can tend to beget messier constructions

than taking limits.
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9 The existence of limits

We have seen that a whole range of very familiar constructions from various

areas of ordinary mathematics can be regarded as instances of taking limits

or colimits of (very small) diagrams in appropriate categories. Examples so far

include: forming cartesian products or logical conjunctions, taking disjoint unions

or free products, quotienting out by an equivalence relation, taking intersections,

taking inverse images.

Not every familiar kind of construction in a category C involves taking a limit

cone or cocone in C : we’ll meet a couple of important exceptions in the next two

chapters. But plainly we are mining a very rich seam here – and we are already

making good on our promise to show how category theory helps reveal recurring

patterns across different areas of mathematics. So what more can we say about

limits?

It would get tedious to explore case by case what it takes for a category to have

limits for various further kinds of diagram, even if we just stick to considering

limits over tiny diagrams. But fortunately we don’t need to do such a case-by-

case examination. In this chapter we show that if a category has certain basic

limits of kinds that we have already met, then it has all finite limits (or more).

9.1 Pullbacks, products and equalizers related

(a) Here’s an obvious definition:

Definition 58. The category C has all finite limits if for any finite diagram D

– i.e. for any diagram whose objects are Dj for indices j ∈ J , where J is a finite

set – C has a limit over D. A category with all finite limits is said to be finitely

complete. C

Our main target theorems for this chapter are then as follows:

Theorem 51. If C has a terminal object, and has all binary products and equal-

izers, it is finitely complete.

Theorem 52. If C has a terminal object, and has a pullback for any corner, it

is finitely complete.
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(These theorems explain why we have chosen exactly our earlier examples of

limits to explore!) Later, in §9.3, we will see how that we can very easily get an

analogous result for limits over infinite diagrams; but it will help to fix ideas if

we initially focus on the finite case. And of course, our theorems will have the

predictable duals: we briefly mention them in §9.4.

We begin though, in this section, by proving the following much more re-

stricted versions of our two stated theorems, versions which talk just about

products, equalizers and pullbacks rather than about limits more generally:

Theorem 53. If a category C has all binary products and equalizers, then it has

a pullback for any corner.

Theorem 54. If C has a terminal object, and has a pullback for any corner, then

it has all binary products and all equalizers.

Proving these cut-down results first will have a double pay-off:

(1) We afterwards only need prove one of Theorems 51 and 52, since in the

presence of the restricted theorems, the stronger theorems evidently im-

ply each other. We will in fact later concentrate on proving Theorem 51

(leaving Theorem 52 as a simple corollary given Theorem 54).

(2) Our proof of the restricted Theorem 53 will provide an instructive guide

to how to do establish the more general Theorem 51.

(b) For those rather nobly trying, as we go along, to prove stated theorems

before looking at the proofs, the results in this chapter do require a little more

thought than what’s gone before. Even so, a little exploration should still reveal

the only reasonable proof-strategies.

Proof for Theorem 53. Given an arbitrary corner X Z Y
f g

we need

to construct a pullback.

There is nothing to equalize yet. So our only option is to start by constructing

some product. By assumption, C has binary products, so there will in particular

be a product X × Y and also a triple product X × Y × Z. Now in fact, when

we come to generalize our proof strategy for this theorem to prove Theorem 51,

it will be the product of every object in sight that we’ll need to work with. But

because of special features of the present case, it is enough to consider the simpler

product. So: take the product X×Y with the usual projections π1 : X×Y → X

and π1 : X × Y → Y .

This immediately gives us parallel arrows X × Y Z.
f◦π1

g◦π2

And because C

has equalizers, this parallel pair must have an equalizer [E, e], for which f◦π1◦e =

g ◦ π2 ◦ e. Which in turn means that the following diagram commutes:
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E Y

X × Y

X Z

e

π2◦e

π1◦e g

π1

π2

f

Claim: the wedge formed by E with the projections π1 ◦ e, π2 ◦ e is indeed a

pullback of the corner X Z Y.
f g

From this point, the argument is just fairly routine checking. Consider any

other cone over the original corner

C Y

X Z

c1
c3

c2

g

f

In other words, leaving the diagonals to take care of themselves, consider any

wedge X C Y
c1 c2 with fc1 = gc2: we need to show that this factors

uniquely through E.

C

E Y

X × Y

X Z

c2

c1

uv

e

π2◦e

π1◦e g

π1

π2

u

f

Now, our wedge certainly uniquely factors through the product X × Y , so there

is a unique u : C → X × Y such that c1 = π1 ◦ u, c2 = π2 ◦ u. Hence f ◦ π1 ◦ u =

g ◦ π2 ◦ u. Therefore C X × Y Zu
f◦π1

g◦π2

is a fork, which must factor

uniquely through the equalizer E via some v.

That is to say, there is a v : C → E such that e ◦ v = u. Hence π1 ◦ e ◦ v =

π1 ◦ u = c1. Similarly π2 ◦ e ◦ v = c2. Therefore the wedge with vertex C indeed

factors through E, as we need.
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To finish the proof, we have to establish the uniqueness of the mediating arrow

v. Suppose then that v′ : C → E also makes π1 ◦ e ◦ v′ = c1, π2 ◦ e ◦ v′ = c2.

Then the wedge X C Y
c1 c2 factors through X ×Y via e ◦ v′; but we

know the wedge factors uniquely through the product X × Y by u. Therefore

e ◦ v′ = u = e ◦ v.

But equalizers are monic by Theorem 39, so v′ = v, and we are done.

Proof for Theorem 54. Given that C has a terminal object, what corners are

guaranteed to exist, for any given X,Y ? Evidently X 1 Y. So

take a pullback over this corner. Applying the definition, we immediately find

that a pullback for such a corner is indeed just the product X×Y with its usual

projection arrows.

To show that C has equalizers, given that it has pullbacks and hence products,

start by thinking of the parallel arrows we want to equalize, say X Y,
f

g
as

a wedge Y X Y.
f g

This wedge will factor uniquely via an arrow

〈f, g〉 through the product Y × Y (which exists by hypothesis).

So now consider the corner X Y × Y Y,
〈f,g〉 δY where δY is the ‘diag-

onal’ arrow (see Defn. 37). This is nice to think about since (to arm-wave a bit!)

the first arrow is evidently related to the parallel arrows we want to equalize,

and the second arrow does some equalizing.

Now take this corner’s pullback (the only thing to do with it!):

E Y

X Y × Y

e

q

y

δY

〈f,g〉

Intuitively speaking, E X Y × Ye 〈f,g〉
sends something in E to a pair

of equals. So, morally, [E, e] ought to be an equalizer for X Y.
f

g
And,

from this point on, it is a routine proof to check that it indeed is an equalizer.

Here goes:

By the commutativity of the pullback square, δY ◦ q = 〈f, g〉 ◦ e. Appealing

to Theorems 27, 29 and 30, it follows that 〈q, q〉 = 〈f ◦ e, g ◦ e〉, and hence

f ◦ e = q = g ◦ e. Therefore E X Ye
f

g
is a fork. It remains to show

that it is a limit fork.

Take any other fork C X Y.c
f

g
The wedge X C Yc f◦c

g◦c

must factor through E (because E is the vertex of the pullback) via a unique

mediating arrow v:
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C

E Y

X Y × Y

v

f◦c
g◦c

c

e

f◦e
g◦e

δY

d

It follows that v makes this diagram commute:

C

X Y

E

c

v
f

g

e

And any v′ : C → E which makes the latter diagram commute will also be a

mediating arrow making the previous diagram commute, so v′ = v by uniqueness

of mediators in pullback diagrams. Hence [E, e] is indeed an equalizer.

9.2 Categories with all finite limits

Our target now is to establish the promised main result:

Theorem 51. If C has a terminal object, and has all binary products and equal-

izers, it is finitely complete.

This is indeed our first Big Result. To prove it, we are going to generalize the

strategy pursued in proving the cut-down result that having binary products

and equalizers implies at least having pullbacks. So, the outline plan is this:

Given a finite diagram D, we start by forming the product P of the

objects from D (which we can do since C has all finite products).

We then find some appropriate parallel arrows out of this product P.

Then we take an equalizer [E, e] of these arrows (which we can do

since C has all equalizers). We then aim to use E as the vertex of

the desired limit cone over the diagram D on the model of the proof

of Theorem 53.

The devil, of course, is in the details! And to be frank, you won’t lose much if

you skip past them.

Consider again the proof of Theorem 53. There we started with a mini-diagram

D, i.e. a corner with two arrows sharing a target, f : X → Z, g : Y → Z. We
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got parallel arrows which share a source as well as a target by taking a product,

thereby getting X × Y Z.
f◦π1

g◦π2

And then we could look for an equalizer.

Now, in an arbitrary finite diagram D there could be lots of arrows of the kind

d : Dk → Dl with a variety of different sources and targets. But we still want

to end up by constructing out of them a pair of parallel arrows with the same

source and same target so that we can then take an equalizer. To construct the

single source and single target we use products again.

At the source end, we have two apparent options – we could take the product

[P, pj ] of all the objects in D, or we could take the product [P ′, p′j ] of those

objects in D which are sources of arrows in D. In turns out, after a bit of

exploration, that in the general case the first is the one to go for. At the target

end, the natural thing to do is to define [Q, ql] as the product of all the objects

Dl which are targets for arrows in D. (We can make these constructions of course

as we are assuming we are working in a category with all finite products).

So the name of the game is now to define a pair of parallel arrows

P Q
v

w

which we are going to equalize by some [E, e].

However, there are in fact only two naturally arising arrows from P to Q.

(1) Consider first a certain cone over the objects Dl which contribute to the

product Q – namely, the cone with vertex P and with an arrow pl : P → Dl

for each Dl. This cone (by definition of the product [Q, ql]) must factor

through the product by a unique mediating arrow v, so that pl = ql ◦ v for

each l.

(2) Consider secondly the cone over the same objects with vertex P and an

arrow d◦pk : P → Dl for each arrow d : Dk → Dl in D. This cone too must

factor through the product [Q, ql] by a unique mediating arrow w, so that

d ◦ pk = ql ◦ w for each arrow d : Dk → Dl.

Since we are assuming that all parallel arrows have equalizers in C , we can take

the equalizer of v and w, namely [E, e].

And now the big claim, modelled exactly on the key claim in our proof of

Theorem 53: [E, pj ◦ e] will be a limit cone over D.

Let’s state this as a theorem:

Theorem 55. Let D be a finite diagram in a category C which has a terminal

object, binary products and equalizers. Let [P, pj ] be the product of the objects

Dj in D, and [Q, ql] be the product of the objects Dl which are targets of arrows

in D. Then there are arrows

P Q
v

w

such that the following diagrams commute for each d : Dk → Dl:
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P Q

Dl

v

pl
ql

P Q

Dk Dl

w

pk ql

d

Let the equalizer of v and w be [E, e]. Then [E, pj ◦ e] will be a limit cone over

D in C .

Proof. We have already shown that v and w exist such that the given diagrams

commute and that an equalizer [E, e] for them exists. So next we confirm [E, pj◦e]
is a cone. Suppose then that there is an arrow d : Dk → Dl. For a cone, we require

d ◦ pk ◦ e = pl ◦ e.
But indeed d ◦ pk ◦ e = ql ◦w ◦ e = ql ◦ v ◦ e = pl ◦ e, where the inner equation

holds because e is an equalizer of v and w and the outer equations are given by

the commuting diagrams above.

Second we show that [E, pj ◦ e] is a limit cone. So suppose [C, cj ] is any other

cone over D. Then there must be a unique u : C → P such that every cj factors

through the product and we have cj = pj ◦ u.

Since [C, cj ] is a cone, for any d : Dk → Dl in D we have d ◦ ck = cl. Hence

d◦pk◦u = pl◦u, and hence for each ql, ql◦w◦u = ql◦v◦u. But then we can apply

the obvious generalized version of Theorem 28, and conclude that w ◦ u = v ◦ u.

Which means that

C P Qu
p

q

is a fork, which must therefore uniquely factor through the equalizer [E, e]. That

is to say, there is a unique s : C → E such that u = e ◦ s, and hence for all j,

cj = pj ◦ u = pj ◦ e ◦ s. That is to say, [C, cj ] factors uniquely through [E, pj ◦ e]
via s. Therefore [E, pj ◦ e] is indeed a limit cone.

This more detailed result of course trivially implies the less specific Theorem 51.

And that in turn, given Theorem 54, gives us Theorem 52. So we are done.

Given ingredients from our previous discussions, since the categories in ques-

tion have terminal objects, binary products and equalizers,

Theorem 56. Set and FinSet are finitely complete, as are categories of algebraic

structured sets such as Mon, Grp, Ab, Rng. Similarly Top is finitely complete.

While e.g. a poset-as-a-category may lack many products and hence not be

finitely complete.

9.3 Infinite limits

Now we extend our key Theorem 51 to reach beyond the finite case. First, we

need:
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Definition 59. The category C has all small limits if for any diagram D whose

objects are Dj for indices j ∈ I, for some set I, then C has a limit over D. A

category with all small limits is also said to be complete. C

Again, as in talking of small products, small limits can be huge – we just mean

no-bigger-than-set-sized. An easy inspection of the proof in the last section shows

that, given our requirement that the objects in a diagram D can be indexed by a

set, the argument will continue to go through just as before – assuming, that is,

that we are still dealing with a category like Set which has products for all set-

sized collections of objects (so we can still form the products [P, pj ] and [Q, ql])

and also all equalizers.

Hence, without further ado, we can state:

Theorem 57. If C has all small products and has equalizers, then it has all small

limits, i.e. is complete.

We can similarly extend Theorem 56 to show that

Theorem 58. The categories of structured sets Mon, Grp, Ab, Rng (among oth-

ers) are all complete. Top too is complete.

We have already met a category which, by contrast, is finitely complete but is

evidently not complete, namely FinSet.

9.4 Dualizing again

Needless to say by this stage, our results in this chapter dualize in obvious ways.

Thus we need not delay over the further explanations and proofs of

Theorem 59. If C has initial objects, binary coproducts and co-equalizers, then

it has all finite colimits, i.e. is finitely cocomplete. If C has all small coproducts

and has co-equalizers, then it has all small colimits, i.e. is cocomplete.

Theorem 60. Set is cocomplete – as are the categories of structured sets Mon,

Grp, Ab, Rng. Top too is cocomplete.

But note that a category can of course be (finitely) complete without being

(finitely) cocomplete and vice versa. For a generic source of examples, take again

a poset (P,4) considered as a category. This automatically has all equalizers

(and coequalizers) – see §7.1 Ex. (5). But it will have other limits (colimits)

depending on which products (coproducts) exists, i.e. which sets of elements

have suprema (infima). For a simple case, take a poset with a maximum element

and such that every pair of elements has a supremum: then considered as a

category it has all finite limits (but maybe not infinite ones). But it need not

have a minimal element and/or infima for all pairs of objects: hence it can lack

some finite colimits despite having all finite limits.
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We have seen how to treat the results of various familiar operations, such as

forming products or taking quotients, as limits or colimits. But as we said at

the beginning of the last chapter, not every familiar kind of construction when

treated categorically straightforwardly involves taking a limit or colimit. We’ll

consider a couple of examples. In the next chapter, we look at exponentials. But

first, in this chapter, we consider taking subobjects (as in subsets, subgroups,

suspaces, etc.).

10.1 Subsets revisited

(a) We start though in familiar vein, still thinking about limits (or more par-

ticularly, equalizers). In §7.1, we saw that in Set, given two parallel arrows from

an object X, a certain subset of X together with the trivial inclusion function

provides an equalizer for those arrows – and §7.2 tells us that this is the unique

equalizer, up to isomorphism.

We now note that a reverse result holds too:

Theorem 61. In Set, any subset S of X, taken together with its natural inclusion

map i : S → X, forms an equalizer for certain parallel arrows from X.

Proof. Let Ω be some truth-value object, i.e. a two-object set with members

identified as true and false. Setting Ω = {0, 1}, with 1 as true and 0 as false is

of course the choice hallowed by tradition.

Then a subset S ⊆ X has an associated characteristic function s : X → Ω

which sends x ∈ X to true if x ∈ S and sends x to false otherwise.

Let t : 1 → Ω be the map which sends the sole object in the singleton 1 to

true, and let t! be the composite map X 1 Ω.
!X t

We show that [S, i] is an equalizer for the parallel arrows s, t! : X → Ω. First,

it is trivial that s ◦ i = t! ◦ i, so as required S X Ωi s

t!
is indeed

a fork. It remains to confirm that any upper fork in this next diagram factors

through the lower fork via a unique mediating u:
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R

X Ω

S

f

u
s

t!

i

Recycling an argument we’ve seen before, since s ◦ f = t! ◦ f by assumption, it

is immediate that f [R] ⊆ S ⊆ X. Hence, if we define u : R → S to agree with

f : R → X on all inputs, then the diagram commutes. And this u is evidently

the only arrow to give us a commuting diagram.

(b) Now, given these results relating subsets to certain equalizers, we might

perhaps expect to meet at this point a general account of subobjects in terms

of equalizers. And yes, we do indeed get a general connection, in appropriate

categories, between subobjects and limits involving so-called truth-value objects

like Ω. However, as we will later explain in §10.4, this connection has to be read

as fixing the general notion of a truth-value object in terms of the notion of a

subobject rather than the other way around. Hence we need a prior account of

subobjects: we give it in the next section.

10.2 Subobjects as monic arrows

(a) Work in Set again. And note that any injective set-function f : S → X

sets up a bijection j : S −→∼ f [S] ⊆ X. In other words, any monic arrow S � X

generates an isomorphism between S and a subset of X. So, if we only care about

identifications up to isomorphism (the typical situation in category theory), then

an object S together with a monic arrow S � X might as well be treated as a

subobject of X in Set. And then noting that an arrow determines its source so

we needn’t really mention that separately, and generalizing to other categories,

this suggests a very simple definition:

Definition 60. A subobject1 of an object X in the category C is just a monomor-

phism S � X. C

(b) Subobjects are arrows and so we can’t immediately talk about subobjects

of subobjects. But there is a natural definition of subobject inclusion:

Definition 61. If f : A � X and g : B � X are subobjects1 of X, then f is

included in g, in symbols f ⊆ g iff f factors through g, i.e. there is an arrow

h : A→ B such that f = g ◦ h. C

Question: Wouldn’t it be more natural to also require the mediating arrow h to

be monic too? Answer: We don’t need to write that into the definition because

h is monic by Theorem 6 (3).

It is then trivial to check that inclusion of subobjects, so defined, is reflexive

and transitive. So far so good.
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10.3 Subobjects as isomorphism classes

(a) However, if we adopt our first definitions of subobject and subobject-

inclusion, we get some oddities.

(1) In Set, for example, the singleton set {1} would have not two subobjects

as you might expect (the empty set and itself) but infinitely many. Indeed

it would have too many subobjects to form a set, since there are as many

monic arrows S → {1} as there are singleton sets S, and there are too

many singletons to form a set.

(2) Again in Set for example, two subobjects of X, f : A� X and g : B� X,

can be such that f ⊆ g and g ⊆ f even though f 6= g.

We know from Theorem 12 that if f ⊆ g and g ⊆ f , i.e. if the two arrows

factor through each other, then they factor via an isomorphism, so we’ll

have A ∼= B. But we needn’t have A = B which would be required for the

arrows f, g to be identical. So the subobjects of X ordered by inclusion

needn’t form a poset.

Arguably, neither is a happy consequence of our definitions so far.

(b) An obvious suggestion for keeping tallies of subobjects under control is to

say that the monic arrows f : S � X, g : S′ � X should count as represent-

ing the same subobject of X iff S ∼= S′. Or by Theorem 12 again, we could

equivalently say:

Definition 62. A subobject2 of X is a class of subobjects1 of X which factor

through each other. C

We can then show that

Theorem 62. In Set, the subobjects2 of X correspond one-to-one with the subsets

of X.

Proof. First, we remark that monic arrows f : S � X, g : S′� X belong to the

same subobject2 of X if and only if f and g have the same image.

For suppose there is an isomorphism i : S → S′ such that f = g ◦ i. Therefore

if x ∈ f [S], then there is an s ∈ S such that x = f(s) = g(i(s)) where i(s) ∈ S′,
so x ∈ g[S′]. Hence f [S] ⊆ g[S′]. Likewise g[S′] ⊆ f [S]. Hence if f and g belong

to the same subobject2, they have the same image.

Conversely, suppose the monic arrows f : S � X, g : S′ � X have the same

image. In Set monics are injections; so we can define a map i which sends s to

the unique s′ which that g(s′) = f(s), and then trivially f = g ◦ i. Likewise g

factors through f , and hence f and g belong to the same subobject2 of X.

Now take any subset S ⊆ X. There is a corresponding monic inclusion function

fS : S � X. So consider the map that sends a subset S to the subobject2 which

contains fS . This is one-one and onto. It is one-one because if the subobject2
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which contains fS is the subobject2 which contains fS′ , then fS has the same

image as fS′ , and being inclusions it follows that S = S′. It is onto because the

functions in any subobject2 of X with the shared image S ⊆ X will contain such

an fS .

We get parallel results in other categories too. For example, subobjects2 in

the category Grp correspond one-to-one to subgroups, in the category Vectk
correspond to vector subspaces, and so on. (But topologists might like to work

out why in Top the subobjects2 don’t straightforwardly correspond to subspaces.)

Suppose we now add

Definition 63. If [[f ]] and [[g]] are subobjects2 of X, respectively the isomorphism

classes containing f : A → X and g : B → X, then [[f ]] is included in [[g]], in

symbols [[f ]] b [[g]] iff f ⊆ g. C

It is routine to check that this definition of an order relation on isomorphism

classes is independent of the chosen exemplar of the class. And then inclusion so

defined is indeed reflexive, and b is a partial order – and hence the subobjects2

of X, with this ordering, form a poset as intuitively we want.

(c) Given the way subobjects2 more naturally line up with subsets, subgroups,

etc., as normally conceived, many authors prefer Defn. 62 as their official cate-

gorial account of subobjects – see for example (Goldblatt, 2006, p. 77), Leinster

(2014, Ex. 5.1.40). But some authors prefer the first simple definition of subob-

ject as monics as is given by e.g. Awodey (2006, §5.1). While Johnstone (2002,

p. 18) says that ‘like many writers on category theory’ he will be deliberately

ambiguous between the two definitions in his use of ‘subobject’, which sounds

an unpromising line but in practice works quite well!

10.4 Subobjects, equalizers, and pullbacks

(a) How does our official account of subobjects in either form relate to our

previous thought that we can treat subobjects, or at least subsets, as special

equalizers?

Working in Set again, it is easily checked that if i : S � X is any monic

arrow into X (not necessarily an inclusion map), and s : X → Ω is now the map

that sends x ∈ X to true iff x ∈ i[S], then S X Ωi s

t!
is still a fork.

Indeed, it is a limit fork such that any other fork through s, t! factors uniquely

through it. For take again the diagram

R

X Ω

S

f

u
s

t!

i
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Since s ◦ f = t! ◦ f by assumption, it is immediate that f [R] ⊆ i[S] ⊆ X. Hence,

if we define u to send an object r ∈ R to the pre-image of f(r) under i (which

is unique since i is monic), then the diagram commutes. And this u is evidently

the only arrow to give us a commuting diagram. So, the subobject1 i : S � X

(together with its source) is still an equalizer in Set (and so a subobject2 can be

thought of as a class of equalizers).

(b) It is now interesting to note an equivalent way of putting the situation in

Set. For note that the map t! ◦ i : S → Ω, which sends everything in S to the

value true, is of course trivially equal to composite map S 1 Ω
!S t with 1

a terminal object in the category. Similarly for the map t! ◦ f : R → Ω. Hence,

the claim that [S, i] equalizes s, t! in Set is equivalent to the following. For any

f : R → X such that s ◦ f = t ◦ 1R there is unique u which makes the whole

diagram commute:

R

S 1

X Ω

u

!R

f
i

!S

t

s

And after our work in §8.6, we know a snappy way of putting that: the lower

square is a pullback square.

(c) Now, we can indeed carry this last idea across to other other categories. We

can say that, in a category C with a terminal object, then given a truth-value

object Ω and a true-selecting map t : 1 → Ω, then for any subobject1 of X, i.e.

for any monic i : S � X, there is a unique ‘characteristic function’ s : X → Ω

which makes

S 1

X Ω

i

!S

t

s

a pullback square.

However, now to pick up the thought we trailed at the end of §10.1, we can’t

regard this as an alternative definition of a subobject in terms of a limit – since

that would presuppose we already have a handle on a general notion of truth-

value object, and we don’t. Rather, we need to look at things the other way

about. What we have here is a general characterization of what can sensibly

be counted as a ‘truth-value object’ Ω and an associated true-selecting map
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t : 1 → Ω in a category C with a terminal object. We define such things across

categories by requiring that they work as ‘subobject classifiers’, i.e. by requiring

they together ensure the displayed square is a pullback for a unique s given any

monic subobject arrow i. We will eventually return to this point.

10.5 Elements and subobjects

A final remark. Earlier we noted that, in Set, functions ~x : 1 → X correspond

one-to-one with elements of X, and so started treating arrows ~x as the categorial

version of set elements. And inspired by that, we then called arrows f : S → X

generalized elements of X. Yet now we have some of those same arrows, namely

the monic ones, i : S � X being offered as the categorial version of subsets.

Now, one of the things that is drilled into us early is that we must very sharply

distinguish the notion of element from the notion of subset. Yet here we seem

to be categorially assimilating the notions – elements and subsets of X both

get rendered by arrows in Set, and a subset-of-X-qua-subobject will count as

a special kind of (generalized) element-of-X. Is this a worry? For the moment

we just flag up the apparent anomaly: this is something else we will want to

say more about later, in talking about the category theorist’s view of sets more

generally.
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We will eventually have much more to say about limits, and in particular about

how they can get ‘carried over’ from one category to another by maps between

categories. For the moment, however, we pause to consider another categorial

notion that applies within a category, one that is also defined in terms of a

‘universal mapping property’, but which isn’t straightforwardly a limit – namely

the notion of an exponential.

11.1 Two-place functions

First however, let’s pause to revisit the issue of two-place functions in category

theory which we shelved in §5.3 (d).

It might in fact be helpful to recall how a couple of other familiar frameworks

manage to do without genuine multi-place functions by providing workable sub-

stitutes:

(1) Set-theoretic orthodoxy models a two-place total function from numbers to

numbers (addition, say) as a function f : N2 → N. Here, N2 is the cartesian

product of N with itself, i.e. is the set of ordered pairs of numbers. And an

ordered pair is one thing not two things. So a function f : N2 → N is in fact

strictly speaking a unary function, a function that maps one argument, an

ordered pair object, to a value, not a real binary function.

Of course, in set-theory, for any two things there is a pair-object that

codes for them – we usually choose a Kuratowski pair – and so we can

indeed trade in a function from two objects for a related function from

the corresponding pair-object. And standard notational choices can make

the trade quite invisible. Suppose we adopt, as we earlier did, the modern

convention of using ‘(m,n)’ as our notation for the ordered pair of m

with n. Then ‘f(m,n)’ invites being parsed either way, as representing a

two-place function f(· , ·) with arguments m and n, or as a corresponding

one-place function f · with the single argument, the pair (m,n). But note:

the fact that the trade between the two-place and the one-place function

is notationally glossed over doesn’t mean that it isn’t being made.
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(2) Versions of type theory deal with two-place functions in a different way,

by a type-shifting trick. Addition for example – naively a binary function

that just deals in numbers – is traded in for a function of the type N →
(N → N). This is a unary function which takes one number (of typeN) and

outputs something of a higher type, i.e. a unary function (of type N → N).

We then get from two numbers as input to a numerical output in two steps,

by feeding the first number to a function which delivers another function

as output and then feeding the second number to the second function.

This so-called ‘currying’ trick of course is also perfectly adequate for

certain formal purposes. But again a trade is being made. Here’s a revealing

quote from A Gentle Introduction to Haskell on the haskell.org site (Haskell

being one those programming languages where what we might think of

naturally as binary functions are curried):

Consider this definition of a function which adds its two argu-

ments:

add : : Integer→ Integer→ Integer

add x y = x + y

So we have the declaration of type – we are told that add sends a number

to a function from numbers to numbers. We are then told how this curried

function acts ... but how? By appeal, of course, to our prior understanding

of the familiar school-room two-place addition function! The binary func-

tion remains a rung on the ladder by which we climb to an understanding

of what’s going on in the likes of Haskell (even if we propose to throw away

the ladder after we’ve climbed it).

So now back to categories. We don’t have native binary morphisms in category

theory. Nor do we get straightforward currying within a category, at least in the

sense that we won’t have an arrow inside a category whose target is another

arrow of that category (though we will meet a reflection of the idea of currying

in this chapter). Hence, as we have already seen, then, we need to use a version of

the set-theoretic trick. We can in a noncircular way give a categorial treatment

of pair-objects as ingredients of products. And with such objects now to hand,

an arrow of the kind f : X × Y → Z is indeed available do duty for a two-place

function from an object in X and an object in Y to a value in Z. So this, as

already announced, will have to be our implementation device.

11.2 Exponentials defined

(a) It is standard to use the notation ‘CB ’ in set theory to denote the set of

functions f : B → C. But why is the exponential notation apt?

Here is one reason. ‘Cn’ is of course natural notation for the n-times Cartesian

product of C with itself, i.e. the set of n-tuples of elements from C. But an n-

tuple of C-elements can be regarded as equivalent to a function from an indexing
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set n, i.e. from the set {0, 1, 2, . . . , n−1}, to C. Therefore Cn, the set of n-tuples,

can indeed be thought of as equivalent to Cn, re-defined as the set of functions

f : n → C. And is then natural to extend this notation to the case where the

indexing set B is no longer a number n.

Four more observations, still in informal set-theory:

(1) For all sets B,C there is a set CB .

(2) There is a two-place evaluation function ev(· , ·) which takes an element

f ∈ CB and an element b ∈ B, evaluates the first argument f at the

selected second argument b, and so returns the value f(b) ∈ C.

(3) Take any two-place function g(· , ·) that maps an element of A and an

element of B to some value in C: informally notate that binary function

g : A,B → C. Then, fixing an element a ∈ A determines a derived one-

place function g(a, ·) : B → C.

(4) So, for any such binary g : A,B → C there is a unique associated one-

place function, its exponential transpose g : A → CB , which sends a ∈ A
to g(a, ·) : B → C. We then have ev(g(a), b) = g(a, b).

These elementary observations pretty much tell us how to characterize cate-

gorially an ‘exponential object’ CB in Set. We simply need to remember that

categorially we regiment two-place functions as arrows from products.

Hence, we can say this. In Set, for all B,C, there is an object CB and an

arrow ev : CB×B → C such that for any arrow g : A×B → C, there is a unique

g : A → CB (g’s exponential transpose) which makes the following diagram

commute:

(Exp) A×B

C

CB ×B

g

g×1B

ev

The product arrow g× 1B here, which acts componentwise on pairs in A×B, is

defined categorially in §6.4.

(b) Now generalize in the obvious way:

Definition 64. Assume C is a category with binary products. Then [CB , ev],

with CB an object and arrow ev : CB × B → C, forms an exponential of C by

B in C iff the following holds, with all the mentioned objects and arrows being

in C : for every object A and arrow g : A × B → C, there is a unique arrow

g : A→ CB (g’s transpose) such that ev ◦ g× 1B = g, i.e. such that the diagram

(Exp) commutes. C

Note that, as with products, the square-bracket notation here is once more just

punctuation for readability’s sake. More importantly, note that if we change the
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objects B,C the evaluation arrow ev : CB × B → C changes, since the source

and/or change will change. (It might occasionally help to think of the notation

‘ev’ as really being lazy shorthand for something like ‘evC,B ’.)

Definition 65. A category C has all exponentials iff for all objects C -objects B,

C, there is a corresponding exponential [CB , ev]. C

(c) Exponentials in C aren’t defined in terms of a type of cones (or cocone)

in C . But just as a limit cone over D is defined in terms of every cone over D

‘factoring through’ the limit via a unique arrow, so an exponential of C with B

is defined in terms of every arrow from some A × B to C ‘factoring through’

the exponential via a unique arrow. In short, limits and exponentials alike are

defined in terms of every relevant item factoring through via a unique map.

That’s why we can speak of both the properties of being a limit and being an

exponential as examples of universal mapping properties.

11.3 Examples of exponentials

Let’s immediately give three easy examples of categories which it is easy to see

have exponentials:

(1) Defns. 64 and 65 were purpose-built to ensure that Set counts as having

all exponentials – a categorial exponential of C by B is provided by the set

CB (in the standard set-theoretic sense) equipped with the set function ev

as described before. But we can note now that this construction applies

equally in FinSet, the category of finite sets, since the set CB is finite if

both B and C are finite, and hence CB is also in FinSet. Therefore FinSet
has all exponentials.

(2) In §5.3 (5) we met the category PropL whose objects are wffs of a given

first-order language L, and where there is a unique arrow from A to B iff

A � B. Assuming L has the usual rules for conjunction and implication,

then for any B,C, the conditional B → C provides an exponential object

CB , with the corresponding evaluation arrow ev : CB ×B → C reflecting

the modus ponens entailment B → C,B � C.

Why does this work? Recall that products in PropL are conjunctions.

And note that, given A ∧ B � C, then by the standard rules A � B → C

and hence – given the trivial B � B – we have A ∧B � (B → C) ∧B. We

therefore get the required commuting diagram of this shape,

A ∧B

C

(B → C) ∧B
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where the down arrow is the product of the implication arrow from A to

B → C and the trivial entailment from B to B.

(3) Relatedly, take a Boolean algebra (B,¬,∧,∨, 0, 1), and put a 6 b =def

(a ∧ b) = a for all a, b ∈ B. Then, treated as a partially ordered set with

that order, the Boolean algebra corresponds to a poset category, with a

unique arrow between a and b when a 6 b. In this category, a∧ b, with the

only possible projection arrows, is the categorial product of a, b

Such a poset category based on a Boolean algebra has an exponential

for each pair of objects, namely (to use a suggestive notation) the object

b⇒ c =def ¬b∨ c, together with the evaluation arrow ev the unique arrow

corresponding to (b⇒ c) ∧ b 6 c.
To check this claim, we need first to show that we have indeed well-

defined the evaluation arrow ev for every b, c, i.e. show that we always

have (b⇒ c) ∧ b 6 c. However, as we want,

(¬b ∨ c) ∧ b = (¬b ∧ b) ∨ (c ∧ b) = 0 ∨ (c ∧ b) = (c ∧ b) 6 c

by Boolean rules and the definition of 6.

Second, we need to verify that the analogous diagram to the last one

commutes, which crucially involves showing that if a ∧ b 6 c then a ∧ b 6
(b ⇒ c) ∧ b. That’s more Boolean algebra, which can perhaps be left as a

brain-teaser.

So Boolean-algebras-treated-as-poset-categories have all exponentials.

Working through the details, however, we find that the required proofs

don’t call on the Boolean principle ¬¬a = a, so the claim about Boolean

algebras can be strengthened to the claim that Heyting-algebras-treated-

as-poset-categories have all exponentials (where a Heyting algebra is, in

effect, what you get when you drop the ‘double negation’ rule from the

Boolean case: we will return later to talk about this important case from

logic).

Now these first examples are of categories which have all exponentials. But

of course, a category may lack exponentials entirely (for example, take a poset

category with no products). Or it may have just trivial exponentials (we’ll see

in the next section that, if a category has a terminal object 1, then it will

automatically have at least the trivial exponentials X1 and 1X). And as we’ll

now see, it can also be the case that a category has some non-trivial exponentials,

though not all exponentials.

(4) For an initial toy example, we might consider the poset category arising

from a five-element non-distributive lattice, which has the following arrows

(plus the necessary identity arrows and composites):
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X Y

0 1

Z

In this category, XY doesn’t exist, but XZ = Y . It is perhaps a useful

reality check to pause to show this:

Proof. Consider these two putative diagrams as imagined instances of

(Exp):

A× Y

X

XY × Y

g

g×1Y

ev

A× Z

X

XZ × Z

g

g×1Z

ev

Suppose there is an exponential object XY . Then for every arrow g : A×
Y → X there must exist a unique g : A → XY making the left-hand

diagram commute. Since Z×Y = 0, there is indeed an arrow g1 : Z×Y →
X; and since X × Y = X there is an arrow g2 : X × Y → X. Therefore

we need arrows g1 : Z → XY and g2 : X → XY , which implies XY = 1.

But XY ×Y = Y , and hence there is no possible arrow ev : XY ×Y → X.

Hence there is no exponential object XY , and the left-hand diagram is a

mirage!

Now put XZ = Y , with the arrow ev the sole arrow from 0 to X. Then it

is easily checked that for each arrow g : A×Z → X (that requires A = 0, X,

or Y ) there is a corresponding unique g : A → Y making the diagram on

the right commute. Just remember we are in a poset category so arrows

with the same source and target are equal.

(5) Consider next Count, the category of sets which are no larger than count-

ably infinite, and of set-functions between them. If the Count-objects B

and C are in fact finite sets, then there is another finite set CB which,

with the obvious function ev, will serve as an exponential. But if B is a

countably infinite set, and C has at least two members, then the set CB

is uncountable, so won’t be available to be an exponential in Count – and

evidently, nothing smaller will so.

(6) The standard example, however, of an interesting category which has some

but not all exponentials is Top. If X is a space living in Top, then it is

‘exponentiable’, meaning that Y X exists for all Y , if and only if is so-called

core-compact – and not all spaces are core-compact. It would, however, take

us far too far afield to explain and justify this example.
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11.4 Exponentials are unique

(a) Defn. 64 talks of ‘an’ exponential of C with B. But exponentials – as we

might expect by now, given that the definition is by a universal mapping property

– are in fact unique, at least up to unique isomorphism:

Theorem 63. In a category C with exponentiation, if given objects B,C have

exponentials [E, ev] and [E′, ev′], then there is a unique isomorphism between E

and E′ compatible with the evaluation arrows.

Proof. Two commuting diagrams encapsulate the core of the argument, which

parallels the proof of Theorem 23:

E ×B

C

E ×B

ev

e×1B

ev

E ×B

E′ ×B C

E ×B

evev×1B

ev′

ev′×1B ev

By definition [E, ev] is an exponential of C by B iff there is a unique mediating

arrow e : E → E such that ev ◦ e × 1B = ev. But as the diagram on the left

reminds us, 1E will serve as a mediating arrow. Hence e = 1E .

The diagram on the right then reminds us that [E, ev] and [E′, ev′] factor

uniquely through each other, and putting the two commuting triangles together,

we get

ev ◦ (ev′ × 1B) ◦ (ev × 1B) = ev.

Applying Theorem 34, we know that (ev′ × 1B) ◦ (ev × 1B) = (ev′ ◦ ev) × 1B ,

and hence

ev ◦ (ev′ ◦ ev)× 1B = ev.

And now applying the uniqueness result from the first diagram

ev′ ◦ ev = 1E .

Similarly, by interchanging E and E′ in the second diagram, we get

ev ◦ ev′ = 1E′ .

Whence ev : E → E′ is an isomorphism.

(b) When we were talking about e.g. products and equalizers, we gave two types

of proof for their uniqueness (up to unique isomorphism). One was a direct proof

from the definitions. For the other proof, we noted that products are terminal

objects in a category of wedges, equalizers terminal objects in a category of forks,

and then appealed to the uniqueness of terminal objects.
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We have now given a proof of the first type, a direct proof, of the uniqueness

of exponentials. Can we give a proof of the second type? Well, consider:

Definition 66. Given objects B and C in the category C , then the category

CE(B,C) of parametized maps from B to C has the following data:

1. Objects [A, g] comprising a C -object A, and a C -arrow g : A×B → C,

2. An arrow from [A, g] to [A′, g′] is any arrow C -arrow h : A → A′ which

makes the following diagram commute:

A×B

C

A′ ×B

g

h×1B

g′

The identity arrows and composition are as in C . C

It is easily checked that this indeed defines a category, and then we evidently

have

Theorem 64. An exponential [CB , ev] is a terminal object in the category CE(B,C).

Since exponentials are terminal in a suitable category that yields the second type

of proof of their uniqueness.

So in summary the situation is this. Exponentials in C are not a type of limit

in C as characterized in Defn. 51 (for that definition talks of limit cones over

diagrams in that same category, and an exponential isn’t such a thing). But

exponentials can be thought of as limits in another, derived, category of the

kind CE(B,C).

11.5 Further results about exponentials

(a) We now show, as promised, that any category with a terminal object has

at least trivial exponentials as follows:

Theorem 65. If the category C has a terminal object 1, then for any C -object

B, C, we have (1) 1B ∼= 1 and (2) C1 ∼= C.

Perhaps we should put that more carefully. The claim (1) is that if there is a

terminal object 1 then there exists an exponential [1B , ev]; and for any such

exponential object 1B , 1B ∼= 1. Similarly for (2).

Proof for (1). Using, as before, !X for the unique arrow from X to the terminal

object 1, consider the following diagram:
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A×B

1

1×B

!A×B

!A×1B

!1×B

This has to commute, whatever A is (because there is only one arrow from A×B
to a terminal object). Since there is only one possible arrow from A to 1, this

means that [1, !1×B ] can serve as an exponential for 1 by B. Hence there exists

an exponential 1B , and by the uniqueness theorem, for any such exponential

object 1B , 1B ∼= 1.

Proof for (2). Here’s the natural proof-strategy. Suppose we are given an arrow

g : A× 1→ C. Show that there is always a unique g making this commute,

A× 1

C C × 1

g
g×1

π

where π is the projection from the product. Then [C, π] serves as an exponential

of C by 1 and hence, by the uniqueness theorem, any C1 ∼= C.

But there’s an isomorphism a′ which sends A to A × 1 (the inverse of the

projection from the product); so put g = g ◦ a′, and then the diagram will

commute. And that’s the unique possibility, so we are done.

If it isn’t obvious why our definition of g does the trick in the last proof, per-

haps we should expand the argument. So: the wedge C A× 1 1
g ! must

factor through the product wedge C C × 1 1π ! via a unique mediating

u, making the lower triangles in the following diagram commute:

A A× 1 1

C C × 1 1

g

a !

u !g
1

π !

Complete the diagram with the product wedge A A× 1 1a 1 as shown,

and – recalling that a and π must be isomorphisms by Theorem 26 – put g = g◦a′
where a′ is the inverse of a. Then the whole diagram commutes.

This means that u = g × 1 by definition of the operation × on arrows in

§6.4. Hence for each g : A × 1 → C there is indeed a corresponding g making

our first diagram commute. Moreover g is unique. If k × 1 makes the second
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diagram commute then (i) it must equal u, and so k × 1 = π−1 ◦ g, but also by

its definition, π ◦ k × 1 = k ◦ a. Hence g = k ◦ a, so k = g ◦ a′ = g.

(b) We next need to establish a crucial general result:

Theorem 66. If there exists an exponential of C by B in the category C , then,

for any object A in the category, there is a one-one correlation between arrows

A×B → C and arrows A→ CB.

There is also a one-one correlation between arrows A→ CB and arrows B →
CA.

Proof. By definition of the exponential [CB , ev], an arrow g : A × B → C is

associated with a unique ‘transpose’ g : A → CB making the diagram (Exp)

commute.

The map g 7→ g is injective. For suppose g = h. Then g = ev ◦ (g × 1B) =

ev ◦ (h× 1B) = h.

The map g 7→ g is also surjective. Take any k : A → CB ; then if we put

g = ev ◦ (k × 1B), g is the unique map such that ev ◦ (g × 1B) = g, so k = g.

Hence g 7→ g is the required bijection between arrows A×B → C and arrows

A→ CB , giving us the first part of the theorem.

For the second part, we just note that arrows A × B → C are in one-one

correspondence with arrows B × A → C, in virtue of the isomorphism between

A×B and B×A (see Theorems 14 and 24). We then apply the first part of the

theorem.

This last theorem gives us a categorial analogue of the idea of currying that we

met in §11.1, where a two-place function of type A,B → C gets traded in for a

one-place function of type A→ (B → C).

11.6 Cartesian closed categories

Categories like Set, Prop and Bool which have all exponentials (which presup-

poses having binary products) and which also have a terminal object (and hence

all finite products) are important enough to deserve a standard label:

Definition 67. A category C is a Cartesian closed category iff it has all finite

products and all exponentials.1 C

Such categories have nice properties meaning that exponentials there indeed

behave as exponentials ‘ought’ to behave. For a start:

Theorem 67. If C is a Cartesian closed category, then for all A,B,C ∈ C

1Terminological aside: some call a category with all finite products a Cartesian category
– but this term is also used in other ways so is probably best avoided. By contrast, the notion
of a Cartesian closed category has a settled usage.
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(1) If B ∼= C, then AB ∼= AC ,

(2) (AB)C ∼= AB×C ,

(3) (A×B)C ∼= AC ×BC .

Proof of (1). Here’s the basic idea for a brute force proof. We know that there

exists an arrow ev : AB×B → A. Since B ∼= C, there is a derived arrow g : AB×
C → A. This has a unique associated transpose, g : AB → AC . Similarly, there

is an arrow h : AC → AB . It remains to confirm that these arrows are (as you’d

expect) inverses of each other, whence AB ∼= AC .

To spell that out, consider the following diagram (where j : B → C is an

isomorphism witnessing that B ∼= C):

AB ×B

AB × C

AC × C A

AC ×B

AB ×B

ev

1×j

gg×1

ev′

1×j−1
h

h×1

ev

Here we’ve omitted subscripts on labels for identity arrows to reduce clutter.

It is easy to see that since 1 and j are isomorphisms, so is 1 × j, and then

if we put g = ev ◦ (1 × j)−1 the top triangle commutes. The next triangle

commutes by definition of the transpose g; the third commutes if we now put

h = ev′ ◦ (1 × j−1)−1; and the bottom triangle commutes by the definition of

the transpose h.

Products of arrows compose componentwise, as shown in Theorem 34. Hence

the composite vertical arrow reduces to (h ◦ g) × 1. However, by the definition

of the exponential [AB , ev] we know that there is a unique mediating arrow, k

such that this commutes:

AB ×B

A

AB ×B

ev

k×1

ev
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We now have two candidates for k which make the diagram commute, the identity

arrow and h ◦ g. Hence by uniqueness, h ◦ g = 1.

A similar argument shows that g ◦ h. We are therefore done.

Proofs of (2) and (3). We can given a similarly direct proof of (2), along the

following lines. Start with the evaluation arrow ev : AB×C × (B × C) → A.

We can shuffle terms in the product to derive an arrow (AB×C × C)× B → A.

Transpose this once to get an arrow AB×C×C → AB and transpose again to get

an arrow AB×C → (AB)C . Then similarly find an arrow from (AB)C → AB×C ,

and show the two arrows are inverses of each other.

We can, however, leave it as an exercise for enthusiasts to work out details

here. That’s because we will eventually be able to bring to bear some heavier-

duty general apparatus which will yield fast-track proofs of (2) and (3), and

indeed of (1) again.

Theorem 68. If C is a Cartesian closed category with terminal object 1, then

for all A,B,C ∈ C

(1) 1B ∼= 1,

(2) C1 ∼= C,

And if C also has an initial object 0, then

(3) A× 0 ∼= 0 ∼= 0×A,
(4) A0 ∼= 1,

(5) if there is an arrow A→ 0, then A ∼= 0,

(6) there exists an arrow 1→ 0 iff C is category whose objects are all isomor-

phic to each other.

The first two results are just particular cases of Theorem 65. But it is worth

noting that if we are assuming we are working in a Cartesian closed category,

and hence assuming that 1B exists, then we can instead use this slick argument:

Proof of (1). By the Theorem 66, for each A, there is a one-one correlation

between arrows A → 1B and arrows A × B → 1. But since 1 is terminal, there

is exactly one arrow A × B → 1; hence, for each A, there is exactly one arrow

A→ 1B . Therefore 1B is terminal, and hence 1B ∼= 1.

Proof of (3). Since A× 0 and 0×A exist by hypothesis, and are isomorphic by

Theorem 24 (2), we need only prove 0×A ∼= 0.

By Theorem 66, for all C, there is a one-one correspondence between arrows

0 → CA and arrows 0 × A → C. But 0 is initial, so there is exactly one arrow

0 → CA. Hence for all C there is exactly one arrow 0 × A → C, making 0 × A
initial too. Whence 0×A ∼= 0.
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Proof of (4). By Theorem 66 again, for all C, there is a bijection between arrows

C → A0 and arrows C× 0→ A. And by (3) and Theorem 14 there is a bijection

between arrows C × 0→ A and arrows 0→ A. Since 0 is initial there is exactly

one arrow 0→ A, and hence for all C there is exactly one arrow C → A0, so A0

is terminal and A0 ∼= 1.

Proof of (5). By assumption, there exists a wedge A A 0,
1A f

and

this will factor uniquely through the product A× 0, as in

A

A A× 0 0

〈1A,f〉
1A f

π1 π2

So π1 ◦ 〈1A, f〉 = 1A. But A × 0 ∼= 0, so A × 0 is an initial object, so there is

a unique arrow A × 0 → A × 0, namely 1A×0. Hence (travelling round the left

triangle) 〈1A, f〉 ◦ π1 = 1A×0. Therefore 〈1A, f〉 : A → A × 0 has a two-sided

inverse. Whence A ∼= A× 0 ∼= 0.

Proof of (6). One direction is trivial. For the other, suppose there is an arrow

f : 1→ 0. Then, for anyA there must be a composite arrow A 1 0,
f

hence by (5), A ∼= 0. So every object in the category is isomorphic.

Here’s a quick application of the result (6), that in a Cartesian closed category

with an arrow 1→ 0, all objects are isomorphic:

Theorem 69. The category Grp is not Cartesian closed.

Proof. The one-element group is both initial and terminal in Grp, so here 1 ∼= 0,

and hence there is an arrow 1 → 0 in Grp. But trivially, not all groups are

isomorphic! Therefore the category Grp cannot be Cartesian closed.
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12 Group objects, natural number objects

We have seen how to define categorially a variety of familiar constructions us-

ing universal mapping properties; in particular, we have defined products and

exponentials (to mention just the two cases which will feature again most often

in this chapter).

We will next see how to use the apparatus that we now have available to

characterize two familiar kinds of mathematical structure in categorial terms. We

first give a definition of so-called group objects living in categories, and explore

these just a little. Then we turn to say something equally introductory about that

most basic of structures, the natural numbers. We won’t take these discussions

very far for the moment: our aim here in each case is simply to illustrate how we

can begin to explore types of well-known mathematical structures from inside

category theory.

12.1 Groups in Set

We informally think of a group as a collection of objects equipped with a binary

operation of group ‘multiplication’ and with a designated element which is an

identity for the operation. The group operation is associative, and every element

has a two-sided inverse.

So how can we characterize such a structure as living in the category Set? We

need an object G to provide a collection of group-elements, and we need three

arrows (which are functions in this category):

(i) m : G × G → G (here, once again, we have to trade the informal two-

place operation of ‘multiplication’ for an arrow from a corresponding single

source, i.e. from a product);

(ii) e : 1 → G (this element-as-arrow from a terminal object picks out a par-

ticular group-element in G – we’ll also call this distinguished member of

the group ‘e’, allowing context to disambiguate);

(iii) i : G→ G (this is the arrow which sends a group-element to its inverse).

We then need to impose constraints on these arrows corresponding to the usual

group axioms:
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(1) We require the group operation m to be associative. Categorially, consider

the following diagram:

(G1) (G×G)×G G× (G×G)

G×G G G×G

m×1G

∼=

1G×m

m m

Here the arrow at the top represents the naturally arising isomorphism

between the two triple products that is established by the proof of Theo-

rem 24 (3) in §6.5.

Remembering that we are working in Set, take an element ((j, k), l) ∈
(G×G)×G. Going round on the left, that gets sent to (m(j, k), l) and then

to m(m(j, k), l). Going round the other direction we get to m(j,m(k, l)).

So requiring the diagram to commute captures the associativity of m.

(2) Informally, we next require e to act like a multiplicative identity.

To characterize this condition categorically, start by defining the map

e! : G→ G by composing G 1 G.! e In Set we can think of e! as the

function which sends anything in the G to its designated identity element

e. We then have the following product diagram:

G

G G×G G

〈1G,e!〉 e!1G

π1 π2

So we can think of the mediating arrow 〈1G, e!〉 as sending an element

g ∈ G to the pair (g, e).

The element e then behaves like a multiplicative identity on the right if

m sends this pair (g, e) in turn back to g – i.e. if the top triangle in the

following diagram commutes:

(G2) G G×G

G×G G

〈1G,e!〉

〈e!,1G〉
1G m

m

Similarly the lower triangle commutes just if e behaves as an identity on

the left. So, for e to behave as a two-sided identity element, it is enough

that the whole diagram commutes.
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(3) Finally, we informally require that every element g ∈ G has an inverse g−1

or i(g) such that m(g, i(g)) = e = m(i(g), g). Categorially, we can express

this by requiring that the following commutes:

(G3) G×G G G×G

G×G G G×G

1G×i e!

δG δG

i×1G

m e

For take an element g ∈ G. Going left, the diagonal arrow δG (from

Defn. 37) maps it to the pair (g, g), which is mapped in turn by 1G × i to

(g, i(g)) and then by m to m(g, i(g)). The central vertical arrow meanwhile

simply sends g to e. Therefore, the requirement that the left square com-

mutes tells us, as we want, that m(g, i(g)) = e. Similarly the requirement

that the right square commutes tells us that m(i(g), g) = e

In summary then, the informal group axioms correspond to the commutativity

of our last three diagrams.

But note immediately that this categorial treatment of groups only requires

that we are working in a category with binary products and a terminal object.

So it is natural to generalize, as follows:

Definition 68. Suppose C is a category which has binary products and a terminal

object. Let G be a C -object, and m : G × G → G, e : 1 → G and i : G → G be

C -arrows. Then [G,m, e, i] is a group-object in C iff the three diagrams (G1),

(G2), (G3) commute, where e! in the latter two diagrams is the composite map

G 1 G.! e C

Here, ‘group object’ is the standard terminology (though some alternatively say

‘internal group’).

Then, if we don’t fuss about the type-difference between an arrow e : 1 → G

(in a group object) and a designated element e (in a group), we have established

the summary result

Theorem 70. In the category Set, a group object is a group.

And conversely, every group – or to be really pernickety, every group which

hasn’t got too many elements to form a set – can be regarded as a group object

in Set.

12.2 Groups in other categories

(a) Here are just a few more examples of group objects:
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Theorem 71. (1) In the category Top, which comprises topological spaces with

continuous maps between them, a group object is a topological group in the

standard sense.

(2) In the category Man, which comprises smooth manifolds with smooth maps

between them, a group object is a Lie group.

(3) In the category Grp, a group object is an abelian group.

The proofs of the first two claims are predictably straightforward if you know the

usual definitions of topological groups and Lie groups, and we will not pause over

them here. The third claim, by contrast, is probably unexpected. However, the

proof is relatively straightforward, quite cute, and a rather useful reality-check:

Proof of (3). Suppose [G,m, e, i] is a group-object in Grp. Then the object G

is already a group, a set of objects Ġ equipped with a group operation and an

identity element. We’ll use ordinary multiplication notation for the operation,

as in ‘x · y’, and we’ll dub the identity ‘1̇’ (so the innards of the group G are

notated with dots!). The arrow e : 1→ G in the group object must also pick out

a distinguished element of Ġ, call it ‘1’, an identity for m.

Now, each arrow in the group-object [G,m, e, i] lives in Grp, so is a group

homomorphism. That means in particular m is a homomorphism from G×G (the

product group, with group operation ×) to G. So take the elements x, y, z, w ∈ Ġ.

Then,

m(x · z, y · w) = m((x, y)× (z, w)) = m(x, y) ·m(z, w)

The first equation holds because of how the operation× is defined for the product

group; the second equation holds because m is a homomorphism.

For vividness, let’s rewrite m(x, y) as x ? y (so 1 is the unit for ?). Then we

have established the interchange law

(x · z) ? (y · w) = (x ? y) · (z ? w).

We will now use this law twice over (the proof from this point on uses what is

standardly called the Eckmann–Hilton argument, a general principle applying

when we have such an interchange law between two binary operations with

units). First, we have

1̇ = 1̇ · 1̇ = (1 ? 1̇) · (1̇ ? 1) = (1 · 1̇) ? (1̇ · 1) = 1 ? 1 = 1

We can therefore just write 1 for the shared unit, and show secondly that

x · y = (x ? 1) · (1 ? y) = (x · 1) ? (1 · y) = x ? y

= (1 · x) ? (y · 1) = (1 ? y) · (x ? 1) = y · x.

We have shown, then, that if [G,m, e, i] is a group object in Grp, G’s own group

operation commutes, and m is the same operation so that must also commute.

Therefore the group object is indeed an abelian group.

A similar argument, we might note, proves the reverse result: any abelian group

can be regarded as a group object in Grp.
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12.3 A very little more on groups

(a) We can continue the story, defining further group-theoretic notions in cat-

egorial terms.

(1) For a start, we can categorially define the idea of a homomorphism between

group objects in a category.

Suppose [G,m, e, i] and [G′,m′, e′, i′] are group objects in Set. Then a

homomorphism between them is a C -arrow h : G → G′ which ‘preserves

structure’ by appropriately commuting with the group objects’ arrows.

More precisely, a moment’s reflection shows that h is a homomorphism

just if the following three diagrams commute:

G×G G′ ×G′

G G′

m

h×h

m′

h

1

G G′

e e′

h

G G′

G G′

i

h

i′

h

(2) Recall another group-theoretic idea, the key notion of the action of a group

G on a set X. Informally, a (left) action is a two-place function a : G,X →
X such that a(e, x) = x where e is the group identity and x ∈ X, and

a(g · h, x) = a(g, a(h, x)) for any group elements g, h. This isn’t the place

to review the importance of the idea of a group action! Rather, we just note

that we can categorially define e.g. the action of a group object [G,m, e, i]

on a set X in Set as an arrow a : G ×X → X which makes the following

two diagrams commute:

1×X G×X

X

e×1X

∼=
a

(G×G)×X) G×X

X

G× (G×X) G×X

∼=

m×1

a

1×a
a

And so it goes: along these lines, core group-theoretic ideas can be recast into a

categorial framework.

(b) The explorations we have begun here could be continued in various di-

rections. First, for example, we could similarly define other kinds of algebraic

objects and their morphisms within categories. Second, noting that we can now

define group-objects and group-homomorphisms inside a given category like Set,
we could go on to categorially define categories of groups living in other cate-

gories. And then, generalizing that second idea, we can define the idea of internal

categories. But in either of these directions, things begin to get pretty abstract

(and not in a way that is particularly helpful for us at this stage in the proceed-

ings). So in the rest of this chapter, we consider something much more basic and

much more ‘concrete’, namely . . .
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12.4 Natural numbers

Our aim is to categorially characterize what are standardly called natural number

objects. Like group objects in a category, natural number objects in a category

aren’t naked objects but rather objects-with-arrows. Which arrows? Intuitively,

we need an arrow-as-element to pick out an initial object, a ‘zero’, and we need

an arrow-as-operation which takes an element to its ‘successor’. That will at

least give us sequences – so we say:

Definition 69. If C is a category with a terminal object, then [X, i, f ] is a

sequence object in C if X is a C -object, and i, f are C -arrows i : 1 → X and

f : X → X. C

If we are working in the category Set, for example, the arrow i picks out the

initial element of a sequence, call this element i too; and f then generates a

sequence i, f(i), f2(i), f3(i), . . . .

However, such a sequence could eventually repeat or cycle round; our task is

therefore to categorially characterize the limiting case of sequence objects corre-

sponding to non-repeating sequences fn(i) which look like the natural numbers

(i.e. which are ω-sequences). To do this, we start with another definition:

Definition 70. If C is a category with a terminal object, then the derived cat-

egory CSeq has as objects all of C ’s sequence objects [X, i, f ], and an arrow

u : [X, i, f ] → [Y, j, g] is a C -arrow u which makes the following diagram com-

mute in C :

1 X X

Y Y

i

j
u

f

u

g C

It is routine to check that this definition is in good order and CSeq is indeed a

category (with CSeq’s identity arrow on [X, i, f ] being C ’s identity arrow on X,

and composition in CSeq being composition in C .)
Three observations about this:

(1) Suppose we have such a commuting diagram in Set. Then u sends a se-

quence i, f(i), f2(i), f3(i), . . . living in X to the sequence j, g(j), g2(j),

g3(j), . . . living in Y . And given u is functional, if gm(j) 6= gn(j) then

fm(i) 6= fn(i). In other words, the sequence object [X, i, f ] can’t be more

constrained by equations of the form fm(i) = fn(i) in the sequence than

[Y, j, g] is constrained by similar equations between its elements.

(2) So if SetSeq has an initial object, call it [N, 0, s], then this will have to be as

unconstrained a sequence as possible, governed by no additional equations

of the form sm(0) = sn(0) (where m 6= n), and so never repeating. In other

words, this initial object will have to correspond to an ω-sequence.
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(3) Conversely, consider the standard implementation of the natural numbers

N = {∅, {∅}, {∅, {∅}}, . . .} in Set, together with the arrow 0: 1→ N which

sends the object in the singleton to ∅, and the arrow s : N → N which

sends a set n ∈ N to the set n∪{n}. Then [N, 0, s] evidently form an initial

object in CSeq. Given any other sequence object [Y, j, g] in Set, setting u

to be the arrow n 7→ gn(j) makes the diagram commute, and evidently u

is unique.

Which all goes to motivate the following general definition:

Definition 71. If C is a category with a terminal object, then a natural number

object in C is an initial object of the derived category CSeq.
That is to say (with objects and arrows in C ) a natural number object [N, 0, s]

comprises an object N and two arrows 0: 1 → N and s : N → N such that for

any object Y and arrows j : 1 → Y and g : Y → Y there is a unique arrow u

which makes the following diagram commute:

1 N N

Y Y

0

j
u

s

u

g C

Being initial objects of the derived category CSeq, it follows that if [N, 0, s] and

[N ′, 0′, s′] are natural number objects in C then N ∼= N ′ (and indeed there is a

unique isomorphism commuting with the arrows in the obvious way).

12.5 The Peano postulates revisited

(a) Let’s pause to recall the informal Peano postulates as presented to budding

mathematicians. These postulates tell us that the natural numbers N include a

distinguished zero object 0 and come equipped with a successor function s, and

are such that:

(1) 0 is a number;

(2) If n is a number, so is its successor sn;

(3) 0 is not a successor of any number;

(4) Two numbers n, m with the same successor are equal;

(5) For any property P of natural numbers, if 0 has P , and if sn has P whenever

n does, then P holds for all natural numbers.

Here, we should understand ‘property’ in the generous sense according to which

any arbitrary subset A of numbers defines a property (the property of being a

member of A). So we can take (5) as equivalent to
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12.5 The Peano postulates revisited

(5′) For any set A of natural numbers, if 0 ∈ A, and if n ∈ A ⇒ sn ∈ A, then

A = N .

A familiar informal set-theoretic argument now shows that the Peano postulates

characterize the structure N, 0, s up to isomorphism. And another familiar ar-

gument which we also won’t repeat here shows that we can deduce the so-called

Recursion Theorem:

For any objects Y, selected object j among Y , and function g with

Y as domain and codomain, there is a unique function u : N → Y

such that u(0) = j and u(sn) = g(u(n)).

Or in other words, definition by (simple) primitive recursion well-defines a func-

tion.

(b) That last observation tells us, of course, that if we take the arrow 0: 1→ N

to send the member of the singleton to the Peano zero, then the resulting [N, 0, s]

is a natural number object in Set.
What about the converse? Suppose [N, 0, s] is a natural number object in Set.

Then identifying the Peano zero with the image of the member of 1 under the

arrow 0: 1 → N , we of course get (1) and (2) for free. As we noted before,

[N, 0, s] can’t both be an initial object in the category of sequence objects and

be constrained by equations of the form sm(0) = sn(0) where m 6= n; and that

gives us (3) and (4). Which just leaves the induction principle.

Suppose (i) there is an injection i : A→ N , (ii) 0 ∈ A, (iii) n ∈ A⇒ sn ∈ A.
We need to show that A = N.

By the third supposition, s sends arguments in A to values in A and hence

there is a function s′ : A→ A which is the restriction of s : N → N to A. So (iii)

means the square in

1 A A

N N

0′

0
i

s′

i

s

commutes. While (ii) tells us that there is an arrow 0′ : 1 → A which makes

the triangle commute. Hence the following diagram commutes for some unique

u (the top half by the universal property of the natural number object):

N N

1 A A

N N

s

u u

0′

0

0

i

s′

i

s
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Which means that the natural number object [N, 0, s] factors through itself via

the mediating arrow i◦u. But trivially, it factors through itself by 1N and hence,

since the mediating arrow is unique, i ◦ u = 1N . Therefore i is a left inverse and

so by Theorem 8 it is epic. Hence (since we are in Set) i is surjective. Which

means that A = N, as we require.

12.6 More on recursion

(a) We have defined natural number objects in an intuitively appealing cate-

gorial way, and shown that at least in Set we thereby characterize a structure

that satisfies the Peano postulates. So far, so good. But there’s work still to be

done.

For consider next the following pattern for the recursive definition of a two-

place function f : N,N → N in terms of a couple of given one-place functions

g, h : N → N :

(1) f(m, 0) = g(m)

(2) f(m, sn) = h(f(m,n)).

Here’s a very familiar example: if g(m) = m and h is the successor function s

again, then our equations give us a recursive definition of addition.

We can call this type of definition a definition by parameterized recursion, since

there is a parameter m which we hold fixed as we run the recursion on n. And

intuitively our equations do indeed well-define a determinate binary function f ,

given any determinate monadic functions g and h (and we can prove that from

the Peano Postulates given enough ambient informal set theory).

Now, to characterize this kind of definition by parameterized recursion in a

categorial framework, we will evidently have to replace the two-place function

with an arrow f from a product. Suppose then that we are again working in

some category C which has a natural number object [N, 0, s]. And now suppose

too that (P): given any arrows g : N → N and h : N → N , there is a unique

arrow f : N ×N → N in C which makes this diagram commute

N N ×N N ×N

N N

〈1N ,0!〉

g
f

1N×s

f

h

where 0! is the composite map N 1 N.! 0 Saying the triangle com-

mutes is the categorial equivalent of saying that (1) holds (since 〈1N , 0!〉 sends

m to the pair (m, 0) – cf. Theorem 33). And saying the square commutes is the

equivalent of saying that (2) holds. Hence if a category C satisfies condition (P),

then in effect parameterised recursion well-defines functions in C . But it doesn’t
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follow from a category’s having a natural number object that it will automati-

cally satisfy (P) as well. In other words, while having a natural number object

in a category ensures that definitions by simple recursion work there, this does

not automatically ensure that definitions by parameterized recursion are also

allowed in C .

(b) However, we do have the following general result:

Theorem 72. If C is a Cartesian closed category with a natural number object

[N, 0, 1], then given any objects A,C, and arrows g : A → C and h : C → C,

then there is a unique f which makes the following diagram commute:

A A×N A×N

C C

〈1A,0!〉

g
f

1A×s

f

h

Our previous diagram of course illustrates the special case where A = C = N.

So in a Cartesian closed category with a natural number object we certainly

can warrant the elementary kind of parameterized recursive definition we met

at the beginning of the section. And in particular, since Set is Cartesian closed,

such definitions will be permitted in Set-theoretic arithmetic (as we’d of course

expect, having already noted that such an arithmetic will satisfy the full Peano

postulates).

To prove our theorem we exploit the associations between arrows A×N → C

and arrows N × A → C and between those and arrows N → CA which are

available in categories with exponentials. The idea is simple; the details are

tiresome:

Proof. We suppose, then, that we working in a category C which has all exponen-

tials (and hence binary products), which has a natural number object [N, 0, 1],

and which also has two arrows g : A→ C and h : C → C.

By hypothesis, the exponential [CA, ev] exists. Let i be an isomorphism from

1×A to A. We now use g and h to define

g′ = g ◦ i : 1→ CA, h′ = h ◦ ev : CA → CA,

where, remember, overlining notates exponential transposes. These somewhat

mysterious definitions can be explained by two commutative diagrams:

1×A

A

CA ×A C

g ◦ i×1A

i

g

ev

CA ×A

C

CA ×A C

h ◦ ev×1A

ev

h

ev
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By the universal property of C ’s natural number object, we know that there

is a unique map u which makes the following commute:

1 N N

CA CA

0

g′
u

s

u

h′

So now the name of the game is to define an arrow f : A ×N → C in terms of

u : N → CA in such a way that the fact that our last diagram commutes will

entail that the diagram in the statement of the theorem commutes.

The obvious way to start is to define an arrow fo : N × A → C by putting

fo = ev ◦ (u× 1A) so u is the exponential transpose of fo. Which doesn’t quite

give us what we want. But there is an isomorphism o : A×N → N ×A, and we

can put f = fo ◦ o.
We now need to show that (i) f ◦ 〈1A, 0!〉 = g, and (ii) f ◦ (1A × s) = h ◦ f.

For (i), note first that the following diagram commutes (we’ve not labelled all

the projection arrows, and compare the proof of Theorem 24 (2)):

A

1 1×A A

N N ×A A

N A×N A

! 1A
i−1

0 0×1A 1A

1N o−1 1A

π2 π1

So A A N
1A 0! factors through the product A A×N N

π1 π2

via the composite of the vertical arrows. Hence 〈1A, 0!〉 = o−1 ◦ (0 × 1A) ◦ i−1.

Therefore using Theorem 34 we can argue:

f ◦ 〈1A, 0!〉 = ev ◦ (u× 1A) ◦ o ◦ o−1 ◦ (0× 1A) ◦ i−1

= ev ◦ (u× 1A) ◦ (0× 1A) ◦ i−1

= ev ◦ ((u ◦ 0)× (1A ◦ 1A)) ◦ i−1

= ev ◦ (g′ × 1A) ◦ i−1

= ev ◦ (g ◦ i× 1A) ◦ i−1

= g ◦ i ◦ i−1

= g.
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For (ii), we can appeal to Theorem 32 to show that o◦ (1A×s) = (s×1A)×o.
Then we can argue:

f ◦ (1A × s) = ev ◦ (u× 1A) ◦ o ◦ (1A × s)
= ev ◦ (u× 1A) ◦ (s× 1A) ◦ o
= ev ◦ ((u ◦ s)× (1A × 1A)) ◦ o
= ev ◦ ((h′ ◦ u)× (1A × 1A)) ◦ o
= ev ◦ (h′ × 1A) ◦ (u× 1A) ◦ o
= ev ◦ (h ◦ ev × 1A) ◦ (u× 1A) ◦ o
= h ◦ ev ◦ (u× 1A) ◦ o
= h ◦ f.

Finally, we need to confirm f ’s uniqueness. But perhaps, with all the ingredients

to hand, we can leave that as an exercise!

Our theorem can now be extended in the same vein to cover not just definitions

by recursion that carry along a single parameter but also the most general kind

of definitions by primitive recursions. Therefore in a Cartesian closed category

with a natural number object we can start doing some serious arithmetic. And

this is just the beginning: Cartesian closed categories with extra features turn

out to be suitable worlds in which to do great swathes of mathematics. About

which a lot more in due course.

119



13 Functors introduced

We have so far been looking inside categories and characterizing various kinds

of construction to be found there (products, equalizers, exponentials, and the

like, and then even e.g. groups and natural number objects). We have seen the

same constructions appearing and reappearing in various guises in different cate-

gories. An obvious next task is to develop some apparatus for relating categories

by mapping such recurrent constructions from one category to another. After all,

the spirit of category theory is to understand objects of a certain kind via the

morphisms between them: so, in that spirit, we should surely now seek to under-

stand more about categories by thinking about the maps or morphisms between

them. The standard term for a structure-preserving map between categories is

‘functor’. This chapter introduces such maps.

13.1 Functors defined

A category C has two kinds of data, its objects and its arrows. So a functor

F from category C to category D will need to have two components, one that

operates on objects, one that operates on arrows. Hence:

Definition 72. Given categories C and D , a functor F : C → D comprises the

following data:

(1) An operation or mapping Fob whose value at the C -object A is some D-

object we can represent as Fob(A) or, dropping the explicit subscript, as

F (A) or indeed simply as FA.

(2) An operation or mapping Farw whose value at the C -arrow f : A→ B is a

D-arrow from F (A) to F (B) which, again dropping the explicit subscript,

we can represent as F (f) : F (A)→ F (B), or simply as Ff : FA→ FB.

But there’s more. If a functor is to preserve at least the most basic categorial

structure, its component mappings must obey two obvious conditions. First they

must map identity arrows to identity arrows. Second they should respect com-

position. That is to say, since the commutative diagram

B

A C

gf

g◦f
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gets sent by F to

FB

FA FC

F (g)F (f)

F (g◦f)

the second diagram should also

commute. Hence we want:

Definition 72 (continued). The data in F must satisfy the following conditions:

Preserving identities: for any C -object A, F (1A) = 1FA;

Respecting composition: for any C -arrows f, g such that their composition g ◦f
exists, F (g ◦ f) = Fg ◦ Ff . C

These conditions on F are often called, simply, functoriality.

13.2 Some elementary examples of functors

Our first example illustrates a broad class of cases:

(F1) There is a functor F : Mon→ Set with the following data:

i. Fob sends the monoid (M, ·, 1M ) to its carrier set M .

ii. Farw sends f : (M, ·, 1M ) → (N,×, 1N ), i.e. a monoid homomor-

phism acting on elements on M , to the same map thought of as a

set-function f : M → N .

So defined, F trivially obeys the axioms for being a functor. All it does

is ‘forget’ about the structure carried by the collection of objects in a

monoid. It’s a forgetful functor, for short.

There are equally forgetful functors from other categories of structured sets

to the bare underlying sets. For example, there is the functor F : Grp → Set
that sends groups to their underlying carrier sets and sends group homorphisms

to themselves as set function, forgetting about the group structure. Often, a

forgetful functor such as this is called an underlying functor (and hence the

common practice, which we shall occasionally adopt, of using the letter ‘U ’ to

denote such a functor).

Of course, these forgetful functors are not intrinsically very exciting! It will

turn out, however, that they are the boring members of so-called adjoint pairs

of functors where they are married to much more interesting companions. But

that observation is for later chapters.

To continue just for a moment with the forgetful theme:

(F2) There is a functor F : Set → Rel which sends sets and triples (domain,

graph, codomain) thought of as objects and arrows belonging to Set to

the same items thought of as objects and arrows in Rel, forgetting that

the arrows are functional.
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(F3) There are also somewhat less forgetful functors, such as the functor from

Rng to Grp that sends a ring to the additive group it contains, forgetting

the rest of the ring structure. Or take the functor from Ab, the category of

abelian groups, to Grp, that remembers about group structure but forgets

about commutativity.

And now for some different kinds of functors:

(F4) The powerset functor P : Set→ Set maps a set X to its powerset P(X)

and maps a set-function f : X → Y to the function which sends U ∈
P(X) to its f -image f [U ] = {f(x) | x ∈ U} ∈P(Y ).

(F5) Take monoids (M, ·, 1M ) and (N,×, 1N ) and consider the corresponding

categories M and N in the sense of §1.3.

So M has a single object ?M , and its arrows are elements of M , where

the composition of the arrows m1 and m2 is just m1 ·m2, and the identity

arrow is the identity element of the monoid, 1M .

Likewise N has a single object ?N , and arrows are elements of N ,

where the composition of the arrows n1 and n2 is just n1 × n2, and the

identity arrow is the identity element of the monoid, 1N .

So now we see that a functor F : M → N will need to do the following:

i. F must send ?M to ?N .

ii. F must send the identity arrow 1M to the identity arrow 1N .

iii. F must send m1 ◦m2 (i.e. m · n) to Fm1 ◦ Fm2 (i.e. Fm× Fn).

Apart from the trivial first condition, that just requires F to be a monoid

homomorphism. So any homomorphism between two monoids induces a

corresponding functor between the corresponding monoids-as-categories.

(F6) Take the posets (S,4) and (T,v) considered as categories S and T . It

is easy to check that a monotone function f : S → T (i.e. function such

that s 4 s′ implies f(s) v f(s′)) induces a functor F : S → T which

sends an S -object s to the T -object f(s), and sends an S -arrow, i.e. a

pair (s, s′) where s 4 s′, to the T -arrow (f(s), f(s′)).

(F7) Next, take the group G = (G, ·, e) and now consider it as a category G
(see the end of §3.3), and suppose F : G → Set is a functor. Then F must

send G’s unique object ? to some set X. And F must send a G-arrow

m : ? → ? (that’s just a member m of G) to a function F (m) : X → X.

Functoriality requires that F (e) = 1X and F (m · m′) = F (m) ◦ F (m′).

But those are just the conditions for F to constitute a group action of G

on X. Conversely, a group action of G on X amounts to a functor from

G to Set.
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(F8) There is a list functor List : Set → Set, where Listob sends a set X to

List(X), the set of all finite lists or sequences of elements of X, including

the empty one. And Listarw sends a function f : X → Y to the function

List(f) : List(X) → List(Y ) which sends the list x0
∩x1

∩x2
∩ . . .∩ xn to

fx0
∩fx1

∩fx2
∩ . . .∩ fxn (where ∩ is concatenation).

Returning to the forgetful theme, we have seen cases of functors that simply

forget (some of the) structure put on structured sets. We can also have a functor

which obliterates some distinctions between objects or between arrows.

(F9) Suppose S is a thin, pre-order, category (so has just one arrow between

any source and target), and let C be a fattened category which has the

same objects as S but in addition to the arrows of S has perhaps extra

arrows. Then there will be a functor F from C back to the slimmed-down

S which takes objects to themselves, and maps every arrow from A to

B in C to the unique such arrow in S . We could call this F a ‘thinning’

functor.

(F10) A more extreme case: suppose C and D are any (non-empty!) categories,

and D is any object in D . Then there is a corresponding collapse-to-D

constant functor ∆D : C → D which sends every C -object to D and every

C -arrow to 1D.

As a special case, there is a functor ∆0 : C → 1 which sends every

object of C to the sole object of one-object category 1, and sends every

arrow in C to the sole arrow of 1.

Those last two functors take us from richer categories to more meagre ones. Now

for a couple more that go in the other direction again:

(F11) For each object C in C there is a corresponding functor – overloading

notation once more, we can usefully call it C : 1 → C – which sends the

sole object of 1 to C, and sends the sole arrow of 1 to 1C .

(F12) Suppose S is a subcategory of C (see §2.2). Then there is an inclusion

functor F : S → C which sends objects and arrows in S to the same

items in C .

13.3 What do functors preserve and reflect?

Later in this chapter we will look at three more interesting examples of functors.

But let’s first make some general points.

A functor F : C → D sends each C -object C to its image F (C) and sends

each C -arrow f : C → C ′ to its image F (f) : FC → FC ′. These resulting images

assemble into an overall image or representation of the category C living in the

category D . But how good a representation do we get in the general case? What

features of C get carried over by a functor?
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(a) First a general observation worth highlighting as a theorem as it is easy to

go wrong about this:

Theorem 73. The image of C in D assembled by a functor F : C → D need not

be a subcategory of D .

Proof. A toy example establishes the point. Let C be the category we can dia-

gram as

A B1 B2 C

and D be the category

A′ B′ C ′

(where we omit the identity arrows). Suppose Fob sends A to A′, both B1, B2

to B′, and C to C ′; and let Farw send identity arrows to identity arrows, and

send the arrows A → B1 and B2 → C respectively to A′ → B′ and B′ → C ′.

Trivially F with those components is functorial. But the image of C under F

is not a category (and so not a subcategory of D), since it contains the arrows

A′ → B′ and B′ → C ′ but not their composition.

(b) We next introduce a pair of standard notions:

Definition 73. Suppose F : C → D and P is some property of arrows. Then

(1) F preserves P iff, for any C -arrow f , if f has property P , so does F (f).

(2) F reflects P iff, for any C -arrow f , if F (f) has property P , so does f .

We will say, for short, that F preserves (reflects) Xs if F preserves (reflects) the

property of being an X. C

One special case gets a special bit of terminology:

Definition 74. A functor F is conservative iff it reflects all isomorphisms. C

So what properties of arrows get preserved or reflected by functors in general?

Theorem 74. Functors do not necessarily preserve or reflect monomorphisms

and epimorphisms.

Proof. First, remember 2, the two-object category which we can diagram like

this:

• ?

Trivially, the non-identity arrow m here is monic. And now consider a category

C which adds to 2 another non-identity arrow n:
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• ?

n

m

In C , we have m ◦ n = m ◦ 1• but not n = 1•, so m is not monic in C . Hence

the obvious inclusion functor from 2 to C does not preserve monics.

Now consider the inclusion map iM : (N,+, 0)→ (Z,+, 0) in Mon. We saw in

§3.3, Ex. (2) that this is epic. But plainly the inclusion map iS : N → Z in Set
is not epic (as it isn’t surjective). Therefore the forgetful functor F : Mon→ Set
maps an epic map (iM ) to a non-epic one (iS), so does not preserve epics.

For an example of a functor which need not reflect monics or epics, consider

a collapse functor which maps C to 1, thereby sending arrows of all sorts to the

trivially monic and epic identity arrow on the sole object of 1.

Theorem 75. Functors preserve right inverses, left inverses, and isomorphisms.

But functors do not necessarily reflect those.

Proof. We show functors preserve right inverses. Suppose F : C → D is a functor

and the arrow f : C → D is a right inverse in the category C . Then for some

arrow g, g ◦ f = 1C . Hence F (g ◦ f) = F (1C). By functoriality, that implies

F (g) ◦ F (f) = 1FC . So F (f) is a right inverse in the category D .

Duality gives the result the result that left inverses are preserved. And putting

the two results together shows that isomorphisms are preserved.

For the negative result, just consider again the collapse functor sending C to

1. The only arrow in 1, the identity arrow, is trivially an isomorphism (and so a

left and right inverse). The C -arrows sent to it will generally not be.

13.4 Faithful, full, and essentially surjective functors

The moral of the previous section is that in general a functor’s image of C
inside another category D may not tell us very much about C . We are obviously

going to be interested, then, in looking at some special kinds of functor which

do preserve and/or reflect more.

Let’s start by defining analogues for the notions of injective and surjective

functions. First, as far as their behaviour on arrows is concerned, the useful

notions for functors turn out to be these:

Definition 75. A functor F : C → D is faithful iff given any C -objects C,C ′,

and any pair of parallel arrows f, g : C → C ′, then if F (f) = F (g), then f = g.

F is full (that’s the standard term) iff given any C -objects C,C ′, then for any

arrow g : FC → FC ′ there is an arrow f : C → C ′ such that g = Ff .

F is fully faithful, some say, iff it is full and faithful. C

Note, a faithful function needn’t be, overall, injective on arrows. For suppose C
is in effect two copies of D , and F sends each copy faithfully to D : then F sends
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two copies of an arrow to the same image arrow. However, a faithful function is,

for each pair of objects C,C ′, injective from the arrows C → C ′ to the arrows

FC → FC ′. Likewise, a full function needn’t be, overall, surjective on arrows:

but it is locally surjective from the arrows C → C ′ to the arrows FC → FC ′.

Second, in connection with the way functors treat objects, the notion worth

highlighting is this:

Definition 76. A functor F : C → D is essentially surjective on objects (e.s.o.)

iff for any D-object D, there is a C -object C such that FC ∼= D. C

Plain surjectivity (defined by requiring an object C such that FC = D) is less

interesting, given that we don’t usually care, categorially speaking, whether D
has extra non-identical-but-isomorphic copies of objects. Injectivity on objects

(defined in the obvious way by requiring FC = FC ′ implies C = C ′, for any

C -objects C and C ′) is not usually very exciting either.

Some examples:

(1) The forgetful functor F : Mon→ Set is faithful, as F sends a set-function

which happens to be a monoid homorphism to itself, so different arrows in

Mon get sent to different arrows in Set. But the functor is not full: there will

be lots of arrows in Set that don’t correspond to a monoid homomorphism.

Since any set can be trivially made into a monoid, F is essentially surjective

on objects.

(2) The forgetful functor F : Ab→ Grp is faithful, full but not e.s.o.

(3) The ‘thinning’ functor from §13.2 (F9), F : C → S , is full but not faithful

unless C is already a pre-order category. But it will be e.s.o.

(4) Suppose M and N are the categories that correspond to the monoids

(M, ·, 1M ) and (N,×, 1N ). And let f be a monoid homomorphism be-

tween those monoids which is surjective but not injective. Then the functor

F : M → N corresponding to f is full but not faithful.

(5) You might be tempted to say that the ‘total collapse’ functor ∆0 : Set→ 1
is full but not faithful. But it isn’t full. Take C,C ′ in Set to be respectively

the singleton of the empty set and the empty set. There is a trivial identity

map in 1, 1 : ∆0C → ∆0C
′; but there is no arrow in Set from C to C ′.

(6) An inclusion functor F : S → C is faithful; if S is a full subcategory of

C , then the inclusion map is fully faithful, but usually not e.s.o.

How then do faithful or fully faithful functors behave?

Theorem 76. A faithful functor F : C → D reflects monomorphisms and epi-

morphisms.

Proof. Suppose Ff is monic, and suppose f ◦g = f ◦h. Then F (f ◦g) = F (f ◦h),

so by functoriality Ff ◦ Fg = Ff ◦ Fh, and since Ff is monic, Fg = Fh. Since

F is faithful, g = h. Hence f is monic. Dually for epics.
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Theorem 77. If a functor is fully faithful it reflects right inverses and left in-

verses, and hence is conservative.

Proof. Suppose F : C → D is a fully faithful functor, and let Ff be a right

inverse, with f an arrow in C with source A. Since F is full, Ff ’s right inverse

must be Fg for some arrow g in C . Hence Fg◦Ff = 1FA, whence F (g◦f) = 1FA.

But F is faithful so can send nothing other that 1A to 1FA. Therefore g◦f = 1A,

and f is a right inverse.

Dually, F reflects left inverses, and combining the two results shows that F

reflects isomorphisms, i.e. is conservative.

Note, however, that the reverse of the last result is not true. A functor can

reflect isomorphisms without being fully faithful. Example: consider the forgetful

functor F : Mon→ Set. This is faithful but not full. But it is conservative because

if the set function Ff is an isomorphism, so is the monoid homomorphism f –

for a monoid homomorphism is an isomorphism if and only if its underlying

function is.

13.5 A functor from Set to Mon

(a) For this and the next two sections we step back again from generalities to

look at three more particular examples of functors. First, we define a functor

going in the reverse direction to the forgetful functor in (F1), i.e. we construct

a functor F : Set→ Mon.

There are trivial ways of doing this. For example just pick a monoid, any

monoid, call it M. Then there is a boring constant functor we could call !M :

Set→ Mon which sends every set X toM and sends every set-function f : X →
Y to the identity arrow 1M : M→M (the identity homomorphism).

But it is instructive to try to come up with something more interesting. So,

consider again how to we might send sets to monoids, but this time making

as few assumptions as we possibly can about the monoid that a given set gets

mapped to.

Start then with a set S. Since we are making no more assumptions than

we need to, we’ll have to take the objects in S as providing us with an initial

supply of objects for building our monoid, the monoid’s generators. We now

need to equip our incipient monoid with a two-place associative function ∗.
But we are assuming as little as we can about ∗ too, so we don’t even yet

know that applying it keeps us inside the original set of generators S. So S will

need to be expanded to a set M that contains not only the original members

of S, e.g. x, y, z, . . ., but also all the possible ‘products’, i.e. all the likes of

x ∗ x, x ∗ y, y ∗ x, y ∗ z, x ∗ y ∗ x, x ∗ y ∗ x ∗ z, x ∗ x ∗ y ∗ y ∗ z . . ., etc., etc.

– we know, however, that since ∗ is associative, we needn’t distinguish between

e.g. x ∗ (y ∗ z) and (x ∗ y) ∗ z.
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But even taking all those products is not enough, for (in our assumption-free

state) we don’t know whether any of the resulting elements of M will act as an

identity for the ∗-function. So to get a monoid, we need to throw into M∗ some

unit 1. However, since we are making no assumptions, we can’t assume either

that any of the products in M are equal, or that there are any other objects in

M other than those generated from the unit and members of S.

Now, here’s a neat way to model the resulting monoid ‘freely’ generated from

the set S. Represent a monoid element (such as x ∗x ∗ y ∗ y ∗ z) as a finite list of

members of S, so M gets represented by List(S) – see (F8) above. Correspond-

ingly, model the ∗-function by simple concatenation ∩. The identity element will

then be modelled by the null list. The resulting (List(S),∩ , 1) is often simply

called the free monoid on S – though perhaps it is better to say it is a standard

exemplar of a free monoid.

Which all goes to motivate the following construction:

(F13) There is a ‘free’ functor F : Set→ Mon with the following data:

i. Fob sends the set S to the monoid (List(S),∩ , 1).

ii. Farw sends the arrow f : S → S′ to List(f) (see (F8) again), where

this is now treated as an arrow from (List(S),∩ , 1) to (List(S′),∩ , 1).

It is now trivial to check that F is indeed a functor.

(b) Note, different set functions f, g : X → Y get sent to different functions

Ff, Fg : List(X) → List(Y ) (if fx 6= gx, then Ff(〈x〉) 6= Fg(〈x〉), where 〈x〉 is

the list whose sole element is x). So F is faithful.

Now consider a singleton set 1. This gets sent by F to the free monoid with a

single generator – which is tantamount to N = (N,+, 0). The sole set-function

from 1 to itself, the identity function, gets sent by F to the identity monoid

homomorphism on N . But there are other monoid homomorphisms from N to

N , e.g. n 7→ 2n. So F is not full.

(c) We can generalize. There are similar functors that send sets to other freely

generated structures on the set. For example there is a functor from Set to Ab
which sends a set X to the freely generated abelian group on X (which is in

fact the direct sum of X-many copies of (Z,+, 0) – the integers Z with addition

forming the paradigm free abelian group on a single generator). But we need not

concern ourselves with the further details of such cases.

13.6 Products, exponentials, and functors

To develop two examples of a different type, let’s consider again first products

and then exponentials.
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(F14) Assume C has all products, and C is any object in the category. Then

there is a functor –×C : C → C , which sends and object A to A×C and

an arrow f : A→ A′ to f × 1C : A× C → A′ × C.

Similarly there is a functor C × –: C → C , which sends and object A

to C ×A and an arrow f : A→ A′ to 1C × f : C ×A→ C ×A′.

Proof. Write f ×C for (–×C)(f). To confirm functoriality the main thing is to

show (g ◦f)×C = (g×C)◦ (f ×C). But that is g ◦f ×1C = (g×1C)◦ (f ×1C),

which follows from Theorem 34.

Similarly for the other functor.

Suppose next that we are working in a category C which has all exponentials

(and all binary products). And suppose we have an arrow f : C → C ′ between a

couple of C -objects. Now pick another object B in the category. Then there is

a commuting diagram which looks like this:

CB ×B C

C ′B ×B C ′

ev

(f ◦ ev)×1B f

ev′

Why so? Trivially, there is a composite arrow f ◦ ev : CB × B → C ′. But

then, since [C ′B , ev′] is an exponential, there is by definition a unique trans-

pose f ◦ ev : CB → C ′B which makes the diagram commute.

In this way, for fixed B, there is a natural association between the objects C

and CB and another between the arrows f : C → C ′ and f ◦ ev : CB → C ′B .

And, as we might hope, the associations are indeed functorial. In other words,

we hope that the following is true:

(F15) Assume C has all exponentials, and that B is a C -object. Then there

is a corresponding exponentiation functor (–)B : C → C which sends an

object C to CB , and sends an arrow f : C → C ′ to f ◦ ev : CB → C ′B .

We need, however, to confirm that this is indeed correct:

Proof. We need to confirm that (–)B does indeed preserve identities and respect

composition.

The first is easy. (1C)B is by definition 1C ◦ ev : CB → CB , so we have

CB ×B C

CB ×B C

ev

(1C)B×1B 1C

ev
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But evidently, the arrow 1CB × 1B on the left would also make the diagram

commute. So by the requirement that there is unique filling for – × 1B which

makes the square commute, (1C)B = 1CB , as required for functoriality.

Second, we need to show that given arrows f : C → C ′ and g : C ′ → C ′′,

(g ◦ f)B = gB ◦ fB .

Consider the following diagram where the top square, bottom square, and

(outer, bent) rectangle commute:

CB ×B C

C ′B ×B C ′

C ′′B ×B C ′′

ev

fB×1B

(g◦f)B×1B

f

ev′

gB×1B g

ev′′

By Theorem 34, (gB×1B)◦ (fB×1B) = (gB ◦fB)×1B . Hence (gB ◦fB)×1B is

another arrow that makes a commuting rectangle. So again by the requirement

that there is unique filling for –×1B which makes the square commute, (g◦f)B =

gB ◦ fB .

13.7 An example from algebraic topology

(a) Here’s another particular example of a functor, this time a classic example

from algebraic topology. This can readily be skipped if you don’t know the

setting. Though to get a glimmer of what’s going on, you just need the idea of

the fundamental group of a topological space (at a point), as follows.

Given a space and a chosen base point in it, consider all directed paths that

start at this base point then wander around and eventually loop back to their

starting point. Such directed loops can be “added” together in an obvious way:

you traverse the “sum” of two loops by going round the first loop, then round

the second. Every loop has an “inverse” (you go round the same path in the

opposite direction). Two loops are considered ‘homotopically’ equivalent if one

can be continuously deformed into the other. Consider, then, the set of all such

equivalence classes of loops – so-called homotopy equivalence classes – and define

“addition” for these classes in the obvious derived way. This set, when equipped

with addition, evidently forms a group: it is the fundamental group for that

particular space, with the given basepoint. (Though for many spaces, the group

is independent of the basepoint.)

Suppose, therefore, that Top∗ is the category of pointed topological spaces:

an object in the category is a topological space X equipped with a distinguished
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base point x0, and the arrows in the category are continuous maps that preserve

basepoints. Then here’s our new example of a functor:

(F16) There is a functor π1 : Top∗ → Grp, to use its standard label, with the

following data

i. π1 sends a pointed topological space (X,x0) – i.e. X with base point

x0 – to the fundamental group π1(X,x0) of X at x0.

ii. π1 sends a basepoint-preserving continuous map f : (X,x0)→ (Y, y0)

to a corresponding group homomorphism f∗ : π1(X,x0)→ π1(Y, y0).

(For arm-waving motivation: f maps a continuous loop based at x0

to a continuous loop based at y0; and since f is continuous it can

be used to send a continuous deformation of a loop in (X,x0) to a

continuous deformation of a loop (Y, y0) – and that induces a corre-

sponding association f∗ between the homotopy equivalence classes

of (X,x0) and (Y, y0), and this will respect the group structure.)

We will suppose that we have done the work of checking that π1 is indeed

functorial.

(b) Here, then, is a nice application. We’ll prove Brouwer’s famed Fixed Point

Theorem:

Theorem 78. Any continuous map of the closed unit disc to itself has a fixed

point.

Proof. Suppose that there is a continuous map f on the two-dimensional disc

D (considered as a topological space) without a fixed point, i.e. such that we

always have f(x) 6= x.

Let the boundary of the disc be the circle S (again considered as a topological

space). Then we can define a map that sends the point x in D to the point in S

at which the ray from f(x) through x intersects the boundary of the disc.

This map sends a point on boundary to itself. Pick a boundary point to be

the base point of the pointed space D∗ and also of the pointed space S∗, then

our map induces a map r : D∗ → S∗. Moreover, this map is evidently continuous

(intuitively: nudge a point x and since f is continuous that just nudges f(x), and

hence the ray from f(x) through x is only nudged, and the point of intersection

with the boundary is only nudged). And r is a left inverse of the inclusion map

i : S∗ → D∗ in Top∗, since r ◦ i = 1.

Functors preserve left inverses by Theorem 75, so π1(r) will be a left inverse of

π1(i), which means that π1(i) : π1(S∗)→ π1(D∗) is a right-inverse in Grp, hence

by Theorem 8 is monic, and hence by Theorem 4 is an injection.

But that’s impossible. π1(S∗), the fundamental group of S∗, is [equivalent to]

the group Z of integers under addition (think of looping round a circle, one way

or another, n times – each positive or negative integer corresponds to a different
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path); while π1(D∗), the fundamental group of D∗, is just a one element group

(for every loop in the disk D∗ can be smoothly shrunk to a point). And there is

no injection between the integers and a one-element set!

(c) What, if anything, do we gain from putting the proof in category theoretic

terms? It might be said: the proof crucially depends on facts of algebraic topology

– continuous maps preserve homotopic equivalences in a way that makes π1 a

functor, and the fundamental groups of S∗ and D∗ are respectively Z and the

trivial group. And we could run the whole proof without actually mentioning

categories at all. Still what we’ve done is, so to speak, very clearly demarcate

those bits of the proof that depend on topic-specific facts of algebraic topology

and those bits which depend on general proof-ideas about functoriality and about

kinds of maps (inverses, monics, injections), ideas which are thoroughly portable

to other contexts. And that surely counts as a gain in understanding.

13.8 Covariant vs contravariant functors

Here, finally, is another a very general question about functors. How do they

interact with the operation of taking the opposite category?

Well, first we note:

Theorem 79. A functor F : C → D induces a functor F op : C op → Dop.

Proof. Recall, the objects of C op are exactly the same as the objects of C . We

can therefore define the object-mapping component of F op as acting on C op-

objects exactly as the object-mapping component of F acts on C -objects. And

then, allowing for the fact that taking opposites reverses arrows, we can define

the arrow-mapping component of F op as acting on the C op-arrow f : C → D

exactly as the arrow-mapping component of F acts on the C -arrow f : D → C.

F op will evidently obey the axioms for being a functor because F does.

By the way, had we shown this before, we could have halved the work in our

proof of Theorem 74 that functors do not necessarily preserve monos or epics.

After we’d shown that F : 2 → C doesn’t preserve monics, we could have just

remarked that the F op : 2op → C op won’t preserve epics!

Now for a new departure. We introduce a variant kind of functor:

Definition 77. F : C → D is a contravariant functor from C to D if F : C op → D
is a functor in the original sense. So it comprises the following data:

(1) A mapping Fob whose value at the C -object A is some D-object F (A).

(2) A mapping Farw whose value at the C -arrow f : B → A is a D-arrow

F (f) : FA→ FB. (NB the directions of the arrows!)

And this data satisfies the two axioms:
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Preserving identities: for any C -object A, F (1A) = 1F (A);

Respecting composition: for any C -arrows f, g such that their composition g ◦f
exists, F (g ◦ f) = Ff ◦ Fg. (NB the order of the two compositions!) C

Two comments. First, a functor in our original sense, when the contrast needs

to be stressed, is also called a covariant functor. Second, it would of course

be equivalent to define a contravariant functor from C to D to be a covariant

functor from C to Dop.

Let’s finish the chapter, then, with a couple of examples of naturally arising

contravariant functors.

(1) We have already met the covariant powerset functor. Its contravariant twin

P : Set → Set again maps a set to its powerset, and maps a set-function

f : Y → X to the function which sends U ∈ P(X) to its inverse image

f−1[U ] ∈P(Y ) (where f−1[U ] = {x | f(x) ∈ U}).
(2) Take Vect, the category whose objects are the finite dimension vector

spaces over the reals, and whose arrows are linear maps between spaces.

Now recall, the dual space of given finite-dimensional vector space V

over the reals is V ∗, the set of all linear functions f : V → R (where this

set is equipped with vectorial structure in the obvious way). V ∗ has the

same dimension as V (so, a fortiori, is also finite dimensional and belongs

to Vect). We’ll construct a dualizing functor D : Vect → Vect, where Dob

sends a vector-space to its dual.

So how is our functorD going to act on arrows in the category Vect? Take

spaces V,W and consider any linear map g : W → V . Then, over on the

dual spaces, there will be a naturally corresponding map (–◦g) : V ∗ →W ∗

which maps f : V → R to f ◦ g : W → R. But note the direction that the

arrow g has to go in, if composition with f is to work. This defines the

action of a component Darw for the dualizing functor D: it will send a

linear map g to the map (– ◦ g).

And these components Dob and Darw evidently do give us a contravari-

ant functor.
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We have seen how structured whatnots and structure-respecting maps between

them can be assembled into categories. This gives us more structured data,

the categories; and now we have also seen there are structure-respecting maps

between them, i.e. functors. Can data of these last two sorts be assembled into

further categories? Yes indeed. Quite unproblematically, there are at least some

categories of categories.

However, just as we can have many sets of sets but arguably not, on pain

of paradox, a set of all sets, so we can have many categories of categories but

arguably not, on pain of paradox, a category of all categories. Some collections

are, as the saying goes, ‘too big to be sets’; there are similar worries about some

assemblies of categories being ‘too big’. We need then briefly to address these

issues of size, which we have previously skated around once or twice.

14.1 Functors compose

Here are two simple theorems. In each case the proof is entirely straightforward

from the definitions:

Theorem 80. Given any category C there is an identity functor 1C : C → C
which sends objects and arrows alike to themselves.

Theorem 81. Suppose there exist functors F : C → D , G : D → E . Then there

is also a composite functor G ◦ F : C → E with the following data:

(1) A mapping (G◦F )ob which sends a C -object A to the E -object GFA – i.e.,

if you prefer that with brackets, to G(F (A)).

(2) A mapping (G ◦ F )arw which sends a C -arrow f : A → B to the E -arrow

GFf : GFA→ GFB – i.e. to G(F (f)).

Further, such composition of functors is associative.

By the way, again to reduce clutter, we will later often allow ourselves to write

simply ‘GF ’ for the composite functor rather than ‘G ◦ F ’.

What happens if we compose two contravariant functors?
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Theorem 82. The composition of two contravariant functors, where defined,

yields a covariant functor.

That’s immediate once we reflect that if the contravariant F and G compose,

F sends an arrow f : A → B to Ff : FB → FA and then G sends that on to

GFf : GFA→ GFB.

In other respects too, composition behaves just as you would expect on a

moment’s thought. For example:

Theorem 83. The composition of full functors is full and the composition of

faithful functors is faithful.

Again the proof writes itself. Being full is being locally surjective, and composi-

tions of surjective functions are surjective; similarly for faithfulness.

14.2 Categories of categories

The basic observations that there are identity functors, and that functors com-

pose associatively now ensure that the following definition is in good order:

Definition 78. Suppose X comprises two sorts of data:

(1) Objects: some categories, C ,D ,E , . . . ,

(2) Arrows: some functors, F,G,H, . . . , between those categories,

where the arrows (i) include the identity functor on each category, and (ii) also

include G ◦ F for each included composable pair F and G (where F ’s target is

G’s source). Then X is a category of categories. C

Let’s have some quick examples:

(1) Trivially, there is a category of categories whose sole object is the category

C and whose sole arrow is identity functor 1C .

(2) We noted that every monoid can be thought of as itself being a category.

Hence the familiar category Mon can also be regarded as a category of

categories.

(3) There is a category whose objects are the finite categories, and whose

arrows are all the functors between finite categories.

So there certainly are some examples of categories of categories. But, as we have

have already indicated, there are limitations.
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14.3 A universal category?

(a) Suppose we next say:

Definition 79. A category is normal iff it is not one of its own objects. C

The categories which we have met in previous chapters have all been normal.

Now ask: can all the normal categories be gathered together as the objects of

one really big category?

The answer is given by

Theorem 84. There is no category of all normal categories.

Proof. Suppose there is a category N whose objects are all the normal cate-

gories. Now ask, is N normal? If it is, then it is one of the objects of N , so N
is non-normal. So N must be non-normal. But then it is not one of the objects

of N , so N is normal after all. Contradiction.

This argument of course just re-runs, in our new environment, the very familiar

argument from Russell’s Paradox to the conclusion that there is no set of all the

normal sets (where a set is normal iff it is not a member of itself).

It is worth stressing that the Russellian argument is not especially to do with

sets, for at its core is a simple, purely logical, observation. Thus, take any two-

place relation R defined over some objects; then there can be no object r among

them which is related by R to all and only those objects which are not R-related

to themselves. In other words, it is a simple logical theorem that ¬∃r∀x(Rxr ↔
¬Rxx). Russell’s original argument applies this elementary general result to the

particular set-theoretic relation R1, ‘. . . is a set which is a member of the set

. . . ’, to show that there is no set of all normal (i.e. non-self-membered) sets. Our

argument above now applies the same logical theorem to the analogous category-

theoretic relation R2, ‘. . . is a category which is an object of the category . . . ’,

to show that there is no category of all normal categories.

(b) Russell’s original argument that there is no set of all normal sets is usually

taken to entail that, a fortiori, there is no universal set, no set of all sets. The

reasoning being that if there were a universal set then we should be able carve

out of it (via a separation principle) a subset containing just those sets which

are normal, which we now know can’t be done.

To keep ourselves honest, however, we should note that this further argument

can be, and has been, resisted. There are cogent set theories on the market which

allow universal sets. How can this possibly be? Well, we can motivate restricting

separation and can thus block the argument that, if there is a universal set of

all sets, we should in particular be able to carve out from it a set of all normal

sets: see Forster (1995) for a classic discussion of set theories with a universal

set which work this way. But we can’t discuss this type of deviant theory here.

Henceforth we’ll have to just assume a standard line on sets at least in this
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respect – there are ‘limitations of size’, i.e. there are some entities (e.g. the sets

themselves) which are too many to form a set.

Now, similarly to the argument about sets, the Russellian argument that there

is no category of all normal categories might naturally be taken to entail that

there is no universal category in the naive sense:

Definition 80. A category U is universal if it is a category of categories such

that every category is an object of U .

Theorem 85? There is no universal category.

The argument goes: suppose a universal category U exists. Then we could carve

out from it a subcategory whose objects are just the normal categories, to get

a category of all normal categories. But we have shown there can be no such

category.

Can this line of argument be resisted? Could we justify saying that even if

there is a category of all categories, we can’t actually select out the normal

categories and all the arrows between them to give us a subcategory of normal

categories? Well, perhaps some themes in the debates about set theories with a

universal set could be carried over to this case. But again, it would take us far

too far away from mainstream concerns in category theory to try to explore this

option any further here.

Let’s not fuss about the possibility of a universal category any more but

simply take it that, at least in the naive sense of Defn. 80, there is no such

thing. Instead, we turn our attention to defining two much more useful notions

of large-but-less-than-universal categories-of-categories.

14.4 ‘Small’ and ‘locally small’ categories

(a) To repeat: when we talk here about sets, we assume we are working in a

theory of sets which is standard at least in the respect of allowing that the sets

are too many to themselves form a set.

We continue with a three new definitions:

Definition 81. A category C is finite iff it has overall only a finite number of

arrows.

A category C is small iff it has overall only a ‘set’s worth’ of arrows – i.e. the

arrows of C can be put into one-one correspondence with the members of some

set.

A category C is large iff it isn’t small overall. But it counts as locally small iff

for every pair of C -objects C,D there is only a ‘set’s worth’ of arrows from C to

D, i.e. those arrows can be put into one-one correspondence with the members

of some set. C

Some comments and examples:
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(1) The terms ‘small’ and ‘locally small’ are standard.

(2) It would be more usual to say that in a small category the arrows them-

selves form a set. However, if our favoured set theory is a theory like pure

ZFC where sets only have other sets as members, that would presuppose

that arrows are themselves pure sets, and we might not necessarily want to

make that assumption. So, for smallness, let’s officially require only that

the arrows aren’t too many to be indexed by a set. Similarly for local

smallness.

(3) Since for every object in C there is at least one arrow, namely the identity

arrow on C , a finite category must have a finite number of objects. And

if there are too many objects of C to be bijectively mapped to a set, then

C has too many arrows to be small. Contraposing, if C is small, not only

its arrows but its objects can be put into one-one correspondence with the

members of some set (in fact, the set that indexes the identity arrows).

(4) Among our examples in §1.3, tiny finite categories like 1 and 2 are of course

small. But so too are the categories corresponding to an infinite but set-

sized monoid or to an infinite pre-ordered set. Categories such as Set or

Mon, however, have too many objects (and hence too many arrows) to be

small.

(5) While categories such as Set or Mon are not small, like all our other ex-

amples so far are at least locally small. In Set, for example, the arrows

between objects C to D are members of a certain subset of the powerset

of C ×D: which makes Set locally small. (Indeed some authors build local

smallness into their preferred definition of a category – see for example

Schubert 1972, p. 1; Borceux 1994, p. 4; Adámek et al. 2009, p. 21.)

(b) Let’s propose two more definitions:

Definition 82. Cat is the category whose objects are small categories and whose

arrows are the functors between them.

Cat∗ is the category whose objects are locally small categories and whose

arrows are the functors between them. C

Are such definitions in good order?

Well, at least there aren’t Russellian problems. First, a discrete category (with

just identity arrows) only has as many arrows as objects. Which implies that

the discrete category on any set is small. But that in turn implies that there are

at least as many small categories as there are sets. Hence the category Cat of

small categories has at least as many objects as there are sets, and hence is itself

determinately not small. Since Cat is unproblematically not small, no paradox

arises for Cat as it did for the putative category of normal categories.

Second, take a one-element category 1, which is certainly locally small. Then

a functor from 1 to Set will just map the object of 1 to some particular set: and
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there will be as many distinct functors F : 1 → Set as there are sets. In other

words, arrows from 1 to Set in Cat∗ are too many to be mapped one-to-one

to a set. Hence Cat∗ is determinately not locally small. So again no Russellian

paradox arises for Cat∗.

14.5 Isomorphisms between categories

(a) It seems, therefore, that we can legitimately talk of the category of small

categories Cat. And if we don’t build local smallness into the very definition of

a category, as some do, then it seems that we can legitimately talk of the larger

category of locally small categories Cat∗. Maybe we can countenance still more

inclusive categories of categories.

It will be handy to have some flexible notation to use, in a given context, for

a suitable category of categories that includes at least all the categories which

are salient in that context: let’s use CAT for this. We can then start applying

familiar categorial definitions. For example,

Definition 83. A functor F : C −→∼ D is an isomorphism between categories in

CAT iff it has an inverse, i.e. there is a functor G : D → C where G ◦ F = 1C

and F ◦G = 1D . C

Here, 1C is of course the functor that sends every object to itself and every arrow

to itself. And the definition makes the notion of being an isomorphism sensibly

stable in the sense that if F : C −→∼ D is an isomorphism between categories in

some CAT it remains an isomorphism in a more inclusive category.

As we would expect,

Theorem 86. If F : C −→∼ D is an isomorphism, it is full and faithful.

Proof. First suppose we have parallel arrows in C , namely f, g : A → B. Then

if Ff = Fg, GFf = GFg where G is F ’s inverse (now supressing the clutter

of explicit composition signs), so 1C f = 1C g and hence f = g. Therefore F is

faithful.

Suppose we are given an arrow h : FA → FB. Put f = Gh. Then Ff =

FGh = 1Dh = h. So every such h in D is the image under F of some arrow in

C . So F is full.

The converse doesn’t hold, however. We noted that the inclusion functor from a

full subcategory S of C into C is fully faithful: but plainly that usually won’t

have an inverse.

(b) Just as we say that objects C and D inside a category are isomorphic iff

there is an isomorphism f : C → D, so we naturally say:

Definition 84. Categories C and D are isomorphic in CAT, in symbols C ∼= D ,

iff there is an isomorphism F : C −→∼ D . C
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Let’s have some examples:

(1) Take the toy two-object categories with different pairs of objects which we

can diagram as

• ? a b

Plainly they are isomorphic (and indeed there is unique isomorphic functor

that sends the first to the second)! If we don’t care about distinguishing

copies of structures that are related by a unique isomorphism, then we’ll

count these as the same in a strong sense. Which to that extent warrants

our earlier talk about the category 2 (e.g. in §1.3, Ex. (18)).

(2) Revisit the example in §2.3 of the coslice category 1/Set. This category

has as objects all the arrows ~x : 1 → X for any X ∈ Set. And the arrows

from ~x : 1→ X to ~y : 1→ Y are just the set-functions j : X → Y such that

j ◦ ~x = ~y.

Now we said before that this is in some strong sense ‘the same as’ the

category Set∗ of pointed sets. And indeed the categories are isomorphic.

For take the function Fob from objects in 1/Set to objects Set∗ which sends

an object ~x : 1 → X to the pointed set (X,x), i.e. X-equipped-with-the-

basepoint-x, where x is the value of the function ~x for its sole argument.

And take Farw to send an arrow j : X → Y such that j ◦~x = ~y to an arrow

j′ : (X,x)→ (Y, y) agreeing at every argument and preserving base points.

Then it is trivial to check that F is a functor F : 1/Set→ Set∗.
In the other direction, we can define a functor G : Set∗ → 1/Set which

sends (X,x) to the function ~x : 1 → X which sends the sole object in 1

to the point x, and sends a basepoint-preserving function from X to Y to

itself.

And it is immediate that these two functors F and G are inverse to each

other. Hence, as claimed, Set∗ ∼= 1/Set.

(3) For those who know just a little about Boolean algebras and the two al-

ternative ways of presenting them: There is a category Bool whose objects

are algebras (B,¬,∧,∨, 0, 1) constrained by the familiar Boolean axioms,

and whose arrows are homomorphisms that preserve algebraic structure.

And there is a category BoolR whose objects are Boolean rings, i.e. rings

(R,+,×, 0, 1) where x2 = x for all x ∈ R, and whose arrows are ring

homomorphisms.

There is also a familiar way of marrying up Boolean algebras with cor-

responding rings, and vice versa. Thus if we start from (B,¬,∧,∨, 0, 1),

take the same carrier set and distinguished objects, put

(i) x× y =def x ∧ y,

(ii) x+ y =def (x ∨ y) ∧ ¬(x ∧ y) (exclusive ‘or’),

then we get a Boolean ring. And if we apply the same process to two

algebras B1 and B2, it is elementary to check that this will carry a homo-
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morphism of algebras fa : B1 → B2 to a corresponding homomorphism of

rings fr : R1 → R2. We can equally easily go from rings to algebras, by

putting

(i) x ∧ y =def x× y,

(ii) x ∨ y =def x+ y + (x× y)

(iii) ¬x =def 1 + x.

Note that going from a algebra to the associated ring and back again takes

us back to where we started.

In summary, without going into any more details, we can in this way

define a functor F : Bool→ BoolR, and a functor G : BoolR→ Bool which

are inverses to each other. So, as we’d surely have expected, the category

Bool is isomorphic to the category BoolR.

(4) We will meet two more examples of isomorphic categories in §17.3.

So far, so good then. We have examples of pairs of categories which, intuitively,

‘come to just the same’ and are indeed isomorphic by our definition. Looking

ahead to Chapter 20, however, it turns out that being isomorphic is not the

notion of ‘amounting to the same category’ which is most useful. We in fact

need a rather more relaxed notion of equivalence of categories. More about this

later.

(c) For the moment, then, we just note that we can also carry over e.g. our

categorial definition of initial and terminal objects and other limits to categories

in CAT. We can check the following, for example:

Theorem 87. The empty category is initial in CAT, and the trivial one-object

category 1 is terminal.

Theorem 88. The category C ×D (as defined in §2.2), equipped with the obvious

projection functors Π1 : C × D → C and Π1 : C × D → D forms a categorial

binary product of C with D .

14.6 An aside: other definitions of categories

(a) Having at long last explicitly highlighted the theme of categories with too

many objects to form a set, now is the moment to pause to revisit our definition

of the very idea of a category to explain its relation to other, sightly different,

definitions. For issues of size crop up again.

Our own preferred definition began like this:

Definition 1 A category C comprises two kinds of things:

(1) Objects (which we will typically notate by ‘A’, ‘B’, ‘C’, . . . ).

(2) Arrows (which we typically notate by ‘f ’, ‘g’, ‘h’, . . . ). . . .
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This accords with e.g. Awodey (2006, p. 4) and Lawvere and Schanuel (2009, p.

21). And this is given as a ‘direct description’ of categories by (Mac Lane, 1997,

p. 289). However, it is at least as common to put things as follows:

Definition 1* A category C consists of

(1) A collection Obj of entities called objects.

(2) A collection Arw of entities called arrows. . . .

See (Goldblatt, 2006, p. 24), and Simmons (2011, p. 2) for such definitions, and

also e.g. Goedecke (2013).

Others prefer to talk of ‘classes’ here, but we probably shouldn’t read very

much into that choice of wording, ‘collections’ vs ‘classes’. The real question is:

what, if anything, is the difference between talking of a category as having as

data some objects (plural) and some arrows (plural), and saying that a category

consists in a collection/class (singular) of objects and a collection/class (singular)

of arrows?

It obviously all depends what we mean here by ‘collections’. Because many

paradigm categories have too many objects to for there to be a set of them, the

notion of collection can’t be just the standard notion of a set again. But that

still leaves options. Is Defn. 1* in fact intended to involve only ‘virtual classes’

, meaning that the apparent reference to classes is a useful fiction but can be

translated away so that it ends up saying no more than is said by Defn. 1 which

doesn’t refer to collections-as-special-objects at all? Or is Defn. 1* to be read

as buying into some overall two-layer theory of sets-plus-bigger-classes which in

some way takes large collections, classes-which-aren’t-sets, more seriously (and

if so, then how seriously)?

Well, note that we have in fact been able to proceed quite far without making

any clear assumption that categories are in some strong sense distinct entities
over and above their objects and arrows (arguably, even talk of categories of

categories doesn’t commit us to that). In other words, it isn’t obvious that we

as yet need to buy in to a substantive theory of classes to get our theorizing

about categories off the ground. For this reason, I prefer to stick to the overtly

non-committal Defn. 1 as our initial definition, and thereby leave it as a separate

question just when, and in what contexts, the category theorist eventually does

make moves that require taking seriously collections-bigger-than-any-ordinary-

set.

(b) While on the subject of variant definitions of category, here’s another com-

mon one. It starts like this:

Definition 1** The data for a category C comprises:

(1) A collection ob(C ), whose elements we will call objects.
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(2) For every A,B ∈ ob(C ), a collection C (A,B), whose elements f we will

call arrows from A to B. We signify that the arrow f belongs to C (A,B)

by writing f : A→ B or A
f−→ B.

(3) For every A ∈ ob(C ), an arrow 1A ∈ C (A,A) called the identity on A.

(4) For any A,B,C ∈ ob(C ), a two-place composition operation, which takes

arrows f, g, where f : A → B and g : B → C, to an arrow g ◦ f : A → C,

the composite of f and g. . . . C

This is essentially the definition given by Leinster (2014, p. 10). Relatedly, con-

sider Borceux (1994, p. 4) and Adámek et al. (2009, p. 18) who have a category

consisting of a class of objects but who insist that each collection of arrows be-

tween specific objects is to be a set – so they build local smallness into the very

definition of a category.

Leaving aside the last point, the key difference is that Defn. 1* has one all-in

class of arrows, Defn. 1** has lots of different classes (or sets) of arrows, one for

every pair of objects in the category.

Obviously if we start from Defn. 1 or Defn. 1*, we can then augment it by

defining the collection C (A,B) of arrows from A to B as containing the C -

arrows f such that src(f) = A and tar(f) = B. Note, though, on Defn. 1 or

Defn. 1* the arrows f : A→ B and f ′ : A′ → B′ cannot be identical if A 6= A′ or

B 6= B′. For if src(f) 6= src(f ′), f 6= f ′; likewise, of course, if tar(f) 6= tar(f ′),

f 6= f ′. Hence, according to the now augmented Defn. 1 or Defn. 1*, if A 6= A′ or

B 6= B′, C (A,B) and C (A′, B′) are disjoint. On the other hand, there’s nothing

in Defn. 1** which requires that. Which means that our two definitions don’t

quite line up. What to do?

The easy option is just to add to Defn. 1** the stipulation that the collections

C (A,B) for different pairs of objects A,B are indeed disjoint. Adámek et al.

(2009) adds just such a stipulation ‘for technical convenience’ and Leinster (2014)

does the same. If we stick though to our original definition Defn. 1 (or to Defn. 1*,

if you insist), then you get the same requirement for free.
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As we have seen, a functor F : J → C will, just in virtue of its functoriality,

preserve/reflect some aspects of the categorial structure of J as it sends objects

and arrows into C . And if the functor has properties like being full or faithful it

will preserve/reflect more.

We now want to ask: how do things stand with respect to preserving/reflecting

limits and colimits?

15.1 Diagrams redefined as functors

(a) Now that we have the notion of a functor to hand, we can redefine the

notion of a diagram, and hence the notion of a (co)limit over a diagram, in a

particularly neat way.

We can think of a functor from one category to another as producing a kind of

image or representation of the first category which lives in the second category

– see the beginning of §13.3. Or, to say the same thing in other words, a functor

D : J → C produces a sort of diagram of the category J inside C . This thought

in turn motivates overloading terminology in the following standard way:

Definition 85. Given a category C , and a category J, we say that a functor

D : J→ C , is a diagram (of shape J) in C . C

(Here we start following what seems a rather common font-convention, and use

e.g. ‘J’ rather than ‘J ’ when a small – often very small – category is likely to

be in focus: some indeed would build the requirement that J is small into our

definition here of a diagram-as-functor.)

To go along with this definition of diagrams-as-functors, there are entirely

predictable corresponding definitions of cones and limit cones (we just modify

in obvious ways the definitions we met in §8.1, 8.2):

Definition 86. Suppose we are given a category C , together with J a (possibly

very small) category, and a diagram-as-functor D : J→ C . Then:

(1) A cone over D is an object C ∈ C , together with an arrow cJ : C → D(J)

for each J-object J , such that for any J-arrow d : K → L, cL = D(d) ◦ cK .
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15.2 Preserving limits

We use [C, cJ ] (where ‘J ’ is understood to run over objects in J) for such

a cone.

(2) A limit cone over D is a cone we can notate [Lim
←J

D,λJ ] such that for every

cone [C, cJ ] over D, there is a unique arrow u : C → Lim
←J

D such that, for

all J-objects J , λJ ◦ u = cJ . C

(b) How does our talk of diagrams and limits, old and new, interrelate? Three

points:

(1) To repeat the motivating thought, a functor D : J → C will send the

objects and arrows of J to a corresponding handful of objects and arrows

sitting inside C and those latter objects will be indexed by the objects of

J. So diagrams-as-functors of course generate diagrams-in-categories in the

sense introduced rather loosely in §1.4 and then refined in §8.2.

(2) But on the other hand, not every diagram-in-C in the original sense cor-

responds to a diagram-as-functor. There’s a trivial reason. A diagram of

shape J in C will always carry over the required identity arrows on all the

objects in J to identity arrows on all their images. But a diagram-in-a-

category as we first defined it doesn’t have to have identity arrows on all

(or indeed any) of its objects.

(3) Still, the lack of a straight one-to-one correspondence between diagrams

in the two senses makes no difference when thinking about limits. Limits

over diagrams-as-functors will of course be limits in the old sense. And

conversely, suppose [L, λj ] is a limit cone over some diagram D in C (dia-

gram in the original sense). Then by Theorem 43, [L, λj ] is a limit over the

(reflexive, transitive) closure of D (because every cone over D is equally

a cone over its closure). By Theorem 42, we can think of this closure as

a subcategory J of C . So take the inclusion functor Di : J → C . Then,

by our new definition, [L, λj ] is a limit cone over the diagram-as-functor

Di : J→ C . In short, limits old and new are just the same.

If our prime interest is in limits, then, we can in fact take the neat notion of

diagram just introduced in Defn. 85 to be the primary one. And indeed, this

line is widely, though not universally, adopted (compare e.g. Borceux 1994 and

Leinster 2014). We too will think of diagrams this way from now on.

15.2 Preserving limits

(a) Start with a natural definition, extending the notion of preservation we met

in §13.3: we say a functor preserves limits if it sends limits of a given shape to

limits of the same shape and preserves colimits if it sends colimits to colimits.

More carefully,
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Definition 87. A functor F : C → D preserves the limit [L, λJ ] over D : J→ C
if [FL,FλJ ] is a limit over F ◦D : J→ D .

More generally, a functor F : C → D preserves limits of shape J in C iff, for

any diagram D : J → C , if [L, λJ ] is some limit cone over D, then F preserves

it.

A functor which preserves limits of shape J in C for all finite (small) categories

J is said to preserve all finite (small) limits (in C ).

Dually for preserving colimits. C

Preservation indeed behaves as you would expect in various respects. We will

mention two:

Theorem 89. If F preserves products, then F (A×B) ∼= FA× FB.

Proof. Assume F is a functor from C to D . Suppose 2 is the discrete category

with two objects, call them 0 and 1. Then, in terms of our new notion of a

diagram, a product in C is a limit over some diagram D : 2 → C . Take the

diagram where D(0) = A and D(1) = B. Then the product of course will be

some [A×B, π1, π2].

By hypothesis, [F (A×B), Fπ1, Fπ2] is a limit over the diagram F ◦D : 2→ D .
That is to say it is a limit over the diagram in D (in our old sense of diagram)

with just the objects FA and FB and their identity arrows. So it is a product;

and another product over that diagram is [FA × FB, π′1, π′2] with appropriate

projection arrows. By Theorem 23, these two products are isomorphic, hence

F (A×B) ∼= FA× FB.

Theorem 90. If F : C → D preserves some limit over the diagram D : J → C ,

it preserves all limits over that diagram.

Proof. Suppose [L, λJ ] is a limit cone over D : J→ C . Then, by Theorem 44, if

[L′, λ′J ] is another such cone, there is an isomorphism f : L′ → L in C such that

λ′J = λj ◦ f .

Suppose now that F preserves [L, λJ ] so [FL,FλJ ] is a limit cone over F ◦D.

Then F will send [L′, λ′J ] to [FL′, Fλ′J ] = [FL′, FλJ ◦Ff ]. But then this factors

through [FL,FλJ ] via the isomorphism Ff : FL′ → FL (remember, functors

preserve isomorphisms). Hence, by Theorem 45, [FL′, Fλ′J ] is also a limit over

F ◦D. In other words, F preserves [L′, λ′J ] too.

But these general conditional claims don’t tell us anything about which partic-

ular products or other limits actually do get preserved by which functors: now

we need to get down to cases.

(b) Here is a first very simple example and then two further (rather artificial)

toy examples, which together nicely illustrate some general points about how

functors can fail to preserve limits.
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(1) Take the posets ({0, 1, 2},6) and (N,6) thought of as categories. There is

a trivial inclusion functor I from the first category to the second. Now, 2

is a terminal object in the first category, but 2 = I(2) is not terminal in

the second. So I doesn’t preserve that terminal object (the limit over the

diagram-as-functor from the empty category).

I does, however, preserve products (recall the product of two elements

in a poset, when it exists, is their greatest lower bound).

Two morals. First, since a functor need not preserve even terminal objects,

functors certainly need not preserve limits generally. Second, a functor may

preserve some limits and not others.

There is entertainment to be had in looking at a couple more illustrations of

that second point:

(2) Take the functor P : Set → Set which sends the empty set ∅ to itself and

sends every other set to the singleton 1, and acts on arrows in the only

possible way if it is to be a functor (i.e. for A 6= ∅, it sends any arrow

∅ → A to the unique arrow ∅ → 1, it sends the arrow ∅ → ∅ to itself and

sends all other arrows to the identity arrow 11). Claim: P preserves binary

products but not equalizers – i.e. it preserves all limits of the shape of the

discrete two-object category but not all those of shape • ? .

Proving this claim is a routine exercise. For the first half, we simply

consider cases. If neither A nor B is the empty set, then A×B is not empty

either. P then sends the limit wedge A← A×B → B to 1← 1→ 1, and

it is obvious that any other wedge 1 ← L → 1 factors uniquely through

the latter. So P sends non-empty products to products.

If A is the empty set and B isn’t, A × B is the empty set too. Then

P sends the limit wedge A ← A × B → B to ∅ ← ∅ → 1. Since the only

arrows in Set with the empty set as target have the empty set as source, the

only wedges ∅ ← L → 1 have L = ∅, so trivially factor uniquely through

∅ ← ∅ → 1. So P sends products of the empty set with non-empty sets to

products.

Likewise, of course, for products of non-empty sets with the empty set,

and the product of the empty set with itself. So, taking all the cases to-

gether, P sends products to products.

Now consider the equalizer in Set of two different maps 1 2,
f

g

where 2 is a two-membered set. Since f and g never agree, their equalizer

is the empty set (with the empty inclusion map). But since P sends both

the maps f and g to the identity map on 1, the equalizer of Pf and Pg is

the set 1 (with the identity map). Which means that the equalizer of P (f)

and P (g) is not the result of applying P to the equalizer of f and g.

(3) Take the functor Q : Set → Set which sends any set X to the set X × 2,

and sends any arrow f : X → Y to f × 12 : X × 2 → Y × 2 (the latter is
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of course the function which acts on a pair 〈x, n〉 ∈ X × 2 by sending it to

〈fx, n〉). Claim: Q preserves equalizers but not binary products.

Concerning products, if a functor F preserves binary products in Set,
then by definition F (X × Y ) ∼= FX × FY . However, for X,Y finite, we

have Q(X × Y ) = (X × Y )× 2 � (X × 2)× (Y × 2) = QX ×QY .

Now note that the equalizer of parallel arrows X Y
f

g
is essentially

E, the subset of X on which f and g take the same value. And the equalizer

of the parallel arrows QX QY
Qf

Qg
is the subset of X × 2 on which

f × 12 and g × 12 take the same value, which will be E × 2, i.e. QE. So

indeed Q preserves equalizers.

Moral, to repeat: a functor may preserve some but not all limits. Preservation

isn’t in general an all or nothing business.

(c) Now for an example of a functor that does preserve all limits:

(4) The forgetful functor F : Mon → Set sends a terminal object in Mon, a

one-object monoid, to its underlying singleton set, which is terminal in

Set. So F preserves limits of the empty shape.

The same functor sends a product (M, ·)×(N, ∗) in Mon to its underlying

set of pairs of objects from M and N , which is a product in Set. So the

forgetful F also preserves limits of the shape of the discrete two object

category.

Likewise for equalizers. As we saw in §7.1, Ex. (2), the equalizer of two

parallel monoid homomorphisms (M, ·) (N, ∗)
f

g
is (E, ·) equipped

with the inclusion map E → M , where E is the set on which f and g

agree. Which means that the forgetful functor takes the equalizer of f

and g as monoid homomorphisms to their equalizer as set functions. So F

preserves equalizers.

So the forgetful F : Mon→ Set preserves terminal objects, binary prod-

ucts and equalizers – and hence, by appeal to the next theorem – this

forgetful functor in fact preserves all finite limits.

At the last step we appeal to the fact that Mon is a finitely complete category,

together with the following theorem:

Theorem 91. If C is finitely complete, and a functor F : C → D preserves ter-

minal objects, binary products and equalizers, then F preserves all finite limits.

Proof. Suppose C is finitely complete. Then any limit cone [C, cJ ] over a diagram

D : J → C is uniquely isomorphic to some limit cone [C ′, c′J ] constructed from

equalizers and finite products (see the proof of Theorem 55). Since F preserves

terminal objects, binary products and equalizers, it sends the construction for
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[C ′, c′J ] to a construction for a limit cone [FC ′, F c′J ] over F ◦ D : J → D . But

F preserves isomorphisms, so [FC,FcJ ] will be isomorphic to [FC ′, F c′J ] and

hence is also a limit cone over F ◦D : J→ D .

(d) Note that by contrast, however, the same forgetful F : Mon → Set does

not preserve colimits with the ‘shape’ of the empty category, i.e. initial objects.

For a one-object monoid is initial in Mon but its underlying singleton set is not

initial in Set.
F does not preserve coproducts either – essentially because coproducts in Mon

can be larger than coproducts in Set. Recall our discussion in §5.7 of coproducts

in Grp : similarly, F (M ⊕N), the underlying set of a coproduct of monoids M

and N , is (isomorphic to) the set of finite sequences of alternating non-identity

elements from M and N . Contrast FM ⊕ FN , which is just the disjoint union

of the underlying sets.

Our example generalizes, by the way. A forgetful functor from a category of

structured sets to Set typically preserves finite limits but does not preserve all

colimits.

(e) For the moment, we will finish on limit-preservation with a simple little

result that we’ll need to appeal to later:

Theorem 92. If the functor F : C → D preserves pullbacks it preserves monomor-

phisms (i.e. sends monos to monos). Dually, if F preserves pushouts it preserves

epimorphisms.

Proof. We need only prove the first part. By Theorem 49, if f : X → Y in C is

monic then it is part of the pullback square on the left:

X X

X Y

1X

1X

f

f

⇒

FX FX

FX FY

1FX

1FX

Ff

Ff

By assumption F sends a pullback squares to pullback squares, so the square

on the right is also a pullback square. So by Theorem 49 again, Ff is monic

too.

15.3 Reflecting limits

(a) Here’s a companion definition to set alongside the definition of preserving

limits, together with a couple of general theorems:

Definition 88. A functor F : C → D reflects limits of shape J iff, given a cone

[C, cJ ] over a diagramD : J→ C , then if [FC,FcJ ] is a limit cone over F ◦D : J→
D , [C, cJ ] is already a limit cone over D.
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Reflecting colimits is defined dually. C

Theorem 93. Suppose F : C → D is fully faithful. Then F reflects limits.

Proof. Suppose [C, cJ ] is a cone over a diagram D : J → C , and [FC,FcJ ] is a

limit cone over F ◦D : J→ D .

Now take any other cone [B, bJ ] overD. F sends this to a cone [FB,FbJ ] which

must uniquely factor through the limit cone [FC,FcJ ] via some u : FB → FC

which makes FbJ = FcJ ◦ u for each J ∈ J. Since F is full and faithful, u = Fv

for some unique v : B → C such that bJ = FcJ ◦ u for each J . So [FB,FbJ ]

factors uniquely through [C, cJ ]. Which confirms that [C, cJ ] is a cone.

Theorem 94. Suppose F : C → D preserves limits. Then if C is complete and

F reflects isomorphisms, then F reflects small limits.

Proof. Since C is complete there exists a limit cone [B, bJ ] over any diagram

D : J → C (where J is small), and so – since F preserves limits – [FB,Fb] is a

limit cone over F ◦D : J→ D .

Now suppose that there is a cone [C, cJ ] over D such that [FC,FcJ ] is another

limit cone over F ◦ D. Now [C, cJ ] must uniquely factor through [B, bJ ] via a

map f : C → B. Which means that [FC,FcJ ] factors through [FB,Fb] via Ff .

However, since these are by hypothesis both limit cones over F ◦D, Ff must be a

isomorphism. Hence, since F reflects isomorphisms, f must be an isomorphism.

So [C, cJ ] must be a limit cone by Theorem 45.

(b) Since the forgetful functor F : Mon → Set preserves limits and reflects

isomorphisms the last theorem shows that

(1) The forgetful functor F : Mon → Set reflects all limits. Similarly for some

other forgetful functors from familiar categories of structured sets to Set.

However, be careful! For we also have . . .

(2) The forgetful functor F : Top → Set which sends topological space to its

underlying set preserves all limits but does not reflect all limits.

Here’s a case involving binary products. Suppose X and Y are a couple

of spaces with a coarse topology, and let Z be the space FX×FY equipped

with a finer topology. Then, with the obvious arrows, X ← Z → Y is a

wedge to X, Y but not the limit wedge in Top: but FX ← FX×FY → FY

is a limit wedge in Set.

Given the previous theorem, we can conclude that F : Top→ Set doesn’t reflect

isomorphisms. (Which is also something we can show directly. Consider the con-

tinuous bijection from the half-open interval [0, 1) to S1. Treated as a topological

map f , it is not a homeomorphism in Top: however, treated as a set-function

F ′f , it is an isomorphism in Set.)
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15.4 Creating limits

Alongside the natural notions of preserving and reflecting limits, we meet a

related third notion which we should pause to explain:

Definition 89. A functor F : C → D creates limits of shape J iff, for any diagram

D : J → C , if [M,mJ ] is a limit cone over F ◦D, there is a unique cone [C, cJ ]

over D such that [FC,FcJ ] = [M,mJ ], and moreover [C, cJ ] is a limit cone.

Creating colimits is defined dually. C

(Variant: some define creation of limits by only requiring that [FC,FcJ ] is iso-

morphic to [M,mJ ] in the obvious sense.)

Why ‘creation’? The picture is that every limit over F ◦D in D is generated

by F from a unique limit over D in C . And while reflection is a condition on

those limit cones over F ◦D which take the form [FC,FcJ ] for some cone [C, cJ ],

creation is a similar condition on any limit cone over F ◦ D. So as you would

predict,

Theorem 95. If the functor F : C → D creates limits of shape J, it reflects them.

Proof. Suppose [FC,FcJ ] is a limit cone over F ◦ D : J → C generated by

the cone [C, cJ ] over D. Then, assuming F creates limits, [C, cJ ] has to be the

unique cone over D such that [FC,FcJ ] is generated by it, and has to be a limit

cone.

Theorem 96. Suppose F : C → D is a functor, that D has limits of shape J and

F creates such limits. Then C has limits of shape J and F preserves them.

Proof. Take any diagram D : J → C . Then there is a limit [M,mJ ] over F ◦D
(since D has all limits of shape J). Hence (since F creates limits), there is a limit

cone [C, cJ ] over D where this is such that [FC,FcJ ] is [M,mJ ] and hence is a

limit cone too.
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This chapter introduces the notion of a hom-functor, a type of functor which will

turn out to play a rather special role in category theory. We show that, unlike

the general run of functors, hom-functors do behave very nicely with (small)

limits, always preserving them.

16.1 Hom-sets

(a) Suppose the category C is locally small. Then there is only a set’s worth

of arrows between any two C -objects. Moreover, in many familiar locally small

categories, these C -arrows will be an appropriate kind of homomorphism. So

this explains the terminology in the following conventional definition:

Definition 90. Given a locally small category C , and C -objects A and B, then

the hom-set C (A,B) is the set of C -arrows from A to B. C

The brusque but conventional notation we are using for collections of arrows

between two objects has already made a fleeting appearance in §14.6: alter-

native and perhaps more reader-friendly notations are ‘HomC (A,B)’ or just
‘Hom(A,B)’ when the relevant category is obvious.

(b) But although our definition is absolutely standard, it is not unproblematic.

What kind of set is a hom-set? In categorial terms, in which category does

a hom-set C (A,B) live? (We here return to a question already flagged-up in

§14.4.)

The usual assumption, very often made with no comment at all, is that that a

hom-set lives in the category Set. “Where else?”, you might reasonably ask. But

what category is Set? Remember, we didn’t fix this at the outset. We cheerfully

said, just take your favourite universe of sets and functions between them, and

the category Set can for now comprise them. But suppose – naturally enough –

that you think of Set as containing just the sets you know and love from your

basic set theory course in the delights of ZFC. In this case, Set is a category of

pure sets, i.e. of sets whose members, if any, are sets whose members, if any, are

sets . . . all the way down. But if we think of C (A,B) as living in such a category

of pure sets, then the arrows which are members of C (A,B) will themselves have
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to be pure sets too. Yet do we really want to suppose that categorial arrows are

inevitably just more sets?

It seems that we have at least three options here. In headline terms, we can

for a start . . .

(i) Bite the bullet. Take Set to be a category of pure sets, and take C (A,B)

to be a pure set living in Set. Then C -arrows themselves have to be pure

sets.

(ii) Backtrack. Take Set after all to be a category of possibly impure sets,

where the non-set elements can, inter alia, be arrows in any category. So

again we can endorse the standard view that C (A,B) lives in Set, but now

without pre-supposing that all C -arrows are sets.

(iii) Re-interpret. As in (i), take Set to be a category of pure sets. As in (ii),

regard C (A,B) as, in general, an impure collection whose members are ar-

rows (which needn’t be themselves sets). But then we’ll have to re-interpret

the standard line that C (A,B) lives in Set. We will say it isn’t strictly

speaking the hom-set as originally defined which lives in Set but rather a

pure set which represents or models or indexes it (that there can be such an

indexing set is what we mean when we say that there is only a set’s-worth

of arrows in C (A,B)).

We could even call this representing pure set C (A,B) too, with context

deciding when we are talking about the ‘true’ impure hom-collection and

when we are talking about its pure-set representation.

It is, to say the least, not entirely clear at the outset which of these options is

the best way forward (or maybe we should be looking for a fourth way!).

Option (i) has weighty support. In his canonical 1997, Saunders Mac Lane

initially gives a definition like our Defn. 1 as a definition of what he calls meta-

categories, and then for him a category proper “will mean any interpretation of

the category axioms within set theory”. So for Mac Lane, at least at the outset,

all the gadgets of categories proper will unproblematically live in the universe

of set theory, and that applies to hom-sets in particular. Presumably this is the

standard universe of pure sets. Mac Lane doesn’t, I think, make that explicit: but

e.g. Horst Schubert does in §3.1 of his terse but very lucid (1972), writing “One

has to be aware that the set theory used here has no ‘primitive (ur-)elements’;

elements of sets . . . are always themselves sets.” But, as we asked before, do we

really want or need to suppose that categories are always and everywhere sets?

Not if (as some do) we want to conceive of category theory as a more democratic

way of organizing the mathematical universe, which provides an alternative to

imperialistic set-theoretic reductionism. (Indeed, much later in his book, in the

Appendix, Mac Lane suggests that we can perhaps after all use our Defn. 1,

more or less, to describe categories directly, without going via set theory).

Option (ii), by contrast, avoids reducing everything to pure sets. But on the

face of it, it is now quite unclear what does live in the universe of Set, if it is just

153



Hom-functors

a free-for-all at the level of urelements, and it is sheer mess at the bottom level

of the hierarchy of sets. But maybe there is an option (ii′) where we re-think

our story about the nature of sets in a way which still in some sense allows

urelements but abstracts away from their nature. More about this in due course.

Option (iii) might seem to let us have our cake and eat it – we keep Set as

a tidy category of pure sets without urelements, we keep collections of arrows

as impure sets, and we model one by the other in a familiar enough way. But it

adds a layer of complication which might not be welcome.

We won’t try to judge which is the best option at this point. And after all,

such verdicts are often best given rather late in the game, when we can look back

to see what really are the essential requirements of the load-bearing parts of the

theory we have been developing. So what to do? For the moment, we will take

the path of least resistance and proceed conventionally, as if hom-sets do live in

Set; and we’ll have to return later to think more about how we really want to

construe this.

16.2 Hom-functors

(a) Now to introduce the main notion of this chapter.

Assume C is locally small. So we can talk about C (A,B), the hom-set of

C -arrows from A to B. Keep A fixed. Then as we vary X through the objects

in C , we get varying C (A,X).

So: consider the resulting function which sends an object X in C to the set

C (A,X), a set which we are following standard practice in taking as living in

Set.
Can we now treat this function on C -objects as the first component of a

functor, call it C (A, –), from C to Set? Well, how could we find a component

of the functor to deal with the C -arrows? Such a component is going to need

to send an arrow f : X → Y in C to a Set-function from C (A,X) to C (A, Y ).

The obvious candidate for the latter function is the one we can notate as f ◦ –

that maps any g : A → X in C (A,X) to f ◦ g : A → Y in C (A, Y ). (Note,

f ◦ g : A→ Y has to be in C (A, Y ) because C is a category which by hypothesis

contains g : A→ X and f : X → Y and hence must contain their composition.)

It is easy to check that these components add up to a genuine covariant

functor – in fact the functoriality in this case just reduces to the associativity of

composition for arrows in a category and the basic laws for identity arrows.

Now, start again from the hom-set C (A,B) but this time keep B fixed: then

as we vary X through the objects in C , we again get varying hom-sets C (X,B).

Which generates a function which sends an object X in C to an object C (X,B)

in Set. To turn this into a functor C (–, B), we need again to add a component

to deal with C -arrows. That will need to send f : X → Y in C to some function

between C (X,B) to C (Y,B). But this time, to get functions to compose prop-

erly, things will have to go the other way about, i.e. the associated functor will
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have to send a function g : Y → B in C (Y,B) to g ◦ f : X → B in C (X,B). So

this means that the resulting functor C (–, B) is a contravariant hom-functor.

(b) So, to summarize, we will say:

Definition 91. Given a locally small category C , then the associated covariant

hom-functor C (A, –) : C → Set is the functor with the following data:

(1) A mapping C (A, –)ob whose value at the object X in C is the hom-set

C (A,X).

(2) A mapping C (A, –)arw, whose value at the C -arrow f : X → Y is the set

function f ◦– from C (A,X) to C (A, Y ) which sends an element g : A→ X

to f ◦ g : A→ Y .

And the associated contravariant hom-functor C (–, B) : C → Set is the functor

with the following data:

(3) A mapping C (–, B)ob whose value at the object X in C is the hom-set

C (X,B).

(4) A mapping C (–, B)arw, whose value at the C -arrow f : Y → X is the set

function –◦f from C (X,B) to C (Y,B) which sends an element g : X → B

to the map g ◦ f : Y → B.

The use of a blank in the notation ‘C (A, –)’ invites an obvious shorthand: instead

of writing ‘C (A, –)arw(f)’ to indicate the result of the component of the functor

which acts arrows applied to the function f , we will write simply ‘C (A, f)’.

Similarly for the dual. C

Alternative notations for hom-functors, to along with the alternative notations

for hom-sets, are ‘HomC (A, –)’ and ‘HomC (–, B)’.

(c) For the record, we can also define a related ‘bi-functor’ C (–, –) : C op×C →
Set, which we can think of as contravariant in the first place and covariant in

the second. This acts on the product category mapping the pair object (A,B)

to the hom-set C (A,B), and the pair of morphisms (f : X ′ → X, g : Y → Y ′)

to the morphism between C (X,Y ) and C (X ′, Y ′) that sends h : X → Y to

h ◦ g ◦ f : X ′ → Y ′. We will return to this if/when we need to say more.

16.3 Hom-functors preserve limits

(a) As noted at the outset, hom-functors will play a special role in category

theory, and we will meet them repeatedly. But in the rest of this chapter, we

just consider how they interact with limits.

We start with a preliminary observation. If some functor F preserves products,

it has to be the case that F (C ×D) ∼= FC × FD. So if a hom-functor C (A, –)

is to preserve products, we need this to be true:
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Theorem 97. Assuming the product exists, C (A,C ×D) ∼= C (A,C)×C (A,D).

However, this is easy to show:

Proof. An arrow f : A→ C×D factors into two arrows c : A→ C and d : A→ D

via the projection arrows of the product C ×D. And two such arrows c, d form

a wedge which factors uniquely through the product via some f . This gives

us a bijection between arrows f in C (A,C × D) and pairs of arrows (c, d) in

C (A,C)× C (A,D), an isomorphism in Set.

This observation can now be turned into a proof that hom-functors preserve

any binary product which exists. They also preserve any terminal objects and

equalizers. And then using the fact that if there is a limit cone over D : J → C
(with J a small category), then it can be constructed from suitable products and

equalizers (as indicated by the proof of Theorem 57), we can derive

Theorem 98. Suppose that C is a small category. Then the covariant hom-

functor C (A, –) : C → Set, for any A in the category C , preserves all small

limits that exist in C .

However, rather than officially prove this important theorem in the way just

sketched, let’s instead go for a brute-force just-apply-the-definitions-and-see-

what-happens demonstration (for it is quite a useful reality check to run through

the details):

Proof. We’ll first check that C (A, –) : C → Set sends a cone over the diagram

D : J→ C to a cone over C (A, –) ◦D : J→ Set.
A cone has a vertex C, and arrows CJ : C → DJ for each J ∈ J, where for

any f : J → K in J, so for any Df : DJ → DK, cK = Df ◦ cJ .

Now, acting on objects, C (A, –) sends C to C (A,C) and sendsDJ to C (A,DJ).

And acting on arrows, C (A, –) sends cJ : C → DJ to the set function cJ ◦– which

takes g : A → C and outputs cJ ◦ g : A → DJ ; and it sends Df : DJ → DK to

the set-function Df ◦ – which takes h : A→ DJ and outputs Df ◦ h : A→ DK.

Diagrammatically, then, the functor sends the triangle on the left to the one

on the right:

C

DJ DK

cKcJ

Df

⇒

C (A,C)

C (A,DJ) C (A,DK)

cK ◦ –cJ ◦ –

Df ◦ –

And assuming cK = Df ◦ cJ , we have cK ◦ – = (Df ◦ cJ) ◦ – = Df ◦ (cJ ◦ –):

hence, if the triangle on the left commutes, so does the triangle on the right.

Likewise for other such triangles. Which means that if [C, cJ ] is a cone over D,

then [C (A,C), cJ ◦ –] is indeed a cone over C (A, –) ◦D.
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So far, so good! It remains, then, to show that in particular C (A, –) sends

limit cones to limit cones. So suppose that [L, λJ ] is a limit cone in C over D.

The functor C (A, –) : C → Set sends the left-hand commuting diagram below to

the commuting triangle at the bottom of the right-hand diagram. And we now

suppose that [M,mj ] is any other cone over the image of D:

L

DJ DK

λKλJ

Df

M

C (A,L)

C (A,DJ) C (A,DK)

mJ mK

λK ◦ –λJ ◦ –

Df ◦ –

Hence mK = (Df ◦ –) ◦ mJ . Now remember that M lives in Set: so take

a member x. Then mJ(x) is a particular arrow in C (A,DJ), in other words

mJ(x) : A → DJ . Likewise we have mK(x) : A → DK. But mK(x) = Df ◦
mJ(x). Which means that for all f the outer triangles on the left below commute

and so [A,mJ(x)] is a cone over D. And this must factor uniquely through an

arrow u(x) as follows:

A

L

DJ DK

u(x)

mJ (x) mK(x)

λKλJ

Df

M

C (A,L)

C (A,DJ) C (A,DK)

mJ mK

u

λK ◦ –λJ ◦ –

Df ◦ –

Hence u(x) is an arrow from A to L, i.e. an element of C (A,L). So consider

the map u : M → C (A,L) which sends x to u(x). Since mJ(x) = λJ ◦ u(x) for

each x, mJ = (λJ ◦ –) ◦ u. And since this applies for each J , So [M,mj ] factors

through the image of the cone [L, λJ ] via u.

Suppose there is another map v : M → C (A,L) such that we also have each

mJ = (λJ ◦–)◦v. Then again take an element x ∈M : then mJ(x) = λJ ◦v(x). So

again, [A,mJ(x)] factorizes through [L, λJ ] via v(x) – which, by the uniqueness

of factorization through limits, means that v(x) = u(x). Since that obtains for

all x ∈ M , v = u. Hence [M,mj ] factors uniquely through the image of [L, λJ ].

Since [M,mj ] was an arbitrary cone, we have therefore proved that the image

of the limit cone [L, λJ ] is also a limit cone.

(b) What is the dual of Theorem 98? We have two dualities to play with: limits

vs colimits and covariant functors vs contravariant functors.
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Two initial observations. First, a covariant hom-functor need not preserve

colimits. For example, take the hom-functor Grp(A, –). In Grp the initial object

0 is also the terminal object, so for any group A, Grp(A, 0) is a singleton, which

is not initial in Set. Second, contravariant hom-functors can’t preserve either

limits or colimits, because contravariant reverse arrows.

So the dual result we want is this:

Theorem 99. Suppose that C is a small category. Then the contravariant hom-

functor C (–, A) : C → Set, for any A in the category C , sends a colimit of shape

J (for small category J) to a limit of that shape.

Yes, that’s right: contravariant functors send colimits to limits (the two reversals

of arrows involved in going from covariant to contravariant, and from limit to

colimit, cancelling out). We can leave the proof as an exercise in dualizing.
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We have now introduced the notion of a functor as a map between categories, and

seen how functors can e.g. preserve/reflect (or fail to preserve/reflect) various

properties of arrows and various limit constructions. And we are about to move

on to introduce the next Big Idea, i.e. the notion of maps between functors.

However, before we do that, this chapter pauses to use the notion of a functor

to define the idea of a comma category. I’m afraid that this might initially seem

to involve a rather contorted construction. But bear with me! We will in fact be

repeatedly meeting instances of comma categories, so we ought to get to grips

with this idea sooner or later.

17.1 Functors and slice categories

By way of a warm-up exercise, recall the notion of a slice category C /I (Defn. 13).

If C is a category, and I is a C -object, then C /I’s objects, economically defined,

are the arrowsC f : A → I (for any C -object A), while C /I’s arrows between

these objects f : A → I and g : B → I are the arrowsC j : A → B such that

g ◦ j = f .

Here, then, are a couple of simple examples of functors operating on slice

categories:

(1) There is functor, another kind of forgetful functor, F : C /I → C , which

sends a C /I-object f : A → I back to A, and sends an arrow j in C /I
back to the original arrow j in C .

For example, recall the slice category FinSet/In which we met at the end

of §2.3, which is the category of finite sets whose members are coloured

from a palette of n colours. The forgetful functor F : FinSet/In → FinSet
forgets about the colourings of a set S provided by functions f : S → In.

(2) Next, let’s show how we can use an arrow k : I → J (for I, J ∈ C ) to

generate a corresponding functor K : C /I → C /J .

The functor needs to act on objects in C /I and send them to objects in

C /J . That is to say, Kob needs to send an arrowC f : X → I to an arrowC

with codomain J . The obvious thing to do is to put Kob(f) = k ◦ f .

And how will a matching Karw act on arrows of C /I? Consider:
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A

I J

B

f

j

k◦f

k

g

k◦g

Here, the C /I-arrows from f : A → I to g : B → I, by definition, include

any j which makes the left-hand inner triangle commute. But then such

a j will also make the outer triangle commute, i.e. j is an arrow from

k ◦ f : A → J to k ◦ g : B → J (which is therefore an arrow from K(f) to

K(g)).

So we can simply put K(j) (for j : f → g in C /I) to be j (i.e. j : K(f)→
K(g) in C /J).

Claim: K is then a functor from C /I to C /J .

It is a useful small reality check to confirm that (2) all makes sense, and that K

is indeed a functor.

17.2 Comma categories

We have already met various ways of getting new categories from old, including

the one we’ve just reminded ourselves about, namely constructing slice cate-

gories. Given that we now have the notion of a functor to hand, in this section

we can introduce another way of defining new from old, this time deriving a

category from three(!) categories and a pair of functors relating them.

Suppose, then, that we have a pair of functors sharing a target, say S : A → C
and T : B → C . Then we have a way of indirectly connecting an object A in A
to an object B in B, i.e. by looking at their respective images SA and TB and

considering arrows f : SA→ TB between them.

We are going to define a category of such connections. But if its objects are to

comprise an A -object A, a B-object B, together with a C -arrow f : SA→ TB,

what could be the arrows in our new category? Suppose we have, then, two

triples (A, f,B), (A′, f ′, B′); an arrow between them will presumably involve

arrows a : A→ A′ and b : B → B′. But note that these two are sent respectively

to arrows Sa : SA → SA′ and Tb : TB → TB′ in C , and we will need these

arrows to interact appropriately with the other C -arrows f and f ′.

All that prompts the following – seemingly rather esoteric – definition:

Definition 92. Given functors S : A → C and T : B → C , then the ‘comma

category ’ (S ↓ T ) is the category with the following data:

(1) The objects of (S ↓ T ) are triples (A, f,B) where A is an A -object, B is

a B-object, and f : SA→ TB is an arrow in C .
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(2) An arrow of (S ↓ T ) from (A, f,B) to (A′, f ′, B′) is a pair (a, b), where

a : A → A′ is an A -arrow, b : B → B′ is an B-arrow, and the following

diagram commutes:

SA TB

SA′ TB′

Sa

f

Tb

f ′

(3) The identity arrow on the object (A, f,B) is the pair (1A, 1B).

(4) Composition in (S ↓ T ) is induced by the composition laws of A and B,

thus: (a′, b′) ◦ (a, b) = (a′ ◦A a, b′ ◦B b). C

It is readily seen that, so defined, (S ↓ T ) is indeed a category.

The standard label ‘comma category’ arises from an unhappy earlier notation

‘(S, T )’: the notation has long been abandoned but the name has stuck. But

why we should be bothering with such a construction? Well, the notion of a

comma category in fact nicely generalizes a number of simpler constructions.

And indeed, we have already met two comma categories in thin disguise. The

next section reveals which they are.

17.3 Two (already familiar) types of comma category

(a) First take the minimal case where A = B = C , and where both S and T

are the identity functor on that category, 1C .

Then the objects in this category (1C ↓ 1C ) are triples (X,X
f−→ Y, Y ) for

X,Y both C -objects. And an arrow from (X,X
f−→ Y, Y ) to (X ′, X ′

f ′−→ Y ′, Y ′)

is a pair of C -arrows a : X → X ′, b : Y → Y ′ such that the following diagram

commutes:

X Y

X ′ Y ′

a

f

b

f ′

So the only difference between (1C ↓ 1C ) and the arrow category C→ is that

we have now ‘decorated’ the objects of C→, i.e. C -arrows f : X → Y , with

explicit assignments of their sources and targets as C -arrows, to give triples

(X,X
f−→ Y, Y ). Hence (1C ↓ 1C ) and C→, although not strictly identical,

come to the just same.

And of course, we can do better than limply say the two categories ‘come

to just the same’. Working in a big enough category CAT, consider the functor

F : C→ → (1C ↓ 1C ) which sends a C→-object to the corresponding triple, and
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sends C→-arrows (pairs of C -arrows) to themselves. Then, F trivially has an

inverse, and so the categories are isomorphic.

(b) Let’s take secondly the special case where A = C with S the identity

functor 1C , and where B = 1 (the category with a single object ? and the single

arrow 1?). And take the functor I : 1 → C which sends ? to some individual

C -object which we’ll also call I – see §13.2, Ex. (F11).

Applying the definition, the objects of the category (1C ↓ I) are therefore

triples (A,A
f−→ I, ?), and an arrow between (A,A

f−→ I, ?) and (B,B
g−→ I, ?)

will be a pair (j, 1?), with j : A → B an arrow such the diagram on the left

commutes:

A I

B I

j

f

1I

g

A

I

B

f

j

g

The diagram on the left is trivially equivalent to that on the right – which

should look very familiar! We’ve ended up with something tantamount to the

slice category C /I, the only differences being that (i) instead of the slice cate-

gory’s objects, i.e. pairs (A, f), we now have ‘decorated’ objects (A, f, ?) which

correspond one-to-one with them, and (ii) instead of the slice category’s arrows

j : A → B we have decorated arrows (j, 1?) which correspond one-to-one with

them.

Again the categories (1C ↓ I) and C /I are evidently isomorphic categories.

17.4 Another (new) type of comma category

(a) While we looking at examples of comma categories, let’s add for the record

a third illustrative case (pretty similar to the case of slice categories). It will

turn out to be useful, and we choose notation with an eye to a later application.

Suppose we have a functor G : C → A and an object A ∈ A . There is a

corresponding functor A : 1 → A (which sends the sole object ? in the one-

object category 1 to the object A in A ). Then what is the comma category

(A ↓ G)? Flat-footedly applying the definitions, we get:

(1) The objects of (A ↓ G) are triples (?, f, C) where C is a C -object, and

f : A→ GC is an arrow in A .

(2) An arrow of (A ↓ G) from (?, f, C) to (?, f ′, C ′) is a pair of arrows, (1?, j)

with j : C → C ′ such the following square commutes:
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A GC

A GC ′

1A

f

Gj

f ′

However, since the ?-component in all the objects of (A ↓ G) is doing no real

work, our comma category is tantamount to the stripped-down category such

that

(1′) the objects are, more simply, pairs (C, f) where C is a C -object and f :

A→ GC is an arrow in A ,

(2′) an arrow from (C, f) to (C ′, f ′) is, more simply, a C -arrow j : C → C ′

making this commute:

GC

A

GC ′

Gj

f

f ′

We add, of course, the obvious definitions for the identity arrows and for com-

position of arrows. And it is this stripped-down version which is in fact usually

referred to by the label ‘(A ↓ G)’ (we can, incidentally, read ‘A’ in the label here

as just referring to an object, not to the corresponding functor).

(b) Similarly, there is a functor (G ↓ A). In its stripped down version,

(1′′) its objects are pairs (C, f) where C is a C -object and f : GC → A is an

arrow in A ,

(2′′) an arrow from (C, f) to (C ′, f ′) is a C -arrow j : C → C ′ making this

commute:

GC

A

GC ′

Gj

f

f ′

17.5 An application: free monoids again

We make a connection between the idea of a free monoid (which we met in

§13.5) and the idea of a certain comma category (of the kind we met in the last

section).

Take the two categories Mon and Set; let S be a set living in Set, and let

F : Mon → Set be the forgetful functor. And now consider the comma category

(S ↓ F ). Unthinkingly applying the definition,
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(1) the objects of this category (S ↓ F ) are pairs (N , f) where N is a monoid

(N, ·, 1N ) and f is a set-function from S to F (N ), i.e. f : S → N ;

(2) an (S ↓ F )-arrow from (N , f) to (N ′, f ′) is a monoid homomorphism

j : N → N ′, which treated as a set-function is j = Fj : N → N ′, such that

f ′ = j ◦ f .

But what does this mean, intuitively? We can think of a function f : S → N

as labelling elements of N by members of S: N -elements can thereby receive

zero, one, or many labels. So we can think of a pair (N , f) as a monoid with

some S-labelled elements. And an arrow between these monoids-with-S-labelled-

elements is a monoid homomorphism which sends labelled elements to elements

with the same label(s).

Now suppose (S ↓ F ) has an initial object (M, g). This is a monoid M with

some elements labelled by g : S → M such that for any monoid N with S-

labelled elements, there is a unique monoid homomorphism from M to N that

preserves labels.

Since some labelled monoids have no objects with multiple labels, it follows

that g also can’t give the same object multiple labels. In other words, g is injec-

tive. Hence, without loss of generality, simply by swapping objects around, we

can in fact choose N so that g is an inclusion.

So the situation is as follows. We can think of the monoidM as having objects

M including the selected set S. And this monoid is such for any other monoid

N and set-function f : S → N that there is a unique homomorphism from M
to N which sends members of S to their images under f .

A moment’s reflection shows that M must be a free monoid with generators

S, in the sense we initially characterized in §13.5. In other words, N contains a

unit element, the members of S, all their possible products, products of products,

etc., with no unnecessary identities between these elements, and with nothing

else. Why so? Here’s the argument:

1. Just becauseM is a monoid, it must contain a unit element, the members

of S, all their possible products, products of products, and so on.

2. Suppose there were some unnecessary identity between two of those ele-

ments. Then take a monoid M′ with the same generators (and the same

labelling function g) but without that identity. Then a homomorphism

from M to M′ respecting labels will send generators to generators, and

(being a homomorphism), will send their products to products, so enforcing

the same identity to recur in M′ contrary to hypothesis.

3. Suppose there were extra elements in M not generated from the unit and

members of S. Then there could evidently be multiple homomorphisms

from M to other monoids respecting labelled objects and their products

but dealing with the ‘junk’ differently.
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Which all goes to motivate an official categorial definition of the notion we

previously only informally characterized:

Definition 93. A free monoid over the set S is an initial object of the comma

category (S ↓ F ), where F : Mon→ Set is the forgetful functor. C

So here’s another notion that we have defined in terms of a universal mapping

property.

We should check that this tallies with our discussion back in §13.5:

Theorem 100. Take the monoid L = (List(S),∩ , 1) and equip it with the function

g : S → List(S) which sends an element s of S to the list with just that element.

Then (L, g) is a free monoid over S.

Proof. Suppose N is a monoid (N, ·, 1N ) and f : S → N is a set function. We

need to show that there is unique monoid homomorphism from L to N which

sends a list with the single element s to f(s).

Let j : List(S) → N send the empty list to 1N , and send a one-element list

s ∈ List(S) (with the single element s ∈ S) to f(s). Extend the function to all

members of List(S) by putting j(s∩1 s
∩
2 . . .

∩ sn) = j(s1) · j(s2) · . . . · j(sn). Then

j is a monoid homomorphism.

Suppose k is another monoid homomorphism j : List(S) → N which sends a

list with the single element s to f(s), so j and k agree on unit lists. Hence

k(s∩1 s
∩
2 . . .

∩ sn) = k(s1) · k(s2) · . . . · k(sn)

= j(s1) · j(s2) · . . . · j(sn)

= j(s∩1 s
∩
2 . . .

∩ sn).

Whence j and k must agree on all members of List(S).

17.6 A theorem on comma categories and limits

We end this chapter with what you can consider for the moment to be a slightly

tricky exercise to test understanding of various definitions: so by all means skip

it for now. However, we will appeal to this result later, so we prove it now to

avoid breaking up the flow later.

Theorem 101. Suppose we have a functor G : B → A and an object A ∈ A .

Then if B has limits of shape J and G preserves them, then (A ↓ G) also has

limits of shape J.

Proof. Take any diagram D : J → (A ↓ G). By definition, for any J-object J ,

DJ is a pair (DJ , fJ), where DJ is a object in B, and fJ : A → GDJ is an

arrow in A . And for any d : J → K in J, Dd : DJ → DK is a B-arrow such

that fK = GDd ◦ fJ . The target is to show that, given our suppositions, D has

a limit in (A ↓ G).
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For convenience, we introduce the forgetful functor U : (A ↓ G) → B which

acts in the obvious way, i.e. it sends an (A ↓ G)-object (B, f) to B, and sends

an (A ↓ G)-arrow j : B → B′ to itself.

Start with the functor U ◦D : J→ B. We know that this has a limit (by our

hypothesis that B has all limits of shape J). Call this limit [L, πJ ]. So L is a

B-object; and the πJ are B-arrows such that any d : J → K, πK = UDd ◦ πJ ,

i.e. πK = Dd ◦ πJ . And since G preserves limits, we also know that [GL,GπJ ] is

a limit cone in A for GUD : J→ A .

Now take A and the arrows fJ . These comprise a cone [A, fJ ] over GUD in

A . Why? By definition, fJ is an arrow from A to GDJ i.e to GUD(J). And we

know that for each d : J → K, fK = GUD(d) ◦ fJ .

This cone [A, fJ ] must therefore factor uniquely through the limit [GL,GπJ ]:

i.e. there is a unique u : A → GL such that for all J , fJ = GπJ ◦ u. Which,

by definition of arrows in the comma category, means that for each J , πJ is an

arrow from (L, u) to (DJ , fJ) in (A ↓ G). And these arrows πJ give us a cone

over D in (A ↓ G) with vertex (L, u), since as we have already seen, for any

d : J → K, πK = Dd ◦ πJ .

If we can show that this cone is indeed a limit cone, we are done. Suppose

therefore that there is another cone over D in (A ↓ G) with vertex (B, v) and

arrows bJ : (B, v) → (DJ , fJ) in (A ↓ G) where, given d : J → K in J, bK =

Dd ◦ bJ . We need to show that there is a unique k : (B, v)→ (L, u) in (A ↓ G),

i.e. a unique k : B → B′ in B, such that for each J , bJ = πJ ◦ k. However, our

assumptions also make [B, bJ ] a cone over U ◦D. So [B, bJ ] must factor though

the limit [L, πJ ] via a unique k : B → L: so there is indeed a unique k such that,

for each J , bJ = πJ ◦ k.
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Category theory is an embodiment of Klein’s dictum that it is

the maps that count in mathematics. If the dictum is true, then it

is the functors between categories that are important, not the

categories. And such is the case. Indeed, the notion of category is

best excused as that which is necessary in order to have the notion

of functor. But the progression does not stop here. There are maps

between functors, and they are called natural transformations.

(Freyd 1965, quoted in Marquis 2008.)

Natural transformations – and more specifically, natural isomorphisms – were

there from the very start. The founding document of category theory is the pa-

per by Samuel Eilenberg and Saunders Mac Lane ‘General theory of natural

equivalences’ (Eilenberg and Mac Lane, 1945). But the key idea had already

been introduced, three years previously, in a paper on ‘Natural isomorphisms in

group theory’, before the categorial framework was invented in order to provide

a general setting for the account (Eilenberg and Mac Lane, 1942). Natural iso-

morphisms and natural transformations are now going to start to take centre

stage in our story too.

18.1 Natural isomorphisms between functors defined

Suppose we have a pair of parallel functors C D ;
F

G
when do the two

functors ‘come to same’, categorially speaking?

Each of F and G projects the objects and arrows of C into D giving two

images of C within D . Omitting identity arrows, we might have:

FA FB

A B FC

C GA GB

GC

C D

Ff

Fgf

g

F

G

Fh

h Gf

Gg Gh
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In general these images of C can be significantly different. But at least we can

guarantee that the results of applying F and G to objects will be the same

(up to isomorphism) if there is a suite ψ of D-isomorphisms ψA : FA −→∼ GA,

ψB : FB −→∼ GB, etc., thus ensuring that FA ∼= GA, FB ∼= GB, etc.

Now, given such a suite of isomorphisms ψ and an arrow f : A→ B, there will

be the following arrows from FA→ FB: Ff, of course, but also ψ−1
B ◦Gf ◦ψA.

If things are to fit together nicely, we should require these arrows to be the

same (i.e. require that ψB ◦ Ff = Gf ◦ ψA). This ensures that when F and

G are both applied to arrows f, f ′, f ′′, . . . : A → B, there is a tidy one-to-one

correspondence between the arrows Ff, Ff ′, Ff ′′, . . . and Gf,Gf ′, Gf ′′, . . ., so

the results of applying F and G to arrows also stay in step.

Which all goes to motivate the following standard definition of an appropri-

ate notion of isomorphism between parallel functors (or rather, it’s a pair of

definitions, one for each flavour of functor):

Definition 94. Let C and D be categories, let C D
F

G
be covariant functors

(respectively, contravariant functors), and suppose that for each C -object C

there is a D-isomorphism ψC : FC −→∼ GC. Then ψ, the family of arrows ψC , is

said to be a natural isomorphism between F and G if for every arrow f : A→ B

(respectively, f : B → A) in C the following naturality square commutes in D :

FA FB

GA GB

ψA

Ff

ψB

Gf

In this case, we write ψ : F =⇒∼ G, and the ψC are said to be components of

ψ. If there is such a natural isomorphism, F and G will be said to be naturally

isomorphic, and we write F ∼= G. C

18.2 Why ‘natural’?

But why call this a natural isomorphism? There’s a back-story which we men-

tioned in the preamble of the chapter and which we should now pause to explain,

using one of Eilenberg and Mac Lane’s own examples.

(a) Consider a finite dimensional vector space V over the reals R, and the

corresponding dual space V ∗ of linear functions f : V → R. It is elementary to

show that V is isomorphic to V ∗ (there’s a bijective linear map between the

spaces).

Proof sketch: Take a basis B = {v1, v2, . . . , vn} for V . Define the functions

v∗i : V → R by putting v∗i (vj) = 1 if i = j and v∗i (vj) = 0 otherwise. Then
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B∗ = {v∗1 , v∗2 , . . . , v∗n} is a basis for V ∗, and the linear function ϕB : V → V ∗

generated by putting ϕB(vi) = v∗i is an isomorphism.

Note, however, that the isomorphism we have arrived at here depends on the

initial choice of basis B. And no choice of basis B is more ‘natural’ than any

other. So no one of the isomorphisms from ϕB : V → V ∗ of the kind just defined

is to be especially preferred.

To get a sharply contrasting case, now consider V ∗∗ the double dual of V , i.e.

the space of functionals g : V ∗ → R. Suppose we select a basis B for V , define

a derived basis B∗ for V ∗ as we just did, and then use this new basis in turn

to define a basis B∗∗ for V ∗∗ by repeating the same construction. Then we can

construct an isomorphism from V to V ∗∗ by mapping the elements of B to the

corresponding elements of B∗∗. However, we don’t have to go through any such

palaver of initially choosing a basis. Suppose we simply define ψV : V → V ∗∗ as

acting on an element v ∈ V to give as output the functional ψV (v) : V ∗ → R
which sends a function f : V → R to the value f(v): in short, we set ψV (v)(f) =

f(v). It is readily checked that ψV is an isomorphism (we rely on the fact that

V is finite-dimensional). And obviously we get this isomorphism independently

of any arbitrary choice of basis.

Interim summary: it is very natural(!) to say that the isomorphisms of the

kind we described between V and V ∗ are not intrinsic, are not ‘natural’ to the

spaces involved. By contrast there is a ‘natural’ isomorphism between V and

V ∗∗, generated by a general procedure that applies to any suitable vector space.

Now, there are many other cases where we might similarly want to contrast

intuitively ‘natural’ maps with more arbitrarily cooked-up maps between struc-

tured objects. The story goes that such talk was already bandied about quite

a bit e.g. by topologists in the 1930s. So a question arises: can we give a clear

general account of what makes for naturality here? Eilenberg and Mac Lane were

aiming to provide such a story.

(b) To continue with our example, the isomorphism ψV : V −→∼ V ∗∗ which we

constructed might be said to be natural because the only information about V it

relies on is that V is a finite dimensional vector space over the reals.

That implies that our construction will work in exactly same way for any other

such vector space W , so we get a corresponding isomorphism ψW : W −→∼ W ∗∗.

Now, we will expect such naturally constructed isomorphisms to respect the

relation between a structure-preserving map f between the spaces V and W and

its double-dual correlate map between V ∗∗ to W ∗∗. Putting that more carefully,

we want the following informal diagram to commute, whatever vector spaces we

take and for any linear map f : V →W ,

V W

V ∗∗ W ∗∗

ψV

f

ψW

DD(f)
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where DD(f) is the double-dual correlate of f .

Recall, back in §13.8, we saw that the correlate Df of f : V → W is the

functional (– ◦ f) : W ∗ → V ∗; and then moving to the double dual, the correlate

DDf will be the functional we can notate (— ◦ (– ◦ f)) : V ∗∗ → W ∗∗. Our

diagram can then indeed be seen to commute, both paths sending an element

v ∈ V to the functional that maps a function k : V → R to the value k(f(x)).

Think about it!

(c) So far, so good. Now let’s pause to consider why there can’t be a similarly

‘natural’ isomorphism from V to V ∗. (The isomorphisms based on an arbitrary

choice of basis aren’t natural: but we want to show that there is no other ‘natural’

isomorphism either.)

Suppose then that there were a construction which gave us an isomorphism

ϕV : V −→∼ V ∗ which again does not depend on information about V other than

that it has the structure of a finite dimensional vector space. So again we will

want the construction to work the same way on other such vector spaces, and

to be preserved by structure-preserving maps between the spaces. This time,

therefore, we will presumably want the following diagram to commute for any

structure-preserving f between vector spaces (note, however, that we have to

reverse an arrow for things to make any sense, given our definition of the con-

travariant functor D):

V W

V ∗ W ∗

ϕV

f

ϕW

D(f)

Hence D(f) ◦ ϕW ◦ f = ϕV . But by hypothesis, the ϕs are isomorphisms; so in

particular ϕV has an inverse. So we have (ϕ−1
V ◦D(f) ◦ϕW ) ◦ f = 1V . Therefore

f has a left inverse. But it is obvious that in general, a linear map f : V →
W need not have a left inverse. Hence there can’t in general be isomorphisms

ϕV , ϕW : V → V ∗ making that diagram commute.

(d) We started off by saying that, intuitively, there’s a ‘natural’, instrinsic,

isomorphism between a (finite dimensional) vector space and its double dual, one

that depends only on their structures as vector spaces. And we’ve now suggested

that this intuitive idea can be reflected by saying that a certain diagram always

commutes, for any choice of vector spaces and structure-preserving maps between

them.

We have also seen that we can’t get analogous always-commuting diagrams

for the case of isomorphisms between a vector space and its dual – which chimes

with the intuition that the obvious examples are not ‘natural’ isomorphisms.

So this gives us a promising way forward: characterize ‘naturality’ here in

terms of the availability of a family of isomorphisms which make certain informal
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(non-categorial) diagrams commute. Note next, however, that the claim that the

diagram

V W

V ∗∗ W ∗∗

ψV

f

ψW

DD(f)

always commutes can be indeed put a slightly different way, using category-

speak.

For we have in effect been talking about the category we’ll here call simply

Vect (of finite-dimensional spaces over the reals and the structure-preserving

maps between them), and about a functor we can call DD : Vect→ Vect which

takes a vector space to its double dual, and maps each arrow between vector

spaces to its double-dual correlate as explained. There is also a trivial functor

1: Vect → Vect that maps each vector space to itself and each Vect-arrow to

itself. So we can re-express the claim that the last diagram commutes as follows.

For every arrow f : V →W in Vect, there are isomorphisms ψV and ψW in Vect
such this diagram commutes:

1(V ) 1(W )

DD(V ) DD(W )

ψV

1(f)

ψW

DD(f)

In other words, in the terms of the previous section, the suite of isomorphisms

ψV provide a natural isomorphism ψ : 1 =⇒∼ DD.

(e) In sum: our claim that there is an intuitively ‘natural’ isomorphism be-

tween two spaces, a vector space and its double dual, now becomes reflected in

the claim that there is an isomorphism in our official sense between two func-

tors, the identity and the double-dual functors from the category Vect to itself.

Hence the aptness of calling the latter isomorphism between functors a natural

isomorphism.

We will return at the end of the chapter to the thought that we can generalize

from our example of vector spaces and claim that in many (most? all?) cases,

intuitively ‘natural’ isomorphisms between widgets and wombats can be treated

officially as natural isomorphisms between suitable functors.

18.3 More examples of natural isomorphormisms

We now have one case to hand. Let’s next give some more simple examples of

natural isomorphisms:
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(1) We quickly mention the trivial case. Given any functor F : C → D , then

the following diagram of course commutes for every f : A→ B in C :

FA FB

FA FB

1FA

Ff

1FB

Ff

So we have a natural isomorphism 1F : F =⇒∼ F, where the components

(1F )A of the isomorphism are the identity arrows 1(FA).

(2) Given a group G = (G, ∗, e) we can define its opposite Gop = (G, ∗op, e),
where a ∗op b = b ∗ a.

We can also define a functor Op : Grp → Grp which sends a group G

to its opposite Gop, and sends an arrow f in the category, i.e. a group

homomorphism f : G → H, to fop : Gop → Hop where fop(a) = f(a) for

all a in G. fop so defined is indeed a group homomorphism, since

fop(a ∗op a′) = f(a′ ∗ a) = f(a′) ∗ f(a) = fop(a) ∗op fop(a′)

Claim: there is a natural isomorphism ψ : 1 =⇒∼ Op (where 1 is the trivial

identity functor in Grp).

Proof. We need to find a family of isomorphisms ψG, ψH , . . . in Grp such

that the following diagram always for any homomorphism f : G→ H:

G H

Gop Hop

ψG

f

ψH

fop

(Careful: G,H are groups here, not functors!) Now, since taking the oppo-

site between groups involves reversing the order of multiplication and tak-

ing inverses inside a group in effect does the same, let’s put ψG(a) = a−1

for any G-element a, and likewise for ψH , etc. It is easy to check that with

this choice of components, ψ is a natural isomorphism.

(3) Recall from §13.2 the functor List : Set→ Set which sends a set X to the

set of finite lists of members of X. One natural isomorphism from this

functor to itself is the identity isomorphism 1: List =⇒∼ List . But there

is also another natural isomorphism ρ : List =⇒∼ List , whose component

ρX : List(X)→ List(X) acts on a list of X-elements to reverse their order.

(4) Now for an example involving contravariant functors from Set to Set.
First, recall the contravariant powerset functor P : Set → Set which

maps a set X to its powerset P(X) , and maps a set-function f : Y → X

to the function Inv(f) which sends U ⊆ X to its inverse image f−1[U ] ⊆ Y.
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And let C be the hom-functor Set(–, 2), where 2 is some nice two-element

set such as {{∅}, ∅} which we can think of as {true, false}. So C sends a set

X to Set(X, 2), i.e. the set of functions from X to 2: and C sends an arrow

f : Y → X to the function – ◦ f : Set(X, 2) → Set(Y, 2) (i.e. the function

which sends an arrow g : X → 2 to the arrow g ◦ f : Y → 2).

Claim: P ∼= C.

Proof. We need to find a family of isomorphisms ψX , ψY , . . . in Set such

that the following diagram always commutes:

PX PY

CX CY

ψX

Pf

ψY

Cf

equivalently

P(X) P(Y )

Set(X, 2) Set(Y, 2)

ψX

Inv(f)

ψY

–◦f

Take any ψX to be the isomorphism which associates a set U ⊆ X with

its characteristic function (i.e the function which sends an element of X

to true iff it is in U). Then it is easy to see that the diagram will always

commute. Both routes sends a set U ⊆ X to the function which sends y to

true iff fy ∈ U .

(5) This time we take a certain pair of (covariant) functors Grp Set.
U

V

Here U is simply the forgetful functor which sends a group G to its un-

derlying set, and sends homomorphisms to themselves. While V is the

hom-functor Grp(Z, –), where Z is the group of integers under addition.

So, by definition, V sends an object, i.e. a group G, to the set of group

homomorphisms from Z to G. And V sends an arrow f : G → G′ to the

function we notate f ◦ –, i.e. the function which sends a homomorphism

h : Z → G to the homomorphism f ◦ h : Z → G′. Claim: U ∼= V .

Proof. Note first that a group homomorphism from Z = (Z, 0,+) to G =

(G, e, ·) is entirely fixed by fixing where 1 goes. For 0 has to go to the

identity element e; and if 1 goes to the element of a, every sum 1 + 1 + 1 +

. . .+ 1 has to go to the corresponding a · a · a · . . . · a, with inverses going

to inverses. Which means that there is a set-bijection ψG from elements of

G to members of Grp(Z, –).

It is then immediate that the required naturality square commutes for

any f : G→ G′:

UG UG′

V G V G′

ψG

f

ψG′

f◦ –
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with either route round the square taking us from an element a ∈ G to the

unique homomorphism from Z to H which sends 1 to fa.

Our next examples also involve hom-functors. For motivation, reflect on the

natural one-to-one bijection between two-place set functions from A and B to

C, and one-place functions from A to functions-from-B-to-C (see §11.1). Cate-

gorically, that gives us an isomorphism between the hom-sets Set(A×B,C) and

Set(A,CB). And the intuitive naturality of the bijection means that this doesn’t

depend on particular choices of A, B or C. So we will expect, inter alia, that

the hom-functors Set(A×B, –) and Set(A, (–)B) are isomorphic. Moreover, this

should apply not just to the category Set but, generalizing,

(6) If C is a locally small category with exponentials, then C (A × B, –) ∼=
C (A, (–)B).

Proof. Here C (A, (–)B) = C (A, –) ◦ (–)B , where (–)B is the functor that

we met in §13.6. Now, (–)B sends an arrow f : C → C ′ to fB = f ◦ ev.

Hence C (A, (–)B) sends f to f ◦ ev ◦ –.

To provide the announced natural isomorphism, we need to find a family

of isomorphisms ψC such that for every f : C → C ′ in C , the following

diagram commutes in Set:

C (A×B,C) C (A×B,C ′)

C (A,CB) C (A,C ′B)

ψC

C (A×B,f) = f◦–

ψC′

C (A,fB) = (f ◦ ev) ◦ –

Suppose then that we take the component ψC to be the isomorphism which

sends an arrow g in C (A×B,C) to its exponential transpose g in C (A,CB).

Will that make the diagram commute?

Chase an arrow g in C (A × B,C) round the diagram both ways. Then

the diagram will commute if f ◦ ev ◦ g = f ◦ g. But consider:

A×B

CB ×B C

C ′B ×B C ′

gg×1B

f ◦ g×1B ev

f ◦ ev×1B f

ev′

Note the composite f ◦ g : A × B → C ′. By the definition of [C ′B , ev′] as

an exponential, there is a unique arrow f ◦ g such that

ev′ ◦ f ◦ g × 1B = f ◦ g.
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But since the top triangle and the bottom square also commute, we have

f ◦ g = ev′ ◦ (f ◦ ev × 1B) ◦ (g × 1B) = ev′ ◦ (f ◦ ev ◦ g)× 1B .

Hence, by the uniqueness requirement, we get f ◦ ev ◦ g = f ◦ g, and we

are done.

(7) Similarly motivated, we see that if C is a locally small category with ex-

ponentials, then C (–×B,C) ∼= C (–, CB)

Proof. Here, C (– × B,C) = C (–, C) ◦ (– × B), where the first is a con-

travariant hom-functor, and –×B is another functor that we met in §13.6.

Now, –×B sends an arrow f : A′ → A to f ×1B . Hence C (–×B,C) sends

f to – ◦ (f × 1B) : (A×B,C)→ (A′ ×B,C).

To provide the announced natural isomorphism, we need to find a family

of isomorphisms ψA such that for every f : A′ → A in C , the following

diagram commutes in Set:

C (A×B,C) C (A′ ×B,C)

C (A,CB) C (A′, CB)

ψA

C (f×B,C) = – ◦(f×1B)

ψA′

C (f,CB) = – ◦f

As before, take the component ψA to be the isomorphism which sends an

arrow g in C (A×B,C) to its transpose g in C (A,CB).

Chase an arrow g in C (A × B,C) round the diagram both ways. Then

the diagram will commute if g ◦ f = g ◦ (f × 1B).

But now consider this further diagram:

A′ ×B A×B

CB ×B C

f×1B

g◦(f×1B)×1B

gg×1B

ev

By definition, g ◦ (f × 1B) : A′ → CB is the unique arrow that when

plugged into –× 1B makes the rhombus commute.

But the right-hand triangle commutes, so it follows that (g×1B)◦(f×1B)

is another arrow from A′×B to CB×B which makes the rhombus commute.

However, by Theorem 34, (g × 1B) ◦ (f × 1B) = (g ◦ f)× 1B ,. Hence g ◦ f
plugged into –× 1B also makes the rhombus commute. Which proves that

g ◦ f = g ◦ (f × 1B).

These last two proofs show how confirming that two functors are indeed natu-

rally isomorphic (even in simple cases where the result is entirely expected) can

be fiddly. We will encounter this sort of annoyance again.

175



Natural isomorphisms

18.4 Natural/unnatural isomorphisms between objects

(a) Suppose we have functors F,G : C → D ; and let A,A′, A′′, . . . be objects

in C . Then there will be objects FA,FA′, FA′′ . . . and GA,GA′, GA′′ . . . in D .

And in some cases these will be pairwise isomorphic, so that we have FA ∼= GA,

FA′ ∼= GA′, FA′′ ∼= GA′′ . . . .

One way this can happen, as we have seen, is that there is a natural isomor-

phism between the functors F and G. But it is important to emphasize that it

can happen in other, ‘unnatural’, ways. We’ve met unnaturalness before, but still

let’s have a couple more examples, one a toy example to make again the point

of principle, then a standard illustrative case which is worth thinking through:

(1) Suppose C is a category with exactly one object A, and two arrows, the

identity arrow 1A, and distinct arrow f , where f ◦f = f . And now consider

two functors, the identity functor 1C : C → C , and the functor F : C → C
which sends the only object to itself, and sends both arrows to the identity

arrow. Then, quite trivially, we have 1C (A) ∼= F (A) for the one and only

object in C . But there isn’t a natural isomorphism between the functors,

because by hypothesis 1A 6= f , and hence the square

F (A) F (A)

1C (A) 1C (A)

1A

F (f)

1A

1C (f)

, which is simply

A A

A A

1A

1A

1A

f

,

cannot commute.

(2) We’ll work in the category F of finite sets and bijections between them.

There is a functor Sym : F → F which (i) sends a set A in F to the

set of permutations on A (treating permutation functions as sets, this is a

finite set), and (ii) sends a bijection f : A→ B in F to the bijection that

sends the permutation p on A to the permutation f ◦ p ◦ f−1 on B. Note:

if A has n members, there are n! members of the set of permutations on

A.

There is also a functor Ord : F → F which (i) sends a set A in F to the

set of total linear orderings on A (you can identify an order-relation with

a set, so we can think of this too as a finite set), and (ii) sends a bijection

f : A → B in F to the bijection Ord(f) which sends a total order on A

to the total order on B where x <A y iff f(x) <B f(y). Again, if A has n

members, there are also n! members of the set of linear orderings on A.

Now, for any object A of F , Sym(A) ∼= Ord(A) (since they are equinu-

merous finite sets). But there cannot be a natural isomorphism ψ between

the functors Sym and Ord. For suppose otherwise, and consider the func-

tors acting on a bijection f : A→ A. Then the following naturality square

would have to commute:
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Sym(A) Sym(A)

Ord(A) Ord(A)

ψA

Sym(f)

ψA

Ord(f)

Consider then what happens to the identity permutation i in Sym(A): it

gets sent by Sym(f) to f ◦ i ◦ f−1 = i. So the naturality square would tell

us that ψA(i) = Ord(f)(ψA(i)). But that in general won’t be so – suppose

f swaps around elements, so Ord(f) is not the ‘do nothing’ identity map.

In a summary slogan, then: pointwise isomorphism doesn’t entail natural iso-

morphism.

(b) We are, however, going mostly to be interested in cases where FA ∼= GA

(and FA′ ∼= GA′, FA′′ ∼= GA′′ . . . ) as a result of a natural isomorphism. There

is standard terminology for such cases:

Definition 95. Given functors F,G : C → D and A an object in C , we say that

FA ∼= GA naturally in A (or naturally in A in C ) just if F and G are naturally

isomorphic.

The definition mentions just a specific object A in C ; but there is an implicit

generality here. For if FA ∼= GA naturally in A, then for some ψ we have

ψ : F =⇒∼ G. So as well as an isomorphism ψA : FA −→∼ GA, there are other

isomorphisms ψA′ : FA
′ −→∼ GA′, ψA′′ : FA

′′ −→∼ GA′′, etc., for other objects

A′, A′′, . . ., making FA′ ∼= GA′ (naturally in A′), FA′′ ∼= GA′′ (naturally in

A′′), etc.

In these terms, we have seen for example that V ∼= DDV naturally in V in

Vect: that was the message of §18.2. Likewise, UG ∼= Grp(Z,G) naturally in G

in Grp: that was the message of §18.3 (5). And from §18.3 (6) and (7) we get the

following, which we will highlight as a theorem:

Theorem 102. Given a category C with exponentials, C (A×B,C) ∼= C (A,CB)

both naturally in A and naturally in C.

18.5 An ‘Eilenberg/Mac Lane Thesis’?

Let’s return to the question we raised before. Can we generalize from e.g. our

example of a vector space and its double dual, and say that whenever we have

a ‘natural’ isomorphism between widgets and wombats (i.e. one that doesn’t

depend on arbitrary choices of co-ordinates, or the like), this can be regimented

as a natural isomorphism between suitable associated functors? Let’s call the

claim that we can generalize like this the ‘Eilenberg/Mac Lane Thesis’.
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I choose the label to be reminiscent of the Church/Turing Thesis that we

all know and love, which asserts that every algorithmically computable func-

tion (in an informally characterized sense) is in fact recursive/Turing com-

putable/lambda computable. A certain intuitive concept, this Thesis claims, in

fact picks out the same functions as certain (provably equivalent) sharply defined

concepts.

What kind of evidence do we have for this thesis? Two sorts: (1) ‘quasi-

empirical’, i.e. no unarguable clear exceptions have been found, and (2) con-

ceptual, as in for example Turing’s own efforts to show that when we reflect on

what we mean by algorithmic computation we get down to the sort of operations

that a Turing machine can emulate, so morally a computable function just ought

to be Turing computable. The evidence in this case is so overwhelming that in

fact we are allowed to appeal to the Church/Turing Thesis as a labour-saving

device: if we can give an arm-waving sketch of an argument that a certain func-

tion is algorithmically computable, we are allowed to assume that it is indeed

recursive/Turing computable/lambda computable without doing the hard work

of e.g. defining a Turing maching to compute it.

We now seem to have on the table another Thesis of the same general type: an

informal intuitive concept, the Eilenberg/Mac Lane Thesis claims, in fact picks

out the same isomorphisms as a certain sharply defined categorial concept.

Evidence? We would expect two sorts. (1*) ‘quasi-empirical’, a lack of clear

exceptions, and maybe (2*) conceptual, an explanation of why the Thesis just

ought to be true.

It is, however, not clear exactly how things stand evidentially here, and the

usual textbook discussions of natural isomorphisms oddly don’t pause to do

much more than give a few examples. More really needs to be said. We therefore

can’t suppose that the new Eilenberg/Mac Lane Thesis is so secure that we can

cheerfully appeal to it in the same labour-saving way as the old Church/Turing

Thesis. In other words, even if (i) intuitively an isomorphism between objects

seems to be set up in a very ‘natural’ way, without appeal to arbitrary choices,

and (ii) we can readily massage the claim of an isomorphism into a claim about

at least pointwise isomorphism of relevant functors, we really need to pause to

work through a proof if we are to conclude that in fact (iii) there is a natural

isomorphism here in the official categorial sense. Annoying, as we said. For as

we have already seen, such proofs can be a bit tedious.

178



19 Natural transformations and
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We think of isomorphisms categorially as special cases of some wider class of

morphisms, namely those of the morphisms which have inverses. Thus isomor-

phisms inside categories are particular arrows, those with inverses; isomorphisms

between categories are particular functors, those with inverses. And now natural

isomorphisms between functors are special cases of . . . . What?

19.1 Natural transformations

(a) The generalized notion of morphisms between functors that we want is

obvious enough. In fact, as before, the definition gives us two notions for the

price of one:

Definition 96. Let C and D be categories, let C D
F

G
be covariant functors

(respectively, contravariant functors), and suppose that for each C -object C

there is a D-arrow αC : FC → GC. Then α, the family of arrows αC , is a

natural transformation between F and G if for every f : A → B (respectively

f : B → A) in C the following naturality square commutes in D :

FA FB

GA GB

αA

Ff

αB

Gf

In this case, we write α : F ⇒ G. (A natural isomorphism is thus a natural

transformation each of whose components is an isomorphism.) C

Note that while different styles of arrows can be found in use, Greek letters are

almost universally used for names of natural transformations.

(b) In sum, a natural transformation between functors C D
F

G
sends an

F -image of (some or all of) C to its G-image in a way which respects the in-
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ternal structure of the original at least to the extent of preserving composition

of arrows. Let’s have a couple of initial toy examples of natural transformations

which aren’t isomorphisms:

(1) Suppose D has a terminal object 1, and let F : C → D be any functor.

Then there is also a parallel functor T : C → D which sends every C -object

to the terminal object 1, and every C -arrow to the identity arrow on the

terminal object. Claim: there is a natural transformation α : F ⇒ T.

Proof. We need a suite of D-arrows αA (one for each A in C ) which make

the following commute for any f : A→ B in C :

FA FB

1 1

αA

Ff

αB

11

Put each component of α to be the unique arrow from its source to the

terminal object: and the diagram must commute because all arrows from

FA to 1 are equal.

(2) Recall the functor List : Set→ Set where Listob sends a set A to the set of

all finite lists of members of A and Listarw sends a set-function f : A→ B

to the map that sends a list a0
∩a1
∩a2
∩ . . .∩ an to fa0

∩fa1
∩fa2

∩ . . .∩ fan.

Claim: there is a natural transformation α : 1⇒ List, where 1 is the trivial

identity functor 1: Set→ Set.

Proof. We need a suite of functions αA which make the following commute

for any f : A→ B in C :

A B

List(A) List(B)

αA

f

αB

List(f)

For any A, put αA to be the function which sends an element of A to

the length-one list containing just that element, and we are immediately

done.

Note, by the way, that we can think of List as the composite functor GF where

F is the ‘free’ functor from Set to Mon which we met in §13.5 and G is the

forgetful functor in the other direction, from Mon to Set. We will find later that

there are many important natural transformations which are significantly of the

form α : 1C ⇒ GF (where 1C is the identity functor from C to itself, and for

some D , C D)
F

G
and also many of the form α : FG⇒ 1D .
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(c) Now for two cases of natural transformations which aren’t isomorphisms

which have rather more mathematical significance (though we will only sketch

them here):

(3) For those who know just a bit more group theory, consider the abelianiza-

tion of a group G. Officially, this is the quotient of a group by its commuta-

tor subgroup [G,G] (but you can think of it as the ‘biggest’ Abelian group

A for which there is a surjective homomorphism from G onto A). There is

then a functor Ab which sends a group G to its abelianization Ab(G), and

sends an arrow f : G → H to the arrow Ab(f) : Ab(G) → Ab(H) defined

in a fairly obvious way.

We therefore have a pair of functors, Grp Grp,
1

Ab
and we can then

check that the following diagram always commutes,

G H

Ab(G) Ab(H)

αG

f

αH

Ab(f)

where αG = G/[G,G]. So we have a natural transformation, but not usually

a natural isomorphism, between the functors 1 and Ab.

(4) For those who know rather more topology, we can mention two important

functors from topological spaces to groups. One we’ve met before in §13.7,

namely the functor π1 : Top∗ → Grp which sends a space with a basepoint

to its fundamental group at the base point. The other functor H1 : Top→
AbGrp sends a space to the abelian group which is its first homology group

(we aren’t going to try to explain that here!). Now these functors aren’t yet

parallel functors between the same categories. But we can define a functor

H ′1 : Top∗ → Grp which first forgets base points of spaces, then applies H,

and then forgets that the relevant groups are abelian. We simply record

that it is a very important fact of topology that, in our categorial terms,

there is natural transformation from π1 to H ′1.

(d) A natural transformation is a suite of arrows from various sources, with

each pair of arrows making certain diagrams commute. A cone is essentially a

suite of arrows all from the same source, the apex of the cone, with each pair

of arrows making certain diagrams commute. Which suggests that we should be

able to treat cones as special cases of natural transformations. And we can.

(5) Suppose we have a diagram-as-functor D : J→ C and also a collapse-to-C

functor ∆C : J→ C , i.e. a constant functor which sends every J-object to

C in C and every J-arrow to 1C (see §13.2 (F10)). Let’s ask: what does it

take for there to be a natural transformation α : ∆C → D?
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Given such an α, the following diagram must commute for any J-arrow

d : K → L:

∆CK ∆CL

DK DL

αK

∆Cd

αL

Dj

=

C C

DK DL

αK

1C

αL

Dj

=

C

DK DL

αK αL

Dj

Which makes the αJ (where J runs over objects in J) the legs of a cone

over D with a vertex C. Conversely, the legs of any cone over D with a

vertex C can be assembled into a natural transformation α : ∆C → D.

So that means that cones (thought of the austere way, as simply suites of

arrows) are indeed certain natural transformations.

19.2 Composition of natural transformations

Before continuing, a further bit of notation will prove useful. When we have

functors F : C → D , G : C → D , together with a natural transformation α : F ⇒
G, we can neatly represent the whole situation thus:

C D

F

G

α

(a) Arrows in a category can be composed to form new arrows (when targets

and sources suitably mesh). Functors between categories can be composed to

form new functors. Now we see that natural transformations between functors

can be composed, in more than one way, for form new natural transformations.

We’ll run the discussion entirely in terms of transformations between covariant

functors: but there will be parallel results about contravariant functors.

Suppose first that we have three functors F : C → D , G : C → D , H : C → D ,

together with two natural transformations α : F ⇒ G, and β : G⇒ H.

We can evidently compose these two transformations to get a natural transfor-

mation β ◦α : F ⇒ H, defined componentwise by putting (β ◦α)A = βA ◦αA for

all objects A in C . Vertically gluing together two commuting naturality squares

which share a side gives us a bigger commuting square, meaning that for any

f : A→ B in C , the following commutes in D :
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FA FB

GA GB

HA HB

αA

Ff

βA◦αA

αB

βB◦αB

βA

Gf

βB

Hf

Composing two transformations as in C D

F

G

H

α

β
to get C D

F

H

β◦α is

rather predictably called vertical composition.

(b) But we can also put things together horizontally in various ways. First,

there is so-called whiskering(!) where we combine a functor with a natural trans-

formation between functors to get a new natural transformation. Thus, what

happens when we ‘add a whisker’ on the left of a diagram for a natural trans-

formation?

The situation C D EF

J

K

β gives rise to C E

J◦F

K◦F

βF

where the component of βF at A is the component of β at FA – i.e. (βF )A = βFA
(which is why the suggestive notation ‘βF ’ is quite often preferred to ‘βF ’). Why

does this hold? Consider the function Ff : FA→ FB in D (where f : A→ B is

in C ). Now apply the functors J and K, and since β is a natural transformation

we get the commutative ‘naturality square’

J(FA) J(FB)

K(FA) K(FB)

βFA

J(Ff)

βFB

K(Ff)

and we can read that as giving a natural transformation between J ◦ F and

K ◦ F .

Likewise, adding a whisker on the right,

the situation C D E

F

G

Jα gives rise to C E

J◦F

J◦G

Jα
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where the component of Jα at X is J(αX).

For future use, by the way, we should note the following mini-result:

Theorem 103. Whiskering a natural isomorphism yields a natural isomorphism.

Proof. Retaining the same notation as above, but now taking α and β to be

isomorphisms, we saw that ‘post-whiskering’ α by J to get Jα yields a transfor-

mation whose components are JαX , and since functors preserve isomorphisms,

these components are all isomorphisms, hence so is Jα. ‘Pre-whiskering’ β by F

to get βF yields a transformation whose components are (some of the) compo-

nents of β and therefore are isomorphisms, hence again so is βF .

(c) Second, we can horizontally compose two natural transformations in the

following way:

We take C D E

F

G

J

K

α β and get C E .

J◦F

K◦G

β ∗α

How do we define β ∗α? Take an arrow f : A→ B and form this naturality square

for α:

FA FB

GA GB

αA

Ff

αB

Gf

. Applying the functor J ,

J(FA) J(FB)

J(GA) J(GB)

J(αA)

J(Ff)

J(αB)

J(Gf)

also commutes. And since Gf : GA → GB is a map in D , and β is a natu-

ral transformation between D E
F

G
, we have

J(GA) J(GB)

K(GA) K(GB)

βGA

J(Gf)

βGB

K(Gf)

commutes. Gluing together those last two commutative diagrams one above the

other gives a natural transformation from J ◦F to K◦G, if we set the component

of β ∗ α at X to be βGX ◦ JαX .

Three remarks:

(1) That definition for β ∗ α looks surprisingly asymmetric. But note that

applying J to the initial naturality square for α and then pasting the result

above a naturality square for β, we could have similarly applied K to the

initial naturality square and pasted the result below another naturality

square for β, thus showing that we can alternatively define the natural

transformation J ◦ F to K ◦G as having the components KαX ◦ βFX . So

symmetry is restored: we get equivalent accounts which mirror each other.
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(2) We can think of whiskering as a special case of the horizontal compo-

sition of two natural transformations where one of them is the identity

natural transformation. For example C D E

F

G

J

J

α 1J produces

C E ,

J◦F

K◦G

1J ∗α and the component of 1J ∗ α at X is an identity com-

posed with JαX . So this is the same as taking the left-hand natural trans-

formation and simply whiskering with J on the right.

(3) We could now go on to consider the case of horizontally composing a couple

of pairs of vertical compositions – and show that it comes to the same if

we construe the resulting diagram as the result of vertically composing a

couple of horizontal compositions. But we won’t now pause over this, but

return to the point if and when we ever need the construction. (Or see

Leinster 2014, p. 38.)

19.3 Functor categories

We saw in §18.3 that for any functor F : C → D , there is an identity natural

transformation 1F : F ⇒ F .

We saw in §19.2 that given parallel functors F , G,H : C → D , then if there

are natural transformations α : F ⇒ G and β : G ⇒ H then there is a compos-

ite natural transformation β ◦ α : F ⇒ H. Moreover, it is immediate from the

definition of this ‘vertical’ composition of parallel functors, that composition is

associative (that’s because the composition of the arrows which are components

of a transformation is associative).

So, lo and behold, the following definition must be in good order!

Definition 97. The functor category from C to D , denoted [C ,D ] is the category

whose objects are all the (covariant) functors F : C → D , with the natural

transformations between them as arrows. C

The laconic notation here ‘[C ,D ]’ is standard. An alternative is ‘DC ’. (We

needn’t worry about a category of contravariant functors as we can always talk

about a category [C op,D ] instead.)

We will see many instances of functor categories at work later. But let’s pause

now for a pair of simple examples:

(1) Recall the discrete category 2, which comprises just two objects • and

? together with their identity arrows. Ask: what is the functor category

[2,C ]?

185



Natural transformations and functor categories

An object in this category is a functor F : 2 → C , where (i) Fob will

send • to some C -object X and send ? to an object Y , and (ii) Farw will

map the identity arrows on • and ? to the identity arrows on this X and

Y . So (A) there is a simple bijection between such functors F , the objects

of [2,C ], and pairs of C -objects (X,Y ).

What about the arrows of our functor category? By definition, each

component of a natural transformation from F to the parallel functor F ′

will be a C -arrow between the F -image and the F ′-image of some object

in 2. And since there are no arrows between those objects in 2 there is no

naturality square to impose additional constraints. Therefore (B) a natural

transformation from F to F ′, an arrow of [2,C ], is simply any pair of C -

arrows (j : X → X ′, k : Y → Y ′).

So in sum, by (A) and (B), our new category is (or strictly speaking, is

isomorphic too) the product category C × C which we met in §2.2.

(2) Recall now the category 2. Omitting identity arrows, we can diagram this

as • ?. Ask: what is the functor category [2,C ]?

An object in this category is a functor F : 2→ C , where (i) Fob will send

• to some C -object X and send ? to an object Y , and (ii) Fare will map

identity arrows to identity arrows and send the unique arrow from • to ?

to some C -arrow f : X → Y . This time, (A) there is therefore a simple

bijection between the objects of [2,C ] and C -arrows.

And what about the arrows in our new category? A natural transforma-

tion from F to the parallel functor F ′ will have as components any two

C -arrows, j, k, which makes this a commutative square:

X Y

X ′ Y ′

j

f

k

f ′

Thus (B) the arrows of the new category are exactly pairs of C -arrows

which make our relevant diagram commute.

So in sum, by (A) and (B), [2,C ] is (or strictly speaking, is isomorphic

to) the arrow category C→ we met in §2.3).

19.4 Functor categories and natural isomorphisms

Suppose [C ,D ] is a functor category: then there will be isomorphisms in the

category in the usual categorial sense – i.e. arrows which have inverses (if only

the identity arrows, i.e. the trivial identity natural transformations between a

functor and itself). How do isomorphisms in this sense relate to the natural

isomorphisms we defined before?
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Theorem 104. The isomorphisms in the functor category [C ,D ] are exactly the

natural isomorphisms ψ : F ⇒ G, where C D
F

G
.

Proof. Suppose ψ : F =⇒∼ G is a natural isomorphism between the parallel func-

tors F,G : C → D , in the sense of Defn. 94. So for any f : A→ B, the naturality

square

FA FB

GA GB

ψA

Ff

ψB

Gf

commutes. But if ψB ◦Ff = Gf ◦ψA, then Ff ◦ψ−1
A = ψ−1

B ◦Gf (relying on the

fact that the components of ψ have inverses). Which makes this always commute

for any f : A→ B:

GA GB

FA FB

ψ−1
A

Gf

ψ−1
B

Ff

Whence ψ−1 : G =⇒∼ F (where ψ−1 is assembled from the components ψ−1
A etc.

And trivially ψ−1 ◦ ψ = 1F and ψ ◦ ψ−1 = 1G. Which makes ψ an isomorphism

(and arrow with an inverse) in the functor category [C ,D ].

Conversely, suppose the natural transformation ψ : F ⇒ G has an inverse ψ−1

in the category [C ,D ], i.e. ψ−1 ◦ ψ = 1F , and ψ ◦ ψ−1 = 1G But vertical com-

position of natural transformations is defined component-wise, so this requires

for each component that ψ−1
X ◦ ψX = 1FX , ψX ◦ ψ−1

X = 1GX . Therefore each

component of ψ has an inverse, so is an isomorphism, and hence ψ is a natural

isomorphism.

19.5 Hom-functors from functor categories

We have now introduced a new kind of category – namely, functor categories

[C ,D ] whose objects are the functors from C to D , and whose arrows are the

natural transformations between those functors. As with any other category,

there can be functors mapping to and from such categories to other categories.

Some of these will later turn out to be of central importance in category theory.

We start exploring in the rest of this chapter.

Suppose we have a functor category [C ,D ]. Its arrows, by definition, are nat-

ural transformations. And the collection of natural transformations from the

functor F : C → D to G : C → D , assuming it is set-sized, will be the hom-set

[C ,D ](F,G). We will repeatedly meet such hom-sets: it will therefore be handy

to have a slightly more memorable alternative notation for them:
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Definition 98. ‘Nat(F,G)’ will denote the set of natural transformations from

F to G (assuming it exists). C

Now, where there are hom-sets, there are hom-functors. Again we introduce

some snappier notation for future use:

Definition 99. ‘Nat(–, G)’ denotes the contravariant hom-functor [C ,D ](–, G):

[C ,D ]→ Set; ‘Nat(F, –)’ denotes the covariant hom-functor [C ,D ](F, –). C

Let’s pause to consider how such functors work. Take the first of them, for

example. We simply apply the definition of a contravariant hom-functor. So

Nat(–, G) sends an object in the functor category [C ,D ], i.e. a functor F, to

the set Nat(F,G). And it sends an arrow in the functor category, i.e. a natural

transformation α : F ′ ⇒ F , to a set-function from Nat(F,G) to Nat(F ′, G) – i.e.

to the function that sends a natural transformation β : F ⇒ G to β ◦α : F ′ ⇒ G.

(Note, if that latter function is indeed to live happily in Set, we must be officially

thinking of natural transformations, defined as families of arrows, as themselves

properly speaking sets.)

19.6 Evaluation and diagonal functors

(a) Start again with the functor category [C ,D ] and this time also pick an

object A in C . Then there is a functor that looks at what is in [C ,D ] and

evaluates it at A:

Definition 100. The functor evA : [C ,D ] → D sends a functor F : C → D to

FA and sends a natural transformation α : F ⇒ G to αA : FA⇒ GA. C

It is trivial to check that evA really is functorial.

(b) Now let’s consider a functor which goes in the opposite direction, i.e. one

that maps to a functor category. We will suppose then that C is a category, and

J is a small category. Then

Definition 101. The functor ∆J : C → [J,C ] sends an object C to the functor

∆C : J→ C and sends an arrow f : C → C ′ to the natural transformation from

∆C to ∆C′ whose every component is simply f again. C

Recall, ∆C is the constant collapse-to-C functor we first met in §13.2 (F10).

To check that ∆J is indeed a functor, the crucial thing is to show the last part

of our definition does indeed characterize a natural transformation from ∆C to

∆C′ . For this, we just note that for every d : K → L in J, the required naturality

square on the left is in fact none other than the trivially commuting square on

the right:

188



19.7 Limit functors

∆CK ∆CL

∆C′K ∆C′L

f

∆Cd

f

∆C′d

C C

C ′ C ′

f

1C

f

1C′

Such a functor ∆J is often called a diagonal functor. Why? We are generalizing

on the case where J is the discrete two-object category 2 with objects 0, 1. Here,

∆2 sends an object C in C to a functor that sends 0 to C and sends 1 to C.

If we think of that latter functor as therefore representing a pair of outcomes

(C,C), then the functor ∆2 in effect sends C to (C,C). In other words, values

of ∆2 lie down the diagonal of pairs of C -objects.

(c) Given the functor ∆J : C → [J,C ], and an object D in [J,C ] (i.e. a diagram

D : J → C ), there will be a comma category (∆J ↓ D). Applying the definition

of such a category at the end of §17.4, we get the following:

(1) An object of (∆J ↓ D) is a pair of an object C in CC , and an arrow

c : ∆JC → D in [J,C ], i.e. a natural transformation from ∆C to D. But

the components of such a natural transformation we saw in §19.1 (d) are

just the legs cJ of a cone over D with vertex C. So an object (C, c) of

our category are in effect just a cone [C, cJ ] over D, i.e. an object in the

category over cones over D.

(2) An arrow of (∆J ↓ D) from (C, c) to [C ′, c′) is a C -arrow j : C → C ′ such

that c = c′ ×∆Jf , which says that for each J , cJ = c′J × f . Which is just

the condition for f to be an arrow between cones [C, cJ ] and [C ′, c′J ] in the

category of cones over D in Defn. 52.

Hence (∆J ↓ D) is just the category of cones over D! Which is neat. We can

then say that a cone over D is just an object of the category (∆J ↓ D); and a

limit over D is a terminal object of this category.

It will be no additional surprise to learn that (D ↓ ∆J) is the category of

cocones under D.

19.7 Limit functors

(a) Suppose every diagram D of shape J has a limit in C . Then we can define a

functor Lim
←J

: [J,C ]→ C which sends a diagram D living in the functor category

[J,C ] to the vertex Lim
←J

D for some chosen limit cone over D in C .

But note however that we do have to do some choosing here! This functor

is not entirely ‘naturally’ or canonically defined: for recall, in the general case,

limits over D are only unique up to isomorphism, so we will indeed have to select

a particular limit object Lim
←J

D to be the value of our functor for input D.

189



Natural transformations and functor categories

And we need to say more. To get a functor, we now need suitably to define

Lim
←J

’s action on arrows. This must send an arrow in [J,C ], i.e. a natural trans-

formation α : D ⇒ D′ to an arrow in C from Lim
←J

D to Lim
←J

D′. How can it do

this in a, well, natural way? By hypothesis there are limit cones over D and

D′, respectively [Lim
←J

D,πJ ] and [Lim
←J

D′, π′J ]. So now take any arrow d : K → L

living in J and consider the following diagram:

Lim
←J

D

D(K) D(L)

Lim
←J

D′

D′(K) D′(L)

πK πL

αK

D(d)

αL

π′K π′L

uα

D′(d)

The top triangle commutes (because [Lim
←J

D,πJ ] is a limit). The lower square

commutes by the naturality of α. Therefore the outer pentangle commutes and

so, generalizing over objects J in J, [Lim
←J

D,αJ ◦πJ ] is a cone over D′. But then

this cone must factor uniquely through D′’s limit cone [Lim
←J

D′, π′J ] via some

unique uα : Lim
←J

D → Lim
←J

D′. The map α 7→ uα is then a plausible candidate

for Lim
←J

’s action on arrows; and indeed this assignment is fairly easily checked

to be yield a functor.

In summary then:

Definition 102. Assuming every diagram D of shape J has a limit in C , the

functor Lim
←J

: [J,C ]→ C (or Lim for brief)

i. sends an object D in [J,C ] to the vertex Lim D of some chosen limit cone

[Lim D,πJ ] over D

ii. sends an arrow α : D ⇒ D′ in [J,C ] to the arrow uα : Lim D → Lim D′

where for all J in J, π′J ◦ uα = αJ ◦ πJ . C

The diagram above can be recycled, by the way, to show

Theorem 105. Assuming limits of the relevant shape exist, then if we have a

natural isomorphism D ∼= D′, Lim D ∼= Lim D′.

Proof. Because we now have an natural isomorphism D ∼= D′, we can show

as above both that there is a unique u : Lim D → Lim D′ and symmetrically

that there is a unique u′ : Lim D′ → Lim D. These compose to give us map
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u′ ◦ u : Lim D → Lim D which must be 1Lim D by the now familiar argument

(the limit cone with vertex Lim D can factor through itself by both u′ ◦ u and

1Lim D, but there is by hypothesis only one way for the limit cone to factor

through itself). Likewise, u ◦ u′ = 1Lim D′ . So u is an isomorphism.

(b) We now remark on the following simple theorem:

Theorem 106. Suppose that C has all limits of shape J. Then for any D : J→ C
which the functor F : C → D preserves,

(∗) F (Lim
←J

D) ∼= Lim
←J

(F ◦D).

In brief: F commutes with Lim
←J

.

Proof. Since C has all limits of shape J, the limit functor Lim (for short) is

well-defined.

Now, if F preserves a limit cone over D : J → C with vertex Lim D, then

F sends that limit cone to a limit cone over F ◦ D with vertex F (Lim D).

But that vertex must be isomorphic to the vertex of any other limit cone over

F ◦D. So in particular it must be isomorphic to whatever has been chosen to be

Lim(F ◦D).

We will have occasion to return to consider the behaviour of limit functors at

greater length. For the moment, however, we just recall a slogan from elementary

analysis; ‘continuous functions commute with limits’. Which explains a bit of

standard terminology you might come across:

Definition 103. A functor which commutes with limits of shape J for all small

categories J is said to be continuous. C
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We defined what it is for categories to be isomorphic in §14.5, and gave a number

of examples. However, as we announced at the time, there are cases of categories

that surely ‘come to just the same’ (in some good intuitive sense) but which

are not isomorphic. A weaker notion of equivalence of categories turns out to

be more useful. It is defined using the notion of a natural transformation, which

explains why we have had to wait to now to talk about equivalence.

20.1 The categories Pfn and Set? are ‘equivalent’

In the general theory of computation, there is no getting away from the central

importance of the notion of a partial function from N to N (for example, the

function ϕe computed by the e-th Turing machine in a standard enumeration is

typically partial).

But how should we treat partial functions in logic? Suppose the partial com-

putable function ϕ : N → N takes no value for n (the algorithm defining ϕ

doesn’t terminate gracefully for input n). Then the term ‘ϕ(n)’ apparently lacks

a denotation. But in standard first-order logic, all terms are assumed to denote.

Two-valued logic requires every sentence to be determinately either true or false

and truth-value gaps are not allowed: but a sentence with a non-denoting term,

on the standard semantics, will lack a truth-value. What to do?

Historically, there are a number of options on the market for dealing with

empty terms in a regimented logical language, and hence for dealing with the

partial functions which give rise to them. Here we mention just two. One strategy

– due to the greatest nineteenth century logician, Gottlob Frege – is to stipulate

that apparently empty terms are in fact not empty at all but denote some special

object. Then there are no empty terms and no truth-value gaps, hence we can

preserve standard logic. An alternative, less artificial, route forward is to bite

the bullet and change our logic to allow non-denoting terms and then cope with

the truth-value gaps which come along with them.

In just a bit more detail:

(1) Frege’s proposal The idea, to repeat, is to provide apparently empty

terms a default ‘rogue’ object for them to denote. Apparently empty terms
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are only superficially so: they are still genuine referring terms, but with a

deviant denotation.

How does this work for functional terms? Well, given what we naively

think of as a partial function ϕ : N → N, we now treat this as officially

being a total function f : N ∪ {?} → N ∪ {?}, where ? is any convenient

non-number, and where f(n) = ϕ(n) when ϕ(n) takes a numerical value,

and f takes the value ? otherwise. If you like, you can think of ? as coding

‘not numerically defined’.

So, on this approach our functions are all total. What we really meet

in a formalized theory of computation are total functions which are only

partially numerical (not all their values are numbers). Because these total

functions don’t generate non-denoting terms, we can preserve our standard

logic without truth-value gaps.

(2) Logical revisionism Alternatively, we can bite the bullet and live with

truth-value gaps, as we surely already do in informal reasoning.

That means, when we come to adopt an official formalized logic, we’ll

want one which is free from the assumption that all terms denote; we

will adopt a free logic for short. We will then have to give new accounts

for the logical operators to tell us how they behave when they encounter

truth-value gaps – for example, if P is truth-valueless because it contains

a non-denoting term, is not-P also truth-valueless or is it true because P

isn’t true?

The details can get a little messy, and this logical revisionism has its

costs and complications. But at least in a formalism with a free logic we

can take at face value both partial functions and the apparently empty

terms they give rise to.

There is a lot more to be said: and we could, for example, consider a third

proposal due to Bertrand Russell which eliminates empty terms in a different

way to Frege. But we won’t continue the story any further now: the debate

about the best logical treatment of partial functions is the sort of thing that

might grip some philosophically-minded logicians but really seems of very little

general mathematical interest.

And that’s exactly the point of this section! From a mathematical point of

view there surely isn’t anything much to choose between logical revisionism and

Frege’s more artificial but more conservative proposal.

On the small scale, we can think of a world of genuinely partial numerical

functions ϕ : N → N (genuinely partial because not everywhere defined, and

hence giving rise to empty terms), or we can equally think of a corresponding

world of total functions f : N ∪ {?} → N ∪ {?}, with ? /∈ N, and f(?) = ?.

Take your pick! More generally, on the large scale, we can think of sets with

partial functions between them, or of corresponding pointed sets (sets with a

distinguished object as base point) and base-point preserving total functions

between them. What’s to choose, apart from familiarity? Mathematically, surely
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both approaches come to the same.

And so back to categories! There is a category Pfn whose objects are sets and

whose arrows are (possibly) partial functions between them. And there is also

the category Set? of pointed sets whose objects are sets with a distinguished base

point, and whose arrows are (total) set-functions which preserve base points. We

can work equally well in either category. So, putting the upshot of our reflections

in this section in categorial terms, we get the following attractive

Desideratum An account of what it is for two categories to be equivalent should

surely count Set? and Pfn as being so, for mathematically they come to the same.

20.2 Pfn and Set? are not isomorphic

In §14.5 we saw that some examples of categories which ‘come to just the same’

are in fact isomorphic. However, we can now show:

Theorem 107. Set? is not isomorphic to Pfn.

We can remark that there is an obvious functor F : Set? → Pfn. F sends a

pointed set (X,x) to the set X \ {x}, and sends a base-point preserving total

function f : (X,x)→ (Y, y) to the partial function ϕ : X \{x} −→ Y \{y}, where

ϕ(x) = f(x) if f(x) ∈ Y \ {y}, and is undefined otherwise. But, nice though this

is, F isn’t an isomorphism (it could send distinct (X,x) and (X ′, x′) to the same

target object).

Again, there is a whole family of functors from Pfn to Set? which take any

set X and add an element not yet in X to give as an expanded set with the

new object as a basepoint. Here’s a way of doing this in a uniform way without

making arbitrary choices for each X. Define G : Pfn → Set? as sending a X

to the pointed set X∗ =def (X ∪ {X}, X), remembering that in standard set

theories X /∈ X! And then let G send a partial function ϕ : X → Y to the total

basepoint-preserving function f : X∗ → Y∗, where f(x) = ϕ(x) if ϕ(x) is defined

and f(x) = {Y } otherwise. G is a natural choice, but isn’t an isomorphism (it

isn’t surjective on objects).

Still, those observations don’t yet rule out there being some pair of functors

between Set? and Pfn which are mutually inverse. But there can’t be any such

pair.

Proof. A functor which is an isomorphism from Pfn to Set? must send objects

in Pfn one-to-one to objects in Set?, and must send isomorphisms to isomor-

phisms, so should preserve the cardinality of isomorphism classes. But the iso-

morphism class of the empty set in Pfn has just one member, while there is

no one-membered isomorphism class in Set?. So there can’t be an isomorphism

between the categories.
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20.3 Equivalent categories

(a) The last two sections have together shown that there are categories Pfn
and Set? which to all intents and purposes are mathematically equivalent but

which aren’t isomorphic (according to the natural definition of isomorphism for

categories).

We did, however, note an obvious choice of functors F : Set? → Pfn and

G : Pfn → Set?. And while GF isn’t the identity on Set? it does map Set? to

itself in a rather natural way (without arbitrary choices).

Reflecting on this case a bit more suggests that the following weakening of

the definition of isomorphism between categories:

Definition 104. Categories C and D are equivalent, in symbols C ' D , iff

there are functors F : C → D and G : D → C , together with a pair of natural

isomorphisms α : 1C ⇒ GF and β : FG⇒ 1D .

We can now give a direct proof that Pfn and Set? are indeed equivalent in this

way (try it!).

But in fact we won’t do this. Rather, we’ll first prove a result which yields an

alternative characterization of equivalence which is often much easier to apply:

Theorem 108. Assuming a sufficiently strong choice principle, a functor F : C →
D is part of an equivalence between C and D iff F is faithful, full and essentially

surjective on objects.

Proof. First suppose F is part of an equivalence between C and D , so that there

is a functor G : D → C , where GF ∼= 1C and FG ∼= 1D . Then:

(i) Given an arrows f, g : A → B in C , then by hypothesis, the following

square commutes for f (α is the required natural isomorphism between

the identity functor and the composite GF ),

A B

GFA GFB

αA

f

αB

GFf

and hence α−1
B ◦ GFf ◦ αA = f . And of course α−1

B ◦ GFg ◦ αA = g.

It immediately follows that if Ff = Fg then f = g, i.e. F is faithful. A

companion argument, interchanging the roles of C and D , shows that G

too is faithful.

(ii) Suppose we are given an arrow h : FA→ FB, then put f = α−1
B ◦Gh◦αA.

But we know that f = α−1
B ◦ GFf ◦ αA. So it follows that GFf = Gh,

and since G is faithful, h = Ff . So every such h in D is the image under

F of some arrow in C . So F is full.
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(iii) Recall, F : C → D is e.s.o. iff for any D ∈ D we can find some isomorphic

object FC, for C ∈ C . But we know that our natural isomorphism between

1D and FG means that that there is an isomorphism from D to FGD, so

putting C = GD gives the desired result that F is e.s.o.

Now for the argument in the other direction. Suppose, then, that F : C → D
is faithful, full and e.s.o. We need to construct (iv) a corresponding functor

G : D → C , and then a pair of natural isomorphisms (v) β : FG⇒ 1D and (vi)

α : 1C ⇒ GF :

(iv) By hypothesis, F is e.s.o., so by definition every object D ∈ D is isomorphic

in D to some object FC, for C ∈ C . Hence – and here we are invoking an

appropriate choice principle – for any given D ∈ D , we can choose a pair

(C, βD), with C ∈ C and βD : FC → D an isomorphism in D . Now define

Gob as sending an object D ∈ D to the chosen C ∈ C (so GD = C, and

βD : FGD → D).

To get a functor, we need the component Garw to act suitably on an

arrow g : D → E. Now, note

FGD
βD−→ D

g−→ E
β−1
E−→ FGE

and since F is full and faithful, there must be some unique f : GD → GE

which F sends to the composite β−1
E ◦ g ◦ βD. Put Garwg = f .

Claim: G, with components Gob, Garw, is indeed a functor. We need to

show that G (a) preserves identities and (b) respects composition:

For (a), note that G1D = e where e is the unique arrow from GD to GD

such that Fe = β−1
D ◦ 1D ◦ βD = 1FGD. So e = 1GD.

For (b) we need to show that, given D-arrows g : D → E and h : E → F ,

G(h ◦ g) = Gh ◦Gg. But note that

FG(h ◦ g) = β−1
F ◦ h ◦ g ◦ βD = (β−1

F ◦ h ◦ βE) ◦ (β−1
E ◦ g ◦ βD)

= FG(h) ◦ FG(g) = F (G(h) ◦G(g))

Hence, since FG(h ◦ g) = F (G(h) ◦ G(g)) and F is faithful, G(h ◦ g) =

G(h) ◦G(g), so G is indeed a functor.

(v) By construction, β is natural isomorphism from FG to 1D .

(vi) Note next that we have an isomorphism β−1
FA : FA→ FGFA. As F is full

and faithful, β−1
FA = F (αA) for some unique αA : A → GFA. Since F is

fully faithful it is conservative, i.e. reflects isomorphisms (by Theorem 77),

hence αA is also an isomorphism. Also, the naturality diagram

A B

GFA GFB

αA

f

αB

GFf
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always commutes for any arrow f : A→ B in C . Why? Because

F (αB ◦ f) = FαB ◦ Ff = β−1
FB ◦ Ff =

FGFf ◦ β−1
FA = FGFf ◦ FαA = F (GFf ◦ FαA)

relying on the naturality of β−1. But if F (αB ◦ f) = (GFf ◦ FαA) then

since F is faithful, αB ◦f = GFf ◦FαA. Hence the αA are the components

of our desired natural isomorphism α : 1C ⇒ GF .

So we are done!

Our theorem enables us now to very quickly prove the following equivalence

claim without any more hard work:

Theorem 109. Pfn ' Set?

Proof. Define the functor G : Pfn → Set? as before. It sends a set X to a set

X∗ =def X ∪ {X} with basepoint X, and sends a partial function f : X → Y to

the total function f∗ : X∗ → Y∗, where for f∗(x) = f(x) if f(x) is defined and

f∗(x) = Y otherwise.

G is faithful, as it is easily checked that it sends distinct functions to distinct

functions. And it is equally easy to check that G is full, i.e. given any basepoint

preserving function between sets X∗ and Y∗, there is a partial function f which

G sends to it.

But G is essentially surjective on objects. For every pointed set in Set? – i.e.

every set which can be thought of as the union of a set X with {∗} where ∗ is

an additional basepoint element (not in X) – is isomorphic in Set? to the set

X ∪ {X} with X as basepoint. Hence G is part of an equivalence between Pfn
and Set?.

(b) Now for another example. Recall FinSet is the category of finite sets and

functions between them. Let FinOrdn be its full subcategory containing the

empty set and all sets of the form {0, 1, 2, . . . n − 1} and all functions between

them. It doesn’t really matter for present purposes how you think of the natu-

ral numbers; but to fix ideas, think of them set-theoretically as von Neumann

ordinals, so the objects of FinOrdn are then the finite ordinals – hence the label

for the category. We then have:

Theorem 110. FinOrdn ' FinSet

Proof. FinOrdn is a full subcategory of FinSet, so the inclusion functor F is fully

faithful. F is also essentially surjective on objects: for take any object in FinSet,
which is some n-membered set: that is in bijective correspondence (and hence

isomorphic in FinSet) with the finite ordinal n. Hence F is part of an equivalence,

and FinOrdn ' FinSet.
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How should we regard this last result? We saw that defining equivalence of

categories in terms of isomorphism would be too strong, as it rules out our

treating Pfn and Set? as in effect equivalent. But now we’ve seen that defining

equivalence of categories as in Defn. 20.3 makes the seemingly very sparse cat-

egory FinOrdn equivalent to the seemingly much more abundant FinSet. Is that

a strike against the definition of equivalence, showing it to be too weak?

It might help to think of a toy example. Consider the two categories which

we can diagram respectively as

• • ?

On the left, we have the category 1; on the right we have a two-object category

2! with arrows in both directions between the objects (in addition, of course, to

the required identity arrows). These two categories are also equivalent. For the

obvious inclusion functor 1 ↪→ 2! is full and faithful, and it is trivially essentially

surjective on objects as each object in the two-object category is isomorphic to

the other.

What this toy example highlights is that our equivalence criterion counts

categories as amounting to the same when (putting it very roughly) one is just

the same as the other padded out with new objects and just enough arrows to

make the new objects isomorphic to some old objects.

But on reflection that’s fine. Taking a little bit of the mathematical world and

bulking it out with copies of the structures it already contains and isomorphisms

between the copies won’t, for many (most? nearly all?) purposes, give us a real

enrichment. Therefore a criterion of equivalence of categories-as-mathematical-

universes that doesn’t care about surplus isomorphic copies is what we typically

need. Hence the results that 1 ' 2! and Finord ' FinSet are arguably welcome

features, not bugs, of our account of equivalence.

20.4 Skeletons and evil

(a) Even categories are regarded as being equivalent in an important sense even

if one is bulked out with isomorphic extras, shouldn’t the usual sort of concern for

Bauhaus elegance and lack of redundancy lead us to privilege categories which

are as skeletal as possible? Let’s say:

Definition 105. The category S is a skeleton of the category C if S is a full

subcategory of C which contains exactly one object from each class of isomorphic

objects of C . A category is skeletal if it is a skeleton of some category.

For a toy example, suppose C is a category arising from a pre-order (as in §1.3,

Ex. (10)). Then any skeleton of C will be a poset category. (Check that!)

Theorem 111. If S is a skeleton of the category C then S ' C .
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Proof. The inclusion functor S ↪→ C is fully faithful, and by the definition of

S is essentially surjective on objects. So we can apply Theorem 108.

So how about this for a programme? Take the usual universe of categories. But

now slim it down by taking skeletons. Then work with these. And we can now

forget bloated non-skeletal categories (and forget too about the notion of equiv-

alence and revert to using the simpler notion of isomorphism, because equivalent

skeletal categories are in fact isomorphic). What’s not to like?

The trouble is that hardly any categories that occur in the wild (so to speak)

are skeletal. And slimming down has to be done by appeal to an axiom of choice.

Indeed the following statements are each equivalent to a version of the axiom of

choice:

(1) Any category has a skeleton.

(2) A category is equivalent to any of its skeletons

(3) Any two skeletons of a given category are isomorphic.

The choice of a skeleton is usually quite artificial – there typically won’t be

a canonical choice. So any gain in simplicity from concentrating on skeletal

categories would be bought at the cost of having to adopt ‘unnatural’, non-

canonical, choices of skeletons. Given that category theory is supposed to be

all about natural patterns already occurring in mathematics, this perhaps isn’t

going to be such a good trade-off after all.

(b) Categorial notions that are not invariant under equivalence are sometimes

said to be ‘evil’. So being skeletal is evil. So too is being small:

Theorem 112. Smallness is not preserved by categorial equivalence.

In other words, we can have C a small category, C ' D , yet D not small. This

is a simple corollary of our observation in §20.3 that if we take a category, inflate

it by adding lots of objects and just enough arrows to ensure that these objects

are isomorphic to the original objects, then the augmented category is equivalent

to the one we started with. For an extreme example, start with the one-object

category 1, i.e. • (that’s small)! Now add as new objects every set, and

as new arrows an identity arrow for each set, and also for every set X a pair

of arrows • X which composed to give identities. Then we get a new

pumped-up category 1+ (which is certainly not small). But 1+ ' 1.

If you fuss about evil, you can highlight a neighbouring notion to smallness

which evidently is virtuous:

Definition 106. A category is essentially small if it is equivalent to category

with a set’s worth of arrows.

But we aren’t going to fuss here.

There is, by the way, a companion positive result
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Theorem 113. Local smallness is preserved by categorial equivalence.

Proof. An equivalence C D
F

G
requires F and G to be full and faithful

functors. So in particular, for any D-objects D,D′, there are the same number

of arrows between them as between the C -objects GD,GD′. So that ensures

that if C has only a set’s worth of arrows between any pair of objects, the same

goes for D .
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21 The Yoneda embedding

We met hom-functors in Chapter 16: they have nice properties like preserving

limits. We introduced natural transformations in Chapter 19. We now put things

together and start talking about natural transformations between hom-functors.

This will quickly lead on to a proof of a preliminary, restricted, version of

the important Yoneda Lemma, and we discover the related Yoneda embedding.

These tell us how to find a category built from functors-into-Set-and-arrows-

between-them which looks just like the category we start off with. This seems

closely analogous to some classical representation theorems like e.g. Cayley’s

Theorem which tells us how, starting from any group, we can find a group built

specifically from permutations-of-a-set which looks just the given group. So we

will say something about the parallel.

21.1 Natural transformations between hom-functors

(a) Take a locally small category C : in fact, in this chapter, we assume all the

relevant categories are local small, so that we can unproblematically talk about

the relevant hom-sets and hom-functors. Fix on a C -arrow f : B → A, noting

the direction of the arrow here. And we now describe how to construct from f

a corresponding natural transformation α from the hom-functor C (A, –) to the

hom-functor C (B, –).

By definition, if α is to be a natural transformation, its components must be

such that the following diagram commutes, given any arrow j : X → Y :

C (A,X) C (A, Y )

C (B,X) C (B, Y )

αX

C (A,j )

αY

C (B,j )

where C (C , j ), you will recall, is the map j ◦ – which sends an arrow h : C → X

to the arrow j ◦ h : C → Y .

Suppose then that we set a component αZ : C (A,Z) → C (B,Z) to be the

function – ◦ f that sends an arrow k : A → Z to the composite k ◦ f : B → Z

(the only obvious way to use f).
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Then our diagram will indeed commute. For going round the top-route takes

us from g : A→ X to j ◦ g : A→ Y to (j ◦ g) ◦ f : B → Y ; and going round the

bottom route takes us from g : A→ X to g ◦ f : A→ Y to j ◦ (g ◦ f) : B → Y .

So in sum, if there is a morphism f : B → A, then there is a corresponding

natural transformation α : C (A, –)⇒ C (B, –) with components αZ as defined.

And note too: if f is an isomorphism, then each component αZ (i.e. –◦f) has an

inverse (i.e. –◦f−1), so is an isomorphism. Therefore the induced transformation

α is then a natural isomorphism.

To sum up this result and introduce some notation:

Theorem 114. Suppose C is a locally small category, and C (A, –), C (B, –)

are hom-functors (for objects A, B in C ). Then, given an arrow f : B → A,

there exists a corresponding natural transformation C (f, –) : C (A, –)⇒ C (B, –),

where for each Z, the component C (f, –)Z : C (A,Z)→ C (B,Z) sends an arrow

k : A→ Z to k ◦ f : B → Z.

Furthermore, if f is an isomorphism, then C (f, –) is a natural isomorphism.

(b) Both as a quick reality-check and for future use, let’s pause to show:

Theorem 115. Given a locally small category C including objects A,B,C, and

arrows f : B → A and g : C → B, then

(1) C (f ◦ g, –) = C (g, –) ◦ C (f, –).

(2) C (f, –)A1A = f .

(3) C (1A, –) = 1C (A,–).

Proof. (1) C (f ◦ g, –)Z sends any arrow e : A → Z to e ◦ (f ◦ g). However,

(C (f, –)Z(e) = e ◦ f , so C (g, –)Z(C (f, –)Z(e)) = (e ◦ f) ◦ g. Which means that

C (f ◦g, –) and C (g, –)◦C (f, –) agree on all components, so are identical natural

transformations.

(2) C (f, –)A sends any arrow j : A→ A to j ◦ f : B → A. So in particular it

sends 1A to f .

(3) C (1A, –)Z sends any arrow j : A → Z to itself. While 1C (A,–) is the

identity arrow on the object C (A, –) in the functor category [C ,Set]. In other

words it is natural transformation from C (A, –) to itself which in particular

sends j : A → Z to itself. Which shows that C (1A, –) and 1C (A,–) agree on all

components so are identical.

(c) The obvious next question to ask is: are all possible natural transformations

between the hom-functors C (A, –) and C (B, –) generated from arrows f : B → A

in the way described in Theorem 114?

Start from a natural transformation α : C (A, –) ⇒ C (B, –). If α is indeed

of the form C (f, –) for some f : B → A, then by the last theorem αA1A =

C (f, –)A1A = f . So we already know one candidate for f , and we might naturally

conjecture:
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21.1 Natural transformations between hom-functors

Theorem 116. Suppose C is a locally small category, and consider the hom-

functors C (A, –) and C (B, –), for objects A,B in C . Then if there is a natural

transformation α : C (A, –) ⇒ C (B, –), there is a unique arrow f : B → A such

that α = C (f, –), namely f = αA(1A).

And this indeed is right:

Proof. Since α is a natural transformation, the following diagram in particular

must commute, for any Z and any g : A→ Z,

C (A,A) C (A,Z)

C (B,A) C (B,Z)

αA

C (A,g)

αZ

C (B,g)

We start with C (A,A) at the top left because we know that it is populated,

at least by 1A. Then, recalling the definitions, C (A, g) is the map that (among

other things) sends an arrow h : A→ A to the arrow g ◦ h : A→ Z, and C (B, g)

sends an arrow k : B → A to the arrow g ◦ k : B → Z.

Chase that identity arrow 1A round the diagram from the top left to bottom

right nodes. The top route sends it to αZ(g). The bottom route sends it to

g ◦ (αA(1A)), which equals C (αA(1A), –)Z(g) (check how we set up the notation

in Theorem 114). Since our square always commutes we have

for all objects Z and arrows g : A→ Z, αZ(g) = C (αA(1A), –)Z(g).

Hence, since Z and g were arbitrary,

α = C (αA(1A), –).

Putting f : B → A =def αA(1A) therefore proves the existence part of the

theorem.

Now suppose both f and f ′ are such that α = C (f, –) = C (f ′, –). Then by

Theorem 115 (2)

f = C (f, –)A(1A) = C (f ′, –)A(1A) = f ′

which shows f ’s uniqueness.

(d) The theorems so far in this section have been about covariant hom-functors.

We have corresponding duals for contravariant hom-functors. Here’s part of the

story (proofs are routine exercises in dualization, paying attention to the direc-

tion of arrows):

Theorem 117. Suppose C is a locally small category, and C (–, A), C (–, B) are

contravariant hom-functors (for objects A,B in C ). Then (1) if there exists an
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arrow f : A→ B, there is a natural transformation C (–, f) : C (–, A)⇒ C (–, B),

where for each Z, the component C (–, f)Z : C (Z,A)→ C (Z,B) sends an arrow

k : Z → A to f ◦ k : Z → B.

And (2) if there is a natural transformation α : C (–, A)⇒ C (–, B), there is a

unique arrow f : A→ B such that α = C (–, f), namely f = α(1A).

(3) C (–, g ◦ f) = C (–, g) ◦ C (–, f).

21.2 The Restricted Yoneda Lemma

Sticking to the covariant case for the moment, we have been considering pairs of

hom-functors such as C (A, –) : C → Set and C (B, –) : C → Set, and the natural

transformations between them. Theorem 116 tells us that there are no more

such natural transformations than there are C -arrows f : B → A. Since we are

assuming all along that C is locally small, that means there can be a set of such

natural transformations. It is a hom-set for the functor category [C ,Set]; in the

notation of Defn. 98, we can denote it ‘Nat(C (A, –),C (B, –))’.

Now, a C -arrow f : B → A is of course a member of the hom-set C (B,A). So,

in the proofs of our Theorems 114 and 116 we have in effect defined two suites of

functions XAB and EAB in Set (functions indexed by the C -objects A,B), where

i) XAB : C (B,A) → Nat(C (A, –),C (B, –)) sends a function f : B → A to

the natural transformation C (f, –).

ii) EAB : Nat(C (A, –),C (B, –)) → C (B,A) sends a natural transformation

α : C (A, –)⇒ C (B, –) to αA(1A).

And again, the next thing to do is obvious: we check that XAB and EAB are

inverses of each other in Set as they surely ought to be.

Let’s fix on some particular A and B. Then we note:

(1) Given some f : B → A,

(EAB ◦ XAB)f = EAB(C (f, –)) = C (f, –)A(1A) = f

with the last identity by Theorem 115 (2). But f was arbitrary. Whence

EAB ◦ XAB = 1.

(2) Given some α : C (A, –)⇒ C (B–),

(XAB ◦ EAB)α = XAB(αA(1A)) = C (αA(1A), –) = α

where the last identity is as shown in the proof of Theorem 116. But α was

arbitrary. Whence XAB ◦ EAB = 1.

So XAB and EAB are mutual inverses, and hence isomorphisms. Therefore we

have in summary:
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Theorem 118 (Restricted Yoneda Lemma). Suppose C is a locally small category,

and A,B are objects of C . Then Nat(C (A, –),C (B, –)) ∼= C (B,A).

There is, needless to say, a dual version of all this. For each A,B in C , there is

an isomorphism YAB : C (A,B)→ Nat(C (–, A),C (–, B)) which sends a function

f : A → B to the natural transformation C (–, f); and YAB has an inverse.

Consequently,

Theorem 119 (Restricted Yoneda Lemma, continued). Suppose C is a locally

small category, and A,B are objects of C . Then Nat(C (–, A),C (–, B) ∼= C (A,B).

The shared label we’ve given this dual pair of theorems is not standard, but the

reason for it will become clear when we meet the full Yoneda Lemma in Ch. 22.

The future full version has a reputation for being the first result in category

theory whose proof takes some real effort to understand. Be that as it may, at

least the route up to our current cut-down version should seem entirely unprob-

lematic. A simple observation established Theorem 114, that each f : B → A

generates a natural transformation from C (A, –) to C (B, –). It was then very

natural to ask if there is a converse result, and we get Theorem 116. In prov-

ing those simple theorems, we have set up maps each way between members

of C (B,A) and of Nat(C (A, –). Checking that those maps are indeed mutually

inverse as we might expect gives us the Restricted Yoneda Lemma – which is all

we need for the main result in this chapter, and for a number of other results

which are often said to obtain ‘by Yoneda’.

21.3 The Yoneda embedding

(a) Suppose, as always in this chapter, that the category C is locally small,

then:

(i) we can define a map – let’s call it Xob – that takes any C -object A (equiv-

alently, any C op-object A) and sends it to the corresponding hom-functor

C (A, –).

(ii) we can a define another map – let’s call it Xarw – that takes any C -arrow

f : B → A (equivalently, any C op-arrow f : A→ B) and sends it to XABf ,

i.e. sends f to the natural transformation C (f, –) : C (A, –)⇒ C (B, –).

Now, hom-functors like C (A, –) are objects of the functor category [C ,Set]. And

natural transformations like C (f, –) : C (A, –)⇒ C (B, –) are arrows in that same

category. So, we might hope that, as our labels for them prematurely suggest,

the maps Xob and Xarw can be put together as the components of a covariant

functor X : C op → [C ,Set]).
To confirm that they can be, we just need to check the two functorial axioms

are indeed satisfied. First, identities are preserved:

X (1A) = C (1A, –) = 1C (A,–) = 1X (A)
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where the central equation holds by Theorem 115 (3). And secondly, composition

is respected. In other words, for any composable f, g in C op,

X (g ◦C
op

f) = X (f ◦C g) = C (f ◦C g, –) = C (g, –) ◦[ ] C (f, –) = X (g) ◦[ ] X (f)

where ‘◦[ ]’ indicates composition in the functor category [C ,Set], and the third

equation holds by Theorem 115 (1).

Let’s summarize this important result, again along with its obvious dual com-

panion where we similarly define a functor Y in terms of the maps YAB :

Theorem 120. For any locally small category C , there is a functor we’ll label

simply X : C op → [C ,Set] with components Xob and Xare such that

(1) for any A ∈ ob(C op), Xob(A) = C (A, –),

(2) for any arrow f ∈ C op(A,B), i.e. arrow f : B → A in C , Xarw(f) =

C (f, –).

And there is similarly a functor Y : C → [C op,Set] with components Yob and

Yarw such that

(3) for any A ∈ ob(C ), Yob(A) = C (–, A).

(4) For any arrow f : A→ B in C , Yarw(f) = C (–, f).

(b) It is immediate that the functors X and Y behave nicely in various ways.

In particular:

Theorem 121. X : C op → [C ,Set] and Y : C → [C op,Set] are fully faithful

functors which are injective on objects.

Proof. By definition, X : C op → [C ,Set] is full just in case, for any C op-objects

A,A′, and any natural transformation α : C (A, –)→ C (A′, –) there is an arrow

f : A→ A′ in C op, i.e. an arrow f : A′ → A in C , such that α = Xf = C (f, –).

Which we have already proved as the existence claim in Theorem 116.

By definition, X : C op → [C ,Set] is faithful just in case, for any C op-objects

A,A′, and any pair of arrows f, g : A → A′ in C op, i.e. any pair of arrows

f, g : A′ → A in C , then if C (f, –) = C (g, –) then f = g. But that follows

immediately from the uniqueness claim in Theorem 116.

So the only new claim is that X is injective on objects, meaning that if A 6= B,

then X (A) 6= X (B). Suppose X (A) = X (B), i.e. C (A, –) = C (B, –). Then

C (A, –)(C) = C (B, –)(C), i.e. C (A,C) = C (B,C). But that can’t be so if

A 6= B, since by our lights hom-sets on different pairs of objects must be disjoint

(see the last sentence of §14.6).

The proof for Y : C → [C op,Set] is straightforwardly dual.

As an important corollary, we now have
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Theorem 122. For any objects A,B in the locally small category C , A ∼= B iff

XA ∼= XB, and likewise A ∼= B iff YA ∼= YB.

Proof. Suppose A ∼= B. Then there is an isomorphism f : B −→∼ A. So there is

a natural transformation C (f, –) : C (A, –) ⇒ C (B, –), which by Theorem 114

is an isomorphism. So in our alternative notation, Xf : XA =⇒∼ XB. Hence

XA ∼= XB.

Now suppose XA ∼= XB. So there exists a natural isomorphism α : C (A, –) =⇒∼
C (B, –). By Theorem 116, α is C (f, –) for some f : B → A, i.e. is Xf . But X is

fully faithful. So Theorem 77 tells us that since Xf is an isomorphism, so is f .

Hence A ∼= B.

That shows A ∼= B iff XA ∼= XB. The argument for the functor Y is dual.

(c) So the situation is this. The functor Y, for example, injects a copy of the C -

objects one-to-one into the objects of the functor category [C op,Set]; and then

it fully and faithfully matches up the arrows between C -objects with arrows

between the corresponding objects in [C op,Set]. In other words, Y yields an

isomorphic copy of C sitting inside the functor category as a full sub-category.

So, in a phrase, Y embeds a copy of C in [C op,Set]. Hence the terminology

(in honour of its discoverer):

Definition 107. The full and faithful functor Y : C → [C op,Set] is the Yoneda

embedding of C . C

There was a reason, then, behind our use of ‘Y’ for this functor! And indeed

the ‘Y’ notation – in upper or lower case, in one font or another – is pretty

standard for the Yoneda embedding. However, ‘X ’ is just our label for the dual

embedding, which doesn’t seem to have a standard name or notation, though

we can usefully call it a Yoneda embedding too.

21.4 Yoneda meets Cayley

(a) Take any locally small category you like. Then the Yoneda embedding tells

us how to find a category built from functors-into-Set-and-arrows-between-them

which looks just like the category we started off with. Now, as we remarked in

the preamble at the beginning of this chapter, this is surely reminiscent of some

classical representation theorems which tell us how, given a mathematical struc-

ture of a certain type, we can find another structure which lives in the universe

of sets and is isomorphic to it. At the simple end of the spectrum there is an ob-

servation that we can attribute to Dedekind: any given partially ordered objects

are isomorphic to certain corresponding sets ordered by set-inclusion. A signifi-

cantly more sophisticated result of the same flavour is the Stone Representation

Theorem: any Boolean algebra is isomorphic to a field of sets (where a field

of sets is a sub-algebra of a canonical power-set alegbra (P(X), ,∩,∪, ∅, X),
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where X is some set and of course A is X −A). Here, though, we’ll concentrate

on just one such classical representation theorem, namely Cayley’s Theorem:

Theorem 123. Any group (G, ·, e) is isomorphic to a subgroup of the group

Sym(G), i.e. the group of permutations on the set G.

Proof. (The usual one, rehearsed here in case you haven’t seen it before, and to

fix notation). Given any object g ∈ G, we define the set-function g : G → G by

setting g(x) = g · x (i.e. g = {(x, y) | x, y ∈ G ∧ y = g · x}).
Evidently any such g is surjective: for any x ∈ G, there’s an object which

g sends to x, namely g−1 · x. And if g(x) = g(y), then g · x = g · y whence

g−1 · g · x = g−1 · g · y, therefore x = y. Hence g is also injective and is therefore

a bijection on G, i.e. is a permutation of the group objects.

Put K = {g | g ∈ G} It is now routine to confirm (K, ◦, e) is a group,

and hence a subgroup of Sym(G), where the group operation is composition of

functions:

i. Any two functions f , g have a product f ◦ g, where (f ◦ g)(x) = f · g · x.

ii. The function e is a group identity.

iii. f ◦ (g ◦ h) = (f ◦ g) ◦ h because f · (g · h) = (f · g) · h.

iv. We note that (g−1◦g)(x) = g−1(g·x) = g−1 ·g·x = x = e(x). So g−1◦g = e,

and similarly g ◦ g−1 = e. So each g has an inverse.

It remains to check that the map F defined by g 7→ g is a group isomorphism

from (G, ·, e) → (K, ◦, e). F is injective. For if f = g, then f(e) = g(e), so

f · e = g · e, so f = g. Since F is also a surjection just by the definition of K, F

(as a map on the carrier sets) is an isomorphism.

Also, for any x, F (f · g)(x) = (f · g)(x) = f · g · x = f(g · x) = f(g(x)) =
(f ◦ g)(x) = (Ff ◦ Fg)(x), so F indeed respects group structure.

(b) Now, the modern way is – at least officially – to think of a group (G, ·, e) as

a set-theoretic structure from the outset; so Cayley’s theorem might seem just

to tell us that, given one set theoretic structure, we can find another isomorphic

one. Big deal! However, that rather disguises what’s actually going on.

For various reasons – some good, some rather disreputable – it has become

absolutely standard in mathematics to trade in a lot of plural talk (referring to

many objects at once) for singular talk (referring to a set of those many objects).

For example, we’ve learnt to slide easily e.g. from talk of the natural numbers

(plural) to talk of the set N (singular). So instead of stating the Least Number

Principle as e.g. ‘Given any natural numbers, one of them will be the least’ we

say ‘Any set S, where S ⊆ N, has a least member’. But note that the singular talk

about a set here is not yet doing any real work. And indeed, quite a lot of informal

set talk is in fact similarly low-level, non-committal stuff which can however be

readily translated away, most naturally into a plural idiom. That applies here,
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to part of the statement of Cayley’s Theorem. Instead of starting ‘Any group

(G, ·, e), . . . ’ and thinking of this as already referring to a set-theoretic object

(e.g. an ordered triple of a set, a set-function and a set-member), we can capture

the core of the theorem like this:

Suppose we are given some objects and a group operation on them

with a unit for that operation. Then there will be always also be

some sets (in particular, some set-functions) with a group structure

on them which form a group isomorphic to the one we started with.

Put this way, stripped of one layer of unnecessary set-idiom, we have (in an

intuitive sense) a ‘cross-category’ result which says that objects with a group

structure on them (whatever objects they are) can always be represented by an

isomorphic structure living in the world of sets.

(c) Recall from §3.2 that a group can be considered as a category in its own

right, a one-object category all of whose arrows are isomorphisms. If we take a

group (G, ·, e) then the corresponding category G has the following data:

(i) the sole object of G : choose whatever object you like, and dub it ‘?’.

(ii) the arrows of G are the elements of the group (G, ·, e).
(iii) the identity arrow 1? of G is the identity element e of the group G.

(iv) the composite g ◦ f : ?→ ? of the two arrows g, f : ?→ ? is just g · f .

Moreover, G is locally small since its sole potential hom-set G (?, ?) is none other

than G, which we assume is indeed set-sized.

We can therefore apply the Restricted Yoneda Lemma in one version or the

other. And there’s only one possible application of each version. Consider then

the version which tells us that

Nat(G (–, ?),G (–, ?)) ∼= G (?, ?).

So: what are the natural transformations α : G (–, ?) ⇒ G (–, ?)? We can apply

Theorem 117: every such α is G (–, g) for some arrow g in G .

Now, by definition, G (–, g) sends an arrow x : ? → ? to g ◦ x : ? → ?. But

G (?, ?) is just G, and arrows are G-elements, so G (–, g) acts on G by sending an

element x to the element g · x. Hence G (–, g) is the function we earlier called g.

As before, that’s a bijective map on G, i.e. a permutation on G.

Therefore the Restricted Yoneda Lemma tells us that some set of permutations

on the set G is in bijection with the members of G.

Moreover, our proof of the Lemma gives us the isomorphism Y, which sends

the arrow g : ?→ ? to G (–, g). By Theorem 117,

Y(g · g′) = G (–, g · g′) = G (–, g) ◦ G (–, g′) = Y(g) ◦ Y(g′).
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So if as before we put a group structure on the natural transformations G (–, g),

i.e. the functions g, by again defining multiplication as composition, our isomor-

phism Y preserves group structure.

So in short, we can more or less immediately read off from the proof of the

Restricted Yoneda Lemma that a group (G, ·, e) is isomorphic to a group of

permutations on G with composition as the group operation.

Which is why it is often said that the Yoneda Lemma is a generalization of

Cayley’s Theorem.
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22 The Yoneda Lemma

In Chapter 21 we showed that a couple of easy preliminary theorems were enough

to establish what we called the Restricted Yoneda Lemma, and also that the

Yoneda embedding is indeed an embedding. For many purposes, this all we

need to know about Yoneda. Still, talking about a Restricted Lemma invites

an obvious question: what’s the full-power unrestricted Yoneda Lemma? This

chapter explains.

22.1 Towards the full Yoneda Lemma

Let F be the functor C (B, –). Then one half of the Restricted version of the

Yoneda Lemma, Theorem 118, tells us that there is an isomorphism between

Nat(C (A, –), F ) and FA. The other half of the Restricted Lemma is of course

the dual, but for the moment we’ll let it look after itself.

Now, to get from where we are to the Yoneda Lemma proper we need two

steps:

(1) We look again at the ingredients of the proof of the restricted version and

ask ‘Where did we essentially depend on the fact that the second functor,
now notated simply ‘F ’, actually was a hom-functor C (B, –) for some B?’

Close inspection reveals that we didn’t. So we in fact have the more general

result that for any locally small category C , any functor F : C → Set, and

any C -object A, there is an isomorphism E between Nat(C (A, –), F ) and

FA.

(2) Next we note that our proof of this generalization (like the proof of the

original Restricted Lemma) provides a general recipe for constructing the

required isomorphism. Take a locally small category C and any C -object

A, then, without having to invoke any arbitrary choices, our proof fixes

inverse isomorphisms XAF and EAF between Nat(C (A, –), F ) and FA. In

an intuitive sense, we’ve constructed a natural isomorphism. And so we

should be able to show that there is a natural isomorphism in the official,

categorial, sense between some relevant functors.

In sum, we will get from the Restricted Yoneda Lemma to the full-dress Yoneda

Lemma by generalizing a construction, and then recasting in category-theoretic
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terms an intuitive judgement of the naturality of our construction. Neither step

involves anything conceptually very difficult: we just need to nail down all the

details. (Some of these proof details are fiddly. By all means skim over them on

a first reading, since they are just a matter of checking that the announced steps

do go through.)

22.2 The generalizing move

We continue working in a locally small category C . Let’s restate some of what

we already know, still using ‘F ’ to abbreviate ‘C (B, –)’:

(i) There is a bijection between arrows in FA and natural transformations

C (A, –) ⇒ F , which sends f in FA to the transformation whose Z-

component maps an arrow g : A→ Z to g ◦ f : B → Z.

(ii) By definition, the functor F maps an arrow g : A → Z to a function Fg

which sends an arrow f : B → A to the arrow g ◦ f : B → Z. In other

words, Fg(f) = g ◦ f .

(iii) Hence, putting (i) and (ii) together, we have: there’s a bijection which sends

an element f in FA to the natural transformation whose Z-component

maps g : A→ Z to Fg(f).

We next want to redeploy this last idea to prove the following generalization of

the Restricted Lemma (where we now free up the interpretation of F to allow it

to be any functor from C to Set):

Theorem 124. For any locally small category C , object A ∈ C and functor

F : C → Set, Nat(C (A, –), F ) ∼= FA.

Proof. Following the constructions in the proof leading up to Restricted Lemma,

Theorem 118, first we generalize on XAB and we’ll introduce a map we’ll call

XAF :

(1) XAF sends f in FA to a natural transformation χ = XAF f : C(A, –)⇒ F .

We define χ by requiring its Z-component to be the map which takes

g : A→ Z to Fg(f).

We had better pause to check that this definition indeed defines a natural trans-

formation. But that’s easy. For χ is a natural transformation if the following

square commutes for any u : Z → Z ′:

C (A,Z) C (A,Z ′)

FZ FZ ′

χZ

C (A,u)

χZ′

Fu
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The upper route takes some j : A → Z to u ◦ j to F (u ◦ j)(f). The lower route

takes j to Fj(f) to Fu ◦ Fj(f). The functoriality of F ensures these are equal.

Now, to prove our theorem, we show that XAF is an isomorphism by providing

it with a two-sided inverse. Again, we follow the pattern in the proof of the

Restricted Lemma, this time generalizing on EAB . So we introduce a map we’ll

call EAF :

(2) EAF sends a natural transformation α : C(A, –)⇒ F to the element αA(1A)

in FA.

And now we check that EAF is indeed a two-sided inverse of XAF .

First, given an arbitrary element f in FA,

EAF ◦ XAF (f) = EAF ◦ χ = χA(1A) = F1A(f) = 1FA(f)

and therefore EAF ◦ XAF = 1.

Secondly, for α : C (A, –) ⇒ F , we have XAF ◦ EAF (α) = XAF (αA(1A)). The

Z-component of that sends a map g : A → Z to Fg(αA(1A)). But since α is a

natural transformation, this next diagram must commute:

C (A,A) C (A,Z)

FA FZ

αA

C (A,g)

αZ

Fg

So chasing the arrow 1A round the diagram by each route, we get Fg(αA(1AA)) =

αZ(C (A, g)(1A)) = αZ(g).

In other words, for any given Z, the Z-component of XAF ◦ EAF (α) acts on g

just like the Z-component of α. Hence XAF ◦ EAF (α) = α and, since α too was

arbitrary, XAF ◦EAF = 1. (Reality check: what object is that last identity arrow
on?).

22.3 Making it all natural

One further step takes us to the full Yoneda Lemma. Not only is there an isomor-

phism EAF from Nat(C (A, –), F ) to FA, but EAF is intuitively ‘natural’ in the

sense of constructed in a uniform way given A and F , without arbitrary choices.

We now want to capture this intuitive remark using our official categorial account

of a natural isomorphism.

Here’s a reminder:

Definition 95 Given functors F,G : C → D , we say that FA ∼= GA naturally

in A just if F and G are naturally isomorphic.

And what we want to prove first, keeping F fixed, is that Nat(C (A, –), F ) ∼= FA

naturally in A. Which, by our definition, means we have to establish that the
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functor Nat(C ( · , –), F ) (using the dot is a place-holder marking where we have

abstracted from A) is naturally isomorphic to F . The first functor is in fact just

the composite functor

C op [C ,Set] SetX Nat(–,F )

where X is as in Theorem 120, and Nat(–, F ) is the sort of contravariant functor

we met in Defn. 99. Note, since X can also be thought of as a contravariant

functor from C and contravariant functors compose to give a covariant functor,

we do indeed end up with a covariant functor from C !

So we want to show the following:

Theorem 125. Let C be a locally small category, and F a functor F : C → Set.
Then the functors N = Nat(–, F ) ◦ X and F are naturally isomorphic.

Proof. Working through the definition of N

(i) N sends any C -object A to the set Nat(C (A, –), F ).

(ii) N sends any C -arrow f : A→ B to an arrow between Nat(C (A, –), F ) and

Nat(C (B, –), F ), namely the arrow that sends any α : C (A, –)⇒ F to the

corresponding α ◦ C (f, –) : C (B, –)⇒ F .

So now, given any f : A→ B, consider the following diagram,

Nat(C (A, –), F ) Nat(C (B, –), F )

FA F (B)

EAF

Nf

EBF

F (f)

Take any α : C (A, –)⇒ F . Then we have:

(1) EBF ◦Nf(α) = EBF (α◦C (f, –)) = (α◦C (f, –))B(1B) = αB◦C (f, –)B(1B) =

αB(f) (for the last equation, compare the end of the proof of Theorem 116).

(2) But also F (f)◦EAF (α) = F (f)(αA(1A)) = αB ◦C (A, f)(1A) = αB(f) (for

the middle equation we note that F (f)◦αA = αB ◦C (A, f) by a naturality

square for α).

So our diagram will always commute, and hence there is a natural isomorphism

EF : N ⇒ F with components (EF )A = EAF for each A ∈ C , and our theorem is

proved.

That captures in categorial terms the intuition that the construction of EAF
depends in a natural way on A; now for the companion intuition that it depends

in a natural way on F too.

Keeping A fixed, we want to prove Nat(C (A, –), F ) ∼= FA naturally in F .

This means showing the following:
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Theorem 126. Let C be a locally small category. Then Nat(C (A, –), –) and evA
are naturally isomorphic.

Here Nat(C (A, –), –) is a covariant hom-functor of the kind we met in Defn. 99,

and evA is the evaluation-at-A functor which sends F to FA and which we met

in Defn. 100.

Proof. Given any γ : F ⇒ G, consider the following diagram,

Nat(C (A, –), F ) Nat(C (A, –), G)

evA(F ) = FA evA(G) = GA

EAF

Nat(C (A,–),γ)

EAG

evA(γ)

Take any α : C (A, –)⇒ F , and recall that Nat(C (A, –), γ) sends α to γ◦α. Then

we have:

(1) EAG ◦Nat(C (A, –), γ)(α) = EAG(γ ◦ α) = (γ ◦ α)A(1A) = γA(αA(1A)).

(2) But also evA(γ) ◦ EAF (α) = γA(αA(1A)).

Hence the diagram always commutes. Therefore there is a natural isomorphism

EA : K ⇒ evA with components (EA)F = EAF for each F ∈ [C ,Set]. So we are

done.

22.4 Putting everything together

So now combine all the ingredients from the last three theorems . . .

Cue drum-roll!

. . . and we at last have the full-dress result:

Theorem 127 (Yoneda Lemma). For any locally small category C , object A ∈ C ,

and functor F : C → Set, Nat(C (A, –), F ) ∼= FA, both naturally in A ∈ C and

naturally in F ∈ [C ,Set].

There will evidently be a dual version too (involving contravariant functors in

C , i.e. functors in C op):

Theorem 128 (Yoneda Lemma). For any locally small category C , object A ∈ C ,

and functor F : C op → Set, Nat(C (–, A), F ) ∼= FA, both naturally in A ∈ C and

naturally in F ∈ [C op,Set].

Some authors call only the second version the Yoneda Lemma: we’ll use the label

for both, talking of the covariant and contravariant versions if we need to mark

the distinction.

And having done all this work, we see as an afterword that a further gener-

alization is in principle possible. We’ve so far been working with locally small
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categories, i.e. categories whose classes of arrows between pairs of objects are

indeed sets which live in Set. Suppose we turn our attention to larger categories

whose hom-classes (as we could naturally call them) are some bigger collections

which live in a suitably well-behaved category, call it Set, which allows bigger

collections. Then we can re-run our arguments to show that for a category C
with hom-classes in Set, A ∈ C , and a functor F : C → set, then the Set of

natural transformations from C (A, –) to F is in natural isomorphism with FA.

But we won’t delay over this further generalization – indeed, will we have

occasion to use it?

22.5 A brief afterword on ‘presheaves’

We pause for a footnote on some jargon that you might well encounter in treat-

ments of the Yoneda Lemma: you ought to know about it, even though we will

not adopt it here.

Recall our earlier talk of diagrams. In these terms, a set-valued (covariant)

functor F : C → Set counts as diagram of shape C in Set. Unpredictably, the

corresponding term for a set-valued contravariant functor is this:

Definition 108. A contravariant functor from C to Set, i.e. a functor F : C op →
Set, is a presheaf on C . C

The terminology ‘presheaf’ comes from an example in topology. But we will have

to just take it as an arbitrary, though widely used, label.

Definition 109. The presheaves on C (as objects) together with the natural

transformations between them (as arrows) form the presheaf category on C ,

denoted Ĉ . C

But note, Ĉ is just a relabelling of the functor category we met in §21.3 and

called [C op,Set]. And so the Yoneda embedding Y we met there is a functor

Y : C → Ĉ ; and in our new notation we can say that C is isomorphic to a full

subcategory of Ĉ .

Recall YA = C (–, A). Hence Ĉ (YA,F ) is the hom-class of the presheaf cate-

gory Ĉ which comprises the arrows of that functor category from C (–, A) to F ,

i.e. it is Nat(C (–, A), F ). That’s why (one version) of the Yoneda Lemma can

also be presented like this: on the usual assumptions, Ĉ (YA,F ) ∼= FA, naturally

in both A ∈ C and F in Ĉ .

216



23 Representables and universal elements

We saw in §16.3 that covariant hom-functors C (A, –) have the key property of

preserving whatever (small) limits exist in C . We will show in a moment that

isomorphic functors preserve the same limits. So we are naturally going to be

interested too in the functors which are isomorphic to hom-functors, as they will

also preserve limits. These are the representable functors.

This chapter, then, discusses representable functors, their so-called represen-

tations, and the associated notion of universal elements. The definitions and

theorems are easy: but the wider significance of these notions will perhaps only

become clear when we discuss them in relation to adjunctions in later chapters.

23.1 Isomorphic functors preserve the same limits

We start with the intuitive thought that naturally isomorphic functors ought to

behave in essentially the same way. In particular, we ought to have the following

theorem:

Theorem 129. Suppose the parallel functors F,G : C → D are naturally isomor-

phic. Then if F preserves a given limit so does G.

We confirm this by a pedestrian apply-the-definitions proof. The argument would

look simpler if we could wave our hands at diagrams drawn with different

coloured chalks and growing in real time on a blackboard! But in monochrome,

we have:

Proof. Let [L, πJ ] be a limit cone for D : J → C . Then for any f : J → K in J,

this diagram commutes in C :

L

DJ DK

πKπJ

Df

The actions of F and G now send this triangle to the two commuting triangles

in the next diagram, and the assumumed natural isomorphism α : F =⇒∼ G gives

us three naturality squares, giving us the sides of a commuting prism in D :
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FL

GL

FDJ FDK

GDJ GDK

FπJ FπK

αL

GπK

αDJ

FDf

αDK

GDf

GπJ

So now consider any cone [C, cJ ] over GD with vertex C. Being part of a cone,

each tall triangle such as the one below commutes:

C

FL

GL

FDJ FDK

GDJ GDK

cJ cK

u

v

GDf

Further, using the commuting base square of the prism, we can extend each leg

cJ of the cone by composition with α−1
DJ to get a cone [C,α−1

DJ ◦ cJ ] over FD.

Now suppose for the sake of argument that F preserves the limit [L, πJ ]. Then

[FL,FπJ ] must be a limit cone over FD. Which means that our cone [C,α−1
DJ◦cJ ]

over FD must factor through this limit cone via a unique u : C → FL.

But it is easy to check – chasing arrows round the diagram, using the sloping

sides of the prism – that this implies in turn that [C, cJ ] over GD factors through

[GL,GπJ ] via v = αL ◦ u.

And [C, cJ ] can’t factor through a distinct v′: or else there would be a distinct

u′ = α−1
L ◦ v′ which makes everything commute, which is impossible by the

uniqueness of u.

Hence, in sum, any [C, cJ ] factors through [GL,GπJ ] via a unique v, and

therefore [GL,GπJ ] is a limit cone. So G also preserves the limit [L, πJ ].

23.2 Representable functors

(a) As we remarked at the outset, covariant hom-functors preserve limits. Iso-

morphisms between functors carry over this property. Similarly contravariant
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hom-functors preserve colimits: and, by duality, isomorphisms between con-

travariant functors similarly carry over this property.

This makes the following concept an evidently interesting one:

Definition 110. A set-valued functor F : C → Set which is naturally isomorphic

to some hom-functor C : (A, –)C → Set is said to be representable.

Likewise, a set-valued contravariant functor F : C → Set which is naturally

isomorphic to some hom-functor C (–, A) : C → Set is also said to be repre-

sentable. C

And it is immediate that

Theorem 130. A representable functor F : C → Set preserves all (small) lim-

its that exist in C . Similarly, a contravariant representable functor preserves

colimits.

Now, it would perhaps seem most natural to describe the hom-functor that

gives us an isomorphic copy of the representable functor F : C → Set as being

a representation of F . But that isn’t how the standard jargon goes. Rather:

Definition 111. If there is a natural isomorphism ψ : C (A, –) =⇒∼ F , then the

object A in C , is said to be a representation of the representable functor F.

Similarly for the contravariant case. C

This way of talking does make some claims about representations initially sound

slightly odd: we just have to live with that.

Representations need not be strictly unique. However, we do have

Theorem 131. If the functor F : C → Set is represented by both A and B, then

A ∼= B.

Proof. If we have C (A, –) ∼= F ∼= C (B, –) then, in the notation of Theorem 122,

XA ∼= XB and hence A ∼= B.

23.3 A first example

Quite trivially, hom-functors themselves are representables. But are there other

kinds of example?

Let’s return to the very first functor we met back in §13.2, the forgetful functor

F : Mon→ Set which sends any monoidM = (M, ·, 1M ) to its underlying set M ,

and sends a monoid homomorphism f : M→M′ to the same function thought

of as an arrow f : M →M ′ in Set. And let’s ask: is there a representing object,

i.e. a monoid R, such that the hom-functor Mon(R, –) is naturally isomorphic

to the forgetful F?

Applying the usual definition, the hom-functor Mon(R, –) sends a monoidM
in Mon to Mon(R,M). And it sends a monoid homomorphism f : M→M′ to

219



Representables and universal elements

the set-function f ◦ – which sends an arrow g : R → M in Mon(R,M) to the

arrow f ◦ g : R→M ′ in Mon(R,M′).
And if this functor Mon(R, –) is to be naturally isomorphic with the forgetful

functor F , there will have to be an isomorphism ψ with a component at each

monoid M such that, for any f : M → M′ in Mon, the following diagram

commutes in Set:

M M ′

Mon(R,M) Mon(R,M′)

ψM

f

ψM′

f ◦ –

For this to work, we certainly need to choose a representing monoid R such

that (for any monoidM) there is a bijection between M and Mon(R,M′). And

presumably, for the needed generality, R will have to be a monoid without too

much distinctive structure. That severely limits the possible options.

First shot: take the simplest such ‘boring’ monoid, the one-element monoid

1. But a moment’s reflection shows that this can’t work as a candidate for R
(typically M has many members, Mon(1,M) can have only one, so there won’t

be an isomorphism between them).

Second shot: take the next simplest unstructured monoid, the free monoid with

a single generator. We can think of this monoid asN = (N,+, 0) whose generator

is 1, and whose every element is a sum of 1s. Now consider a homomorphism

from N toM. 0 ∈ N has to be sent to the identity element 1M in M . And once

we also fix that 1 ∈ N gets sent to some m ∈ M , that determines where every

element of N goes (since every non-zero N element 1 + 1 + 1 + . . .+ 1 will be sent

to a corresponding M -element m ·m ·m · . . . ·m).

So consider ψM : M → Mon(N ,M) which maps m to the unique homomor-

phism m : N → M which sends 1 ∈ N to m. ψM is evidently bijective – each

homomorphism from N to M is some m for one and only one m in M . Hence

ψM is an isomorphism in Set.
And now it is easily seen that our diagram always commutes. Chase an element

m ∈ M round the diagram. The route via the north-east node takes gives us

m 7−→ fm 7−→ fm, the other route gives us m 7−→ m 7−→ f ◦m. But f ◦m = fm

(consider how each acts e.g. on the number 3).

Since the diagram always commutes, this means in turn that the maps ψM
assemble into a natural isomorphism ψ : F =⇒∼ Mon(N , –). Hence, in summary:

Theorem 132. The forgetful functor F : Mon → Set is representable, and is

represented by N , the free monoid on one generator.

Being representable, it follows that the forgetful F preserves limits: but we knew

that already.
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23.4 More examples of representables

Unsurprisingly, there are analogous representation theorems for other forgetful

functors. For instance, although we won’t pause over the proofs, we have:

Theorem 133. (1) The forgetful functor F : Grp → Set is representable, and

is represented by Z, the group of integers under addition.

(2) The forgetful functor F : Ab→ Set is representable, and is also represented

by Z.

(3) The forgetful functor F : Vect → Set (where Vect is the category of vector

spaces over the reals) is representable, and is represented by R, the reals

treated as a vector-space.

(4) The forgetful functor F : Top→ Set is representable, and is represented by

the one-point topological space, call it S0.

To comment on the only last of these, we simply note that a trivial continuous

function with domain S0 into a space S in effect picks out a single point of S, so

the set of arrows Top(S0, S) is indeed in bijective correspondence with the set of

points FS.

Given such examples, you might be tempted to conjecture that all such forget-

ful functors into Set are representable. But not so. Consider FinGrp, the category

of finite groups. Then

Theorem 134. The forgetful functor F : FinGrp→ Set is not representable,

Proof. Suppose a putative representing group R has r members, and take any

group G with g > 1 members, where g is coprime with r. Then it is well known

that the only group homomorphism from R to G is the trivial one that sends

everything to the identity in G. But then the underlying set of G can’t be in

bijective correspondence with FinGrp(R,G) as would be required for a naturality

square proving that R represented F .

Let’s take another pair of examples. We first need to recall definitions from

Chapter 13:

(i) The (covariant) powerset functor P : Set→ Set maps a set X to its power-

set P(X) and maps a set-function f : X → Y to the function which sends

U ∈P(X) to its image f [U ] ∈P(Y ).

(ii) The contravariant powerset functor P : Setop → Set again maps a set to its

powerset, and maps a set-function f : Y → X to the function which sends

U ∈P(X) to its inverse image f−1[U ] ∈P(Y ).

Theorem 135. The contravariant powerset functor P is represented by the set

2 = {0, 1}; but the covariant powerset functor P is not representable.
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Proof. As yet, we don’t have any general principles about representables and

non-representables which we can invoke to prove theorems such us this. So again

we just need to labour through by applying definitions and seeing what we get.

If the contravariant functor P is to be representable, then there must be a

representing set R and a natural isomorphism ψ with components such that, for

all set functions f : Y → X, the following diagram always commutes:

PX PY

Set(X,R) Set(Y,R)

ψX

Pf

ψY

Set(f,R)

Now Set(X,R) is the set of set-functions from X to R, whose cardinality is

|R||X|; and the cardinality of PX, i.e. P(X), is 2|X|. So that forces R to be a

two-membered set: so we pick the set 2 = {0, 1}.
Set(X, 2) is then the set of characteristic functions for subsets of X, i.e. the

set of functions cU : X → {0, 1} where cU (x) = 1 iff x ∈ U ⊆ X. So the obvious

next move is to take ψX : PX → Set(X,R) to be the isomorphism that sends a

set U ∈P(X) to its characteristic function cU .

With this choice, the diagram always commutes. Chase the element U ∈ PX
around. The route via the north-east node takes us from U ⊆ X to f−1[U ] ⊆ Y
to its characteristic function. i.e. the function which maps y ∈ Y to 1 iff f(y) ∈ U .

Meanwhile, the route via the south-west node takes us first from U ⊆ X to cU ,

and then we apply Set(f, 2), which maps cU : X → 2 to cU ◦ f : Y → 2, which

again is the function which maps y ∈ Y to 1 iff f(y) ∈ U . Which establishes the

first half of the theorem.

For the second half of the theorem, we just note that if we try to run a similar

argument for the covariant functor P , we’d need to find a representing set R′ such

that PX and Set(R′, X) are always in bijective correspondence. But Set(R′, X)

is the set of set-functions from R′ to X, whose cardinality is |X||R′|, while the

cardinality of PX is 2|X|. And there is no choice of R′ which will make these

equal for varying X.

23.5 Universal elements

Back, though, to the basic idea. Concentrate on the covariant functors (we will

mostly do this for a couple of sections, letting duality take care of contravariant

cases). We say that a functor F : C → Set is representable iff there is some hom-

functor C (A, –) : C → Set such that F ∼= C (A, –). And then A is said to be a

representation of F .

We might prefer to say, however, that a full certificate for the representability

of F comprises not just the object A such that F ∼= C (A, –) but also the required
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natural isomorphism ψ : C (A, –) =⇒∼ F . In this spirit we might call the pair

(A,ψ) the full representation of F .

Now, the Yoneda Lemma – or more exactly, Theorem 124 proved en route to

the full Lemma – tells us more about natural transformations from C (A, –)→ F .

We can picture the situation like this:

FA Nat(C (A, –), F )

a α : C (A, –)→ F

αZ : C (A,Z)→ FZ

g 7−→ Fg(a)

XAF

That is to say, there is a bijection XAF between the members of FA and the

members of Nat(C (A, –), F ). This bijection matches up a ∈ FA with the natural

transformation α = XAF (a) : C (A, –)→ F . And this is the transformation whose

Z-component αZ sends a map g : A→ Z to Fg(a).

Therefore, instead of saying that a full certificate for the representability of F

is a pair (A,ψ), with A ∈ C and ψ : C (A, –) =⇒∼ F , we could equivalently invoke

the pair (A, a), with A ∈ C and a ∈ FA, where XAF (a) = ψ.

Now note that, since ψ is an isomorphism, each Z-component of XAF (a) has

to be an isomorphism; which means that for each z ∈ FZ there must be a unique

g : A→ Z such that Fg(a) = z.

Which all goes to motivate introducing the following concept (even if it doesn’t

yet explain the label for the notion):

Definition 112. A universal element of the functor F : C → Set is a pair (A, a),

where A ∈ C and a ∈ FA, and where for each Z ∈ C and z ∈ FZ, there is a

unique map g : A→ Z such that Fg(a) = z. C

The story for contravariant functors, by the way, will be exactly the same, except

that the map g will go the other way about, g : Z → A.

Theorem 136. A functor F : C → Set is representable by A iff it has a universal

element (A, a).

Proof. Our motivating remarks have already established the ‘only if’ direction;

so we only have to prove the converse.

Suppose, therefore, that (A, a) is a universal element for F . Then, a ∈ FA, and

there is a natural transformation χ = XAF (a) : C (A, –) → F whose component

χZ : C (A,Z)→ FZ sends a map g : A→ Z to Fg(a).

We need to show χZ has an inverse. But the definition of a universal element

tells in effect that there’s a function δZ which sends z ∈ FZ to the unique

g : A → Z in C (A,Z) where Fg(a) = z. And we can immediately see that χZ
and δZ are inverses.

So each component χZ is an isomorphism, and hence χ : C (A, –) =⇒∼ F , wit-

nessing that F is representable by A.
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The proof of Theorem 124 also shows that the bijection XAF associates αA(1A)

in FA with the natural transformation α : C (A, –)→ F Hence,

Theorem 137. If the functor F : C → Set has the full representation (A,α),

then F has the universal element (A,αA(1A)).

23.6 Categories of elements

(a) Why ‘universal element’? Because the definition invokes a universal map-

ping property: (A, a) is a universal element iff for every . . . there is a unique

map such that . . . . As in other cases, then, we might expect to be able to define

a wider category in which universal elements appear as special cases picked out

by this universal mapping property. So here goes:

Definition 113. EltsC (F ), the category of elements of the functor F : C → Set,
has the following data:

(1) Objects are the pairs (A, a), where A ∈ C and a ∈ FA.

(2) An arrow from (A, a) to (B, b) is a C -arrow f : A→ B such that Ff(a) = b.

(3) The identity arrow on (A, a) is 1A.

(4) Composition of arrows is induced by composition of C -arrows.

It is easily checked that this is a category. (Alternative symbolism for the cate-

gory includes variations on ‘
∫

CF ’.)

(b) Why ‘category of elements’? After all, functors don’t in a straightforward

sense have elements. But we can perhaps throw some light on the name as follows.

(i) Suppose we are given a category C whose objects are sets (perhaps with

some additional structure on them) and whose arrows are functions be-

tween sets. Then there will be some derived categories whose objects are

(or involve) elements of C ’s objects, and whose arrows between these ele-

ments are induced by the arrows between the containing sets.

Now such a category can be constructed in more than one way. But if

we don’t want the derived category to forget about which elements belong

to which sets, then a natural way to go would be to say that the objects of

the derived category – which could be called the category of elements of C
– are all the pairs (A, a) for A ∈ C , a ∈ A. And then given elements a ∈ A,

b ∈ B, whenever there is a C -arrow f : A → B such that f(a) = b, we’ll

say that f is also an arrow from (A, a) to (B, b) in our new category. This

derived category of elements in a sense unpacks what’s going on inside the

original category C .

(ii) However, in the general case, C ’s objects need not be sets so need not have

elements. But a functor F : C → Set gives us a diagram of C inside Set,
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and of course the objects in the resulting diagram of C do have elements.

So we can consider the category of elements of F ’s-diagram-of-C , which

– following the template in (i) – has as objects all the pairs (FA, a) for

A ∈ C , a ∈ FA. And then given elements a ∈ FA, b ∈ FB, whenever

there is a Set-arrow Ff : FA → FB such that Ff(a) = b, we’ll say that

Ff is also an arrow from (FA, a) to (FB, b) in our new category.

Now, we can streamline that. Instead of taking the objects to be pairs

(FA, a) take them simply to be pairs (A, a) (but where, still, a ∈ FA).

And instead of talking of the arrow Ff : FA → FB we can instead talk

more simply of f : A → B (but where, still, Ff(a) = b). And with that

streamlining – lo and behold! – we are back with the category EltsC (F ),

which is isomorphic to category of elements of F ’s-diagram-of-C , and which

– as convention has it – we’ll call the category of elements of F , for short.

So the construction of EltsC (F ) is tolerably natural.

(c) Here is another way of thinking of this category. Let 1 be some singleton

in Set. Then what is the comma category (1 ↓ F )? Applying the definition of

such categories given in §17.4, the objects of this category are pairs (A, a) where

A ∈ C and a : 1→ FA is an arrow in Set. And the arrows of the category from

(A, a) to (B, b) is a C -arrow f : A→ B such that b = Ff ◦ a.

But that is just the definition of EltsC (F ) except that we have traded in

the requirement that a is member of FA for the requirement that a is an ar-

row 1 → FA. But as we well know by now, members of a set are in bijective

correspondence with such arrows from a fixed singleton, and from a categorial

perspective we can treat members as such arrows (hence our using the same

label ‘a’ here for both). Hence

Theorem 138. For a given functor F : C → Set, the category EltsC (F ) is (iso-

morphic to) the comma category (1 ↓ F ) where 1 is terminal in Set.

(d) Having defined a category EltsC (F ) for universal elements of F : C → Set
to live in, we can finish by asking: how do we distinguish universal elements from

other elements categorially? The answer is immediate from Defn. 112, which in

our new terminology says:

Theorem 139. An object I = (A, a) in EltsC (F ) is a universal element iff, for

every object E in EltsC (F ) there is exactly one morphism f : I → E, so I is

initial in EltsC (F ).

But initial objects are unique up to unique isomorphism. Which, recalling what

isomorphisms in EltsC (F ) are, implies

Theorem 140. If (A, a) and (A′, a′) are universal elements for F : C → Set,
then there is a unique C -isomorphism f : A→ A′ such that Ff(a) = a′.
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23.7 Limits and exponentials as universal elements

(a) Let Cone(C,D) be the set of cones over some diagram D with vertex C

in some given category C – and we will assume that C is small enough for

Cone(C,D) indeed to be a set living in Set.
We can now define a contravariant functor Cone(–, D) : C op → Set as follows.

(i) Cone(–, D) sends an object C ∈ C to Cone(C,D).

(ii) Cone(–, D) sends a C -arrow f : C ′ → C to the arrow Cone(f) : Cone(C,D)

→ Cone(C ′, D), which takes a cone [C, πj ] and sends it to [C ′, πj ◦ f ].

It is easily checked that this is indeed a functor.

We now apply the definition of universal elements, tweaked for the contravari-

ant case. Then a universal element of the functor Cone(–, D) is a pair (L, [L, πJ ]),

where L is in C and [L, πJ ] is in Cone(L,D), the set of cones over D with vertex

L. And moreover, we require that for each C ∈ C and each cone [C, cJ ], there

is a unique map f : Z → L such that Cone(f)[L, πJ ] = [C, cJ ], which requires

πJ ◦ f = cJ for each J . But that’s just to say that [L, πJ ] is a limit cone! Hence

Theorem 141. In small enough categories, a limit cone over a diagram D is a

universal element for Cone(–, D).

Since limits are therefore initial objects in an associated category of elements,

they have to be unique up to a unique appropriate isomorphism, giving us an-

other proof of Theorem 44.

(b) Consider the contravariant functor C (–×B,C) which we met in §18.3 Ex. (7).

This sends an object A in C to the hom-set of arrows from A×B to C. And it

sends an arrow f : A′ → A to the map – ◦ f × 1B (i.e. to the map which takes

an arrow j : A×B → C and yields the arrow j ◦ f × 1B : A′ ×B → C).

Now apply the definition of universal element for the contravariant case. Then

a universal element of C (– × B,C) is a pair (E, ev), with E in C and ev in

C (E × B,C), such that for every A and every g ∈ C (A × B,C), there is a

unique g : A→ E such that C (–×B,C)(g)(ev) = g, i.e. ev ◦ g × 1B = g.

But, trivially squaring up the brackets, a pair [E, ev] with those properties is

exactly the exponential [CB , ev]. Hence

Theorem 142. The exponential [CB , ev], when it exists in C , is a universal

element of C (–×B,C).

Since exponentials are therefore also initial objects in an associated category of

elements, they too have to be unique up to a unique appropriate isomorphism,

giving us this time another proof of Theorem 63.
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We will have quite a lot more to say about functors, limits and representables and

about how they interrelate after we have introduced the next really important

Big Idea from category theory – namely, the idea of pairs of adjoint functors

and the adjunctions they form.

Now, one option would be to dive straight into the general story about ad-

joints. But that multi-faceted story can initially seem rather complex, and it is

quite easy to get lost in the details. So the plan here is to start by looking first at

a very restricted class of cases. These are the so-called Galois connections, which

are in effect adjunctions between two categories which are posets. In this chap-

ter, then, we discuss these Galois connections in an elementary way, as a way

of introducing us to some key themes. And for the moment, we largely suppress

the categorial context.

24.1 (Probably unnecessary) reminders about posets

Recall: The set C equipped with the binary relation 4, which we denote (C,4),

is a poset just in case 4 is a partial order – i.e., for all x, y, z ∈ C, (i) x 4 x,

(ii) if x 4 y and y 4 z then x 4 z, (iii) if x 4 y and y 4 x then x = y. (We will,

as appropriate, recruit ‘v’, ‘6’, ‘⊆’ as other symbols for partial orders.)

Reversing a partial order gives us another partial order. Hence reversing the

order in a poset C = (C,4) gives us a dual poset C op = (C,<) defined in the

obvious way.

There is a related notion of a strict poset defined in terms of a strict partial

order ≺, where x ≺ y iff x 4 y ∧ x 6= y for some partial order 4. It is just a

matter of convenience whether we concentrate on the one flavour of poset or the

other, and you will already be familiar with a variety of examples of ‘naturally

occurring’ posets of both flavours.

The following notions will also be entirely familiar, in one terminology or

another:

Definition 114. Suppose that C = (C,4) and D = (D,v) are two posets. Let

the map F : C → D be a function between the carrier sets C and D. Then

(1) F is monotone just in case, for all x, y ∈ C, if x 4 y then Fx v Fy;
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(2) F is an order-embedding just in case, for all x, y ∈ C, x 4 y iff Fx v Fy;

(3) F is an order-isomorphism iff F is a surjective order-embedding. C

Some obvious remarks about these notions:

i. Monotone maps compose to give monotone maps and composition is asso-

ciative. Likewise for order-embeddings and order-isomorphisms.

ii. Order-embeddings are injective. Keeping the same notation, suppose Fx =

Fy and hence both Fx v Fy and Fy v Fx. Then, if F is an embedding,

x 4 y and y 4 x, and hence x = y.

iii. If F [C] is C’s image under F , an order-embedding F : (C,4)→ (D,v) is

an order-isomorphism from (C,4) to (f [C],v).

iv. An order-isomorphism is bijective, and therefore is an isomorphism as a set-

function. Order-isomorphisms have unique inverses which are also order-

isomorphisms.

v. Posets are deemed isomorphic if there is an order-isomorphism between

them.

If (C,4) is a poset and X ⊆ C, then a maximum of X (with respect to

the inherited order 4) is defined in the obvious way: m is a maximum of X iff

m ∈ X∧(∀x ∈ X)x 4 m. Maxima are unique when they exist – for if m,m′ ∈ X
are both maxima, m′ 4 m and similarly m 4 m′ and hence m = m′.

If X ⊆ C we say that (X,4) is a sub-poset of (C,4); and note here that we

will not routinely fuss to distinguish a relation defined over C from the restriction

of that relation to X.

Definition 115. Suppose Π is a collection of sets. Then Π ordered by inclusion,

i.e. (Π,⊆), is an inclusion poset. C

Theorem 143. Every poset is isomorphic to an inclusion poset.

Proof. Take the poset (C,4). For each y ∈ C, now form the set containing it

and its 4-predecessors πy = {x ∈ C | x 4 y}. Let Π the set of all πy for y ∈ C.

Then (Π,⊆) is an inclusion poset.

Define F : (C,4) → (Π,⊆) by putting Fx = πx. Then F is very easily seen

to be a bijection, and also x 4 y iff πx ⊆ πy. So F is an order-isomorphism.

24.2 An introductory example

We rather informally describe what will turn out to be an important instance of

a Galois connection: we choose notation with an eye to smoothing the transitions

to later generalizations.

Suppose, then, that we have a poset C = (C,4) where the members of C are

sets of sentences from some suitable formal language L (the details of L won’t
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matter too much), and 4 is simply set-inclusion. We can think of the members

of C as theories couched in the language L; these theories are then partially

ordered from less specific (saying less) to more specific (saying more).

There is a corresponding poset D = (D,v) where the members of D are

collections of L-structures, i.e. sets of potential models for theories couched in L;

and we will take v to be the reverse of inclusion. A member of D can be thought

of as a set of alternative model ‘worlds’ a theory could be true of; these sets of

models are then also partially ordered from less specific (more alternatives) to

more specific (a narrower range).

There are then two very natural maps between these posets.

i. F : C → D sends a theory c ∈ C to d ∈ D, where d is the set of models

of c (i.e. d is the set containing each model on which all the sentences in c

are true).

ii. G : D → C sends a set of models d to the set c containing each sentence

which is true on every model in d.

Put it this way: F is the ‘find the models’ function. It takes a bunch of sentences

and returns all its models, the set of structures where the sentences in the bunch

are all true. In the other direction, G is the equally natural ‘find all the true

sentences’ function. It takes a bunch of structures and returns the set of sentences

that are true in all of those structures.

In general F and G will not be inverse to each other. But the mapping func-

tions do interrelate in the following nice ways:

(1) F and G are monotone.

And for all c ∈ C, d ∈ D,

(2) c 4 GFc and FGd v d,

(3) Fc v d iff c 4 Gd.

And further

(4) FGF = F and GFG = G.

Why so? For (1) we note that if the theory c′ is more informative than c, then

it will be true of a narrow range of possible models. And conversely, if d′ is a

narrower range of models than d, then more sentences will be true of everything

in d′ than are true of everything in d.

For the first half of (2) we note that if we start with a bunch of sentences

c, look at the models where they are all true together, and then look at the

sentences true in all those models together, we’ll get back original sentences in

c plus all their consequences (where consequence is defined in the obvious way

in terms of preservation of truth in the relevant set of structures). Similarly for

the other half.
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For (3) we note that if the models where all the sentences of c are true include

all those in d then the theory c must be included in the set of sentences true in

all the models in d, and vice versa.

For the first half of (4) we note that the models of a set of sentences c together

with their consequences are just the models of the original c. Similarly for the

other half.

So in summary: we have here a pair of posets C = (C,4), D = (D,v) and

a pair of functions F : C → D and G : D → C for which conditions (1) to (4)

hold. We will see in the next section that this situation is repeatedly realized in

different contexts.

24.3 Galois connections defined

We now generalize. However, as we’ll see in the next section, conditions (1) to

(4) are not independent. The first two together imply the third and fourth, and

the third implies the rest. Simply because it is prettier, then, we plump in this

section for a general definition just in terms of the third condition (which we

relabel):

Definition 116. Suppose that C = (C,4) and D = (D,v) are two posets, and

let F : C → D and G : D → C be a pair of functions such that for all c ∈ C,

d ∈ D,

(G) Fc v d iff c 4 Gd.

Then F and G form a Galois connection between C and D . When this holds, we

write F a G, and F is said to be the left adjoint of G, and G the right adjoint

of F .1 C

The first discussion of a version of such a connection F a G – and hence the

name – is to be found in Evariste Galois’s work in what has come to be known

as Galois theory, a topic beyond our purview here. And there are plenty of other

serious mathematical examples (e.g. from number theory, abstract algebra and

topology) of two posets with a Galois connection between them. But we really

don’t want to get bogged down in unnecessary mathematics at this early stage;

so for the moment let’s just give some simple cases, to add to our informally

described motivating example in the last section:

(1) Suppose F is an order-isomorphism between (C,4) and (D,v): then F−1

is an order-isomorphism in the reverse direction. Take c ∈ C, d ∈ D: then

trivially Fc v d iff F−1Fc 4 F−1d iff c 4 F−1d. Hence F a F−1.

1Talk of adjoints here seems to have been originally borrowed from the old theory of
Hermitian operators, where in e.g. a Hilbert space with inner product 〈·, ·〉 the operators A
and A∗ are said to be adjoint when we have, generally, 〈Ax, y〉 = 〈x,A∗y〉. The formal analogy
is evident.

230



24.3 Galois connections defined

(2) Take N = (N,6) and Q+ = (Q+,6), i.e. the naturals and the non-

negative rationals in their standard orders. Let I : N → Q+ be the injec-

tion function which maps a natural number to the corresponding rational

integer, and let F : Q+ → N be the ‘floor’ function which maps a rational

to the natural corresponding to its integral part. Then I a F is a Galois

connection from N to Q. Likewise if C : Q+ → N is the ‘ceiling’ function

which maps a rational to the smallest integer which is at least as big, then

C a I is a Galois connection going in the opposite direction.

(3) Let f : X → Y be some function between two sets X and Y . It induces a

function F : P(X) → P(Y ) between their powersets which sends A ⊆ X

to f [A], and another function F−1 : P(Y )→ P(X) which sends B ⊆ Y to

its pre-image under f , F−1[B] = {x ∈ X | f(x) ∈ B}. Then F a F−1 is a

Galois connection between the inclusion posets (P(X),⊆) and (P(Y ),⊆).

(4) Take any poset C = (C,4), and let 1 be a one object poset, i.e. of the

form ({0},=). Let F : C → 1 be the only possible function, the trivial one

which everything to 0. Then F has a right adjoint G : 1 → C just if it is

the case that, for any c ∈ C, Fc = 0 iff c 4 G0. So F has a right adjoint

just in case C has a maximum, and then G sends 1’s only element to it.

Dually, F has a left adjoint just in case C has a minimum, and then the

left adjoint G′ sends 1’s only element to that.

(5) Our next example is from elementary logic. Choose a favourite logical

proof-system L – it could be classical or intuitionistic, or indeed any other

logic, so long as it has a normally-behaved conjunction and conditional

connectives and a sensible deducibility relation. Let α ` β notate, as usual,

that there is a formal L-proof from premiss α to conclusion β. Then let |α|
be the equivalence class of wffs of the system interderivable with α. Take

E to be set of all such equivalence classes, and put |α| 4 |β| in E iff α ` β.

Then it is easily checked that (E,4) is a poset.

Now consider the following two functions between (E,4) and itself. Fix

γ to be some L-wff. Then let F send the equivalence class |α| to the class

|(γ ∧ α)|, and let G send |α| to the class |(γ → α)|.
Given our normality assumption, γ ∧ α ` β if and only if α ` γ → β.

Hence |γ∧α| 4 |β| iff |α| 4 |γ → β|. That is to say F |α| 4 |β| iff |α| 4 G|β|.
Hence we have a Galois connection F a G between (E,4) and itself, and

in a slogan, ‘Conjunction is left adjoint to conditionalization’.

(6) Our last example for the moment is another example from elementary

logic. Let L now be a first-order logic, and consider the set of L-wffs with

at most the variables ~x free.

We will write ϕ(~x) for a formula in in this class, |ϕ(~x)| for the class of

formulae interderivable with ϕ(~x), and E~x for the set of such equivalence

classes of formulae with at most ~x free. Using 4 as in the last example,

(E~x,4) is a poset for any choice of variables ~x.
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We now consider two maps between the posets (E~x,4) and (E~x,y,4). In

other words, we are going to be moving between (equivalence classes of)

formulae with at most ~x free, and (equivalence classes of) formulae with

at most ~x, y free – where y is a new variable not among the ~x.

First, since every wff with at most the variables ~x free also has at most

the variables ~x, y free, there is a trivial map F : E~x → E~x,y that sends the

class of formulas |ϕ(~x)| in E~x to the same class of formulas which is also

in E~x,y.

Second, we define the companion map G : E~x,y → E~x that sends |ϕ(~x, y)|
in E~x,y to |∀yϕ(~x, y)| in E~x.

Then F a G, i.e. we have another Galois connection. For that is just to

say

F (|ϕ(~x)|) 4 |ψ(~x, y)| iff |ϕ(~x)| 4 G(|ψ(~x, y)|).

Which just reflects the familiar logical rule that

ϕ(~x) ` ψ(~x, y) iff ϕ(~x) ` ∀yψ(~x, y),

so long as y is not free in ϕ(~x). Hence universal quantification is right-

adjoint to a certain trivial inclusion operation.

And we can exactly similarly show that existential quantification is left-

adjoint to the same operation.

Some morals. Our first example shows that Galois connections are at least as

plentiful as order-isomorphisms: and such an isomorphism will have a right ad-

joint and left adjoint which are the same (i.e. both are the isomorphism’s inverse).

The second and fourth cases show that posets that aren’t order-isomorphic can

in fact still be Galois connected. The third case shows that posets can have

many Galois connections between them (as any f : X → Y generates a connec-

tion between the inclusion posets on the powersets of X and Y ). The fourth

example gives a case where a function has both a left and a right adjoint which

are different. The fourth and sixth cases give a couple of illustrations of how a

significant construction (taking maxima, forming a universal quantification re-

spectively) can be regarded as adjoint to some quite trivial operation. The fifth

example, like the third, shows that even when the Galois-connected posets are

isomorphic (in the fifth case trivially so, because they are identical!), there can

be a pair of functions which aren’t isomorphisms but which also go to make

up a connection between the posets. And the fifth and sixth examples, like the

motivating example in the previous section, illustrate why Galois connections

are of interest to logicians.

24.4 Galois connections re-defined

The following theorem is basic:
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Theorem 144. Suppose that C = (C,4) and D = (D,v) are posets with maps

F : C → D and G : D → C between them. Then F a G iff and only if

(1) F and G are both monotone, and

(2) for all c ∈ C, d ∈ D, c 4 GFc and FGd v d, and

(3) FGF = F and GFG = G.

Proof. (If ) Assume conditions (1) and (2) both hold. And suppose Fc v d. Since

by (1) G is monotone, GFc 4 Gd. But by (2) c 4 GFc. Hence by transitivity

c 4 Gd. That establishes one half of the biconditional (G). We don’t need (3)

here. The proof of the other half is dual.

(Only if ) Suppose (G) is true. Then in particular, Fc v Fc iff c 4 GFc. Since

v is reflexive, c 4 GFc. Similarly for the other half of (2).

Now, suppose also that c 4 c′. Then since we’ve just shown c′ 4 GFc′, we

have c 4 GFc′. But by (G) we have Fc v Fc′ iff c 4 GFc′. Whence, Fc v Fc′

and F is monotone. Similarly for the other half of (1).

For (3), since for any c ∈ C, c 4 GFc, and also F is monotone, it follows that

Fc v FGFc.
But the fundamental condition (G) yields FGFc v Fc iff GFc 4 GFc. The

r.h.s. is trivially true, so FGFc v Fc.
By the antisymmetry of v, then, FGFc = Fc. Since c was arbitrary, FGF =

F . Similarly for the other half of (3).

This theorem means that, as already intimated at the end of §24.2, we could

equally well have defined a Galois connection like this:

Definition 117 (Alternative). Suppose that C = (C,4) and D = (D,v) are two

posets, and let F : C → D and G : D → C be a pair of functions such that for

all c ∈ C, d ∈ D,

(1) F and G are both monotone, and

(2) for all c ∈ C, d ∈ D, c 4 GFc and FGd v d, and

(3) FGF = F and GFG = G.

Then F and G form a Galois connection between C and D . C

Two comments about this. First, our proof of Theorem 144 shows that we

needn’t have explicitly given clause (3) in our alternative definition as it follows

from the other two. We include it because when we move on from the case

of Galois connections to discuss adjunctions more generally, again giving two

definitions, we will need to explicitly mention the analogue of clause (3).

Second, note that we could replace clause (2) with the equivalent clause

(2′) (i) if c 4 c′, then both c 4 c′ 4 GFc′ and c 4 GFc 4 GFc′; and

(ii) if d v d′, then both FGd v d v d′ and FGd v FGd′ v d′.
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For trivially (2′) implies (2); conversely (1) and (2) imply (2′). Again, we mention

this variant on our alternative definition of Galois connections for later use when

we come to generalize.

24.5 Some basic results about Galois connections

(a) We now have a pair of equivalent definitions of Galois connections, and a

small range of elementary examples. In this section we start by proving a couple

of theorems that show that such connections behave just as you would hope, in

two different respects. First, if there is a connection between C and D and a

connection between D and E then they can be composed to give a connection

between C and E . And second, inside a Galois connection, a left adjoint uniquely

fixes its right adjoint, and vice versa. Thus:

Theorem 145. Suppose there is a Galois connection F a G between the posets

C = (C,4) and D = (D,v), and a connection H ` K between the posets D and

E = (E,⊆). Then there is a Galois connection HF a GK between C and E .

Proof. Take any for any c ∈ C, e ∈ E. Then, using the first connection, we have

Fc v Ke iff c 4 GKe. And by the second connection, we have HFc ⊆ e iff

Fc v Ke.
Hence HFc ⊆ e iff c 4 GKe. Therefore HF a GK.

Theorem 146. If we have Galois connections F ` G, F ` G′ between the posets

(C,4) and (D,v), then G = G′. Likewise, if F ` G, F ′ ` G are both Galois

connections between the same posets, then F = F ′.

Proof. We prove the first part. F ` G′ implies, in particular, that for any d ∈ D,

FGd v d iff Gd 4 G′d.
But by Theorem 144, applied to the connection F ` G, we have FGd v d. So

we can infer that, indeed, Gd 4 G′d.
By symmetry, G′d 4 Gd. But d was arbitrary, so indeed G = G′.

Careful, though! This second theorem does not say that, for any F which maps

between (C,4) and (D,v), there must actually exist a unique corresponding

G in the reverse direction such that F a G (this isn’t true as we saw in §24.3

Ex. (4)). Nor does it say that when there is a Galois connection between the

posets, it is unique (our toy examples have already shown that that is false too).

The claim is only that, if you are given a possible left adjoint – or a possible

right adjoint – there can be at most one candidate for its companion to complete

a connection.

(b) Given that adjoint functions determine each other, we naturally seek an

explicit definition of one in terms of the other. Here it is:
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Theorem 147. If F a G is a Galois connection between the posets (C,4) and

(D,v), then

(1) Gd = the maximum of {c ∈ C | Fc v d},
(2) Fc = the minimum of {d ∈ D | c 4 Gd}.

Proof. We argue for (1), leaving the dual (2) to take care of itself. Fix on an

arbitrary d ∈ D and for brevity, put Σ = {c ∈ C | Fc v d}.
Theorem 144 tells us that (i) for any u ∈ C, u 4 GFu, (ii) FGd v d, and (iii)

G is monotone. So by (ii), Gd ∈ Σ.

Now suppose u ∈ Σ ⊆ C. Then Fu v d. By (iii), GFu 4 Gd. Whence from

(i), u 4 Gd.

That shows Gd is both a member of and an upper bound for Σ, i.e. is a

maximum for Σ.

Recall the posets N = (N,6) and Q+ = (Q+,6) with the injection map

I : N → Q+ and floor function F : Q+ → N which maps a rational to the

natural corresponding to its integral part. Then we remarked before that I a F.
Now we note that F a I is false. Indeed, there can be no connection of the form

F a G from Q+ to N . For Fq = 1 iff 1 6 q < 2, and hence {q ∈ Q+ | Fq 6 1}
has no maximum, and so there can be no right adjoint to F .

Generalizing, we have the following:

Theorem 148. Galois connections are not necessarily symmetric. That is to

say, given F a G is a Galois connection between the posets C and D , it does not

follow that G a F is a connection between D and C .

24.6 Fixed points, isomorphisms, and closures

Theorems 145 and 146 tell us that Galois connections are rather nicely behaved.

This section now explores some of the consequences of there being a Galois

connection F a G between two posets.

(a) Theorem 144 tells us, in particular, where to find the fixed points of the

composite maps GF and FG:

Theorem 149. Given a Galois connection F a G between the posets (C,4) and

(D,v), then

(1) c ∈ G[D] iff c is a fixed point of GF ; d ∈ F [C] iff d is a fixed point of FG.

(2) G[D] = (GF )[C]; F [C] = (FG)[D].

Proof. (1) Suppose c ∈ G[D]. Then for some d ∈ D, c = Gd and hence GFc =

GFGd = Gd = c, so c is a fixed point of GF . Conversely suppose GFc = c.

Then c is the value of Gd for d = Fc, and therefore c ∈ G[D].
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Hence c ∈ G[D] iff c is a fixed point of GF . The other half of (1) is dual.

(2) We have just seen that if c ∈ G[D] then c = GFc so c ∈ (GF )[C].

Therefore G[D] ⊆ (GF )[C]. Conversely, suppose c ∈ (GF )[C], then for some

c′ ∈ C, c = GFc′; but Fc′ ∈ D so c ∈ G[D]. Therefore (GF )[C] ⊆ G[D].

Hence G[D] = (GF )[C]. The other half of (2) is dual.

(b) We know that a pair of posets which have a Galois connection between

them needn’t be isomorphic overall. But this next theorem says that they must,

for all that, contain a pair of isomorphic sub-posets (and typically, more than

just some than just one-object posets which are trivially isomorphic).

Definition 118. Suppose F a G is a Galois connection between the posets C =

(C,4) and D = (D,v). Put Ca = G[D] and Da = F [C]. Then we define

C a = (Ca,4) and Da = (Da,v). C

Theorem 150. If F a G is a Galois connection between the posets C = (C,4)

and D = (D,v), then C a and Da are order-isomorphic.

Proof. We show that F restricted to Ca provides the desired order isomorphism.

Note first that if c ∈ Ca then, then Fc ∈ F [C] = Da. So F as required

sends elements of Ca to elements of Da. Moreover every element of Da is Fu

for some u ∈ Ca. For if d ∈ F [C], then for some c, d = Fc = FGFc = Fc where

u = GFc ∈ G[D] = Ca.

So F restricted to Ca is onto Da. It remains to show that it is an order-

embedding. We know that F will be monotone, so what we need to prove is

that, if c, c′ ∈ Ca and Fc v Fc′, then c 4 c′.
But if Fc v Fc′, then by the monotonicity of G, GFc 4 GFc′. Recall, though,

that c, c′ ∈ Ca = G[D] are fixed points of GF . Hence p 4 p′ as we want.

(c) Finally, we want the idea of a closure function K on a poset which, roughly

speaking, maps a poset ‘upwards’ to a subposet which then stays fixed under

further applications of K:

Definition 119. Suppose C = (C,4〉) is a poset; then a closure function on C
is a function K : C → C such that, for all c, c′ ∈ C,

(1) c 4 Kc;

(2) if c 4 c′, then Kc 4 Kc′, i.e. K is monotone;

(3) KKc = Kc, i.e. K is idempotent. C

Theorem 151. If F ` G is a Galois connection between C and another poset,

then GF is a closure function for C .

Proof. We quickly check that the three conditions for closure apply. (i) is given

by Theorem 144. (ii) is immediate as GF is a composition of monotone functions.

And for (iii), we know that FGF = F , and hence GFGF = GF .
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24.7 One way a Galois connection can arise

The last three sections have been about Galois connections in general, and reveal

that they have a perhaps surprisingly rich structure. In this section, we now note

one characteristic way in which connections can arise.

Theorem 152. Let R be a binary relation between members of X and members

of Y . We define posets on the powersets, C = (P(X),⊆), D = (P(Y ),⊇) – note

the order reversal.

Define F : C → D by putting FA = {b | (∀a ∈ A)aRb} for A ⊆ X. Similarly

define G : D → C by putting GB = {a | (∀b ∈ B)aRb} for B ⊆ Y .

Then F a G.

Proof. We just have to prove that principle (G) holds, i.e. for any A ⊆ X, B ⊆ Y ,

FA ⊇ B iff A ⊆ GB.

But simply by applying definitions we see FA ⊇ B iff (∀b ∈ B)(∀a ∈ A)aRb

iff (∀a ∈ A)(∀b ∈ B)aRb iff A ⊆ GB.

Let’s say that Galois connection produced in this way is relation-generated. Ga-

lois’s original classic example was of this kind. And our original motivating ex-

ample, which we return to in the next section, is relation-generated too.

24.8 Syntax and semantics briefly revisited

(a) In his famous Dialectica paper ‘Adjointness in foundations’ (1969), F.

William Lawvere writes of ‘the familiar Galois connection between sets of ax-

ioms and classes of models, for a fixed [signature]’. This is in fact the motivating

example which we presented very informally in §24.2. We will very briefly revisit

it.

Let L be a formal language. Then a set of L-axioms in the wide sense that

Lawvere is using is just any old set of L-sentences. And by talk of ‘models’,

Lawvere means structures apt for interpreting L’s. (We’ll cheerfully sidestep

issues of size by assuming that there’s only a set’s-worth of such structures.)

We defined two posets. First, C = (C,4), where C is a collection of sets of

L-sentences, and the ordering is set-inclusion. Second, D = (D,v), where D is a

collection of sets of L-structures, and the ordering is the inverse of set-inclusion.

Then we met two functions which we can define like this (using ϕ, σ as variables

over sentences and structures respectively)

(1) F : C → D is such that Fc = {σ | (∀ϕ ∈ c)σ � ϕ},
(2) G : D → C is such that Gd = {ϕ | (∀σ ∈ d)σ � ϕ},

where σ � ϕ if ϕ is true interpreted in the structure σ.

Put like that, Theorem 152 (with the generating relation R between a sentence

and a structure the converse of �) immediately gives us
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Theorem 153. F a G is a Galois connection between C and D .

(b) Now we can just turn the handle, and apply all those general theorems

about Galois connections from the preceding sections to our special case of the

connection between the ‘syntax’ C and ‘semantics’ D , recovering the sorts of

results listed at the end of §24.2 and more. Of course, we get no exciting new

logical news this way. But that’s not the name of the game. The point rather

is this. We take the fundamental true-of relation which can obtain between an

L-sentence and an L-structure: this immediately generates a certain Galois con-

nection F a G between two naturally ordered ‘syntactic’ and ‘semantic’ posets,

and this in turn already dictates that e.g. the composite maps GF and FG will

have special significance as closure operations. So we come to see some famil-

iar old logical ideas as exemplifying essentially general order-theoretic patterns

which recur elsewhere. And that’s illuminating.
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NB: This chapter, and the next two, are taken, unrevised, from an earlier set of

Notes on Category Theory. They continue the story without, I hope, too many

jarring discontinuities. These chapters are less gentle than what’s gone before and

need a great deal of rewriting, not to mention checking for bad errors! However,

if you have got this far then they should still be manageable and will hopefully be

useful as a Rough Guide to adjunctions.

Recall that quotation from Tom Leinster which we gave at the very outset:

Category theory takes a bird’s eye view of mathematics. From high

in the sky, details become invisible, but we can spot patterns that

were impossible to detect from ground level. (Leinster, 2014, p. 1)

Perhaps the most dramatic patterns that category theory newly reveals are those

which involve adjunctions. As Mac Lane famously puts it (1997, p. vii) the slogan

is “Adjoint functors arise everywhere.” In the last two chapters, we have seen a

restricted version of the phenomenon (well known before category theory). But

category theory enables us to generalize radically.

25.1 Adjoint functors: a first definition

(a) Let P now be (not the poset itself but) the category corresponding to the

poset (P,4). So the objects of P are the members of P , and there is a P-arrow

p→ p′ (for p, p′ ∈ P ), which we can identify with the pair 〈p, p′〉, if and only if

p 4 p′. Similarly let Q be the category corresponding to the poset (Q,v).

Now, changing symbolism just a little, a Galois connection between the posets

(P,4) and (Q,v) is a pair of functions f : P → Q and g : Q→ P such that

(i) f and g are monotone, and

(ii) f(p) v q iff p 4 g(q) for all p ∈ P, q ∈ Q.

(Well, we know condition (ii) implies condition (i), but it is helpful now to

make it explicit.) However, monotone functions f , g between posets give rise to

functors F , G between the corresponding categories – see §13.2, Ex. (F6). Thus

the monotone function f : P → Q gives rise to the functor F : P → Q which
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sends the object p in P to f(p) in Q, and sends an arrow p→ p′ in P, i.e. the

pair 〈p, p′〉, to the pair 〈f(p), f(p′)〉 which is an arrow in Q. Similarly, g : Q→ P

gives rise to a functor G : Q →P.

So (ii) means that our adjoint functions, i.e. the Galois connection (f, g) be-

tween the posets (P,4) and (Q,v), gives rise to a pair of functors (F,G) between

the poset categories P and Q, one in each direction, such that there is a (unique)

arrow Fp → q in Q iff there is a corresponding (unique) arrow p → Gq in P.

This sets up an isomorphism between the hom-sets Q(Fp, q) and P(p, Fq), for

each p ∈P, q ∈ Q.

Of course, for a particular choice of p, q, this will be a rather trivial iso-

morphism, as the homsets in this case are either both empty or both single-

membered. But what isn’t trivial is that the existence of the isomorphism arises

systematically from the Galois connection, in a uniform and natural way. And we

now know how to put that informal claim into more formal category-theoretic

terms: we have a natural isomorphism here, i.e. Q(Fp, q) ∼= P(p, Fq) naturally

in p ∈P, q ∈ Q.

(b) Now we generalize this last idea in the obvious way, and also introduce

some absolutely standard notation:

Definition 120. Suppose A and B are categories and F : A → B and G : B →
A are functors. Then F is left adjoint to G and G is right adjoint to F , notated

F a G, iff

B(F (A), B) ∼= A (A,G(B))

naturally in A ∈ A , B ∈ B. We also write A B
F

⊥
G

when this situation

obtains, or F a G : A → B, and we say that F and G (together with the

associated isomorphism between the relevant hom-sets) form an adjunction.

Here, and onwards through our discussions of adjunctions, we’ll take it that

there is no problem in talking about the relevant hom-sets (either because the

categories are small enough, or because we are taking a relaxedly inclusive line

on what counts as ‘sets’).

There is an additional fairly standard bit of notation to indicate the action of

the natural isomorphism between the hom-sets in an adjunction:

Definition 121. Given the situation just described, and an arrow f : F (A)→ B,

then one direction of the natural bijection between the hom-sets sends that arrow

to its transpose f : A→ G(B); likewise the inverse bijection associates an arrow

g : A→ G(B) to its transpose g : F (A)→ B.

(Another common notation distinguishes f [ for our f and g] for our g, and this

notation might be preferable in principle since transposing by ‘sharpening’ and

‘flattening’ are indeed different operations. But the double use of the overlining

notation is standard, and is slick.)
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Evidently, transposing twice takes us back to where we started: f = f and

g = g.

25.2 Examples

As we’d expect from our discussion of Galois connections, given the existence of

an adjoint connection F a G we can deduce a range of additional properties of

the adjoint functors and of the operation of transposition. But before exploring

this any further in the abstract, let’s have some more examples of adjunctions

(to add to those generated by Galois connections).

For a warm-up exercise, we start with a particularly easy case:

(1) Consider any (non-empty!) category A and the one object category 1

(comprising just the object • and its identity arrow). There is a unique

functor F : A → 1. Questions: when does F have a right adjoint G : 1 →
A ? what about a left adjoint?

If G is to be a right adjoint, remembering that FA = • for any A ∈ A ,

we require

1(•, •) ∼= A (A,G•),

for any A. The hom-set on the left contains just the identity arrow. So that

can only be in bijection to the hom-set on the right, for each A, if there is

always a unique arrow A→ G•, i.e. if G• is terminal in A .

In sum, F has a right adjoint G : 1→ A just in case G sends 1’s unique

object to A ’s terminal object: no terminal object, no right adjoint.

Dually, F has a left adjoint if and only if A has an initial object.

This toy example reminds of what we have already seen in the special case of

Galois connections, namely that a functor may or may not have a right adjoint,

and independently may or may not have a left adjoint, and if both adjoints exist

they may be different. But let’s also note that we have here a first indication

that adjunctions and limits can interact in interesting way: in this case, indeed,

we could define terminal and initial objects for a category A in terms of the

existence of right and left adjoints to the functor F : A → 1. We will return to

this theme.

Now for a couple of more substantive examples. And to speed things along, we

will procede informally: we won’t in this section actually prove that the relevant

hom-sets in our various examples are naturally isomorphic in the official formal

sense, but rather we will take it as enough to find a bijection which can be

evidently set up in a systematic and intuitively natural way, without arbitrary

choices.

(2) Let’s next consider the forgetful functor U : Top→ Set which sends each

topological space to its underlying set of points, and sends any continuous
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function between topological spaces to the same function thought of as a

set-function. Questions: does this have a left adjoint? a right adjoint?

If U is to have a left adjoint F : Set→ Top, then for any set S and for

any topological space (T,O) – with T a set of points and O a topology (a

suitable collection of open sets) – we require

Top(F (S), (T,O)) ∼= Set(S,U(T,O)) = Set(S, T ),

where the bijection here needs to be a natural one.

Now, on the right we have the set of all functions f : S → T . So that

needs to be in bijection with the set of all continuous functions from FS

to (T,O). How can we ensure this holds in a systematic way, for any S

and (T,O)? Well, suppose that for any S, F sends S to the topological

space (S,D) which has the discrete topology (i.e. all subsets of S count

as open). It is a simple exercise to show that every function f : S → T

then counts as a continuous function f : (S,D) → (T,O). So the functor

F which assigns a set the discrete topology will indeed be left adjoint to

the forgetful functor.

Similarly, the functor G : Set→ Top which assigns a set the indiscrete

topology (the only open sets are the empty set and S itself) is right adjoint

to the forgetful functor U .

(3) Let’s now take another case of a forgetful functor, this time the functor

U : Mon → Set which forgets about monoidal structure. Does U have a

left adjoint F : Set→Mon. If (M, ·) is a monoid and S some set, we need

Mon(FS, (M, ·)) ∼= Set(S,U(M, ·)) = Set(S,M).

The hom-set on the right contains all possible functions f : S → M . How

can these be in one-one correspondence with the monoid homomorphisms

from FS to (M, ·)?
Arm-waving for a moment, suppose FS is some monoid with a lot of

structure (over and above the minimum required to be a monoid). Then

there may be few if any monoid homomorphisms from FS to (M, ·). There-

fore, if there are potentially to be lots of such monoid homorphisms, one

for each f : S → M , then FS will surely need to have minimal structure.

Which suggests going for broke and considering the limiting case, i.e. the

functor F which sends a set S to (S∗, ∗), the free monoid on S which we

met back in §13.2, Ex. (F13). Recall, the objects of (S∗, ∗) are sequences

of S-elements (including the null sequence) and its monoid operation is

concatenation.

There is an obvious map α which takes an arrow f : S → M and sends

it to f : (S∗, ∗)→ (M, ·), where f sends the empty sequence of S-elements

to the unit of M , and sends the finite sequence x1 ∗x2 ∗x3 ∗ . . . ∗xn to the

M -element fx1 · fx2 · fx3 · . . . · fxn. So defined, f respects the unit and

the monoid operation and so is a monoid homomorphism.
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There is an equally obvious map β which takes an arrow g : (S∗, ∗) →
(M, ·) to the function g : S → M which sends an element x ∈ S to g〈x〉
(i.e. to g applied to the one-element list containing x).

Evidently α and β are inverses, so form a bijection, and their construc-

tion is quite general (i.e. can be applied to any set S and monoid (M, ·)).
Which establishes that, as required Mon(FS, (M, ·)) ∼= Set(S,M).

So in sum, the free functor F which takes a set to the free monoid on

that set is left adjoint to the forgetful function U which sends a monoid to

its underlying set.

Now recall Theorem 146: if a function f has a left or right adjoint to make up

a Galois connection, then that adjoint is unique. An analogous uniqueness result

applies to adjoints more generally: if a functor has a left adjoint, then it is unique

up to isomorphism, and likewise right adjoints (when they exist) are unique up to

isomorphism. So we can say that the functor which assigns a set the indiscrete

topology is in fact the right adjoint to the functor which forgets topological

structure, and we can say that the functor sending a set to the free monoid

on that set is the left adjoint of the forgetful functor on monoids. However, the

uniqueness theorem for adjoints takes a bit of work; so we’ll delay the proof until

the next chapter, §??. For the moment, then, we’ll officially continue simply to

talk of one functor being left (right) adjoint to another without making explicit

uniqueness claims.

Our example involving monoids is actually typical of a whole cluster of cases. A

left adjoint of the trivial forgetful functor from some class of algebraic structures

to their underlying sets is characteristically provided by the non-trivial functor

that takes us from a set to a free structure of that algebraic kind. Thus we have,

for example,

(4) The forgetful functor U : Grp → Set has as a left adjoint the functor
F : Set → Grp which sends a set to the free group on that set (i.e. the

group obtained from a set S by adding just enough elements for it to

become a group while imposing no constraints other than those required

to ensure we indeed have a group).

What about right adjoints to our last two forgetful functors?

(5) We will later show that the forgetful functor U : Mon→ Set. has no right

adjoint by a neat proof in §27.3. But here’s a more arm-waving argument.

U would have a right adjoint G : Set → Mon just in case Set(M,S) =

Set(U(M, ·), S) ∼= Mon((M, ·), GS), for all monoids (M, ·) and sets S. But

this requires the monoid homomorphisms from (M, ·) to GS always to be

in bijection with the set-functions from M to S. But that’s not possible

(consider keeping the sets M and S fixed, but changing the possible monoid

operations with which M is equipped).

Similarly the forgetful functor U : Grp→ Set has no right adjoint.
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(6) There are however examples of ‘less forgetful’ algebraic functors which

have both left and right adjoints. Take the functor U : Grp→Mon which

forgets about group inverses but keeps the monoidal structure. This has

a left adjoint F : Mon → Grp which converts a monoid to a group by

adding inverses for elements (and otherwise making no more assumptions

that are needed to get a group). U also has a right adjoint G : Mon→ Grp

which rather than adding elements subtracts them by mapping a monoid

to the submonoid of its invertible elements (which can be interpreted as a

group).

Let’s quickly check just the second of those claims. We have U a G so

long as

Mon(U(K,×), (M, ·)) ∼= Grp((K,×), G(M, ·)),

for any monoid (M, ·) and group (K,×). Now we just remark that every

element of (K,×)-as-a-monoid is invertible and a monoid homomorphism

sends invertible elements to invertible elements. Hence a monoid homo-

morphism from (K,×)-as-a-monoid to (M, ·) will in fact also be a group

homomorphism from (K,×) to the submonoid-as-a-group G(M, ·).
(7) Recall the functor F : Set→ Rel which ‘forgets’ that arrows are functional

(see §13.2, Ex. (F2)). And now we introduce a powerset functor P : Rel→
Set defined as follows:

a) P sends a set A to its powerset P(A), and

b) P sends a relation R in A × B to the function fR : P(A) → P(B)

which sends X ⊆ A to Y = {b | (∃x ∈ X)Rxb} ⊆ B.

Claim: F a P .

We observe that there is a (natural!) isomorphism which correlates a

relation R in A×B with a function f : A→ P(B) where f(x) = {y | Rxy}
and so Rxy iff y ∈ f(x). This gives us a isomorphism Rel(FA,B) ∼=
Set(A,PB) which can be checked to be natural in A ∈ Set and B ∈ Rel.

And now for some cases not involving forgetful functors:

(8) Suppose C is a category with exponentiation (and hence with products).

Then, in a slogan, exponentiation by B is right adjoint to taking the prod-

uct with B.

To see this, we define a pair of functors from C to itself. First, there is

the functor –×B : C → C which sends an object A to the product A×B,

and sends an arrow f : A→ A′ to f × 1B : A×B → A′ ×B.

Second there is the functor (–)B : C → C which sends an object C to

CB , and sends an arrow f : C → C ′ to f ◦ ev : CB → C ′B as defined in the

proof of Theorem ??. It is easily checked that (–)B satisfies the conditions

for functoriality.

By the theorem just mentioned, C (A × B,C) ∼= C (A,CB) naturally in

A and C. Hence (–×B) a (–)B .
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(9) Recall Defn. ?? which defined the product of two categories. Given a cat-

egory C there is a trivial diagonal functor ∆: C → C × C which sends

a C -object A to the pair 〈A,A〉, and sends a C -arrow f to the pair of

arrows 〈f, f〉. What would it take for this functor to have a right adjoint

G : C × C → C ? We’d need

(C × C )(〈A,A〉, 〈B,C〉) ∼= C (A,G〈B,C〉)

naturally in A ∈ C and in 〈B,C〉 ∈ C ×C . But by definition the left hand

hom-set is C (A,B)×C (A,C). But then if we can take G to be the product

functor that sends 〈B,C〉 to the product object B × C in C we’ll get an

obvious natural isomorphism

C (A,B)× C (A,C) ∼= C (A,B × C).

So in sum, ∆: C → C × C has a right adjoint if C has binary products.

(10) For topologists, let’s simply mention another example of a case where the

adjoint of a trivial functor is something much more substantial. The inclu-

sion functor from KHaus, the category of compact Hausdorff spaces, into

Top has a left adjoint, namely the Stone-Čech compactification functor.

25.3 Naturality

We said: F a G : A → B just in case

B(F (A), B) ∼= A (A,G(B))

holds naturally in A ∈ A , B ∈ B. Let’s now be more explicit about what the

official naturality requirement comes to.

By Defn. 95, the required bijection holds naturally in B (to take that case first)

just if the two hom-functors B(F (A), –) and A (A,G(–)) are naturally isomor-

phic. By Defn. 94, that means there have to be isomorphisms ϕB : B(F (A), B)→
A (A,G(B)), one for each B, such that for every h : B → B′, the usual naturality

square always commutes:

B(F (A), B) B(F (A), B′)

A (A,G(B)) A (A,G(B′))

ϕB

B(F (A),h)

ϕB′

A (A,G(h))

But how does the covariant hom-functor B(F (A), –) operate on h : B → B′?

As we saw in §16.2, it sends h to h ◦ –, i.e. to that function which composes

h with an arrow from B(F (A), B) to give an arrow in B(F (A), B′). Similarly,

A (A,G(–)) will send h to Gh ◦ –.
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So consider an arrow f : F (A) → B living in B(F (A), B). The naturality

square now tells us that for any h : B → B′, ϕB′(h ◦ f) = Gh ◦ ϕB(f).

But (by the definition of transposition!), the components of ϕ send an arrow to

its transpose. So we have shown the first part of the following theorem. And the

second part of this theorem follows by a dual argument, in which some arrows

get reversed because the relevant hom-functors in this case are contravariant.

Theorem 154. Given F a G : A → B, then

(1) for any f : F (A)→ B and h : B → B′, h ◦ f = Gh ◦ f ,

(2) for any g : A→ G(B) and k : A′ → A, g ◦ k = g ◦ Fk, i.e. g ◦ Fk = g ◦ k.

Inspecting the proof, we see that there is an obvious converse to this theorem.

Given functors F : A → B and G : B → A such that there is always a bijection

between B(F (A), B) and A (A,G(B)) then, if conditions (1) and (2) hold, the

bijections (for different As and Bs) will assemble into natural transformations,

so that B(F (A), B) ∼= A (A,G(B)) holds naturally in A ∈ A , B ∈ B, and

hence F a G.

25.4 An alternative definition

We now know what it takes for a pair of functors to be adjoint to each other,

and we have given various examples of adjoint pairs (to add to the special cases

from the previous two chapters where the adjunctions are Galois connections).

Now, our first definition of adjunctions was inspired by our original definition

of Galois connections in §24.3. But we gave an alternative definition of such

connections in §24.4. This too can be generalized to give a second definition

of adjunctions. In this section we show how, and prove that the new definition
is equivalent to our first one. (This alternative definition will turn out to look

somewhat more complicated, but it is useful in practice – though for the moment

our prime aim is to bring out something of the structural richness of adjunctions.)

A Galois connection between the posets (P,4), (Q,v), according to the al-

ternative definition, comprises a pair of functions f : P → Q and g : Q→ P such

that

(i) f and g are monotone,

(ii) p 4 g(f(p)) for all p ∈ P , and

(iii) f(g(q)) v q for all q ∈ Q.

Since the composition of monotone functions is monotone, (ii) and (iii) are in

fact easily seen to be equivalent to

(ii′) if p 4 p′, then p 4 p′ 4 g(f(p′)) and p 4 g(f(p)) 4 g(f(p′)),

(iii′) if q v q′, then f(g(q)) v q v q′ and f(g(q)) v f(g(q′)) v q′.
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As before, let P be the category corresponding to the poset (P,4), and recall

that there is an arrow p → p′ in P just when p 4 p′ in the poset (P,4). Like-

wise for Q corresponding to (Q,v). And again as before, note that the monotone

functions f , g between the posets give rise to functors F , G between the corre-

sponding categories. Hence, in particular, the composite monotone function g◦f
gives rise to a functor G ◦ F : P →P, and likewise f ◦ g gives rise to a functor

F ◦G : Q → Q.

Now, (ii′) corresponds in P to the claim that the following diagram always

commutes:

p p′

(G ◦ F )p (G ◦ F )p′

(We needn’t label the arrows as in the poset category P arrows between objects

are unique when they exist.)

Dropping the explicit sign for composition of functors for brevity’s sake, let’s

define ηp : 1P ⇒ GF to be the arrows p→ GFp, one for each p ∈P. Then our

commutative diagram version of (ii′) can be revealingly redrawn as follows:

1P p 1P p′

GFp GFp′

ηp ηp′

This commutes for all p, p′. So applying Defn. 96, this is just to say that the ηp
assemble into a natural transformation η : 1P ⇒ GF in P.

Likewise, (iii) and hence (iii′) correspond to the claim that there is a natural

transformation ε : FG⇒ 1Q in Q.

(a) So far so good. We have here the initial ingredients for an alternative def-

inition for an adjunction between functors F : A → B and G : B → A : we

will require there to be a pair of natural transformations η : 1A ⇒ GF and

ε : FG⇒ 1B.

However, as we’ll see, this isn’t yet quite enough. But the additional ingredi-

ents we want are again suggested by our earlier treatment of Galois connections.

Recall from Theorem 144 that if (f, g) is a Galois connection between (P,4) and

(Q,v), then we immediately have the key identities

(iv) f ◦ g ◦ f = f , and

(v) g ◦ f ◦ g = g.

By (iv), fp 4 (f ◦ g ◦ f)p 4 f(p) in (P,4). Hence in P the following diagram

commutes for each p:
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Fp FGFp

Fp

Here, the diagonal arrow is the identity 1Fp. The downward arrow is εFp (the

component of ε at Fp). And the horizontal arrow is Fηp. So we have εFp ◦Fηp =

1Fp for each p.

Or what comes to the same, in the functor category [P,Q] this diagram

commutes1

F FGF

F

1F

Fη

εF

For remember whiskering(!), discussed in §19.2: the components F (ηp) assemble

into the natural transformation we symbolized ‘Fη’, and the components εFp
assemble into the natural transformation we symbolized ‘εF ’. And then recall

from §19.3 that ‘vertical’ composition of natural transformations between e.g.

the functors F : A → B and FGF : A → B is defined component-wise. So, for

each p,

(εF ◦ Fη)p = εFp ◦ Fηp = 1Fp = (1F )p,

where 1F is the natural transformation whose component at p is 1Fp. Since all

components are equal, the left-most and right-most natural transformations in

that equation are equal and our diagram commutes.

Exactly similarly, from (v) we infer that Gεq ◦ ηGq = 1Gq. In other words, the

next diagram commutes in [Q,P]:

G GFG

G

1G

ηG

Gε

(b) And now we can put everything together to give us our second definition

for adjoint functors:

1Notational fine print: our convention has been to use single arrows to represent arrows
inside particular categories, and double arrows to represent natural transformations between
functors across categories. We are now dealing with natural-transformations-thought-of-as-
arrows-within-a-particular-functor-category. Some use double arrows for diagrams in a functor
category, to remind us these are natural transformations (between functors relating some other
categories); some use single arrows because these are being treated as arrows (in the functor
category). I’m jumping the second way, following the majority and also getting slightly cleaner
diagrams.
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Definition 122 (Alternative). Suppose A and B are categories and F : A → B
and G : B → A are functors. Then F is left adjoint to G and G is right adjoint

to F , notated F a G, iff

(i) there are natural transformations η : 1A ⇒ GF and ε : FG ⇒ 1B such

that

(ii) εFA ◦ FηA = 1FA for all A ∈ A , and GεB ◦ ηGB = 1GB for all B ∈ B;

or equivalently

(ii′) the following triangle identities hold in the functor categories [A ,B] and

[B,A ] respectively:

F FGF

F

1F

Fη

εF

G GFG

G

1G

ηG

Gε

Note, η and ε are standardly called the unit and counit of the adjunction.

It remains to show that Defn. 120 and Defn. 122 are equivalent:

Theorem 155. For given functors F : A → B and G : B → A , F a G holds by

our original definition iff it holds by the alternative definition.

Proof (If). Suppose there are natural transformations η : 1A ⇒ GF and ε : FG⇒
1B for which the triangle identities hold.

Take any f in B(F (A), B). Then ηA : A→ GF (A) and G(f) : GF (A)→ GB

compose. And so we can define ϕAB : B(F (A), B) → A (A,G(B)) by putting

ϕAB(f) = G(f) ◦ ηA.

Likewise, we can define ψAB : A (A,G(B))→ B(F (A), B) by putting ψAB(g) =

εB ◦ F (g) for any g : A→ G(B).

Keep A fixed: then, as we vary B, the various components ϕAB assemble into

a natural transformation ϕA : B(F (A), –) ⇒ A (A,G(–)). That’s because the

naturality square

B(F (A), B) B(F (A), B′)

A (A,G(B)) A (A,G(B′))

ϕAB

h ◦ –

ϕAB′

Gh ◦ –

commutes for every h : B → B′, i.e. for every f in B(F (A), B) we have

ϕAB′(h ◦ f) = G(h ◦ f) ◦ ηA = Gh ◦ (Gf ◦ ηA) = Gh ◦ ϕAB(f)

which holds by the functoriality of G.

Now keep B fixed: then, as we vary A, the various components ϕAB assemble

into a natural transformation ϕB : B(F (–), B) ⇒ A (–, G(B)) between the two

contravariant functors. That’s because the required naturality square
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B(F (A), B) B(F (A′), B)

A (A,G(B)) A (A′, G(B))

ϕAB

– ◦ Fg

ϕA′B

– ◦ g

commutes for every g : A′ → A. Why so? Because for every f in B(F (A), B),

we have

ϕA′B(f ◦Fg) = G(f ◦Fg)◦ηA′ = Gf ◦ (GFg ◦ηA′) = Gf ◦ (ηA ◦ g) = ϕAB(f)◦ g

which holds by the functoriality of G and the naturality of η.

Similarly if we keep A fixed, the various ψAB assemble into a natural trans-

formation ψA : A (A,G(–)) ⇒ B(F (A), –); and if we keep B fixed, the various

ψAB assemble into ψB : A (–, G(B))⇒ B(F (–), B).

We now need to show that these natural transformations are isomorphisms,

from which the desired result will follow: i.e. B(F (A), B) ∼= A (A,G(B)) natu-

rally in A ∈ A and in B ∈ B.

We show each ϕAB and ψAB are mutually inverse. Take any f : FA → B.

Then

ψAB(ϕAB(f)) = ψAB(G(f) ◦ ηA) by definition of φ

= εB ◦ F (G(f) ◦ ηA)) by definition of ψ

= εB ◦ FGf ◦ FηA by functoriality of F

= f ◦ εFA ◦ FηA by naturality square for ε

= f ◦ 1FA by triangle equality

= f

Hence ψAB ◦ ϕAB = 1 (note how we did need to appeal to the added triangle

equality, not just functoriality and the naturality of ε). Likewise ψAB ◦ ϕAB =

1.

Proof (Only if). Suppose B(F (A), B) ∼= A (A,G(B)) naturally in A ∈ A and

in B ∈ B. We need to define a unit and counit for the adjunction, and show

they satisfy the triangle equalities.

Take the identity map 1FA in B(FA,FA). The natural isomorphism defining

the adjunction sends 1FA to a map we will hopefully call ηA : A→ GF (A).

We first show that the components ηA do indeed assemble into a natural

transformation from 1A to GF . So consider the following two diagrams:

FA FA′

FA FA′

Ff

1FA 1FA′

Ff

A A′

GFA GFA′

f

ηA ηA′

GFf
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Trivially, the diagram on the left commutes for all f : A → A′. That is to say,

Ff ◦ 1FA = 1FA′ ◦ Ff . Transposition must evidently preserve identities. So

Ff ◦ 1FA = 1FA′ ◦ Ff . But by the first of the naturality requirements in §25.3,

Ff ◦ 1FA = GFf ◦ 1FA = GFf ◦ ηA. And by the other naturality requirement,

1FA′ ◦ Ff = ηA′ ◦ Ff = ηA′ ◦f . So we have GFf ◦ηA = ηA′ ◦f and the diagram

on the right commutes for all f . Hence the components ηA do indeed assemble

into a natural transformation.

Similarly the same natural isomorphism in the opposite direction sends 1GB to

its transpose εB : FG(B)→ B, and the components εB assemble into a natural

transformation from FG to 1B.

Now consider these three diagrams:

A GFA

GFA GFA

ηA

ηA 1GFA

1GFA

FA FGFA

FA FA

FηA

1FA εFA

1FA

The diagram on the left trivially commutes. Transpose it via the natural isomor-

phism that defines the adjunction and use the naturality requirements again; we

find that the diagram on the right must also commute. So εFA ◦ FηA = 1FA for

all A ∈ A – which gives us one of the triangle identities. The other identity we

get dually.

We are done. But although the strategies for proving the equivalence of our

definitions are entirely straightforward, checking the details was a bit tedious

and required keeping our wits about us. So let’s pause before resuming in the

next chapter the exploration of adjunctions.

25.5 Adjoints and equivalent categories

Our second definition of an adjunction should remind you strongly of our earlier

characterization of what it takes to for categories to be equivalent. We should

pause to say something about this.

We can slightly recast our definitions to highlight the parallelism:

Definition 104* An equivalence between categories A and B is a pair of

functors F : A → B and G : B → A and a pair of natural isomorphisms

η : 1A ⇒ GF and ε : FG⇒ 1B.

Definition 122* An adjunction between categories A and B is a pair of

functors F : A → B and G : B → A and a pair of natural transformations

η : 1A ⇒ GF and ε : FG⇒ 1B such that εFA ◦ FηA = 1FA for all A ∈ A , and

GεB ◦ ηGB = 1GB for all B ∈ B.

Since transformations need not be isomorphisms, an adjunction needn’t be an

equivalence (and indeed we have met lots of examples of adjunctions between
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non-equivalent categories). In the other direction, an isomorphism needn’t sat-

isfy the triangle identities, so an equivalence needn’t be an adjunction either.

However, we do have the following result:

Theorem 156. If there is an equivalence between A and B constituted by a pair

of functors F : A → B and G : B → A and a pair of natural isomorphisms

η : 1A ⇒ GF and γ : FG⇒ 1B, then there is an adjunction F a G with unit η

and counit ε (defined in terms of γ and η), and further there is also an adjunction

G a F .

In other words, take an equivalence, fix one of the natural transformations, but

tinker (if necessary) with the other, and we get an adjunction. Further we can

construct an adjunction in the opposite direction.

Proof. Define the natural transformation ε by composition as follows:

ε : FG FGFG FG 1B
FGγ−1 (FηG)−1 γ

Since η and γ are isomorphisms, and by Theorem 103 whiskering natural isomor-

phisms yields another natural isomorphism, the inverses mentioned here must

exist.

So we just need to establish that, with ε so defined, we get the usual triangle

identities εFA ◦ FηA = 1FA for all A ∈ A , and GεB ◦ ηGB = 1GB for all B ∈ B.

So, firstly, for any A, we need the composite arrow (*)

FA FGFA FGFGFA FGFA FA
FηA (FGγ−1)FA (FηG)−1)FA γFA

to equal the identity arrow on FA (recall, the component of a ‘vertical’ composite

of natural transformations for FA is the composite of the components of the

individual transformations).

We begin be noting that, for any A ∈ A , the following square commutes by

the naturality of η:

A GFA

GFA GFGFA

ηA

ηA

ηGFA

GFηA

So we have ηGFA ◦ ηA = GFηA ◦ ηA. But since ηA is an isomorphism, it is

epic (right-cancellable), so we have ηGFA = GFηA for all A. Similarly, we have

γ−1
FGB = (FGγ−1)B for all B ∈ B.

So now consider the following diagram:
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FA FGFA

FGFA FGFGFA

FGFA

FA

(γ−1)FA

FηA

(γ−1)FGFA=(FGγ−1)FA

1FGFA

FGFηA

(FηG)−1
FA

γFA

The top square commutes, being a standard naturality square. (Fill in the schema

of Defn. 96 by putting the natural transformation α = γ−1 : 1B → FG, and

put f to be the function FηA : FA → FB.) And the triangle below commutes

because FGFηA = FηGFA from the equation above and FηGFA = (FηG)FA
(since ηGFA = (ηG)FA), so the arrows along two sides are simply inverses, and

therefore compose to the identity.

The whole diagram therefore commutes. The arrows on longer circuit from

top-left to bottom form the composite (*). The arrows on the direct route from

top to bottom compose to the identity 1FA. The composites are equal and hence

we have established that the first triangle identity holds.

The second triangle identity holds by a similar argument.

Hence F a G. And finally we note that if we put η′ = γ−1 and γ′ = η−1,

and put F ′ = G, G′ = F , the same line of proof shows that F ′ a G′, and so

G a F .
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NB: This chapter, like the previous one, is taken, unrevised, from an earlier set

of Notes on Category Theory. It needs a great deal of rewriting, not to mention

checking for bad errors! However, if you have got this far then it should still be

useful.

We have given a pair of definitions of adjoint functors, mirroring the two alterna-

tive definitions of Galois connections. We showed the definitions to be equivalent,

and met some initial examples of adjunctions.

In this chapter, after a couple of preliminary sections, we continue to generalize

some of the most basic results we found for Galois connections to adjunctions

more generally.

26.1 Adjunctions reviewed

Let’s gather together what we know about adjunctions so far.

Suppose F : A → B and G : B → A are functors. Then F is left-adjoint

to G (equivalently, G is right-adjoint to F ), in symbols F a G, or more fully

F a G : A → B, iff the following conditions all hold together:

(1) B(FA,B) ∼= A (A,GB) naturally in A ∈ A , B ∈ B – the isomorphism in

each direction is said to send an arrow f in one hom-set to its transpose f

in the other.

(2) There are natural transformations η : 1A ⇒ GF and ε : FG ⇒ 1B such

that εFA ◦ FηA = 1FA for all A ∈ A , and GεB ◦ ηGB = 1GB for all

B ∈ B. η is said to be the unit, ε the counit of the adjunction.

(3) The component ηA : A → GFA of the natural transformation η can be

identified as the transpose of 1FA : FA → FA under the natural iso-

morphism between B(FA,FA) and A (A,GFA). Likewise, the compo-

nent εB is the transpose of 1GB under the natural isomorphism between

A (GB,GB) and A (FGB,B).

(4) The inverse isomorphisms from B(FA,B) to A (A,GB) and back can be

identifed asG(–)◦ηA : B(FA,B) −→∼ A (A,GB) and εB◦F (–) : A (A,GB) −→∼
B(FA,B).
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(5) For any f : FA→ B and h : B → B′, h ◦ f = Gh ◦ f ; and for any g : A→
GB and k : A′ → A, g ◦ k = g ◦ Fk, i.e. g ◦ Fk = g ◦ k.

These conditions are not independent, however: (1) and (2) are equivalent, and

both then imply (3) to (5).

26.2 Two more definitions!

Using (2) and (4) in our conditions on adjunctions, if follows that if F a G,

then there is a natural transformation η : 1A ⇒ GF which has the following

‘universal mapping property’: for any g : A→ G(B) there is a unique associated

f : F (A)→ B such that g = G(f) ◦ ηA.

It is worth noting that we can also prove the converse here, so we get a

biconditional:

Theorem 157. Given functors F : A → B and G : B → A , then F a G

iff (i) there is a natural transformation η : 1A ⇒ GF , for which (ii) for any

g : A→ G(B) in A there is a unique f : F (A)→ B in B such that g = G(f)◦ηA.

Proof for ‘if ’. First use clause (i) and define ϕAB : B(F (A), B)→ A (A,G(B))

by putting ϕAB(f) = G(f) ◦ ηA.

By same proof as for Theorem 155, when we keep A fixed the various compo-

nents ϕAB assemble into a natural transformation ϕA : B(F (A), –)⇒ A (A,G(–)).

And when we keep B fixed, the various components ϕAB assemble into a natural

transformation ϕB : B(F (–), B)⇒ A (–, G(B)).

Further, by the uniqueness clause (ii) the components ϕAB are bijections, so

the natural transformations are indeed natural isomorphisms. Therefore B(F (A), B) ∼=
A (A,G(B)) naturally in A ∈ A , B ∈ B.

Our theorem has a dual companion of course:

Theorem 158. Given functors F : A → B and G : B → A , then F a G

iff (i) there is a natural transformation ε : FG ⇒ 1B, for which (ii) for any

f : F (A)→ B there is a unique g : A→ G(B) such that f = εB ◦ F (g).

Evidently, we could have recruited either of these companion theorems as the

basis of two further alternative definitions for F a G – as, for example, in

(Awodey, 2006, §9.1).

26.3 Adjunctions compose

Recall Theorem 145: in a different notation, if (f, g) is a Galois connection be-

tween the posets P and Q, and (f ′, g′) is a Galois connection between the posets

Q and R, then (f ′ ◦ f, g ◦ g′) is a Galois connections between P and R.

Adjunctions similarly compose:
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Theorem 159. Given A B
F

⊥
G

and B C
F ′

⊥
G′

, then A C .
F ′F

⊥
GG′

Proof via homsets. Since F ′ a G′, we have C (F ′FA,C) ∼= B(FA,G′C), natu-

rally in A – by Theorem ?? (3) – and also naturally in C.

Also, since F a G, we have B(FA,G′C) ∼= A (A,GG′C), naturally in A and

in C.

So by Theorem ?? (2), C (F ′FA,C) ∼= A (A,GG′C) naturally in A and in C.

Hence F ′F a GG′

That was quick and easy. But there is perhaps some additional fun to be had by

working through another argument:

Proof by units and counits. Since F a G, there are a pair of natural transforma-

tions η : 1A ⇒ GF and ε : FG⇒ 1B, satisfying the usual triangle identities.

Since F ′ a G′, there are natural transformations η′ : 1B ⇒ G′F ′ and ε′ : F ′G′ ⇒
1C , again satisfying the triangle identities.

We now define two more natural transformations by composition,

η′′ : 1A GF GG′F ′F

ε′′ : F ′FGG′ F ′G′ 1C

η Gη′F

F ′εG′ ε′

To show F ′F a GG′ it suffices to check that η′′ and ε′′ also satisfy the triangle

identities.

Consider, then, the following diagram:

F ′F F ′FGF F ′FGG′F ′F

F ′F F ′G′F ′F

F ′F

F ′Fη

1F ′F

F ′FGη′F

F ′εF F ′εG′F ′F

F ′η′F

1F ′F
ε′F ′F

‘Whiskering’ the triangle identity εF ◦ Fη = 1F by F ′ shows that the top left

triangle commutes. And whiskering the identity ε′F ′ ◦ F ′η′ = 1F ′ on the other

side by F shows that the bottom triangle commutes.

Further, the square commutes. For by either the naturality of ε or the natu-

rality of η′, the following square commutes in the functor category:
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FG FGG′F ′

1 G′F ′

ε

FGη′

εG′F ′

η

And whiskering again gives the commuting square in the big diagram. [Exercise:

check the claims about whiskering and the naturality square.]

So the whole big diagram commutes, and in particular the outer triangle

commutes. But that tells us that ε′′F ′F ◦ F ′Fη′′ = 1FF ′ – which is one of the

desired triangle identities for η′′ and ε′′.

The other identity follows similarly.

26.4 The uniqueness of adjoints

Now recall Theorem 146. This tells us that if (f, g) and (f, g′) are both Galois

connections between the posets P and Q, then g = g′. Likewise, if (f, g) and

(f ′, g) are both Galois connections between the same posets, then f = f ′.

The corresponding result for adjunctions more generally is this:

Theorem 160. Adjoints are unique up to natural isomorphism. If F a G and

F a G′ then G ∼= G′. If F a G and F ′ a G then F ∼= F ′.

Proof. Assume we have F a G : A → B and F a G′ : A → B. Then

A (A,GB) ∼= B(FA,B) ∼= A (A,G′B)

naturally in A ∈ A , B ∈ B. It follows, using Theorem ??, that

(∗) A (A,GB) ∼= A (A,G′B)

naturally in A and B.

(*)’s naturality in A means that A (–, GB) ∼= A (–, G′B), i.e. YGB ∼= YG′B,

where Y is the Yoneda embedding. And then, by Theorem 122, GB ∼= G′B.

Moreover, this holds naturally in B – intuitively, because the isomorphism is

generated systematically from the isomorphism in (*) which is also natural in B

– so G ∼= G′.

To confirm this, note that Y sends the diagram on the left in A to the diagram

on the right in Set for any f : B → B′:

GB GB′

G′B G′B′

βB

Gf

βB′

G′f

A (–, GB) A (–, GB′)

A (–, G′B) A (–, G′B′)

αB

A (–,Gf)

αB′

A (–,G′f)
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where the αs are components of the natural transformation required by the

naturality of (∗) in B, and βB = αB(1GB) by appeal to Theorem ??. But Y is

an embedding, remember, so each diagram commutes if and only if the other

does does. However, the diagram on the right commutes for all f : B → B′ by

the naturality in B; hence the diagram on the left does too (embeddings must

evidently preserve commutativity relations). So the β assemble into a natural

transformation between G and G′.

The proof of the second half of the theorem is dual.

We should note too an obvious companion theorem:

Theorem 161. If F a G and G ∼= G′ then F a G′. Likewise, if F a G and

F ∼= F ′ then F ′ a G.

Proof. By definition, given F a G : A → B, we have B(FA,B) ∼= A (A,GB)

naturally in A ∈ A , B ∈ B.

But given G ∼= G′, then it is almost immediate that A (A,GB) ∼= A (A,G′B),

again naturally in A ∈ A , B ∈ B.

Hence by Theorem ?? again, B(FA,B) ∼= A (A,G′B), still naturally in A ∈
A , B ∈ B. Which means that F a G′.

The other half of the theorem is dual.

26.5 How left adjoints can be defined in terms of right

adjoints

Theorem 146 states that each component of a Galois connection uniquely fixes

the other. So we would hope to be able to explicitly define one such component

in terms of the other, and Theorem 147 in fact tells us how to do this. For

example, assuming there is a connection (f, g) between the posets (P,4) and

(Q,v), we can define the left adjoint in terms of the right by setting f(p) to be

the minimum of {q ∈ Q | p 4 g(q)} for every p ∈ P .

We have now shown, more generally, that each component of an adjunction

uniquely fixes the other, at least up to isomorphism. We would expect that we

can, similarly, characterize one functor in an adjunction in terms of its partner.

So let’s consider, in particular, how a left adjoint might be defined in terms of

its right partner. (There will of course also be a dual story to be told about

how right adjoints can be defined in terms of left ones. We can cheerfully leave

spelling out the dual constructions and arguments as an exercise.)

Functions in Galois connections between posets correspond to adjoint functors

between poset categories (see §25.1). And a minimum for the poset {q ∈ Q | p 4
g(q)} corresponds to an initial object for the poset-as-category (see §4.1). So this

suggests that we might be able to characterize a left adjoint as the initial object

of some suitable category.
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And this is indeed more or less the case. Suppose F : A → B and G : B → A
are functors such that F a G. Now consider the comma category (A ↓ G), for

A ∈ A – we met this construction at the end of §17. To recap,

(a) the objects of (A ↓ G) are pairs 〈B, f〉 where B is a B-object and f : A→
GB is an arrow in A ,

(b) an arrow in (A ↓ G) from 〈B, f〉 to 〈B′, f ′〉 is a B-arrow j : B → B′ making

the following commute:

GB

A

GB′

Gj

f

f ′

The definitions for the identity arrows and for composition of arrows in (A ↓ G)

are the obvious ones.

Theorem 162. Given an adjunction A B,
F

⊥
G

the pair 〈FA, ηA〉 is ini-

tial in (A ↓ G) for any A ∈ A .

Proof. Let 〈B, f〉 be any object of (A ↓ G). We need to show that there is a

unique arrow in (A ↓ G) from 〈FA, ηA : A → GFA〉 to 〈B, f〉. That is to say,

there must be (i) an arrow j : FA→ B such that f = Gj ◦ ηA, i.e.

GFA

A

GB

Gj

ηA

f

commutes, and (ii) this arrow must be unique. But we’ve already proved that –

see one half of Theorem 157.

We have a converse result too:

Theorem 163. Given functors A B
F

G
, then if (C) η : 1A → GF is

a natural transformation and the pair 〈FA, ηA〉 is initial in (A ↓ G) for every

A ∈ A , then F a G.

So that tells us how to characterize a left adjoint for G when it exists, since left

adjoints are unique up to isomorphism, i.e. as a functor F satisfying condition

(C).

Proof. Suppose η is natural transformation, and that 〈FA, ηA〉 is initial in (A ↓
G) for every A ∈ A . Then for every f : A → GB there is a unique j : FA → B

such that f = Gj ◦ ηA. Apply the other half of Theorem 157.
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But there was no fun in that instant proof. So, as an instructive and amusing

exercise in diagram chasing here is

Another proof, by constructing a counit for η from first principles. We need to

find a natural transformation ε : FG⇒ 1B such that η and ε satisfy the triangle

equalities, i.e. such that εFA ◦ FηA = 1FA for all A ∈ A , and GεB ◦ ηGB = 1GB
for all B ∈ B.

Taken any B ∈ B. By hypothesis 〈FGB, ηGB〉 is initial in (GB ↓ G), so there

is a unique arrow to the object 〈B, 1GB〉. Call this unique arrow (hopefully!) εB .

Then just by its definition, for any B we have (*):

GFGB

GB

GB

GεB

ηGB

1GB

which gives us one lot of the triangle identities for free. So it remains to show

that (i) we also have the other triangle identities, and (ii) the components εB
do indeed assemble into a natural transformation. Try before reading on!

For (i), we need to show that the following diagram commutes:

FGFA

FA

FA

εFA

FηA

1FA

Since η : 1A ⇒ GF is natural, for every f : A → A′ with A,A′ ∈ A , there is

a commuting naturality square. Take in particular the case where f = ηA(!).

Then paste on the commuting triangle of the type (*), with B = FA, to get the

commuting rhombus:

A GFA

GFA GFGFA GFA

ηA

ηA

ηGFA
1GFA

GFηA GεFA

Composing arrows, using the functoriality of G, and re-arranging we get the

commuting triangle on the left:

GFA

A

GFA

G(εFA◦FηA)

ηA

ηA

GFA

A

GFA

Gj

ηA

ηA

Now, 〈FA, ηA〉 is initial in (A ↓ G) so there must be a unique arrow j from the

initial object to itself such the triangle on the right commutes. But evidently j =
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1FA makes the triangle commute. But so, as we’ve just seen, does j = εFA◦FηA.

Hence εFA ◦ FηA = 1FA. Which establishes (i).

To establish (ii) – the naturality of ε : FG ⇒ 1B, when assembled from the

components εB – we need to show that for any g : B → B′, the following com-

mutes (**):

FGB FGB′

B B′

εB

FGg

εB′

g

We again start by taking a naturality square for η, this time for f = Gg : GB →
GB′, and then paste on a commuting triangle of type (∗), to get the commuting

rhombus

GB GB′

GFGB GFGB′ GB′

ηGB

Gg

ηGB′
1GB′

GFGg GεB′

Again composing arrows, using the functoriality of G, and re-arranging we get

the commuting triangle on the left:

GFGB

GB

GB′

G(εB′◦FGg)

ηGB

Gg

GFGB

GB GB

GB′

GεB

G(g◦εB)

ηGB

1GB

Gg
Gg

On the right, we’ve pasted together (*) with a trivially commuting triangle,

and then composed the downwards arrows to give the big triangle. However, by

assumption, 〈FGB, ηGB〉 is initial in the comma category (GB ↓ G), so there is a

unique arrow j to 〈B′, g〉 such that g = Gj◦ηGB . Whence εB′ ◦FGg = j = g◦εB ,

proving (**) commutes and establishing (ii).

Here’s a nice corollary:

Theorem 164. Suppose G : B → A is a functor. If the derived comma category

(A ↓ G) has an initial object for every A ∈ A , then G has a left adjoint.

Proof. Choose an initial object for each (A ↓ G): it is a pair that we will write

(hopefully!) as 〈FA, ηA〉, with FA ∈ B, and ηA : A→ GFA.

So we now define a functor F : A → B which sends an object A ∈ A to this

FA ∈ B. How should F act on an arrow f : A → A′? It must yield an arrow

from FA to FA′. But since 〈FA, ηA〉 is initial, we know that there is exactly

one arrow in (A ↓ G) from 〈FA, ηA〉 to 〈FA′, ηA′ ◦ f〉. That is to say, there is a
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unique g : FA → FA′ such that ηA′ ◦ f = Gg ◦ ηA. Put Ff = g, and it is easy

enough to check that F is functorial.

So now consider this diagram:

A A′

GFA GFA′

ηA

f

ηA′

GFf

We’ve defined Ff to make this commute. But this is a naturality square showing

that the components ηA assemble into a natural transformation η : 1A → GF .

So, in sum, F : A → B as defined is such that (C), η : 1A → GF is a natural

transformation and the pair 〈FA, ηA〉 is initial in (A ↓ G) for every A ∈ A .

Hence, by the previous theorem, F a G.

26.6 Another way of getting new adjunctions from old

We’ve already met one way of getting new adjunctions from old, i.e. simple

composition. Finally in this chapter, we now introduce another.

Definition 123. Given a functor F : C → D and small category J, then the

functor [J, F ] : [J,C ]→ [J,D ] sends a functor K : J→ C to F ◦K : J→ D .

Strictly speaking that’s an incomplete definition. We need to specify not just

how [J, F ] acts on objects in [J,C ] (i.e. acts on functors), but how it acts on

arrows (i.e. on natural transformations). But the needed completion, as often in

defining functors, writes itself. For what is the obvious way for [J, F ] to act on

a natural transformation from K to K ′ with components αJ : KJ → K ′J (for

J ∈ J and functors K,K ′ : J → C )? By sending it, of course, to the natural

transformation from F ◦ K to F ◦ K ′ with components FαJ : FKJ → FK ′J .

Full functoriality is then immediate.

We can now state our result about how a given adjunction between functors F

and G generates a new adjunction between new-style functors [J, F ] and [J, G]:

Theorem 165. If F a G : C → D then [J, F ] a [J, G] : [J,C ]→ [J,D ].

Proof. Take functors K : J→ C , L : J→ D . Then take any natural transforma-

tion β : FK ⇒ L living as an arrow in [J,D ]. This has components βJ : FKJ →
LJ living in D(FKJ,LJ). By the adjunction F a G these components are in

a natural bijection with arrows αJ : KJ → GLJ living in C (KJ,GLJ), and

these assemble into a natural transformation α : K ⇒ GL which lives in [J,C ]

(the adjunction is easily checked to associate naturality squares with naturality

squares). In this way we set up a natural one-to-one correspondence between

natural transformations like α and β.
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So we have established that there is, naturally, a bijection

[J,D ]([J, F ]K,L) ∼= [J,C ](K, [J, G]L),

which proves [J, F ] a [J, G].
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27 Adjoint functors and limits

NB: This chapter, like the previous two, is taken, unrevised, from an earlier set

of Notes on Category Theory. It needs a great deal of rewriting, not to mention

checking for bad errors! However, if you have got this far then it should still be

useful, and it gets us to a sensible interim stopping point.

We now turn to some key results which tell us how adjoint functors interact

with limits. A key bit of news is that right adjoints preserve limits: and dually,

exactly as you would now expect, left adjoints preserve co-limits.

27.1 Limit functors as adjoints

(a) Suppose the category C has all limits of shape J. Three observations:

(1) By Theorem 46, the cones over D : J→ C with vertex C correspond one-

to-one with C -arrows from C to Lim
←J

D.

(2) But by Theorem (d), the set of cones over D : J→ C with vertex C is the

hom-set [J,C ](∆(C), D). Here ∆: C → [J,C ] is the functor introduced

just after that theorem, which sends an object C ∈ C to the constant

functor ∆C : J → C . (For convenience, understand the cones here aus-

terely).

(3) The set of C -arrows from C to the limit vertex Lim D is C (C,Lim(D)),

where Lim : [J,C ] → C is the functor introduced in §?? 19.7, a functor

that exists if C has all limits of shape J and that sends a diagram D of

shape J in C to some limit object in C .

So, in summary, still assuming that C has all limits of shape J, the situation is

this. We have a pair of functors C [J,C ]
∆

Lim
such that

[J,C ](∆(C), D) ∼= C (C,Lim(D)).

Moreover, the isomorphism that is given in our proof of Theorem 46 arises in a

natural way, without making any arbitrary choices.1 So, we can take it that the

1Careful: there were arbitrary choices made in determining what Lim does. But once Lim
is fixed, the isomorphism arises naturally.
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isomorphism is natural in C ∈ C and D ∈ [J,C ]. Hence ∆ has a right adjoint,

and one such right adjoint is Lim.

We now argue in the opposite direction starting from the assumption that the

diagram ∆ has a right adjoint, call it L.

Suppose that D is a diagram D : J → C . Applying Theorem 158 about a

universal mapping property of adjunctions, for any arrow c : ∆(C)→ D in [J,C ]

– in other words for any cone over D with vertex C – there is a unique arrow

u : C → L(D) in C , such that c = εD ◦ ∆(u), where ε is the co-unit of the

adjunction.

By the definition of ∆, ∆(u) is the natural transformation from ∆C to ∆L(D)

with every component equal to u.

And by §26.1 (3), εD is the transpose of 1L(D), i.e. is some arrow π : ∆L(D)→
D in [J,C ], i.e. is some particular cone π over D with vertex LD.

Taken component-wise, the equation c = εD◦∆(u) tells us that for each J ∈ J,

cJ = πJ ◦u. In other words any cone c factors through our cone π via the unique

u. Hence the cone π with vertex L(D) and projection arrows πJ is a limit cone

for D. However, D was any diagram D : J → C . Therefore C has all limits of

shape J.

Summing up, we get the following nice theorem:

Theorem 166. If category C has all limits of shape J, then ∆ has a right adjoint,

and indeed ∆ a Lim. Conversely, if ∆ has any right adjoint, then C has all limits

of shape J.

(b) Keeping J fixed, we can make ∆’s dependence on C explicit by writing

∆C : C → [J,C ]. Similarly we can explicitly write LimC : [J,C ]→ C . Then we

have the following easy corollary of the last theorem:

Theorem 167. Suppose the categories B and C have all limits of shape J. Then

if G : C → B is a right adjoint (i.e. has a left adjoint), G◦LimC
∼= LimB◦[J, G].

Proof. Let F : B → C be left adjoint to G, and consider this pair of diagrams:

B C

[J,B] [J,C ]

∆B

F

∆C

[J,F ]

B C

[J,B] [J,C ]

G

LimB

[J,G]

LimC

Claim: the left-hand diagram commutes. (i) On the south-west path, an object

B ∈ B is sent by ∆B to the functor ∆B : J → B which sends every object to

B and every arrow to 1B ; and this is sent in turn by [J, F ] to the functor which

sends every object to FB and every arrow to 1FB , i.e. the functor ∆FB . (ii) On

the north-east path, an object B ∈ B is sent by F to FB, and this is sent by

∆C to the functor ∆FB again.
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Now, given the assumption that B and C have all limits of shape J, ∆B and

∆C have right adjoints LimB and LimC . And since F a G, [J, F ] a [J, G], by

Theorem 165.

So our right-hand diagram records the adjoints of the functors in the left-

hand diagram. We now know that the composite left-adjoint functors ∆C ◦F and

[J, F ]◦∆B are the same. By Theorem 159 about the composition of adjunctions,

their right-adjoints are G◦LimC and LimB◦[J, G]. And these composites, being

right adjoint to the same functor, must be naturally isomorphic by Theorem 160.

27.2 Right adjoints preserve limits

We can usefully begin by restating part of a key definition and reminding our-

selves of a basic theorem:

Definition 87 A functor G : C → B preserves limits of shape J iff, for any

diagram D : J → C , if [L, πJ ] is a limit cone over D, then [GL,GπJ ] is a limit

cone over G ◦D : J→ B.

Theorem 98 The covariant hom-functor C (A, –) : C → Set, for any A in the

category C , preserves all limits that exist in C .

Now, this theorem is easily seen to imply the following:

Theorem 168. Any set-valued functor G : C → Set which is a right adjoint (i.e.

has a left adjoint) preserves all limits that exist in C .

Proof. Suppose we have a functor F such that F a G. Then

GA ∼= Set(1, GA) ∼= C (F1, A)

with both isomorphisms natural in A (the first relies on the familiar association

in Set between elements of a set and arrows from a terminal object into that

set). Hence G is naturally isomorphic to the hom-functor C (F1, –). But the

latter preserves limits, by Theorem 98. Hence so does G, by Theorem 129.

We now show that there is in fact nothing special here about set-valued func-

tors. In fact, Theorem 167 already tells us that in the case where the categories

B and C have all limits of shape J, then if G : C → B is a right adjoint, G

commutes with limits and hence by the result announced at the end of §??, G

preserves limits. But we can do better, drop the assumption that the relevant

categories are complete, and prove quite generally:

Theorem 169. If the functor G : C → B is a right adjoint (i.e. has a left

adjoint), it preserves all limits that exist in C .
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Proof from basic principles about limits and adjoints. Suppose that G has the

left adjoint F : B → C ; and suppose also that the diagram D : J → C has a

limit cone [L, πJ ] in C .

Then [GL,GπJ ] is certainly a cone over G◦D in B. We need to show, however,

that it is a limit cone. That is to say, we need to show that, if we take any cone

[B, bJ ] over G ◦ D, there is a unique u : B → GL such that (i) for all J ∈ J,

bJ = GπJ ◦ u.

Well, take such a cone [B, bJ ] over G ◦ D. Then, going back in the other

direction, [FB, bJ ] is a cone over D in C , where bJ : FB → DJ is the transpose

of bJ : B → GDJ under the adjunction.

Why is [FB, bJ ] a cone? Suppose we have an arrow d : DK → DK . Then

by assumption, since [B, bJ ] is a cone over G ◦ D, bK = Gd ◦ bJ . Hence bK =

Gd ◦ bJ = d ◦ bJ , with the second equation by Theorem 154 (1). Which indeed

makes [FB, bJ ] a cone too.

And now we add that [FB, bJ ] must factor through [L, πJ ] via a unique

v : FB → L such that (ii) for all J ∈ J, bJ = πJ ◦ v.

So the state of play is: we have found a unique v : FB → L; we want to find

a suitable u : B → GL. The hopeful thought is that one will turn out to be the

transpose of the other under the adjunction.

The adjunction means that C (FB,C) ∼= B(B,GC) naturally in C. Which in

turn means that the following square commutes, for any πJ : L→ DJ :

C (FB,L) C (FB,DJ)

B(B,GL) B(B,GDJ)

πJ ◦ –

GπJ ◦ –

where the vertical arrows are components of the natural transformation which

sends an arrow to its transform. Chase the arrow v : FB → L round the diagram

in both directions and we get GπJ ◦ v = πJ ◦ v. Therefore, using (ii), if we put

u = v, we indeed get as required that (i) for all J ∈ J, bJ = GπJ ◦ u.

It just remains to confirm u’s uniqueness. Suppose that [B, bJ ] factors through

[GL,GπJ ] by some u′ = w. Then for all J ∈ J, bJ = GπJ ◦ w. We show as

before that bJ = πJ ◦ w, whence [FB, bJ ] factors through [L, πJ ] via w. By the

uniqueness of factorization, w = v again.

A more compressed proof. Again, suppose that G has the left adjoint F : B →
C ; and suppose also that the diagram D : J→ C has a limit cone [L, πJ ] in C .

Then, using the notation ‘C (X,D)’ as shorthand for the functor C (X, –) ◦ D,

we have
B(B,GL) ∼= C (FB,L)

∼= Lim C (FB,D)
∼= Lim B(B,GD)
∼= Cone(B,GD).
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all naturally in B. So the functor Cone(–, GD), being naturally isomorphic to

B(–, GL) is representable, and is represented by GL, and therefore has a uni-

versal element of the form 〈GL, g〉. But such a universal element is a limit cone

with vertex GL. Hence G preserves the limit [L, πJ ].

But compression doesn’t always make for illumination, and our second proof

(see Leinster 2014, p. 158; compare Awodey 2006, pp. 225–6) needs some com-

mentary.

The first line of course comes from the adjunction, and the second from the

fact that the hom-functor C (FB, –) preserves limits, by Theorem 98. The move

from the third to the fourth line is by Theorem ??. And the arguments at the

end about representability, universal elements and limits appeal to Theorems 136

and 141.

So that leaves the move from the second to the third line, which obviously

invokes the adjunction between F and G again. We know that C (FB,X) ∼=
B(B,GX) naturally in X, i.e. C (FB, –) is naturally isomorphic to B(B,G–),

hence by whiskering, C (FB, –)◦D is naturally isomorphic to B(B,G–)◦D. Now

apply Theorem 105 and we can conclude that Lim C (FB,D) ∼= Lim B(B,GD).

Which all goes to combine a bunch of earlier results into a neat package: but

my own feeling is that the first direct proof from the underlying principles reveals

better what is really going on here.

27.3 Some examples

Right adjoints preserve limits. Dually, of course, left adjoints preserve colimits

(we surely needn’t pause at this stage in the game to state the duals of the

theorems in the last couple of sections!). So we now mention just a few elementary

examples of (co)limit preservation – and also some examples where we can argue

from non-preservation to the non-existence of adjoints.

(1) Back in §15.2, Ex. (4) we noted that the forgetful functor U : Mon→ Set

preserves limits. But we now have another proof: U has a left adjoint (by

§25.2, Ex. (3)) i.e. it is a right adjoint, so indeed must preserve limits.

There are other examples of this kind, involving a forgetful functor

U : Alg→ Set, where Alg is a category of sets equipped with some alge-

braic structure for U to ignore. Such a forgetful U standardly has a left

adjoint, so must preserve whatever limits exist in the relevant Alg.

Further, a left-adjoint to U must preserve existing colimits in Set. But

Set has all colimits; so that this indeed requires the left-adjoints in such

cases to be rather lavish constructions (as we saw them to be).

(2) Consider exponentials again.

We noted that if C is a category with exponentiation, and hence with

products, exponentiation is right adjoint to taking products: (–×B) a (–)B .
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Since the functor (–)B is a right adjoint, it preserves such limits as exist

in C . So take in particular the functor A : 2→ C (where as before 2 is the

discrete two object category with objects 0, 1). Then A0×A1 is the vertex

of a limit over A. Hence (A0 ×A1)B is the vertex of a limit over (–)B ◦A.

But the canonical limit over that composite functor is AB0 × AB1 . Hence

(A0 ×A1)B ∼= AB0 ×AB1
Since the functor – × B is a left adjoint, it preserves such colimits as

exist in C . Assume C has coproducts. Then, by a similar argument, (A0 +

A1)×B ∼= (A0 ×B) + (A1 ×B).

(3) Take the discussion in §24.3, Ex. (6) where we looked at the Galois connec-

tion between two functions between posets of equivalence classes of wffs,

with the left adjoint a trivial ‘add a dummy variable’ map, and the right

adjoint provided by applying a universal quantifier. This carries over to

an adjunction of functors between certain poset categories. Since quan-

tification is a right adjoint, it preserves limits, and in particular preserves

products, which are conjunctions in this category. Which reflects the fa-

miliar logical truth that ∀x(Px ∧Qx) ≡ (∀xPx ∧ ∀xQx).

(4) Claim: the forgetful functor F : Grp → Set has no right adjoint. Proof:

the trivial one-object group is initial in Grp; but a singleton is not initial

in Set; so there is a colimit which F doesn’t preserve and it therefore

cannot be a left adjoint.

(5) Theorem 74 tells us that the forgetful functor F : Mon→ Set fails to pre-

serve all epimorphisms. By Theorem 92 this implies that F doesn’t preserve

all pushouts, and hence doesn’t preserve all colimits. Hence this forgetful

functor too can’t be a left adjoint. Compare the arm-waving argument to

the same conclusion in §25.2. Ex. (5).

27.4 The Adjoint Functor Theorems

Right adjoints preserve limits. What about the converse? If a functor preserves

limits must it be a right adjoint? Well, given some results already to hand, we

can easily prove the following:

Theorem 170. If the category B has all limits, and the functor G : B → A
preserves them, then G is a right adjoint.

Proof. If B has all limits and G preserves them, then for any A ∈ A , (A ↓ G)

has all limits (by Theorem 101, and the remark immediately after its proof).

So any (A ↓ G) in particular has a limit for the big diagram-as-part-of-a-

category consisting of the whole of (A ↓ G) – or in terms of diagrams-as-functors,

it has a limit for the identity functor 1(A↓G). Hence by Theorem 47, each (A ↓ G)

has an initial object. Hence by Theorem 164, there is a functor F : A → B such

that F a G.
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And now we see the proof, we see that the condition that B has all limits

overshoots: the result will go through so long as B has sufficiently large limits,

enough to guarantee that all the functors 1(A↓G) have a limit.

This theorem looks neat but is in fact not very useful. Having all sufficiently

large limits is a hard condition to fulfil. More precisely, we have

Theorem 171. If a category C has limits for diagrams over all categories of size

up to the size of the collection of C ’s arrows, then C has at most one arrow

between any two objects.

For example, the condition of having small limits is not satisfied by typical small

categories – in the terminology of §1.3, Ex. (10), a complete small category has

to be a pre-order category.

Proof. Let J be a discrete category of the same cardinality as the set of arrows

of C . Let D : J → C be the diagram which sends every object in J to B. By

hypothesis, D has a limit, namely the product
∏
J∈J

D(J) (so this is the product

of B with itself, J-many times).

Suppose there are objects A,B ∈ C with arrows f1, f2 : A→ B where f 6= g.

Simple cardinality considerations show that this further supposition leads to

contradiction. Which proves the theorem.

We start by asking: how many different arrows A →
∏
J∈J

D(J) are there?

Theorem 31 showed that if J is the discrete two object category, then there

are four such arrows. Generalizing the proof in the obvious way shows that if

|J| is the cardinality of the objects of J, there are 2|J| different arrows from

A→
∏
J∈J

D(J).

Hence our suppositions imply that there is a subset of the arrows in C whose

cardinality is strictly greater than the cardinality of the set of arrows in C .

Contradiction.

So, in sum, Theorem 170 is of very limited application. If we want a more

widely useful result of the form ‘Given such-and such conditions on the functor

G : B → A and the categories it relates, then G is a right adjoint’, we’ll need

to consider a new bunch of conditions.

Here are two such theorems of rather wider application (the labels are stan-

dard):

Theorem 172 (The General Adjoint Functor Theorem). If category B is a locally

small category with all small limits, and the functor G : B → A is such that for

each A ∈ A , the category (A ↓ G) has a weakly initial set, then G is a right

adjoint iff it preserves all small limits.

Theorem 172* (The General Adjoint Functor Theorem, alternative version).

If category B is a locally small category with all small limits, and G : B → A is
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a functor, then G is a right adjoint iff it preserves all small limits and satisfies

the solution set condition.

Theorem 173 (The Special Adjoint Functor Theorem). If the categories A and

B are locally small, and B has all small limits, is well powered, and has a

coseparating set of objects, then G is a right adjoint iff it preserves all small

limits.

But to investigate these theorems properly would require not just explaining the

concepts ‘weekly initial set’, ‘solution set condition’, ‘well powered’ and ‘cosep-

arating’ and then doing the proofs, but also explaining what might motivate

the conditions our new concepts are used to state, and also explaining why the

resulting theorems, with just those conditions in play, might be of interest and

use. That’s a non-trivial expositional task, and one I am going to shirk in this

current version of these Notes. If you want to follow up the technical details,

which aren’t particularly difficult, I can refer you to for example Leinster (2014,

pp. 159–164, 171–173) and Awodey (2006, §9.8). But I’m not sure I yet have a

sufficiently good grip on the place of these theorems in the scheme of things to

give an illuminating account of the motivations here.

Indeed, the Adjoint Functor Theorems arguably sit at the boundary between

basic category theory and the beginnings of more serious stuff. So given the

intended limited remit of these Notes, this is in any case the point at which I

should probably stop.
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