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PREFACE, 1981

When I turned doctor in 1932, I was still wholly under the spell
of Principia M atheJllatica. To me this great work, by my teacher
Whitehead and his pupil Russell, was the datum plane of mathematical
logic. Improvement upon Principia was what I thought progress in
mathematical logic consisted in. Progress in that sense was indeed no
great challenge. The confusion of use and mention cried out for correc
tion, along with the resulting muddles over propositional functions,
implication, and ramified types. Uneconomical definitions and nota
tions lay open for pruning. Great pioneer works are proverbially easy
to improve. All these things I appreciated at the time. I t was only in
the following year, however, in Prague and Warsaw, that my perspec
tive was widened by Carnap, Tarski, and others to take in what had
been happening to logic in foreign climes.

My work in progress benefited superficially from my European. ex
posure but was already deeply entrenched in the Principia tradition,
where, substantially, it stayed. It was A System of LogisticJ 1934.
Mathematical LogicJ six years later, contrasts markedly with that
youthful work in its sweep, independence, and maturity. Abund~nt

literature is noted and heeded, and sources are traced. Expositioh,
though earnest, is fuller and more relaxed. But there are traits that
link it still, unlike my later books, with the Principia model. Like
Principia it develops its message in a monolithic deductive system based
on fixed axioms and rules. Like Principia it proceeds by explicit proofs
in a rigid notation rather than settling for sufficient hints of how such
proofs would run. And like Principia it subsumes set theory under logic
instead of recognizing it as a tnathematical discipline beyond logic.

Thanks to the acumen of Barkley Rosser (I do say thanks), the set
theory of Mathematical Logic of 1940 came a cropper in 1941. The
story is in another preface among these pages: how the publisher
N orton put my makeshift corrigendum slip into the remaining copies
of the book, how Harvard University- Press rescued the book for a
second printing in 1947 and printed the slip into it, and how Hao

iii



iv PREFACE, 1981

vVang supplanted Iny shotgun emendation with a proper one, con
secrated in the revised edition of 1951.

The set theory of early drafts of the book was that of my 1937 paper
"New Foundations." Vexatious limitations of that system were grate
fully overcome when it occurred to me to liberalize it by a device of
von Neumann's. I overdid it, and this is what Wang brought back into
line. Thus corrected, the system retains its superiority over that of
"New Foundations." But the latter retains an ancillary interest in
view of a proof, also due to Wang, that the consistency of either system
assures that of the other.

There is a blemish, however, affecting this system. Rosser has
proved that the class of all natural numbers cannot be proved in it to
be an "element," or set, if the system is consistent. vVe must acqui
esce rather in the inelegance of an added axiom.

Thus, though the system here presented has its attractions, I am not
its single-minded champion. In Set Theory and Its Logic (Harvard,
1963, 1969) I have compared various of the set theories in the litera
ture, noting the motivations and advantages of each.

In the present book I used no schemata but referred only to their
instances, the actual sentences, replete with unspecified predicates.
Furthermore, I did not settle for open sentences, with free variables,
but insisted on closed sentences, true and false. My reason was that
these are what logic is for; schemata and even open sentences are tech
nical aids along the vlay. What is actually shown, then, is that all
logical truths (in my narrow latter-day sense, that is, all quantifica
tional truths) issue purely by modus ponens from monadically true
ones of certain narrowly specified forms. This adherence to closed sen
tences is not trivial; the adequacy of modus ponens unmediated by open
sentences takes a bit of proving (* 111).

My motive for focusing on the closed sentences was, we see, philo
sophical: the philosophical motive of keeping one's eye on the ball. Now
since the sentences were built of arbitrary and unspecified predicates, I
had perpetually to write about them rather than write them. Quota
tion was not enough, for it blocked generality. I t was to clear this
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obstacle without confusing use and mention that I devised my corners
of quasi-quotation.

Schemata could indeed have been admitted still as heuristic aids, and
they would have made manipulations easier and more vivid; but I
eschewed them for pedagogical reasons of a higher order. I was bent on
combatting confusions over matters of ontology. I feared that readers
would persist in thinking of sentence letters and predicate letters as
variables taking propositions and properties as values, protest as I
might. My hope of keeping readers cognizant of what I was talking
about, and what not, lay in opening no easy channel for wrong ideas.
We can take the easier line with equanimity nowadays, for logic teach
ers now tend to see these matters aright; and I like to think that
I helped.

I like to think that I also helped in the struggle against confusions
of use and mention. Certainly I was persistent in precept and scrupu
lous in example, and happily the situation has vastly improved. Still, my
efforts against the related confusion of implication with the conditional,
and of equivalence with what I named the biconditional, have been
only partially successful if we may judge by lingering nomenclature.

The final chapter had two purposes. One purpose was to show how
the metalogical discourse about a formal system would look when for
malized in turn. The other and higher purpose was to teach a proof of
Godel's incompleteness theorem. My proof, unlike Godel's shuns num
bers until the coup de grace. I t proceeds rather in what I called proto
syntax, as a proof that protosyntactical truth is not definable in
protosyntax. Thus seen, it is a case of Tarski's theorem that theories

meeting certain reasonable conditions cannot contain their own truth
definitions. Finally Godel's theorem is derived by correlating proto
syntax with number theory.

A novelty of this presentation is the device of "framed ingredient"
for reducing sequences of expressions to expressions and thus gaining
the effect of quantifying over sequences and finite sets. A more con
spicuous novelty is the avoidance of singular terms other than variables
and hence the absence of any appeal to substitution of such terms. Sub
stitution played a central role in Godel's constructions and Tarski's.
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Lacking it, I had to develop a method of identity matrices, as I called
them, which does not make for easy reading. This departure was a
consequence of my policy in earlier chapters of excluding singular
terms, other than variables, from primitive notation and admitting
them only by contextual definition. I t was a way of simplifying theory
and also of helping to clarify ontological considerations.

I think of 1938-39, when my writing of this book was in its
penultimate year and I was living on a Portuguese island in the mid
Atlantic. I worked for a while at Godel's proof of the completeness of
predicate logic, with a view to adapting it to my treatment of quantifi
cation theory and including it in the boole. I found it was going to make
too heavy reading to warrant inclusion. I t would not have been as
heavy as my presentation of Godel's incompleteness theorem, but heavi
ness must be offset by importance; the one theorem is of world-shaking
importance, the other less. Little did I imagine how brief and readable
a form the completeness proof would acqui re some day in Methods
of Logic.

Harvard University
January 1981

w. V. Quine



PREFACE TO THE REVISED EDITION

The revisions made in this edition have affected half the pages,
mostly in small ways. Some thirty pages have undergone major
changes.

The prirrle mover of the nlost important revision was Rosser, who
discovered, shortly after the first edition appeared, that the axioms
of class theory in the middle of the book were contradictory. On
!earning of his discQvery I arranged with the publisher to paste a
corrigendum slip into the remaining stock of the book, indicating a
makeshift repair of the system. The text of this slip was also in
serted in the second printing (1947). I~ately, however, Wang has
devised a better repair, admirably suited both to the spirit of the
original system and to most of the details of the original exposition.
I t has hence been possible in the present edition to put the text to
rights and leave no scar. The revisions thus entailed have affected
pages 157-160,162,163,166,193,238, and 305.

Another revision stems from Berry, who sho\\Ted how a minor
modification of the concept of closure (page 79) could yield a reduc
tion in the axioms of quantification. Berry's idea was mentioned in
the second printing (page 89), but in the present edition it has been
directly incorporated, at the cost of reworking pages 79-95 and
300-301 and changing reference numbers and quantifiers in a hun
dred pages.

Over the decade since the first edition appeared, two major diffi
culties for readers have become nlanifest. One is the distinction be
tween theorems formally deduced and metatheorems informally
established. The other is the reasoning behind Godel's theorem of
incompletability. These two difficulties have been alleviated in the
present edition, the one by the addition of an appendix and the
other by' the insertion of some supplementary exposition (pages
307-312).

In the treatment of real numbers two subtle errors, discovered by
Mr. Ralph M. Krause and Dr. Wang, have been eradicated by
revising pages 273-275. Other emendations and additions on mis
cellaneous topics have been made on pages 25, 81, 89, 144, 177f,
191, 202, 208f, 229f, 292, 299, and 318.

CA\IBRID(;t:, MASS.

January 28, 195 I.
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PREFACE

Of that which receives precise formulation in mathematical
logic, an important part is already vaguely present as a basic
ingredient of daily discourse. The passage from non-mathematical,
non-philosophical common sense to the first technicalities of
mathematical logic is thus but a step, quickly taken. Once within
the field, moreover, one need not travel to its farther end to reach
a frontier; the field is itself a frontier, and investigators are active
over much of its length. Even within an introductory exposition
there is room for novelties which may not be devoid of interest to
the specialist. Textbook and treatise can hence be combined
within the same covers in mathematical logic as in few other fields.
Such is the intended status of the present book.

The material presented is substantially that covered in my course
Mathematics 19 at Harvard. I have undertaken to present it in
such a way as to presuppose neither previous acquaintance with
mathematical logic nor any special training in mathematics or
philosophy. But the book is intended for the serious reader;
there are sections which demand close study. Rigor has not, in
general, been consciously compromised in favor of perspicuity.

Chapter I deals with the truth-functional composition of state
ments: the modification of statements by denial, and the forma
tion of compounds by such connectives as 'and', 'or', 'if-then'.
These are reduced to the single connective of joint denial, 'neither
nor', following Sheffer. The contrast is emphasized between use
of expressions and discourse about expressions, and the controversy
over implication is considered in the light of this distinction. A
metamathematical, or syntactical, notation is introduced to facili
tate discourse about statements and other expressions; and the
principles of statement composition are expounded in these terms,
without recourse to the so-called propositional variables 'p', 6 q',
etc. of earlier works. The property of tautology - logical truth of
the sort which depends only on truth-functional composition
receives a new formulation in metamathematical terms, and a series

viii
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of tautologous forms is adduced. The deductive method is dis
pensed with, at the level of tautology, in favor of the method of
tabular calculation.

Chapter II treats of quantification: the formal correspondent of
the idioms involving 'all' and 'some.' It is in connection with
quantification that the variable makes its first appearance; and
accordingly some attention is devoted to clarifying the nature of
the variable, and exhibiting its analogy to the pronoun of ordinary
language. Quantification theory, like the preceding part of logic,
is expounded within the medium of metamathematics; its pres
entation in any other medium appears disadvantageous, indeed,
because of subtleties having to do with the so-called bound and
free occurrences of variables. Here as in Chapter I, methods of
calculation are deemed preferable to methods of deduction; but a
compromise now has to be struck, because of the fact that no
method of calculation is adequate to the truths of quantification
theory. The compromise consists in specifying an infinite set of
so-called axioms of quantification by a method of calcuiation, and
then allowing the theorems to proceed from these by one de
ductive rule of the simplest sort: modus ponens. A further de
parture, which recommends itself as more intuitive than t.h~ usual
procedure, is this: the axioms of quantification are specified in
such a way that the theorems come to include only statements in
the strict sense - formulce containing no "free" variables, no
variables beyond those used in quantification.

In Chapter III the connective 'E' of membership emerges, and
therewith classes. This connective, taken as supplementary to
quantification and joint denial, proves to afford an adequate basis
for the definition of the notions of logic and those of arithmetic and
derivative disciplines as well. An essential step in the series of
definitions is the introduction of abstraction - the notation
whereby classes are specified through conditions on their members.
Its introduction is accomplished by contextual definition. On the
basis of abstraction in turn the device of description is introduced,
which corresponds to the idiom 'the entity such that ... '. It
now becomes possible to construe names in general, abstract and
concrete alike, as mere shorthand which is eliminable at will from
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all discourse. Besides the economy which it affords, this procedure
proves to have the value of effecting a cleavage between syntactical
questions of meaningfulness and factual questions of existence.

In Chapter IV the axioms of quantification are supplemented
with a new infinity of axioms, providing the essential properties of
membership and derivative notions; but no rule of inference is
needed beyond the original modus ponens. Identity and unit
classes are defined, and likewise the notions of the ordinary alge bra
of classes; and a train of theorems is derived.

The logical antinomies, e.g. Russell's, are avoided by a method
which is less restrictive than past methods such as the theory of
types. The method turns, like von Neumann's, on construing
certain entities as incapable of membership; but the entities so
construed are far scarcer than under von Neumann's theory.
Besides making for algorithmic facility, this liberalization turns
out to render the existence of infinite classes demonstrable without
special postulation.

In Chapter V relations are defined on the basis of class theory,
by the Wiener-Kuratowski method, and the usual concepts of
relation theory are introduced and investigated. Functions, in
turn, are defined on the basis of relation theory. Analogues of the
device of abstraction which was used in class theory reappear in
connection with relations and functions. The definition of natural
number comes in Chapter VI; a subsequent definition then intro
duces the operation of raising a relation to a numerical power,
which operation is found to provide a simple and uniform means
of defining the various operations of arithmetic. Certain of the
basic theorems of arithmetic are proved, and the stand(\rd con
structions which lead from this level into higher reaches of quanti
tative mathematics are briefly outlined.

In Chapter VII we turn to the formalization of the metamathe
matical or syntactical machinery involved in discourse about a
formalism such as presented in the foregoing chapters. Godel's
theorem regarding the incompletability of logic and arithmetic is
derived along novel lines, and its scope is somewhat extended.

CAMBRIDGE, MASS.

April 7, 194-0 .
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MATHEMATICAL LOGIC

INTRODUCTION

MATHEMATICAL logic differs from the traditional formal logic
so markedly in method, and so far surpasses it in power and subtlety,
as to be generally and not unjustifiably regarded as a new science.
Its crude beginnings ~re placed with George Boole, in the middle of
the last century. Fragments foreshadowing mathematical logic
date back much farther than Boole - as far back indeed as Leibniz;
but it was from Boole onward through Peirce, Schroder, Frege,
Peano, Whitehead, Russell, and their successors that mathematical
logic underwent continuous development and reached the estate of
a reputable department of knowledge.

The traditional formal logic, dating in its essentials from Aris
totle, is nevertheless the direct progenitor of mathematical logic.
The striking differences between the two must not be allowed to
obscure the fact that they are both "logic" in the strictest sense of
the word. They both have, vaguely speaking, the same subject
matter. Just what that subject matter is, it is not easy to say;
the usual characterizations of logic as "the science of necessary
inference", "the science of forms", etc., are scarcely informative
enough to be taken as answers.

But if we shift our attention from subject matter to vocabulary,
it is easy to draw a superficial distinction between the truths of
logic and true statements of other kinds. A logically true state
ment has this peculiarity: basic particles such as 'is', 'not', 'and',
'or', 'unless', 'if', 'then', 'neither', 'nor', 'some', 'all', etc. occur
in the statement in such a way that the statement is true inde
pendently of its other ingredients. Thus, consider the classical
example:

(1) If every man is mortal and Socrates is a man then Socrates
is mortal.

Not only is this statement true, but it is true independently of the
1



2 INTRODUCTION

constituents 'man', 'mortal', and 'Socrates'; no alteration of
these words is capable of turning the statement into a falsehood.
Any other statement of the form:

(2) If every - is - and - is a - then - is -

is equally true, so long merely as the first and fourth blanks are
filled alike, and the second and last, and the third and fifth. A
still simpler logical truth is:

(3) Socrates is mortal or Socrates is not mortal;

alteration of 'Socrates' and 'mortal' is incapable of making the
statement false.

A word may be said to occur essentially in a statement if replace
ment of the word by another is capable of turning the statement
into a falsehood.! When this is. not the case, the word may be said
to occur vacuously. Thus the words 'Socrates' and 'man' occur
essentially in the statement' Socrates is a man', since the state
ments 'Bucephalus is a man' and 'Socrates is a horse' are false;
on the other hand' Socrates' and' mortal' occur vacuously in (3),
and ' Socrates', ' man', and ' mortal' occur vacuously in (1).
The logical truths, then, are describable as those truths in which
only the basic particles alluded to earlier occur essentially.

Those particles may be said to constitute the logical vocabulary.
They are basic to all discourse. If we were to undertake e.g. to
specify a geological vocabulary, comprising the words which occur
essentially in the truths of geology, we should have to include in it
not only such words as 'moraine', 'fault', etc., but also the whole
of the logical vocabulary; and similarly for any other discipline.
Accordingly the truths of logic may be reckoned trivially among
the truths of geology, and among the truths of economics, and so
on. This lends some sense to the dictum that logic has a universal
subject matter, and is the common denominator of the special
SCIences.

The words comprising the logical vocabulary can be substantially
reduced, for we can paraphrase some of them with help of the rest.

1 For a somewhat more careful formulation see my essay "Truth by Con
vention," pp. 93 fr.
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The sense of 'unless', e.g., is adequately conveyed by 'or'; again
the joint use of 'neither-nor' and 'not', in the fashion 'neither
not ... nor not ... ', provides an adequate paraphrase of 'and'.
When this sort of reduction is carried to the limit, the logical
vocabulary comes to comprise only 'is', 'neither-nor', and a device
corresponding roughly to the word' every', together with a certain
scheme of pronouns auxiliary to the latter device. (Cf. §§ 9, 12,
22-23.)

What is ordinarily classified under mathematical logic or tra
ditional formal logic includes, indeed, not only logical truths in the
proposed sense - truths involving just the logical vocabulary
essentially - but also statements about such truths. It is custom
ary to include within logic not only such statements as (1) and (3),
but also such statements as this:

(4) Any statement of the form (2) is true so long as the first and
fourth blanks are filled alike, and the second and last, and
the third and fifth.

The present book, in particular, consists in large part of such state
ments as (4). We must thus distinguish two senses of logic, a
broader and a narrower; logic in the narrower sense comprises
those truths which contain only the so-called logical vocabulary
essentially, while logic in the broader sense includes both logic in
the narrower sense and discourse about it. Discourse of the latter
kind is classifiable, in large part at least, under the head of formal
syntax (cf. Ch. VII). Over the years the term 'logi.c' has of course
been applied also to a vast range of other topics, encroaching upon
rhetoric, psychology, epistemology, metaphysics; but I shall not
attempt to find a unifying principle among these far-flung applica
tions of the term.

Preparatory to the foregoing characterization of logical truths,
we took the general notion of truth for granted. We simply dis
tinguished logical truths from others, by specifying what words
occur essentially in the logical truths. Now the general notion of
truth, central as it is to bafHing problems of philosophy, may ap
pear rather too big a thing to take for granted. Repudiation of
"truth with a capital 'T'" is a favorite way, indeed, of professing
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alignment with the hard-headed. But in p=>int of fact there is no
denying that we know what it means to say that a given statement
is true - absolutely True - just as clearly as we understand the
given statement itself. The circumstances under which the state
ment:

(5) Jones smokes

would be said to be true, e.g., are precisely the circumstances under
which Jones himself would be said to smoke. Truth of the state
ment (5) is n~ more mysterious than the notions of Jones and
smoking. Applied to any statement S, the word 'true' is no ob
scurer than the obscurest word in the statement S itself; for to
say that S is true is simply to say S.l This would seem to condone
the present expository recourse to the general notion of truth,
however the subtle problems which that notion involves may fare.

To determine the truth of the statement (5), it is not enough to
inspect the statement; we must also observe Jones. With most
other statements the case is similar. Thus when we say that it is
the business of the geologist to find out what statements are
geological truths, we do not commit him to a sedentary study of
statements; we call upon him to spend a good part of his time
inspecting bluffs and craters. But logic, indeed mathematics
generally, is otherwise. The truth of (1) and (3), e.g., is recog
nizable on inspection merely of the statements themse'ves. Con
fronted with any logical truth or indeed any true statement of
mathematics, no matter how complex, we recognize its truth if at
all merely by inspecting the statement and reflecting or calculating;
observation of craters, test tubes, or human behavior is of no avail.
Insofar then as logical truth is discernible at all, standards of logical
truth can be formulated in terms merely of more or less complex
notational features of statements; and correspondingly for
mathematics generally. Thus it is that the logician and mathe
matician talk about statements so much more than the geologist
does; and thus it is that logic in a broad sense is commonly taken
to include discourse about the statements of logic in the narrower

1 For an instructive elaboration of this theme see §1 of Tarski's "Wahrheits
begriff."
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sense, whereas no such bifurcation is ordinarily imposed upon
geology.

If standards of logical or mathematical truth are to be formulated
in terms merely of the observable features of statements, a first
important step is revision and schematization of the language in
such fashion as to put the relevant features of statements into the
simplest possible form. Revision in this direction has long since
taken place in mathematics; perhaps the most basic departures
from ordinary language are the use of parentheses to indicate
grouping, and the use of variables for those purposes of cross
reference for which ordinary language uses pronouns (cf. § 12).
Through emulation of mathematics, a similar revision took place
in logic from Boole onward; this is indeed so obvious a point of
contrast between the old logic and the new that the latter is often
called" symbolic logic". But far more radical linguistic revisions
are wanted if such projects as the formulation of truth criteria are
to be expedited to the fullest. It is helpful to reduce the notions of
logic and mathematics to a minimum, by defining some in terms of
others; for this reduces the variety of statements which the truth
criterion must cover. Reduction of this kind can, it turns out, be
carried to great lengths. Mention has already been made of the
meager array of devices which suffices for logic: analogues of
'is', 'neither-nor', 'every', and pronouns. What is more sur
prising, these devices ,prove adequate not only to logic but to pure
mathematics generally (cf. §§ 23, 52); mathematics reduces to logic.

Having given the language of logic the most economical and
schematic form we can, we might next hope to devise some routine
test which, applied merely to the notational patterns of statements,
will distinguish always between those which are logically true and
those which are not. But this is a good deal to hope, p.articularly
in view of the reducibility of mathematics in general to logic.
Every mathematical problem would become soluble by a mechani
cal procedure - even the celebrated Fermat problem, which has
resisted solution for three centuries. Publication of proofs in
mathematics would never again be necessary; results would
simply be stated subject to mechanical check on the part of the
reader.
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Diffident of so bold a project, we might try to formulate some
less powerful notational criterion of logical and mathematical
truth: a criterion whose fulfillment by any given statement is
discernible only by luck rather than by an infallible routine test.
Such, indeed, is the character of mathematical proof; a proof once
discovered can be mechanically checked, but the actual discovery
of the proof is a hit and miss matter. (Cf. §§ 16, 55.) Our present
more modest objective, then, can take the form of an explicit
formulation of the notion of proof, or theorem, such as will involve
reference only to the notational patterns of statements. But
recent developments indicate, actually, that an exhaustive criterion
of logical or mathematical truth along even these more modest lines
is impossible. Given any rules of proof which do not actually lead
to falsehoods, there will be mathematical truths which cannot be
proved by the rules (cf. §60). There will always be some demon
strably indemonstrable mathematical truths. We must content
ourselves with a version of "theorem" which covers only one or
another important portion of the truths of logic and mathematics.

The fact remains that insofar as logical or mathematical truth
can be detected at all, the standards can be formulated explicitly
as criteria hinging upon the notational patterns of statements.
Such truths of logic and mathematics as are not obvious are
recognized, if at all, by proof; and the considerations which go to
make up a proof do admit of explicit formulation in terms of
notational features of statements. Such formulation is not only
possible, but highly desirable for the increased insight which it
promises. The very discovery that there must always be indemon
strable mathematical truths is a discovery which could not have
been made without analyzing the notion of "proof" or "theorem"
in terms explicitly of notational features of statements.

The described developments are by no means the whole motiva
tion of the modern refinements in logic. The reduction of the
notions of mathematics and logic to a minimum, for example, is
prompted by much more than the special purpose mentioned
earlier. It is indeed an end in itself, for it reveals just what few
notions are finally presupposed by the whole of mathematics.
Through this process of paraphrasing some notions in terms of
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others, moreover, and finally paraphrasing all in terms of the
chosen few, the several mathematical and logical notions of course
undergo illuminating analysis.

Schematization of the logical language is of significance also in
more practical spheres. Logic has its practical use in inference
from premisses which are not logical truths to conclusions which
are not logical truths. Logic countenances such inference when
the conditional statement 'If ... then ... ' connecting premiss
with conclusion is itself logically true (like (1) above); and it is in
this way that logical truth links up with extra-logical concerns.
Precisely the analogous account holds with regard to applications
of mathematics generally; the tremendous utility of mathematical
techniques in natural science turns simply on the importance of
discerning mathematical truths of the form 'If ... then ... '
whose component parts are statements of natural science. Unlike
the numerical branches of mathematics, however, logic itself has
traditionally figured in natural science only tacitly and at a pretty
rudimentary level of inference; it has played fully as subordinate
a role as arithmetic might have played in the days of Roman
numerals. But when we schematize logic along the lines of modern
mathematics (retaining convenient abbreviations, of course, over
and above the minimum logical vocabulary), we have a tool which
is about as effective as arithmetic and derivative branches of
mathematics - and which far surpasses these latter in scope of
applicability.

Where number is irrelevant, regimented mathematical technique
has hitherto tended to be lacking. Thus it is that the progress of
natural science has depended so largely upon the discernment of
measurable quantity of one sort or another. Measurement con
sists in correlating our subject matter with the series of real num
bers; and such correlations are desirable because, once they are
set up, all the well-worked theory of numerical mathematics lies
ready at hand as a tool for our further reasoning. But no science
can rest entirely on measurement, and many scientific investiga
tions are quite out of reach of that device. To the scientist longing
for non-quantitative techniques, then, mathematical logic brings
hope. It provides explicit techniques for manipulating the most
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basic ingredients of discourse. Its yield for science may be ex
pected to consist also in a contribution of rigor and clarity - a
sharpening of the concepts of science. Such sharpening of con
cepts should serve both to disclose hitherto hidden consequences
of given scientific hypotheses, and to obviate subtle errors which
may stand in the way of scientific progress.

Mathematical logic has been applied,! but the most important
applications are surely still to come. The usefulness of a theory is
not to be measured solely in terms of the application of prefabri
cated techniques to preformulated problems; we must allow the
applicational needs themselves, rather, to play their part in
motivating further elaborations of theory. The history of mathe
matics has consisted to an important degree in such give and take
between theory and application. Much of the promise of mathe
matical logic for science lies in its potentialities as a basis from
which to construct subsidiary techniques of unforeseen kinds in
response to special needs.

1 See e.g. Berkeley, Carnap (Aufbau), Dittrich, Hempel and Oppenheim, Hull,
Quine (" Relations and Reason "), Russell ("Order in Time"), Shannon, Stamm,
Whitehead (" Mathematical Concepts," "Theorie relationniste "), Wiener (" Syn
thetic Logic," "Measurement"), Woodger, Zwicky.
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STATEMENTS





§ 1. ConJ·unction, Alternation, and Denial

MATHEMATICAL logic at its most elementary level deals with
statements, or declarative sentences, and with ways of compound
ing them into further statements. One of these modes of com
position, known to logicians as conjunction, consists in joining two
statements by 'and' - or, in the notation of mathematical logic,
by the dot ' . '. 'Some are born great and some achieve great
ness', or 'some are born great • some achieve greatt:tess', is the
conjunction of 'some are born great' and 'some achieve great
ness'. A conjunction is true if both component statements are
true; otherwise false. To determine the truth value (truth or
falsehood) of a conjunction, therefore, it is sufficient to know the
truth values of the components.

A mode of statement composition will be said to be truth
functional if the truth value of the compound is determined in all
cases by the truth values of the components. Conjunction is thus
truth-functional. So are all other modes of statement composition
required for mathematical logic, or mathematics generally. There
is reason to believe that none but truth-functional modes of
statement composition are needed in any discourse, mathematical
or otherwise; but this is a controversial question. (Cf. § 5.)

Each such mode of composition is exhaustively describable by a
truth table - a table specifying the truth value of the compound for
each assignment of truth values to the components. Thus the
table for conjunction is as follows:

1st component 2d component Conjunction

T T T
F T F
T F F
F F F

It tells us that the conjunction is true when both components are
true, false when the first component is false and the second true,
and false like\vise in the two remaining cases.

11
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A second mode of composition, no less familiar than conjunction,
is alternation - composition of statements by means of the con
nective 'or'. Reflection upon·ordinary usage of 'or' reve als th at
an alternation is true if just one of its components is true, and false
if they are both false. This gives us three-quarters of a truth table
for alternation:

1st component 2d component Alternation

T T
F T T
T F T
F F F

But the top row is indicated less clearly by usage. We must de
cide whether 'or' is to be construed in an exclusive sense, corre
sponding to the Latin' aut', or in an inclusive sense, corresponding
to the Latin 'vel'. When' or' is used in the exclusive sense, the
compound is regarded as true only if exactly one of the two com
ponents is true; joint truth of the components falsifies the com
pound. An' or '-com pound in this sense can be expressed more
clearly by adding the words 'but not both'. When' or' is used
in the inclusive sense, on the other hand, the compound is regarded
as true if at least one of the components is true; joint truth of the
components verifies the compound. An 'or'-compound in this
sense can be expressed more clearly by adding the words 'or
both', or by admitting the barbarism 'and/or'. The blank in
our table receives an 'F' or a 'T' according as 'or' is construed
in the exclusive or the inclusive sense.

Common usage can be adduced in support of either course. If a
witness guesses that either the steering gear was loose or the
driver was drunk~ and it is found that the steering gear was loose
and the driver was drunk, we do not regard the witness as nlis
taken; to this extent usage supports the inclusive 'or'. At the
same time the prevalent use of the expressions 'or both' and
'and/or' is a presumption in favor of the exclusive interpretation,
since otherwise these expressions would always be superfluous.

In mathematical logic the ambiguity of ordinary usage is re-
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solved by adopting a special symbol 'v', suggestive of 'vel', to
take the place of 'or' in the inclusive sense. Alternation is
identified with this usage; thus the truth table of alternation
becomes:

1st component 2d component Alternation

T T T
F T T
T F T
F F F

The exclusive use of 'or' is not frequent enough in technical
developments to warrant a special name and symbol.

The connectives 'and' and 'or' are used in ordinary discourse
not only between statements but between nouns, verbs, preposi
tions, indeed nearly all parts of speech. It is only as connectives of
statements, however, that they receive the symbolic rendering
, • ' and 'v'. The other uses do not fall under the head of con
junction and alternation.

Conjunction and alternation are binary, in that they combine
statements two at a time. But denial, to which we now turn, is
s'ingulary: 1 it is a method merely of elaborating a single state
ment to form a new statement. It has the following truth table,
which IS limited to two rows because there is just one compo
nent.

Component

T
F

Denial

F
T

The denial is true if and only if the original statement is false.
The method of forming the denial in ordinary language is irreg

ular. Sometimes' not' is attached to the main verb; thus the
denial of 'Jones is away' is 'Jones is not away'. But if the verb

1 The series of adjectives 'binary', 'ternary', 'quaternary', 'quinary', ...
leaves mathematicians in a quandary when n = 1. It is customary to stammer
out some such makeshift as 'unary' or 'uninary' or 'unitary'. But the proper
word is apparent if we reflect that the series of Latin distributives 'bini', 'terni',
'quaterni', 'quini', ... begins with' singuli'.
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is governed by 'sometimes' or 'always', the denial is formed
rather by substituting 'never' or 'not always'. If the statement
is a conjunction or alternation and hence has no main verb, then
denial is accomplished by one or another periphrasis.

In mathematical logic the denial of a statement is formed by
prefixing the tilde 'I"'..J', which is a modified ' n' and is con
veniently read 'not'. Thus 'Jones is not away' gives way to
'I"'..J Jones is away'. Over the ordinary use of 'not' this notation
has two advantages: it leaves the internal constitution of the
affected statement intact, and it applies immediately to state
ments of any form and complexity.

The first branch of mathematical logic to reach maturity was the so-called algebra
of logic, which was founded by Boole (1847) and improved by Jevons, Peirce, and
Schroder. This algebra, while regarded primarily as an algebra of classes (cf. § 33),
was recognized as amenable to reinterpretation as a theory governing conjunction,
alternation, and denial. Truth tables, and the graphic method of calculation which
they provide (cf. § 3), came only in 1920-21 (Lukasiewicz, Post, Wittgenstein);
but much the same technique in non-tabular form was made known by Peirce
(3.387 f) in 1885, and is indeed implicit in Boole's "general rule of development"
(Laws of Thought, p. 75 f). The signs '.', 'V', and' 1"0../' are from Whitehead and
Russell.

§ 2. The Conditt'onal

ANOTHER binary connective, and a particularly important one,
is 'if-then'. A statement thus compounded is known as a con
ditional (or hypothetical). The first of its two component state
ments, placed between 'if' and 'then', is called the antecedent (or
protasis or hypothes£s) of the conditional; the second component,
placed after ' then', is called the consequent (or apodas£s or
thesis).

Any conditional with true antecedent and false consequent is
false. The conditional 'If Jones was here then the glove is his'
is clearly disproved when it turns out that Jones was here and the
glove is not his. But none of the other three combinations of truth
values is adequate to disproving the conditional. In case Jones
was not here, the conditional stipulates nothing regarding the
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ownership of the glove; and in case Jones was here and the glove
is his, the conditional is supported. Are we then to construe a
conditional as false In the one case and true in the other three?

Antecedent Consequent Condt'tional

T T T
F T T
T F F
F F T

The mode of composition described In the table constitutes the
nearest truth-functional approximation to the conditional of
ordinary discourse, and may be called the truth-functional con
ditional. All truth-functional conditionals with false antecedents
and all with true consequents are true. Only those are false which
have true antecedents and false consequents. If we construe
, if-then' in this sense, the following become true:

(1) If France is in Europe then the sea is salt,
(2) If France is in Australia then the sea is salt,
(3) If France is in Australia then the sea is sweet.

Symbolically the truth-functional conditional is rendered by the
connective ')', th us:

(4) Jones was here) the glove is his.

(4) is true in case Jones was not here, true also in case the glove is
his, and false just in case he was here and the glove is not his. It is
true whenever at least one of the two statements' 1"../ Jones was
here' and 'the glove is his' is true, and false in the case where
'Jones was here' and '1"../ the glove is his' are both true. (4) can
hence be paraphrased in terms of denial and alternation thus:

(5) 1"../ Jones was here v the glove is his,

or in terms of denial and conjunction thus:

(6) 1"../ (Jones was here . 1"../ the glove is his).

The parentheses in (6) indicat~ the grouping, as usual in mathe
matics. They indicate that the denial sign applies to the whole
conjunction. When there is no such indication, a denial sign
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always applies to the shortest statement following it; thus (5) is
understood as:

( roo...; Jones was here) V the glove is his
rather than:

t"o...I (Jones was here V the glove is his).

A statement of the form '--) --' is conveniently pro
nounced in the usual fashion 'If-- then __ ';1 but we have now
to consider to what extent this conforms to the ordinary usage of
'if-then'. Let us examine the latter more closely. The subjunctive
mood is ordinarily used in a conditional when the speaker believes
the antecedent to be false, and the indicative mood when he wants
to leave the antecedent unprejudiced. Usage of the subjunctive
conditional is certainly at variance with the above table; for if all
conditionals with false antecedents are true, no subjunctive con
ditional is worth affirming. The subjunctive conditional is in fact
not directly identifiable with any truth-functional mode of com
position, but calls for a more elaborate analysis. (Cf. § 5.) This
task is important for the philosophy of science, for the subjunctive
conditional is implicit in those terms of disposition or potentiality
with which the natural sciences abound: 'soluble', 'malleable',
'hard', 'sensitive', 'intelligent', etc. The task is not one, however,
which need be accomplished within the framework of mathemat
ical logic. Mathematics makes no use of the subjunctive condi
tional; the indicative form suffices. It is hence useful to shelve
the former and treat the' if-then' of the indicative conditional as a
connective distinct from' if-then' subjunctively used. It remains
to consider whether the above table gives an acceptable version of
the indicative conditional. 2

1 The reading 'implies', for ')', is to be avoided (cf. §5). Its popularity
probably arises from the fact that the' if-then' reading calls for an inconvenient
excursion into the context; 'then' supplants' ) " but' if' has to be inserted in an
earlier position. Note however that we can avoid this inconvenience by reading
, ) " at will, simply as 'only if'. A little reflection shows that' If - then -' can
always be given the alternative rendering '- only if -', without disturbing the
order of the components. \Vhereas' - it-' is of course the reverse of ' If 
then -', insertion of' only' has the peculiar effect of restoring the normal order of
antecedent and consequent.

2 Not only the present section but also § .:; is relevant to the controversy which
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One who affirms an indicative conditional is ordinarily uncertain
as to the truth values of both antecedent and consequent. He
believes it is no~ the case that the first is true and the second false,
but ordinarily he does not know whether they are both true, or
both false, or first false and second true. It is for this r~ason, per
haps, that the truth of (1)-(3) seems strange; not because these
would be false under ordinary usage, but because they would be
idle or senseless. Indeed, since usage conforms to the third line of
the table, and usage lapses as soon as a case is precisely located
elsewhere in the table, there is no clear conflict between the table
and the indicative conditional of ordinary usage. The table de
parts from usage only in committing itself on points where usage
is lacking. This much departure is necessary in any complete
formulation - any formulation which explains the conditional for
every pair of statements.

What the truth table adds, in thus deciding the cases beyond the
range of ordinary usage, is essentially theoretical; no supplemen
tary practical use of 'if-then' is thereby prescribed. In practice,
even in the light of the truth table, one would naturally not bother
to affirm a conditional if he were in position to affirm the conse
quent outright or to deny the antecedent - any more than one
bothers to affirm an alternation when he knows which component
is true. We say:

(7) If Jones has malaria then he needs quinine

because we know about malaria but are in doubt both of Jones's
ailment and of his need of quinine. Thus only those conditionals
are worth affirming which follow from some manner of relevance
between antecedent and consequent - some manner of law, per
haps, connecting the matters which these two component state
ments describe. Such connection underlies the useful application
of the truth-functional conditional without participating in the
meaning of that notion. The situation is similar, indeed, in the
case of alternation.

A conditional thus inferred from a general law must be dis-

has arisen over this point. Those acquainted with the controversy should keep in
mind that in the present section nothing is said of implication.
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tinguished from the law itself, which commonly bears the outward
form of a conditional in turn:

(8) If one has malaria then he needs quinine.

Certainly (8) asserts a connection between malaria and qUInIne
which transcends any truth table; but actually the statement is
elliptical, and analysis deprives it of the form of a pure conditional.
It is short for some such statement as this:

(9) Whatever person be selected, if he has malaria then he needs
qUInIne.

This statement is of an important kind which will be taken Up in
Chapter II under the head of quantification. Its initial part con
fers universality; the remainder has no separate status as a state
ment at all, for it contains pronouns which refer back to the initial
part and lose all meaning on isolation. (9) is not itself a condi
tional, but has the effect of simultaneous affirmation of a vast
array of conditionals. Each of these separate conditionals, e.g.
(7), can still be construed in accordance with the truth table; the
strong interconnection between malaria and quinine which (9)
conveys is not to be laid to the conditional mode of composition
but to the initial indication of universality.

The truth-functional version of the conditional goes back to Philo of Megara.
It was revived in modern logic by Frege (1879) and Peirce (1885). The conditional
sign') , was used by Gergonne as early as 1816, though not in the truth-functional
sense. The appropriateness of the truth-functional version was vigorously debated
in ancient times (cf. Peirce, 3.441 ff; Lukasiewicz, "Zur Geschichte", p. 116), and
has become a current topic of controversy as well. The issue has been clouded,
however, by failure to distinguish clearly between the conditional and impli
cation (cf. § 5)

§3. Iterated Composition

WHEN truth-functional composition is applied In iteration to
form a complex statement, e.g.:

(1) Germany will withdraw v (France will invade. England will
mobilize),
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(2) (Jones was here) the glove is his) . (the glove is his) Jones
was here),

(3) (Jones came. I"'V (Smith stayed. I"'V Robinson left)) V Robin-
son left,

we can always calculate the net import of the result by truth
tables. We can determine systematically what truth values on the
part of the ultimate components would make the whole true and
what ones would make the whole false.

This is accomplished, for example in the case of (2), by assigning
all possible combinations of truth values to the ultimate com
ponents 'Jones was here' and' the glove is his' and then deriving
the truth value of (2) for each of these assignments by consulting
the truth tables of the modes of composition involved. The process
can conveniently be carried out by a tabular construction whose

(,Jones was here) the gloz'e is his).(the gloz'e is his) 'jones was here)

T T T T T T T
F T T F T F F
T F F F F T T
F T F T F T F

TABLE

outcorne is Table 1. The first and third columns, standing beneath
'Jones was here' and' the glove is his', exhaust the four combina
tions of truth values; they are the familiar columns used in earlier
tables. These columns are repeated under the repeated occurrences
of 'Jones was here' and 'the glove is his'. Each of the three re
maining C"olumns stands beneath a statement connective, and lists
the truth values, for the four cases, of the compo"und produced by
that connective. Thus, the second column indicates the truth
value of the conditional:

Jones was here) the glove is his

for the successive cases; the four entries in the column were found
by inspecting the two adjacent columns and taking the appropriate
values for the conditional according to the conditional table (§ 2).
The next to last column, indicating the value of:
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The glove is his) Jones was here

for the successive cases, was obtained similarly from its adjacent
columns. Finally, the middle c::>lumn indicates the value of the
whole conjunction (2) for the successive cases; the four entries
here were found by inspecting the columns belonging to the two
immediate components of the conjunction, namely the two con
ditionals, and taking the appropriate values for the whole accord
ing to the conjunction table (§ 1).

The completed Table 1 tells us, then, in its middle column, that
(2) is true in just the first and last cases: true if Jones was here and
the glove is his, true if Jones was not here and the glove is not his,
and false otherwise.

The form of iterated composition illustrated in (2) is, as it hap
pens, a particularly important one; for it corresponds to the idiom
'if and only if'. Symbolically it is usually rendered in abbreviated
fashion by the connective' == '; thus (2) becomes:

Jones was here == the glove is his.

This binary mode of composition may be called the biconditional,
more specifically the truth-functional biconditional, for it is the
conjunction of opposite truth-functional conditionals. It has
Table 2 as its truth table, for we saw that (2) is true just in case

Ist component

T
F
T
F

2d component

T
T
F
F

TABLE 2

Biconditional

T
F
F
T

the components are both true or both false. The biconditional is
true just in case its components are alike in truth value; false
just in case one component is true and the other false. This mode
of composition is related to the' if and only if' of ordinary usage
precisely as the truth-functional conditional is related to the
ordinary usage of 'if-then' (cf. § 2).
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Ist component

T
F
T
F
T
F
T
F

2d component

T
T
F
F
T
T
F
F

3d component

T
T
T
T
F
F
F
F

TABLE 3

Let us now analyze (3). Here there are three ultimate com
ponents, 'Jones came', 'Smith stayed', and 'Robinson left', in
stead of just two. Our first task, then, is to exhaust the ways of
assigning truth values to three components. A convenient sys
tematic method is shown in Table 3. The upper half of this array
was formed by setting down the familiar array for two components
and adjoining a third column composed uniformly of 'T'; the
lower half was formed similarly using 'F'. The array for four
components would be formed from this array for three components
by the same method, and so on. Obviously this scheme always
exhausts the combinations. In general, we see that the array for
n components will have 2n rows; and that 'T' and 'F' will always
be alternated simply in the first column, in pairs in the second
column, in fours in the third column, and so on.

We have now to calculate the truth value of (3) for each of the
eight ways of assigning truth values to the three ultimate COlTI

ponents. The construction, analogous to that of Table 1, has
Table 4 as its outcome. The columns under 'Jones came', 'Smith
stayed', and 'Robinson left' are the columns of Table 3, with
repetition for the repeated component' Robinson left'. The sixth
column indicates the truth values of the denial' r-...; Robinson left'
for the eight cases; its entries are derived from those in the seventh
column by means of the denial table. The fifth column indicates
the values of:

Smith stayed. r-...;Robinson left;

it is derived from the adjacent columns by the conjunction table.
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(Jones came. r-v(Smith

T TT
F FT
T TT
F FT
T FF
F FF
T TT
F FT

STATEMENTS

stayed. r-vRobinson

T F F T
T F F T
F F F T
F F F T
T rfT F
T TT F
F F T F
F F T F

TABLE 4

left)) V Robinson

T T
T T
T T
T T
F F
F F
T F
F F

§3

left

The third column indicates the values of the denial of this con
junction; it is derived from the fifth column by the denial table.
The second column indicates the values of:

Jones came. r-v(Smith stayed. r-vRobinson left);

it is derived from the adjacent columns by the conjunction table.
Finally, the eighth column indicates the values of the whole al
ternation (3); it is derived from the second and last columns by the
alternation table.

Table 4, thus constructed, tells us in its eighth column that (3) is
true in all cases except the fifth, sixth, and last. Thus (3) is false if
Jones came, Smith stayed, and Robinson did not leave; false also
if Jones did not come, Smith stayed, and Robinson did not leave;
false also if Jones did not come, Smith did not stay, and Robinson
did not leave; but true in all other cases.

In Table 5 the method' is applied to a case where there is just one
ultimate component. Here there are just two rows, exhausting the
truth possibilities for the single component. The third column
shows that the whole is true if Jones was not here, otherwise false.

r-vJones was here == (Jones was here) Jones was here)

F T F T T T
T F T F T F

TABLE 5
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§4. Use versus Mention
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IN THE literature on the logic of statements, and in other founda
tional studies of mathematics as well, confusion and controversy
have resulted from failure to distinguish clearly between an object
and its name. Ordinarily the failure to maintain this distinction is
not to be attributed to any close resemblance between the object
and the name, even if the object happens to be a name in turn; for
even the discrimination between one name and another is a visual
operation of an elementary kind. The trouble comes rather in
forgetting that a statement about an object must contain a name
of the object rather than the object itself. If the object is a man or
a city, physical circumstances prevent the error of using it instead
of its name; when the object is a name or other expression in turn,
however, the error is easily committed.

As an illustration of the essential distinction, consider these
three statements:

(1)
(2)
(3)

Boston is populous,
Boston is disyllabic,

, Boston' is disyllabic.

The first two are incompatible, and indeed (1) is true and (2) false.
Boston is a city rather than a word, and whereas a city may be
populous, only a word is disyllabic. To say that the place-name in
question is disyllabic we must use, not that name itself, but a name
of it. The name of a name or other expression is commonly formed
by putting the named expression in single quotation marks; the
whole, called a quotation, denotes its interior. This device is used
in (3), which, like (1), is true. (3) contains a name of the di
syllabic word in question, just as (1) contains a name of the
populous city in question. (3) is about a word which (1) contains;
and (1) is about no word at all, but a city. In (1) the place-name
is used, and in this way the city is mentioned; in (3) a quotation is
used, and the place-name is mentioned. We mention x by using a
name of x; and a statement about x contains ,a name of x.1

1 By these considerations, the first sentence of the present paragraph might be
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The foregoing treatment of (1)-(3) is itself replete with mention
of expressions, yet free from quotations. These were avoided by
circumlocution. As an exercise in quotation marks, however, it
may be useful now to add a few comments involving them. 'Bos
ton is populous' is about Boston and contains' Boston'; "Bosto~'

is disyllabic' is about' Boston' and contains' 'Boston' '. "Bos
ton" designates 'Boston', which in turn designates Boston. To
mention Boston we use 'Boston' or a synonym, and to mention
, Boston' we use ' 'Boston' , or a synonym. " Boston' , contains
six letters and just one pair of quotation marks; 'Boston' contains
six letters and no quotation marks; and Boston contains some
800,000 people.

Such examples as (3), or:

(4) 'Boston' has six letters;
(5) 'Boston' is a noun,
(6) 'Boston' occurs in Walt Whitman's Chants Democratic,

must not be thought of as exhausting the kinds of things that can
be said about an expression. These four statements ascribe prop
erties to 'Boston' which might be classed respectively as phonetic,
morphological, grammatical, and literary; roughly speaking, they
have nothing to do with meaning. But an expression which has
use in language will also have semantic properties, or properties
which arise from the meaning of the expression. Such properties
are ascribed to 'Boston' by these statements:

(7) 'Boston' designates Boston,
(8) 'Boston' designates a populous city,
(9) 'Boston' designates the capital of Massachusetts,
(10) 'Boston' is synonymous with 'the capital of Massachu

setts' .

(7)-(10) are just as genuinely statements about 'Boston' as are
(3)-(6), and omission of the quotation marks from (7)-(10)
would give results no less objectionable than (2); for it is only

criticized for failure to enclose the whole statements (1)-(3) in quotation marks.
But it is clearer to avoid quotation, in such cases, by agreeing to regard the colon
as equivalent to quotation when followed by displayed text (text centered in a new
line).
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expressions, not places, that can designate or be synonymous. A
statement about an expression may depend for its verification
upon considerations of sound or shape or literary locale, or even
upon considerations of population or other extra-linguistic matters
of fact with which the expression is indirectly connected by its
use; but so long as the statement is about the expression it must
contain a name of the expression.

Lack of care in thus distinguishing the name from the named is
common in mathematical writings. The following passage, from
a widely used textbook on the differential calculus, is fairly typical:

The expression DxY~x is called the differential of the func
tion and is denoted by dy:

dy = DxY~x.

The third line of this passage, an equation, is apparently supposed
to reproduce the sense of the first two lines. But actually, whereas
the equation says that the entities dy and DxY~x (whatever these
may be) are the same, the preceding two lines say rather that the
one is a name of the other. And the first line of the passage in
volves further difficulties; taken literally it implies that the
exhibited expression 'DxY~x' constitutes a name of some other,
unexhibited expression which is known as a differential. But all
these difficulties can be removed by a slight rephrasing of the
passage: drop the first two words and change' and is denoted by'
to 'or briefly'.

Expository confusions of this sort have persisted because, in
most directions of mathematical inquiry, they have not made
themselves felt as a practical obstacle. They do give rise to minor
perplexities, indeed, even at the level of elementary arithmetic.
A student of arithmetic may wonder, e.g., how 6 can be the
denominator of t and not of t when t is j-; this puzzle arises from
failure to observe that it is the fractions '-t' and 't' that have
denominators, whereas it is the designated ratios t and t that are
identical. But it is primarily in mathematical logic that careless
ness over these distinctions is found to have its more serious
effects. At the level of the logic of statements, one effect is obliter
ation of the distinction between predicates of statements and
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composItIon of statements - a distinction which will be con
sidered in the next section.

Scrupulous use of quotation marks is the main practical measure
against confusing objects with their names. But it has already
been suggested that this particular method of naming expressions
is not theoretically essential. E.g., using elaborately descriptive
names of' Boston', we might paraphrase (3) in either of the follow
Ing ways:

The word composed successively of the second, fifteenth,
nin~teenth, twentieth, fifteenth, and fourteenth letters of the
alphabet is disyllabic.

The 4354th word of Chants Democratic is disyllabic.

Quotation is the more graphic and convenient method, but it has
a certain anomalous feature which calls for special caution: from
the standpoint of logical analysis each whole quotation must be
regarded as a single word or sign, whose parts count for no more
than serifs or syllables. A quotation is not a description, but a
hieroglyph; it designates its object not by describing it in terms of
other objects, but by picturing it. The meaning of the whole does
not depend upon the meanings of the constituent words. The
personal name buried within the first word of the statement:

(11) 'Cicero' has six letters,

e.g., is logically no more germane to the statement than is the verb
'let' which is buried within the last word. Otherwise, indeed, the
identity of Tully with Cicero would allow us to interchange these
personal names, in the context of quotation marks as in any other
context; we could thus argue from the truth (11) to the falsehood:

'Tully' has six letters.

Frege seems to have been the first logician to recognize the importance of scru
pulous use of quotation marks for avoidance of confusion between use and mention
of expressions (cf. Grundgesetze, vol. 1, p. 4); but unfortunately his counsel and good
example in this regard went unheeded by other logicians for some thirty years.
For further discussion of this topic see Carnap, Syntax, pp. 153-160. Concerning
the necessity of treating a whole quotation as a single sign, see also § 1 of Tarski's
"Wahrheitsbegriff"•
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TO SAY that a city or a word has a given property, e.g. populous
ness or disyllabism, we attach the appropriate predicate to a name
of the city or word in question (cf. § 4). To say that a statement
has a given property, e.g. the phonetic property of being a hexam
eter or the semantic property of truth or falsehood, we attach the
appropriate predicate to a name of the statement in question
not to the statement itself. Thus, to attribute truth to:

(1)

we write:

(2)

Jones is ill

, Jones is ill' is true,

Jones is ill is true,
Jones is ill is false,

and to attribute falsehood we write:

(3) 'Jones is ill' is false.

Equivalently, we may write:

(4) (1) is true,
(5) (1) is false;

but never:

(6)
(7)

on the analogy of:

(8) f'../ Jones is ill.

(2)-(5) are about the statement (1), but (8) is not; it, like (1), is
about Jones. 'Is true' and' is false' attach to names of statements
precisely because, unlike 'f'../', they are predicates by means of
which we speak about statements. Whereas statement connectives
(' f'../', '.', 'v', ')', ' == ') attach to statements to form statements, a
predicate is an expression which attaches to names to form state
ments. Grammar alone is enough to condemn (6) and (7), since
each occurrence of 'is' should have a noun as subject. Confusion
over this matter results in the view that the suffix 'is true' is
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vacuous, and that the suffix' is false' is the English translation of
the prefix '!"'V'; the view, in other words, that (6) is equivalent to
(1) and (7) to (8).

In order to say that two objects stand in a given relation, e.g.
hate, or remoteness, one puts an appropriate binary predicate
(transitive verb) between names of the objects thus: 'Roosevelt
hates Hitler', 'Berlin is far from Washington'. To say that two
statements stand in a given relation, whether the phonetic relation
of rhyming or the semantic relation of implication, we put the
appropriate binary predicate between names of the statements 
not between the statements themselves. We may write:

(9) 'All men are mortal' implies 'all white men are mortal',
(10) The third statement of the book implies the seventh,

but never:

(11) All men are mortal implies all white men are mortal

on the analogy of:

(12) If all men are mortal then all white men are mortal,
(13) All men are mortal) all white men are mortal.

The verb' implies' belongs between names of statements precisely
because, unlike ')' or 'if-then', it expresses a relation between
statements; it is a binary predicate by means of which we talk
about statements. (9) and (10) are about statements, while (12)
and (13) are about men.

The relation of implication in one fairly natural sense of the term,
viz. logical implication, is readily described with help of the auxi
liary notion of logical truth. A statement is logically true if it is not
only true but remains true when all but its logical skeleton is varied
at will; in other words, if it is true ana contains only logical ex
pressions essentially, any others vacuously (cf. Introduction).
Now one statement may be said logically to imply another when
the truth-functional conditional which has the one statement as
antecedent and the other as consequent is logically true. Thus
(9), so construed, is equivalent to:

(13) is logically true.
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A trivial analogue, material implication, may be said to hold
whenever the truth-functional conditional which has the one state
ment as antecedent and the other as consequent is true. Thus one
statement materially implies another provided merely that the
first is false or the second true. This relation is so broad as not to
deserve the name of implication at all except by analogy. But
and this is the point usually missed - 'materially implies' is still
a binary predicate, not a binary statement connective. It stands
to ')' precisely as 'is false' stands to ''''-!'. Insertion of the con
nective ')' between statements as in (13) amounts to inserting the
verb 'materially implies', not between the statements themselves
as in (11), but between their names as in (9).

\\lith a few trivial exceptions such as material implication, any
relation between statements will depend on something more than
the truth values of the statements related. Such is the case, e.g.,
with the phonetic relation of rhyming. The same holds for the
semantic relation of logical implication described above, and for
any other relation which has (unlike material implication) a serious
claim to the name of implication. Such relations are quite con
sonant with a policy of shunning non-truth-functional modes of
statement composition (cf. § 1), since a relation of statements is
not a mode of statement composition. On this account, the policy
of admitting none but truth-functional modes of statement com
position is not so restrictive as might have at first appeared; what
could be accomplished by a subjunctive conditional or other non
truth-functional mode of statement composition can commonly
be accomplished just as well by talking about the statements in
question, thus using an implication relation or some other strong
relation of statements instead of the strong mode of statement
composition. Instead of saying:

If Perth were 400 miles from Omaha then Perth would be in
America

one might say:

'Perth is 400 miles from Omaha' implies' Perth is in America',

in some appropriate sense of implication.
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Much of what has been said regarding implication applies
equally to other semantic relations of statements, e.g. equivalence
and compatibility. Statements are logically equivalent when they
logically imply each other, and logically compatible when one does
not imply the other's denial. Or, what comes to the same thing,
statements are logically equivalent when the biconditional formed
from them is logically true, and they are logically compatible ex
cept when the conjunction formed from them is logically false, i.e.,
except when the denial of the conjunction is logically true. Trivial
analogues, material equivalence and compatibility, are similarly
determined: statements are materially equivalent when they
materially imply each other, and materially compatible when one
does not materially imply the other's denial. Or, what comes· to
the same thing, statements are materially equivalent whenever
their biconditional is true, and materially compatible except when
their conjunction is false, hence whenever their conjunction is true.
Material equivalence is agreement in truth value, and material
compatibility is joint truth. Equivalence and compatibility, even
in this degenerate sense, must be distinguished from the bicondi
tional and conjunction; insertion of ' == ' or ' .' between statements
amounts to inserting' is materially equivalent to' or 'is materially
compatible with', not between the statements themselves, but
between their names.

Note that 'is true', 'is false', 'implies', 'is equivalent to', etc.
do not admit of iterated application as do the statement connec
tives. The expressions which '1"..1', '.', ')', etc. govern and the
expressions which they produce are homogeneously statements;
the expressions produced can hence be so governed in turn, and
thus we obtain statements of the forms:

1"..11"..1--, -)(-J-), (1"..1-.-))1"..1-,

etc. But' is false', 'implies', etc. govern names and produce state
ments; hence the expressions produced cannot be so governed in
turn. Formally the predicates' is false' and' implies' resemble the
predicates 'is negative' and '~' of arithmetic rather than the
statement connectives '1"..1' and ')' . Just as it is true for all
numbers x, y, z that
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and:

(x ~ y • y ~ z) ) x ~ z
and (y is negative. x ~ y) ) x is negative,

so it is true for all statements ~, If;, X that
......

(~ implies If; • If; implies X) ) ~ implies X

and (If; is false . ~ implies If;) ) ~ is false;

on the other hand the contexts:

(~ implies If; • If; implies X) implies (~ implies X)
(If; is false • ~ implies If;) implies (~ is false)

make no more sense than:

(x ~ y • y ~ z) ~ (x ~ z),
(y is negative. x ~ y) ~ (x is negative).

In Whitehead and Russell's exposition and terminology the distinction between
predicate and statement connective is blurred. The notation '-) -' is ex
plained indiscriminately in the sense of the truth-functional conditional and in the
sense of material implication. It is translated not only thus:

(14)

but also thus =

(15)

(16)

(1 i)

If - then-

If - is true then - is true,

- is false or - is true,

-implies-.

Similarly' == ' is explained both in the sense of the truth-functional biconditional
and in the sense of material equivalence, and' ""'-" is explained both in the sense of
denial and in the sense of falsehood. The authors even adopt' implication' or
'material implication' as their regular terminology in connection with ')', and
'equivalence' in connection with' == '. Actually, as we have seen, the blanks in
(14) admit only statements whereas those in (15)-(1 i) admit only names of state
ments. In the construction of examples, indeed, grammatical sense leads White
head and Russell to fill the blanks of '- is true', '- is false', and '- implies-'
with quotations rather than statements; 1 but the distinction is straightway
obliterated in the discussion.

Once having noted the discrepancy between (14) and the other proposed trans
lations of '- ) -', one need not delay in making his choice. In all technical
developments the expressions which Wh~tehead and Russell adjoin to the sign

1 '''x wrote Waverly' is true" (vol. 1, p. 68); "'the author ... was a poet' is
false" (ibid.); '''Socrates is a man' implies 'Socrates is mortal'" (ibid., pp. 20,
138).
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,) , have the form of statements rather than names. The mere fact of its iteration
indeed, e.g. in the manner'

-)(-)-),

is enough to determine the sign as a statement connective rather than a predicate
about statements. In short, the versions (15)-(17) do not operate in Whitehead
and Russell's work beyond the level of unfortunate exposition and nomenclature.
The English idiom which '- ) -' supplants in practice is not (15), (16), or (17),
but (14). The case is similar with' == ' and' ",-,'.

On the topic of implication Whitehead and Russell have many critics, who
rightly object that the trivial relation of material implication expressed in (16) is
too weak to constitute a satisfactory version of (17). But it is seldom observed that
this objection does not condemn the truth-functional conditional '- ) -' as a
version of 'if - then -'. Lewis, Smith, and others have undertaken systematic
revision of' ) , with a view to preserving just the properties appropriate to a satis
factory relation of implication; but what the resulting systems describe are actually
modes of statement composition - revised conditionals of a non-truth-functional
sort - rather than implication relations between statements.

If we were willing to reconstrue statements as names of some sort of entities, we
might take implication as a relation between those entities rather than between the
statements themselves; and correspondingly for equivalence, compatibility, etc.
This procedure would dissolve the distinction between material implication and the
truth-functional conditional, and likewise between other sorts of implication and
other sorts of conditionals. 'Implies' would come to enjoy simultaneously the
status of a binary predicate and the status of a binary statement connective. Ex
pressions such as (11) would be legitimized; and so also would the iterated use of
implication, characteristic of Lewis and Smith. For thus construing statements as
names some slight support can be adduced, indeed, by appeal to substantive clauses.
The statement' All men are mortal' might be held to designate that abstract entity,
whatever it is, which we ordinarily designate by the substantive' that all men are
mortal'. A deterring consideration, however, is the obscurity of these alleged
entItIes. Wha.t are they like? and under what circumstances may the entities
designated by two statements be said to be the same or different entities? Certain
entities which are perhaps less obscure than these but no less abstract will indeed be
countenanced at a later point (§ 22), viz. classes or properties, if only through ig
norance of how to get on without them; but entities designated by statements are
happily dispensable. l It thus seems well to adhere to the common-sense view that
statements are not names at all, though they may contain names along with verbs
and adverbs and the rest. A statement remains meaningful, but meaningful by
virtue of its structure together with the meanings of the constituent names and
other words; its meaningfulness does not consist in its being a name of something.

Conceding that' implies' belongs between names of statements as in (9), rather
than between statements, one might still urge that such a relation of implication
produces a derivative mode of composition of the statements themselves - namely,

1 See my "Ontological Remarks," "Logistical Approach," "Designation."
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a mode which consists notationally of conlpounding the statements by means of
'implies' and the two pairs of quotation marks. 1 If implication is construed as
going beyond questions of truth value, this derivative mode of statement composi
tion will not be truth-functional. Implication thus construed would then seem, after
all, to interfere with a policy of admitting none but truth-functional modes of state
ment composition. By the same argument, indeed, a purely morphological or
phonetic relation such as containing or rhyming would interfere similarly. Actu
ally, however, derivation of modes of statement composition from relations in the
suggested fashion involves abuse of quotation. The statements buried in the
quotations in (9) cannot be treated in turn as constituents of (9), for a quotation
figures as a single irreducible word. Similar abuse of quotation was seen in § 4 to
lead from' 'Cicero' has six letters' to ' 'Tully' has six letters'.2

These latter remarks serve only to show that we can construe implication as
going beyond questions of truth value without thereby committing ourselves to any
form of conditional which goes beyond questions of truth value. The need for some
such strong form of conditional might still be urged on other grounds. Certainly
not all uses of the subjunctive conditional submit to the easy method of paraphrase
illustrated in the case of Perth and America. When this fails we may look to other
devices, e.g. Carnap's method of reduction sentences (" Testability," pp. 439-453);
but if any really useful cases prove to resist all such methods of analysis, then we
shall perhaps have to choose pragmatically between the usefulness of those cases
and the convenience and clarity of the truth functional kind of statement composi
tion. Mathematics itself gives rise to no such recalcitrant cases; and any which
seem to arise beyond the bounds of mathematics should be critically regarded. 3

§6. ~uasi-f?<uotation

IN DISCUSSING the modes of statement composition we are
having continually to talk of expressions. Quotation suffices for
the mention of any specific expression, such as 'v' or ' == ' or 'Jones
is away', but is not availa.ble when we want to speak generally of
an unspecified expression of such and such kind. On such occasions
use has been made of general locutions such as 'a conditional',
'the first component " etc.; and more difficult cases have been
managed indirectly by introducing a blank '--' from time to

1 Analogous reasoning appears in Huntington's "Note on a Recent Set", p. 11.
2 See also Tarski, "Wahrheitsbegriff," § 1.
3 For further discussion and references see Carnap, Syntax, §§ 67-71.



34 STATEMENTS §6

time. But the developments to follow call for a more elastic
method of referring to unspecified expressions.

For the beginnings of such a method, the use of letters in algebra
provides us with an adequate model. In algebra' x', 'y', etc. are
used as names of unspecified numbers; we may suppose them re
placed by names of any specific numbers we choose. Analogously,
Greek letters other than 'E', 'L', "X' 1 will now be used as names of
unspecified expressions; we may suppose them replaced hy names
(e.g. quotations) of any specific expressions we choose.

A discussion .of numbers may, for example, begin thus:

(1) Let x be a factor of y.

Throughout the discussion thus prefaced, we are to think of x and y
as any specific numbers we like which satisfy the condition (1) 
say the numbers 5 and 15, or 4 and 32. We are to think of the
letters'x' and' y' as if they were names of the numbers 5 and 15, or
names of the numbers 4 and 32, etc. We are to imagine the letters
,x' and 'y' replaced by the numerals (expressions) '5' and '15', or
by '4' and '32', etc.

Similarly a discussion of expressions might begin thus:

(2) Let }J. be part of v.

Throughout the discussion thus prefaced, we are to think of J.L and
v as any specific expressions we like which satisfy the condition
(2) - say the expressions 'York' and 'New York', or' 3' and' 32'.
We are to think of the letters 'J.L' and '1I' as if they were names of
the expressions 'York' and 'New York', or names of the expressions
,3' and '32', etc. We are to imagine the letters 'J.L' and '1I' re
placed by the quotations' 'York' , and' 'New York' " or by , '3' ,
and ' ,32' " etc.

The reader is urged to compare the above short paragraph with
the preceding one, word by word; also to review § 4. Roughly
speaking, the letters 'x', 'y', etc. maybe described as ambiguous
numerals, ambiguous names of numbers, variables ambiguously
designating numbers, or, in the usual technical phrase, variables
taking numbers as their values. Correspondingly the letters

1 These three letters are reserved for later purposes; cf. §§ 22, 35, 41.
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IJ. , 'v', etc. may be roughly described as ambiguous quotations,
ambiguous names of expressions, variables ambiguously designat
ing expressions, or variables taking expressions as their values.
This does not mean simply that 'IJ.' and 'v' take the place of ex
pressions, or are replacea hIe by ex.pressions, for this is true of 'x'
and 'y' as well. Rather, the letters 'IJ.' and 'v' take the place of
quotations or other names of expressions, just as 'x' and' y' take
the place of numerals or other names of numbers.

Occasionally Greek letters will be used with accents or subscripts
attached: 'IJ.", 'IJ."', '1J.1', '1J.2', 'IJ.n', etc. Such variants may be
regarded simply as SO many further Greek letters. Three Greek
letters, 'et>', '1/;', and' x', together with their accented and sub
scripted variants, will be limited in their use to those cases where
the expression designated is intended to be a statement. They
serve as names of unspecified statements, and are replaceable by
statement quotations or other names of specific statements.1

There is need also of a convenient way of speaking of specific con
texts of unspecified expressions: speaking, e.g., of the result of
enclosing the unspecified expression IJ. in parentheses, or the result
of joining the unspecified statements cP and 1/; in that order by the
sign' ==. Note that quotation is not available here. The quo
tations:

, (IJ.) "

designate only the specific expressions therein depicted, containing
the specific Greek letters 'IJ.', 'cP', and '1/;'. Reference to the in
tended contexts of the unspecified expressions IJ., cP, and 1/; will be
accomplished by a new notation of corners, thus:

(3)

Because of the close relationship which it bears to quotation,
this device may be called quasi-quotation. It amounts to quoting
the constant contextual backgrounds, '( )' and' == " and im
agining the unspecified expressions IJ., cP, and 1/; written in the
blanks. If in particular we take the expression ' Jones' as IJ.,

1 The three letters have indeed already appeared in this use in § 5, where the
sense intended was apparent.
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,Jones is away' as </>, and 'Smith is ill' as 1/;, then r (,u)1 is '(Jones)'
and r<p == 1/;1 is 'Jones is away == Smith is ill'.

The quasi-quotations (3) are synonymous with the following
verbal descriptions:

The result of writing' (' and then ,u and then ')',
The result of writing cJ> and then '== ' and then 1/;;

or, equivalently:

The result of putting ,u in the blank of ' ( ) "
The result of putting cJ> and 1/; in the respective blanks of

'.,
or, equivalently:

The result of putting ,u for' ,u' in '(,u)',
The result of putting cJ> for '</>' and 1/; for '1/;' in '</> == 1/;'.

We may translate any quasi-quotation:
r__1

into words in corresponding fashion:

The result of putting ,u for' ,u', v for 'v', ... ,</> for 'cJ>', 1/; for
'1/;', ... in '--'.

Described in another way: a quasi-quotation designates that (un
specified) expression which is obtained from the contents of the
corners by replacing the Greek letters (other than' E', 'L', 'A ') by the
(unspecified) expressions which they designate.

When a Greek letter stands alone in corners, quasi-quotation is
vacuous: r,u1 is,u. For, by the foregoing general description, r,u1 is
the result of putting ,u for ',u' in ',u'; r,u' is what the letter ',u'
becomes when that letter itself is replaced by the (unspecified)
expression,u; in other words, r,u' is simply that expression ,u.

Quasi-quota~ion would have been convenient at earlier points,
but was withheld for fear of obscuring fundamentals with excess
machinery. Now, however, it may be a useful exercise to re
capitulate some sample points from §§ 1-5 in terms of this device.
A conjunction r cJ> • 1/;' is true just in case cP and 1/; are both true, and
an alternation r cJ> v 1/;' is false just in case fjJ and 1/; are both false.
A conditional reP ) If/' is true if cP is false or 1/; true, and false if cP is
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true and t/; false. A biconditional rcJ> == t/;' is true just in case cJ> and
t/; are alike in truth value. A denial r 1"..1 cJ>' is true just in case cJ> is
false. cJ> logically implies t/; or is logically equivalent to t/; according
as rcJ» t/;' or r cJ> .== t/;.., is logically true, and cJ> materially implies t/; or
is materially equivalent to t/I according as rcJ» t/;. or rcJ> == t/;' is
true.

§ 7. Parentheses and Dots

PARENTHESES, taken for granted thus far as an auxiliary nota
tion, are most simply construed as forming integral parts of the
binary connectives. The notations of conjunction, alternation, the
conditional, and the biconditional will no longer be regarded as
rcJ>.t/;', rcJ>vt/;-" rcJ»t/;., and rcJ>=t/;', but as rCcJ>.t/;)', r(cJ>vt/;)',
r(cJ» t/;)', and r(cJ> == t/;)'. But the notation of denial remains simply
r 1"..1 cJ>'. This fornlulation yields just the usage of parentheses
which we have hitherto followed, except in one respect: a con
junction, alternation, conditional, or biconditional comes now to
bear an outside pair of parentheses even when it stands apart from
any further symbolic context. Such outside parentheses have
hitherto been omitted.

When the binary modes of composition are thus construed, no
auxiliary technique of grouping is needed. The syntactical sim
plicity thus gained proves useful in certain abstract studies (e.g.
§ 10; also later chapters). In applications, however, such sim
plicity is less important than facility of reading; and excess of
parentheses is a hindrance, for we have to count them off in pairs
to know which ones are mates. It is hence convenient in practice
to omit the outside parentheses as hitherto, and furthermore t;o
suppress most of the remaining parentheses in favor of a more
graphic notation of dots.

Parentheses mark the outer limits of a binary compound; dots
determine those same limits less directly. Roughly speaking, a
group of dots placed beside 'v', ')', or '==' indicates that the com
ponent on that side has its other end at the nearest larger group of
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dots, if any, and otherwise at the limit of the whole symbolic con
text. E.g., since' == ' in

has just one dot prefixed, the first component of the biconditional
begins at the last previous group of two or more dots - hence, asit
happens, at the group of two. Again, since' == ' has no dots suffixed,
the second component of the biconditional stops as soon as it meets
any dots at all- hence at the group of three·. The components of
the biconditional are thus r y; ) X., and cP. The alternation has
ry; ) X • == cP1 as second com ponent, for this runs from the pair of
dots to the first larger group. The conditional corresponding to
the second occurrence of ')' has r cP v: y;) X •== cP'" in its entirety
as antecedent, since the group of dots prefixed to the second oc
currence of ')' exceeds any previous group. Similarly that con
ditional has r t/;) cP1 as consequent. The whole would appear in
terms of parentheses as

Dots serve in this fas~ion to reinforce the connectives' v', ')',
and' == '. In the case of conjunction, already represented by a dot,
such reinforcement will be accomplished simply by using a group
of dots instead of the one; thus the conjunction of cP with
ry; V X .) cPl appears as r cP : t/; v X .) cPl. Use of dots for conjunction
is distinguishable from the other uses by the absence of any ad
jacent connective 'v', C)', or '== '. A group of n dots standing as a
conjunction sign will be regarded as indicating a smaller break than
that indicated by a group of n dots alongside 'v', C)', or '==',
though of course a greater break than that indicated by n-l dots.
Thus, in

r cP • y; .) X : y; v cP :== X'"

the conjunction indicated by the single dot has cP and y; as com
ponents; the conjunction indicated by the pair of dots has
r cP • y; .J Xl and ry; V cP1 as components; the conditional has r cP • y;1
and X as components; and the biconditional has r cP • y;.) X : y; v cP'"
and x. The whole would appear in terms of parentheses as:
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r ((( (eI> • t/; ) ) x) · (t/; VeI») == x)'.

A place occupied by dots will be called a joint; also, if 'v', ')', or
, == ' lacks dots on one side, the narrow blank place on that side will
be called a joint. One joint will be said to be looser than another if
it contains more dots than the other, or if it contains just as many
dots as the other and is adjacent to 'v', 'J', or ' == ' while the other
is not. Now the way to read dots can be summed up thus, subject
to revisions in the immediate sequel: (I) The second component
of a conjunction, alternation, conditional, or biconditional ends at
the first subsequent joint, if any, which is looser than the one at its
beg'£nning; otherwise it runs to the end of the whole symbolic context.
The first component begins at the last previous joint, if any, which is
looser than the one at its end; otherwise it begins at the beginning of
the whole context.

Allowance must be made now for the survival of parentheses in
the midst of the dot notation, for it is convenient to be able to mix
the two notations at will. After a denial sign, indeed, a compound
will always retain its outer parentheses, even in dot-strewn con
texts. E.g., we write r""'(eI».t/;vx)'; never r""':eI».t/;vx'.
Dots mayor may not be used to reinforce a binary connective, but
they will never be used to reinforce '"",'. Now the presence of
parentheses obliges us to qualify (I) so that joints sealed up in
parentheses will not be made to affect the grouping of outside
text. E.g., the pair of dots in

rei> ==. t/; V"'" (eI> ). t/;. x :) X)'

must not be made to terminate the second component of the bicon
ditional; that component is supposed to run to the end of the
whole expression. Similarly for the second component of the
alternation. (I) can be suitably amended by adding the obvious
requirement that a component must contain no dangling paren
thesis; it must contain equal numbers of left- and right-hand
parentheses.

The presence of parentheses also has another effect: if a com
ponent of a binary compound has its one end inside some parenthe
sized expression, it may be bounded at its other end by the limit
of that parenthesized express~on rather than by a joint. In the
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case of a second component, such an ending will be forced by any
right-hand parenthesis whose mate did not intervene - hence by
any right-hand parenthesis which may turn up, so long as the com
ponent already contains equal numbers of left- and right-hand
parentheses. The case of a first component is analogous.

In view of these considerations, (I) gives way to the following
final formulation. (II) The components of a conjunction, alterna
tion, conditional, or biconditional are as short as these conditions
allow: each component contains just as many left- as right-hand
parentheses; the second component ends either at the end of the whole
symbolic context or else just before a right-hand parenthesis or a joint
looser than the one at its beginning; and the first component begins
either at the beginning of the whole context or else just after a left-hand
parenthesis or a joint looser than the one at its end.

Note that (II) compels a denial sign to apply, as usual, to the
shortest statement following it. It compels interpretation of
r r-v c/> v if;' as the alternation of r r-v c/>' and if;, interpretation of
r r-v (c/> ). if; v x) == Xl as the biconditional of r r-v (c/> ). if; v x)' and
x, and so on. For, according to (II), the first component of the
alternation or biconditional must begin just after a joint or a left
hand parenthesis or at the beginning of the whole context; it
cannot begin just after 'r-v'.

As appears from the examples, the use of dots proceeds without
regard to the complexity of the unspecified statements denoted by
the Greek letters. We write 'rc/> ). y; v Xl', not 'rc/> .:). if; v x"',
even though c/> be thought of in particular as a statement complex
enough to contain say a group of two dots in turn. This practice
can be justified by thinking of the statements indicated by Greek
letters as constrl;lcted always with parentheses rather than dots,
to the extent at least of bearing their outermost parentheses.

The parenthesis notation formulated at the beginning of the
section is retained, for the sake of the9retical developments, as the
"official" notation; dots enter only as shorthand. This unofficial
use of the dot notation has its justification in the fact that the
parenthesis notation can easily be restored whenever we like. To
accomplish this in any given case we have only to put parentheses
around each expression IJ. which satisfies the following conditions
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(i) and (ii), and then drop all dots except single dots for conjunc
tion.

(i) J.L is a component of a conjunction, alternation, conditional,
or biconditional, according to (II), or else it exhausts the whole
symbolic context;

(ii) J.L contains a binary connective which is unparenthesized in
J.L; i.e., one which is preceded in J.L by no more left- than right-hand
parentheses.

Note now, in preparation for one further notational departure,
that the grouping in an iterated conjunction is always immaterial;
r c/> • 1/; : xl and r c/> : 1/; • xi, for example, are equivalent. Any iterated
conjunction of c/>h cP2, ••• , and c/>n' regardless of the grouping, is
true in just one case: the case where c/>h cP2, ••• , and c/>n are all
true. For, a conjunction is true just in case both its immediate
components are true; either component, if in turn a conjunction,
is true just in case both its components are true; and so on. The
grouping in an iterated alternation is likewise immaterial; every
iterated alternation of c/>h cP2, .•. , and c/>n is true in the same cases
- all cases except the one where c/>h cP2 •.. , and c/>n are all false.
For, an alternation is false just in case both components are false;
either component, if in turn an alternation, is false just in case both
its components are false; and so on. Because of these circum
stances it is sometimes convenient to use uniform connectives
throughout the iteration - thus writing

r c/>l • cf>2 • c/>3 ••••• c/>n', r c/>1 V cP2 V c/>3 V ••• V c/>n',

also rc/» C/>' .v.1/;) 1/;' .v. x) x",
etc., without further indication of grouping. One or another
arbitrary indication of grouping must be restored, however, before
analyzing such a compound along the lines prescribed in the fore
going paragraphs.

The indication of grouping by means of dots dates from Peano. In details the
usage varies from author to author. Curry's usage (" Dots as Brackets") is neater
than that set forth above, but not as easy to read. Since parentheses are so much
simpler in theory, I have preferred to retain them as the" official" notation and
then to frame dot conventions with an eye only to perspicuity and approximate
conformity to prevalent usage. The syntactical s:mplicity of the" official" nota
tion could have been further enhanced, indeed, by writing binary compounds in the
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fashion r V ¢ if;1, r) ¢ if;1, etc. instead of r (¢ V if;)1, r (¢ ) if;)1, etc.; under this
rearrangement, as Lukasiewicz has remarked (" Untersuchungen," p. 31, reprint
p. 3), grouping is unambiguously discernible without help of parentheses or other
punctuation.

§ 8. Reduction to Three Primitives

Compound
?
?

Component
T
F

THE TRUTH tables of singulary and binary modes of composition
have the forms depicted respectively in Tables 1 and 2. Each way
of putting 'T's and 'F's for the question marks gives us a different

Ist component 2d component Compound
T T ?
F T ?
T F ?
F F ?

TABLE 1 TABLE 2

mode of composition. If we proposed to take up one or another
ternary mode of composition, or mode of combining statements
three at a time, our table would have a column for each of the
three components and a column for the compound. There would
be eight rows, exhausting the possible cases of truth and falsehood
on the part of three components (cf. § 3). In general, the truth
table for an n-ary mode of composition appears as in Tahle 3;
the successive rows exhaust the 2n possible cases of truth and false-

Case 1
Case 2
Case 3
Case 4
Case 5

I st component

¢1

T
F
T
F
T

2d component 3d component • •. nth component Compound

cP2 ¢3 ¢n
T T T
T T T
F T T
F T T
T F T

F F F
TABLE 3

F
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hood on the part of n components cPh cP2, ••• , cPn (cf. § 3), and the
last column specifies the truth value of the compound for the
successive cases. Each of the 22n :ways of replacing the question
marks by 'T' or 'F' determines a different n-ary mode of compo
sition.

Of the 221 (= 4) singulary modes thus determined, we have con
sidered only one: denial. Of the 222 (= 16) binary modes we have
considered only four. The 223 (= 256) ternary modes, the 2zi

(= 65,536) quaternary ones, and so on, all remain untouched.
Actually, however, the few modes already considered are all we
ever need; for it will now be shown that every mode of composition
describable by. a truth table is translatable into terms of denial, con
junction, and alternation. 1 In the next section a still more striking
reduction will be made.

Case 1 of Table 3 is the case where cPh cP2' cP3, ••• , and cPn are all
true; in other words, it is the case where

r cPl • cP2 • cPs • • • • • cPn'"
is true (cf. § 7). Let us call this conjunction Xl. Again, Case 2 is
the case where cPl is false and cP2' cP3, ••• , and cPn are true; in other
words, it is the case where r t"-I cPl', cP2, cP3, ••• , and cPn are all true;
in other words, it is the case where

r t"-I cPl • cP2 • cP3 • • . • • cPn'"
is true. Let us call this conjunction X2. Similarly Case 3 is the
case where

r cPl • t"-IeP2 • cP3 • • . . • cPn'"
is true; let us call this X3. Case 4 is the case where

r t"-I cPl • t"-I cP2 • cP3 • • • • • cPn'"
is true; let us call this X4. In this fashion' Case i, for each i from
1, to 2n , is allotted a statement Xi which is true in just that case and
is composed of cPh cP2, cP3, ••• , cPn by means of nothing more than
conjunction and denial. (In the trivial situation where n is 1,
conjunction of course drops out; Xl is cPl and X2 is r~ cPl!.)

Now every truth table is formed from Table 3 (for appropriate
n) by assigning 'T' and' F' to the successive cases, in place of the

1 This was first shown by Post.
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question marks. But if it is formed by assigning 'T' to just one
case, say Case i, and' F' to the rest, then it is the table for Xi; for
Xi is true in Case i and false in the others. If on the other hand it is
formed by assigning 'T' to m3ny cases, say Cases i, j, k, . .. ,
then it is the table for

r Xi V Xj V Xk V •.•J;

for this alternation is true wherever any of Xi, Xj, Xk' ••• is true
(cf. § 7), hence in Cases i, j, k, . ... If finally the table is fOlmed
by assigning' F' to all cases, then it is the table for any trivial con
junction such as

i cPI • """cPI • ¢2 • . . . • cPn';

for there is no case where cPI and r """ cPI' are both true, hence no
case where this conjunction is true. Now since

are all compounded of cPh ¢2, ... ,cPn by means only of denial,
conjunction, and alternation, we see that every truth table de
scribes a mode of composition involving nothing beyond those
three. All truth-functional modes of composition are thus tranE
latable into terms of denial, conjunction, and alternation. We can
take these as the sole basic or primitive truth-functional modes of
composition, and construe all others merely as results of repeated
application of the primitive modes.

Given the truth table of any mode of composition, the method of
translating that mode into terms of the three primitives is apparent
frorothe foregoing proof; we have only to form the conjunction
Xi, or the alternation of the conjunctions Xi, Xi' Xk, . .. , corre
sponding to the case or cases marked with 'T' in the table. If
there is no 'T', we resort to the trivial device of forming a con
junction containing cPI and r""" cPI'. As examples, consider the
conditional and the biconditional. Here n is 2; XI, X2, X3, and X4

become respectively r cPI • cP2', r""" cPI • cP2', r cPl • roo...; cP2', and r roo...; cPI •
""" cP2', or better r cP •1/;', r roo...; cP •1/;', r cP • roo...; 1/;', and r roo...; cP • """ 1/;'.
Now the conditional has in its table three 'T's, marking Cases
1, 2, and 4; hence r cP ) 1/;' is expressible as r Xl V X2 V X4"', I.e.,
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Again, the biconditional has in its table two 'T's, marking Cases
1 and 4; hence r cP == 1/;1 is expressible as r Xl V X41, i.e.,

r cP • 1/; .v~ I"J cP. I"J 1/;1.

The method always gives us a translation into terms of denial,
conjunction, and alternation, but it does not always happen to give
the shortest. For example, r cP ) 1/;1 admits also of the shorter
translations r I"J cP V 1/;1 and r I"J (cP • r-v 1/;)1, as observed in § 2.

It is trivial but perhaps instructive to apply the method
also to the singulary modes of composition. Here Xl and X2 are
simply cPI and r r-v cPII

; or, dropping the subscript, cP and r I"J cPl.
Now one of the four singulary modes assigns 'T' to Cases 1 and 2
alike; it is thus expressible as rXl V X21

, or rcP V r-v cPl. Another
assigns 'T' to Case 1 alone; hence it is expressible as XI, or simply
cP. A third assigns 'T' to Case 2 alone; hence it is expressible as
X2, or rr-v cPl. The remaining singulary mode assigns 'F' to both
cases; hence, by the device usual in the absence of 'T's, it is ex
pressible as rcP • r-v cPl.

§9. Reduction to One Primitive

WE NOW turn to the binary mode of statement composition em
bodied in the connective' neither-nor'. This will be called joint
denial, and rendered symbolically in the notation r(cP 11/;)1. A
joint denial, e.g. 'Neither is Jones away nor is Smith ill', sym
bolically:

(Jones is away 1 Smith is ill),

is true just in case its components are both false. This gives us the
following table:

cP
T
F
T
F

1/;

T
T
F
F

Since r(cP 11/;)1 is true just in the case where r I"J cPI and r I"J 1/;1 are
both true, it is translatable into terms of denial and conjunction
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as r( 1"../ cP • 1"../ 1/;)'. Again, since it is true just in the case where
r(cP V 1/;)' is false, it is translatable into terms of denial and alterna
tion as r1"../ (c/> v 1/;)'. The fact that r(cP 11/;)' denies r(cP v 1/;)' is re
flected in ordinary language, indeed, by the cancellatory 'n' which
turns' either-or' into' neither-nor'. The vertical mark in ' 1 ' may
be thought of as having the same cancellatory effect upon the sign
'v'; it is like the vertical mark in the inequality sign ':f:' of
arithmetic.

With denial, conjunction, and alternation at hand, a special
notation for joint denial is superfluous. But it is introduced for
the sake of translation in the opposite direction; for it turns out
that denial, conjunction, and alternation can all be expressed in
terms of joint denial alone - r1"../ cP' as r(cP 1 cP)', r(cP. 1/;)' as
r«c/> 1 c/» 1 (1/; 11/;))', and r(cP v 1/;)' as r«cP 1 1/;) 1 (cP 11/;))'. This is
seen by constructing tables according to the method of § 3:

r«cP 1 cP) 1 (1/; 1 1/;))' r«cP 1 1/;) 1 (cP 1 1/;))'

TFT T TFT TFT T TFT
F T F F T F T F F T T F F T'
TFT F FTF TFF T TFF
FTF F FTF FTF F FTF

Comparison of the middle columns of these tables with the tables
of denial, conjunction, and alternation shows that r(cP 1 cP)' is true
in just the case where rl"../ cP' is true, that r«cP 1 cP) 1 (1/; 11/;))' is
true in just the case where r(cP. 1/;)1 is true, and that r«et> 1 1/;) 1
(c/> 11/1))' is true in just the cases where r(cP V 1/;)' is true.

Since all truth-functional modes of composition are translatable
into terms of denial, conjunction, and alternation (cf. § 8), the
translation in turn of these three into terms of joint denial shows
that all the truth-functional modes of composition are translatable
into terms of joint denial alone. Iterated application of this one
mode of composition suffices for expressing anything that could be
expressed by any of the others. We can take joint denial as the
sole primitive truth-functional mode of composition, and construe
all the others merely as results of applying this primitive mode in
iteration.
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In theoretical developments (e.g. §§ 10, 18) it is convenient to
be able to treat' l' or 'neither-nor' thus as the sole truth-functional
connective. But in applications it is convenient to have the signs
'~', '.', 'v', ')', and ':=' as well, for the brevity and ciarity
which they afford. Adoption of ' l' as sole connective demands
continual use of compounds so cumbersome, indeed, that conven
(ions of shorthand reducing them to manageable length would
become a practical necessity.

Between the theoretical advantage of a single connective and the
practical advantage of a multiplicity, this idea of shorthand effects
a complete reconciliation. By way of basic or primitive notation
we may adopt the form of notation r(eI> 1 t/;)'; but we can still in
troduce the convenient forms of notation r~ eI>', r(eI> • t/;)', r(eI> v If!)',
etc., simply as shorthand abbreviations for the appropriate com
plexes involving' -L'. Thus, where eI> is any statement, r~ eI>' will
be construed as an abbreviation of r(eI> 1 eI»'. This convention of
abbreviation will be referred to as Dl.

D1. r~ eI>' for r(eI> 1 eI»'.

Similarly, where eI> and t/; are any statements, r(eI> • t/;)' and r(eI> v t/;)'
will be regarded as abbreviations of r((eI> 1 eI» 1 (t/; 1 t/;))' and
r((eI> 1 1/;) 1 (eI> 1 1/;))'. More briefly, we may explain r(eI>. f)' and
r(eI>vt/;)' as abbreviations of r(~eI>l~f)' and r~(eI>lf)';

for, Dl explains r("-./ cf> 1~ f)' and r"-./ (eI> 11/;)' as abbreviations
in turn of r((eI> 1 cf» 1 (f 1 f))' and r((eI> 1 f) 1 (eI> 1 f))'. Our next
two conventions of abbreviation are hence as follows:

D2. r(c/>.f)' for r(~eI>l ~1/;)',

D3. r(c/> V 1/1)' for r~ (eI> 1 1/;)'.

Such conventions of abbreviation are called formal definitions;
hence the use of' D' in numbering them. To define a sign formally
is to adopt it as shorthand for some form of notation already at
hand. If the sign has a preconceived meaning, as in the present
instances, and the definition suits that meaning, then the definition
amounts to an elimination: it shows that the sign is dispensable in
favor of those occurring in the definition. To define a sign is to
show how to avoid it.

The relationships utilized for the definitions Dl-3 were shawn
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by truth tables to follow from the meanings hitherto assigned to
'f'o.,I', '.', 'v', and' t'. But they are readily checked also on the
linguistic level. 'Jones is not away' has a prolix but obviously
accurate equivalent in 'Neither is Jones away nor is Jones away';
so has 'Jones is away and Smith is ill' in 'Neither is Jones not
away nor is Smith not ill'; and 'Jones is away or Smith is ill'
amounts obviously to the denial of 'Neither is Jones away nor is
Smith ill'.

Definitions of r(¢ ) 1/1)" and r(¢ == 1/;)" are apparent from earlier
observations (§§ 2, 3):

D4. r(¢ ) 1/1)" for r( f'o.,I cP v 1/;)",
D5. r(¢ == 1/1)" for r«cP) 1/;) • (1/;) cP)).,.
r(cP ) 1/;)" and r(¢ == 1/;)' are defined ultimately in terms of joint
denial, by virtue of these two definitions together with their pred
ecessors. 04, for example, defines r(cP) 1/;)'" as r f'o.,I (~ cP 11/;)"
in view of D3, and hence as

r«(¢ 1 4» 11/;) 1 «cP 1 cP) 11/;))'"
in view of 01.

As stated earlier (§ 7), indications of grouping in an iterated
-conjunction or alternation will often be suppressed in view of the
fact that differences in this respect are immaterial to truth value.
Let us now give this procedure the status of definitional abbrevi
ation, by construing the ungrouped conjunction or alternation as
shorthand for a conjunction or alternation grouped in some one
arbitrary fashion. The following definitions will serve.

D6. r(¢l. cP2 • cP3).., for r«¢l. cI>2).. cPs).."
r(¢l • c/>2 • cPs • ¢4)'" for r«(cPl. cI>2) • cP3) • cP4)"', etc.

D7. r(cPl v cl>2v cPs).., for r«¢l VcP2) VcP3)"',
r(¢l V cI>2 V c/>3 v cP4)'" for r«(¢l VcI>2) v cPs) v cP4)"', etc.

Over the shorthand introduced by Dl-7, further shorthand is
superimposed by the technique of using dots instead of parentheses
(§ 7). That technique will not be formulated in a numbered
definition, but it has the same status.

Joint denial is not the only truth-functional mode of composition
which is adequate to definition of all the rest. The same is true of
alternative denial, which is described by the following truth table:
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ef> 1/1 r(ef> I 1/;)'

T T F
F T T
T F T
F F T

Just as r(ef> 11/;)' is equivalent to r(~ ef> • ~ 1/;)' and to r~ (ef> v 1/;)',
so r(ef> 11/;)' is equivalent to r(~ ef> v ~ l/;)' and to r~ (ef> • l/;)'.
Now de~ial, conjunction, and alternation can all be translated into
terms of this one mode of composition, as follows: 1 r~ ef>1 as
r(ef> I ef»', r(cJ>. 1/;)' as r((eI> I 1/;) I (eI> I 1/;))', and r(ef> v l/;)' as
r«(ef> I ef» I (1/; 11/;))'· This can be checked by tables just as was
done in the case of joint denial. Instead of adopting joint denial
as our primitive mode of composition, then, we might just as well
have chosen alternative denial. D1 would then give way to:

D1'. r"" eI>' for r(cP I cP)l.

Similarly r(ef> • 1/;)' and r(eI> v 1/;)' would be introduced as abbrevi
ations of r((cJ> I 1/;) I (cP \1/1))' and r((cJ> I eI» I (1/; I l/;))I. Simplified
by application of the abbreviation D1', these definitions appear as
follows:

D2'.
D3'.

Choice between this course .and the previous one is a matter of
indifference. But there is no third course affording equal economy;
it can be shown that the truth-functional modes of composition are
not all reducible to any binary one other than joint and alternative
denial.2

1 The de6nability of denial, conjunction, and alternation in terms of joint denial
was 6rst pointed out by Sheffer in 1913; and similarly for alternative denial. The
adequacy of joint denial was known to Peirce in 1880, and both facts were known to
him in 1902; but his notes on the subject remained unpublished until 1933 (4.12,
4.264).

2 Cf. Zylinski.
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§ 10. Tautology

§ 10

THUS FAR in our study of the truth-functional modes of com
position we have devoted our attention to concepts and notations.
We turn now to principles, logical truths. The study of the logical
truths at this level proves to be a tri vial one, and will not detain
us long.

S~atements which are true by virtue solely of the truth-functional
modes of composition will be called tautologous; they involve only
the truth-functional notations essentially, all else vacuously (cf.
Introduction). If we think of all such notations as merely abbre
viating iterated joint denials, according to D 1-5 (§ 9), then we
may describe a tautologous statement as one which involves only
, 1 ' (better, '( 1 ) ') essentially. All tautologous statements
are logically true, but not all logically true statements are tau
tologous. The method of showing a statement to be tautologous
consists merely of constructing a table under it in the usual way
(§ 3) and observing th·at the column under the main connective is
composed entirely of 'T's. When this is the case we know that the
statement is true by virtue solely of its truth-functional structure
and independently of the ultimate constituent statements.

For example, where et>, 1/;, and X are any statements, ret> ) 1/; • 1/; )
X .v. X) et>' is found to be tautologous by constructing Table 1 and
observing its ~ighth column; ret» 1/;.) et> := et>' is found tautologous

ret> ) 1/; • 1/; ) X .v. X ) et>'

TTTTTTT T TTT
FTTTTTT T TFF
TFFFFTT T TTT
FTFTFTT T TFF
TTTFTFF T FTT
FTTFTFF T FTF
TFFFFTF T FTT
FTFTFTF T FTF

TABLE 1

ret» 1/; .) et>:= et>'
TTT TT TT
FTT FF TF
TFF TT TT
FTF FF TF

TABLE 2

ret> VI'Vet>'
TTFT
FTTF

TABLE 3

rI'V (et> • 1'Vet»'
T T F FT
T F FT F

TABLE 4
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by constructing Table 2 and observing its sixth column; ref> V 1"-1 ef>'
is found tautologous by constructing Table 3 and observing its
second column; and r 1"-1 (ef> • 1"-1 ef»'" is found tautologous by con
structing Table 4 and observing its first column.

ref> v 1"-1 ef>'" illustrates the law of the excluded middle, which is com
monly phrased as saying that every statement is true or false; and
r 1"-1 (ef> • 1"-1 ef»'" illustrates the law of contradiction - no statement is
both true and false. These two laws are not to be identified with
r cj> V 1"-1 cj>'" and r 1"-1 (cj> • 1"-1 cj»'" themselves; the latter are un
specified statements pending specification of cj>, and they become
the minor truths 'Jones is ill v 1"-1Jones is ill' and '1"-1 (Jones is
ill . 1"-1 Jones is ill)' when cf> is specified as 'Jones is ill'. But the
law of the excluded middle may be formulated as saying that
r cf> V 1"-1 cf>'" is true for every statement cj>, and the law of contra
diction correspondingly.

For any statement cj>, the compounds r cj> V 1"-1 cj>'" and r 1"-1 (cj> •

1"-1 cj»' are obviously and trivially true. Many longer tautologous
statements are equally obvious, e.g.

rcj>==Y;.==.y;==cj>"', rcj»1/;.y;) X.). cj»X"'.

This is not, however, characteristic of all; the ones established in
Tables 1 and 2, e.g., are far from obvious. But if tautologous state
Plents are not in general obvious, at least they are essentially
trivial, in that they can be proved by the simple mechanical ex
pedient of truth tables.

When the truth tables produce a solid column of 'T's under the
main connective of a statement, we know the statement is tautolo
gous. But note that the appearance of an 'F' in the column is not,
conversely, a proof that the statement is not tautologous. A table
for rX ) cj> • == cj>"', e.g., indicates falsehood in the fourth case:

r x ) cj>.== cj>'"

F T F F F

Yet, as Table 2 shows, r X ) cf> • == cj>'" will still be tautologous if X

happens to be ref> ) 1/;"'. In general, though the truth-table test may
give a negative result when a statement is analyzed into com
ponents ef>b cf>2' ••• , cf>m analysis into shorter components cf>/], cf>/2'

••• , cj>/ n' may still show the statement to be tautologous. The
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occurrence of an 'F' in the column under the main connective does
not disprove that a statement is tautologous, unless we know that
we have analyzed the statement into its ultimate truth-junctional
components and thus laid bare the whole of its truth-functional
structure.

Precise formulation of this notion of ultimate truth-functional
components is facilitated by taking joint denial as our primitive
truth-functional mode of statement composition and thinking of
'r""V', '.', 'v', ')', and ':::=:' as merely an unofficial shorthand
eliminable by Dl-5.1 The immediate truth-junctional components
of cP, now, are to be understood as the t/; and X (if such there be)
whose joint denial r(t/; 1 x)'" is cP. The truth-junctional components
of cP, more generally, are to be understood as comprising cP itselj,
together with. its immediate truth-junctional components (if any),
together with the immediate truth-junctional components oj those
immediate truth-junctional components (if any), and so on. The
liltimate truth-functional components of cP, finally, are those
truth-functional components of cP which are not joint denials in
turn.

Now a tautologous statement is describable as one which proves
true by the truth-table method under every assignment of truth
values to its ultimate truth-functional components. This de
scription of tautology is more explicit and mechanical than the
earlier description in terms of essential occurrence, but the truth
table method to which it refers could do with more explicit charac
terization in turn~

As we have seen, there are 2n possible distributions of truth
values to the ultimate truth-functional components cPt, cP2' ... , cPn
of cP; the first distribution marks all as true, the second marks cP1
false and the rest true, the third marks cP2 false and the rest true,
the fourth marks cP1 and cP2 false and the rest true, and so on. Con
sultation of the truth tables of' 1', 'r""V', '.', 'v', ')', and ':::=:'
enables us, under each one of these 2n distributions, to derive truth
values step by step for more and more complex truth-functional
components of cP until finally cP itself is nlarked as true or as false.

1 The ensuing developments would proceed analogously if alternative denial

were taken as primitive instead of joint denial.
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For each i from I to 2n , thus, there is a definite set of truth-func
tional components of cP which will be marked true; let us call this
set the ith truth set of cPo It comprises those of cPh 4>2, .•• , cPn which
are marked true under the ith distribution of truth values, together
with all those more complex components of cP which come deriv
atively to be marked true by consultation of the tables of ' 1"
'!"'..I', '.', 'v', ')', and ':::='. Described in terms of the tabular
constructions, as of Tables 1-4, the ith truth set comprises those
statements which are marked 'T' in the ith row. The third row of
Table 2 shows, e.g., that the third truth set of r cP ) y; .) cP ::::= cP'
em braces cP, r cP ) y; .) cP', and r cP ) y; .) cP ::::= cP' (if we suppose that
cP and y; here are the ultimate truth-functional components).

Towards a more rigorous characterization of this notion of truth
set, let us take' 1 ' again as our primitive connective and think of
'!"'..I', '.', 'v', ')', and ':::=' as mere shorthand. Now a truth set
S of cP will include, to begin with, anywhere from all to none of the
ultimate truth-functional components cPh cP2' •.• , cPn of cP (depend
ing on whether S is the first, second, ... , or 2n th truth set). From
among the truth-functional components of cP having the form
r cPi 1 cPj', next, we decide which ones accrue to S by consulting the
joint-denial table:

r cPi 1 cPj'
T F T
F F T
T F F
F T F

In view of this table, we accord r cPi 1 cPj' to S if and only if S in
cludes neither cPi nor cPj. Similarly for the succeeding levels of
complexity: any truth-functional component r(cPi 1 cP~) 1 cPk' or
r cPk 1 (cPi 1 cP;-)' of cP will belong to S if and only if neither of
the parts r cPi 1 cPj' and cPk belongs to S; likewise any truth-func
tional component r(cPi 1 cPj) 1 (cPk 1 cPt)l of cP will belong to S if and
only if neither of the parts r(cPi 1 cP;-)' and r(cPk 1 cPt)' belongs to S;
and so on. In general, (I) any 'joint denial r y; 1 x.., which is a truth-
functional component of cP will belong to S if and only if neither y; nor
X belongs to S. From among the ultimate truth-functional com-
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ponents cPh cP2' .' •• , cPn of cP, a truth set S may contain any arbitrary
selection (there being a different truth set for each such selection);
but once this part of S is fixed, the rest of the membership of S is
fixed by (I). Thus a truth set of cP is describable simply as any set S
of truth-functional components of cP which conforms to (I).

To say that cP proves true by the truth-table method under each
assignment of truth values to its ultimate truth-functional com
ponents is merely to say that cP belongs to each of its truth sets,
since the successive truth sets of cP comprise those components of cP
which are marked 'T' in the successive rows of the truth table.
We thus arrive at the following _formulation of the notion of tau
tology: cP is tautologous if and only if it belongs to each of its truth
sets ..

When a statement is written out in full, with all the abbrevi
ations '1"../', '.', 'v', ')', and '==' eliminated in favor of ' 1" the
writing of rows of 'T's and' F's under the statement in usual truth
table fashion is merely a way of recording the successive truth sets.
Thus it is that solid 'T's, in the column corresponding to the whole
statement, establish tautology. In practice, of course, we do not
eliminate the abbreviatio:-,s '1"../', '.', 'v', C)', and '=='; in con
s'tructing the truth table of a given statement we thus consult not
only the table of' 1' but also those of ' 1"../', '.', etc. This is just a
shortcut, based on the consideration that the tables of '1"../', '.',
etc. record the net results of expanding' 1"../', '.', etc. into terms of
, 1 ' and applying the table of ' 1 ' (cf. § 9).

Often a statement is not given explicitly, but is described only
incompletely in terms of unspecified cornponents designated by
Greek letters' cP', 'l/;', etc. Such is the situation confronting us in
Tables 1-4. Under these circumstances we do not know whether
cP, '1/;, etc. are ultimate components; consequently, as remarked
earlier, the presence of an 'F' in the main column of the table will
not rule out the possibility that the statement is tautologous. It is
important to note, however, that the opposite sort of reasoning
does hold: when the main column exhibits 'T' throughout we can
conclude that the statement is tautologous regardless of whether
the Greek letters refer to ultimate components. Consider, e.g.,
Table 1. The 'T' in the first row and main column shows that the
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whole statement will belong to all truth sets which contain C/>, y;,
and x; the 'T' in the second row and main column shows that the
whole statement will belong to all truth sets which lack c/> and con
tain y; and x; and so on. Table 1 shows therefore that the whole
statement belongs to all its truth sets, regardless of what the nature
and number of its ultimate truth-functional components may be.
The table shows that any statement of the form r c/> ) y; • y; ) X .v.
X ) c/>' is tautologous, regardless of the complexity of c/>,Y;, and x.

The term' tautology' is taken from Wittgenstein. The present notion of tautol
ogous statements, as those true by virtue solely of truth-functional composition,
seems to agree with his usage; he contrives to make the term cover truths which
involve also quantification, but this is consequent only upon an effort to explain
quantification as a sort of infinite mode of truth-functional composition. A broader
use of the term' tautologous' has arisen in subsequent literature, because of Witt
genstein's doctrine that all mathematics and logic is tautologous. This doctrine
was intended by Wittgenstein as a thesis. not as a definition of tautology; and in
deed it is a difficult thesis to defend. But some who do not maintain the thesis in
any such form, and who regard the inferences of logic and mathematics as "merely
verbal transformations" or "disguised repetitions" only in some much broader
sense, have been led thus to transfer the term' tautologous' to this broader sense.
I t is not clear just what this broader sense is (cf. my "Truth by Convention");
but', whatever it is, there is already a term of long standing ready at hand for it 
Kant's term' analytic'. Hence, following a suggestion of Carnap's, I am confining
the term' tautologous' to the narrower sense - though in abstraction from Witt
genstein's theories.

A rule amounting substantially to the tabular test of tautology was set forth by
Peirce (3.387 0, and is indeed implicit in Boole's general rule of development.
The rigorous formulation of tautology presented above is new. Another formulation,
equally strict but more complex, has been offered by Tarski (" Untersuchungen,"
Def. 4).

§ 11. Selected 'Tautologous Forms

THERE IS no ena to the variety of ways in which statements can
be compounded by truth-functional connectives to produce tau
tology. From among this infinity of forms, certain samples were
considered in the preceding section. Further sampIes, all of them
conditionals or biconditionals, will now be recorded and com
mented upon.
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Where c/> is any statement, the statements

(1)
(2)
(3)
(4)

rc/> == c/>',
rc/> == ~~c/>',

rcj> ==. c/>. c/>',
rc/> ==. C/>Vcj>'

are tautologous. l This can be verified by constructing four"two-row
tables, in the manner of Tables 3 and 4 of § 10. The correlative
conditionals rc/> ) cj>', rc/> ) ~ ~ cj>', r"-l "-I c/> ) cj>', etc. are of course
likewise tautologous.

A binary mode of statement composition, rendered say by the
connective K, is said to be reflexive if rc/> K C/>' is true for all state
ments cj>, and idempotent if rc/> ==. c/> K cj>' is true for all statements
c/>. The tautology of rc/> == cj>' and rc/> ) cj>' thus shows t~e reflexivity
of the biconditional and the conditional; and (3) and (4) reflect the
idem potence of conjunction and alternation. The law of double
denial, according to which consecutive denial signs cancel, is re
flected in (2).

The property of tautology provides derivative relations of
tautologous 'implication and equivalence which are narrower than
logical implication and equivalence (cf. § 5). cj> may be said to
imply l/; tautologously when rcj» l/;' is tautologous; and c/> may be
said to be tautologously equivalent to l/; when rc/> == l/;' is tautolo
gous. The antecedent of a tautologous conditional tautologously
implies the consequent, and the two sides of a tautologous bicon
ditional are tautologously equivalent. From the tautologous forms
listed in (1)-(4), thus, we see. that any statement is tautologously
equivalent to itself, to its double denial, to its self-conjunction, and
to its self-alternation.

Where c/> and l/; are any statements, the conditionals

(5)
(6)

rc/>.l/;.) et>',
ret». c/> Vl/;'

are tautologous. This can be verified by construction of four-row
tables, in the manner of Table 2 of § 10. Conjunctions tautolo

1 Note incidentally that (2)-(4) are merely different abbreviations, by Dl-3, of
one and the sanle form:
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gously imply their components, and alternations are tautologously
implied by them.

A mode of statement composition is said to be commutative if
r¢ K 'I/; •==.'1/; K ¢I is true for all statements ¢ and '1/;. Conjunction,
alternation, and the biconditional are commutative; for, where ¢

and 'I/; are any statements, construction of tables shows that

r¢.'1/; .==.'1/;. ¢I,
r¢v'I/;.==.1/;v¢l,
r¢=='1/;.==.'I/;==¢1

are tautologous.
DeMorgan's law, according to which a denied conjunction is

equivalent to the alternation of the denials and a denied alternation
is equivalent to the conjunction of the denials, is reflected in the
following two forms of tautology.

(10) rr-v (¢ • 1/;) ==. r-v ¢ V r-v'l/;I.
(11) r r-v ( ¢ V '1/;) ==. r-v ¢ • r-v 'I/;I.

In view of D4, (11) has:

(12) rr-v (¢) '1/;) ==. ¢. r-v'l/;'

as a minor variant. The three forms (10)-(12) show how to break
up a denied conjunction, alternation, or conditional. The tautol
ogous form

(13)

does the same for the biconditional.
The law of transposition, according to which the antecedent and

consequent of a conditional may be switched provided that each is
changed to the extent of attaching or dropping an initial denial
sign, is reflected in the tautologous forms

(14) r</» 'I/; .==. r-v '1/;) r-v </>',
(15) rr-v¢)l/;.==.r-v'l/;)¢',
(16) r</»r-v'l/;.==.'I/;) r-v</>'.

Note that (16) is merely a case of (8), in view of D4.
There are related tautologous forms for the biconditional:

(17) r</>=='I/;.==.r-v</>==r-v'l/;',
(18) reP == r-v'l/; .==. r-v ¢ == '1/;'.
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From (18) and (13) we see that the position of a denial sign in a
biconditional is immaterial; it may apply to either component or
to the whole with no difference of effect.

The next four tautologous forms show ways of transforming a
conjunction, alternation, or conditional into a biconditional.

(19) r¢. Vt.==: ¢ ==. ¢ )Vt'.
(20) r¢VVt.==:Vt==.¢)Vt'.
(21) r¢)Vt.==:¢==.¢.Vt'.
(22) r¢ ) Vt •==: Vt ==. ¢ v Vt'.

The laws of development, whereby a statement ¢ can be elab
orated into an equivalent which incorporates any desired second
statement Vt, are depicted in the tautologous forms

(23)
(24)

r¢ ==.¢VVt.¢V~Vt',

r¢ ==: ¢. Vt .v. ¢. ~ Vt'.

A mode of statement composition is said to be transitive if

r¢ K Vt • Vt K X ~). ¢ K X'

is true for all statements ¢, Vt, and x. Conjunction, the conditional,
and the biconditional are transitive; for, where ¢, af' and X are any
statements, construction of tables shows that

(25)
(26)
(27)

r¢ • Vt : Vt · X :J. ¢ · X',
r¢ ) Vt • Vt ) X.). ¢ ) X',

r¢ == Vt.Vt == X.).¢ == X'

are tautologous. The tables wanted here will have eight rows
apiece, in the manner of Table 1 of § 10. Note, however, that the
labor of an eight-row table can often be reduced by a judicious-ap
proach. Consider, e.g., (26). Any chance of falsifying this con..
ditional would require falsifying the consequent r ¢ J X', and hence
assigning 'T' to ¢ and 'F' to X; consequently our construction can
be limited to two rows, corresponding to the assignment of 'T'
and 'F' to the remaining component Vt:

r¢ ) Vt. Vt) X .J. ¢) Xl
TTTFTFF T TFF
TFFFFTF T TFF
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The tautologous forms

(28)
(29)

reP J if; .): eP • X .J. if; • X."

reP J if;.): eP v X .J. if; v X.,

show that a true conditional remains true when antecedent and
consequent are elaborated uniformly by conjunction or alternation.
The tautologous forms

(30)
(31)

reP J. if; ) X: ==: if; J. eP ) X."

reP J. if; ) X : == : eP • if; .) X.,

show two useful ways of transforming an iterated conditional. A
third way appears in (44), below.

A mode of statement composition is said to be associative if

is true for all statements eP, if;, and x; in short, if grouping is im
material. Conjunction, alternation, and the biconditional are
associative; for, where eP, if;, and X are any statements, the state
ments

(32)

(33)
(34)

reP • if; : X : == : eP : if; · X."

reP v if; .v X : == : eP v . if; v X."

reP == if;.== X :==:eP==.if; == X"

are tautologous. The associativity of conjunction and alterna
tion was observed earlier (§ 7); but the associativity of the
biconditional is perhaps surprising enough to move the reader to
work out the table for (34) himself.

In the case of conjunction and alternation, associativity
prompted a special notational convention (D6-i, § 9) ; but a
corresponding convention for the biconditional is inadvisable.
The notation reP == if; == X., is likely to suggest, not reP == if; · == X.,

nor reP ==.if; == X." but rather reP == l/;.if; == X., - on the analogy of
the continued equation 'x = y = z'. The conditions under which
reP == if; . == X., (or reP ==. if; == x.,) is true are not those under \\Thich
reP == if; • if; == x., is true; the latter is true when eP, if;, and X are
alike in truth value, but the former proves to be true rather "'hen
just one or all of eP, if;, and X are true.

In an iterated conjunction, alternation, or biconditional the
order and grouping of components have been seen to be immaterial
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(commutativity and associativity). In the case of conjunction and
alternation, repetition of components has likewise been seen to be
immaterial (idempotence). Any two iterated conjunctions, formed
from the same components with or without repetitions, are equiv
alent - tautologously equivalent ~ and similarly for alternation.

But the biconditional, which lacks idempotence, happens to
behave yet more simply under repetition of components: the
repetitions cancel out in pairs, in view of the fact that

(35)

is tautologous. Two iterated biconditionals are tautologously
equivalent whenever the components appearing an odd nunl ber of
times in each are the same. This principle is a consequence of
another equally curious one: any iterated biconditional is tautolo
gous if each component occurs an even number of times.! Further,
any compound built up by the biconditional and denial is tautolo
gous if each component occurs an even number of times and there
are an even number of denial signs.2 Note, e.g., that (1), (2), (9),

(13), (17), (lg), (3-l), and (35) involve ¢, f, x' and' "-- ' twice each
if at all.

Given any binary modes of statement composition, rendered
say by the respective connectives K and fJ., the first is said to be
distributi'l'e into the second if

r¢K (ffJ.x) .==. (¢Kf)fJ. (¢KX)-'

is true for all statements ¢, f, and X.;~ Distributivity ahvays justi
fies an operation analogous to that of "multiplying through" in
arithmetic: x(y + z) = xy + xz. No\v conjunction turns out to be
distributive into itself and alternation~ and alternation and the
conditional turn out to be distributive into conjunction, alterna
tion, the conditional, and the biconditional. \\lhere ¢, f, and X are
any statements;

(36) r¢:f.x:==:¢.f:¢.x-',
(37) r¢.fvx.==:¢.f.v.¢.x-',

1 Lesniewski, "Grundziige," pp. 26, 29.

2 This was pointed out to me hy Dr. J. C. C. !VlcKinsey.
3 The first mode of composition may likewise be said to be distributive out of

the second if r (1) fJ-lj,;) K X. ==. (1) K x) fJ- (lj,; K x) l is true for all statements1>, 1/t, and x·
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(38)
(39)
(40)
(41)
(42)
(43)
(44)
(45)

SELECTED TAUTOLOGOUS FORMS

rc/> v. 1/; • x :==. c/> v1/;. c/> v x."
rc/> v. 1/; v x :==: c/> v 1/;.v. c/> v x",
rc/> v. 1/; ) x :==: c/> v1/; .). c/> v x",
rc/> v. 1/; == x :==: c/> v1/;. =. c/> v x',
rc/> ). 1/; • x :==. c/> ) 1/; • c/> ) x"',
rc/». 1/;v X:==:c/»1/;.v. c/» x',
rc/».;P) x :==: c/» 1/;.). c/» x',
rc/».1/; == x :==:c/»1/;.=. c/» x'
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are tautologous.
Along with (42) and (43), note the further tautologous forms

(46) rc/>.1/!.)X:==:c/»X.v.1/!)x',
(47) reP v 1/; .) x :==. c/> ) x.1/; ) X"·

In view of (42), a conditional with conjunctive consequent amounts
to a conjunction of conditionals; in view of (46), however, a con
ditional with conjunctive antecedent amounts to an alternation of
conditionals. (47) contrasts with (43) in analogous fashion.

The form (45) shows one useful way of transforming rc/> ). 1/1 == x.,;
the following shows another:

(48) rc/».1/;= x:=:c/>.1/;.==.c/>.x'.

Continually, in subsequent developments (§§ 17 fF.), we shall
find ourselves called upon to recognize simple forms of tautology.
The method of truth tables is always available for the purpose;
but since in many cases the form to be recognized will be one or
another of the foregoing forms (1)-(48), or a minor variant thereof,
the reader will save time by familiarizing himself with these.

Most of the tautologous forms (1)-(48) are cited, along with numerous others,
by Whitehead and Russell (*1-*5). The bulk of them were known to earlier
authors - Frege, Peano, Schroder, Peirce, Boole. Many were indeed anticipated,
as Lukasiewicz points out ("Zur Geschichte"), by the Stoics in ancient times and
by Petrus Hispanus, Duns Scotus, and others in the Middle Ages; what has come
to be known as De Morgan's law, e.g., goes back to William of OckJham. One or
more of (19), (20), (40), and (41) may be new to the literature.

The terms (idempotent', 'commutative', 'associative', and 'distributive' are
borrowed from abstract algebra, wher~ their use is closely analogous to that de
scribed above (cf. § 33). The terms 'reflexive' and 'transitive' are from relation
theory (cf. § 42; also § 25).
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§ 12. The ~uantifier

THE TRIVIAL statement:

(1) 9 is less than, equal to, or greater than 0

is translatable into arithmetical and logical symbols thus:

(2) 9< 0 .v. 9 = 0 .v. 9 > o.
But the statement:

(3) Every number is less than, equal to, or greater than 0,

despite its superficial resemblance to (1), is not correspondingly
translatable as:

(4) Every number < 0 .v. every number = 0 .v. every number
> 0;

for (3) is true, if we suppose imaginary numbers excluded, while
(4) is false. The alternation (4) says that some one of the three
categories exhausts all numbers, while (3) says only that the three
categories together exhaust all numbers. (3) calls for expansion
rather into some such form as this:

Whatever number you may select, it will be less than or
equal to or greater than 0;

or, incorporating the arithmetical and logical notation:

(5-) Whatever number you may select, it < 0 .v. it = 0 .v. it
> o.

As a step toward further logical notation we might compress (5)
thus:

(6) whatever number (it < 0 .v. it = 0 .v. it > 0).

Note, by way of contrast, that this rudimentary notation endows
the falsehood (4) rather with the following form:

whatever number (it < 0) .v. whatever number (it = 0)
.v. whatever number (it> 0).

What (2) says about the number 9 is, as we have noted, true of
all numbers. This fact is expressed in (3), and again in (5) and (6).

65
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It is expressed in (6) by putting 'it' for '9' in (2) and applying
the prefix 'whatever number'. But note now that what (3) says
about 0 is in turn true of every number. A statement to this
effect can be formed from (3) just as (6) was formed from (2):

(7) whatever number (every number is less than, equal to,
or greater than it).

No,,?" the parenthesized part of (7), viz.:

(8) every number is less than, equal to, or greater than it,

still \vants translation into our new notation. Since (8) differs from
(3) only in containing' it' instead of '0', the translation of (3) into
(6) suggests translation of (8) into:

(9) whatever number (it < it .v. it = it .v. it > it).

But this translation is inacceptable; it turns (7) into:

(10) whatever number (whatever num'ber (it < it .v. it = it
.v. it > it)),

wherein the distinction is lost between the' it's which correspond
to the outer occurrence of 'whatever' and the' it's which corre
spond to the inner occurrence of 'whatever'.

This difficulty can be overcome by returning to (6) and (7) and
revising our basic notation, to the extent of tagging' whatever' and
'it' with one or another arbitrary subscript to show that they
belong together. (7) and (6) might be rendered respectively:

(11) whatever! number (every number is less than, equal to,
or greater than itl),

(12) whatever2 number (it2 <: 0 .v. it2 = 0 .v. it2 > 0).

Now the parenthesized part of (11), viz.:

(13) every number is less than, equ£il to, or greater than ith

differs from (3) only in containing 'itl' instead of '0'. Parallel to
the translation of (3) into (12), we can translate (13) into:

(1-1-) \vhatever2 number (it2 < it! .v. it2 = it! .v. it2 > itl),

which differs from (12) only in cont·aining 'itl' instead of '0'
Thus (11) in its entirety becomes:
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(15) whatever! number (whatever2 number (it2 < it! .v. it2 = it!
.v. it2 > it!)).

Such. use of two sets of 'it's with distinguishing subscripts
corresponds to the common use of 'former' and 'latter'.
(15) might be rendered thus in ordi~ary language:

Whatever number you may select, it will turn out,
whatever number you may next select, that the latter
is less than, equal to, or greater than the former.

In more complex cases there may be more than two distinct sub
scripts; such cases are commonly handled in ordinary language,
not by the' former-latter' idiom, but by the device of speaking of
the first, second, third, etc. in an arbitrary order. It is after this
device that the present use of numerical subscripts is patterned.

But a more compact and convenient notation consists in using
simply different letters, instead of 'it' with different subscripts, and
then using the same letter in parentheses instead of 'whatever'
with the corresponding subscript. Thus revised, (12) and (15)
appear as follows:

(16) (y) number (y < 0 .v. Y = 0 .v. y > 0),
(17) (x) number ((y) number (y < x .v. Y = x .v. y > x)).

Similarly' All men are mortal', or ' Every man is mortal', becomes:

(18) (x) man (x is mortal).

Again, 'No man has seen every city', or in other words 'Every man
is in the position of not having seen all cities', becomes:

(x) man rov (x has seen all cities).

But 'x has seen all cities', or 'x has seen every city', gives way
simil(J.rly to ' (y) city (x has seen y) '; so the whole becomes:

(19) (x) man rov (y) city (x has seen y).

Such prefixes as '(x) number', '(x) man', '(y) city' may be
read 'no matter what number x may be', 'no matter what man x
may be', 'no matter what city y may be'. The tentative sym
bolism at which we have arrived is thus a regimentation of the
familiar practice, in algebra and elsewhere, of using letters to
achieve generality. An algebraic discussion which contains 'x',
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and is supposed to hold for every number x, can now be explained
as tacitly prefaced in the fashion' (x) number T

• The algebraic use
of letters was characterized earlier (§ 6) in a rough, tentative way;
the letters were spoken of as names of unspecified numbers, am
biguous names of numbers, signs replaceable by names of any
numbers. Now the status of such letters is clearer; the use of
'x', 'y', etc. in connection with prefixes' (x) number', '(y) num
ber', etc. involves nothing beyond what was just now explained in
terms of 'whatever' and pronouns. There are indeed uses of 'x'
in algebra which do not lend themselves immediately to formula
tion in terms of the idiom' (x) number', or 'no matter what num
ber x may be'; often the appropriate prefix is rather' there is a
number x such that', or 'the number x such that', or 'the class of
all numbers x such that'. It \vill be found, however (§§ 19,26,27)
that all such apparently divergent uses admit finally of translation
into forms involving just the idiom now under consideration.

What has been said concerning algebra applies also to the
analogous use of letters in non-numerical fields; e.g., to the use of
Greek letters in discussions of expressions. Use of 'J1.' in saying
something about all expressions, or of '</>' in saying something about
all statements, would now be explained in terms of such prefixes as
'(J1.) expression' and' (</» statement' - or better' (x) expression',
'(x) statement'. To insist on explicit reformulations of this kind
in all future discussions would, however, be as unwarranted as to
insist on elimination of the words 'or', 'and', and 'if-then' from
future discussions in favor of 'v', '.', and C)'. Most things can be
explained clearly enough by the common-sense sort of statement;
it is rather when the statement itself becomes an object of analysis
that its full translation into the logical notation becomes partic
ularly advantageous.

The notation exemplified in (16)-(19) is only tentative, and will
now undergo further evolution. Consider the statement' Every
thing is identical with itself'. Paraphrased in the manner of (5),
this becomes:

(20) Whatever you may select, it = it.

But the limitation imposed by the word 'number', in (5), has no
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analogue in (20). We may appropriately put (20) into symbols by
following the pattern of (16) and (18) but omitting any range
indicator such as 'number', 'man'. We have:

(21) (x)(x = x).

Just as the prefix' (x) number' may be read 'no matter what
number x may be', so the simple prefix' (x)', as of (21), may be
read simply 'no matter what x may be'. Now a prefix such as
'(x) number', '(x) man', etc. can be eliminated, always, in favor
of the simple kind of prefix used in (21). E.g., the statement:

(22) No matter what man x may be, x is mortal

can be paraphrased as:

(23) No matter what x may be, if x is a man then x is mortal.

Instead of limiting our assertion to men at the start, we admit all
entities at the start and then employ the conditional form to spare
the non-men. Thus (18) gives way to:

(24) (x) (x is a man .). x is mortal).

In general, the form '(x) M (--) , gives way to '(x) (x IS an M
.). -) '. (16), (17), and (19) become:

(25) (y)(y is a number .): y < 0 .v. y = 0 .v. y > 0),

(26) (x) (x is a number .)
(y)(y is a number .): y < x .v. y = x .v. y > x»,

(27) (x)(x is a man .) I'-J (y)(y is a city.). x has seen y».

The notation (16)-(19) involving range-indicators will never be
used hereafter; the notation exelnplified by (21) and (24)-(27) is
adopted as standard.

The prefixes '(x)', '(y)', etc. are called quantifiers, and their
use in forming statements is known as quantification. The letters
'x', 'y', 'z', etc. themselves are called var't'ablts. In order that
the letters available as variables may not be limited by the bounds
of the alphabet, further ones are formed by means of accents; thus
the variables will be understood as comprising 'w', 'x', 'y', 'z',
, " , " , " , " , '"w,x,y,z,w, ....

Though the word 'variable' has been retained here out of con-
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sideration for established usage, the "variation" connoted belongs
to a vague metaphor which is best forgotten. The variables have
no meaning beyond the pronominal sort of meaning which is re
flected in translations such as (20); they serve merely to indicate
cross-references to various positions of quantification. Such cross
references could be made instead by curved lines or bonds; e.g., we
might render (27) thus:

( ) ( is a man .) ~ ( ) ( is a city.). has seen »

and (26) thus:

(~)(. b) ( ~)( b) »IS anum er. IS anum er. • < .v. - .v.::> .

But these "quantificational diagrams" are too cumbersome to
recommend themselves as a practical notation; hence the use of
variables.

Quantification cuts across the vernacular use of 'all', 'every',
, any', and also 'some', 'a certain', etc. (cf. § 19), in such fashion
as to clear away a bafHing tangle of ambiguities and obscurities.
One of the anomalies of the common idiom was noted at the begin
ning of the section, and many further instances suggest themselves.
Consider e.g. the statements:

(28) Smith can outrun every man on the team,
(29) Smith can outrun any man on the team,
(30) Smith cannot outrun every man on the team,
(31) Smith cannot outrun any man on the team.

Clearly (28) and (29) are equivalent, and (30) is the denial of
(28); but (31) is not correspondingly the denial of (29). Whereas
(28) and (29) are:

(32) (x) (x is a man on the team .J. Smith can outrun x)

and (30) is:

(33) ~ (x) (x is a man on the team .). Smith can outrun x),

(31) is rather:
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(34) (x)(x is a man on the team .J. "'-" Smith can outrun x).

The faultiness of the vernacular is illustrated again in the tendency
to blur the distinction which is dealt with below in *139 (§ 19).
The device of quantification subjects this level of discourse, for the
first time, to a clear and general algorithm. It reveals the precise
connection, hitherto obscure, betwe'en general statements and
truth-functional composition; in (25) and (32)-(34), e.g., unlike
their idiomatic equivalents (3) and (28)-(31), the relevant truth
functional structure is clearly exhibited.

Frege (1879) was the first to devise a general notation of quantification, using
auxiliary variables in the modern fashion. So important was this step that we
might indeed look upon Frege, rather than Boole, as the founder of modern logic.
The present notation, easier to print than Frege's, is from Whitehead and Russell.
The pronominal character of the variable was clear to Peano (Formulaire, 1897,
p. 26; 1901, p. 2); but it is only with the advent of combinatory logic, founded by
Schonfinkel and developed by Curry, that the role of the variable as an index of
cross-reference has received full analysis. The analysis consists in showing how
variables can be eliminated in favor of a few constant terms designating functions
of functions (or relations of relations). See Schonfinkel; also Curry's "Grund
lagen," "Apparent Variables," and "Functionality," Rosser's U Mathematical
Logic", and my "Reinterpretation" (which cites further papers by Curry).

§ 13. Formula;

WHEREAS '(x) (x is blue)' is a false statement to the effect that
everything is blue, and '(x) (x = x)' is a true statement to the
effect that everything is itself, the components 'x is blue' and
'x = x' are neither true nor false; they are not statements at all,
but statement matrices - expressions which would be statements
if they contained names instead of var~ables. Between' x = x'
and 'x is blue' there is, indeed, this difference: all statements
formed from' x = x' by putting a name in place of'x' are true,
while some statements so formed from' x is blue' are false. But this
difference does not make 'x = x' itself true, nor 'x is blue' false.
Matrices are not statements, and only statements are true or false.

A matrix is not, however, meaningless, any more than an adverb
or preposition is meaningless. Matrices are fragmentary, but
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meaningful in that they can serve as ingredients of genuine state
ments like '(x)(x is blue)' and '(x)(x = x) '. Since' (x) (x is
blue)' and' (x) (x = x)' are translatable as 'Whatever you may
select, it is blue' and 'Whatever you may select, it = it', the
matrices' x is blue' and' x = x' may be regarded as corresponding
to the expressions' it is blue' and' it = it' - expressions resem bling
statements in form but incapable of standing alone because of their
dangling pronouns.

Since matrices differ from statements only in exhibiting variables
in place of names, matrices are wanted in all forms of which state
ments are capable. Quantification and the truth-functional modes
of composition thus cease to be methods merely of constructing
statements; they are to be regarded henceforth as methods of con
structing statements and matrices indifferently. Furthermore the
notion of tautology admits of immediate extension to matrices: a
matrix is tautologous if it has the form of a tautologous statement,
i.e., if it becomes a tautologous statement when variables are sup
planted by names. A tautologous matrix is not, like a tautologous
statement, true; still. the tabular test of tautology can be applied
directly to the matrix, for the pattern on which the test turns is
unaffected by the presence of variables. The notions of tautologous
implication and equivalence, and logical implication and equiv
alence, admit similarly of immediate extension to matrices. Be
cause of these affinities between statements and matrices, it \\,·ill be
convenient henceforth to treat statements and matrices together
under a single head; they will be called formulce.

In Chapter I no attempt was made to mark out the category
of expressions known as statements. We now proceed to impose
bounds on that category; indirectly, however, through imposing
bounds on the broader category of formulce. This category will
retain a degree of relativity, for the space of the present chapter,
but is subjected to the following restriction: no formula can occur
within another except through quantification or truth-functional
composition. Instead of truth-functional composition, indeed, we
might cite joint denial alone; for conjunction, denial, and the rest
may be regarded as unofficial ci'bbreviations after the manner of
Dl-5 (§ 9).
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Thus we are to think of the totality of formul~ as comprising
some manner of atomic formulce - formul~ containing no shorter
formul~ as parts - and in addition just the expressions thence
constructible by continued application of joint denial and quanti
fication. In the next chapter, expressions which are to be taken as
atomic formul~ will be specified; but for present developments
we may leave the class of atomic formul~ still undetermined.
Relative to the atomic formul£e, however, the totality of formulte
is fixed; it comprises the class of atomic {ormul~, together with
all results of putting formul~ of that class in the blanks
of '( 1 )' or after a quantifier, together with all results of
putting formul~ of the thus increased class in the blanks of
,( 1 )' or after a quantifier, and so on. If p, and v are
among the atomic formul~, and a and {3 are variables ('w', 'x',
'y', or 'z' with or without accents), then

p" v, r(a)p,"', r({3)p,"', r(a) v"', rep, 1 p,).." rep, 1 v)"', r((a)p, 1 (a)p,)"',
r((a)p, 1 p,).." rep, 1 ({3)v)', r((a)p, 1 (a) v)"', r((a)p, 1 ((3)v)',
r(a)(p, 1 v)"', r((a)(p, 1 v) 1 p,).." r((a)(p, 1 ({3)v) 1 ({3)v)',

etc. are among the formul~.

So long as the atomic formul~ remain unspecified, it is impossible
to present any specific formul~ by way of examples; we can only
give partially determinate examples with help of Greek letters,
as above. When specific examples seem wanted, however, we may
conveniently avail ourselves of random components 'x = x',
'x < 5', '3 < 5', 'Socrates is mortal', etc., under the fiction that
these are among our atomic formul~.

In the requirement that no formula contain another except in a
context of joint denial or quantification, an extreme restriction
would seem to be imposed. Actually, however, nothing is thereby
barred which is needed anywhere in mathematics. For all mathe
matical purposes it is sufficient that formul~ occur in three ways:
alone, in joint denial, in quantification. Such other manners of
occurrence as may turn up in mathematical practice are reducible
to these by definitional translation. There is reason to believe, in
deed, that this is true not only of mathematics but of discourse
generally; thi~ thesis is a controversial one, however, being an
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extension of the thesis that all statement composItIon can be
limited to truth-functional composition (cf. §§ 1, 5).

There are at the same time some respects in which the above
characterization of formulce is more liberal than § 12 would have
led one to expect. It allows the attachment of any quantifier
rea)' to any formula J.L, whereas the explanation in § 12 covers
only the case where J.L is a matrix involving a. Toleration of
r(a)Jl' where J.L lacks a is actually a matter only of convenience;
r(a)J.L' is to be construed in such cases as equivalent simply to J.L,
i.e., the quantifier is to be construed as vacuous. Thus the state
ment:

(x) (Socrates is mortal)

is explained as equivalent simply to 'Socrates is mortal '. The
verbal analogue 'Whatever you may select, Socrates is mortal'
(cf. (20), § 12) reflects the vacuousness of the quantifier.

In allowing attachment of every quantifier to every formula we
let down the bars also to superimposition of identical quantifiers,
as here:

(1) (x) (x is a man. (x) (x is a man .). x is mortal) .). x is mortal).

The question then arises: which of the two occurrences of
'(x)' is supposed to govern the occurrences of 'x' in 'x is a man
.J. x is mortal'? But the usage is unambiguous if we agree that
occurrences -of a variable a overlaid thus by duplicate occurrences
of rea)' are to be governed always by the innermost occurrence of
rea)'. The i~terior segment:

(2) (x)(x is a man .). x is mortal)

of (1) is to be read, without regard to its context, in the usual
fashion 'all men are mortal'. (1) as a whole thus becomes:

(x) (x is a man. all men are mortal.). x is mortal),

or, read entirely in words, 'Whatever you may select, if it is a man
and all men are mortal then it is mortal'. The letter 'x' in (2)
could be rewritten as 'y' without regard to the outer parts of (1).
(1) is equivalent to:

(3) (x) (x is a man. (y)(y is a man .J. y is mortal) .J. x is mortal).
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It is clearest in practice to choose different letters, as in (3), but
quantification theory is greatly simplified by tolerating also the
usage exemplified by (1).1

Strictly speaking the examples (1)-(3) are not formuhe, but
abbreviations of formulte; to get the corresponding formulte we

d h bb .. " d ,)., . f ' I "must expan tea revlatlons . an Into terms 0 -,t, ac-
cording to D1-5. In practice, however, this distinction can. con
veniently be slurred over by keeping to the abbreviations and
imagining meanwhile that the full primitive notation is written
out instead. Except in the few cases where the abbreviations
themselves are the topic of discussion, remarks ostensibly applied
to abbreviated expressions are to be thought of as really applying
to the corresponding expressions in unabbreviated notation. Thus
it is that (1)-(3) and their like are treated as formul~.

Hereafter 'cJ>', '1/;', 'x', and their accented and subscripted
variants will be used not merely to refer to statements but to refer
to formulte generally - statements or matrices. This extension is
to be understood as applying also retroactively; thus the Greek
letters in D1-7 (§ 9), also in the explanation of the dot notation
(§ 7), and also in the formulation of tautology (§ 10, italicized
passages), are to be reread as referring to any formul~. Our
formulation of tautology now comes to characterize tautologous
statements and tautologous matrices simultaneously; and (1)
(48) of § 11 now present forms of tautologous formul~ - state
ments and matrices indifferently. The formule:e described in
(1)-(48) are tautologous statements when cJ>, 1/;, and X happen to
be chosen as statements, tautologous matrices otherwise.

This modification of our Greek-letter usage will be accompanied
by another: 'a', '{3', ',,', '0', and their accented and subscripted
varial}ts will not be used to refer to expressions indiscriminately,
but will be limited to cases where the expressions referred to are the
specific one-letter expressions 'w', 'x', 'y', 'z', 'w", etc. - the
so-called variables.

1 The usage in question is proscribed by Hilbert and Ackermann, tacitly avoided
by Whitehead and Russell, and explic'itly admitted by Frege (Grundgesetze, vol. 1,
p. 13), von Neumann ("Beweistheorie," p. 7), and Carnap (Syntax, p. 88).
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§ 14. Bondage, Freedom, Closure

§ 14

THE NOTIONS of bondage, freedom, and closure, which are to be
explained in this section, are used constantly in subsequent dis
cussion. A given occurrence of a is said to be bound to a given
occurrence of rea)' if it stands in a formula beginning with the given
occurrence of rea)' and stands in no formula beginning with a later
occurrence of rea)'. In (1) of § 13, e.g., the first, ·second, and last
of the six occurrences of ' x' are bound to the initial occurrence of
, (x) " while the third, fourth, and fifth occurrences of 'x' are
bound to the other occurrence of '(x) '.

It was explained (§ 13) that an occurrence of a, if overlaid by
duplicate occurrences of r(a)"" is to be regarded as governed by the
innermost of those occurrences and as having only an alphabetical
accident in common with the other occurrences. It is to this inner
most occurrence of rea)' that the given occurrence of a is said to
be bound, under our newly introduced terminology. The occur
rence of rea)' to which a given occurrence of a is bound is the
occurrence of rea)' which governs the given occurrence of a.

The terminology 'bound to' receives graphic significance if we
recall the notation of quantificational diagrams· (§ 12); that nota
tion presents actual bonds, in the form of curved lines, connecting
each quantifier-position with such subsequent variable-positions
as are" bound thereto" in the above sense. (The little bond which
always connects an occurrence of rea)' with the occurrence of a

inside it is of course not shown.)
In applying the criterion of bondage italicized above, we must

think of our binary statement compounds as fitted with the outside
parentheses which belong to them under strict notation (cf. § 7).
Otherwise one is tempted to say e.g. that the final occurrence of
'x' in (1) of § 13 is bound to the second occurrence of '(x)', on the
ground that the final occurrence of ' x' stands in a formula:

(x) (x is a man .). x is mortal) .). x is mortal

which begins with the occurrence of '(x)' in question.. Actually,
however, (1) of § 13 becomes:
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(1) (x) «x is a man. (x) (x is a man .). x is mortal)) ). x is mortal)

on restoration of parentheses; and obviously its terminal frag
ment:

(x) (x is a man .). x is mortal)) ). x is mortal),

with unmated parentheses, is no formula. Again, one might be
tempted to say that the last occurrence of 'x' in:

(2) (x)(x = y + x) ). y ~ x

is bound to the occurrence of '(x)', on the ground that (2) is a
formula beginning with the given occurrence of '(x)'; actually,
however, (2) becomes:

(3) «x)'(x = y + x) ). y ~ x)

on restoration of parentheses, and (3) does not begin with' (x) '.
Discernment of bondage relations does not in practice require

that we restore absent parentheses, so long as we keep in mind the
intended cleavages of our formul£e. We must keep in mind, e.g.,
that (2) is not formed by applying' (x)' to:

(x = y + x) ). y ~ x.

An occurrence of 1/; in c/> will be said to be bound in c/> with respect
to a if within that occurrence of 1/; there is an occurrence of a
which is bound to an occurrence of r(a)" lying in c/> but outside 1/;.
In (2), e.g., the occurrence of 'x = y + x' is bound with respect to
,x'; for the occurrences of 'x' in 'x = y + x' are bound to an
occurrence of '(x)' in (2) which is outside 'x = y + x'. In (1),
each occurrence of 'x is a man' and 'x is mortal' is bound with
respect to 'x'.

An occurrence of 1/; will be said simply to be bound in c/> if it is
bound in c/> with respect to at least one variable. Thus the occur
rence of 'x = y + x' is bound in (2), whereas the occurrence of
'y ~ x' is not. In terms of quantificational diagrams, bondage of
1/; in c/> has this significance: there is at least one bond reaching into
.1/; from somewhere in c/> anterior to 1/;.

Obviously an occurrence of 1/; may be bound in a broad context
c/> and yet not bound in a narrower context c/>'; for, the bondage of
1/; in c/> may depend on occurrences ofr(a)", r«(3)", etc. which, though
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within ~, are outside ~'. Diagrammatically: the bonds reaching
into 1/; from anterior parts of ~ may begin anterior also to ~'. The
first occurrence of 'x is a man', e.g., is bound in the broad context
(1) but not in the narrower context:

(4) x is a man. (x)(x is a man .). x is mortal).

The terminology' bound in' will be applied not only to an occur
rence of a formula Y;, as above, but also to an occurrence of a vari
able - in the following sense: an occurrence of a will be said to be
bound in ~ if it is bound to an occurrence of rea)' In~. l~hus the
first three occurrences of 'x' are bound in (2); the fourth is not.
An occurrence of a which is bound in a broad context ~ need not be
bound in a narrower context ~', since the occurrence of rea)' to
which the given occurrence of a is bound may lie inside ~ but out
side ~'; the second and third occurrences of 'x' in (2), e.g., are
bound in (2) and in '(x)(x = y + x)' but not in 'x = y + x'.

The terminology 'bound in' will be applied not only to an oc
currence of a formula or variable, as described, but also to the
formula or variable itself: a formula or variable will be said to be
bound in ~ if an occurrence of it is bound in~. Thus' x = y + x'
is bound in (2); so also is 'x'. Variables bound in ~ will be spoken
of also as bound variables of ~.

An occurrence of a formula or variable in ~ is said to be free in
~ if it is not bound in~; and a formula or variable is said to be free
in ~ if an occurrence of it is free in~. Thus 'y ~ x' is free in (2);
so also are 'x' and 'y' . Variables free in ~ will be spoken of also as
free variables of ~.

To describe one aud the same occurrence of J.L as both bound and
free in cP would be, of course, a flat contradiction. On the other
hand J.L itself may be both bound and free in~; i.e., it may have
both a bound and a free occurrence in~. E.g.,' x is a man' is
bound and free in (4). So is 'x'.

It is obvious from the foregoing formulations that the following
hold in general. (i) An occurrence of y; is bound in ~ with respect
to a if and only if it contains an occurrence of a which is bound in
~ and free in 1/;. (ii) An occurrence of a in ~ is bound to the initial
occurrence of rea)' in r(a)~' if and only if it is free in ~.
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The terminology which we have been developing enables us,
among other things, to render explicit the distinction between
statements and matrices. The distinction does not turn merely
on the absence or presence of variables, for '(x) (x is blue)' and
, (x) (x = x)' are statements despite their variables; it turns rather
on the fact that in a statement every occurrence of a :variable is
governed by a quantifier, while a matrix contains occurrences
which are not thus governed. Thus, given the totality of formulce,
we may describe matrices and statements respectively as those
formul£e which have free variables and those which have not.

Every matrix can be turned into a statement, true or false,
simply by prefixing quantifiers corresponding to all the free
variables. The matrix 'x < y .=. y > x', e.g., is turned in this
way into the true statement:

(5) (x)(y)(x < y.=. Y > x);

and the matrix 'x < y' into the falsehood '(x) (y) (x < y)'. Such
successive quantifiers apply, of course, one at a time to the matrix
which immediately follows. Thus' (x) (y)(x < y)' is the result of
applying the quantifier '(x)' to the matrix '(y)(x < y)', which is
in turn the result of applying' (y)' to '(x < y)'; and similarly for
(5). The strict reading of (5) is: 'No matter what x may be, it
will be the case, no matter what y may be, that x < y if and only
if y > x.' It is more natural, however, to read such successive
quantifiers together: 'No matter what x and y may be, x < y if
and only if y > x.' The order of the successive quantifiers is ob
viously immaterial; (5) could have been rendered equivalently
as:

(6) (y)(x)(x < y .=. y > x).

(5) and (6) are logically equivalent statements; so are' (x)(y)
(x < y)' and '(y)(x)(x < y)'.

If c/> has n free variables, there are n! statements which can be
formed by prefixing distinct quantifiers in one or another order
corresponding to all the free variables; though all n! statements
are, as just remarked, equivalent. An arbitrary one of these state
ments will be referred to as the closure of c/>; the one, say, in which
the added quantifiers are applied in alphabetic order. Accordingly,



80 QUANTIFICATION § 15

where a1, a2, ... , an (n ? 0) are in alphabetic order all the free
variables of et>, the closure of cP is r(an ) • •• (a2) (al)et>1; it is formed by
applying r (a1) 1 to cP, then r (a2) 1 to the result, and so on. The alpha-

betic order of variables may for this and subsequent purposes be
fixed arbitrarily thus:

w x y z w' x' y' z' w"

Thus (6), but not (5), is the closure of' x < y •=. y > x'. Again,
since 'w', 'x', and 'z' are in alphabetic order all the free variables
of:

(y)(w loves y .). x hates z),

the closure of this matrix is the fals~hood:

(7) (Z) (x) (u')(y)(w loves y .). x hates z).

At the same time (7) is the closure of:

(w)(y)(w loves y .). x hates z)
and of: (x)(w)(y) (w loves y .). x hates z).

Also it is the closure of itself; every statement is its own closure.
On the other hand (7) is not the closure of:

w loves y .). x hates z;

the closure of this is rather:

(z)(y)(x)(w) (w loves y .). x hates z),

which is equivalent to (7) but is not the same statement.

Peano's nomenclature for bound and free variables, carried over by Whitehead
.and Russell, was' apparent' and' real '. The term' free' was applied to variables
by Hilbert (1922); but the full terminology of bondage and freedom elaborated
above is, with the exception of 'bound with respect to', substantially von Neu
mann's (" Beweistheorie", p. 9). The notion of closure is an adaptation from
-Carnap (Syntax, p. 94).

§ 15. Axioms of ~uantification

OUT OF THE totality of logically true statements, one special
kind - the tautologous - has thus far been considered. State
ments of this kind are true by virtue solely of their structure in
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terms of truth-functional composition; i.e., in terms of joint
denial. Now the advent of quantification opens up a wider class of
logical truths: statements which are true by virtue of their struc-

ture in terms of joint denial and quantification. These may be
called quantificationally true. Church has shown 1 that it is impos
sible to devise a general test whereby, given any statement, we can
mechanically decide whether or not it is quantificationally true.
Quantificational truth is thus more elusive than tautology; for
we have a mechanical test of tautology in the truth table.

I t remains possible to mark out the class of quantificational
truths by appeal to a generative principle, as follows. We first sin
gle out certain fundamental sets of quantificational truths which
art satisfactorily recognizable, either on sight or by mechanical
tests; then we describe a simple rule (modus pontns, § 16) whereby
further quantificational truths can be progressively generated. The
demarcation of quantificational truths which is thus achieved is
complete, in that every quantificational truth can in fact be gener
ated from the fundamental ones by some chain of applications of the
rule; 2 but the appropriate chain of applications may elude us in
particular cases, and herein consists the lack of a mechanical test.

The quantificational truths are but a species in turn of logical
truths in a still more inclusive sense (§ 28). We shall eventually
find (§ 60) that this latter category resists even the generative type
of demarcation available for quantificational truth.

In this section the fundamental sets of quantificational truths
alluded to above will be specified. One such set is typified by:

(1) (x) (x is red .J. x is red),

which is the closure of a tautologous matrix' x is red .). x is red' ..
The quantifier is essential to the truth of this statement, for with
out it we have only a matrix, neither true nor false. Tautologous
formulc:e are not always true, for they are not always statements;
their closures are statements, however, and true. Here we have a
new set of logical truths, more inclusive than the tautologous state-

1 Church, h A Note." See also Hilbert and Bernays, vol. 2, pp. 416 If, and Rosser,
" Informal Exposition."

2 Godel proved this in 1930. See also Henkin. These arguments relate to other
versions of quantification theory, but can be transferred to the present one.
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ments; namely, the closures of tautologous formulz. Let us call
this set A. It includes the tautologous statements, since a tautol
ogous statement is a tautologous formula which is its own closure.

Next consider the statement:

(x) (x is colored .). x is extended) ).
(x)(x is colored») (x) (x is extended);

in words, 'If everything colored is extended then if everything is
colored everything is extended.' Any statement of this sort - any
statement of the form

(2) rea) (</> ) 1/!) ). (a)c/> ) (a)1/!'

- will of course be true. If c/> or 1/; has a free variable other than a,
the whole will be a matrix rather than a statement; but still its
closure will be true. The closures of formulte of the form indicated
in (2) thus constitute another set of logical truths, which we may
call B.

Logical truths of a trivial kind, exemplified by:

Socrates is mortal.) (x)(Socrates is mortal),

issue from our decision (§ 13) to construe r(a)c/>' as equivalent to </>
in cases where c/> lacks a. In general, where c/> lacks a, the closure of
rcJ» (a)c/>' (and, indeed, of rc/> == (a)c/>') will be true. Furthermore,
the requirement that cJ> "lack" a need not be taken to forbid
occurrences of a within a shorter quantification r(a)1/;' inside~ </>;
for such occurrences are bound to that inner occurrence of rea)',
and are irrelevant to the initial rea)' of r(a)c/>' (cf. §§ 13, 14). The
only occurrences of a in c/> which are bound to the initial r (aJ'
of r(a)c/>' are the occurrences which are free in c/> (cf. (ii), § 14);
and it is only such occurrences that need be forbidden in order that
rea)</>' be a case of vacuous quantification, equivalent to c/>. Here,
then, is another set of logical truths: closures of formulce rc/> )
(a)c/>' such that a is not free in </>. Let us call this set C.

Now consider the statements:

(3) (x)(x is a man .). x is mortal) ):
Socrates is a man .). Socrates is mortal,

(4) (x)(God created x) ). God created Socrates,
(5) (x)(God created x) ). God created God;
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in words, 'If all men are mortal then if Socrates is a man Socrates is
mortal'; 'If God created everything then God created Socrates';
'If God created everything then God created himself.' Each of
these statements is a conditional of the form r (a)cJ> ) cJ>" where cJ>'
affirms of some specific object (Socrates, God) what r(a)cJ>'
affirms of all objects. In each case cJ>' is like cJ> except for containing
some name r (' Socrates', 'God ') where cJ> contains a. More
accurately, in general, cJ>' is like cJ> except for containing r wherever
c/> contains free occurrences of a; for it is only the free occurrences
of a in c/> that are relevant to the initial r(a)' of r(a)cJ>'. Any
conditional statement of this kind will of course be true, since
whatever can be affirmed of everything (as in r(a)cJ>') can be
affirmed of any particular object we choose to name (as in cJ>').

Furthermore, the references to Socrates are obviously inessential
to the truth of (3) and (4); corresponding conditionals are true of
all men, indeed all entities, not just Socrates. Hence the general
statement which is formed from (4) or from (3) by putting a
variable for' Socrates', and quantifying the whole, is likewise true:

(6) (y)«x)(God created x) ). God created y),
(7) (y) «x) (x is a man .J. x is mortal) ): y is a man .). y is mortal).

Similarly the references to God are inessential to the truth of (5)
and (6); the general statements formed from (5) and (6) by putting
a variable for 'God', and quantifying the wholes, are likewise
true:

(8) (w)«x)(w created x) ). w created w),
(9) (w)(y) «x) (w created x) ). w created y).

Whereas (3)-(5) are statements r( a)cJ> ) cJ>" such that cJ>' is like
cJ> except for containing a name r wherever c/> contains free occur
rences of a, on the other hand (6)-(9) are closures of formulte
r(a)c/> ) cJ>" such that cJ>' is like cJ> except for containing a variable a'
wherever cJ> contains free occurrences of a. Let this latter set of
statements, exemplified by (6)-(9), be called Of. (0 will come
later.) This set does not include (3)-(5). Indeed, the set exempli
fied by (3)-(5) is not satisfactorily specifia·ble at the present stage;
for its specification depends on the notion of name, and nothing has
been said thus far to indicate what sorts of expressions are to be
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classed as names. But the set exemplified by (3)-(5) can be
passed over; we shall find later (§ 27) that names are eliminable 
that statements involving names are translatable in a way which
avoids recognition of any ultimate name-category.!

Along with (6)-(9), the set D' as described includes the state
ment:

(10) (x) "-I (y) (y = x) ) "-I (y) (y = y);

for, (10) is the closure of r(a)cj> ) cj>" where a is 'x', cj> is '1'-1 (y)
(y = x)', and cj>' is like cj> except for containing' y' wherever cj> con
tains free occurrences of 'x'. But this reveals a defect in the
formulation of D', for (10) is in fact false. The antecedent of the
conditional (10) says that, whatever entity may be selected, not
every entity will be identical with it. This much is true; if e.g.
the number 5 is selected then the number 1 is not identical with it,
while if any other entity is selected then the number 5 is not identi
cal with it. The consequent of the conditional (10), on the other
hand, is obviously false; it denies that everything is self-identical.
Thus (10) as a whole, having a true antecedent and false conse
quent, is false.

The formulre whose closures were intended to belong to D' were,
roughly speaking, of the sort:

(x)( x. ..) ) •.. .y. 0 0

where the consequent ' y. 0 .' imposes upon y the condition
which '0. ox. 0.' imposes upon x. Any such closure will indeed
be true. But (10) is of a different sort; whereas its antecedent
says:

(x) "-I (everything is identical with x),

its consequent does not say correspondingly:

"-I (everything is identical with y),
but rather:

"-I (everything is self-identical) 0

1 Names and other terms will subsequently make their formal appearance
through certain conventions of notational abbreviation (§§ 24, 26, 27); and a
principle covering the logical truths exemplified in (3)-(5) will then be derived
(*231, § 31).
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The source of this deviation on the part of (10) is apparent: when
the free occurrence of a (i.e. 'x ') in cJ> (i.e. '~(y) (y = x) ') is
supplanted by (;x' (i.e. 'y' ), the resulting occurrence of a' comes
inadvertently to be appropriated to the purposes of a quantifier
rea')' which was lurking inside cJ>. OUf characterization of D' can
be adjusted, therefore, by stipulating that the occurrences of a' in
</>', to which the free occurrences of a in cJ> give way, remain like
wise free. The revised set, which may be called D, comprises the
closures of formulre r(a)cJ» cJ>" such that cJ>' is like cJ> except for
containing free occurrences of a' wherever cJ> contains free occur
rences of a.

Statements of the fouf kinds A, B, C, and D will play a basic
role in subsequent developments, and a general term is needed for
referring to them. For lack of a better term, they will be called
axioms of quantification. Thus the axioms of quantification com
prise the closures of all tautologous formulre; also the closures of
all formulre of the form

rea) (cJ> ) 1/1) ). (a)cJ» (a)1/I';

also the closures of all formulre r cJ» (a)cJ>' such that a is not free
in cJ>; also the closures of all formulre r(a)cJ» ep" such that ep' is
like ep except for containing free occurrences of a' wherever </> con
tains free occurrences of a.

§ 16. 'Theorems

IT IS APPARENT, equally from the ordinary usage of 'if-then'
and from the truth table of ')', that 1/1 will be true if rep) 1/1' and ep
are true. The form of inference which carries us thus from prem
isses r cJ> ) 1/1' and ep to the conclusion 1/1 is known traditionally as
the modus ponens; hence let us speak of 1/1 as the ponential of
r c/» 1/1' and ep. In general, let us call 1/1 a ponential of <Ph cP2, cPa, •••
if one of <Ph cP2, cPa, ... is a conditional having another of <Ph <1>2, cPa,
... as antecedent and 1/1 as consequent. Ponentials of true state
ments are true; and, in particular, ponentials of logically true
statements are logically true.
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Though the axioms of quantification comprise infinitely many
logical truths, they leave further infinities of logical truths un
touched. A broader class of logical truths is obtainable by throw
ing in the ponentials of the axioms of quantification; a still
broader one is obtainable by throwing in the ponentials of the thus
supplemented class; and so on.

The axioms of quantification, together with the ponentials of
those axioms, together with the ponentials of this further totality,
and so on, will be referred to collectively as theorems. To say that cJ>

is a theorem is to say that there is a sequence of statements y,,1, y,,2'
•.• , y"n, c/> each of which is either an axiom of quantification or a
ponential of earlier statements of the sequence. The theorems can
be characterized recursively as follows: (i) axioms of quantification
are theorems, and (ii) if r c/> ) y,,' and c/> are theorems then so is y".l

The following three statements, e.g., are theorems:

(1) (y) ((x) (y affects x) ). y affects y),
(2) (y) ((x) (y affects x) ). y affects y) ).

(y) (x) (y affects x) ) (y) (y affects y),
(3) (y)(x)(y affects x) ) (y)(y affects y).

(1) and (2) are axioms of quantification, of the respective kinds D
and B (cf. § 15). (3) is not an axiom of quantification, but it is a
theorem because it is the ponential of the theorems (1) and (2).
The sequence (1), (2), (3) is of the kind 1/11, 1/;2, ... ,y"n, c/> de
scribed above.

The tautologous statements form one class of logical truths; the
axioms of quantification form a broader class; and the theorems
form a still broader class. This third class differs from the pre
ceding two in this important respect: we have no general pro
cedure whereby we can test whether a given statement belongs to
the class or not. With respect to tautologous statements, such a
test is provided by the truth table; given any statement, framed

1 Any general notion which is resoluble into an infinite sequence of special cases
is said to be recursively characterized when we have explained the first case and
added a general rule describing the (i + l)st case, for each i, in terms of the first i
cases. Here the axioms of quantification constitute the first case, and the ponen
tials of theorems falling under the first i cases constitute the (i + l)st case.



§ 16 THEOREMS 87

in our logical notation, we can appraise it systematically by the
tabular method and discover whether or not it is tautologous. l

With respect to the broader class of quantificational axioms,
such a test is again forthcoming. Given a statement, we may first
determine whether it is an axiom of quantification of the kind A;
this is accomplished by dropping off any initial quantifiers, to get
the net formula cP whereof the original statement was the closure,
and then testing cP for tautology by table. If this investigation
yields a negative answer, we next determine whether the state
ment is of the kind B; i.e., we observe whether cP is a conditional
whose antecedent and consequent are alike except for a distributed
quantifier as in (2) of § 15. In case of a negative answer, we
check the statement in similar fashion against the type C; then
against D.

But with respect to the class of theorems we have no such com
plete test. A statement cP may be a theorem without our being able
to discover the fact; there may be a sequence 1/11, 1/12, ••• , 1/In' cP of
the required kind without our being lucky enough to find it.
Failure to discover such a sequence is no evidence that cP is not a
theorem, though the chance discovery of such a sequence does show
that q, is a theorem.

With respect to the class of theorems we do have a partial test,
but only a partial one; namely, given any sequence 1/11, 1/12, ••• ,
1/!n, q" we can decide whether it is of the kind which makes cP a
theorem. We can check each statement of the sequence, from 1/13
onward, against each pair of its predecessors to see if it is a ponen
tial thereof; then, reserving the ponentials, we can check each of
the remaining statements to see whether it is an axiom of quantifi
cation. This reflects the characteristic mathematical situation;
the mathematician hits upon his proof by unregimented insight
and good fortune, but afterwards other mathematicians can check
his proof.2

1 For this purpose it is ordinarily essential that the statement be given explicitly
and in full, of course, rather than merely described by quasi-quotation. Forms
exhibited in quasi-quotation are often capable of being shared by statements which
are tautologous and statements which are not; cf. § 10.

t Cf. Introduction; also §§ 55, 60.
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Let us write 'I- C/>' to mean that the 'closure of c/> is a theorem.1

l'hen the characterization of theorem embodied in (i) and (ii)
above takes on the following form, once the notion of axiom of
quantification is analyzed out.

*100. If c/> is tautologous, I- c/>.
*101. I- rea) (c/> ) 1/;) ). (a)c/> ) (a)1/;'.
*102. If a is not free in C/>, r- r c/> ) (a)c/>'.
*103. If C/>' is like c/> except for containing free occurrences of a'
wherever c/> contains free occurrences of a, then r- r(a)c/> ) cP".
*104. If rc/> ) 1/;' and c/> are theorems, so is 1/;.

The principles *100-*104 are to be understood, of course, as apply
ing to all choices of C/>, 1/;, a, and a'. The three-digit numerals and
asterisks belong to a scheme of cross-reference which will become
clear in the seque1.2

Note that *104 cannot be abbreviated to read:

(4) If I-rc/»1/;' and rc/> then t-1/;;

this means something more complicated than *104, namely that if
the closures of rc/> ) 1/;' and c/> are theorems then so is that of 1/;. It
will be found later (*111, § 17) that (4) does in fact also hold; it
will be found that whenever r c/> ) y;' and c/> are formulre whose
closures are theorems according to *100-*104, the closure of y; is
also a theorem according to *100-*104. But this result is no mere
translation of *104; its substantiation requires a considerable train
of reasoning.

Frege was perhaps the first to distinguish clearly between axioms and the rules
of inference whereby theorems are generated from the axioms. Once this distinction
is drawn, a recursive characterization of the class of theorems is virtually at hand.
But the highly explicit way of presenting formal deductive systems which is custom
ary nowadays dates back only to Hilbert (1922) or Post (1921). Under this plan
a class of expressions to be known as formuhe is specified by reference to purely

1 The sign' I- ' was borrowed from Frege by Whitehead and Russell. The sense
which they attached to it is somewhat obscure, but comes near enough to this sense
to justify my retention of the notation.

2 A special sense will subsequently (§ 17) be attached to suppression of the
asterisk; also an important distinction will be recorded by using daggers sometimes
instead of asterisks (§ 25). Concerning the choice of numerals, see footnotes to
§ 17.
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notational features - ordinarily through a recursive characterization (cf. §§ 13,
23); then a subclass of formulte to be known as theorems is singled out by another
recursive characterization, referring again to none but notational features. The
so-called axioms, i.e. those initial theorems which are introduced by the first of the
two clauses in a recursive characterization of theorem, used to be taken as finite in
number and hence presented by list; the practice of describing an infinity of axioms
dates only from von Neumann (1927). It is this innovation that has enabled us to
keep to modus ponens as sole rule of inference, following Tarski (1935). The com
bination of principles *100-*104 was anticipated in its main outlines by Fitch
in 1938.

In the first edition an additional kind of axioms of quantification was recognized,
beyond the present kinds A, B, C, and D; viz., the closures of all formul~ of the
form r (a) ({3)t/> ) ({3)(a)t/> 1. Also the concept of closure differed slightly from the
present one, in that the quantifiers were arranged in the opposite order. But Berry
showed that by switching to the present version of closure we could dispense with
those additional axioms and still get them as theorems. The proofs of *115 and *119
below are due in principle to Berry.

Most of the" metatheorems" running through the rest of the present chapter were
recorded by one or another of Frege, Peirce, and Schroder, and comprehensively
systematized by Whitehead and Russell (*9-*11).

§ 17. M etatheorems

STUDY of *100-*104 reveals an endless variety of general condi
tions under which statements will be theorems. By recording
conditions of this kind once and for all, we avoid the labor of
writing out specific sequences of quantificational axioms and ponen
tials to establish individual theorems falling under those conditions.
We establish theorems wholesale, by arguments which show that
the appropriate sequences could be found for each particular case.
Such principles, describing general circumstances under which
statements are theorems, will be called metatheorems. *100-*104
themselves are our initial metatheorems.

So long as the atomic formulre remain unspecified, indeed, it is
impossible to cite any specific formulle (cf. § 13) and hence im
possible to cite any specific theorems. Apart from fictitious
examples in which makeshift atomic formulle are borrowed from
ordinary language (e.g. (3) of § 16), we can only cite the general
forms of theorems - using Greek letters as in *100-*104. At a
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later stage (§§ 25 if.), after the specification of atomic formulz,
individual theorems will be forthcoming.

The following metatheorem is merely a special case of *103,.

*110.1 J- r (0I.)~ ) ~'. Proof: *103 (taking a' as a).

A less trivial metatheorem, anticipated in earlier discussion
(§ 16; see also Appendix), is this:

*111. If t- r~ ) 1/;' and t- ~ then t-1/;.

Proof. Let a number n be called farJorabl~ if *111 holds for all
conditionals r~ ) 1/;' having n or fewer free variables. What we
want to show is that every number is favorable. Suppose that k
is favorable, and consider any conditional r~ ) 1/;' which has just
k + 1 free variables and is such further that

J- r cP ) 1/;', (1)
J- ~. (2)

Where a is alphabetically the first of those free variables, the
closure of rcP ) 1/;' IS also the closure of r(OI.)(~ ) 1/1)' (cf. § 14);
hence, by (1),

J- r(a)(~ ) 1/1)'. (3)

Since the conditional r(OI.)(~) 1/;) ). (OI.)~) (01.)1/1' has just k free
variables, and k is favorable, we see from *101 and (3) that

(4)

Now if a is free in ~, it is alphabetically the first free variable of ~;
and in this case the closure of ~ is also the closure of r(a)~', so that

f- r(OI.)~' (5)

by (2). If on the other hand a is not free in ~, the conditional
r~) (a)~' has at most k free variables; and in this case, since k is
favorable, (5) is forthcoming in view of *102 and (2). In either
case, thus, (5) holds. But the conditional r(a)~ ) (a)1/;' has just
k free variables; by (4) and (5), then, since k is favorable,

1 The numeration of metatheorems will not be altogether consecutive. Com
monly, as in the present case, the numeral of the first metatheorem of a section
will open a fresh decade. Numerals having '0' in the decade position are reserved
to the initial metatheorems *100-*104 of Quantification and the initial meta
theorems *200-*202 of membership (§ 29).
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If- r(a)l/I'. (6)

Moreover, by *110, f- r(a)t/I ) l/I'. (7)

Now if a is free in l/I, it is alphabetically the first free variable of 1f;
and in this case the closure of l/I is also the closure of r(a)t/I', so that

rt/I (8)

by (6) alone. If on the other hand a is not free in l/I, r(a)l/I) t/I,
has at most k free variables; and in this case, since k is favorable,
(8) is forthcoming in view of (7) and (6). We thus conclude that
k + 1 is a favorable number - having assumed that k was. But 0
is favorable, by *104; hence, taking k as 0 in the foregoing argu
ment, we conclude that 1 is favorable; hence, taking k as 1, we
conclude that 2 is favorable; and so on. *111 thus holds regardless
of the number of free variables.

In future proofs, *111 will be made the basis of a condensed no
tation which may be illustrated thus:

*101

~ r «(3) (1/1 ) cP) 1.

~r[1 ).] «(3)1/1 ) «(3)cJ>1.
(1)

(2)

Suppose line (1) given or previously justified. Now the numeral' 1'
in line (2) stands as an abbreviation for the whole expression' «(3)
(1/1 )cJ»' which appears within corners in (1). Thus, if for the mo
ment we ignore the pair of square brackets, line (2) amounts to:

l-r«(3)(1/I) cP) ). ({3)1/1 ) (13)cP1;

and it is this line that *101 is cited to justify. Now from this line
and (1) we can conclude by *111 that

~r«(3)l/I ) «(3)cP";
and it is this step that the square brackets express. Any subsequent
citation of (2) refers to line (2) minus its bracketed part.

The conventions involved may be summed up as follows.
Square brackets indicate deletion, on the basis of *111, of an ante
cedent whose closure has been shown to be a theorem. A reference
at the left of a line justifies the line inclusive of any bracketed
matter. A parenthesized numeral at the right of a line L labels
L exclusive of any bracketed matter. Divorced of its parentheses,
this numeral serves in the sequel as an abbreviation of the whole
expression (exclusive of any bracketed matter) which appeared
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within corners in L.

Sometimes, as in the line:

~ r[1 ): 2 ).] cPl ) cPa'

which appears in the proof of the next metatheorem, square
brackets indicate repeated use of *111. This line is merely a con
densation of two lines:

J- r[l ):] 2 ). cPl ) c/>3" (2')
(2') J- r[2 ).] cPl ) cPa'.

:*112. If t- r cPl ) <P2~, J- r <P2 ) c/>3', ••• , and r r<Pn-l) <Pn' then ~ r <PI) <Pn'.
Proof· hp 1 ~ r cP1 ) cI>2'. (1)

hp 2 J- rc1>2 ) cPs'. (2)

*100 l- r[l ): 2 ).] <PI ) <P3'. (3)
hp 3 f- r cPa ) cP4'. (4)
*100 t- r[3 ): 4 ).] cPl ) <P4'; and so on.

The notation 'hp l' refers to the first of the hypotheses in the
metatheorem which is being proved; 'hp 2' refers to the second
hypothesis, and so on.

The citation of *100 calls upon the reader to observe that the
formula depicted is tautologous, and hence that its closure is a
theorem. The reader can always verify the claim of tautology, by
truth table if not by inspection. In order that brief inspection
may ordinarily suffice, the use of *100 will be limited to fairly
simple forms of tautology: forms which, like (1)-(48) of § 11, are
capable of depiction by means of not more than three distinct
Greek letters and not more than seven Greek-letter occurrences.

Use of *112 will ordinarily be tacit, through the medium of a
notation of stacked conditionals. If metatheorems *mh *m2' ... ,
*mn-l show respectively that t- r <PI ) </>2', f- r cI>2 ) cPa', .•• , and
f- r cPn-l ) cPn', and we want then to draw the conclusion (k) that
t- r cPl ) cPn', we depict the whole argument as follows:

*ml t- r cPl ) cI>2'

*m2 ) cPa'
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In the fourth line of the proof of *117 below, thus, the entry' (2) , at
the left is intended to show that f- r(an)</> ) (an)1/I'; whereas what
is labelled by the '(3)' at the right of that line is rather' I- r</> )
(an) 1/1". Similarly, in the third line of the proof of "116 below, the
entry '*101' is intended to show that

f- r(a)(</> ) 1/1) ). (a)</> )(a)1/I';

whereas what is labelled by the' (2)' at the right of that line is
rather:

f- r(a)(</> == 1/1) ). (a)</> )(a)1/I'

(bracketed matter being excluded as usual).
A similar procedure of stacking biconditionals is justified by the

following metatheorem.

*113. If I- r</>1 == <f>2" I- r<f>2 == <Ps" ••• , and t- r</>n-l == cPn' then t- rcPl == cPn'.

Proof similar to that of *112.

*114. f- r(al) (a2) . .. (an)</> ) </>'.

Proof. Case 1: n = o. *100.

Case 2: n > o. *110 r real) ... (an)</> ) (a2). • .(an)c/>'
*110 ) (aa). · .(an)c/>'

*110

(1)l- r ({31)</> I.

l-r[l )J</>I I
.*103

*115. If f- cP then f- r(a)cP'.
Proof. Case 1: a is not free in cPo By *102, hypothesis, and

*111, f- r(a)</>'.
Case 2: a is free in cPo I~et {3t, ... , {3m, a, i'h ••• , i'n be the free

variables of </> in alphabetic order, and let ot, ... ,Om be a segm·ent
of the alphabet beyond all variables of </>. For each i from 1 to m let
us form </>i from cP by changing {3h ..• , {3i to Oh .•. ,Oi. Now the
closure of </>, by hypothesis a theorem, is simultaneously the clo
sure of r ({31)</> .,; so
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But the closure of eJ>1 is simultaneously that of r (132)eJ>1'; so

*103

~ r (/32)eJ>1'.
~ r[2 )]eJ>2'.

(2)

(3)

(4)*103

*103

Continuing thus, we conclude that ~ cPm. But the closure of cPm is
r(<>m) •• .(<>l)('Yn) . . ·('Yl) (a)cPm '; so

~ r(<>m) •• •(<>l)('Yn) . .. ('Yl) (a)cPm '.
~ r[3 )J (~m-]).•. (~l)('Yn)•• •('Yl)(a)cPm-I'.

~ r[4 )J (<>m-2) • . .(~l)('Yn) • •• ('Yl)(a)eJ>m-2'.

Continuing thus, we conclude that

(5)~ r('Yn) •• •('Yl)(a)eJ>'.

*114 ~ r[5 )] (a) eJ> '.

*116. t- r(a)(cP == 1/1) ). (a)cP == (a)y/\

Proof·
*100 t- r cP == t/; .). cP ) 1/1'. (1)
*101 t- r[(a) 1 ).] (a) (cP == 1/1) ) (a) (cP ) 1/1)'
*101 ). (a)c/> ) (a)t/;'. (2)
Similarly t- r(a)(c/> ==Y;) ). (a)1/;) (a)c/>'. (3)
*100 t- r[2 ):. 3 ):] (a) (c/> == 1/;) ). (a)c/> ) (a)1/;. (a)1/I) (a)eJ>',

q.e.d. (cf. D5).

Attachment of a quantifier to a numeral within square brackets
indicates that the application of *111 connoted by the brackets is
to be preceded by use of *115. Thus the second line of the above
proof embodies the following steps:

(1), *115
*101

f- r(a)l'.
f- r[ l' ).] (a) (c/> == 1/;) ) (a) (c/> ) 1/;)'.

(1')

An expression following a citation of *100 may exhibit Greek
letters in excess of the prescribed limit of three distinct letters and
seven occurrences, so long as the whole exemplifies some general
tautologous form which falls within the limit. At the end of the
above proof, *100 is cited to introduce an expression which (when
the abbreviations '2' and '3' are supplanted) contains fourteen
occurrences of Greek letters; the whole is an instanc.e, however, of
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and so on.thence to:

the simple tautologous form

r Xl ) X2 .):. XI) X3 .): Xl). X2· X3'

(a variant of (42), § 11).

*117. If't- r cP ) 1/1', and none of ah .•. , a" is free in cP, then
f- rcP ) (al) .. .(a,,)1/I'.

Proof. hp 1 f- r cP ) 1/1'.
*101 't- r[(a,,) 1 ).] (a,,)cP) (a,,)1/I'.
*102 (& hp 2) f- rcP ) (a,,)cP'
(2) ) (a,,)1/I'.

The argument leading from (1) to (3) leads in turn from

't- r cP ) (an-I) (a,,)1/I',

I- r cP ) (a"-2) (an-I) (a,,)1/1',

(1)
(2)

(3)

(3) to:

Just as '1', '2', etc. are used as abbreviations of the expressions
appearing within corners in the lines (1), (2), etc. of a given proof,
so '102', '110', etc. will be used as abbreviations of the expressions
appearing within corners in the metatheorems *102;, *110, etc.1

Thus '102', '110'. and '118', used in the next proof, are short for
'cP) (a)cP', '(a)cP)</>', and 'cP == (a)cP'.

*118. If a is not free in </>, f- r cP == (a)cP'.
Proof. *100 f- r[102 ). 110 )J 118'.

*119. 't- r(a) (l9)cP == (19)(a)cP'.
Proof· *114 I- r(a)({3)cP )</> 1. (1)

(1), *11 7 I- r (a) ((3) cP ) ((3) (a) cP 1. ( 2)
Similarly I- r ({3) (a)cP ) (a) ({3)</> 1. (3)

*100 J- r[2 ). 3 ) ] 1191 .

1 This convention was suggested' by my student Miss Leigh D. Steinhardt.
It would not work if the numeration of metatheorems had begun with' *1' rather
than' *100', since *1, *2, etc. would cease to be distinguished from (1), (2), etc.
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§18. Substitutivity of the Biconditional

§ 18

IN § 13 a restriction was imposed according to which one formula
can occur in another only in a context of quantification or truth
functional composition. This restriction gives rise, it will be
found, to the following convenient substitutivity principle: if ¢

and ¢' are statements agreeing in truth value, then ¢' can be sub
stituted for any occurrences of ¢ in any statement 1/; without
affecting the truth value of f. In other words, if the statements
1/1 and f' are alike except that 1/1' contains the statement ¢' in
places where 1/; contains the statement ¢, then if; and f' are alike
in truth value if ¢ and ¢' are. In other words, (I) any statement
of the form r¢ == ¢'. ) . if; == 1/;'1 is true, where if;' is like if; except
for containing ¢' in places where if; contains ¢. E.g., the conditional:

(1) Smith met Jones. ==. Jones was in Omaha :).
(x)(Smith met Jones.v rv (Smith sold x to Jones)) ==
(x) (Jones was in Omaha .v rv (Smith sold x to Jones))

is true.

Moreover, any such conditional is true independently of the
particular names which happen to occur jn it; replacement of
names by free variables leaves a matrix which is (roughly speaking)
true for all values of the variables - a matrix whose closure is
true. E.g., the matrix:

(2) y met z .=. z was in w :).
(x)(y met z.v rv (y sold x to z)) ==

(x)(z was in w.v rv (y sold x to z)
has a true closure:

(3) (z)(y)(w)(y met z .==. z was in w :)~

(x)(y met z.v rv (y sold x to z)) -
(x)(z was in w.v rv (y sold x to z))).

T~is does not, however, entitle us to generalize (I) in the follo",..ing
fashion: (II) the closure of r¢ == ¢' . ) . 1/1 == 1/1'1 is true where
1/1' is like 1/1 except for containing ¢' in places where V; contains ¢.
For, many conditional matrices of the kind described in (II) do
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not correspond in the intended fashion to the conditional state
ments described in (I). One is this:

(4) x = x •==. x < y :). (x) (x = x) == (x) (x < y).

When names are put for the free variables of (2), we have a con
ditional statement - e.g. (1) - of the kind described in (I); but
when names are put for the free variables of (4), we get conditional
statements such as the following, altogether alien to (I):

(5) 0 = 0.==.0 < 1 :). (x)(x = x) == (x) (x < 1).

Far from being a conditional of the kind described in (I), (5)
is not even true - as is readily seen by observing the truth of
'0 = 0.==.0 < l' and '(x)(x = x)' and the falsehood of
'(x) (x < 1)' and then calculating the truth value of the whole
by truth-tables. (II) is too strong; the matrix (4) is not true
for all values of its variables, i.e. does not have a true closure, as
the counter-instance (5) demonstrates.

The essential difference between (2) and (4) is apparent.
Roughly speaking, the trouble with (4) is that when the 'x = x'
and' x < y' of the antecedent recur in the consequent they fall
under new quantifiers which capture free variables of the ante
cedent and divert them to their own purposes. The occurrences
of 'x = x' and 'x < y' in the consequent of (4) resemble those
in the antecedent by virtue only of an alphabetic accident; for
the occurrences of ' x' in '(x) (x = x)' and ' (x) (x < y)' are
governed by the adjacent occurrences of the quantifier' (x)', and
have nothing but an alphabetic coincidence in common with the
occurrences of 'x' in 'x = x . ==. x< y'. (4) could be rendered
equivalently as:

(6) x = x .=. x < y :). (z)(z = z) '== (w)(w < y), to which

(II) is obviously irrelevant.
The corrected form of (II), which avoids such unintended cases

as (4), is this: (III) the closure of r 4> == 4>' .). if; == if;" is true where
1/;' is like if; except for containt"ng free occurrences of 4>' at some places
where if; contains free occurrences of 4>. (I) is that special case of
(III) which arises when r 4> == 4>' .). if; == vI'I is its own closure, i.e.,
a statement.
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Nothing has been said thus far by way of establishing even (I),
much less (III); all that has been shown is that (II) fails. But in
the metatheore'm *122 below it will be shown that the broad sub
stitutivity principle (III) holds, and more: the closures of the
conditionals described in (III) are not merely true, but theorems.

It turns out, moreover, that even such recalcitrant forms as (4)
will hold if we modify them to the extent of attaching one or more
appropriate quantifiers to the antecedent. In particular, whereas
the closure of (4) as it stands is false, the closure of:

(x)(x = x .=. x < y) ). (x)(x = x) == (x)(x < y)

is true. A generalization of (III) or *122 which covers such cases
appears below as *121. This is proved ahead of *122, which then
follows as a special case.

Preparatory to proving *121 as a whole, it is convenient to prove
the case where vI' differs from 1/; in point of just one occurrence of cP'.
This case takes the form of the following metatheorem.
*120. If vI' is like 1/; except for containing cP' at a place where ,y
contains cP, and ah .•. , an (n ~ 0) exhaust the variables with respect
to which these occurrences of cP and cP' are bound in 1/; and 1/;', then

J- real). · .(an)(cP == cP') ).1/; == 1/;'''.

Proof. Let cPo, cPh ... , cPk (k ~ 0) be, in order of increasing
length, all the formul~which occur in y; and contain the occurrence
of cP in question; and let cP' 0, cP\, ... , c/>'k be the corresponding
parts of 1/;'. From the general method of constructing formulte
(§ 13) it is then apparent, for each i from 1 to k, that cPi and cP'i are
either r cPi-l 1 X., and r q/ i-I 1 X., for some formula X (Case I) or else
r x 1 c/>i-l" and r x 1 </>'i-l'" (Case 2) or else r({3) </>i-l'" and r({3) </>'i-l'" for
some variable {3 (Case 3). Now if it happens that

J- real) .. .(an )(</> == </>') ). </>i-l == c/>'i-l" (1)

it will follow that

t- real) .. .(an )(</> == c/>') J. </>i == </>'i",

as will now be shown in each of the three cases.

(2)

Cases I tj 2: (1)
*100

t- real) .. .(an )(</> == </>') ). </>i-l == </>'i-l'"
).c/>i ==°cP'i".
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Case 3. Any occurrence of (3, within the given occurrence of ep in
1/1, will be bound to the occurrence of r({3)' which begins r({3) epi-l' if
not to a later occurrence of r({3)'. Thus any occurrence of fJ
which is free in ep will be bound to the occurrence of r ((3)' which
begins r({3) epi-l' or to some later occurrence of r({3)' which is like
wise outside ep. Hence if fJ is free in ep then the occurrence of ep is
bound in 1/1 with respect to fJ. Then, by hp 2, {3 is among at, ••• ,

an. By similar reasoning, if {3 is free in ep' then fJ is among at, ••• ,

an. Thus, regardless of whether {3 is free in rep == ep", (3 will not be
free in real) .. .(an)(ep == ep')'. Hence

(1), *117 t- real) .. .(an)(ep == ep') ) ({3)(epi-l == ep'i-l)'
*116 ). epi == ep'i'.

In Cases I-3 alike, therefore, and hence for each i from 1 to k, (2)
holds if (1) does. But, since epo is ep and ep'0is ep',

*114 I- real). · ·(an) (ep == ep') ). epo == ep'0'.
Hence, taking i as 1, it follows that

I- r (al)... (an) (ep == ep') ). epl == ep't'.

Hence, taking i as 2, it follows that

I- r (al)... (an) (ep == ep') ). <1>2 == ep'2'.
By k such steps we conclude that

I- r(al). · ·(an) (ep == ep') ). epk == ep'k'.

But epk is 1/; and ep'k is 1/;'.
The more general metatheorem *121 is now easily established.

*121. If 1/1' is like 1/1 except for containing ep' at some places where 1/;
contains ep, and at, ••• , an (n ~ 0) exhaust the variables with respect
to which these occurrences of ep and ep' are bound in 1/1 and 1/1', then

t- r(al). · .(an ) (ep == ep') ).1/1 == .y".
Proof. Let those places be k in number; and, for each i from 0

to k, let 1/Ii be like 1/1 except for containing ep' instead of ep at the first
i of the k places. Then, for each i from 1 to k, 1/Ii is like 1/Ii-l except
for containing an occurrence of ep' where 1/Ii-l contains an occurrence
of ep; wherefore, in view of hp 2,

*120 I- real) .. .(an)(ep == ep') ).1/Ii-l == 1/Ii'. (1)
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*100 f- r[l ):](al) .. .(an)(c/> == c/>'). 1/;i-l.==. (al).. .(an)(c/> == c/>') •1/;i'.
Thus f- real) .. .(an)(c/> == c/>') • 1/;0 .==. (al). • .(an)(c/> ==c/>') • 1/;1'

==. (al) .. .(an)(c/> == c/>') • 1/;2'

==. (al) .. .(an)(c/> == c/>') • Y;k'. (2)
*100 t- r[2 ):] (al) .. .(an)(c/> =c/>') ). if;o == if;k'.

But 1/;0 is if; and if;k is 1/;'.
*120 differs from *121 in requiring that just one occurrence of c/>

in 1/; give way to c/>' in 1/;'. This means, of course, just one occur
rence from the point of view of unabbreviated notation. Even
where only a single occurrence of c/> appears in our definitionally
abbreviated notations, expansion according to the definitions will
invariably show that many occurrences are really present. In
practice, therefore, *120 is not useful; the more general principle
*121 is needed.

The princi pIe *122 discussed earlier follows from *121 as a
special case.

*122. If if;' is like if; except for containing free occurrences of c/>' at
some places where if; contains free occurrences of C/>, then

t- r c/> == c/>' .). " = 1/;".

Proof: *121 (taking n as 0).

*121 also has the following much used corollary, in which mention
of freedom or bondage ceases to be needed: If f- r c/> == c/>" then c/>
and c/>' are interchangeable anywhere. This takes the form of the
following metatheorem. l

*123. If f- rc/> = c/>", and if;' is formed from 1/1 by putting c/>' for some
occurrences of C/>, then t- r 1/; = if;".

Proof. Let ah ••. , an be all the variables of c/> and c/>'.
hp 1 f- r c/> = c/>". (1 )
*121(& hp 2) f- r[(al) .. .(an ) 1 ).] 1/1= 1/;".

The following is a corollary in turn of *123.

1 A proof covering this nletatheorenl is given by Hilbert and Ackermann (Ch. 3, §7);
but they do not nlention the stronger principles *121-*122.
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*124. If t- cP and t- x, and x' is formed from X by putting 1/; for some
occurrences of r¢) 1/;1 or r¢ == 1/;1 or rf == cP1 or rcP • ..pl or

r 1/; • ¢', then t- x'.
Proof of the case of r¢) 1/;1:

hp 1 t- ¢. (1)
hp 2 t- x. (2)
*100 t- r[1 ):] cP) ..p •== ..p'. (3)
(3), *123 t- r X == x". (4)
*100 t- r[4 ). 2 )J x".

The other cases are proved sinlilarly.
*124 is made the basis of a powerful extension of the device of

sq uare brackets. Where t- cP, *124 provides for the imnlediate
deletion of r cP)1 or r ¢ =' or r= cP' or r </> •., or r. </>71 from
any position within any theorem. Square brackets, hitherto used
only in the limited fashion justified by *111, can now be used to
indicate deletions of all these kinds.!

§ 19. Existential ~uantification

TO SAY that nothing fulfills a given condition is to say that every
thing fulfills the denial of that condition. To affirm e.g. that
there are no objects x such that x is distinct from itself, we may
write:

(x) rov (x is. distinct from x);

i.e., 'No matter what x may be, rov (x is distinct from x).' To
affirm that there are no black swans, we may write:

(1) (x) rov (x is black. x is a swan).

In effect, thus, the composite prefix' (x) rov' amounts to the words
'there are no objects x such that'.

To say that there are objects satisfying a given condition, we
have only to deny that there are none. To say that there are black
swans we have only to apply a denial sign to (1), obtaining:

1 See the remarks on the proof of *136, § 19.
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(2)

QUANTIFICATION

~ (X) ~ (X is black. x is a swan).

§ 19

] ust as '(x) ~' amounts to 'there are no objects x such that', so
'~ (x) ~' amounts to 'there is at least one object x such that',
'there is something x such that'. The parts of'~ (x) ~' do not,
of course, hang together as a unit; in (2) the second '~' applies
to:

(x is black. x is a swan),

the quantifier' (x)' applies to:

~ (x is black. x is a swan),

and the first '~' applies to the whole quantification (1). But the
configuration of prefixes '~ (x) ~' figures so prominently in sub
sequent developments that it is convenient to adopt a condensed
notation for it; the customary one is '(3x)', which we may read
'there is something x such that'. Hence the following abbreviative
convention:

D8. r(3a)! for r~ (a) ~!.

Prefixes of the form r(3a)! are known as existential (or particular)
quantifiers; and, where distinction is necessary, the basic quanti
fiers r(a)! are referred to as universal quantifiers. l

The first four of the ensuing metatheorems relate existential
quantification with universal quantification in obvious fashion.

*130. t-r~(a)cP == (3a)~cP!.

Proof. *100 t- r cP == ~~cP!. (1)
(1), *123 t- r ~(a)cP == ~(a)~~cP!, q.e.d. (cf. D8).

Arguments of the above sort, wherein a tautology is adduced by
*100 and then *123 is applied to it, will hereafter be rendered in a
single line with the composite justification' *100, *123'; thus the
above proof becomes:

*100, *123 ~ r ~ (a)cP == ~ (a)~ ~ cPl.

Fronl such a condensed formulation we can always discern the two
components of the relevant tautologous biconditional (in this case

1 The version r~(a)~ -, of r(3a) -, goes back to Frege. The notation r(3a) 1

was adapted from Peano by Whitehead and Russell.
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c/> and r t'.I r-o..J c/>'), simply by comparing the two sides of the ex
hibited biconditional (in this case r r-o..J (a)c/>' and r r-o..J (a) r-o..J r-o..J c/>')
and picking out their dissimilar ingredients.

The formul~ described in metatheorems and proofs are always
to be thought of, theoretically, as written out in full without
definitional abbreviations (cf. § 13). In practice, for the most
part, we do not need to reflect on the details of the expanded form;
but occasionally we do need to lift one or another abbreviation in
order to recognize a particular step of proof. On such occasions
the relevant definition is mentioned parenthetically, as in the
above proof and the following one. Expansion of the abbreviation
r(3a)1 into r r-o..J (a)r-o..J" e.g., immediately reveals that the following
metatheorem is covered by *100.

*131. l- r~ (3a)c/> == (a)r-o..J c/>'. Proof: *100 (& DB).

*132. ~ r r-o..J(al) ••• (an)c/> == (3 a l) ... (3an)r-o..J c/>'.

Proof. *130 r- r r-o..J (al) .. .(an)¢ == (3al)r-o..J (a2) • • •(an)c/>'
*130, *123 == (3al) (3 a2)r-o..J(aa) • • •(an)c/>'

*130, *123 == (3al)... (3 an) t'.I c/>'.

*133. ~ r t'.I (3 al) ... (3 an)c/> == (al)... (an) r-o..J ¢'.

Proof similar, using *131.

The next two metatheorems are the analogues, for existential
quantification, of *103 and *110.

*134. If c/>' is like ¢ except for containing free occurrences of a'
wherever c/> contains free occurrences of a, then r- r¢' ) (3a)c/>'.

Proof. *103 (& hp) ~ r(a)r-o..Jc/> ) r-o..J¢". (1)
*100 (& D8) r r[1 )J 134'.

*135. l- rc/> ) (3a)c/>'. Proof: *134 (taking a' as a).

A corollary follows.

*136. l-r(a)c/»(3a)c/>'.

Proof. *100 ~ r[110. 135 .)J 136'.

The bracketing involved in the above proof, which gets rid of two
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numerals' 110' and' 135' at once, merely indicates repeated use of
the simple bracketing device. It can be broken down thus:

r- rll0 • 135 .) 136', r- r[110.J 135.) 136',
r- r135 ) 136', r- r[135 )J 136',

or alternatively thus:

r- rll0 • 135 .) 136', r rll0 [. 135J .) 136',
r- rll0 ) 136', r- r[110 ) ] 136'.

*124 is the justification of this bracketing out of' 110.' or '. 135';
and it justifies similar bracketing when '==' occurs in place of the
, .' of these examples. The bracketing of '135 )' and (110)',
above, is justified by *124 and *111 indifferently. Even in cases
of this sort 'en )J', however, *124 allows more freedom than *111
allowed; matter bracketed out according to *124 may stand in
the interior of a line of proof, whereas *111 served only for bracket
ing out the main antecedent of the whole line.

The following metatheorem explains vacuous existential quanti
fication. It is the analogue of *118.

*137. If a is not free in </>, r r</> == (3a)</>'.

Proof. *118 (& hp) r- r~ </> == (a)'" </>'. (1)
*100 (& D8) r r[l )J 137'.

The next shows that consecutive existential quantifiers, like
consecutive universal ones, are permutable. It is the analogue of
*119.

*138. r- r(3a) (3~)</> == (313) (3a)</>'.
Proof. *100, *123 (& D8) r- r(3a) (313)</> == ~ (a)(I3)~ </>'

*119, *123 == ~ (13)(a)~ </>'
*100, *123 (& D8) == (3~)(3a)</>'.

The order in which consecutive quantifiers are written can make
a difference, on the other hand, when one quantifier is existential
and the other universal. ' (3x) (y) (x = y)' is false, e.g., whereas
'(y)(3x)(x = y)' is true. It does turn out that r(3a)(~)</>' im
plies r (~) (3 a)</>', but the converse fails.

*139. r- r(3a)(~)</> ) (~)(3a)</>'.

Proof· *101 r- r[(~)135 ).J(~)</> ) (13) (3 ()')</>'. (1)
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*100 r- r[1 ).] ~ (~) (3a)4> ) ~ (~)4>'. (2)
(2), *117 r- r~ (~) (3a)4> ) (a)~ (~)4>'. (3)
*100 (& D8) r- r[3 )] 139'.

Now that the metatheorems have come to be scattered through a
considerable number of pages, and an ever increasing number, the
reader is advised to use the list at the end of the book in order to
identify metatheorems cited in proofs. If a metatheorem is used
only within the section in which it appears, it is not entered in the
list; but in this case the reader needs only to glance back a page or
two. The definitions are likewise assembled at the end of the book.

§ 20. Distribution of ~uantifiers

WE TURN now to some principles dealing with the distribution of
a quantifier through a binary compound.

*140. r- rea) (4) • y;) ==. (a)4> • (a)Y;'.

Proof. *100 r- r4> • 1/; .) 4>'. (1)
*101 r- r[ (a) 1 ).](a) (4) • y;) ) (a) 4>'. (2)
Similarly r- r(a) (4) • t/;) ) (a)t/;'. (3)
*100 r- r (a)4> • (a)t/;.J (a)4>'
*110 J cj>l. (4)
Similarly l- r(a)4> • (a)y; .J t/;l. (5)
*100, r- r[2 • 3 •J :] (a) (cj> • y;) J. (a) c/> • (a) t/;'. (6)
*100 r- r[4 • 5 .J :J(a)c/> • (a)t/; .). c/> • y;1. (7)
(7), *117 l- r(a)c/>. (a)t/;.J (a)(c/>. y;)'. (8)
*100 r- r[6 • 8 .J J140'.

*141. l- r(3a)(c/> V y;) =. (3a)c/> V (3a)y;'.

Proof. *100, *123 r- r(a)~ (c/> v 1/;) == (a)(~ c/>. ~ 1/;)'
*140 =. (a)~ 4>. (a)~ 1/;'. (1)
*100 (& D8) l- r[1 )J141'.

*140 shows that a universal quantifier can be distributed through
a conjunction, and *141 shows that an existential quantifier can be
distributed through an alternation. But distribution of a universal
quantifier through an alternation is not in general valid, nor is
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distribution of an existential quantifier through a conjunction. The
biconditionals:

(x) (x is red. v 1"../ (x is red)) ==. (x) (x is red) v (x) 1"../ (x is red),
(3x) (x is red. 1"../ (x is red)) =. (3x) (x is red) • (3x) 1"../ (x is red),

e.g., are false, as can be seen by observing the truth of:

(x)(x is red .v 1"../ (x is red)), (3x)(x is red), (3x)1"../ (x is red)

and the falsehood of:

(3x)(x is red. 1"../ (x is red)), (x)(x is red), (x) 1"../ (x is red)

and then applying truth tables.

*141 has the following corollary.l

*142. J- r(3a)(<jJ ) 1/1) =. (a)<jJ ) (3a)1/1'.
Proof. *141 (& D4, 8) ~ r(3a)(<jJ) "') ==. (a)1"../1"../ <jJ) (3a)""

*100, *123 =. (a)<jJ ) (3a)1/1'.

The citation of D4 and D8 in this proof calls attention to the
fact that

and
r(3a) (1"../ eJ> v"') =. (3a)"-' eJ> v (3a)~'

r(3a)(eJ> ) "') =. (a)1"../1"../ ep ) (3a)""

are the same formula under different abbreviations.
*140 equates a quantified conjunction with a conjunction of

quantifications; *141 does likewise with respect to alternation;
and *142 does likewise with respect to the conditional. Various
further principles of this kind also hold, but only when the bi
conditional is weakened to a .conditional in one direction or the
other. *101 is one such principle, and we now proceed to fourteen
more.

*143. J- r(a)ep v (a)1/I.) (a)(ep v 1/1)'.
Proof. ?iCI00 J- rq, ). ep v 1/1'.

*101 J- r[(a) 1 ).] (a) <jJ ) (a) (<jJ v",)'.
Similarly J- r(a)'" ) (a)(ep v",)'.
*100 J- r[2 • 3.)J143 l

.

(1)
(2)
(3)

1 This principle, though not so well known as others in this section, goes back to
Schroder (vol. 3, p. 30). But its analogue r(a) (4) ) 1/1) =. (3a)4» (a)1/1', also
given by Schroder (loc. cit.), is invalid. Half of it does hold; cf. ·148.
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*144. r r(a)(c/> V If) ). (3a)cP v (a)t/I'.

Proof. *101 (& D4, 8) I- r(a)("-' <t> ) If) ). (3a)<t> V (a)1/I'. (1)
*100, *123 I- r[1 == J144'.

*146. r r(a)(c/> v If) ). (a)cP v (3a)1/I'.

Proof. *144 l- rea) (If V cP) ). (3a)t/I V (a)<t>'
*100 ). (a)cP V (3a)t/I'. (1)
*100, *123 I- r[1 == J145'.

*146. ~ r(a)cP V (3a)1/I.) (3a)(cP V If)'.
Proof. *100 I- r[136 ) :](a)cP V (3a),p .). (3a)cP V (3a)lf'. (1)

*141, *123 I- r146 [== 1J'.

*147. l- r(3a)cP V (a)1/I.) (3a)(q, V t/I)'. Proof similar.

*148. I- r(3a)cP) (a)lf.) (a)(cP ) If)'.
Proof. *100 (& D8) I- r(3a)q, ) (a)1/I.). (a)"-' q, V (a)lf'

*143 (& D4) ) (a)(cP ) 1/1)'.

*149. ~ r(a)(q, ) If) ). (3a)<t> ) (3a)1/I'.

Proof. *145 (& D4) I- r(a)(q, ) If) ). (a)"-' cP V (3a)1/I'
*100 (& D8) ). (3a)<p ) (3a)lf'.

*150. r r(3a)q,) (3a)t/I.) (3a)(q,) 1/1)'.
Proof. *100 (& D8) ~ r(3a)q, ) (3a)1/I.). (a)rv <p V (3a) t/I'

*146 (& D4) ) (3a)(¢ ) 1/1)'.

*151. ~ r(a)¢ ) (a)t/I.) (3a)(¢ ) 1/1)'.
Proof. *147 (& D4) I- r(3a)"-' <t> V (a)1/I.) (3a)(¢ ) t/I)'. (1)

*130, *123 (& D4) I- r151 [== 1J'.

*152. ~ r(a)(cP .If) ). (3a)¢. (a)lf'.
Proof. *100 I- r[136 ):] (a)cP • (a)lf .). (3a)cP .(a)t/I'. (1)

*140, *123 I- r152 [== 1J'.

*153. ~ r(a)(c/> .1/1) ). (a)c/>. (3a)1/I'. Proof similar.

*154. ~ r(a)¢ • (3a)t/I.) (3a)(¢ .t/I)'.

Proof. *101 I- r(a)(c/> ) "-' If) ). (a)<t> ) (a)rv t/I'. (1)
*100, *123 I- r[1 ==:J (a)"-I (<t> • t/I) ). (a) cP ) (a) rv 1/1'. (2)
*100 (& D8) I- r[2 )J154'.
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*155. ~ r(3a)</>. (a)1/I.) (3a)(</> .1/1)'.
Proof. *100 ~ r(3a)</>. (a)1/I.). (a)1/I. (3a)</>'

*154 ) (3a)(1/I. </»'. (1)
*100, *123 ~ r[1 == J155'.

*156. I- r (3a) (</> • ,y) ). (3a) </> • (3a),y'.

Proof. *100 ~r</>.,y.)</>'. (1)
*149 ~ r[ (a) 1 ).J (3a) (</> • 1/1) ) (3 a) et>'. (2)
Similarly ~ r(3a)(¢. 1/;) ) (3a)1/1'. (3)
*100 J- r[2 • 3.)J156'.

*143, *145, and *146 reveal a chain of four successively weaker
formul~, each of which implies its successor:

rea)</> v (a)1/;', r(a)(¢ v,y)', rea)</> v (3a)1/I', r(3a)(q, v y;)'.
*143-*156 and *101 reveal also five other such chains, thus:

*143, *144, *147:
r(a)¢ V (a)1/;', r(a)(¢ v,y)', r(3a)</> v (a)1/;', r(3a)(q, v 1/1)';
*148, *101, *151:
r(3a)</> ) (a)y,", r(a)(</> ) 1/;)', rea)</> ) (a)1/;', r(3a)(q, ) 1/;)';

*148, *149, *150:
r(3a)¢ ) (a)1/;', r(a)(</» 1/;)', r(3a)</» (3a)1/;', r(3a)(</» 1/;)';

*153, *154, *156:
r(a)(q,.1/;)', r(a)q,. (3a)1/;', r(3a)(¢. 1/;)', r(3a)</>. (3a)1/;';

*152, *155, *156:
r(a)(q, .1/;)', r(3a)¢. (a)1/;', r(3a)(q, .1/1)', r(3a)</>. (3a) 1/1' .

The next four metatheorems show that a quantifier covering a
conjunction or alternation may equivalently be restricted to a
single component in case the variable of quantification is not free
in the other component.

*157. If a is not free in q" I- r(a)(q,. 1/;) =. </>. (a)1/;'.

Proof. *118 (& hp), *123 ~ r157 [= 140]'.

*158. If a is not free in </>, J- r(3a)(¢ .1/1) =. </>. (3a )1/;'.

Proof·
*137 (& hp), *123 I- r (3a) (</> • 1P) ). </> • (3a)1/;[:= 156Jl. (1)
*118 (& hp), *123 J- r</>. (3a)Y;.) (3a)(</>. 1/;)[:= 154J'. (2)
*100 I- r[1 • 2.)J158' .
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Proof. hp 1
*161 (& hp 2)
*161 (& hp 2)

and so on.

*159. If a is not free in ¢, J-- r(a)(¢ V if;) =. ¢ V (a)1/;l.

Proof·
*137 (& hp), *123 J-- rea )(¢ v1/;) ). ¢ V (a)1/;[:= 144Jl. (1)
*118 (& hp), *123 J-- r¢ V (a)1/;.) (a)(¢ V 1/;)[:= .143Jl. (2)
*100 J-- r[ 1 .' 2 .) J 159l .

*160. If a is not free in ¢, J-- r(3a)(¢ v1/;) =. ¢ V (3a)1/;l.

Proof. *137 (& hp), *123 J-- r160 [= 141Jl.

In like fashion a quantifier covering a conditional may be re
stricted to the consequent if the variable of quantification is not
free in the antecedent. 1'his is already provided by *159 and *160,
in view of 04. But a curious twist appears in the opposite case,
where the variable of quantification is not free in the consequent:
to confine the quantifier to the antecedent we must change it frool
universal to existential or vice versa.

*161. If a is not free /£n 1/;, J-- r(a)(¢ ) 1/;) =. (3a)¢ ) 1/;l.

Proof·
*137 (& hp), *123 J-- rea )(¢ ) 1/;) ). (3a)¢ ) 1/; [:= 149Jl. (1)
*118 (& hp), *123 J-- r(3a)¢) 1/;.) (a )(¢) 1/;)[:= 148J'. (2)
*100 J-- r[1 . 2 .) J161'.

*162. If a is not free in 1/;, J-- r(3a)(¢ ) 1/;) =. (a)¢ ) if;l.

Proof. *137 (& hp), *123 J-- r162 [= 142J'.

The following corollary of *161 proves useful.

*163. If J-- r¢ ) 1/;', and none of at, ... , an is free in 1/;, then
J-- r(3 a l) .. .(3an )¢ ) 1/;'.

J-- r¢) 1/;l, (1)
J-- r[(a n ) 1 =.J(3a n )¢ )1/;', (2)
J-- r[(an_l) 2 =.J(3an -l)(3an)¢ ) 1/;',

§ 21. Alphabetic J7ariance

VARIABLES, as remarked (§ 12), serve merely for cross-reference
to various positions of quantification. The particular choice of
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letters which happens to be made, in constructing a statement, is
immaterial to th~ meaning so long as the systenl of cross-references
rerr..ains the same. The statements:

(1)
(2)

(3)
(4)

(x) (y) (x < y .) (z) (z < x .). z < y)),
(x)(y)(x < y .) (w)(w < x.). UI < y)),
(x)(z)(x < z.) (w)(w < x.). u' < z)),
(y ) (z) (y < z .) (w) (w < y .). zo < z)),

e.g., are equivalent; they differ from one another only in an acci
dental detail of notation. If instead of using variables we \\t·ere to
indicate the cross-references by the method of curved lines (cf.
§ 12), differences of this sort would drop out altogether. The de
velopment of a technique for recognizing such purely alphabetic
variants as (1)-(4), and interchanging them at will, is the price
which we must pay for a system of notation which is in most re
spects more convenient than its known alternatives. The present
section will be devoted to paying this price.

Each of the statements (1)-(4) is transformed into the next by
relettering a constituent quantification r (a)if;l; i.e., by replacing
r(a)1/;' by r(a')if;'ll where if;' is like if; except for exhibiting a'

in place of a. But such relettering cannot always be depended
upon to preserve equivalence. The rewriting of 'z' in (1) as 'w)

produces (2), which is indeed equivalent; the rewriting of 'z' as
'y', however, would have produced:

(5) (x)(y)(x < y .) (y)(y < x.). y < y)),

which, far from being equivalent to the truths (1) and (2), is false.
The relettering which leads from (1) to (5) alters the pattern of
cross-references; the last occurrence of 'y' in (5) refers back to the
last quantifier occurrence in (5), whereas the correspondingly

1 Strictly speaking the conventions of quasi-quotation fall into ambiguity at this

point, because of the fact that Greek and Latin letters are both eligible to accentu
ation. Is the quantifier in r (a')~" to be understood as the result of putting the

varia ble a' (~.g. 'y ') in the blan k of ' ( ) " or is it to be understood rather as the
result of putting the variable a (e.g. 'x ') in the blank of '( ')'? The former,

obviously, is the intention. In general, let us understand accents in quasi-quota

tion as belonging thus always to the Greek letters lAther than to the contextual

framework.
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placed occurrence of 'y' in (1) refers back rather to the second
quantifier occurrence in (1).

In general, if the replacement of r(a)1/;1 by r(a/)1/;/1 is not
to affect the cross-references, the free occurrences of a/ in 1/;/
must exactly match the free occurrences of a in 1/;; for it is just
those occurrences that refer back to the initial occurrence of the
quantifier in r(O'.)1/;1 or r(a/)1/;/1 (cf. (ii), § 14). Quantifications
r(a)1/;1 and r(a/)1/;/1 which are so related will be called immedt"ate al

phabett"c variants of each other. In full: r( a)1/;1 and r(a/)1/;'1 are im
mediate alphabetic variants if 1/; and -./;' are alike except that 1/;/
contains free occurrences of a/ at all and only those places where 1/;
contains free occurrences of a. Thus the quantification:

(w)(w < x.). U' < y),

which appears in (2), is an immediate alphabetic variant of the
quantification:

(z)(z < x.).z < y)

of (1); 0 nthe 0 the r hand t his is not t rue of the q uan t ifi cation:

(y)(y < x.).y < y)

which a ppears in (5).
Now the kind of relettering which leads from (1) to (2), from

(2) to (3), and from (3) to (4) can be described as follo\vs: it con
sists in replacing a constituent quantification by an immediate
alphabetic variant thereof. Formul~which are intertransformable
by one or more such steps will be called, in general, alphabetic

z)ariants. Thus (1)-(4) are all alphabetic variants of one another;
(5), on the other hand, is an .alphabetic variant of none of them.
The rigorous formulation is this: formul~ ¢ and ¢' are alphabetic
variants if there are formul£e <Po, <Ph ... ¢n such that ¢a is ¢, ¢n is ¢',

and, for each i from 1 to n, ¢i is formed from ¢i-1 by replacing some
constituent quantification r(a 1-)1/;,.1 by an immediate alphabetic
variant rea' i) 1/;/ i ' thereof.

In the above explanation it was not required that ¢ and ¢' be
statements; the notion of alphabetic variant applies to statements
and matrices indifferently. The relettering involved in passing to
an alphabetic variant of </> is always, however, a relettering of
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occurrences which are bound in cP; we rewrite the variable within
a quantifier and at such subsequent occurrences as refer back to
that position of quantification. Thus matrices cP and ¢' are not
classed as alphabetic variants if they differ from each other in
point of free occurrences of variables. This is as it should be; the
particular choice of letters is indeed immaterial to a statement so
long as a certain general structure is maintained, but this is not
true of the free variables of a matrix. The matrices 'y = x' and
'y = z' actually differ in meaning - in this important sense: re
placement of the one by the other can turn a true context into a
falsehood. It turns the truth:

(6) (x)(y)(z)(x = y • y = z .). x = z),

e.g., into the falsehood:

(x) (y) (z) (x = y • y = x .). x = z).

A matrix ¢ (e.g. 'y = z ') is a fragment of one or another statement 1/1
(e.g. (6)), and any free variable a of ¢ is indeed a bound variable
of 1/1. But any rewriting of a which preserves the meaning of 1/1
must touch occurrences of a outside ¢; the fragment ¢ itself and
the relettered fragment ¢' (e.g. 'y = x') are not interchangeable.

Where ¢ is a statement and ¢' is an alphabetic variant thereof,
the biconditional r ¢ == ¢" will of course be trivially true. More
over, it will be a theorem. This will now be proved, and more:
where ¢ is a matrix rather than a statement, the closure of the
biconditional is still a theorem.

First we attend to the case of immediate alphabetic variants:

*170. If r(a)"" and r(a')"," are immediate alphabetic variants,
t- r(a)~ == (a')Y;'!.

Proof. By hp, 1/1 and ~' are alike except that ~' contains free
occurrences of a' at all and only those places where ~ contains free
occurrences of a. Hence, by *103 and *117,

t- r(a)y; ) (a')~", (1)
~ r(a')1/I' ) (a)~'. (2)

*100 ~ r[l . 2 .)J 170'.

The extension to the case of alphabetic variants in general is
then obvious:
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*171. If 4> and 4>' are alphabetic variants, t- r cP == cP'l.
Proof. By hp, there are formul£e cPo, cP1, ... 4>n such that 4>0

is cP, 4>n is 4>', and, for each i from 1 to n, cPi is formed from cPi-l by
replacing a quantification r(ai) 1/;i' by an immediate alphabetic
variOant r(a'i) 1/;' i' thereof. For each i, by *170,

t- r(ai) 1/;i == (a'i) 1/;' ii,

and hence, by *123, t- r 4>i-l ==·4>i' . Thus

t- r 4>0 == 4>11

== 4>2 l

== cPn l
, q. e. d.

The transformation of a formula cP into an alphabetic variant cP'
runs through a series of stages cP, cPh cP2' ... cPn- h cP'. Each com
ponent step of transformation consists in su pplanting some
quantification r(ai) 1/;i' by an immediate alphabetic variant
r(a'i) 1/;'i' thereof. The end result 4>' differs from cP with respect to
many variables, in general, and 4>1, cP2' ... cPn-1 are the interme
diate results of making the alphabetic changes one at a time.

It might be supposed, then, given cP and cP', that we can always
supply the intervening stages cPh cP2' ... , cPn -1 by the sim pIe process
of putting the new letters for the old ones one at a time in an
arbitrary order - say in the order of occurrence of the quantifiers
concerned. Actually the matter is not so simple. Let us return to
the examples (1)-(4) at the beginning of the section. (1) and (4)
are known to be alphabetic variants; and (4) differs from (1) in
exhibiting 'y', 'z', and 'w' instead respectively of 'x', 'y', and
'z'. Yet we cannot get from (1) to (4) by first putting 'y' for 'x',
then' z' for' y', and then' w' for' z'. The first of these steps leads
fronl (1) to:

(y) (y) (y < Y .) (z) (z < Y .). z < y)),

which is in fact not an alphabetic variant of (1); and if we put' z'
for 'y' in this result and 'w' for 'z' in the new result we end up not
with (4) but with the monotonous truism:

(w)(w)(w < w.) (w)(w < w .J. w < w)).



114 QUANTIFICATION § 21

That (1) and (4) are alphabetic variants is shown rather by the
sequence (1), (2), (3), (4) - the sequence obtained by rewriting
'z' first as 'w', then 'y' as 'z', then'x' as 'y'.

Again, consider the following pair of alphabetic variants:

(7) (x)(x is a number .) r'-J (y)(x = X + y)),
(8) (y)(y is a number .) r'-J (x)(y = Y + x)).

(8) differs from (7) in exhibiting 'y' and 'x' instead respectively
of 'x' and 'y'; yet an appropriate sequence (j>, (j>h ••• (j>n-h (j>'

joining (7) and (8) can be found neither by first changing'x' to 'y'
and then changing 'y' to 'x', nor by following the reverse order.
The desired connection between (7) and (8) can be made only
through intervening stages such as the following, which involve
temporary introduction of a new letter 'z':

(9) (z)(z is a number .) t'J (y)(z = Z + y)),
(10) (z) (z is a number .) t'J (x) (z = z + x)).

The statements (7), (9), (10), (8) do constitute a sequence (j>, <Ph
••• , cPn-b <P' of the appropriate kind.

Returning to the general case, let (j>' be an alphabetic variant of
<P containing a'l, a'2, ••• a'k in place respectively of ah a2, ••• ak.

We see that the connecting links (j>h l/>?" etc. which establish alpha
betic variance cannot in general be found by the simple expedient
of putting a'l for a1 in (j>, then a'2, for a2 in the result, and so on.
This expedient has been seen to fail where (j> is (1) and (j>' is (4), and
again where (j> is (7) and (j>' is (8). Any number of other examples to
the same purpose could be constructed, sharing always this feature:
various of ah a2, ••• ak reappear among a'h a'2, ••• a'k.

A method is apparent, however, which reveals suitable links
<Ph l/>?" etc. in the general case. It turns on tenlporary introduction
of new letters as in (9) and (10). Where {3h {32' ••• 13k are any vari
ables which are distinct from one another and from all variables of
<p and (j>', construct the sequence (j>h l/>?" • • • (j>k by putting {31 for a1

in cP, {32 for a2 in the result, and so on; then form the continuation
<Pk+h (j>k+2,. • • (j>2k-h (j>' by putting a't for {31 in (j>k, a'2 for (32 in the
result, and so on. The total sequence (j>, (j>h l/>?" ••• , l/>?,k-h (j>' does
establish alphabetic variance of (j> and (j>'. Where (j> and (j>' are (1)
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and (4:), e.g, and {31 is chosen as 'x", {32 as 'y", and {3;{ as 'z", the

described method supplies cPh cP2' cP3' cP4' and cPa as follows:

(11) (x')(y)(x' < y.) (z)(z < x' .). z < y)),
(12) (x')(y')(x' < y' .) (z)(z < x' .). z < y')),
(13) (x')(y')(x' < y' .) (z')(z' < x' .). z' < y')),
(14:) (y)(y')(y < y' .) (z')(z' < y .). z' < y')),
(15) (y)(z)(y < z.) (z')(z' < y .). z' < z)).

Each succeeding formula of the sequence (1), (11), (12), (13), (14:),
(15), (4) differs from its predecessor merely through replacement of
a constituent quantification by an immediate alphabetic variant
thereof; the alphabetic variance of (1) and (4) is thus verified.

This general method delivers somewhat longer sequences than
necessary. \V"e kno\\', e.g., that the sequence (1), (2), (3), (-!)
\yould suffice in place of the sequence (1), (11)-(15), (4). But the
method has the virtue of simplicity in general formulation. Its
existence \"ill excuse us, in future pages, from citing intervening
fornlul~ cPh 4>2, etc. by \\'ay of establishing any alleged case of
alphabetic variance. The reader can be left always to check the
nlatter for himself, by the general method if not by inspection.

1~he discussion of alphabetic variance has been limited to vari
ables governed by universal quantifiers, but it carries over auto
nlatically to variables governed hy existential quantifiers; for an
existential quantifier is merely shorthand for a universal quantifier
"'ith a couple of denial signs.
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§ 22. Class and Member

IN CHAPTER I connectives were studied which answer to the
statement connectives 'neither-nor', 'if-then', ' and', etc. of
ordinary discourse. In Chapter II the essential notions were
formulated which underlie the common use of the words 'what
ever', 'all',·' there is', 'some'. We now turn to a connective 'E'
which embodies the principal meaning of the ambiguous word
,. '1

IS •

So"metimes 'is' has the sense of ' = " or 'is the same as'; such is
its sense in 'Paris is the capital of France', 'Tully is Cicero'.
But in 'Paris is a city' or ' Tully is wise' or 'Socrates is wise' the
word cannot be so construed; from ' Tully = wise' and 'Socrates
= wise', indeed, we could infer that Tully = Socrates. In such
contexts 'is' expresses rather possession of a property, or member
ship in a class: Paris belongs to the class of cities, .and Socrates
belongs to the class of wise beings. It is this sense of '1S' that is
rendered symbolically by the connective 'E': 'Paris E city',
'Socrates E wise'. The connective 'E' is (like' =', 'hates', etc.) a
binary predicate (cf. § 5); whereas ' 1" ')', '.', etc. yield state
ments when put between statements, 'E' yields statements when
put between names.

In the examples which have been cited for one purpose or an
other in the course of foregoing sections, the names which figure
most prominently are 'Jones', 'Smith', 'Socrates', 'Boston',
'Paris'. But the names which 'E' is used to connect are not ex
clusively of this sort. What is ordinarily wanted to the right of 'E'
is a general term, e.g. 'wise' or 'city', rather than the name of
some specific man or place. It is convenient, however, to regard
such general terms as names on the same footing as 'Socrates' and
'Paris': names each of a single specific entity, though a less
tangible entity than the man Socrates or the town Boston. 2 The
word 'wise' may be treated as name of the class of wise beings,

1 The notation 'E', short for 'fCTT£', is Peano's.
2 For a divergent, more philosophical account, see my Methods, §§ 34, 38.
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taken as a single object of an abstract kind; and 'city' may be
treated as a name of the class of cities. The statement' Socrates E

wise', now, says sOlnething about two objects, a man and a class;
namely it says that the one is a member of the other. Correspond
ingly"'for 'Paris E city'.

The reassuring phrase 'mere aggregates' must be received
warily as a description of classes. Aggregates, perhaps; but not
in the sense of composite concrete objects or heaps. Continental
United States is an extensive physical body (of arbitrary depth)
having the several states as parts; at the same time it is a physical
body having the several counties as parts. It is the same concrete
object, regardless of the conceptual dissections imposed; the heap
of states and the heap of counties are identical. The class of states,
however, cannot be identified with the class of counties; for there
is much that we want to affirm of the one class and deny of the
other. We want to say e.g. that the one class has exactly 48
members, while the other has 3075. We want to say that Delaware
is a member of the first class and not of the second, and that
Nantucket is a member of the second class and not of the first.
These classe!"', unlike the single concrete heaps which their members
compose, must be accepted as two entities of a non-spatial and
abstract kind.

Once classes are freed thus of any deceptive hint of tangibility,
there is little reason to distinguish them from pr"perties. It mat
ters little whether we read 'x E y' as 'x is a member of the class y'
or ' x has the property y'. If there is any difference between classes
and properties, it is merely this: classes are the same when their
members are the same, whereas it is not universally conceded that
properties are the same when possessed by the same objects. The
class of all marine mammals living in 1940 is the same as the class
of all whales and porpoises living in 1940, whereas the property of
being a marine mammal alive in 1940 might be regarded as differing
from the property of being a whale or porpoise alive in 1940. But
classes may be thought of as properties if the latter notion is so
qualified that properties become identical when their instances are
identical. Classes may be thought of as properties in abstraction
from any differences which are not reflected in differences of in-
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stances. For mathematics certainly, and perhaps for discourse
generally, there is no need of countenancing properties in any other
sense.

Discourse in general, mathematical and otherwise, involves
continual reference to abstract entities of this sort - classes or
properties. One may prefer to regard abstractions as fictions or
manners of speaking; one may hope to find a method whereby all
ostensible reference to abstract entities can be explained as mere
shorthand for a more basic idiom involving reference only to con
crete objects (in some sense or other).1 Such a nominalistic
program presents extreme difficulty, if much of standard mathe
matics and natural science is to be really analyzed and reduced
rather than merely repudiated; however, it is not known to be
impossible. If a nominalistic theory of this sort should be achieved,
we may gladly accept it as the theoretical underpinning of our
present ostensible reference to so-called abstract entities; mean
while, however, we have no choice but to admit those abstract
entities as part of our ultimate subject matter.

We are thus to recognize as names of entities not only such ex
pressions as 'Nantucket', 'the capital of France', 'the northern
most chimney of Craigie House', but also general terms, conceived
as naming abstract classes. And when through the medium of
quantification we affirm something as true of every object x, we
mean it to apply not merely to every spatially extended concrete
object x, but to every object, abstract or concrete, class or indi
vidual.

Our working ontology is thus pretty liberal. But in mitigation
it may now be said that this is·the end; no abstract objects other
than classes are needed - no relations, functions, numbers, etc.,
except insofar as these are construed simply as classes. In addition
to concrete objects we need recognize only classes having such

1 See my "Designation and Existence," "Logistical Approach," and "Theory
of Classes." Note that Russell's contextual definition of class names C'Mathe
matical Logic"; also Principia, vol. 1, pp. 71 if, 187 If) does not dispense with
abstract entities, but only eliminates so-called classes in favor of properties. This
point is obscured by ambiguity of the phrase' propositional function', which some
times means' property' and sometimes 'statement matrix'.
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objects as members, then classes whose members are drawn from
the thus supplemented totality, and so on. This is presumably all
the ontology that is needed for discourse in general; certainly it is
all that is needed for mathematics.

It is by no means clear what objects are to be regarded as con
crete. E.g., should we regard men as concrete objects, or should we
regard events as concrete objects and then explain men as classes
of events? For present purposes it does not matter, for there will
be no occasion in the formal developments to speak specifically
of concrete objects. It would even be possible, compatibly with
the projected formal developments and indeed with the whole of
mathematics, to repudiate concrete objects altogether~ to recog
nize just classes, each of which has classes in turn as members or
else no members whatever. Such an ontology would recognize an
empty or null class, a class whose sale member is the null class, a
class whose sole member is the latter, and so on; also, classes whose
members are variously chosen from the latter series; also, classes
whose members are variously chosen from the thus supplemented
totality; and so on. 1 This exclusively abstract ontology has little
naturalness to recomm~nd it, but there is no need here to reject
or accept it.

Where y is a class, 'x e y' means that x is a member of it. But
what does it mean where y is not a class? We are free to decide
this question as we like, by arbitrary supplementary interpretation
of the sign 'e'. The decision which seems to offer the greatest
simplicity, as measured by the general principles produced, is this:
where y is not a class, 'x e y' means 'x = y'. Hence' x e y',
briefly read' x is a member of y', is to have as its full translation the
following: 'x is a mem ber of y or is the same as y according as y is
or is not a class'. We may continue to use the brief reading if we
agree that 'is a member of y' is to mean 'is the same as y' when
y is not a class.

The meaning of 'e' reduces to that of ' =' ju.st in the extreme

1 Cf. Fraenkel, "Untersuchungen," pp. 255f. The essential principle of this
ontology might, in view of the developments which are immediately to follow, be
given the symbolic rendering' (y)r-v(x)(x E y . ==. x = y) '; though this version is
not suited to Fraenkel's own system.
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case where the second object involved is not a class. Thus it does
not follow that' e' will in general serve the purposes of ' = '; the
latter connective continues to be needed to carry the meaning' is
the same as' as applied to classes and non-classes generally. It
does turn out, however, that '=' is dispensable as a primitive
connective; it can be defined in terms of 'e', ' 1" and quantifica
tion (cf. § 25).

Note further that the notion of class itself is not needed as a
separate assumption; 'y is a class' can be paraphrased in terms
exclusively of 'e', ' 1" and quantification. For, under the supple
mentary interpretation of 'e' just now adopted, the distinguishing
feature of a non-class y is this: 'x e y' amounts, for every object
x, to 'x =y'. Hence, once having defined '=' in terms of 'e',
, 1 " and quantification, we can paraphrase 'y is not a class' as:

(x)(xey.=.x = y)
and 'y is a class' as:

r-v (x) (x e y .=. x = y).
But none of these considerations, having to do with the inter

pretation of 'x e y' in cases where y is not a class, will figure ex
plicitly in the formal developments which are to follow. Situations
will never arise where an object y is known to be a non-class. As
mentioned, the formal developments are compatible with the non
existence of entities other than classes; and under this extreme
alternative the adopted supplementary interpretation of 'e' evap
orates altogether.

§ 23. Logical Formulce

THE CONNECTIVE' e' of membership is adopted as part of our
primitive logical notation, along with the connective' 1 ' of joint
denial and the quantifiers and variables which constitute the
notation of quantification. By putting 'e' between variables, we
obtain formul£e rae {3l- e.g. 'xex', 'xey', 'yez'-which are
atomic in the sense of having no other form ul£e as parts. This is
the first time atomic formul£e have come to hand. Hitherto,
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though formulce in general were described as built up of atomic
formulce by joint denial and quantifiers, the atomic formulce
themselves were left unspecified (cf. § 13).

Strictly, these newly acquired atomic formulce should be de
scribed not as raE (31 .but as r(a E (3)1; for 'E', like all binary
connectives, is to be construed as having a pair of parentheses as
sociated with it. In practice, under the working conventions ex
plained in § 7, r(a E(3) 1 loses its parentheses when it stands alone
or as a component of a conjunction, alternation, conditional, or
biconditional.!

Hitherto no actual expressions could be cited as formulce, be
cause of the fact that the atomic formulce were not given. Now,
however, one important sort of formulce is definitely fixed; it
comprises atomic formulce of the kind r(a E (3)1 together with all
other formulce whose atQmic parts are of this kind. Such formulce
will be spoken of henceforward as logical formula. Thus the
logical formulce comprise, first, all expressions obtainable by
putting variables 'x', 'y', etc. in the blanks of '( E ) ';

second, all expressions obtainable by putting expressions of the
first totality in the blanks of ' ( 1 ), or after' a parenthesized
variable; third, all expressions obtainable by putting expressions of
the thus supplemented totality in the blanks of '( 1 )' or
after a parenthesized variable; and so on. Synoptically: r (a E (3) 1

is a logical formula, and if cP and 1/; are logical formulce then so are
r(cP 1 1/;)1 and r('Y)cP1.

Thus the logical formulce comprise such expressions as:

(XEX), (XEy), (ZEW), (x) (x EX), (x) (x Ey),

(y) (x E y), (x) (y) ( X E y), ((x EX) 1 (x EX)), ((x EX) 1 (x E y)),

((x E y) 1 (y E x)), ((x E y) 1( Z E w)), (x)((x EX) 1 (x EX)),

((X) (x EX) 1 (y) (x E y)), (w) (X) (((x EX) 1 (y) (x E y)) 1 (x E W)),

1 Actually the notation rex e {11 could wholly supplant r (ex f (3) 1 at this stage
- even in the absence of special conventions such as those of § 7 - without danger
of ambiguity. Coupled with notations subsequently to be introduced by definition,
however, this course would result in ambiguity, as my student K. R. Symon has
noted. Farentheses are needed e.g. to distinguish r a(~'Yet> e 0) 1 from r a{3(.yet> e 0) 1

(cf. p. 202).
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etc. Such of the logical formul£e as have no free variables - e.g.
the fourth, seventh, twelfth, and last of the above list - constitute
the logical statements, true or false. These four examples are, as it
happens, all false.

There are no atomic logical statements, for the atomic logical
formul£e r (a E (3) l have free variables. The shortest possible
logical statements are those which are closures of the one-variable
matrices rea Ea)l; in other words, '(x)(x E'X)' and its alphabetic
variants '(y) (y E y)', '(z) (z E z) ',etc. These statements happen,
incidentally, to be false; for they say that every entity (and hence
every class) is a member of itself. Many classes are indeed mem
bers of themselves, but many also are not; the class of cats, e.g.,
is not a cat.

The shortest logical statements which are true are:

(1) ((X)(XE x) 1(x) (x EX))

and its alphahetic variants, e.g.:

((z) (z E z) 1(y) (y E y)).

The truth (1), i.e. 'r-v (x) (x EX)', denies that every entity IS a
member of itself - though allowing that some may be. This
truth will not appear as a theorem until a considerably later point
(t240, § 32).

It will be noted that the logical formul£e contain no names - not
even names of abstract entities, classes. In the atomic formulce
rea E(3) l the a and {3 are never names, but merely' x', 'y', 'z', etc.;
in effect, pronouns (cf. § 12). The logical formulce do indeed com
prise statements as well as matrices; the statements have definite
import not by virtue of exhibiting names in place of variables, how
ever, but merely by virtue of containing enough quantifiers to
render the variables bound at all occurrences. All this is apparent
from the foregoing description and the examples. Subsequentiy,
indeed, the logical formulce will be abbreviated through definitions
in such a way that names of classes will take form within them;
but such names will have the status merely of shorthand, capable
always of elimination in favor of the frugal notation described
above.

We shall see in subsequent sections that the notions of identity,



126 TERMS § 23

relation, number, function, sum, product, power, limit, derivative,
etc., are all definable in terms of our three primitive notational
devices: membership, joint denial, and quantification with its
variables. Under those definitions every true and every false
statement which is couched in purely mathematical terms becomes
an abbreviation of a logical formula, in particular a logical state
ment, in the sense described above. The three primitives thus
provide a complete mathematical language. The language is not,
indeed, a convenient one for mathematical practice; the simple
statement '1 + 1 = 2', if translated into terms of these three
primitives, would run to a length of many pages. For mathe
matical practice - demonstration and application of theorems
definition'\l abbreviations are thus indispensable. For meta
mathematical practice, on the other hand - formulation and
investigation of the general notions of formula, theorem, mathe
matical truth, etc. - the reduction of concepts to a few primitives
is in'dispensable;, the subject matter of our metamathematical
i~vestigations is thereby simplified to the point of manageability.
eef. Introduction.) Reduction of the concepts of mathematics
to the three primitives is of theoretical significance also as affording
a measure of the net conceptual presuppositions involved in
mathematical theory; and the definitions are significant as an
analysis of the various derivative mathematical concepts.

Frege was the first to show (1884) that the notions of arithmetic could be defined

in purely logical terms. A more refined and detailed construction of arithmetic
and derivative disciplines from logic was carried out by Whitehead and Russell.

In the reduction of logic in turn to the three present primitives, one essential step

was Russell's discovery of how to define complex terms in context (cf. § 26); a
second was Sheffer's reduction of conjunction, alternation: and deniaJ to joint
denial (§ 9); and a third was Wiener's definition of the ordered pair (§ 36). The

adequacy of substantially the three present primitives was men::ioned by both
Tarski and Godel in 1931.

The systems of Tarski and Godel can in fact be translated, in turn, into terms of
still fewer primitives: just £nclus£on (§ 34) and abstract£on (§ 24). See my "In
clusion and Abstraction"; also" Theory of Types". But the systematization of

logic developed in the present book, turns out, curiously, to resist such translation.
The reason is that there are differences in detail between the notion of membership

developed here and the notion of menlbership which Tarski and Godel took over
from \Vhitehead and Russell. The divergence is such that the equivalence of
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r (a)cP' with rO:cP = V', on which the definition of quantific.ation in terms of in
clusion and abstraction depends, fails in the present system (cf. § 32).

The notion of logical formula does not supersede the original
relative notion of formula. Logical formulte are formulte of a
restricted kind, inadequate to the expression of anything beyond
the bounds of mathematics. For other subject matters we would
need additional formulte, describable by stipulating new atomic
formulte appropriate to that subject matter. The atomic formulte
formed by flanking' E' with variables happen merely to be the ones
appropriate to logico-mathematical matters. A statement may be
a theorem under *100-*104 without being so limited in point of
atomic parts as to be classifiable as a logical formula, logical state
ment; and all such statements are logically true, regardless of their
constituent vocabulary. The theorems which we shall have oc
casion to consider in subsequent sections, however, will all be
logical statements, logical formulte.

Hitherto we were able to specify only the outward forms of
formulte, leaving the content - the atomic formulte - unspecified;
but now, so far as logical formul£e are concerned, form and content
are both at hand. We need no longer limit ourselves to setting
down metatheorems, to the effect that all formulc:e of such and
such forms are theorems; we can now set down actual theorems.
From *103, e.g., we see that the closure:

(y) ((x) (x E y) ). Y E y)

of' (x) (x E y) ). y E y' is a theorem; from *157, again, we see that:

(z) (y) ((x) (y E Z • X E y) ==. Y E Z • (x) (x E y))

is a theorem.
One might indeed think of logic, in a narrow sense, as comprising

just the theory of statement composition and quantification, and
hence as dealing with just the outward form of formulc:e through
the medium of metatheorems. The level upon which we are now
entering, then, might be regarded as forming a· second level of
mathematics - the theory of classes, otherwise known as the
theory of sets, the theory of aggregates, Mengenlehre. At this
level for the first time actual form uhe are forthcoming, as theorems
about a mathematical subject matter. Relation theory, arith-
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metic, and other branches of mathematics then fall into place as
specializations or subdivisions of the theory of classes. From this
point of view, incidentally, the so-called" logical formul~" would
be more appropriately describable as "mathematical formul~";

the former designation will be retained, however, and the narrow
sen~e of 'logic' just now suggested will not be urged.

§24. Abstract£on

THE USUAL way of specifying a class is by citing a necessary and
sufficient condition for membership in it. Such is the method when
one speaks of "the class of all entities x such that ... , ," appending
one or another matrix. The class of all entities x such that x writes
poems, e.g., is the class of poets; the class of all entities x such
that

(3y) (y € integer. x = y2),

again, is the class of square numbers. Despite its sanction from
the side of usage and common sense, however, this method of
specifying classes leads to trouble. Applied to certain matrices,
the prefix' the class of all entities x such that' produces expressions
which cannot consistently be regarded as designating any class
whatever. One matrix of this kind, discovered by Russell,! is
'r-ov(x € x)'; there is no such thing as the class of all entities x such
that r-ov(x € x). For, suppose w were such a class. For every entity
x, then,

X € w.= r-ov(x € x).

Taking x in particular as w itself, we are led to the contradiction:

w€w.= r-OV(W€W).

The matrix' r-ov(x € x) , is the first and simplest of an infinite series
of matrices, viz.:

r-ov (x € x), (y) r-ov (x € Y • Y € x), (y) (z) r-ov (x € Y • Y € Z • Z € x),

... , all of which share the same peculiarity. In the case of each

1 Principles, Ch. X. See also Frege, Grundgeselze, vol. 2, pp. 253 ff.
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of these matrices, as seen in the case of '''-I(x EX)', the assumption
of a "class of all entities x such that ... " leads to contradiction.
There is no class w such that

(x) (x E w .== "-I (x EX)),

nor any such that

(x) (X E W •== (y) "-I (x E y • y EX)),

nor any such that

(x) (x E W • == (y) (z) "-I (x E Y • Y E Z • Z EX)),

and so on. This is apparent from the metatheorem *181, below,
according to which the statements:

(w) "-I (x) (x E W .== "-I (x EX)),

(w) "-I (x) (x E W .== (y) ~ (x E Y • Y EX)),

(w) "-I (x) (x E W • == (y) (z) "-I (X E Y • Y E Z • Z EX)),

etc. are all theorems.
It is convenient for purposes of future reference to prove a

somewhat more complicated metatheorem *180 first and then
derive *181 from it. In the proof of *180 a new sort of abbrevi
ation is used, involving the letters 'L' and 'R'. The notation
'L180' stands as an abbreviation for the matter:

(a) (a E ~ • ==. cP • (1'1) ••• (1'n) roo...I (a E 1'1 • 1'1 E 1'2 ••••• l'n E a))

which appears to the left of the main connective in the expression
for which' 180' stands. Similarly' R4' stands as an abbreviation
for the matter:

"-I (~ E 1'2 • • • •• l'n Ea. a E ~)

which appears to the right of the main connective in the expression
for which '4' stands. 'Ll' and 'R6' are analogous.
*180. If a, {3, "Yh • • • , 1'n are distinct, and cP' is like cP except for
containing free occurrences of {3 wherever cP contains free occurrtnces
of a, then
J- r(a)(a E {3 .=. cP. (1'1) • . · (1'n) roo...I (a E 1'1.1'1 E 1'2 ••••• 'Yn E a))

) roo...I cP".
Proof. Case 1: n = o. By *103 (& hp 2 ),

J- r (a) (a E {3 •==. cP • roo...I (a E a») ): {3 E (3 •==. cP' • roo...I({3 E (3)'
*100 ) roo...I cP".
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Case 2: n > O.
*114 r r(1"l) ... (1'n) rv (a E1"1 •...• 1"n Ea)

)rv(aE'Yl •...• 1"nEa)l. (1)
*103 (& hp 1) r r[ (1"1) 1 ).] L1 ) rv (a E~ • ~ E1"2 • . . .•1"n Ea)1. (2)
*100 ~ r cP • L 1 .) L 11 . (3)
*110 ~ r(a)(a E(3.) L1»): a E(3.) L11

*100 ). [2 )] rv(~ E1"2 •...• 'Yn Ea. a E~)1. (4)
*121 r- rL180 ). (a)(a E(3 .) L1) [== (a)3]1
(4), *117 (& hp 1) ) (1"2) ... (1"n)(a) R41 . (5)
*171 (& hp 1)
r- r[5 ==.] L180) (1"1) ... ('Yn) rv ({3 E1"1 • 1"1 E1"2 •...• 1"" E(3) 1. (6).
*103 (& hp 1) r- rR6) (1"2) ('Yn) rv (~E {3. {3 E1"2 •...• 'Yn E(3)1
*103 (& hp 1) ) (1"3) ('Yn) rv ({3 E{3 • {3 E{3 ••••• 'Yn E(3)1

*103
*100
*103 (& hp)
*100
*100

) rv ({3 E{3 • {3 E{3 • . • • • (3 E(3) 1

) rv ({3 E ~) 1.

r- r L 180 ) : {3 E(3 •==. cP' • R6'
): [7 ).] R6 ) rv cP'l.

r- r[8 ). 6 )] 1801 .

(7)

(8)

*181. If a, ~, 1"1, ... , 1"n are distinct,
r- rrv(a)(a E {3.== (1"1) ... ('Yn) rv (a E1"1 • 1"1 E1"2 •...• 1"" E a»l.

Proof. *100 r-ra Ea.). a Ea1. (1)
*180 (& hp) r-r(a) (a E {3 .==. [1 .] (1"1) ... ('Yn) rv (a El"l ••••

• 1"n E a» ) rv ({3 E (3 .). (3 E (3)'. (2)
*100 r- r[2 )] 1811 .

We are thus forced to recognize that the idiom 'the class of all
entities x such that ... ' cannot in general be trusted to express a
class, common sense to the contrary notwithstanding. We must
restrict this idiom in one way or another. There area number of
ways; we may revise the phrase 'all entities x', or we may restrict
the matrix which follows 'such that', or we may do both. The
first of these courses, adopted by von Neumann,! seems to recom
mend itself above the others. Under this procedure the realm of

1 "Eine Axiomatisierung." For historical remarks see below, § 29.
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entities which can be formed into classes is narrowed somewhat,
by deciding that certain classes are incapable of being members of
classes. The idiom 'the class of all entities x such that' is then
revised to read 'the class of all membership-eligible entities x such
that ... '.

For brevity let us refer to "membership-eligible" entities here
after as elements. An element is thus to be understood simply as
the sort of entity that belongs to classes; 'x is an element' can be
rendered symbolically' (3y) (x E y) '. Observe now how our revised
idiom, 'the class of all elements x such that ... ', fares in connection
with Russell's matrix 'rov(x EX) '. Where w is the class of all
elements x such that rov(x E x), we are not called upon to equate
'x E w' with' rov(x EX) '. Rather,' x E w' means that x is an element
and rov(x E x); symbolically,

(3Y)(XEY). rov(XEX).

Instead of having' (x) (x Ew.= rov (x EX))', and the self-contra
dictory consequence 'w E W • == rov (w E w) " we have merely:

(x) (x E W .=. (3y) (x E y) • rov (x EX)),

whose consequence:

WE W .=. (3y)(w E y) • rov (w E w),

far from being self-contradictory, is equivalent to:

ro.w (3y) (w E y)

and thus tells us merely that W itself is not an element.
The status of element must be withheld not only from the class

W of all elements x such that rov(x E x), but also from the class of all
elements x such that (y) rov (x E y • Y E x), and from the class of all
elements x such that (y)(z) ~ (x E Y • Y E Z • Z E x), and so on.
The theorems to this effect, viz. the closures of:

(x) (x E W .=. (3y) (x E y) • rov(x E x))J rov(3y)(w E y),
(x) (x E W .=. (3y) (x E y) • (y) rov (x E y • Y EX ))J rov(3y)(w E y),
(x) (x E W .=. (3y) (x E y) • (y)(z) rov (x E y • Y E z. Z E x))J

rov(3y){w E y),

etc., are all provided by *180 (cP and cP' being taken as r (30)
(a EO)' and r(30)(~ EO)'). The question of determining what
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entities are to be rated as elements will be dealt with later (§ 28);
for the present, suffice it to say that the only entities which will
not be elements are certain queer classes such as the ones just now
noted.

The prefix' the class of all elements x such that' will be rendered
symbolically 'x'; thus the class w discussed above is X rev (x EX).l

The forming of class names by such prefixes will be called ab
stractt'on; and the result, e.g. 'x rev (x EX)' or in general rael>I,
will be called an abstract. Seeking now to define the notation
r ael> I on the basis of our primitive notation, we encounter the
following difficulty. Our primitive notation comprises machinery
for the construction solely of statements and statement matrices 
atomic matrices r (a E (3) I, quantifications r (a)eI> I, joint denials
r (eI> 1 f) '; and an abstract r ael>I cannot be construed as an abbre
viation of any expression of this sort, since it is supposed to be
have rather as a noun. The "ray out of this difficulty is suggested,
however, by reflecting on fragmentary expressions such as '==',
')', r) f'. By no means identifiable with statements or state
ment matrices, these expressions have none the less been introduced
by definitions; they have been defined in context. They are
fragments of expressions r(eI> == f)' and r(eI» f)' which have
been defined entire as abbreviations of appropriate formulir. Now
the same· sort of contextual definition is available for abstracts.
Turning our attention to such contexts of r acP I as are appropriately
identifiable with formulir, we can frame suitable definitions of these
contexts as wholes. By adopting such definitions in sufficient
variety, we can account for the occurrence of r ael> I in statement
contexts of every desired kind.

One definition is wanted, e.g., explaining contexts of the form
'{3 E &1>': contexts affirming membership in the class which racP'
describes. Other definitions are wanted explaining other contexts;
but let us postpone them (to § 26) and deal with this first case.
We want to define r{3 E ael>' in such way that, where' ... x . .. ' is
thought of as any formula involving' x', the whole:

(1) y E .~(••• x ... )
1 This notation was adapted from Frege hy Russell. Hut my reference to

elementhood, in interpreting the notation, is J departure. Cf. § 29.
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will agree in meaning with the words:

(2) y is a member of the class of all elements x such that ... x ....

This requirement proves to be met by the definition:

D9. r({3 E eX<p)' for r(3"Y.)({3,E "y • (0:)(0: E"y .) </»)'

("y being any new variable). D9 explains (1) as an abbreviation of:

(3) (3z) (y E Z • (x) (x E Z .). • • • x . . .)),

whose equivalence with (2) is easily seen. Where Z is the class of all
elements x such that ... x ... , clearly

(x) (x E Z .) •••• x ... );

hence (3) is true when (2) is. Conversely, since (3) says that y is a
member of a class all of whose members are entities x such that
... x ... , we can conclude from (3) both that y is an element (be
ing a member of a class) and that y is one of the entities x such
that ... x ... ; hence (2) is true when (3) is.

D9 has the peculiarity of imposing like abbreviations upon unlike
form ulce; e.g., the form ul£e :

(3z) (y E Z • (x) (x E Z .). X EX)),
(3w)(y E w. (x) (x E W .). X EX))

both become 'yEX(XEX)'. But such formul£e will always be
alphabetic variants of one another, and hence interchangeable in
view of *171 (and *123). Shift from one choice of "Y to another, in
expanding r{3 E eX<p' by D9, amounts merely to relettering the
expanded form by *171 - so long as "Y is kept distinct from 0:, {3,
and the variables of <p.

The formulce and in particular the axioms of quantification and
the theorems are, properly speaking, composed of the primitive
notation without definitional abbreviations (cf. § 13). When a
definitionally abbreviated expression is said to be a theorem, what
is properly meant is rather that it is an abbreviation of a theorem.
In all discourse about theorems, defined notations are imagined
expanded into primitive notation. Hence caution is needed in
adopting definitions which impose like abbreviations upon primi
tively unlike formulce. If a definition of that kind happened
to cause some theorem y; and some non-theorem X to be abbre-
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viated alike, fallacy would result; by merely abbreviating Y;
according to the definition, .and then expanding the result accord
ing to the definition, one would reason from the fact that y; is a
theorem to the false conclusion that X is a theorem. However,
*171 has shown that D9 (with I' understood as distinct from a, (j,
and the variables of cJ» is not capable of thus blurring the distinction
between theorems and non-theorems.' Adoption of such a defini
tion as D9 amounts to tacit use of *171.

Definitions which impose like abbreviations upon primitively
unlike formulce will never obtrude themselves hereafter except in
cases similar to D9: cases where a bound variable appears in the
unabbreviated rendering and disappears in the abbreviation. But
definitions of just this sort will turn up so frequently that it is
simplest not to stop each time for an arbitrary alphabetical stipu
lation of the odd variable; rather it will merely be understood,
as in the case of D9, that the variable is not to be so chosen as to
conflict with the others at hand. The puristic reader can still, if
he prefers, reconstrue all such definitions arbitrarily as calling for
the al'phabetically earliest variable other than those at hand; for
he can always rewrite his variable afterward at will by *1.71.

§ 25. Identity

WE TURN now to the problem of so defining' x = y', in terms of
, E' and our other primitives, that it will carry the intended sense
'x and yare the same object'. In the trivial case where y is not a
class, indeed, x E y if and only if x = y in this sense (cf. § 22); but
our problem remains, since 'x E y' diverges in meaning from
"x = y' in case y is a class. We must find a formula, composed of
(0 x' and 'y' by means of ' E' and our other primitives, which will be
true just in case x and yare the same object - whether a class or
a non-class.

The requirement is met by:

(1) (Z)(ZEX.=.ZEy)

when x and yare classes, since classes are the same when their
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members are the same (cf. § 22). Moreover, (1) continues to meet
the requirement when x and yare not classes. For, in this case
'z EX' and' Z E y' identify Z with x and with y; and (1) as a whole
then says that whatever is the same as x is the same as y, thus
identifying x and y. Both where x and yare classes and where they
are not, therefore, (1) meets our requirements; (1) is true if and
only if x and yare the same. We are thus led to introduce 'x = y'
as an abbreviation of (1).

This definition of ' = ' has one rather curious but harmless result:
where x is not a class, we do not have over and above x any class
whose sole member is x. What would appear to be the class whose
sole member is x reduces to the non-class x itself. For, suppose x
is a non-class and y is the class whose sole member is x. Then Z E Y
if and only if Z is x. But also, according to the interpretation of
, Z EX' adopted for the case where x is not a class, Z E x if and only if
Z is x. Hence (1) is true; i.e., according to our definition, x = y.

This result - suppression of the class of a single non-class in
favor of the non-class itself - may just as well be conceived in
reverse fashion as an assimilation of non-classes to classes. What
was regarded asa non-class becomes reconstrued as a special sort
of class, viz. a class having itself as sole member. If we think of the
matter in this way, we must of course abandon the term 'non-.
class' in favor of a more neutral designation - say 'individual'.
Everything comes now to be thought of as a class, but individuals
are distinguished from other classes by the peculiar circumstance
of being their own sole members. This way of phrasing the situ
ation is more convenient than the other, for it enables us to give
'x E y' always the uniform readi,ng 'x is a member of the class y'.
Note, in any case, that we are far from identifying every object x
with the class whose sole member is x; this happens only if x is an
individual. From a formal standpoint, actually, there is no need
of assuming that there is any such x at all (cf. § 22).

Variables and abstracts will be spoken of collectively as terms.
Now let us supplement our Greek-letter conventions to this extent:
just as we use 'c/>', 't/;', and 'x', to refer to any formul(e, and 'a',
,{3', '1", and '0' to refer to any variables, so let us use' r', '11', and
'0' (along with their accented and subscripted variants) to refer
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in general to any terms. With help of this convention we can ex
press the general definition of identity as follows, for application to
variables and abstracts indifferently:

Dl0.

The notation raE r 1 here is either primitive or explained by D9,
according as r is a variable or an abstract; and similarly for
raE 111 . The choice of a follows the usual understanding (§ 24);
it may be any variable other than the ones in rand 'YJ. The pa
rentheses in r (r = 11) 1 record the fact that '=', like all binary
connectives, is to be construed as carrying with it a pair of pa
rentheses. 1

It is more common to define rr = TJ 1 as r(a)(r Ea. ==. TJ Ea) 1 or r(a)(r f a.J.
TJ E a)1. Both of these versions are given by Peirce (3.3<)8, 400) and one or the
other is rather hinted by Leibniz (Lewis, Survey, p. 373); but they cease to be
available once non-elements are recognized (cf. § 32). DID, as a definition of class
identity, was stated in effect by Peirce (3.47) and in its present form by Fraenkel
(Einleitung, 3d ed., p. 272). Its availability as a general definition of identity
turns on the special way in which I have dealt with individuals.

My treatment of individuals is reminiscent of the days before Frege and Peano
urged the importance of distinguishing between an object and its unit class, i.e.
the class which has that object as sole member (cf. § 35). Commonly the dis
tinction in question is indeed vital. We must distinguish between the null class
(§ 26) and its unit class, for the former has no members while the latter has one;
and we must distinguish between the class of Apostles and its unit class, for Peter
belongs to the one class and not to the other. But the arguments which show that
the distinction must commonly be made do not militate against the identification,
in particular, of individuals with their unit classes (and hence with the unit classes
of their unit classes and so on). Within the domain of individuals, retention of the
pre-Fregean attitude leads to no trouble.

Though I have been led to this course by considerations only of technical effi
cacy, a certain' naturalness may be argued for it on the basis of such illustrations
as the following. Let us think of points as individuals, and of lines and planes as
classes of points. Then the intersection or logical product (§ 33) of two planes is a
line; but, if we distinguish individuals from their unit classes, the intersection of
two lines is only the unit class of a point and not a point. Again, whereas a line
in a given plane is related to the plane by inclusion (§ 34), a point in a given line
is not related to the line by inclusion if we distinguish individuals from their unit

1 In the matter of parentheses, ' =' is like' f'; the parentheses are adopted with
an eye to later definitions. See p. 124, footnote.
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classes; the point is rather a member of the line, while the unit class of the point
is included in the line. Under the proposed theory, on the other hand, intersections
of lines are points, and points bear to lines the same inclusion relation which lines
bear to planes. (This illustration is due to Miss L. D. Steinhardt.)

The usual compact way of denying identity is adopted in the
following definition.

Dll. r(r ¢ 1])' for rro..J(r = 1])'.

We proceed to three theorems.

t182. (x) x = x Proof: *100 (& D10).
t183. (y)(x) x = y .==. y = x Proof: *100, *123 (& D10).
tiM. (z)(y)(x) x = y .): x = z .=. y = z Proof: *121 (& D10).

In stating theorems it is convenient to leave a space between the
initial group of universal quantifiers and the matrix which they
govern, on the understanding that those quantifiers are to cover
the matrix in its entirety. The theorem is thus the closure of this
segregated matrix; t182-t184 are:

(x)(x = x),
(y)(x)(x = y .==. y = x),
(z)(y)(x)(x = y .): x = z .=. y = z).

The fact that t182-t184 are theorems, rather than metatheo
rems, is given recognition by attaching a dagger' t' rather than a
star to the numerals. Apart from the distinguishing stars and
daggers, the numerical designations of metatheorems and theorems
run along together in a single increasing sequence; first we have
metatheorems (*100-*181), then some theorems (t182-t185),
then more metatheorems (*186-*188), and so on.

The proofs of t182-t184, indicated above, call for little com
ment. t182 is an abbreviation, by D10, of:

(x)(w) (w EX .=. WE x),

which is the closure of a tautologous matrix reP == cP'; and *100
says that closures of such matrices are theorems. t183 IS an
abbreviation, by D10, of:

(y)(x)«W)~Ex .==.WE y) == (w)(w E Y .=.'l0 EX)),

which is the closure of a matrix r(a)cP == (a)1/!' such that reP s 1/!'
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is tautologous; and *100 and *123 say that closures of such
matrices are theorems. t184 is an abbreviation, by D10, of:

(z) (y) (x)
«w)(w EX .==. WE y)). (w)(w EX .==. W E z) == (w)(w E Y .==. W E z)),

which is the closure of a matrix r(a)(cP == cP')).1/I == 1/1" of the kind
described in *121.

t182 and t183 are known respectively as the principles of the
reflexivity and commutativity (or symmetry) of identity, by a
natural extension of the notions of reflexivity and commutativity
which were applied to statement composition (§ 11).1 The fol
lowing, by a similar extension, is called the principle of the tran
sitivity of identity:

(z)(y)(x) x = y • y = Z .). x = z.

t184 is a stronger form of this principle.
The proof of the next theorem is more elaborate. It illustrates

the notation which will be used hereafter in proofs of theorems, as
distinct from metatheorems.

t185. (Y)(x) y EX.== (3z)(y E z. Z = x)

Proof. *110 (& D10) Z = x.): y E Z .==. Y EX (1)
*100, *163 (3z) ([1 .J y E z. Z = x)). Y EX (2)
*134 y EX [. 182J.) (3z)(y E Z • Z = x) (3)
*100 [2 • 3 .)J 185

The expressions which occupy the several lines in the proof of a
theorem are not in general theorems themselves but rather formulte
whose closures are theorems. The references at the left of the line
substantiate the fact that the closure of the exhibited formula is a

1 The above instance suggests this simple formulation of reflexivity as applied
to predicates: a reflexive predicate is one whose insertion in the blank of' (x) (x x)'
yields a truth. Such reflexivity may be called total reflexivity (cf. Carnap, Abriss, p.
40); for the term' reflexive' is also commonly applied, more broadly, to any predi
cate whose insertion in the three blanks of:

(x)(y)(x y.V.y x:).x x)

yields a truth. Note that the notion of reflexivity as applied to statement com
position (§ 11) can be broadened in analogous fashion; conjunction then comes to
be classed as reflexive, though not totally reflexive.
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theorem. Thus, in the first line of the above proof we cite *110
(and D10) to show that

J-'z = X·):YEZ.==.YEX',

i.e., to show that the closure:

(z) (y) (x) Z = x .) : Y E Z • ==. Y E X

is a theorem. The numeral at the right of a line serves, in its
unparenthesized recurrences, as an abbreviation of the formula
appearing in that line (minus any bracketed matter); thus' l' in
the second line of the proof is an abbreviation of:

Z = x.): Y E Z .==.y EX,

and' 2' in the last line is an abbreviation of:

(3z) (y E Z • Z = x) ). Y E x.

Brackets indicate use of *124, as hitherto; having shown e.g. that
the closure of the matrix which '1' abbreviates is a theorem, we
bracket '1 .' out of the second line of the proof on the strength of
*124. Divorced of its dagger, the numeral of a theorem serves as
an abbreviation of the theorem minus such initial quantifiers as are
spaced off to the left; thus' 182' and' 185' are abbreviations of
the respective matrices:

x=x, yEx.=(3z)(yEZ.Z=X),

whose closures are the theorems t182 and t18S.
The combination of *100 and *163, as in the second line of the

above proof, is one which will appear frequently hereafter. In
such a step of proof we observe first that the whole line minus the
existential quantifier, in this case:

1 • Y E Z • Z = x .). Y E x,

is tautologous; then we introduce the quantifier on the strength of
*163, noting that the variable of quantification is not free in the
consequent. The number of quantifiers thus introduced need not
be limited to one; in general, *100 and *163 show that

J-r(3al) · · . (3an )cP ) 1/1'
where rcP ) 1/1' IS tautologous and at, ... , an are not free in 1/1.
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Combination of *100 with *117 will also be common; in such cases
the added quantifiers are universal rather than existential, and
apply to the consequent rather than the antecedent.

§ 26. Abstraction Resumed

LET US now return to the task of defining abstracts rac/> I in con
text. 09 provides for all contexts in which the abstract follows an
occurrence of 'E' which is preceded by a variable. But now we
must provide for contexts in which the abstract precedes an oc
currence o{ ~E' which is followed by a variable; and also wemust
provide for contexts in which abstracts stand on both sides of -'-e'.
These two cases can be lumped together: our problem is to define
expressions of the form rac/> E ~l, where ~ is a variable or an ab
stract. Now -that 010 is at hand, explaining' = ' in application to
variables and abstracts alike, our problem is easily solved:

D12. r(a</>er)l for r(3P)(fj = ac/>.fjer)l.

The notation rfj e r l here is either primitive or explained by 09,
according -as r is a variable or an abstract. The choice of fj follows
the usual understanding; it may be any variable other than a and
the ones in c/> and r.

The notation rr E TJ I is now generally accounted for, no matter
w hat terms rand TJ may be. If rand TJ are variables, r r E 1]I is
r rilni tive; if r is a varia ble and TJ an abstract, r r E TJ I is explained by
09; and if r is an abstract, rr E 1]1 is explained by 012. Two minor
conventions of abbreviation will now be added.

D13. r erE 1]) I for r~, ere 1]) I.

D14. r(rh r2, ... , rn E TJ)l for rCrl e 1] • r2 e 1] ••••• rn E TJ)l.

Just as rae fjl and rfj e a I are atomic contexts of a, so we may
speak of rac/> e 1]land r1] e acj>I as quasi-atomic contexts of racj>I.

More generally, a quasi-atomic context of a term r is any result of
putting r for one variable and perhaps other terms for other vari
ables in an atomic matrix. Now D9 and D12 explain all those
quasi-atomic contexts of racj> I which correspond to logical atomic
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matrices raE {3'; for D9 explains r'Y E ac/>' and Dl2 explains
r &c/> E 11' and r tv; E &c/>'. But extra-mathematical discourse would
involve atomic matrices of other forms than raE {3', and would
thus call for definition of r ac/>' in supplementary quasi-atomic
contexts. All such definitions can follow the pattern of D12;
corresponding to an atomic matrix r J1. {3l {32 ... {3n', in general, we
can introduce quasi-atomic contexts by a sequence of n definitions
as follows:

Dal. r J1. {31 {32 ... {3n-2 {3n-l &c/>1 for r (3{3n) ({3n = ac/> • J1. {3l {32 ...
{3n-2 {3n-l (3n) 1,

Da2. r J1. {31 {32 ... {3n-2 ac/> Sn1 for r (3{3n-l) ({3n-l = ac/> • J1. {3l {32 ...
{3n-2 (3n-l Sn) 1,

Dan. rJ1.&c/> S2 ... Sn-2 Sn-l Sn1 for r(3{31) ({3l = ac/> • J1. (31 S2 · · ·
Sn-2 Sn-l Sn)'.

Since from the standpoint of primitive notation any free occur
rence of a variable has an atomic matrix as its immediate context,
our definitions of the quasi-atomic contexts of r&c/>1 explain ab
stracts in all manners of occurrence which are available to free
variables. Definitions which abbreviate contexts of free variables
can then be so framed as to apply at the same time to abstracts, as
already observed in the case of DIO, DII, D13, and D14. All
occurrences of an abstract will turn out to stand in quasi-atomic
contexts when the overlying definitional abbreviations as of DIO,
DII, D13, D14, etc. are resolved.

An occurrence of r&c/>', in any quasi-atomic context, comes to
have an immediate context of one or other of the forms rl' E ac/>'
and r(3 = ac/>1 when overlying abbreviations are resolved; this is
clear from Dl2 and Dal-an. Furthermore, r{3 = ac/>l in turn is
short for

r (1') (1' E (3 •==. l' E ac/» 1

where the immediate context of rac/>1 is again of the form
rl' E ac/>'. The latter is thus the fundamental sort of context for
abstracts; every occurrence of ra4>', in any quasi-atomic context
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and therefore in any context whatever, comes to have an immediate
context r"y € &c/> l on definitional expansion. Once r"y € &c/> l is
expanded in turn, by 09, the abstract r&¢l disappears altogether.

Inspection of 09 shows that all free occurrences of variables in c/>
remain free in r"y € &c/>l, except for occurrences of a; but that all
occurrences of a in c/> are bound in r "y € &c/>l. Moreover, this is
true not only in the case of r"y € ac/> l but in the case of any other
quasi-atomic context if; of r &c/> l as well; for we have noted that the
expansion of if; by 012 or Oal-an (and 010) will merely give us
r"y € ac/> l again within a broader context, and by the general con
vention governing the choice of extra variables in definitions we
are assured that the quantifiers of this broader context will not in
volve variables of c/>. In all contexts, therefore, an abstraction
prefix r &l operates in the same way as a quantifier r (a) l so far
as bondage and freedom are concerned.

When we speak about a formula, we are ordinarily to think of it
as written out in full primitive notation (cf. § 13). But it is some
times convenient to speak of occurrences of an abstract r &c/> l in a
formula if;; and this usage does compel us to think of 1/; as tem
porarily subject to definitional abbreviations, to the extent of
accommodating the occurrences of r &c/> l in question. The abbre
viations thus imagined in if; are still conveniently limited to quasi
atomic contexts of r &c/>l. Insofar as a formula 1/; is discusS€d from
this point of view, questions of bondage and freedom call for ex
plicit consideration of abstraction prefixes along with quantifiers.
As an adjunct of discourse about occurrences of abstracts, ac
cordingly, the following practical elaboration of the terminology of
of § 14 is needed. A given occurrence of a is bound to a given
occurrence of r (a) l or r &l if it stands in a formula or abstract
beginning with the given occurrence of r(a)l or r &l and stands in
no formula or abstract beginning with a later occurrence of r(a)l

or rale An occurrence of a formula or term v is bound /£n a formula
or term J.l w£th respect to a if within that occurrence of v there is an
occurrence of a which is bound to an occurrence of r (a) l or r &l

lying in J.l but outside v. An occurrence of v is bound £n J.l if it is
bound in J.l with respect to at least one variable; and v is bound
in J.l if an occurrence of v j~ bound in J.l. An occurrence of v in J.l
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is frte in p. if it is not bound in p.; and." is free in J1. if an occurrence
of ." is free in p.. Clearly an occurrence of X will be bound in f
with respect to a, in the sense of the present paragraph, if and only
if the corresponding occurrence or occurrences of X in the primi
tive expansion of l/; are bound with respect to a in the sense of
§ 14; and the rest of the terminology of the present paragraph.
meshes with that of § 14 in similar fashion.

The following analogues of *121-*123 are typical of the meta
theorems which involve use of this extended terminology.
*186. If 1]' is like 1] except for containing cjl. at som! places where '1J'

contains ¢, and ab ••• , an exhaust the variables with respect to which
those occurrences of ¢ and ¢' are bound in 1] and 1]', then

l- r (al) ••• (an) (¢ == ¢') ). 1] = 1]'1.

Proof: *121, *117 (& D10).

*187. If 1]' is like 1] except for containing free occurrences of ¢' at
some places where 1] contains free occurrences of ¢, then

l- r¢ == ¢' .). 1] = 1]'1.

Proof: *186 (taking n as 0).

*188. If l- r ¢ == ¢'1, and 1]' is formed from 1] by putting cI>' for some
occurrences of ¢, then l- r 1] = 1]'1.

Proof from *186 like that of *123 from *121.

But it must be borne in mind that the theorems provided by
such metatheorems as *186-*188 are still to be thought of finally
as in full primitive notation. *187, e.g., amounts properly to the
following: If 1]' is like 1] except for containing free occurrences of ¢'
at some places where 1] contains free occurrences of cI>, then the
formula (in primitive notation) which the definitions abbreviate as
r¢ == cI>' .). 1] = 1]'1 is one whose closure is a. theorem.

.The following theorem shows that '9' cancels 'y E'; every entity
is the class of all those elements which are its members.

t189. (x)
Proof. *100

*134

*103

x = f(y EX)

Y EX.). Y E x (1)
Z E x [. (y) 1] .) (3w) (z E W • (y) (y E W .). Y EX») (2)
(y)(y E w .). Y EX)): Z E W .). Z EX (3)
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*100, *163 (3w)([3 .J Z E W • (y)(y E W .). Y EX»). Z E x (4)
*140 (& D5, 9, 10) 189 [=. (z)2 • (z)4J

The following two definitions introduce abbreviations for two
particularly important abstracts.

D15. 'V' for 'x(x = x)',

DiG. 'A' for 'x(x F- x)'.

V is, by definition, the class of all those elements which are
self-identical; i.e., since everything is self-identical (t182), V is
simply the class of all elements.

t189a. (x) x E V •== (3y)(x E y)

Proof. *100 [182 .J x E Y .). x = x (1)

*100 (& 09, 15) x E V •== (3y)(x E y [. (x) 1J)

t190. (y)(x) XEy.).XEV

t191. (y) (x) X E Y •==. X E V • X E Y

Proofs. *135 x E y .) (3y)(x E y) (1)

*100 [189a • 1 .) ] 190, 191

A is defined as the class of all those elements which are not self
identical; hence it is the memberless class, the so-called null class.

t192. (x) x EA
Proof. *110 (x) (x E y .). X ~ x»): x E y .). x F- x (1)

*100 [1 • 182 .)J ~ (x E Y • (x) (x E y .). x F- x» (2)
*131 (& D9, 16) 192 [== (y)2J

Citation of the trivial definitions D11 and D13 will ordinarily be
omitted, as in the above proof. Similarly for D14, D6, and D7.
t192a. (y) y = A .== (X) (x Ey)

Proof. 1 *100, *123 (& 010) y = A .== (X) (x EY [.= 192J)

t192b. (y) y~A.=(3x)(XEY)

Proof· *100 (& 08) [192a )J 192b

*193. r- rea)</> ). &.</> = V'.
Proof· *103 r- r[(X) 182 ).J a = a'. (1)

*186 r- r(a)(</> [== 1J»). &</> = &'(a = a)'
*171 (& D1S) ). &.</> = V'.

1 This short proof was suggested by I. Kaplansky and M. J. Norris.
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*194. r- r(a)l'..Ic/> ). ac/> = A1.

Proof. *103 l- r[(x)182 ).] a = a'. (1)
*186 l- r(a)(I'..Ic/> [== 1J)). a rv~c/> = a(a ¢ a)'
*171 (& D16) ). a ~~c/> =A'
*100, *123 ). ac/> = A'.

In the above proofs, *171 is used as if the biconditional rc/> == c/>"
thereof were a mere conditional rc/> ) c/>". In the last step of the
proof of *194, again, *123 is used as if the r'" == ""1 thereof were
r1/1 ) 1/1'1. This procedure involves tacit application of *100, of
such kind as to weaken the biconditional to a conditional. Ellipsis
of this sort will be common hereafter; a biconditional rc/> == 1/1'
whose closure is cited as a theorem will be subject to any of the
variant readings r1/1 == c/>', rc/> ) 1/11, and r1/1 ) c/>' at convenience.
But this innovation applies only to citations by starred and
daggered numerals; divorced of its star or dagger and used as an
abbreviation, the numeral continues to stand for just the one ex
pression for which it has hitherto stood.

In precisely the sense in which D9 and D12 cOnstitute contextual definitions of
rae/>1, DI-5 may be said to constitute contextual definitions of '1'..1', '.', 'V', ,),
and' == '; likewise D8 of '3', and DI0 of' = '. The special subtlety of D9 and D12
is merely this: they endow r &e/>' with contexts notationally similar to contexts
primitively accessible to variables, thus enabling us to handle rae/>' as a term
(unlike '~', '.', '3', '=', etc.). Such contextual definition of terms was initiated
by Russell (1905, 1908) in his introduction of descriptions (§ 27); I have preferred
to apply the method to abstracts, however, and then explain descriptions as direct
abbreviations of certain abstracts. (Russell's theory of classes also proceeds by
contextual definition, but in a fashion irrelevant to present concerns; cf. footnote
to § 22.) Russell's method of contextual definition differs in detail from that ex
hibited above, and is more complex; it depends, for the avoidance of certain
ambiguities which would otherwise arise, upon use of an auxiliary scheme of pre
fixes (cf. Principia, *14). The fact that Russell is concerned with descriptions
rather than abstracts is not responsible for those complications; in "New Founda
tions," D9-10, I have defined description along lines similar to the above con
textual definitions of abstraction.

The so-called universal and null classes V and A played a prominent role in the
class algebra developed by Boole and his successors (§ 33). The signs' V' and 'A'
are Peano's. But the present use of 'V' as a means of affirming elementhood is
new.
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§ 27. Descriptions and Names

§ 27

WHEREAS the prefix'.\:' corresponds to the words' the class of
all elements x such that', the prefix' (1X)' is to correspond rather
to the words' the one and only object (entity) x such that'. This
idiom' (1X)( ... x ...)', i.e.:

(1) the objeGt x such that ... x ... ,
is known as descript'£on. It has now to be defined.

Actually, the meaning of a description is not always clear under
ordinary usage. The meaning of the description' (1X) (x is capital
of France)', or 'the object x such that x is capital of France', or
briefly 'the capital of France', is clear enough; this description is a
complex name which designates the city of Paris. Again the
meaning of '(1X) (5 + x = 9)' is clear~ this description designates
the number -t. But what of the descriptions '(1X) (9 > x)',

'(1X)(X ~ x)', '(1x)(Jones loves x)'? We cannot say that '(1X)
(9 > x)' designates the number less than 9, for there are many
such numbers. We cannot say that' (1X) (x ~ x)' designates the
object which is distinct from itself, for there is no such thing. We
cannot say that' (1X) (Jones loves x)' designates the person loved
by Jones, for we do not know whether there is such a person;
Jones may love several, or none at all. Ordinary usage gives us
no clue as to the meaning of such descriptions, since use of the
idiom (1) is ordinarily limited to cases where one and only one ob
ject is believed to satisfy the condition' ... x ... '. Everyday use
of descriptions is indeed often elliptical, essential parts of the con
d'ition ' ... x ... ' being left understood; thus we may say simply
'the yellow house' (i.e. '(,X) (x E yellow. x E house) ') \vhen \vhat
is to be understood is rather' the yellow house in the third block
of Lee Street, Tulsa.' But when in ' ... x ... ' there is nothing
either expressed or tacitly understood which is adequate to deter
mining the object x (to the best of the speaker's belief), the idiom
(1) is not ordinarily used.

Does this mean that ,,-e should reject the notation r(u:x)¢> l as
meaningless in those cases where ¢> is satisfied by no object or by
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many, rather than by exactly one? This would fit ordinary usage
of the idiom (1), but from the standpoint of logical analysis such a
formulation is awkward. It is awkward, in general, to let ques
tions of meaningfulness or meaninglessness rest upon casual
matters of fact which are not open to any systematic and conclu
sive method of decision. We may never know whether Jones loves
none, one, or many; and it is best not to have to wait for that
information in order to decide whether to accord the expression
, (1X) (Jones loves x)' a place in our language. The truth or false
hood of statements must indeed wait, in general, upon inquiries
which lack any systematic and conclusive technique; but the
meaningfulness of an expression - the eligibility of an expression
to occur in statements at all, true or false - is a matter over which
we can profitably maintain control. Let us then so define r (1 a)</>1

as to provide for its significant use regardless of the number of
objects happening to satisfy the condition </>. In accordance with
(1) we want (1X)(••• X •••) to be the sole object x such that
... x ... so long as there is such an object; but in the remaining
cases we may construe (1X)( . •• X •••) in any arbitrary fashion that
proves convenient - let us say as A - since ordinary usage affords
no preconceptions regarding such cases.

It will be found shortly (*196, *197) that such a version of (1X)
(.•. x ..• ) is achieved by the following definition.

D17. r(,a)</>' for rS(31')(~ E l' - (a)(a = 1'- == </»)'.

The choice of {3 and l' in D17 is subject to the obvious convention:
they are to be distinct. from each other, from a, and from the
variabies of </>.

Just as the prefix 'y' cancels 'y E' (cf. t189), so the prefix '(1Y) ,
cancels 'y = '. This is shown in the following theorem.

t195. (x) x = (1Y) (y = x)
Proof. t18S, *123 [189 ==.] x = y(3z)(y E Z _Z = x) (1)

*171 [1=.]x=w(3z)(WEZ.Z=X) (2)
*103 [(x)182 ).] Z = Z (3)
*103 (y)(y = z .=. y= x)): [3 =_] z = x (4)
*121 (& D10), *117 z = x .)(y)(y = z .=. y = x) (5)
*121 (& D5, 17) [(z) (5 • 4)).2 =] 195
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The bracketing in the last line, above, can be resolved into steps
as follows:

(z)(S [. 4J)). 2 == 195, [(z)5 ).J 2 == 195, [2 == J195.

The matrix '(x)(x ='y .== .... x ... )', according to which
' ... x ... ' is true of anything x just in case x is y, constitutes a
simple symbolic translation of the words 'y is the sale object x
such that ... x .. . '. Now we want (1X)(... x ... ) to be this
object y, if such there be; and otherwise we want (1X) ( ... x ... )
to be ..\. I.e., the closures of:

(x)(x =y.== •... x ... ) ).y = (1x)( x )
and: ~(3y)(x)(x = y .== •... x . .. ) ). (1X)( x ) = A

are wanted as theorems. That 017 achieves these objectives is
established in the following two metatheorems.

*196. If {3 is distinct from a,
r- r(a)(a = (3.== c/» ). {3 = (,a)c/>l.

Proof. *171 (& hp) r- r [(x)195 ==J ({3)({3 = (1a)(a = (3))l. (1)
*110 r- r [1 ).J {3 = (1a)(a = (3)l. (2)
*121 r- r(a)(a = (3.== c/»): [2 ==.J {3 = (,a)c/>l.

*197. If {3 is not a nor free in C/>,

r- r~(3{3)(a)(a = (3.== ¢)). ('a)¢ = Al.

Proof. Let,., be new.
*156 r- r(3{3)(,., € {3. (a)(a = (3. == ¢)) ).

(3{3)(,., € (3) · (3{3)(a)(a = (3 . == ¢)l. (1)
*100, *117 r- rL 197 ) (,.,) ( [1 ) ] ~ L1) l

*194 (& D 17 & hp) ). (1 a)¢ = ..\ l.

Since (1X)( . .. X ...) as of D17 is patently a class, \\'~hereas the
one and only object fulfilling' ... x ... ' may be any sort of object,
the identification of the two will perhaps seem strange; but only
in case the reader has lost sight of the assimilation of non-classes
to classes (§ 25). An individual is a class, for it is identical with the
class whereof it is sale mem ber. Or, if the reader prefers the
equivalent but less convenient phrasing, according to which an
individual is neither a class nor the sale mem ber of a class, then he
must recognize that an abstract may in particular designate an
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individual rather than a class;. so that there is again no strangeness
in the identification of (1X) (... x ...) with an individual. In any
case the argument in *196 is com pletely general, and shows that
(1X) (... x ...) is the one and only object x such that ... x ...

whenever there is such a unique object.

Frege (Grundgeset:e, vol. 1, p. 19) was the first to offer an explicit formulation
of description. His version is equivalent to that provided by 017 except for the
treatment of those uninteresting cases where ct> is fulfilled by more than one value
of a; in such cases he arbitrarily gives r (7a)cP l the sense of r act> l. Still a third
version of r (7a)ct> l, equivalent both to Frege's and to 017 except for those waste
cases, is provided by defining r (7a)¢ l in the very simple fashion r/3(3 a )({3 Ea. ¢) l;

but I have preferred so to frame 017 as to identify the waste cases uniformly with

A.
The notation r (7a)ct> l, somewhat different from Frege's, was adapted from

Peano by Russell. The sign' 7' is supposed to suggest a certain inverseness to the
notion of unit class expressed by 'L' (§ 35).

Concerning the philosophical background of description theory, the limited
remarks of the present section may well be supplemented by reading Russell
"On Denoting,"

All the names we ever need, for pure logic and mathematics or
for any other sort of discourse, are adequately provided by ab
straction. For, suppose there is a name, say' Europe', which is
not defined as an abbreviation of an abstract but is instead simply
a primitive term of geography. By a trivial revision of our geo
graphical primitives and definitions we can reconstrue this name
as an abstract, and in particular as a description (which is a
special sort of abstract, by D1 i). This is accomplished as follows.
Instead of adopting the name' Europe' as primitive, we may adopt
a primitive form of atomic matrix r eur a l having the following
sens'e: 'eur x', taken as a whole, amounts to what would have been
expressed in ordinary language as 'x is Europe'. Now we can
introduce the name' Europe' by definition as an abbreviation of
'(1X) eur x'; for if there is one and only one object x such that
eur x then by *196 that object is (1X) eur x. The predicate 'eur'
itself is not a name, but a fragmentary sign like' E', ' = " 'f'-I', '(';
it can occur only attached, in contexts of the form r eur a l.

There is little point, one may suppose, in avoiding primitive
names by such artificial methods. Why is it better to adopt the
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predicate' eur', and then define' Europe', than to adopt' Europe'

outright? Actually the suggested course has, despite such artifi
ciality, a considerable theoretical advantage~ for the follawing
difficulty other\vise arises in connection with the notion of exist

ence.
To say that sOl1lethl··ng does n8t exist, or that there is something

\\Thich is not, is clearly' a contradiction in terms; hence' (x)(x
exists) , n1ust be true. Moreover, \ve should certainly expect leave
to put any primitive name of our language for the 'x' of any
matrix ' x ', and to infer the resulting singular statement

from' (x) ( x )' ~ it is difficult to contemplate any alternative
logical rule for reasoning \vith names. But this rule of inference
leads from the truth' (x)(x exists)' not only to the true conclusion
'Europe exists' but also to the controversial conclusion 'God
exists' and the false conclusion 'Pegasus exists', if we accept
'Europe', 'God', and 'Pegasus' as primitive names in our lan

guage. The atheist seems called upon to repudiate the very name
'God', thus depriving hin1self of vocabulary in \vhich to affirm his
atheism ~ and those of us \vho disbelieve in Pegasus would seem to

he in a similar position.
But this difficulty is resolved by the suggested procedure of

adopting matrices reur exl, rgod exl, r peg exl, and then introducing

'Europe', 'God', and' Pegasus' as abbreviations of '(7X) eur x',
'(7X) god x', and' (7X) peg x'. There is no question of the exist

ence of these three entities~ there is question only as to their na
ture. If there is a unIque object x such that god x, i.e. if

(1) (3y) (x) (x = )' • == god x),

then (7X) god x is that object~ and otherwise, by *197,

(2) (1X) god x = .\.

Monotheists and atheists now need disagree only on the truth values
of state111en t s suchas (1) and (2), not 0 n quest ion s 0 f mea n ingfu1
ness. The artificial dodge of dispensing with primitive names in
favor of descriptions or other abstracts is a \Nay of maintaining
control over questions of vocabulary independently of questions of

fact.
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Russell undertook to resolve the anomalies of existence by admitting the word
'exists' only in connection with descriptions, and explaining the whole context
'(1X)(... x ... ) exists' as short for '(3y)(x)(x = y.= ... x .. .)' (cf. his "Mathe
matical Logic," p. 253; Principia, pp. 66 ff, 174 f). This course supplies a strict
technical meaning for Kant's vague declaration that' exists' is not a predicate;
namely, 'exists' is not grammatically combinable with a variable to form a matrix
'y exists'. Russell's version of descriptional existence statements perhaps recom
mends itself still as an adjunct to the procedure which I have proposed above;
alternatively such existence statements forfeit their usual function and fall into
uniform triviality, since r (ux)et> l designates something (viz. A) even when r (313)
(a)(a = (3 • == et» l is false.

The difficulty which we noted earlier in connection with existence would have
survived in another form even if the usage' (x) (x exists)' had been proscribed at
the start in conformity with Russell's dictum. Independently of any predicate
'exists', we presuppose that a noun designates something whenever we deduce a
singular statement from a universal quantification by substituting the noun for
the variable. The quantification makes an affirmation regarding all entities, and we
assume that the substituted noun designates one of those entities. So long as there
are primitive expressions whose possession of designata is undecided, the logic of
quantification remains indeterminate.

Names are indeed describable in general as expressions which (unlike' (', ' 1 "
'f', 'eur', etc.) admit thus of substitution for variables in deriving singular state
ments from quantifications. Cf. my "Designation and Existence," "Logistical
Approach." The sort of primitive notation which I urge is free from such expres
sions; they enter afterward as abstracts by contextual definition, and the principle
allowing their substitution for variables emerges as a metatheorem (*231, § 31).

Such avoidance of primitive names, in the construction not only
of the purely logical language but also of formalized languages of
broader scope, has incidentally the further advantage of making
the quantification theory of Chapter II adequate for all extra
logical as well as purely logical applications of quantification. If
primitive nalnes were allowed, the quantificational axioms of the
kind D (cf. § 15, also *103) would. have to be extended to include
statements in which narnes occur in place of the variable a ' . But
we have seen that such names can be avoided; languages for any
extra-logical purposes can presumably be formed merely by
supplementing our primitive logical notations by indefinitely
many extra-logical predicates such as 'eur', 'red', etc. Such signs
are of the same category as 'e'; each attaches to one or more
variables to produce an atomic formula.

For us, in any case, all names \vill be abstracts. The numerals
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'0', '1', etc., and indeed all expressions which are to behave in the
manner of names at all, will turn out in the course of the definitions
to be abbreviations of descriptions or other abstracts.

Altogether we have three sorts of terms, or substantives: there
are variables, which are essentially pronouns (cf. § 12), and there
are abstracts with and without free variables. Abstracts without
free variables, e.g. 'X(XEX)', 'x(x EX)', 'x(x = x)' (or 'V'), and
'x(x ¢ x)' (or' A '), are names of definite classes. But abstracts
with free variables, e.g. 'x(y EX)' and 'x(y EX. X E z)', are not.
They amount to substantive phrases with unattached pronouns;
e.g., 'x(y E X)' corresponds to the phrase' the class of all those ele
ments whereof it is a member'. Such expressions might be classed
as name matrices, for they are related to names as statement ma
trices are related to statements. Variables themselves may also
conveniently be classed as name matrices.

Thus, just as formula: comprise statements and statement matrices,
so terms comprise names and name matrices. A formula without
free variables is a statement, and a term without free variables is a
name. All names are abstracts, but not conversely; and all
variables are name matrices but not conversely. From the stand
point of primitive notation our only terms are variables, pronouns;
all abstracts, and in particular all names, admit ultimately of
elimination through D9.



CHAPTER FOUR

EXTENDED THEORY OF CLASSES





§ 28. Stratification

WE CAN decide whether or not a statement is an axiom of quan
tification by examining its structure with regard merely to quanti
fiers and statement connectives (ultimately, quantifiers and' 1 ');
the question is independent of the properties of 'e'. Again, we
can decide whether or not a statement is a ponential of two given
statements by examining the structure of the statements with
regard merely to ')', hence ultimately , 1 '. The notion of theo
rem hitherto defined turns, therefore, merely upon structure in
terms of quantifiers and joint denial. Indeed, the notion of
theorem was explained before membership had been discussed at
all. The theorems are true statements which involve only quanti
fiers and' l' essentially; 'e' occurs vacuously. Even the theo
rems of Chapter III relating to membership, or to the derivative
notions of identity, abstraction, and description, are thus in~e

pendent of any special properties of membership; they would
remain true if the sign' e' (throughout the primitive expansions of
those theorems) were reconstrued as meaning' is not a member
of', or 'is older than', or 'loves', or anything else we like.

We have yet to consider the logical truths which depend for
their truth upon the meaning of 'e', rather than merely upon the
quantifiers and joint denial. In order to provide for such truths, a
new infinite set of axioms will be introduced by way of supplement
to the axioms of quantification. Since they are various of the
logical truths which involve' e' essentially, these new axioms will
be called axioms of membership. The notion of theorem will then be
extended to cover all ponentials of ponentials of .. -. ponentials of
axioms in general, whether of quantification or of membership
(rather than just those of quantification).

Axioms are wanted specifying circumstances under which a class
is to be an element. What conditions shall we regard as sufficient
for elementhood? Common sense is of no avail in this question;
common sense would construe every class indifferently as an ele-

155
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ment, i.e. as capable of membership in another class, whereas we
already know that this status must be withheld from the classes

(1) x(x € x), x(y)ro...;(x e y • y ex), x(y)(z)ro...;(x e y • y e z. z ex),

etc. (cf. § 24). It remains natural, however, to construe the range
of elements as liberally as possible. Wherever r &1> l names a class
which is not by necessity barred from elementhood as are the
classes cited in (1), the statement"&1> e Vl recommends itself as an
axiom of membership.

It might appear reasonable, then, to specify as axioms of mem
bershi p all those statements r &1> e Vl whose denials are not theo
rems. But there are objections to this course. For one thing, we
must decide whether the notion of theorem involved in this de
scription is to be understood in the narrower or the broader sense:
ponentials of ... ponentials of axioms of quantification, or ponen
tials of ... ponentials of axioms of quantification and membership.
The broader sense would vitiate the suggested explanation of
axioms of mem bershi p, through circularity; for the term 'theo
rem' in the explanation would presuppose that we already knew
what the axioms of membership were to be. We "must therefore
choose the narrower sense. There remains, however, an unanswer
able objection of another kind: the lack of a test. Even when
'theorem' is taken in the narrower sense, there is no process for
deciding that a given formula is not a theorem (cf. § 16); yet this
decision would have to be made before we could be sure that
r &1> eVl is an axiom of membership in the proposed sense. Alleged
axioms of membership of this kind would never be conclusively
recognizable as such, and proofs based on them would thus be
impossible. What is \vanted rather is a characterization of axioms
of membership according to which those axioms will always be
recognizable. The condition imposed upon 1> and a, in order that
r &1> e Vl be an axiom of membership, must be a condition which we
can check.

So the best we can do is seek some testable condition on 1> and a

which will serve to include among the axioms of membership as
many harmless statements r &1> e Vl as is conveniently possible,
while excluding any actually refutable ones. Looking to (1) for a
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suggestion of the forms to be excluded, we are led to suspect that
the essence of the bad cases of r&cP E V' is the presence in cP of the
cyclic type of clause

raE 1'1 • 1'1 E1'2 • • • • • l'n E a '

from a around to a. We are tempted to take as axioms of mem
bership all statements r &cP E V' such that cP is free from that
cyclic feature. Actually, however, this restriction is too mild;
bad cases turn up which are free from the cyclic feature. Con
sider, e.g., the abstract:

(2) x '" (y)(x = y .J. x E y).
The quantification therein, viz:

(y)(x = y .J. x E y),

says that x is a member of whatever it is identical with; in other
words, that x is a member of itself. Thus the class which (.2) desig
nates is our familiar non-element x(x EX); yet (2) does not, like
'x(x EX)', exhibit any cyclic situation. Even when expanded into
primitive notation, the formula involved in (2) turns out to con
tain no atomic formuhe beyond '(ZEX)', '(ZEY)', and '(XEy)';
and these materials are incapable of being put into any cyclic
arrangement.

But there is another characteristic, broader than the cyclic one,
which is exhibited by the cyclic sorts of context and by (2) as well;
namely, it is impossible to put numerals for the variables in such a
way that' E' comes to occur always in the manner' n E n + 1'. This
is the characteristic upon which exclusions of statements racP E Vl
from the axioms of membership will be based.

Let us speak of a formula as stratified if it is possible to put
numerals for its variables (the same numeral for all occurrences of
the same variable) in such a way that 'E' comes to be flanked al
ways by consecutive ascending numerals ('n E n + 1'). 'fo show
e.g. that the matrix:

(3) (y ) (x E Y .) (z) (y E Z • ==. X E y))

is stratified, we simply put suitable numerals for the variables:

(4) (1)(OEl.)(2)(lE2.=.OEl)).
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The expression (4) is of course not supposed to mean anything;
it is not a statement or matrix or name, but only a diagrammatic
instrument like the truth table.

The property of stratification can obviously be rephrased in
terms of a direct test. Given any formula cP, the following pro
cedure will decide whether or not it is stratified. First we put'0'
for all occurrences of some one arbitrary variable. Then we put
numerals (positive, zero, or negative) for further variables, step by
step, according to this rule: if rE ex1 appears preceded by a numeral,
put the next higher numeral for all occurrences of ex; and if
r~ El appears followed by a numeral, put the next lower numeral
for all occurrences of {3. If in the course of this process an occur
rence of 'E' comes to be preceded by a numeral and followed by a
numeral which is not the next higher, then we stop; cP is unstrati
fied. If the process yields no such result, and some variables still
remain unsupplanted after the process has been carried as far as
possible, then we put '0' for an arbitrary one of these residual
variables and continue. Having continued thus until all variables
are supplanted, and still not having found cP unstratified, we con
clude that cP is stratified.

The notion of stratification is formulated for application to
formulGe in primitive notation; hence we must not undertake to
show that a formula cP is stratified until we have eliminated all
definitional abbreviations which conceal any atomic formulGe
rex EfJl. The abbreviations introduced by D1-8 need not be dis
turbed; for the set of atomic formulGe r ex E (3'" occurring in cP is un
affected by those definitions, and it is only on that set of atomic
formulGe that the question of stratification of cP depends. Thus no
definitional expansion was needed in showing stratification of (3).
But abbreviations introduced by D9-17 and subsequent definitions
would have to be eliminated. E.g., to test the formula in (2) for
stratification we must first expand' x = y' by D10; the whole be
comes:

~ (y) ((z) (z EX. ==. Z E y) ). X E y),

which proves unstratified by the test of the preceding paragraph.
Assumption of r act> E V'" for stratified ct> does not attribute ele

menthood directly to the classes described in (1) and (2), but we
must beware still of indirect consequences. If we were to take as
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axioms of membership all statements rticP E Vl with stratified cP, and
all closures of matrices r ticjJ E Vl with stratified cP, then we should
encounter trouble. E.g., since' x E y' is stratified, we could assert:

(5) (y) X(XEY)EV;

i.e., by t189, (y)(y E V). All classes, including those described in
(1) and (2), would thus be admitted as elements after all.

So stratification of cjJ is not to be sufficient for truth of the
closure of r acjJ E Vl. Where cjJ is stratified, we might try assuming
not that the closure of racP E Vl is true but only that racjJ E Vl is
true for all ~l~m~nts as values of its free variables; i.e., that

is true where (¥, {3h {32' •.. , {3n exhaust the free variables of cjJ.

Then in particular we would affirm not (5) but:
(y) yEV.).X(XEy)EV,

which is quite harmless (and a mere corollary, indeed, of t189).
In the first edition of this book the axioms of membership, in so

far as they concern elementhood, were left as described above;
viz., (6) for all stratified cjJ. However, in 1942 Rosser showed,
by a deduction too complex for inclusion here, that the resulting
system was inconsistent. A recent analysis by Wang suggests that
we can put the system to rights if we not only restrict the free
variables of r acjJ E Vl to elements as in (6), but also restrict the
bound variables of tP itself to elements. This can be done by
changing each quantification r(,,)x l within cjJ to r(")(,, E V .) x) l,

and each quantification r(3,,)x l to r(3")(,, E V • x) l.

Let us then take as axioms of membership all statements of the
form (6), i.e. the closures of all matrices of the form

(7)

such that cP has no free variables but (¥, {3h (32, ... , f3n and is formed
from a stratified formula by restricting all bound variables to ele
ments. E.g., since the formula:

(3y) (x E y • (z) (y E Z .). Z E w»
is stratified, the following is an axiom of membership:

(8) (w) W E V.) x(3y)(y EV•X EY • (z) (z E V.) : y E Z • ) • Z Ew» E V.
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Again, since (3) is stratified, this is an axiom of membership:

x(y) (y E V .): .';' E Y .) (z) (z E V .): y E Z • ==. X E y)) E V.

Here there is nothing to correspond to the antecedent of (7), because
there are no free variables; the n of (7) is here o. In general we are
to understand (7) thus as simply losing its antecedent when n = o.

Strictly all formulte are to be thought of as in primitive notation.
But then, since in primitive notation all quantifiers are universal,
the restriction of a bound variable to elements consists strictly in
changing only r(1')x' to r(1')(l' E V .) x)' and never r(31')x' to
r(31')(1' E V • x)'. Properly thus the restriction of bound variables
turns r(3l') X" orr1"0..1 (1') 1"0..1 X" into

(9) r 1"0..1 (1') (1' E V .) 1"0..1 x)'

rather than r(31') (1' E V • x)'. However, (9) in turn becomes
r(31')(1' E V • x)' by *100 and *123 (and 08); so we may in practice
conveniently treat (8) and similar cases directly as axioms of mem
bership, the excursion through 08, *100, and *123 being left tacit.

§ 29. Further Axioms of Membership

IF x and yare the same thing, then whatever can be said of x is
naturally true likewise of y. Closures of conditionals of the sort~

x=y.): x .... == •... y ...

should thus b.e true, ' ... x ' and ' ... y ... ' being thought of as
formulc:e differing only in free occurrences of 'x' and 'y'. The
following, accordingly, is wanted as a metatheorem:

(1) If c/>' is like c/> exceptfor containing free occurrences of a'
in place of some free occurrences of a, then ~ r a = a' .). c/> == c/>".

This is the principle of the substitutivity of identity, in one of its
forms. Broader forms of the principle are likewise wanted, dealing
with terms rand r' in general rather than merely with variables
a and a'. Now in order to provide for (1), and its extension to
terms rand r', we must supplement our axioms.

In specifying these new substitutivity axioms it is sufficient to
limit our attention to (1); the extension to terms rand r' can be
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accomplished afterward (§ 30) without further assumption. Nor
do we need to take as axioms all the statements covered by (1);
it turns out that we need take only the cases where c/> is atomic.
Also it turns out that the occurrences of a replaced by a' can be
limited to a single one; and' ==' can be weakened to ') '. Freedom
of the occurrences of a and a' in c/> and c/>' no longer needs to be
stipulated, since an occurrence of a variable in an atomic formula is
necessarily free. The axioms are therefore describable simply
as the closures of formulte

(2) ra=a'.).c/»c/>"

such that c/> is atomic and c/>' is formed from c/> by putting a' for an
occurrence of a. Thus two of them are:

(3) (z) (y) (x) x = y .) : x E Z .). Y E Z,

(4) (z) (y) (x) x = y .) : Z EX.). Z E y;

and there are further ones corresponding to atomic matrices c/> of
any non-logical forms - forms other than r{3 E 1'1.

In view of D10, the axiom (4) and all others sharing the same
form

(5)

are actually redundant assumptions; for they are readily seen to
be theorems on the basis of *103 and *100. In consequence it can
be shown that (3) would suffice as sole substitutivity axiom, if we
were disposed to disregard non-logical atomic matrices and pro
vide for only such theorems as are logical formulte. But the notion
of theorem is intended as an approximation to the general notion
of logical truth; and it seems desirable, as in Chapter II, to pursue
our codification of this notion in such a way that it will apply to
statements whose atomic formulte have any sort of subject matter,
logical or otherwise. Accordingly the more generous set of sub
stitutivity axioms is adopted. The redundant cases described in
(5) are admitted along with the rest merely because an added
clause expressly excluding them would be an idle complication.

The substitutivity axioms are appropriately classifiable as
further axioms of membership, supplementary to those of § 28;
for the substitutivity of identity appears as a condition on 'E'
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when' =' is expanded by D10. We turn next to the consideration
of yet a third set of axioms of membership.

When we found that the common-sense idiom 'the class of all
entities x such that ... x ... ' could not in general be trusted to
express a class, we weakened it to read 'the class of all elements x
such that ... x . .. ', symbolically 'x( . .. x . .. )'. We now need
axioms of membership providing in general for the existence of the
class described by this weakened idiom. There is to be a class
y whose members are all and only those elements x such that
... x ... ; symbolically

(6) (3y) (x) (x E y .=. X E V .... x ... ),

since 'x E V' means that x is an element. All statements of the
kind (6), then, and the closures of all matrices of this kind, are to
be axioms of membership. More rigorously stated, the axioms of
membership are to include the closures of all formul~

(7)

such that {3 is not a nor free in ¢.
To sum up, then, the axioms of membership comprise the clo

sures of the formul~ described in connection with (6) of § 28 and
(2) and (7) of the present section. The notation 'r- ¢' will be used
hereafter to mean that the closure of ¢ is a theorem in our newly
extended sense: an axiom of quantification or membership or a
statement derivable from such axioms by one or more steps of
modus ponens. The totality of theorems ceases to be determined
by *100-*104 alone, and comes rather to be determined by *100
*104 plus the following:

*200. If ep has no free variables beyond a, ~h {32' ••• , (3n, and is formed
from a stratified formula by restricting all bound variables to elements,

r- r (3h (32, ... , f3n E V.). a¢ E Vl (l- ra¢ E Vl when n = 0).

*201. If ¢ is atomic, and ¢' is formed from ¢ by putting a' for an
occurrence of a, then r- r a = a' .). ¢ ) ¢'l.

*202. If {3 is not a nor free in ep,
J- r (3(3) (a) (a E(3 .=. a EV . ¢)l.

What have hitherto been shown to be theorems continue to be
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theorems; but we can now establish further theorems, with help of
*200-*202, which were lacking before. Two simple ones are the

following, which affirm that V and A are elements.

t210. V E V
Proof. '(y)(y EX .=. Y EX)' IS stratified; hence

*200 x(y) (y E V •J : y EX. ==. Y EX) E V (1)
*100, *123 (& 015, 10) [ 1 == ] 210

t211. A E V Proof similar, with '~(y)' in place of '(y) '.

With help of t210 and *202 it is now possible to prove a theorem
to the effect that, whatever y may be, there is something else,;
in other words, that there is more than one entity.

t212. (y)

Proof·
*100
*149 (& D12)
*130
*121 (& D10)
*100
*202
*149

(3x)(x ~ y)

z = V • Z EV .J 1"'..1 (z EX .==. ZEV • Z'E x)
[(z)1 J. 210 J](3z)l"'..I(z EX .==. ZEV • Z.E x)
r'-I (z) (z EX. ==. Z EV . Z Ex)[ == 2J
x = y.).[3 ==JI"'..I(Z)(ZEX.==.ZEV.Z EY)
[4 ):] (z)(z EX .==. ZEV • Z Ey)). x ~ y
(3x) (z) (z EX. ==. ZEV • Z Ey)
[(x)5 ).6 )] 212

(1)
(2)
(3)
(4)
(5)
(6)

Ways of protecting logic from contradictions of the sort considered at the
beginning of § 24 were proposed in 1908 by both Russell and Zermelo. Russell's
way, known as the theory of types, is restated in Whitehead and Russell, vol. 1, pp.
37-65. The theory is highly complex and at some points obscure. Some of its
complexity was resolved in 1914, when Wiener reduced relations to classes (cf. § 36).
The dispensability of the most complex and obscure part of the theory, viz. the
part having to do with the so-called orders of propositions and propositional func
tions, was pointed out by Chwistek in 1921. (See Church's review, also Ramsey"
pp. 20-29, and my " Axiom of Reducibility.") Thus simplified, the theory of types
is substantially this: each entity is conceived as belonging to one and only one of a
hierarchy of so-called types; and any formula which represents membership as
holding between entities of other than consecutive ascending types is rejected as
meaningless, along with all its contexts. (Cf. my "Theory of Types.") In partic
ular, thus, 'x E x' and all its contexts are meaningless; and similarly for' x E y •
Y EX', 'x E Y • Y E Z • Z E x', etc. The prefix' the class of all entities x such that'
survives, but all the matrices in connection with which this prefix caused trouble are
now banished from the language.
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Under Russell's theory there is no one exhaustive class V, but rather an infinite
array of analogues each of which exhausts a type; for a class is forbidden to draw
its members from more than one type. In similar fashion every other logically
definable entity, e.g. A, the identity function I (§ 42), and indeed each number,
loses its unity and gives way to infinitely many replicas. Intuitively all these
cleavages and reduplications are of course unwelcome; and technically also, for
they call continually for more or less elaborate technical manreuvres by way of
restoring severed connections.

Zermelo's scheme, refined in 1930 by Skolem, is in effect as follows. Special
axioms are adopted providing for the existence of the null class, the class of all sub
classes of a given class, the class of all members of members of a given class, and the
class having anyone or two given things as sole members. Then a so-called
Aussonderungsaxiom is added which allows generation of further classes via the
idiom' the class of all entities x such that x E y and ... x ... '. The Aussonderungs
axiom is the precursor of *202, with which it is identical except for exhibiting a new
variable in place of V. For variants of the Zermelo system see Fraenkel's Einlei
tung, my "Set-Theoretic Foundations," and Ackermann's "Mengentheoretische
Begrilndung."

Zermelo's theory is free from the drawbacks noted in connection with Russell's,
but has drawbacks of its own. Whereas under Russell's scheme an abstraction
prefix 'the class of all entities x (of given type) such that' can be applied outright
to any meaningful formula, under Zermelo's scheme generation of classes tends to
be laborious and uncertain. Moreover, there is for Zermelo no class which em
braces more than an infinitesimal proportion of the totality of entities; thus there
is nothing remotely analogous to an exhaustive class, nor does any class have a
complement x (cf. § 33).

My "New Foundations" strikes a middle course between Russell and Zermelo.
Zermelo's initial axiorns of class existence are dropped, and the idiom' the class of
all entities x such that' is construed as effective whenever applied to a stratified
formula. There is an echo here of Russell, since a stratified formula is one which
could be reconciled with the theory of types by some assignment of types to the
variables; but types themselves, and the cleavages and reduplications which they
involve, are abandoned. Unstratified formul;.e remain meaningful, and can often
even be shown by more or less devious reasoning to determine classes - just as, in
the system of this book, unstratified formul(e can often be shown to determine
elements. In contrast to Zermelo's theory, "New Foundations" countenances an
exhaustive class V and a complement xof every class x. Instead of repudiating the
most inclusive classes, the system countenances a universe which is symmetrical as
between small and large - as the existence of complements testifies. Within the
lower half of this symmetrical universe, a universe fulfilling Zermelo's theory is
contained (provided that two rather appendical axioms of Zermelo, viz. the axiom
of infinity and the axiom of choice, be appended also to "New Foundations" or else
dropped altogether).

In "New Foundations," unlike Zermelo's system, generation of classes is as
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convenient as in Russell's theory; for the prefix' the class of all entities x such that'
is now available in connection with formul<e corresponding to all Russell's meaning
ful formul<e. Nor is the phrase' all entities x' here subject, as with Russell, to the
parenthetical qualification' of given type'. Moreover, the resulting abstracts may
be substituted for variables at will without fear, as in Russell's system, of rendering
the context meaningless. "New Foundations" shares with Ze-rmelo's system the
virtue of involving no complications in the matter of meaningfulness of formulre.

The system of theorems determined by *100--*104 and *200-*202 could be con
verted into the system of." New Foundations" merely by dropping *200, deleting
'a ~ V .' from *202, and stipulating that the cJ> of *202 be stratified.

There is, however, a technical inconvenience to which "New Foundations" and
Zermelo's system are alike subject, and from which Russell's scheme is free; namely,
the survival of conditions (e.g. 'x Ex') to which no classes correspond. This
divergence from Russell is a matter of liberalization rather than restriction, of
course, for it consists in the retention of formul<e which Russell rejected as meaning
less; but it nevertheless proves awkward in some cases. One unnatural result is
that the principle of mathematical induction (§ 44) cannot be established in its
general form unless we adopt special axioms for the purpose; cf. Rosser, "Con
sistency," "Definition."

The system set forth by von Neumann (1926), and recast by Bernays (1937)
in a form more directly comparable with tradition, overcomes this kind of difficulty.
Matrices which would otherwise have no classes corresponding to them are now
accorded classes of a special sort, incapable of being members. This proscription
of membership seems to work as well as the repudiation of the classes themselves
so far as the avoidance of contradictions is concerned, and it is a milder and techni
cally much more convenient sort of restriction.

The basic difference between the von Neumann-Bernays system and the system
developed in this book resides in the conditions of elementhood; whereas the ele
ments of the von Neumann-Bernays system comprise approximately the classes of
Zermelo, the elements of the present system comprise all the classes of "New
Foundations." For von Neumann and Bernays, no element embraces as members
more than an infinitesimal proportion of the totality of elements; consequently the
class V of all elements is not an element, nor is the complement xof any element x.
For the present system on the other hand V is an element (t210) and so is x for
each element x (t274); the totality of elements is symmetrical clS between small
and large.

While the elements of the present system answer to the classes of "New Founda
tions," it is not clear that von Neumann's elements correspon-d .exactly to Zermelo's
classes. Thus, whereas the lower half of the symmetrical universe of "New Foun
dations" contains Zermelo's universe, it is not altogether clear that the lower half
of our present symmetrical totality of elements contains all of von Neumann's
elements. This relationship could be assured by supplementing *200-*202 with a
further axiom of membership:

(x) x E V .V (3y) (x C t y • ytlX = V)
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(in the notation of §§ 38, 40), which answers to half of von Neumann's 4.2; but let
us beware, for perhaps this axiom is actually refutable on the basis of *100-*104
and *200-*202.

Whereas the present system would appear to be much more liberal than von
Neumann's in the matter of elementhood, von Neumann's distinguishes itself on an
important point of economy; for his system demands, over and above *100-*104,
only a finite number of axioms.

In the present system we regain much of the manipulative convenience which
was enjoyed in the days of false security before 1902 and sacrificed in the systems
of Russell, Zermelo, and "New Foundations." We can compose formul~ in the
simple manner of § 23 without fear of meaninglessness, we can apply abstraction
prefixes to any of these at will, and we can substitute the results for variables
(*231) without thought of stratification or auxiliary existence theorems. We pay
for this in clauses of elementhood rr E Vl , but at bargain rates.

The contradictions which instigated this whole series of researches, from Russell
and Zermelo onward, were implicit in the inferential methods of uncritical common
sense; and the various reformulations of logic which have been proposed for
avoiding the contradictions have been correspondingly artificial and foreign to
common sense. The least artificial and at the same time the technically most
convenient formulation would seem to be that which comes as close as it can to the
over-liberal canons of common sense without restoring the contradictions. But
the more closely we approach this ideal in point of liberality, the more risk we run
of subtly reinstating a contradiction for posterity to discover. If we undertake to
prove consistency, moreover, we find ourselves in this curious predicament: the
proof would itself have to proceed by logic, and hence would be conclusive only in
proportion to our prior confidence in the consistency of the logic used. The most
we can hope for, in such a proof, is to show that one theory is consistent if another
is; and this is interesting just in case the one theory was more suspect than the
other. Intuitive obviousness thus becomes the last arbiter - and a fallible one,
in view of the contradiction which Russell was able to draw from common-sense
logic. But there are degrees of obviousness; future analysis may enable us to
derive logic from a set of principles yet more obvious and natural than those which
Russell discredited. Meanwhile we adopt a smooth-running technique which does

not appear to be inconsistent. Our risk of inconsistency is, at any rate, no greater
here than in "New Foundations"; for Wang has shown that the one system is
consistent if the other is.
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§ 30. Substitutivity of Identity
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THE SUBSTITUTIVITY of identity, which has been postulated
in a rudimentary form (*201), will now be established in its full gen
erality. Seven metatheorems *221-*22·7 will be proved which are
exactly analogous to the principles *120-*123 and *186-*188 of the
substitutivity of the biconditional. As a lemma for *221 it is
convenient first to prove the following special case thereof (which
is at the same time a case of *223).

*220. If cj>' is formed by putting s' for an occurrence of S in a quasi
atomic context cj>, then ~ r S = s' .). cj> == cj>'l.

Proof. Case I: sand r' are variables.
Case Ia: cj> is atomic.!
*201 (& hp) ~ r s = s' .). cj> ) cj>'l. (1)
*100, *123 (& DI0) ~ r s = s' .). s' = Sl
*201 (& hp) ). cj>' ) cj>l. (2)
*100 (& DS) ~ r[l . 2.)J220 l .

Case Ib;· cj> is not atomic. Then the expansion of cj> into primitive
notation makes the occurrence of the variable S give way to many
occurrences, because of the reduplications arising from expand
ing '~', '.', and '==' into terms of ' 1 '; but these occurrences
will have a uniform atomic context 1/;, which occurs over and over.
Let 1/;' be the corresponding part of cj>'. By Case la,

(1)

From the fact that cj> and cj>' are quasi-atomic contexts of sand s',
it is clear that the specified occurrences of 1/; and 1/;' in the primitive
expansions of cj> and cj>' will not fall within any quantifications
governed by r (r) l or r (r') l; in other words, rand r' are distinct

1 From the fact that S is a variable we cannot conclude that its quasi-atomic
context c/> is atomic; abstracts may still turn up at other points in c/>. But c/> may

be atomic; the atomic is a special case of the quasi-atomic.
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from all the variables {3h ••• , (3n with respect to which the occur
rences of 1/1 and 1/1' in question are bound in ep and ep'. Hence

(1), *117
*121

I- r r = r' .) (~l) ..• (~n) (1/; == 1/;')'
). ep == ep".

Case 2: rand r' are abstracts.
Case 2a: ep and ep' are raE r' and raE r". *103 (& DI0).

Case 2b: ep and ep' are of other forms than raE r' and raE r".
Still, definitional expansion of ep and ep' reveals that the occurrences
of rand r' in question, in ep and ep', are free occurrences having the
immediate contexts raE r' and raE r" where a is foreign to rand
r' (cf. § 26). Thus

*121 I- r (a)(a E r. ==. a E r') ). ep == ep", q.e.d. (cf. DI0).

Case 3: r is a variable and r' an abstract.
Case 3a: ep and ep' are raE r' and raE r". *103 (& DI0).

Case 3b: ep and ep' are r00/1 E r' and r00/1 E r". Let "Y be new.

*121 I- r ("Y) ("Y E r .==. l' E r')).
(31')(1' = 00/1. "Y E r) == (3'Y)("Y = 00/1. "Y E r')',

q.e.d. (cf. DI0, 12).

Case 3c: ep and ep' are r r E 11' and r r' E 11'. Let "Y be new.
*134 J- rr = r' • r E 11.) (3'Y)("Y = r' • "Y E 11)'. (1)
*100 I- r[1 .] r = r' .): r E 11 .) R 1'. (2)
*220 (Case 1) I- r"Y = r.): "Y E 11 .==. r E 11'. (3)
*100, *163 I- r(3'Y) ([3 .] "Y = r. "Y E 11) ). r E 11'. (4)
*121 (& D10) J- rr = r' .):. [4 ==:] R1 ). r E 11'. (5)
*100 (& D5, 12) I- r[2 . 5 .) :.] r = r' .): r E 11 .==. r' E 11', q.e.d.

Case 3d: ep and ep' are extra-logical quasi-atomic contexts, as of
Dal-an of § 26. Proof similar.

Case 4: r is an abstract and r' a variable.
*100, *123 (& D10) f- r r= r' .). r' = r'
*220 (Case 3) ). ep' == ep'
*100 ). ep == ep".
*221. If ep' is like ep except for containing r' at a place where ep con
tains r, and at, ••• , an exhaust the variables with respect to which
those occurrences of rand r' are bound in ep and ep', then
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J- real) · . · (an)(r = r') ). cP == cP'l.

Proof. The occurrences of rand r' in question have as immedi
ate contexts either quasi-atomic l contexts 1/; and 1/;' (Case I) or else
quantifiers r(r)l and r(r')l (Case 2). In Case 1, rand r' may be
abstracts or variables; in Case 2 they must be variables. Case 2
has little practical significance, but must be dealt with because
*221, taken literally, includes it.

Case I. *114 J- r(al) ... (an)(r = r') ). r = r'l
*220 ). 1/; == 1/;'1. (1)

Let r(~l)Xll, r(~2)X21, ... , r(~m)Xm1 (m ~ 0) be all the quanti
fications in cP which contain the given occurrence of r, and let
r(~l)X\1, ... , r(~m)X'm1 be the corresponding parts of cP'. Then,
if (3i is a free variable of r (or r'), the occurrence of r (or r') will be
bound in cP (or cP') with respect to ~i; wherefore, by hp 2, {3i will
be one of at, ... ,an. For each i from 1 to m, therefore, (3i is one of
at, ... , an or else not free in r nor in r'. Thus none of ~t, • • • , ~m

is free in real) ... (an)(r = r')l. Hence

(1), *117 J- real) ... (an)(r = r') ) ((31) .•• (~m)(1/; == 1/;')1
*121 ). cP == cP'l.

Case 2 (see above). If the variables rand r' are the same then
cP' is cP, whereat I- r 2211 by *100; if on the other hand they are
distinct,

*171
*110
*130
*114

I- r[(y)212 == J(r')(3r)(r ~ r')l.
I- r[1 )J(3r)(r ~ r')l.
J- r""' (r) (r = r')[ == 2J 1.

I- real) ... (an)(r = r') ). r = r'l.

(1)
(2)
(3)
(4)

The occurrence of r in cP which we are considering is bound to the
occurrence of r(r)l which contains it (cf. § 14) - an occurrence of
r(r)l which is in cP and not, of course, in r. Thus the occurrence of
r is bound in cP with respect to r, wherefore, by hp 2, r is one
of at, ... ,an. Thus

(4), *117
*100

J- real) .. · (an)(r = r')) (r)(r =T r')l
): [3).]cP == cP'l.

1 Possibly atomic, in case rand r' are variables. See preceding footnote.
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*222. If q/ is like c/> except for containing r' at some places where c/>

contains r, and ah •.. , an exhaust the variables with respect to which
those occurrences of rand r' are bound in ¢ and c/>', then

~ real) ... (an)(r = r') ). c/> == c/>'1.

Proof from *221 like that of *121 from *120.

*223. If c/>' is like c/> except for containing free occurrences of r' in
place of some free occurrences of r, then ~ r r = r' .). c/> == ¢'1.

Proof: *222 (n = 0).

*224. If r- rr = r'l and c/>' is formed from c/> by putting r' for some
occurrences of r, then r- r c/> == c/>'l.

Proof from *222 like that of *123 from *121.

*225. If 71' is like 71 except for containing r' at some places where TJ

contains r, and ah ..• , an exhaust the variables with respect to which
those occurrences of rand r' are bound in 71 and 71', then

r- real) .. · (an)(r = r')). 71 = 71'1.

Proof: *222, *117 (& 010).

*226. If TJ' is like 71 except for containing free occurrences of r' in
place of some free occurrences of r, then r- r r = r' .). TJ = 71'1.

Proof: *225 (n = 0).

*227. If r- rr = r'l, and 71' is formed from 71 by putting r' for some
occurrences of r, then r- r 71 = 71'1.

Proof from *225 like that of *123 from *121.

The following variant of *223 is occasionally useful.

*228. If c/>' is like c/> except 'for containing free occurrences of r' in
place of some free occurrences of r, then

r- r r = r' . c/> •==. r = r' . c/>'1.

Proof. *100 r- r[223 ) ] 2281 .

§ 31. Substz"tution for Varz"ables

SINCE xC... x ...) is the class of all elements x such that
... x ... , any entity x will belong to the class if and only if it is an
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element and ... x . . .. That the closures of such biconditionals
are theorems is established in the following metatheorem, which
will subsequently be generalized (*235).

*230. f-raEac/>.=.aEV.c/>'.

Proof. Let {3 be new.
*171 J- r[(x) (y) 190 == ](a) ({3) (a E(3 .). a EV)'. (1)
*114 l- r[1 ) :]a E (3 .). a E V'. (2)
*110 l- r(a)(a E(3 .) c/»): a E(3.) c/>'
*100 ):[2.]aE~.).aEV.</J'. (3)
*100, *163 f- r(3{3) ([3 .] a E~. (a)(a E(3.) </J»). a EV . </J'. (4)
*100 J- raE V • </J .) c/>'. (5)
*135 (& D9) J- raE {3 • (a)(a E~ .) c/» .). a Ea</J'. (6)
*121 J- rea) (a E~ .=. a EV • </J»):.

[6=:] a EV • </J [.(a)5] .). a Ea</J'. (7)
(7), *163 J- r[202 ):] a EV • cP .). a Eac/>'. (8)
*100 (& 09) J- r[4. 8 .)] 230'.

Passing mention was made earlier (§ 15) of logical truths of the
form r(a)</J ) 1/1', where 1/1 is like </J except for containing a name r
in place of the free occurrences of a. The notion of name has since
been given an explicit status (§ 27), and now those logical truths
are forthcoming as theorems. This is established in the following
metatheorem, which is an extension of *103.

*231. If 1/1 is like c/> except for containing free occurrences of r wher
ever </J contains free occurrences of a, then J-r(a)4> ) 1/1'.

Proof. Case 1: r is a variable. *103.
Case 2. r is an abstract rSx'. Let a' be new, and let </J' be
formed from </J by putting a' for the free occurrences of a.
*223 (& hp) J- ra' = Sx .). 4>' = 1/1'
*122 ): [103 =.](a)</J ) 1/1'. (1)
*202 f- r(3a')({3)(~ Ea' .=. (3 EV . X)'. (2)
*230, *123 J- r(3a')(~) ({3 Ea' .=. ~ ESX)[ = 2J1. (3)
*171 (& 010) J-r[3 =J(3a')(a' = SX)~ (4)
(1), *163 J- r[4 )J 231'1

This metatheorem is used constantly in the sequel. It embodies
the principle of application or spectfication - the principle which
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(Z)and:

leads from a general law, a universal quantification r (a)cP1, to
each special case 1/; falling under the general law. We get 1/; from cP
by substituting a name or name matrix r for the variable of
quantification a. It is important to note that the substitution
must exhaust the free occurrences of a in cP; thus *231 gives us:

(x)(x = x) ). A = A
(x)(x = x) ). y(z E y) = y(z E y)

as theorems, but not:

(x) (x)(x = x) ). x = A.

The latter is clearly false. In thus requiring exhaustive substitu
tion, *231 resembles *103 and *134 and differs from *120-*124,
*186-*188, *220-*228.

The following metatheorem extends *134 as *231 extends *103.

*232. If 1/; is like cP except for containing free occurrences of r where
(ver cP contains free occurrences of a, then J- r1/; ) (3 a)cP1.

Proof. *231 (& hp) J- r[(a)135 )J 2321 .

The next extends *231 to the case of many quantifiers.

*233. If 1/; is like cP except for containing free occurrences of rh
r2, · · ·, rn in place respectively of all free occurrences of ah a2, ... ,
an, then

J- r (al) (a2) .•• (an)cP ) 1/;1.

Proof. We may assume without loss of generality that a1, a2, •.. ,
an are distinct; for if ai were aj then the hp would demand that
ri be rj, so that the extra mention of aj and r j could simply be
dropped. Now let cPo be formed from cP by putting new distinct
variables 131, .•• ,l3n for all free occurrences respectively of ah

•.• , an; and, for each i from 1 to n, let cPi be formed from cPi-l
by putting ri for l3i.
*171 J- r (al) ••• (an)cP ) (131) ••• (I3n) cPo1

*231 ) (132) • • • (I3n) cPl1

*231 ) (133) ••• (I3n)cf>21

*231 ) cPn1• But cPn is 1/;.
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The reason for introducing new variables {3b ... , {3"" in the above
proof, is as follows. If cPl were formed rather by putting rl for al

in cP, and cP2 by putting r2 for a2 in cPb and so on, then the assertion:

r- r (al) ... (a",)cP J (a2) ••• (a",)l/>l'

would not be justified by *231 in case any of a2, .•• , a", happened
to be free in rl; and correspondingly for each succeeding step of
the proof. The {3's obviate this difficulty, foreign as they are to
the r's.

Note that *233 does not demand a distinct r for every distinct a.
All of the following, e.g., are theorems according to *233:

(z) (w) (x) (y) (x EZ•v. ZEy) J: W EZ•v. ZEV,
(z) (w ) (x) (y) (x EZ•v. ZEy) J: W EZ•v. ZEW,

(z) (x) (y) (x EZ•v. ZEy) J: V EZ•v. ZEV,
(z) (x) (y) (x EZ•v. ZEy) J: ZEZ•v. ZEz.

Hereafter, when a daggered numeral is used to justify a step of
proof, a tacit inference according to *233 will commonly be in
volved. The following line, e.g., might typically occur in a proof:

t190 yEX(ZEX).J.yEV.

Rendered in full, the reasoning here is as follows:

*233 [(x)(y) 190 J:] y Ex(z Ex) .J. y EV.

Similarly the first line in the proof of *234, below, amounts to
this:

*233

In effect, thus, the matrix following the segregated initial quanti
fiers of a theorem (the matrix' x E y .J. x E V' in the case of t190,
or 'x = x' in the case of t182) is tacitly reconstrued in proofs as
containing free occurrences of any desired terms in place of the free
variables. Under this procedure the first two lines in the proof of
*230 would have given way to the single line:

t 190 r- raE {3 •J. a EV'.

Note, however, that this innovation relates only to numerals with
daggers attached. Divorced of its dagger, the numeral continues
to serve as an abbreviation of just the one specific formula which
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actually appears after the segregated initial quantifiers (if any)
in the original statement of the theorem; the undaggered numeral
'190', e.g., serves in proofs as an abbreviation of the matrix
'x E Y .). X E V' and this only.

The following metatheorem depends both upon substitution for
variables, as of *231 and *232, and upon the substitutivity of iden
tity as of *223.

*234. If a is not free in S, and y; is like ¢ except for containing free
occurrences of Swherever ¢ contains free occurrences of a, then

(a) J- ry; == (a)(a = s.) ¢)l and (b) J- ry; == (3a)(a = s. ¢)1.

Proof. t182 r rs = Sl. (1)
*231 (& hp) r r ( a) (a = S.) ¢) ). [1 )]y;1. ( 2)
*232 (& hp) r r[1 .] y; .) (3 a) (a = S • ¢)1. (3)
*223 (& hp2) r ra = S .). ¢ == Y;l. (4)
*100, *11 7 (& hp) r ry;) (a) ([4 .]a = S .) ¢)1. ( 5)
*100, *163 (& hp) r r(3a)([4 .]a = s. ¢) ) Y;l. (6)
*100 r r[5 • 2.)]234al .
*100 r r[3 • 6 .)]234b1.

One of the theorems covered by *234b has already been con
sidered separately, in t185.

The stipulation that a not be free in S is clearly essential to
*234; otherwise we might take S as a itself, e.g., thus concluding
that

rrcj> == (a)(a = a.) ¢)l and rrcj> == (3a)(a = a.¢)l

and hence that r rcj> == (a)¢l and r r¢ == (3a)¢1 for all choices of
cj> and a.

The principle noted at the beginning of the section, in *230, now
achieves its general formulation with help of *231.

*235. If y; is like ¢ except for containing free occurrences of Swhere
ever cj> contains free occurrences of a, then

r r S E a¢ •==. S E V . y;1.

Proof. *231 (& hp) r r [(a)230 )] 2351.

This principle provides a very useful way of paraphrasing
rr E a¢l so as to eliminate the abstract; a simpler and more con
venient way, indeed, than that provided by D9 and D12 them-
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selves. But *235, unlike the definitions, is not always immediately
applicable; transformation of r r E a¢1 into an alphabetic variant
is sometimes necessary in preparation. E.g., the formula:

(1) yEx(3y)(YEX)
cannot, as it stands, be paraphrased by *235; for it is impossible to
construct a formula y; which is like' (3y)(y EX)' except for con
taining free occurrences of 'y' wherever' (3y) (y EX)' contains free
occurrences of 'x'. The alphabetic variant:

yEx(3z)(ZEX)
of (1), on the other hand, can of course be paraphrased by *235; it
becomes:

§ 32. Further Consequences

THIS SECTION embraces a variety of theorems and metatheo
rems on membership, identity, and abstraction. The first of these
theorems was recognized earlier (§ 23) as the shortest of all logical
truths (from the standpoint of primitive notation).

t240. ~(X)(XEX) Proof. t192 AeA (1)
*232 [1)J(3x)(x ex) (2)
*130 240 [== 2J

t241. (3x) (x E x) Proof. *232 [210)J 241

The next theorem shows that an element x is identical with y if
and only if

(1) (Z)(XEZ.).yEZ).
That (1) follows from' x = y' is clear, indeed, regardless of whether
x is an element (cf. *201); on the other hand the inference of
'x = y' from (1) does depend on elementhood of x, for if x is not a
member of any class then (1) is trivially true independently of y.

t242. (y)(x) XEV.):X=y.=(Z)(XEZ.).yEZ)

Proof·
*201, *117 x = y.) (z)(x E Z .). Y E z) (1)
*231 (Z)(XEZ.).yEZ) ):XEzl,(X = w) .).yEW(X = w)
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*235, *123
*100
*100
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): X EV [.182J.). y EV . X = Y (2)
[2 .J X EV .): (z)(x EZ .). Y Ez) ). Y EV • X = Y

):.[l):Jx = y.= (Z)(XEZ.).yEZ)

Note that the third line of the above proof is a compressed
rendering of two duplicate steps, as follows:

*235, *123
*235, *123

): X EV [.182J.). y Ew(x = w)
): X E V.). Y E V . X = Y (2)

Such telescoping of duplicate steps, in connection with *123 and
likewise *224, will be usual hereafter. I t occurs again in the
second line of the proof of *~44, below.

When the 'XEZ.).YEZ' of t242 is strengthened to 'XEZ.=.
y E z', we still have a theorem:

t243. (Y)(x) XEV .):x = y.== (Z)(XEZ.==.yEZ)

Proof similar, using *223 instead of *201.

The following is the main principle regarding equation of ab
stracts.

*244. r- r a</> = 00/1.= (a)(a EV.). </> == 1/1)'.
Proof. *171 (& D 10) f- r&</> = 00/1. == (a) (a Ea</> •=. a E&1/1)'

*235, *123 == (a)(aEV.</>.=.aEV.1/I)'
*100, *123 == (a)(a EV.). </> == 1/1)'.

Various corollaries follow.

(1)

(1)

Proof similar.

Proof similar.

*245. If X is formed from 1/1 by putting </> for some free occurrences of
raE a</>', then J- ray; = ax'.

Proof. *100 f- r[230 .Ja EV .): a E&</>.== </>'
*122 (& hp) ).1/1 = x'.
*244 f- r245 [== (a) 1J'.

*246. f- r&</> = &(a EV • </»'.
Proof. *100 f- raE V .): </> ==. a EV • </>'.

*244 f- r246 [== (a) 1J'.

*247. f- r&</> = &(a EV .) </»'.

*248. f- r a</> ::z &(a E V .== </»'.
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*249. f- rae/> = V .== (a) (a E V .) e/»'.
Proof. t189, *224 f- rae/> = V .==. ae/> = a(a E V)'

*244 ==(a)(aEV.):e/>==.aEV)'
*100, *123 == (a)(a E V .) e/»'.

The first line of the above proof involves construing t189 as
rv = &(a E V)'. This deviation from the original form of t189
turns not only upon use of *233, such as is regularly left tacit in
connection with daggered references (cf. § 31), but also upon tacit
use of *171 in case the bound variable a happens to be other than
'y'. *233 leads from t189 to 'V = y(yEV)', and *171 leads
thence to rv = &(a E V)'. The second line of the following proof
is similar. Hereafter, thus, *171 will fare like *233; its use will be
left tacit in connection with daggered references.

*250. f- r&e/> = A .== (a)(a EV .J "-' e/»'.
Proof. t192 I- raE A'. (1)

t189, *224 I- rae/> = A .==. ae/> = a(a E A)'
*244 == (a)(aEV .J:e/> =. aEA)'
*100, *123 == (a)(a EV .J. "-' e/> [== 1J)'.

From *249 and *250 it is clear that the identity rae/> = V' is not
in general equivalent simply to r(a)e/>', nor rae/> = A' to r(a) "-'e/>'.
On the contrary, x( ... x ... ) may be V even though' ... x ... '
fails for various non-elements x,and x( ... x ... ) may be A even
though ' ... x ... ' holds for various non-elements x. The') ,
of *193 and *194 cannot in general be strengthened to '== '. But
'y = A' and '(x)(x Ey)' do prove equivalent, as seen in t192ao

In the theory of quantification it was found convenient not to
require, for significance of r(a)e/> 1 and r(3a)e/>1, that a be free in e/>o
In the vacuous case where a is not free in e/>, such quantifications
come out equivalent simply to e/>o (Cf. pp. 74, 104.) Now it is
likewise convenient not to require that a be free in e/> for significance
of rae/>1; the definitions of class abstraction already adopted, in
deed, impose no such restriction. The significance of abstraction
in the vacuous case where a is not free in c/> is explained in the fol
lowing two metatheorems, which are corollaries of *249 and *250.
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*263. If a is not free in cP, r- r ac/> = V •== c/>'.
Proof. *232 r- r [210 JJ(3a)(a E V).,. (1)

*249 r- r acP = V .= (a)(a E V .J cP).,
*161 (& hp) ==. [1 JJ c/>'.

*264. If a is not free in C/>, r- r ac/> = A .== ~ c/>'.
Proof similar, using *250 instead of *249.

Thus a vacuous abstract r acP' is capable of designating only V or
A. I t designates V if ep is true and A if ep is false.

We might arbitrarily interpret the two truth values as V and A,
thus speaking of the truth value of true statements as V and the
truth value of falsehoods as A. Then the abstraction prefix ra',
when vacuous, comes to amount to a truth-value operator; raep ,
comes to designate the truth value of cPo

From the curious but trivial topic of vacuous abstraction we
turn back now, for a short space, to the more serious topic of
elementhood.

It has been remarked (§ 28) that *200 provides merely a suffi
cient condition for elementhood, rather than a necessary one.
Other sufficient conditions appear in the following metatheorems.

*266. t- r (a)cP J. <XC/> E V'.
Proof. *193 r- r(a)cP J. ac/> = V'

*223 ) : ac/> E V [. == 210J'.

*267. I- r(a)~ cP J. ac/> E V'.
Proof similar, using *194 and t211.

*268. If a is not free in C/>, r- r &'c/> E V'.
Proof. *118 (& hp), *123 I-r cP J. ac/> E V [:== 256J'. (1)

*118 (& hp), *123 r- r~ c/> J. ac/> E V [:== 257J'. (2)
*100 I- r [1 • 2 .JJ 258'.

*269. I- r acP E V .=. a~c/> E V'.
Proof. Let {3 be new. Since raE {j' is stratified,

*200 I- r{3 E V .J. &'(a E(3) E V'. (1)
*231 I- r[({3) 1 J :J&.c/> E V .J. a(a E&.c/» E V'
*245, *224 J. a~cP E V'. (2)
Similarly I- r&~q, E V .J. a~~q, E V'
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*100, *123 ). act> EVl. (3)
*100 ~r[2 • 3 .)J 259l .

It has already been noted (§ 24) that the classes
x(x € x), x (y) r-v (x EY • Y EX), x (y) (z) r-v (x EY • Y EZ • Z EX),

etc. are not elements. By virtue of *259, the same can be proved
also of the classes

x(x EX), x(3y)(x Ey . Y EX), x(3y)(3z)(x Ey • Y EZ. Z EX),

etc. All these matters are recorded in the following theorems
and metatheorems.

t260. x(x € x) € V
Proof. *235 x(x € X)E x(x €x).:=. x(x € X)E V • x(x ex)e·x(x ex) (1)

*100 [l)J 260

t261. x(x E x) eV
Proof. *259, *123 261 [== 260J

*262. If a, 1'1, , l'n are distinct,
~ ra (1'1) (I'n) 1",.1 (a EI'f.1'1 E1'2 •... • l'n E a) eVl.

Proof. Let (3 be new.
*230 ~ raE a(1'1) ... (I'n)l",.I(a E1'1 •... • I'n Ea) .=.

a EV • (1'1) ... (I'n)1",.I (a E1'1 •...• I'n Ea)l. (1)
*180 ~ r (a) (a E(3 • == R1) ). (3 € Vl. (2)
*231 ~r [((3) 2 ). (a) 1 ) J 262l .

*263. If a, I'h ... , I'n are d'£stinct,
~ ra(31'1) ... (3I'n)(a E1'1 • l' 1 E1'2 •...• I'n Ea) eVl.

Proof. *133, *123
~ rar-v(31'1) ... (3I'n) (a E1'1 •... .l'n Ea) eV [. == 262Jl. (1)
*259, *123 ~ r263 [== lJl.

§ 33. Log'z"cal Product, Sum, Complement

THE CLASS f(z EX. Z Ey), which has as members the com
mon mem bers of x and y, is called the logical product of x and y
and designated by the abbreviated symbolism 'x r'\ y'.
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DiB. r(r r'\ 11)1 for r&(a E r . a E 11)1.

The choice of a here is subject to the usual understanding: any
variable foreign to rand 11.

The connective' r'\' is of a new kind. Whereas' 1" '.', 'v',
') " and' ==' join formul;e to make formul;e, and' E' and' =' join
terms to make formuhe, 'r'\' joins terms to make terms. Like all
binary connectives, ' r'\ ' is to be construed as carrying with ita pair
of parentheses; and D18 has been fashioned accordingly. In
practice, however, the parentheses will be dropped when there is
no danger of confusion.

The class z(z EX .V. Z E y), which has as members all the members
of x together with all the members of y, is called the logical sum of
x and y. The class £(z f x), which has as members all elements
except the members of x, is called the complement or negate of x.
Symbolically the sum and complement are rendered 'x v y' and, -, .
x .

D19. r(r v 11) 1 for r &(a E r .v. a E 11) 1,
D20. rr1 for r&(a f r)l.

Thus, where x is the class of Americans and y the class of poli
ticians, x r'\ y is the class of American politicians; x v y is the class
which comprises all Americans (politicians and otherwise) together
with all foreign politicians; and x is the class of un~American

elements.

t270. (z) (y) (x) Z E X r'\ Y •==. Z EX. Z E Y

Proof. *230 (& D18) Z E x r'\ Y .==. Z E V • Z EX. Z E Y
t191, *123 ==.ZEX.ZEy

t27i. (z)(y)(x) ZEXvy.==:ZEX.V.ZEy

Proof. *230 (& D19) Z E x v Y ==: Z E V: Z EX .V. Z E Y
*100 ==: Z E V . Z EX .V. Z E V . Z E Y
t191,*123 ==:ZEX.V.ZEy

The analogue of t270 and t271 for negation, viz.:

(z)(X)

is not forthcoming; on the contrary, Z is a member neither of x nor
of x (nor of anything else) in case Z is a non-element. It is to
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'z E V • Z Ex', and not just 'z Ex', that 'z E x' is equivalent (cf. *230,
D20).

In the proof of t270 the conjunction 'z EV • Z EX. Z Ey' is con
strued first as 'z EV: Z EX. Z Ey' and then as 'z EV . Z EX: Z Ey'.
A tacit transformation according to *100 is thus involved. It is
natural to leave such reassociative transformations tacit in the
case of conjunction, thus treating r cP .1/1. X' in effect as rcP .l/I : x' or
r cP : l/I • x' at convenience; and similarly for alternation.

Products, sums, and complements of elements prove to be ele
ments:

t272. (y)(x) X,YEV.).X~YEV

Proof: *200 (& D18), since 'z EX. Z Ey' is stratified (witness
'OE1.0El').

t273. (y)(x) , x, Y E V.). X v Y E V Proof similar.

t274. (x) XEV.=.XEV

Proof. t189, *224 x E V .=. )i(y EX) E V
*259 (& D20) =. x EV

Corresponding to all tautologous biconditionals involving '''J',
'.', and 'v', it is easy with help of *245 to derive theorems of
identity involving '-', ' 1"'\ " and 'v'. The first seven of the follow
ing theorems, e.g., correspond to the tautologous forms (2)-(4),
(7), (8), (10), and (11) of § 11.

t275. (x) x = x
t276. (x) X e;::: x ~ x
t277. (x) x = x v x
t278. (y)(x) x~y=y~x

t279. (y)(x) XvY=YvX
t280. (y) (x) x ~ y = x v y
t281. (y)(x) xvy=x~y

t282. (y ) (x) X ~ Y = x v y
t283. (y)(x) xvy=xl"'\Y
t284. (y)(x) x ~ y = (x v y) ~ y
t285. (y)(x) x v y = (x ~ ji) v Y
t286. (z)(y)(x) (x ~ y)~ Z = X 1"'\ (y ~ z)
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t287. (Z)(y)(x) (X v y) v Z = X v (y v z)
t288. (z) (y) (X) X r\ (y V z) = (X r\ Y) v (X r\ Z)
t289. (Z)(y)(X) X v(Y r\ Z) = (X V Y)r\(X V z)

The proofs of such identities follow a fixed pattern. It will
suffice to exhibit two samples.

Proof of t-275: t189 X = y(y EX)

*100, *188 = YI'-/I'-/(y E x)
*245 (& 020) = x

Proof of t283: *245 (& 019, 20) x v Y = ZI'-/(z EX .v. Z E y)
*245 (& 020) = ZI'-/(z EX .V. Z E y)
*100, *188 = Z(z EX. Z Ey)
*245 (& 020, 18) = x r\ Y

The stacking of identity signs, in the above proofs, is subject to
conventions exactly parallel to those which govern the stacking of
conditional and biconditional signs (§ 17). Just as the inferences
involved in the latter two procedures are justified respectively by
*112 and *113, so the inference involved in the stacking of identity
signs is justified by the principle:

If ~ rrl = r2', ~ rr2 = r3', · . · , l- rrn_l = rn', then l- rrl = rn'.
Proof. hp 1 l- rrl = r2'. (1)

hp 2, *224 l- r[1 ==.] rl = r3'. (2)
hp 3, *224 ~ r [2 ==.] rl = r4', and so on.

In metatheorems or theorems cited by starred or daggered
numerals in the course of proofs, the distinction between r~ • if;'
and rif; • ~' will hereafter be disregarded; and likewise the dis
tinctions between r~ V if;' and rif; V ~', between r~ == if;' and
rif; == ~', between rr = 'rJ' and r'rJ = r', between rr r\ 'rJ' and
r'rJ r\ r', and between rr v 'rJ' and r'rJ v r'. This procedure in
volves tacit transformations according to *100 (and *123) in the
case of' .', 'v', and' =='; according to t183 (and *123) in the case
of ' = '; and according to t278 or t279 (and *224) in the case of
, r\ ' or ' v '. Instances of this practice appear in the last lines of the
above proofs of t275 and t283, where the r aif; = ax' of *245 is
treated as r ax = at/;'. This innovation is to apply only to cita
tions by starred or daggered numeral; divorced of its star or
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dagger and used as an abbreviation, the numeral continues to stand
for just the original expression without modification.

t275 is the law of double negation; t28o-t283 embody the class
version of De Morgan's law; and t276-t279 and t286-t289, by a
natural extension of the terminology applied earlier (§ 11) to
statement composition, are said to affirm the idempotence, com
mutativity, associativity, and mutual distributivity of logical
multiplication and addition}

The next two theorems, which have the form of biconditionals
rather than identities, are analogues of the tautologous forms (17)
and (18) of § 11; analogues in a different way, however, from the
way in which t275-t289 are analogues of (2)-(4), (7), etc.

t290. (y)(x) x = Y .=. x = ji

Proof·
t191, *123 (& D10) x = y.= (z)(z E V • ZEX .=. Z E V • ZE y)
*100, *123 = (Z)(ZEV .):ZEX.=.ZEy)
*244 (& D20) =. x = ji

t291. (y)(x) x = ji .=. x = y

Proof. t290 x = ji .=. x = ji
t275, *224 =. x = y

Unlike the identities, however, not all the statements which are
analogous to tautologous forms in this broader fashion are true.
The analogue:

(y)(x) x~y.=.x=ji

of the tautologous form (13), e.g., is false. Its truth would require,
for every choice of y, that the only entity other than y be y;
whereas we can easily prove e.g. that z(A E z) is neither A nor A.

The next eight theorems bring logical addition, multiplication,
and negation into relation with V and A.

t292.

Proof·

A=V
*193 (& D20) [(x)192 )J 292

1 Historically it is rather the application to statement composition that con
stitutes an extension. The terminology first developed in application to term con
nectives as in the present section.
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t293. V = 1\.

Proof. t291 [292 ==] 293

t294. (x) x A X = A

Proof. *230 (& 020) y EX. ==. Y E V . Y Ex (1)
*100 [1 ) J~ (y EX. Y EX) (2)
*194 (& 018) [(y)2)] 294

t295. (x) x v X = V

Proof. t282 x v x = X A x
t294, *227 = A
t292 = V

t296. (x) x A V = x

Proof. *246 (& D18) x A V = y(y EX)

t189 = x

t297. (x) x v .A = x

Proof. t192 y Ei\. (1)
*100, *123 [ 189 ==.] x = Y(y EX.V. Y E L\. [.1J)

(q.e.d.; cf. D19)
t298. (x) x A .\ = ~\

Proof. t192 y E.\ (1)
*100 [1 )] ~ (y EX. Y E i\) (2)
*194 (& D18) [(y)2)] 298

t299. (x) x v V = V

Proof. *100 y E V .J: y EX .V. Y E V (1)
*249 (& 019) 299 [~ (y)l]

The notions of logical sum, product, and conlplement and the theorems t275
t299 belong to the old "algebra of logic" mentioned in § 1. The above method of
deriving this class algebra from the theory of statement composition is essentially
Peano's. \Vhen inclusion and abstraction are taken as primitive (cf. § 23), on the
other hand, the theory of statement composition becomes simply a case of the
algehra of classes; cf. my Sy.rttm, Ch. XII. For postulational analyses of this
algebra as a segregated system see particularly Huntington (" Sets," "New Sets")
and Stone.
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§ 34. Inclusion

185

IF ALL members of x are members of y, then x is said to be included
in y; symbolically, x C y. The definition is thus:

D21. r(t C 11)' for r(a)(a E t .). a E 1])',

where a is foreign to t and 11. The sign 'C' answers to the word
'are', in such contexts as 'Cats are animals' (i.e., 'The class of
cats is included in the class of animals ').

Inclusion must be distinguished carefully from membership.
Where x C y it mayor may not be the case that x E y, and where
x E y it mayor may not be the case that x C y. The class of cats,
e.g., is included in the class of animals but is not a member of it;
i.e., each cat is an animal but the class of cats is not. On the other
hand the class of Mormons is a member of the class of Christian
sects but is not included in it; it is true that the class of Mormons
is a sect but false that each Mormon is a sect. Cases do arise,
however, where x C y and at the same time x E y; e.g., any element
x is both included in V (cf. t333) and a member of V.

Like identity, inclusion is reflexive and transitive.

t310. (x) x C x Proof: *100 (& D21).

t311. (z)(y)(x) x C y. y C Z .). x C Z

Proof·*100 W EX.). W E Y : W E Y .). W E Z :): W EX.). W E Z (1)
*101 (& D21) [(w)1 ):](W)(WEX.).WEy:WEy.).WEZ)).X C Z (2)
*140, *123 (& D21) [2 =] 311

But inclusion is not, like identity, commutative (symmetrical).
Far from being equivalent, 'x C y' and 'y C x' are incompatible
except in the reflexive case where y is x. This appears in the
following theorem, according to which mutual inclusion is identity.

t312. (y)(x) x = y .=. x C y. y C x Proof: *140 (& DI0, 5,21)

The following metatheorems relate inclusion to quantification
and abstraction:

*313. If a is not free in t, f- r(a)(a E t.) ¢) =. t C a¢'.
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Proof. t190 J- raE r .). a E v'. (1)
*100, *123 J- r(a)(a E r .) cP [:IJ) = (a)(a E r .). a E V • cP)'
*230, *123 = (a)(a E r .). a E &cP)'
*171 (& hp & D21) =. r c &cP'.

*314. J- r(a)(cP ) 1/1) ). &cP C &1/1'.
Proof. *100 J- r cP ) 1/1.): a E V · cP .) 1/1'

*230, *123 ): a E &cP .) 1/1'. (1)
*101 J- r[(a) 1 ).J(a)(cP ) 1/1) ) (a) (a E &c/>.) 1/1)'
*313 ). &c/> C &/I'.

*315. If a is not free in r, f- r(a)(cP ). a E r) ). &c/> C r'.
Proof. *314 J- r(a)(cP ). a E r) ). &c/> C &(a E r)'

t189, *224 (& hp)l ). &cP C r'.
The conditionals described in *314 do not in general hold as bi

conditionals; r(a)(c/» 1/1)' is stronger than r&c/> C &/I'. Truth of
r(a)(cP) 1/1)' requires that all entities fulfilling the condition 4>
fulfill 1/1, whereas truth of r &cP C &1/1' requires merely that all
tlements fulfilling cP fulfill 1/1. Similar reasoning accounts for the
conditional character of *315. Note on the other hand that *313
carries the biconditional.

The next two theorems, analogues of the tautologous forms (5)
and (6) (§ 11), show that logical products are included in their
factors and logical sums include their summands.

t316. (y)(x) x Aye x

Proof. *100 Z EX. Z E Y .). Z E x (1)
*315 (& D18) [(z)1 )J316

t317. (y)(x) x C x v y
Proof. *100 Z EX.) : Z E x .V. Z E Y (1)

*313 (& D19) [(z)1 =J317

The next three theorems, embodying the class version of the law
of transposition, are analogues of the tautologous forms (14)-(16).

t318. (y)(x) x C y .=. y C f

Proof. *313 (& D20) x C y.= (z)(z EX.). Z Ey)

1 The hypothesis is needed along with t189 to justify rr - a(a E r)'.
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*100, *123 = (z)(z E Y .). Z EX)

*313 (& D20) =. y C x

t319. (y)(x) x C y .=. y C X

Proof. t275, *224 x C y .=. x C y
t318 =. y C x

t320. (y)(x) x C y .=. y C x Proof similar.

The 'x C y' and 'x C y' of t318 and t320 amount respectively
to saying that the classes x and yare mutually exclusive and that
they jointly exhaust all elements. This is apparent from the
following two theorems.

t321. (y)(x) x C y .=. x ~ y = A
Proof. *313 (& D20) x C ji.= (z)(z EX.). Z Ey)

*100, *123 = (z)l"V(z EX. Z E y)
t270, *123 = (z)(z Ex ~ y)
t192a =.x ~ y = A

t322. (y) (x) X C y •=. x v y = V
Proof. *230,*123 (&D20, 21) xCy.= (Z)(ZEV .ZEX.).ZEY)

*100, *123 == (z)(z E V .): Z EX .V. Z E y)
*249 (& D19) = . x v y = V

The next two theorems, analogues of the tautologous forms (21)
and (22), show ways of paraphrasing an inclusion as an identity.

t323. (y)(x) x C y .=. x = X r-. y

Proof. *100, *123 (& D21) x C y = (z)(z EX .=. Z EX .• Z E y)
t27o, *123 (& DI0) =. x = X r-. y

t324. (y)(x) x C y .=. y = x v y Proof similar.

The following variants are occasionally of use.

t325. (y)(x) x C y .=. x = (x v y)~ y

Proof. t284, *224 [323 =J 325

t326. (y)(x) x C y .=. y = (x ~ y)v x

Proof. t285, *224 [324 =J326

t327. (y)(x) x C y .=. y = (y v x)r-. X

Proof. t318 x C ji .=. y C x



188 EXTENDED THEORY OF CLASSES § 34

t325 == • y = (y v x) A X
t275, *224 ==. y = (y V X)A X

t328. (y)(x) x C ji .==. x = (y V X)A ji

Proof similar, minus the first step.

The next four are analogues of the tautologous forms (28), (29),
(42), and (47).

t329. (z)(y)(x) x C y .). X A Z C Y A Z

Proof. *100 WEX.).WEY:):WEX.WEZ.).WEY.WEZ
t270, *123 ):WEXA Z.).WEYA Z (1)
*101 (& D21) [(w)l )J329

t330. (z)(y)(x) x C Y .). x v Z C Y v Z Proof similar.

t331. (z)(y)(x) x C Y A Z .=. X C y. x C Z

Proof. t270, *123 (& D21)
x C y A Z == (w)(w EX.). WE y. WE z)

*100, *123 == (w)(w EX.). W E Y : W EX.). W E z)
*140 (&D21) =.xCy.xCz

t332. (z)(y)(x) x v y C Z .=. x C z. y C z Proof similar.

Note, on the other hand, that the analogues:

(z) (y) (x) x C y v Z • == : x C y •v. x C z,
(z)(y) (x) XAyCZ.=:xC z.v.yCz

of (43) and (46) are false.
V and A have the respective peculiarities of including and being

included in every class.

t333. (x)

t334. (x)

Proof. t323

x C V Proof: t190 (& D21).

A Cx
334 [== 298J

Thence we have two corollaries.

t336. (x)

Proof. t312

t336. (x)

Proof. t312

V C x .=. x = V
[333.J V C x .==. x = V

xCA.==.x=A

x C A [. 334J .==. x = A
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Although many of the classes included in a class x may be mem
bers of x, the following theorem shows that they cannot all be
members.

t337. (x)
Proof. *100

*315
*235
t191, *123
*100
*232

(3y)(y ex. y EX)

ZEX.ZEZ.).ZEX
[(z)1 ).] z(z EX. Z Ez) C x
L2EL2.==.L2EV.L2EX.L2EL2

=. L2 EX. L2 EL2
[3 ).] L2 EX
[2. 4.)] 337

(1)
(2)

(3)
(4)

A, for example, is included in A but is not a member of A; agaIn
any non-element is included in V but is not a member of V.

The sign' ) , was used for inclusion by Gergonne as far back as 1816; Russell
has reversed it to distinguish it from the conditional sign. Most of the theorems
of the present section were known to Peirce and Schroder.

The distinction between inclusion and membership became fully clear only with
the advent of quantification theory; it was clear to Frege in 1879, to Peano in 1889,
to Peirce in 1885 (3.396). But in a tentative form the distinction existed in tra
ditionallogic as a distinction between" distributive" and "collective predication,"
drawn to resolve the fallacies of composition and division (e.g. Peter is an Apostle,
the Apostles are twelve, therefore Peter is twelve).

§ 35. Unit Classes

THE CLASS whose sole member is x is called the unit class of
x, and designated by the abbreviated symbolism' LX'.l

D22. r,rl for r&(a = r)l.

The first theorem shows that x is a member of y if and only if LX

and yare not mutually exclusive. Two corollaries follow it.

t340.2 (Y)(x) x E Y .=. LX f'"\ Y ~ A
Proof. *234b x Ey.= (3z)(z = x. Z Ey)

1 The notation is Peano's; 'L' is for' ieTDS'. The distinction between LX and x
seems first to have been drawn explicitly by Frege in 1893 and Peano in 1894.
See end of § 25.

2 Note that LX r\ Y is the product of LX and y, whereas L(X r\ y) is the unit class
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t191, *123' = (3z)(z = x • Z E V • Z E y)
*230, *123 (& D22) = (3z)(z E LX • Z E y)
t270, *123 = (3z)(z E LX A Y)
t192b =.LXAy~A

t341. (y)(X) X EY .=. LX C Y
Proof. *100 [340):] x Ey .=. LX A Y = A

t321 =. LX C Y
t342. (Y)(x) XEY.=.XEV.LXCy

Proof. *230 (& D20) X E Y.==. X E V • X Eji
t341, *123 ==. x E V • LX C Y (1)
t275, *224 .342 [== 1J

If x is not an element, and hence a member of no class, there is
of course no class whose sole member is x. In this trivial case
then, the LX defined in D22 must turn out to be something else;
and it turns out in fact to be A.

t343. (x)

Proof. t341
t293, *224
t336

x EV .=. LX = A
x EV .=. LX C V

=. LX C A
=. LX = A

If on the other hand x is capable of membership at all, LX has x
as member.

t3M. (x) XEV.=.XELX

Proof. *235 (& D22) x E V [. 182J .==. x E LX

Membership in LX involves not only identity with x, but element
hood of x.

t345. (Y)(x) YELX.=.XEV.X=y

Proof. *230 (&D22) yELX.=.yEV.y=X
*228 =.XEV.X=Y

The composite connective' E L' thus expresses element-identity;
it is stronger than' = '. Its commutativity is seen as follows.

of x A y. Just as '1"0./' is understood as governing the shortest statement following
it (cf. §§ 2, 7), so 'L' is to be understood al",·ays as governing the shortest term
following it; and similarly for any other singulary operator.
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t346. (y)(X) x E 'y .==. Y E LX

Proof. *230 (& D22) x E 'y .==. X E V • X = Y
t345 ==. y E LX

The next theorem shows that LX is the class whose sole member is
x if and only if x is an element.

t347. (x) (y)(y E LX .=. X = y)== • X E V

Proof. *100, *123 L347 == (y)([345 ==:] x = y .J. x E V)
*234a =. x E V

The following theorem, an extension of the foregoing one, shows
that LX v 'y is the class whose sole members are x and y. if and
only if x and yare elements.

t348. (y) (x) (z)(z E LX v 'y .=: z = x .v. Z = y) ==. x, Y E V

Proof·}

t271, *123 L348 == (z)(z E LX .V. Z E Ly :==: Z = x .V. Z = y)

·235, *123 (& 022) == (Z)(ZE V. Z= x .v. ZE V. Z= y:==:z = x .v. Z= y)

*100, *123 == (z) (z E V : z = x •v. z = y : == : z = x •v. z = y)

*100, 'Ie 123 == (z) (z = x •v. z = y :). z E V)

*100, *123 == (z) (z = x .). Z E V : z = y .). Z E V)

*140 ==. (z) (z = x .). Z E V) • (z) (z = y .). Z E V)
*234a, *123 ==. x, y E V

The next two theorems show that the words' y is the class whose
sole member is x' can be put into symbols in three ways:

(Z)(ZEy.=.Z=x), y=LX.XEV, yCLX.XEy.

t349. (y)(x) (Z)(ZEy.=.Z = x)=.y = LX.XEV

Proof. t189 y = z(z E Y) (1)
*121 (& D22) L349): [1 =.] y = LX (2)
*100 [2):] L349 =. y = LX • L349
*228 =.y=LX.(Z)(ZELX.=.Z=X)
t347, *123 =.y = LX.XEV.

t350. (y)(x) (z)(z E Y .=. Z = x) =. y C LX. X E Y

1 This proof, neater than my own, is due to N. D. Gautam of Herbert College in
India.
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Proof. t312, *123 [349 ==:J L350 ==. Y C LX • LX C Y • X EV
t342, *123 ==. Y C LX. X EY

A peculiarity of LX is that it is included in any class which it
overlaps at all.

t351. (y)(x) LX C y .v. LX r'\ Y = A
Proof. *100 [342 .J x EY .). LX C Y

*100 [1. 340 .)J 351

In other words, LX is included in each class or its complement.

t352. (y) (x) LX C Y .v. LX C ji

Proof. t321, *123 352 [== 351J

Inclusion of LX is analyzable as follows.

t353. (y)(x) LXCY.==:XEV.).XEY

Proof. t345, *123 (& D21) LX C y.== (z)(x EV • X = Z.). ZEy)
*100,*123 == (z)(x=Z.):XEV.).ZEY)

*234a =:XEV.).XEY

Two consequences follow.

t3M. (z)(y)(x)(w) x EV • LX v Y = LZ v LW .): x = Z .v. x = w

Proof. t317 LX C LX v Y (1)
*223 LX v Y = LZ v LW .) : [1 ==.J LX C LZ v LW

t353 ) : x EV .). X ELZ V LW (2)
*100 [2 .] L354 .). x ELZ v LW

t271 ): x E'Z •v. X E'w
*230, *123 (& D22) ): x EV . X = Z.v. X EV • X = w

*100 ) : x = Z.v. x = W

t355. (z)(y)(x) x E V • LX v Y = 'z .). x = Z

Proof. t277, *224 L355 ). x EV • tX v Y = 'z v 'z
t354 ): x = Z.v. x = Z
*100 ).x=z

The next theorem shows that tX has one member at most.

t356. (z)(y)(x) y, Z E tX .). Y = Z

Proof. t345,*123 y,ZELX.).XEV.X = y.XEV.X = Z

*100 ). x = y • x = Z

*100 ): [184).J Y = Z
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(1)

(1)
(2)

The next shows that LX includes two classes at most.

t357. (y)(x) y C LX.=:Y = LX .v. Y = A
Proof. *223

LX r\ Y = Y .):. LX r\ Y = LX .V. LX r\ Y = A := R357 (1)
t323, *123 Y C LX.). [351 =J R357 [:=IJ (2)
t312 Y = LX .J. y C LX. LX C y
*100 J. y C LX (3)
t334 A C LX (4)
*223 Y = A .J : y C LX [. = 4J (5)
*100 [3 • 5 .J R357 .). y C LX (6)
*100 [2.6 .JJ 357

The next shows that distinct elements have distinct unit classes.

t358. (y)(x) XEV.):LX=LY.=.X=Y

Proof. *226 x = Y .). LX = LY (1)
*223 LX = Ly .J:. [344 =:J x EV .=. X ELy
*230 (&D22),*123 J:XEV.==.XEV.X=y (2)
*100 x E V .):. [2 J:J LX = Ly .). X = Y
*100 J:.[IJ:JLx=LY.=.x=y

Regardless of whether X is an element, LX proves to be an element.

t359. (x) LX E V
Proof. Since' (z) (z EY •==. Z EX)' is stratified,

*200 X E V •J. y(z) (z E V .): Z E y • ==. Z EX) E V
*100, *123 ). Y(z) (z E V • Z E Y • ==. Z E V • Z EX) E V
t 191, *123 (& 010, 22) ). LX E V (1)
*223 LX = A .J: LX EV [.= 211J (2)
*100 [1 . 2 . 343 .JJ 359

t360. (y)(x) LX v Ly E V
Proof. t359 Ly EV

t273. [359. 1.)J360

t361. (y) (x) LX r\ Y E V

Proof. t323 LX C y .J. LX = LX r\ Y
*223 ): [359 =.J LX r\ Y EV
*223 LXr\y=A.J:LXr\YEV[.=21~J

*100 [1.2. 351 .)J 361
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In 'y A iX' we have a notation for the class of all members of y
except x.

t362. (z)(y)(x) ZEyALX.=.ZEy.Z¢X

Proof. *245 (& D20, 22) ZX = i(z ¢ x) (1)
*223 [1 ):] Z E Y A LX .=. Z E Y ~ £(z ¢ x)
t270 =. Z E Y • Z E i(z ¢ x)
*230, *123 =. Z E Y • Z E V • Z ¢ x
t191, *123 =. Z E Y • Z ¢ x

That class turns out to be an element if and only if y itself is.

t363. (Y)(x) y E V .5. Y A LX E V
Proof. t274 [359 =.] LX·E V (1)

t272 YEV[.1].).yAIXEV (2)
t273 y A iX EV [.359J .). (y A LX) v LX E V (3)
t326 LX C y .). y = (y A U-) v LX

*223 ):. y A LX E V.). Y E V [:= 3J
*100 ).[2)]363 (4)
t318 LX C ji .). y C LX
t323 ).y=YA~

*223 ) 363 (5)
*100 [4. 5.352 .)J 363

From t363 it is apparent that every non-element differs from
every element in point of infinitely many memb~rs; for if we
could reach Z from an element w by n steps of deleting or inserting
single members, i.e. by n transformations of the type "y to y A u."
or "y A LX to y", then we could establish elementhood of Z by n
applications of t363. In particular it follows that every non
element differs from both A and V in point of infinitely many
members; hence every finite class is an element, and every class
which is so large as to exclude only a finite number of elements is
an element.
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§ 36. Pairs and Relations

IT IS natural to regard any condition on one variable as deter
mining a class: the class of all entities x satisfying the given con
dition. Correspondingly it is natural to regard any condition on
two variables as determining a relation: the relation of any entity
x to any entity y such that x and y satisfy the given condition.
We have seen (§ 24), however, that this point of view is untenable
in the case of classes; and the same is readily seen in the case of
relations. For, suppose z is the relation of x to y such that x and y
satisfy the condition 'x does not bear the relation x to y'. I.e.,

(1) (y)(x) x bears z to y .= "'-I(x bears x to y).

Thence we have the self-contradictory consequence:

(2) (y) z bears z to y .= "'-I(:z bears z to y).l

In the case of classes the analogous difficulty was obviated by
barring certain entities, the so-called non-elements, from mem
bership; in other words, by countenancing as classes only classes
of so-called elements. A similar expedient suffices here: counte
nancing as relations only relations of elements. Instead of asking
in generai that there be such a thing as the relation of any entity
x to any entity y such that ... x ... y ... , then, we ask only that
there be such a thing as the relation of any element x to any element
y such that ... x •.. y . ... The difficulty encountered in (2) now
disappears; for, where z is the relation of any element x to any
element y such that "'-I(x bears x to y), we have:

(3) (y)(x) x bears z to y .=. x, Y E V • "'-I(x bears x to y)

rather than (1). From (3) we obtain no contradiction, but only
the harmless consequence:

(y) z bears z to y .=. z, Y E V • "'-I(z bears z to y),

and the corollary 'z EV'.
The new abstraction prefix 'the relation of any element x to any

element y such that' will subsequently be defined, and the appro-

1 Pointed out by Russell, Principl~s, Appendix A.
197
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priate laws will be established (§ 37); but first we must look to the
general notion of relation. It is characteristic of a relation to pair
elements off with elements according to one or another plan.
The numerical relation less than, e.g., pairs 0 off with 1, also it
pairs 0 off with 2, also it pairs 1 off with 2, and in general it pairs
x off with y wherever x < y. The relation father of, again, pairs
Abraham oft with Isaac, and in general it pairs x off with y where
ever x is father of y. It is thus convenient to think of each relation
as a class of pairs of elements. To say that an element x bears a
relation z to an element y is to say, then, that x paired with y
forms a member of z.

This notion of pair now needs explicit formulation. It will be
rendered symbolically in the fashion' x;y', read' x paired with y';
and we have now to frame a satisfactory definition of this notation.
Since relations are to be classes of pairs of elements, these pairs
must themselves be elements; otherwise we could not have classes
of them. Here, then, is one demand which our definition must
meet. Further, pairs must be conceived in a non-commutative
fashion, as ordered pairs; they must be distinguished not only
when they differ as to their constituent elements, but when they
are formed from the same elements in reverse order. We must
distinguish e.g. between Abraham paired with Isaac and Isaac
paired with Abraham, for the former pair is wanted as a member of
father of whereas the latter pair is not. But any notion of pair
which meets these demands will serve our purpose. Now it will be
shown that the demands are met by the following definition.

D23. r(t;1])' for r(LLt v L(tt v L1]))'.

According to this definition, X;Y is the class whose sole members
are LX and LX v LY.

t410. (z) (y) (x) Z E X;Y .=: Z = LX.•V. Z = LX v ty

Proof. t348 (& D23) (z)410 [=. 359 • 360J

These members LX and LX v Ly of x;y are respectively the class
whose sole member is x and the class whose sole members are x
and y, in case x and yare elements (cf. t347, t348.)

The first of our demands on X;y, elementhood, turns out to be
met independently of whether x and yare elements.
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t411. (y)(x) x;y E V Proof: t360 (& D23)

The other demand was that pairs of elements X;y and Z;W always
be distinct except where x and yare the same respectively as Z and w.
t417, which shows that this demand is met, will be reached after
five preliminary theorems.

(1)
(2)
(3)

X;y = Z;W .): LX = LZ .V. IX = 'Z v LW
(1)
(2)

t412. (z) (y) (x) (w)
Proof. t182 IX = IX

*100 [1):] IX = IX .v. IX = IX v LY
*223 X;y = Z;W .) : LX E X;y •=. LX E Z;W
t410, *123 ). [2 =] R412

t413. (z)(y)(x)(w) x;y = z;w.): LX v Ly = LZ .v. LX v Ly = LZ v LW
Proof similar.

t414. (z)(y)(x)(w) x E V . X;y = Z;W .). X = Z

Proof. t358 XEV .):,z = IX.=.X = Z

t412 X;y = Z;W .) : LZ = IX .v. LZ = LX v Ly
t355 X E V • 'z = 'X vLy .). X = Z

*100 [1.2.3.)J414

Hitherto the use of *100 was restricted to cases where the com
plexity of the relevant tautologous form did not exceed a certain
arbitrary limit (cf. § 17). Hereafter, for brevity, this restriction
will be waived; it is already waived, indeed, in the last step of the
above proof. The reader has observed the use of *100 through so
many proofs that he will now usually be able, even in these more
complex cases, to recognize tautology on reasonably brief ex
amination; and when there is doubt the method of tables is always
available.

t415. (z)(y)(x)(w) y E V • X;y = z;w .): y = z .v. y = W
Proof. t355 y EV • LX v 'y = LZ .). Y = Z (1)

t354 y E V • LX v 'y = 'z v LW .) : y = Z .v. y = w (2)
*100 [413. 1 • 2 .)J415

t416. (z)(y)(x)(w) x, y, W E V . X;y = Z;W .). Y = W
Proof. t415 W E V • x;y = Z;W .) : W = x .v. y = w (1)

*223 W = x.):. L414 ). W = Z [:= 414J (2)
*223 W = Z .):: U15 ): y = W .v. y =. w [.::= 415J (3)
*100 [1. 2 • 3.)J416
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t417. (z)(y)(x)(w) X,y,WEV.):X;y =z;w.=.x =z.y =w

Proof. *226 y = w .). X;y = x;w (1)
*223 x=z.):.[I=:Jy=w.).x;y=z;w (2)
*100 [414.416.2 .)J 417

Two minor variants of t417 follow as corollaries.

t418. (z)(y)(x)(w) x,y E V .): w E V . x;y = Z;W .=. x = z. y= W

Proof. *223 y = W.):yEV .=.WEV (1)
*100 [417.1 .)J418

t419. (z)(y)(x)(w) x,y E V .): Z,W E V • x;y = Z;W .=. x = z. y = w

Proof. *223 x = z .): x E V .=. Z E V (1)
*100 [418.1 .)J419

Where x is a relation, the statement that y bears x to z may
conveniently be rendered in symbols as 'x(y,z)'. The way to
define this notation is clear from foregoing considerations: it is to
mean that y and z are elements whose pair y;Z is a member of x.

D24. r(r(1],8))' for ref], 8 E V • 1];(J E r)'.

(The outer parentheses will be retained only after a circumflex.)
'rhus x(y,z)' is short for 'y, z E V • y;z E x'. It may at first

appear that the clause 'y, z E V' to the effect that y and z are
elements is superfluous here, since' y;Z EX' already inlplies element
hood of y;z. But actually the clause is not superfluous, for y;Z is
an element even when y and z are not (cf. t411). Where y is not
an element, we readily see from t343 and t297 that y;Z reduces to
LA v uz; yet from 'LA v LLZ EX' we should not want to infer
that every non-element y bears x to z, even though it is indeed
trivially the case that y;Z EX. Again, where Z is not an element,
y;z reduces to tty; yet from 'tty EX' we should not want to infer
that y bears x to every non-element z. Again, where neither y nor
Z is an element, y;Z reduces to LA; yet from 'LA E x' we should not
want to infer that every non-element y bears x to every non
element z. Trivial results are thus excluded by incorporating
'y, Z E V' into the definition of 'x(y,z)'.

t420. (y)(x) V(x,y) =. x, Y E V

Proof. *100 (& D24) V(x,y) =. x, Y E V [. 411J
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t421. (z)(y) (x) (w) x E z. yEW.) V(x,y)

Proof. t190 x E Z .). X E V
t190 yEW.).yEV

*100 [1. 2 • 420 .)J 421

t422. (z)(y)(x)(w) x C y .). x(z,w) ) y(z,W)

Proof. *231 (& D21) x C y .): Z;W EX.). Z;W E y
*100 (& D24) ). x(z,w) ) y(z,w)

t423. (z)(y)(x)(w) (x fl y)(z,w) =. x(z,w) • y(z,w)

Proof. t270, *123 (& D24)
(x fl y)(z,w) =. z, WE V • Z;W EX. Z;W E Y

=. x(z,w) • Y(Z,W)

(x v y)(z,w) =. x(z,w) V y(z,w)

*100 (& D24)

t424. (z) (y) (x) (zv)

Proof similar.

Relations in the sense here considered are known, more partic
ularly, as dyadic relations; they relate elements in pairs. The
relation of giving (y gives Z to w) or betweenness (y is between z
and w), on the other hand, is triadic; and the relation of paying
(x pays y to z for w) is tetradic. But the theory of dyadic relations
provides a convenient basis for the treatment also of such polyadic
cases. A triadic relation among elements y, z, and w might be
conceived as a dyadic relation borne by y to z;w. Actually there is
some advantage in conceiving it rather as a dyadic relation borne
by LLy to Z;W, for this proves to simplify the conditions of element
hood for triadic relations. The analogue of D24 for triadic relations
would therefore assume this form:

r(r(1J, 8, 8'))1 for r(1J, 8, 0' E V . r(U1J, 8;8'))1.

Tetradic relations could be handled on the basis of triadic ones in
similar fashion:

r(r(1J, 1J', 8, 8'))1 for r(1J, 1J', 8, 8' E V . r(LL1J, LL1J', 8;0'))1.

Similarly for pentadic relations, hexadic ones, and so on. How
ever, we shall have no occasion to proceed beyond the dyadic case.

The notion of a relation as a class of ordered pairs goes back to Peirce (3.220,
329), and the notation' x;y' to Frege and Peano. But Wiener (1914) was the first
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to show that the ordered pair could be defined within the theory of classes. He took
X;Y as L(LLX v LA) v Ltty, though if it had not been for Russell's theory of types he
would obviously have adopted the simpler version L(LX v LA) v tty. The alterna
tive version adopted in D23 is due to Kuratowski. In the present system simplicity
would have been gained in some directions, and lost in others, by construing x;y in
still a third way: as z(3w)(w Ex. Z = LUI .V. WE Y • z = LW). This version has the
advantag;e of rendering the antecedent' x, y, wE V' superfluous in t417.

§ 37. Abstraction of Relations

JUST AS the prefix 'x' of class abstraction corresponds to the
words 'the class of all elements x such that', so the prefix 'xy' of
relational abstraction is to correspond to the words 'the relation
of any element x to any element y such that'.1 The relation factor
of, e.g., can be expressed in terms of relational abstraction as

xy(3z)(z E integer. x X z = y).

The form of notation'xy( ... x ... y ••• )' is readily defined if we
reflect that this relation is to comprise as members just those pairs
x;y of elements such that ... x ... y . ... Anything z is to belong
to xy( ... x . . . y ... ) just in case

(3x) (3y) (x, y E V • Z = x;y •... x ... y ••• ).

The definition adopted is thus the following.

D26. r~$c/>' for ri(3a)(3~)(a,~EV.1' = a;~.c/»'.

Accordingly we have the following metatheorem.

*430. If a and ~ are free in neither r nor 71,

l- r~$c/> (r,71) =. r, 71 E V • (3a)(3~)(a = r • fJ = 71 • c/»'.
Proof. t411 l- rr;71 E V1. (1)

*235 (& D25 & hp)
l- rr;71 E &Sc/> .=. [1 .] (3a)(3~)(a, fJ E V • r;71 = a;p. c/»'. (2)

t419, *117 (& hp)
l- rr, 71 E V .) (a)(~)(a, fJ E V • r;71 = a;fJ .=. a = r. fJ = 71)'

1 This notation was adapted from Frege by Russell. My reference to element
hood, in interpreting the notation, is of course a departure.
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): [2 ==.] L2 == (3a)(3~)(a = r. ~ = 1]. c/»'. (3)
~ r [3 )J 430'.

(1)

In practice the notation r&Sc/>' will appear only where a and ~

are distinct variables. No such explicit restriction needs be im
posed, however, because the desired metatheorems governing
r&Sc/>'l turn out not to be violated by the case r&&c/>'. We find
that xx( ... x ... ) is the relation which each member of x( . ~ . x
... ) bears to itself.

*431. ~ r &&c/> (r,1J) =. r = 1J • r E &c/>'.
Proof. Let a' and ~ be new and distinct, and let C/>' be formed

from c/> by putting a' for all free occurrences of a.

*430 ~ r &&c/> (a',~) ==. a', ~ E V . (3a)(3a)(a = a' • a = ~. c/»'
*137, *123 ==. a', ~ E V. (3a)(a = a' • a = ~. c/»'
*234b, *123 ==. a', ~ E V . a' = ~ • c/>"
*228, *123 ==. a', a' E V . a' = ~ • c/>"
*100 ==. a' = ~ • a' E V · c/>"
*235, *123 ==. a' = ~. a' E ac/>l. (1)
*233 ~r[(a')(~)1 )J4311

.

Thence we have the following corollary.

*432. ~ r &ac/> (r,r) ==. r E ac/>I.

Proof. t182 ~ rr = r 1
•

*431 ~ raac/> (r,r) =. [1 .J r E ac/>l.

Since £5'( ... x ... y ) is the relation of any element x to any
element y such that x ... y ... , any entity x will bear the re-
lation to any entity y if and only if x and yare elements and
... x ... y . ... That the closures of such biconditionals are theo
rems·is established in the following metatheorem. It is the ana
logue, for relations, of *230.

*433. ~ r aSc/> (a~~) =. a, ~ EV . c/>l.

Proof. Case I: a is ~.

*432 ~ raac/> (a,a) ==. a E &c/>l
*230 ==. a E V . c/> I

*100 ==. a, a E V . c/>I, q.e.d.

Case 2: a is not {j. Let a' and {j' be new and distinct, let c/>' be
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formed from cJ> by putting a' for all free occurrences of a, and let
cJ>" be formed from cP' by putting {i' for all free occurrences of {i.

*430 ~ raScJ> (a',{i') =. a', {i' EV . (3a)(3{i)(a = a' • {i = (i'. cJ»'
*158, *123 =. a', {i' EV. (3a)(a = a' • (3{i)({i = (i' • cJ»)'
*234b, *123 =. a', {i' EV . (3{i)({i = (i' • c/>')'
*234b, *123 =. a', (i' E V • cJ>"'. (1)
*233 r r[ (a') ((i') 1 )] 433'.

The principle embodied in *433 has the following as its more
general formulation. This is the analogue of *235.

*434. If 1/; is like cJ> except for containing free occurrences of sand TJ

in place respectively of all free occurrences of a and {i, then
l- r aScJ> (s,q) =. S, TJ E V •1/;'.

Proof. *233 (& hp) t- r [(a) ({i)433 )J434'.

The following is the analogue, for relations, of *314.

*436. t- r(a) ({i) (cJ> ) 1/;»). aScJ> C aS1/;'.

Proof. Let l' be new.
*100 rrcJ» 1/;.): a,{iEV.'Y = a;{i.cJ>.). a,fJEV.'Y = a;fJ.1/;'. (1)
*101 ~r [({i) 1 ).] ({i)(cJ> ) 1/;) ) (fJ)R1'
*149 ). (3fJ)LR1 ) (3fJ)RR1'. (2)
Similarly, from (2),

~ r(a) (fJ)(cJ> ) 1/;»). (3a)(3fJ)LR1 ) (3a)(3fJ)RR1'. (3)
(3), *117 ~ r (a) ({i) (cJ> ) 1/;») ("I) «3a) (3fJ)LRl ) (3a) (3{i) RR1)'
*314 (& D25) ). aScJ> C a~y;'.

The iterated use of 'L' and 'R', as above, is self-explanatory;
'LR1', e.g., stands as an abbreviation for the matter:

a, fJ E V • "I = a;fJ • cJ>

which stands to the left of the main connective in the expression:

a, (i E V • "I = a;fJ • cJ> .). lX, {3 E V . "I = a;fJ. 1/;

for which 'R1' stands. (Cf. § 24.)
The analogue of t189, viz. '(x)(x = yi(x(y,z»)', is readily seen to

be false; for the relation yi(x(y,z») will have only pairs of elements
as members, whereas x itself may have some non-pairs as members
besides. The relation yi(x(y,z» is rather the relational part of x
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- the class of all those members of x which are pairs of elements.
It is the largest relation included in x, and it coincides with x
only in case x is itself a relation. It will be referred to briefly as x.
When we are concerned with a complex expression in place of 'x'
the superior dot may conveniently be placed at the beginning;
e.g., ,. (x r\ y)'. The following definition is accordingly adopted.

D26. rt1 or r·r1 for ras(r(a,~))l.
The following theorem and metatheorem reveal positions from

which the dot is suppressible.

t436. (z) (y) (x) x(y,z) = x(y,z)

Proof. *433 (& D26) x(y,z) =. y, Z E V • x(y,z)
*100 (& D24) = x(y,z)

*437. ~ r· a~c/> = a~c/>1.

Proof. Case I: a is not ~.

*433, *188 ~ r as L433 = a~ R4331

*100, *188 (& D25) = &Sc/>l. (1)
*171 (& D26) ~ r [1 =J4371 .

Case 2: a is~. Let")' and 0 be new and distinct.
*137, *188 (& D25) ~ r&ac/> = 3(3a)(a, a E V • 0 = a;a. cP)l
*234b, *188 (& D25) = a.y(et> • a = ")')1 (1)
*437 (Case 1) = ·a.y(et> • a = ")')1

(1), *227 = ·aacP'.
Use of t436 and *437 will be tacit; dots will simply be dropped,

without comment, from the positions rt(1J,O) 1 and r·&ScP1 .

(Cf. proofs of t446, t447.) This practice is still followed when the
relevant context rt(1J,O) 1 or r· aSet>1 is concealed under defini
tional abbreviations. E.g., the second dot in 'k' would be dropped
by tacit use of *437 on the ground that it has the position
,. yz x(y,z) ' when' x' is expanded by D26. (Cf. proof of t450; also
§ 38.)

The relational part Vof V is the universal relation - the rela
tion which every element bears to every element. It is the class
of all pairs of elements.

t438. V = x(3y) (3z) (y, Z E V . X = y;z)
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Proof. t420, *188 (& D26) V = yz(y, Z E V)
*100, *188 (& D25) = R438

The following two theorems provide alternative renderings of x.

t439. (x) x = yz(y;z E x) Proof: *100, *188 (& D24-26).

t440. (x) X = X r\ V
Proof. *228, *123 (& D25)

[439 =.Jx = w(3y) (3z)(y, Z E V . W = y;Z. WE x)
*158, *188 = w.(3y)(w EX. (3z)(y, Z E V . W = y;z»
*158, *188 = w(w EX. (3y) (3z)(y, Z E V . W = y;z»
*245 = W(WEX.WEW(3y)(3z)(y, ZEV.W =y;z»
t438, *227 (& D18) = x r\ V

The relational part A of A is simply A. The null class and the
null relation are the same.

t441.
Proof·

A=A
t440
t298

t442. (x)

Proof·

To say that x is a relation is to say that all members of x are
pairs of elements. Thus a convenient symbolic rendering of 'x is a
relation' is 'x C \1'. Another is 'x = x'. The following theorem
establishes the equivalence of the two.

x C V .=. x = x
t323 x C V .=. x = X r\ V
t440, *224 =. x = x

Since a relation is merely a class of pairs, the notion of class
inclusion applies to relations in obvious fashion. The relation of
father, e.g., is included in that of parent. The following four
theorems deal with inclusion of a relation x.
t443. (x) xCx

Proof· t316 xr\YCx (1)
t440, *224 443 [= 1J

t444. (x) xCV Proof similar.

t445. (y) (x) X C y .=. x C y
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Proof. t331 x C y [. 444J .==. x C Y r'\ V
t440, *224 ==. x C y

t446. (y)(x) x C y .== (z) (w) (x(z, w) ) y(z, w))

Proof. t422, *117 x C y .) R446 (1)
*435 (& D26) R446). x C y (2)
*100 [1 .2.445 .)J 446

In the first line of the above proof, note the tacit transition from
, X(z,'lV)' to 'x(z,w)'. This illustrates the convention which was
adopted in connection with t436. The first line of the next proof
is similar.

t447. (y)(x) x = y .== (z) (w) (x(z, w) == y(z, w»

Proof. *223, *117 x = y.) R447 (1)
*186 (& D26) R447). x = y (2)
*100 [1 • 2 .)J 447

Since each relation x is identical with x (cf. t442), theorems
containing dotted variables may be read simply as theorems about
all relations. The dot on a variable serves, in effect, merely to
confine a law to relations. t444, e.g., may be read as saying that
every relation is included in V; and t447 may be read as saying
that relations are identical if and only if they hold between just
the same things.

The notions of logical sum and product, like that of class in
clusion, apply to relations in obvious fashion. The sum of the
relations father of and mother of, e.g., is the relation parent of;
and the product of the relations fond of and parent of is the relation
fond parent of. The first and third of the following theorems show
that the sum of the relational parts of two classes is the relational
part of the sum and that the product of the relational parts is the
relational part of the product.

t448. (y)(x) x v y = ·(x v y)

Proof. t288 (V r'\ x) v (V r'\ y) = V r'\ (x V y) (1)
t440, *224 448 [== 1J

t449. (y)(x) x r'\ Y = ·(x r'\ y)

Proof similar, using t286.
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t450. (y)(X) x " y = ·(x " y)

Proof. t449 x " y = ·(x " y)
t449, *227 = ·(x " y)

In this last step, note the tacit transItIon from , .. (x " y)'
to ,. (x " y)'. This illustrates the convention explained earlier.

The last two of the above theorems show that the dot may be
applied to a product or to either or both factors indifferently. But
the analogue of t449 for the logical sum does not hold.

The definition D25 of relational abstraction might equivalently
have been formulated in the fashion:

D25'. r&~cP' for ri(3a)(3(i)(LI' (a,{J). cP)',

in view of the theorem:

(z)(y) (x) LZ (x,y) =. x, Y E V • Z = x;y.

Proof. *235, *123 (& D22, 24)
LZ (x,y)=. x, Y E V [. 411J. x;y = Z

The variant D25' recommends itself if one is seeking a model for
definitions of abstraction of polyadic relations. The following
definitions would serve for the polyadic cases (see end of § 36).

r a~icP' Jor r5(3a)(3fJ)(31')(L(~ (a, fJ, 1') • cP)',
r&Si5cP' for r&' (3a) (313) (31') (30) (La' (a, (J, "Y, 0) • cP)',

etc.

§ 38. Conz'erse, Image, Relatiz.'e Product

THE CONVERSE x of a relation x is the relation which y bears
to Z just in case x(z,y). Where x is the relation parent oj, x is
child of; where x is greater than, x is less than; where x is abov!, x
is below. The pairs belonging to x are those of x with their order
reversed.

D27. rf' or r"'r' for r&~(r(fJ,a))'.

The breve' "", like the superior dot of D26, is placed at the be
ginning in complex cases; e.g., ''"' (x " y) '.

We thus have the following theorem.
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t460. (z) (y) (X) X(y,Z) == x(z,y)

Proof. *433 (& D27) x(y,z) ==. y, Z E V. x(z,y)
*100 (& D24) == x(z,y)

The converse of the converse of anything x is the relational part
of x; and thus the converse of the converse of a relation is the re
lation itself.

t461. (x) Proof: t460, *188 (& D27, 26).

In view of the convention explained in connection with t436
and *437 (§ 37), the dot is regularly dropped from the positions

r f" and rr" alike; for these contexts are abbreviations respectively
of ras r({3,a)" and r· as r(~,a)", and thus involve the dot in the
conventionally suppressible ways rt(7J,O)' and r· aScI>'. Instances
of this practice appear in the last lines of the next two proofs.

t462. (y)(x) x C y .==. x c y
Proof. *119, *123 [446 ==:J x C y.== (w)(z)(x(z,w) J y(z,w))

t460, *123 == (w)(z)(x(w,z) J y(w,z))
t446 ==. x C y

The above theorem shows that inclusion on the part of relations
is equivalent to inclusion on the part of their converses. Three
corollaries follow.

t463. (y)(x) x C y .==. x ( y

Proof. t462 x C y .==. xc j
t461, *224 ==. x C y
t445 ==.x(y

t464. (y)(x) x C y .J. x C y
Proof. t311 [443.J x C y .J. x C y

t462 J. x C y
t465. (y) (x) x ( y .J. x ( y Proof similar, using t463.

The image of a class y by a relation x, or tnore briefly the x-imagt
of y, symbolically x"y, is the class of all those elements which bear
x to one or more members of y. Where x is the parent relation
and y is the class of violinists, x"y is the class of parents of violin
ists. The members of x"yare tht: first elements of all those
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element-pairs which belong to x and have as their second elements
members of y.

D28. r(rU 17)' for r a(3~) (r(a,~) • (j E 17)'.

We thus have the following theorems.

t466. (z)(y)(x) Z E xUy .= (3w)(x(z,w) • W E y)

Proof. *230 (& D28) Z E x"y .==. Z E V . (3w)(x(z,w) • WE y)
*158 == (3w)(z E V it x(z,w) • WE y)
*100 (& D24), *123 == (3w)(x(z,w) • W E y)

t467. (z)(y) (x)(w) x(z,w) • W E y .J. Z E x"Y

Proof. *135 x(z,w) • WE y.J (3w)(x(z,w) • W E y)
t466 ). Z E xHy

t468. (z) (y) (x) x"y C z .== (w)(w')(x(w,w') • W' E Y .). W E z)

Proof·
t466, *123 (& D21) x"y C z.== (W) «3w') (x (w,w') • W'E y) ). WE z)
*161, *123 == R468

t469. (z)(y)(x) x C y .J. x"z C yllz

Proof. t422 x C Y .). x(w,w') ) y(w,w') (1)
*100 [1 .] x C y • x(w,w') • W' E Z .). y(w,w') • w' E z
t467 ).WEY"Z (2)
*100, *117 x C y .) (W)(W') ([2 .] x(w,w') • W' E Z .). W E yHz)
t468 ). xuz C yUz

t470. (z)(y)(x) y C z .). xuy C XUz Proof similar.

De Morgan remarked that traditional logic was inadequate to
proving the statement 'If horses are animals then heads of horses
are heads of animals.' This statement is an instance of t470.

The next two theorems are distributive laws. They show e.g.
that the parents of violinists comprise the fathers of violinists and
the mothers of violinists, and that the wives of classicists comprise
the wives of Latinists and the wives of Hellenists.

t471. (z) (y) (x) (x v y)Uz = (XUz) v (yUz)

Proof. 1"424, *188 (& D28)
(x v y)Uz = w(3w') (x(w,w')' V y(w,w') • W' E z)

*100, *188 = w(3w')(x(w,w') • w' E Z .v. y(w,w') • w' E z)
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*141, *188 = w«3w') (x (w,w') •w' E z) v (3w') (y(w,w') •
w' E z»

t466, *188 (& D19) = (x"z) V (y"z)

t472. (z)(y)(x) x"(y v z) = (x"y) V (XUz) Proof similar.

The practice of telescoping duplicate steps, adopted hitherto
(§ 32) in connection with *123 and *224, will be usual also in con
nection with *188, *227, and *245. The last line of the proof of
t471, e.g., is a condensation of the following two lines:

t466, *188 = w(w E x"z.v (3w')(y(w,w') • w' E z»
t466, *188 (& D19) = (x"z) v (y"z)

Distributive laws parallel to t471 and t472 do not hold for the
logical product. The statement:

(z) (y) (x) (x A y)"z = (x"z) A (yU z)

is seen to be false by taking x as the relation older than, y as broth~r

of, and Z as the class of sailors; for (x A y)"z then becomes the
class of elder brothers of sailors, whereas (x"z) A (y"z) becomes
the class of all persons who are at once older than some sailors and
brothers of some sailors. Even the younger brother of a sailor will
belong to the latter class, so long as he happens to be older than
some other sailor. Again, the statement:

(z) (y) (x) x"(y A z) = (XUy) A (x"z)

is seen to be false by taking x as the relation of benefiting, y as the
class of cripples, and z as the class of musicians; for xll(y A z) then
comprises just the benefactors of crippled musicians, whereas
(xlly) A (x"z) takes in also any person who happens to have
benefited both an unmusical cripple and an uncrippled musician.

The next theorems explain images involving A and V.

t473. (x) Allx = A

Proof. t192 y;Z EA (1)
*100 (& D24) [1)J r-v (A(y,z) • Z EX) (2)
*131 r-v(3z) (A (y,z) • z E x)[ == (z) 2J (3)
*194 (& D28) [(y)3)J 473

t474. (x) x"A = A Proof similar.
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(1)

t475. (x) V"x = y(x ~ A)

Proof. t420, *188 (& D28) V"x = y(3z)(y, Z E V • Z E x)
t191, *188 = y(3z)(y E V . Z E x)
*158, *188 = y(y E V . (3z) (ZE x))
*246 = y(3z) (z E x)
t192b, *188 = y(x ~ A)

t476. (x) x"V = y(3z) x(y,z) Proof: *100, *188 (& D28, 24).

In view of t475 and *253-*254, V"x is A or V according as x is
or is not A. On the other hand x"V is, in view of t476, the class
of all elements bearing x to something. This class is called the
domain of x. ' Where x is the parent relation, its domain x"V is
the class of all parents.

t477. (y)(x) Y E x"V .== (3z) x(y,z)

Proof. t466 y E x"V •== (3z) (x(y,z) • ZE V)
*100 (& D24), *123 == (3z) x(y,z)

The images of unit classes play an important role. The illlage
by x of LZ is simply the class of all elements bearing x to z.

t478. (z)(x) X"LZ = y(x(y,z))

Proof. t345, *188 (& D28) X"LZ = y(3w)(x(y,w) • Z E V. W = z)
*234b, *188 = y(x(y,z) • Z E V)
*100 (& D24), *188 = y(x(y,z))

t479. (z) (y) (x) y E X"l,z.== x(y,z)

Proof. t478, *224 Y E X"LZ .==. Y E y(x(y,z))
*230 ==. y E V • x(y,z)
*100 (& D24) == x(y,z)

The image of y by ie, i.e. ie" y, might be called the convtrst il1lagt
of y by x. It is the class of all elements to which members of y bear
x. Where x is parent and y violinists, x"y is the class of all children
of violinists.

t480. (y)(x) x"y = w(3z)(x(z,w) • Z E y)
Proof: t460, *188 (& D28).

t481. (y)(x)(w) w E x"y.== (3z)(x(z,w) • Z E y)
Proof. t466 W E ie"y .== (3z)(x(w,z) • Z E y)

t460, *123 [1 == ] 481
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The domain ic"V of Je is called the converse domain of x. It is the
class of all elements to which x is borne. Where x is the relation
of hate, its converse domain Jettv is the class of all who art' hated.

t482. (x) ic"V = z(3y)x(y,z) Proof similar, from t476.

t483. (z)(x) Z E x"V .== (3y)x(y,z) Proof similar, from t477.

Similarly ic"Ly is the class of all elements to which y bears x.

t484. (y)(x) xU"y = z(x(y,z» Proof similar, from t478.

t486. (z)(y)(x) Z E xU"y .== x(y,z) Proof similar, from t479.

The relative product of a relation x into a relation x', symbolically
x Ix', is the relation which y bears to w whenever y bears x to some
thing which bears x' to w. Where x is the brother relation and x'
the parent relation, x Ix' is the relation of uncle. Where x is the
father relation and x' the mother relation, x Ix' becomes the rela
tion of maternal grandfather and x' Ix becomes the relation of
paternal grandmother.

D29. r (r 111)' for r&1'(3~) (r(a, fJ) • 11({3, 'Y»'.
We thus have the following theorems.

t486. (x') (y)(x)('lt') (x Ix') (y,w) == (3z)(x(y,z) • x'(z,w»

Proof from *433 like that of t466 from *230.

t487. (x')(z)(Y)(X)(ZV)1 x(y,z) • x'(z,w) .) (x Ix') (y,w)

Proof from t486 like that of t467 from t466.

t488. (z) (y) (x) x Iy C Z • == (x') (y') (z') (x (x' ,y') •y (y' ,z') .). z(x' ,z') )

Proof from t446 and t486 like that of t468 from D21 and t466.

t489. (z)(y)(x) x C y .). x Iz C y Iz

Proof from t487 and t488 like that of t469 from t467 and t468.

t490. (z) (y) (x) y C z .). x lye x I z Proof similar.

Relative multiplication is not commutative. A maternal grand
father, e.g., is not the same as a paternal grandmother. But relative
multiplication is indeed associative, as the following theorem shows.

t491. (z) (y) (x) (x Iy) Iz = x I (y Iz)
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Proof. t486, *188 (& D29)
(x Iy) Iz = x'w' (3z') «3y') (x (x' ,y') • y(y' ,z')) • z(z' ,w'))

*158, *188 = x'w'(3z')(3y')(x(x',y') • y(y',z') • z(z',w'))
*138, *188 = x'w' (3y') (3z') (x(x' ,y') • y (y' ,z') • z(z' ,w'))
*158, *188 = x'w' (3y') (x(x' ,y') • (3z') (y (y' ,z') . z(z' ,w')))
t486, *188 (& D29) = x I (y \ z)

A null factor nullifies the product.

t492. (x) A Ix = A Proof similar to that of t473.

t493. (x) x IA = A Proof similar.

The converse of the relative product is the relative product of
the converses in opposite order.

t494. (y)(x) \I(xly) =y\x
Proof. t486, *188 (& D27) \I (x Iy) = wz(3x') (y(x', w) • x(z, x'))

t460, *188 (& D29) = YIx
E.g., since the converse of teacher of is pupil of and the converse

of child of is parent of, the above theorem tells us that the converse
of the relative product teacher of child of is the relative product
parent of pupil of.

The concluding theorem exhibits an important connection be
tween the image and relative product. It says e.g. that the uncles
of violinists are the brothers of the parents of violinists.

t496. (z)(y) (x) (x Iy)"z = x"(y"z)

Proof like that of t491, using D28 instead of D29 and t466 in
stead of the last use of t486.

The notions of converse and relative product, along with the identity function I
(cf. § 42), are familiar to students of group theory. In this connection they were
clearly formulated and investigated by Cayley (1854). But in group theory the
notions of converse and relative product occur only in application to a special sort
of relations, viz. functions (in the sense of § 40) whose converses are functions.
Converses and relative products of relations generally are dealt with by DeMorgan
(1860), and so also is the notion of image. But DeMorgan does not distinguish
explicitly between the relative product and the image; the selfsame notation
designates x I y or x"y according as y is or is not a relation. The same practice
recurs in Peirce; but in Frege (1879) the distinction becomes explicit. The present
notation is Russell's.
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§ 39. The Ancestral

215

A CLASS}' is said to be closed with respect to a relation x if \vhat
ever bears x to a member of }' belongs in turn to .y; i.e., if xu}' C y.
The class of humans, e.g., is closed with respect to the nephew
relation; for all nephews of humans are hunlan. The class of males
is like\vise closed with respect to the nephew relation. The class of
even numbers, again, is closed with respect to the relation square
of; for the squares of even numbers are even. On the other hand
the class of males is not closed with respect to the parent relation;
for not all parents of males are male. Again, the class of even
numbers is not closed with respect- to the relation half of; for the
halves of even numbers are not always even.

An element may belong to an infinite variety of classes each of
which ·is closed with respect to a given relation x. Napoleon, e.g.,
belongs to an infinite variety of classes each of \\Thich is closed with
respect to the parent relation. One of these is the class of all
organisms, since parents of organisms are organisms. Even
broader classes of the kind can be formed, by supplementing the
class of organisms with any parentless sort of objects - say desks;
for no such trivial supplementation will alter the fact that all
parents of members are members. Moreover, there are classes
narrower than that of organisms which still contain Napoleon and
are closed with respect to the parent relation. One such is the
class of all organisms born before 1800; Napoleon belongs to this,
and so do the parents of all the mem bers. Still narrower classes of
the kind can be got by casting out all childless persons, or all per
sons of Chinese descent; for no parents of the residual members
will thereby be extruded, nor presumably will Napoleon himself.
Certain members, however, will be common to this whole infinite
variety of classes. One common member, of course, is Napoleon.
Two more are the parents of Napoleon; clearly they n1ust helong
to any class which contains Napoleon and is closed with respect
to parent. Four others are the parents of Napoleon's parents;
and so on. Napoleon and all his ancestors are thus distinguished
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from the rest of the world by this formal characteristic: they be
long to every class which contains Napoleon and is closed with
respect to the parent relation. If we so construe 'ancestor' as to
reckon a person among his own ancestors, then 'z is an ancestor of
Napoleon' can be explained as meaning that z· belongs to every
class which contains Napoleon and is closed with respect to parent;
symbolically,

(y)(parentl'y C y • Napoleon E y .). Z E y).

The relation of ancestor can be defined, in terms of that of parent,
as

zw(y)(parent"y C y • W E Y .). Z E y).

More generally, given any relation x instead of parent, the re
lation

(1) zw(y)(xityCy.WEy.).ZEY)

will be called the ancestral of x; symbolically, *x. Where x is
the parent relation, *x is the genealogical relation of ancestor;
where x is the offspring relation, *x is the relation of descendant.
In general, *x is the relation of Z to W such that Z is w or else bears
x to W or else bears x to something which bears x to W or else etc.
The rigorous formulation of *x, viz. (1), is important in that it
constitutes a logical analysis of the essential. notion involved in
the idiom 'etc.'.

We thus adopt the following definition.

D30. r*r' for r&S('Y) (rit'Y C 'Y • (j E 'Y .). a E 1')'.

The following theorem is forthcoming.

t510. (z)(y)(x)(w) x"y C y • *x(z,w) • W E Y .). Z E Y

Proof·
*110 (y) (xitY C y • W E Y .). Z E y) ):' x ity ·C Y • W E Y .). Z E Y (1)
*433 (& D30) *x(z,w) =. Z, W E V . L1 (2)
*100 [1 . 2 .)J 510

Every element bears the ancestral of every relation to itself.

t511. (y) (x)

Proof. *100

*x(y,y) =. y E V
xttz C Z • Y E Z .). Y E Z (1)
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*434 (& D30) *x(y,y) =. y, y E V [. (z)1J
*100 =.yEV

Two corollaries follow.

t512.1 (y)(x) YC *x Iy

Proof. *100 (& D24) y(z,w) J. Z E V . y(z,w)
t511, *123 J. *x(z,z) • y(z,w)
t487 J (*x Iy) (z,w) (1)
t446 512 [== (z) (w) 1J

t513. (y) (x) y C y I*x Proof similar.

Every relation is included in its ancestral.

t514. (x) x c *x

Proof. *110 (&D21) x"yCy.J:ZEX"y.J.ZEY (1)
*100, *117 x(z,w) J (y)([1 • 467 .] x"y C y • W E Y .). Z E y) (2)
*435 (& D26, 30) [(Z) (w)2 JJ 514

A class is closed with respect to x if and only if it is closed with
respect to *x.

t515. (y) (x)

Proof·
*100, *117
t468
t469
t311
*100

x"y C y .J (z)(w)([510.J *x(z,w) • W E y .J. Z E y)
). *x"y C Y

[514 ).J x"y C *x"y
[2.J *x"y C y .). x"y C Y
[1.3.)J515

(1)
(2)
(3)

The ancestral is its own ancestral, and its own relative self
product.

t516. (x) *x = **x Proof: t515, *188 (& D30).

t517. (x) *x = *x I*x
Proof. t510 x"y C y • *x(z',Z) • Z E Y .J. z' E y (1)

*100, *117
~(z',z) • ~(z,w) .) (y)([1 • 510.J x"y C y. WE Y .). z' E y) (2)

*161 [(z)2 ==.] (3z)L2 ) R2 (3)

1 Note that the star in '.x 1 y' applies to 'x', not to' x I y.' See second footnote
of § 35.
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*435 (& D29, 30) [(z')(w) 3 ).J *x I*x C *x (4)
t512 *x C *x I*x (5)
t312 517[=.5.4J

The next two theorems show e.g. that the parents of one's
ancestors and the ·'ancestors of one's parents figure among one's
ancestors.

t518. (x) x I*x C *x

Proof. t489 [514 ).J x I*x C *x I*x (1)
t517, *224 518 [= 1J

t519. (x) *x Ix C *x Proof similar, using t490.

The class *xHy comprises all the objects which bear *-X to mem
bers of y. Thus, where x is the parent relation and y the class of
lawyers, *xlty is the class of all ancestors of lawyers. The following
theorem says that *xHy is closed with respect to x.

t520. (y)(x) xlt(~lty) C *xHy

Proof. t469 [518 ).J (x I~)Uy C *XUy (1)
t495, *224 [1 = J 520

The following sort of inference is characteristic of the ancestral.
From the premisses:

(z)(w)(parent(z,w) • w was born before 1800
.). z was born before 1800)

and:
ancestor (Fiorecchio, Napoleon)

and:
Napoleon was born before 1800,

e.g., we infer that Fiorecchio was born before 1800. In general,
from premisses of the forms:

(z) (w) (x(z,w) •... w ...•) •... z ••• ),

*x (A,B),
... B ...

we infer that ... A . . .. The metatheorem governing such in
ferences is as follows.

*521. If a and a' are distinct and not free in r, and a' is not free in
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(1)
(2)

4>, and 4>', 1/;, and 1/;' are like 4> except for containing free occurrences re
spectively of a', 1], and 1]' wherever 4> contains free occurrences of a, then

~ r(a')(a)(r(a', a) .4>.J 4>') . *r(1/', 1/) .1/;.J 1/;'1.

Proof. t510 ~rr((a4> C a4>. *r(1]', 1/) .1] E a4> .J. 1/' Ea4>l. (1)
*100 (& D24)

~rr(a', a) .4>.J 4>' :=: rea', a) . a EV . 4> .J. a'E V. 4>'1
*23S (& hp3), *123 =: rea', a) . a E a4> .J. a' Ea4>l. (.2)
Similarly ~rr((a4> C at/>. *r(1]', 1]) .1/;.J 1/;' [:= IJ1. (3)
t468 (& hpl-2) ~rr((a4> C a4>.== (a')(a)R21

(2), *123 == (a')(a)L21 • (4)
(4), *123 ~r[3 == J 5211.

Inferences of the above kind remain valid when the first of the
three premisses, viz.:

(z) (w) (x (z,w) • . . . w . . . .J. . . . z . . .),
is weakened to read:

(z) (w) (x(z,w) • *x(w,B) .... w ...•J .... z .•.).
The metatheorem to this effect is as follows.

*622. If a and a' are distinct and free in neither r nor 1], and [etc.
as in *S21J, then
~r (a') (a) (r(a', a) . *r(a, 1]) . 4> .J 4>') • *r(1/', 1/) . 1/; .J 1/;'1.

Proof. t518 ~rr I *r C *r1. (1)
ts 11 ~r*r(1], 1/) ==. 1/ EVl. (2)
t422 ~r[ 1 J.J (r I *r) (a', 1/) J *r (a', 1]) 1. (3)
t487 ~rr(a', a) . *r(a, 1/) .J (r I *r)(a', 1])1. (4)
*100 ~r[4 . 3 .J :.] L4 .4> .J 4>':=: L4. 4> .. J. *r(a', 1/) . 4>'1.(5)
(S), *123 ~rL522 J. (a')(a)RS • *r(1/', 1]) .1/;1
* lOP (&. D24) J : [2 J.J (a') (a) RS . *r(1/', 1/) . *r(1/, 1/) • 1/;1

*S21 (& hp)l J. *r(1]', 1]) .1/;'1
*100 J 1/;'1.

Typical use of *S21 oc~urs in the proofs of the next two theorems.

t623. (x) 'J*x = *x

Proof. t487 *x(w,z). x(z,y) .J (*x Ix) (w,y)
t422 [ S19 J.] (*x Ix) (w, y)J *x(w,y)

1 In this step r*rCa, 1]) • c/>1 plays the role of the c/> of *521.
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*100
*521
t511
*100 (& D24)
t460
t446
t463
*231
t461, *224
t312

t624. (x)

Proof. t513
t422
t422
t487
*100
*521
*100
t488
t462
t494, *224
t523, *224
*231
t461, *224
t312

R E LA T ION S §39

[460 • 1 2 .Jx(y,z) • *x(w,z) .) *x(w,y) (3)
[(y)(z)3 .J *x(y,w) • *x(w,w) .) *x(w,y) (4)
*x(w,w) ===. w E V (5)
[4 . 5 .J *x(y,w) .) *x(w,y)

) "*x(y,w) (6)
*x C "*x [.=== (y)(w)6J (7)
[7 ===.J "*x C *x (8)
[(x)8 ).J "*-* C *x (9)
[9 ===.J "*x C *x (10)
523 [=.10. 7J

*xlx=x·l*x

x C x I*x (1)
[1 ).J x(z', w) ) (x I*x)(z', w) (2)
[518 ).] (x I*x)(z,w) ) *x(z,w) (3)
x(y,z) • *x(z,w) .) (x I*x)(y,w) (4)
[3 . 4.J x(y,z). x(z',w) ) L3 .). x(z',w) ) R4 (5)
[(y)(z) 5 .J *x(y, z')[. 2J .). x(z', w) .) R4 (6)
[6 .J *x(y, z') • x(z', w) .) R4 (7)
*x Ix C x I*x [.=== (y)(z')(w)7J (8)
[8 ===.] "(*x I x)C "(x I*x) (9)
[9===.Jx\"*xC"*x\x (10)
[10 ===.J x I*x C *x I x (11)
[(x)ll).J~I*~C*.iI~ (12)
[12 ===.J x I*x C *x Ix (13)
524 [=: 8. 13J

Where x is the parent relation, we have seen that the ancestral
*x is the ancestor relation - provided that we so construe 'an
cestor' as to count every person and indeed every element trivially
as an ancestor of itself. The relations x I*x and *x Ix, then, are
respectively the relations "parent of ancestor of" (in the above
sense of 'ancestor ') and "ancestor of parent of". t518 and t519
showed that these relations are included in the ancestor relation;
and the above theorem t524 shows further that they are the same.
This relation *x Ix or x I*x is in fact simply the ancestor relation in
the narrower, more usual sense; it is the ancestor relation when we
construe the latter in such a way as not to reckon one among his
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own ancestors. It is the relation which y bears to z when y IS a
parent of z or a parent of a parent of z or ....

For any x, in general, the relation *x 1 x (or x I*x) will be called
the proper ancestral of x. The ancestral *x of x is the relation of
an element y to an element z such that y is z or bears x to z or bears
x to something which bears x to z or ... ; on the other hand the
proper ancestral *x I x is rather the relation which y bears to z
just in case y bears x to z or bears x to something which bears x to
z or ....

The line of reasoning used in D30 was first set forth by Frege in 1879 (BegrijJ
schrift, p. 60), in defining what I have called the proper ancestral. In 1884 he in
troduced the ordinary ancestral, defining it in precisely the manner of D30 (cf.
Grundlagen, p. 94; also Grundgesetze, p. 60).

Whitehead and Russell's notation for the ancestral is rr*1; but I have modi
fied it to r*r1 because of a disinclination to accord parentheses to singulary opera
tors. ""hitehead and Russell's notation would have to be construed as involving
implicit parentheses in the fashion r(r*) 1 in order to deal with ambiguous combi
nations such as 'LXlI!'.

Whitehead and Russell's version of the ancestral diverges from the present one
(Frege's) in this minor respect: y does not bear their x* to itself unless y bears x
to something or something bears x to y (cf. Principia, *90.01). The practical
advantage of this complication is not apparent. In any case the two versions are
interdefinable in obvious fashion:

x* = yz(*x(y, z) • (3w) (x(y, w) V x(w, y))),
*x = yz(x*(y, z) V. y = z).

The proper ancestral is accorded a separate definition by Whitehead and Russell,
under the notation .rrpo1. (Cf. *91·01·52).

§40. Functl'ons

INSTANCES of the notion of function are expressed by such lo
cutions as 'quadruple of', 'double of', 'square of'; and the applica
tion of a function is expressed by completing such locutions, in the
fashion 'double of x', 'square of x'. The notation of functional
application is rr l

171, or more strictly r(r l
17)1. Thus zl 3 is 12

where z is quadruple of; z
l
3 is Qwhere z is square of; and, to take

a non-numerical example, zlV is LV where z is unit class of.
A suitable way of formally defining the notation rr l

171 suggests
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itself when we reflect that a function is simply a relation; quadruple
oj, e.g., is the relation of the quadruple to the quarter. The result
zlx of applying a function z to an element x is the element which
bears the relation z to x, symbolically (1Y) z(y,x). Thus

D3l.! r(r/17)l for r(1a) r(a,1J)l.

In the usual terminology, Zl X is the value of the function z for the
argument x; 12, e.g., is the value of quadruple for the argument 3.
More briefly, zlx is spoken of as the z of x.

A function is, as observed, a relation. But it is a relation of a
special sort, having the peculiarity that no two elements bear it to
the same element.2 No two numbers, e.g., are quadruples of the
same number. Common mathematical usage allows the term
'function' a broader scope, indeed, and countenances so-called
many-valued functions as well as single-valued ones; but we may
conveniently waive this usage, for the inclusive notion of function
which it involves is already at hand in the general notion of rela
tion. It is only where a unique element bears x to y, symbolically

(1) (3w)(z)(z = w.= x(z,y)),

that we can speak non-trivially of the x of y;where (1) fails, x1y
reduces trivially to A (cf. *197, D31).

Functionality of x, then, is conveniently explained as single
valuedness of x; i.e., as truth of (1) for all elements y to which
the relation x is borne at all. But there are further relations x

which, though not functions in this sens~ do fulfill (1) for certain
choices of y. Such relations may, by a natural extension, be spoken
of as functions in a relative sense; viz., as functions with respect
to this or that appropriate argument y. Functionality of x with re
spect to y receives its symbolic expression in (1).

The class of those elements y with respect to which x is a func
tion, in this sense, will be called the range of functionality of x,
symbolically rx. Thus rx is the class of all elements y for which (1)
holds.

D32. rrrl for r~(3'"Y) (a) (a = '"Y •=== r(a,{3)) l.

1 The notation and the definition are both Russell's (" Mathematical Logic,"
p. 253).

2 Here I follow Peano, "Sulla definizione di funzione."
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The range of functionality of the relation author of, e.g., is the
class of uncollaborated writings; the range of functionality of the
relation member of is the class of all unit classes of elements; and
the range of functionality of the relation included in has A as sole
member.

Ways of paraphrasing 'y E rx' are shown in the following two
theorems.

t530. (y) (x) y E rx .= (3w) (z) (z = w •= x(z,y»

Proof. t182 w = w (1)
*103 (z)(z = w.= x(z,y»). [1=J x(w,y) (2)
*100 (& D24), *163 (3w) ([2 .] L2)). y E V (3)
*230 (& D32) y E rx .=. y E V . R530
*100 =. [3 .J R530

t531. (y)(x) y E rx.= (z)(z = x'y .= x(z,y))

Proof. *196 (& D31) (z)(z = w.= x(z,y»). w = x'y (1)
*223 w = x'y .). L1 = R531 (2)
*100, *163 (3w)(L1 [. 1 • 2J») R531 (3)
*232 R531) (3w)L1 (4)
*100 [3 .4.530 .)J 531

If y is in the range of x, then x'y bears x to y; and otherwise
:e'y is A.

t532. (y) (x)

Proof. t182
t531
*231

Y E rx .) x (x'y, y), ,
xy = xy
Y E rx.) R531

). [1==J x(x'y, y)

(1)

t533. (y)(x) yErx.).x'y =A
Proof. *100 [530 .] y Erx .) rov R530

*197 (& D31) ). x'y = A

From t533 it follows that x'y is A unless y is an element.

t534. (y)(x) y EV.). x'y ::z A
Proof. t190 y E rx .). y E V (1)

*100 [1 . 533 .)J 534

Thus y is an element if x'y has a member.
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t535. (z) (y) (x)

Proof. t192
*223
*100

RELATIONS

ZEX'y.).yEV

Z EA
x'y =A.):ZEX'y[.== 1J
[2 . 534 .)J 535

§40

(1)
(2)

But x1y is an element regardless of x and y.

t536. (y) (x) x1y E V
Proof. *223 x'y = A.). 536 [== 211J

*100 (& D24) [532. 533.1 .)J 536
(1)

R537 == (z)([536 .Jz = x'y .=. Z E XULy)
== R531 (1)

[1 . 531 .)J 537

The paraphrases of 'y E rx' provided by t530 and t531 can now
be supplemented with a third.

t537. (y)(x) y E rx .==. L(X'y) = XItLy

Proof·
t345, *123 (& DI0)
t479, *123
*100

The following theorem exhibits a certain analogy to t495.

t538. (z) (y) (x) ZE ry .). (x Iy)IZ = x' (y'z)

Proof. t537 ZE ry .). y''t.z = L(Y'Z)
*223 ) : W E XU (y U LZ) •==. W E XUL(y'z)
t495, *224 ): W E (x Iy)ULZ •==. W E XUL(yIZ)
t479, *123 ). (x Iy)(w,z) == x(w, y1z) (1)
*159 (& D4) [(w) 1 ==:] Z E ry .) (w)Rl
*186 (& D31) ) R538

If x is the father relation, y is the son relation, and Z is Eve~

then (x Iy)'z is Adam whereas x'(y'z) = x'A = A. Hence the need
of the antecedent' z E ry' in the above theorem.

The next concerns the ranges of functionality of relative pro
ducts.

t539. (y)(x) rx = V.). ry C rex Iy)

Proof. t536 y'z E V
*223 rx = V .):y1zErx[.== 1J
tS37 ). L(X'(y'z)) = XUL(Y'Z)
t537 z E ry .). L(Y'Z) = yULZ

(1)

(2)
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*223 ):. [2 ==:J rx = V .). L(X' (y'z)) = x" (y" LZ)
t495, *224 ): rx = V.). L(X'(y'z)) = (x I y)"LZ (3)
*223 R538 ):: Ze ry .): rx = V,,). L((X I y)'z) = (x I y)"Lz[.:==3J
t537, *123 ):.zery.):rx =V.).zer(xIY) (4)
*100, *117 rx = V.) (z)(z e ry [.4. 538J .). Z E r( xly))

(q.e.d.; cf. D21)

Besides functions of the sort here considered, which apply to ar
guments 0l?e at a time, there are those which apply to arguments
two or more at a time. An example which applies to arguments
two at a time is the power function, whose value for arguments
x and y is xY

• A non-numerical example is logical sum, whose value
for arguments x and y is x v y. Just as a function of one argument
is a dyadic relation, so a function of two arguments is a triadic
relation; the power function, e.g., is the triadic relation which
holds among any numbers z, x, and y (in that order) when z = xY

•

A function of three arguments, similarly, is a tetradic relation;
and so on. In terms of the notions introduced at the end of § 36,
the definition D31 of application is readily extended to functions
of two or more arguments.

r(r'(1],O))l for r(1a) tea, 1], O)l,
r (t' (1], 0, 0')) l for r (1 a) r( a, 1], 0, 0') l,

etc. The notion of range admits of extension in similar fashion,
in terms of the notions introd uced at the end of §37. A range of
n-argument functionality, in general, is itself an n-adic relation.

rr2 rl for rS.y(3o)(a)(a = ().= rea, {3, 'Y))l,
rr3 t l for rS.y8(3a')(a)(a = a' .= tea, {3, 'Y, {)))l,

etc.

§41. Abstraction of Functions

THE FUNCTION quadruple of may be thought of as abstracted
from the name matrix' 4 X x' in somewhat the same way in which
the class £(4 < x) is -abstracted from the statement matrix' 4 < x'.
The class £(4 < x) has, we recall, this characteristic feature: an
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element x is a member of the class if and only if 4 < x. The
parallel feature of the function quadruple of is this: application of
the function to an element x yields the element 4 X x.

The notation of functional abstraction is rXa Sl. Thus quadruple
of is Ax ( 4 X x); double of is Ax (2 X x); square of is Ax (x2) ; unit class
of is Ax LX. The appropriate form~l definition of r Aa Sl suggests it
self when we reflect, e.g., that quadruple of is simply the relation
of quadruple to quarter, and square of is the relation of square to
root; i.e.,

Ax (4 X x) = yx(y = 4 X x),
Ax (X2) = yx(y = x 2).

D33.

In view of the general convention gove.rning the choice of odd
variables in definitions (cf. § 24), the {3 of D33 must be distinct
from a and the variables of s; on the other hand a may, and in
non-trivial cases will, occur in s.

Mathematicians tend in practice to confuse a name matrix Swith
the name r Aa S1 of the corresponding function. Such expressions as
'4 + x', 'x2 ', 'x2 + 2x - 1', etc., though commonly treated as if
they designated functions, actually designate nothing; they are
not names at all, because of the free variable (cf. § 27). When
their free variables are supplanted by numerals, moreover, these
expressions come to designate not functions but numbers. The
functions which '4 X x', ' x2 ', and 'x2 + 2x - l' suggest are
properly designated rather by the functional abstracts' Ax ( 4 X x)',
'Ax (X2), and 'Ax (X2 + 2x - 1)'; these expressions are' straightfor
ward names, devoid of free variables.

Note further that the distinction in meaning between rand
r Aa Sl survives even in the case where S itself is a name, and thus
devoid of free occurrences of a. It is in this case that the so-called
" constant functions" appear; Ax 5, e.g., is the function whose
value is uniformly 5 for all arguments. The names '5' and
'Ax 5' are altogether different in meaning; whereas 5 is a number,
the" constant function" Ax 5 is rather the relation which 5 bears to
all elements (cf. *540).
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Abstraction, defined in D33 for functions of one argument, IS

extensible to the case of many arguments in obvious fashion:

rXaP r' for r.y&~(i' = r)',
rxaP'Y r' for r8&~i(o = r)',

etc. (cf. end of § 40). Xxy(xY), e.g., is the power function; and
XXy(xY) , (5,3) is 125. In what follows, however, attention will be
limited to the one-argument case.

The following metatheorem deals with the functional abstract
rXa r' in the context rXar (11,a)' of relational predication (D24).
Note that the occurrences of a in rXa r' are bound, whereas the
occurrence of a which terminates rXar (11,a)' is free.

*640. I- rXar (11,a) =. a, rEV. 11 = r'.
Proof. *434 (& D33) I- rXar (11,a) =. a,11 EV • 11 = r'

*228 =.a,rEV.11=r'.

As explained, Xx (4 X x) is supposed to be the function whose
value, for any element x as argument, is 4 X x. In general,
Axe. •• x ...) is supposed to be the function whose value, for any
element x as argument, is ... x . . . (granted elementhood in turn
of ... x ...). This is provided by the following metatheorem.

*641.1 I- ra, rEV.). Xar 'a = r'.
Proof. Let ~ be new.
*100, *117 I- ra, rEV .) (~)(~ = r .=. Ol, rEV • ~ = r)'
*540, *123 ) (~)(~ = r.= >.ear (~,a))'

*196 (& D31) ). Xar 'a = r'.

Just as the metatheorems *230 and *433 on the abstraction of
classes and relations were generalized in *235 and *434, the meta
theorem *541 on functional abstraction is generalized in the
following.

1 So far as parentheses are concerned, the prefix rAa' as a whole is treated as if it
were a singula.ry operator; thus it is that no parentheses are entered in the left side
of D33. Accordingly the rAat'a' of *541 is to be read as composed of rAat, and
a, not of rAa, and rt'a'; cf. second footnote to § 35. The functional abstract of
rr'a' with respect to a would be rendered rather rAa{t'a)'. The latter can, as a
matter of fact, be shown to obey a law somewhat like *541; namely, if a is not
free in r thenf- rtr == V .). Aa{t'a) =- r'.
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*642. If 0 is like r except for containing free occurrences of 'TJ in
place of all free occurrences of a, then

~ r'TJ, 0 EV .J. Aar ''TJ = 01
.

Proof. *231 (& hp) ~ r[(a)541 JJ 5421.

The next metatheorem explains the notion of range as applied to
a functional abstract.

*543. ~ r r Aat = a(t E \7') 1.

Proof. Let {j be new.
t 189 ~ rr Aar = a(a Er Aar)1
*531, *188 = a({j) (Aat 'a = {j.= Aat ({j,a))l
*540, *188 = a({1) (Aat 'a = {j .=. a, rEV. {j = r)l
*100, *188 = a({j) (Aat 'a = {j .J. a, t EV · {j = t :.

{j = t .J : a, rEV .J. Aat /a = (j)1
*140, *188 = a(({j) (Aar 'a = (j .). a, rEV · (j = t) .

({j) ({j = t .) : a, t E V .). Aat 'a = (j)) r
*234a, *188 = a(a, rEV. Aar 'a = t [. 541J)1
*100, *188 = a(a, t EV [. 541J)1
*246 = a(r EV)l.

The next explains rAar ''TJ1 in the cases not covered by *542.

*644. If 0 is like t except for containing free occurrences of 'TJ in
place of all free occurrences of a, then

~ r t'../ ('TJ, 0 E V) ). Aat ' 'TJ = A 1.

Proof·
*235 (& hp), *123 r- r t'../ ('TJ, 0 EV) J. 'TJ f a(r EV)l
*543, *224 J. 'TJ f r Aa t1

t533 J. Aar ''TJ = A1.

Note that the antecedent in *544 is not r'TJ f V . 0 f V1, but the
much weaker condition r t'../ ('TJ EV .0 EV)l, i.e. r'TJ f V .v. 0 f V1.
Thus *544 goes farther than t534.

Statements of the form rAar (Aar ''TJ, 'TJ) 1 are not all true. If 'TJ

designates a non-element, or if the result of putting 'TJ for a in r
designates a non-element, then rAat (Aat ''TJ, 'TJ) 1 will be false; nor
will there be any term 0 for which rAar (0, 'TJ) 1 is true. If on the
other hand there is such a term 0 at all, we can infer rAar ' 'TJ = (J1;

this is shown in the following metatheorem.
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(1)

*545. r- rXar (0, 11) J. Aar '11 = 01 .

Proof. Let {3 be new.
*223 r- r{3 = r .J:. a, rEV .J. Aar 'a = {3 [:= 541J'. (1)
*540 r- rXar ({3, a) J. a, rEV. {3 = r l

*100 J: [1 J.J Xar'a = (31. (2)
*233 r- r[(a) ({j)2 )J 5451 .

The value of the unit-class function AxLX for an argument y
proves to be ty regardless of whether y is an element.

t546. (y) AxtX 'y = ty

Proof. t359 ty E V (1)
*542 y E V [.IJ.) 546 (2)
t534 y EV .J. AxLX 'y = A (3)
t343 y EV .J. ty = A
*223 J:. y EV .) 546 [:= 3J (4)
*100 [2.4 .JJ 546

The notion of functional abstraction goes back to Frege (Grundgesetu, vol. 1, pp.
14f, 54f). The present notation is Church's. Both Frege and Church construe
functional abstraction more broadly, however, to include class abstraction as a
special case. Correspondingly relational abstraction becomes, for those authors, a
case of the abstraction of functions of many arguments. Special features of the
groundwork of Frege's' logic and Church's make this assimilation a natural one;
and it would be equally natural in the logic based on inclusion and abstraction
(cf. § 23).

§42. Identity and Membership as Relations

THE IDENTITY function I is defined as follows.!

D34. 'I' for 'AxX'.

It is the function whose value, for any element as argument, is that
element itself.

t550. (x) x E V .=. l'x = x

Proof. *541 (& D34) x, x E V .J. l'x = x

1 See end of § 38.
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t536
*223
*100

RELATIONS

f'x E V
f'x =x.J:[2 =.JXEV
[1 . 3.JJ550

§42

(2)
(3)

Its range embraces all elements.

t551. rf = V
Proof. *543 (& D34) rf = x(x E V)

t189 = V

Like all functions, f is a relation. In view of D34 and D33,
indeed, it is the identity relation xy(x = y). Note, however, that
'I(x,y)' is not equivalent to 'x = y'. Since only elements can enter
into a relation, 'f(x,y)' holds only where x and yare the same
element; on the other hand' x = y' holds wherever x and yare the
same entity, whether an element or a non-element.

t552. (y)(x) I(x,y) ==. x E V • X = Y

Proof. *434 (& D34, 33) I(x,y) ==. x, Y E V • X = Y
*228 ==. x, X E V • X = Y
*100 =. x E V • X = Y

t553. (y)(x) I(x,y) =. Y E V • X = Y

Proof. *228, *123 [552 == J 553

t554. (y)(x) I(x,y) =. x E Ly

Proof. t345, *123 554 [== 553J

t555. (x) I(x,x) ==. X E V
Proof. t552 I(x,x) ==. x E V [. 182J

To say that x includes I is to say that every element bears x to
itself.

t556. (x) I C x.== (y)(y E V .J x(y,y))

Proof. t446 I C x.== (y)(z)(I(y,z) ) x(y,z))
t552, *123 == (y)(z)(y E V • Y = z.J x(y,z))
*100, *123 == (y)(z)(y = z.J: y E V .J x(y,z))
*234a, *123 == R556

I is its own converse.

t657. I = I
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Proof. *437 I = j
t552, *188 (& D26) = yz(y E V •Y = z)
t553, *188 (& D27) = 1

Imaging by I has no effect.

t558. (x) lUx = x

Proof. t553, *188 (& D28) lUx = y(3z)(y = z. Z E V • Z EX)

*234b, *188 (& D18) = V r-. x
t296 ~ = x

Relative multiplication by I leaves a relation u~changed.

t559. (x) I Ix = x
Proof. t553, *188 (& D29) I Ix = yw(3z)(y = z. Z E V • x(z,w»

*100 (& D24), *188 = yw(3z)(y = z. x(z,w»
*234b, *188 (& D26) = x

t560. (x) x II = x Proof similar.

I is included in every ancestr~l.

t561. (x) I C *x
PrdOf. t511 y E V .) *x(y,y) (1)

t556 561 [= (y)lJ

t562. (x) I vx C *x ,
Proof. t332 562[=.561.514J

The next theorem shows that I added to the proper ancestral
yields the ancestral.

t563. (x) Iv(x I*x) = *x
Proof. t332 L563 C *x [.==.561 • 518J (1)

t422 [1 ).J L563 (z,w) ) *x(z,w) (2)
t487 x(y,z). *x(z,w)'.) (x I*x)(y,w) (3)
*100 [2. 3 .J x(y,z) • L563 (z,w) .). I(y,w) V (x I*x)(y,w)
t424 ) L563 (y,w) (4)
*521 [(y) (z)4 .J *x(y,w) • L563 (w,w) .) L563 (y,w) (5)
t424 L563 (w,w) ==. I(w,w) V (x I*x)(w,w)

t555, *123 ==: w E V .v (x I*x)(w,w) (6)
*100 (& D24) [5. 6 .J *x(y,w) .) L563 (y,w) (7)

t446 *x C L563 [.== (y)(w)7J (8)
t312 563 [=.1. 8J
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The terms' transitive' and' reflexive', applied hitherto to modes of statement
composition (§ 11) and predicates (§ 25), may by extension be applied also to
rtlations in obvious fashion; historically this is, indeed, their original applica
tion. A relation w is transitive if

(x) (y) (z) w(x, y) • w{y, z) .J w(x, z);

or, equivalently (by t488), if U1 Iw C w. Thus I is transitive, by t559. A relation
w is totally reflexive (see note to §25) if every element bears w to itself; or, equiv
alently (by t556), if lew. Thus I is totally reflexive. A relation w is reflexive,
more generally, if

(x)(y) w(x, y) V w(y, x) •J w(x, x).

The term' commutative' carries over in similar fashion; but the term ordinarily
used in connection with relations is rather' symmetricaL' A relation w is sym
metrical if

(x)(y) w(x, y) == w(y, x);

or, equivalently, if w = W. t557 affirms the symmetry of I.
We have attributed transitivity, reflexivity, etc., on the one hand to the con

nective sign '=', which is a two-place predicate, and on the other hand to the
corresponding relation xy(x = y) or I. By a similar transfer the idempotence,
commutativity, etc., which have been attributed to the term connectives' r'. ' and
, v' (§ 33) might be attributed likewise to the corresponding functions Axy(x r'. y)
and Axy(X v y). In general, a function w of two arguments is idempotent, commu
tative, or associative according as

w'(x, x) = x,
w'(x, y) = w'(y, x),

or w'(wl(x, y), z) = wl(x, wl(y, z»

for all elements x, y, and z; and correspondingly for distributivity.

I is, we have seen, the identity relation xy(x = y). We turn now
to €, which is the membership relation xy(x E y).

D35. '€' for 'XY(XEY)'.

, € (x,y)' diverges from 'x E y' in the same way in which 'I (x,y) ,
was seen to diverge from 'x = y'. Since only elements can enter
into a relation, '€(x,y)' ·holds only where y is an element and
x E y.

1564. (y)(x) €(x,y) =. x E Y • Y E V
Proof. *433 (& D35) €(x,y) ==. x E Y • x, Y E V

t191, *123 =. x E y. Y E V

But the elementhood clause is suppressible in the reflexive case.
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t565. (x)
Proof. t564

t191

M EM B E R S HIP A S ARE LAT I ON

€(x,x) =. x EX

€(x,x) =. x EX. X E V
=.XEX

233

Though 'x ELY' and 'x = y' are not equivalent (cf. t345),
'€(x, LY)' and 'I(x,y)' are.

t566. (y) (x)

Proof. t359
t564
t554

€(x, LY) == I(x,y)
Ly E V
€(x, LY) =. x E Ly [.lJ

== I(x,y)

(1)

€"X is the class of all members of members of x.

t567. (x) €"x = y(3z)(y E Z • Z E x)

Proof. t564, *188 (&D28) €"x = y(3z)(y E z. Z E V • Z EX)

t191, *188 = R567

Where x is the class of professional baseball clubs, e.g., €"x
is the class of professional baseball players. If lines and planes
are conceived as classes of points, and x is the class of all lines
in a given plane, then €"x is the plane itself.
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§43. Zero, One, Successor

TO SAY that the Apostles are pious is to attribute a property to
each man among the Apostles; and to say that we are unfortunate
is to attribute a property to each individual among us. To say
that the Apostles are twelve, on the other hand, is to attribute a
property rather to the class of Apostles; and to say that we are
seven is to attribute a property to us as a class. These properties
twelve and seven, symbolically 12 and 7, are properties of classes;
or, in keeping with our custom of treating properties as classes (cf.
§ 22), they may be construed as classes of classes. 7 is the class of
all seven-mem ber classes; 12 is the class of all dozens. In order to
belong to 7 or 12 or anything else, a class must of course be an
element; but this is no restriction, for we know that every class
of seven or twelve or a million members is an element (cf. end of
§ 35).

What has been said of 7 and 12 holds equally of the rest of the
so-called natural numbers, viz. 0, 1, 2, 3, etc. Thus 3 is the class
of all three-member classes; 2 is the class of all two-member
classes; 1 is the class of all one-member classes; and 0 is the class
of the no-member class, i.e.,

D36. '0' for 'LA'.

Given any natural number, say 7, the next (viz. 8) IS readily
defined; for a class belonging to 8 (an eight-member class) is
characterized by the fact that it comes to belong to 7 when a
member is dropped. A class x belongs to 8 if and only if the
removal of a member y from x leaves a class (x ~ Ly; cf. § 35)
which belongs to 7.

8 = x(3y) (y EX. X~ iY E 7).

In general, given any natural number z, the next is definable as

(1) x(3y) (y EX. X~ Ly E z).

In terms of 0, accordingly, which is already at hand (D36), we can
define 1 as follows:

237
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D37. '1' for 'x(3Y)(yEX.Xr\LyEO)'.

In terms of 1, in turn, we can define 2 in similar fashion:

D38. '2' for 'x(3y)(yEX.Xr\ryE1)'.

Similarly we can define 3, 4, and so on, as far as we like.
Whenever z is an element, (1) designates an element in turn.

t610. (z) ZEV.) x(3y)(y EX. Xr\LY Ez) EV

Proof. Since' (3y)(y EX. (3w)(w Ez. (X') (x' EW .==. x' EX. 1'..1

(y')(y' EX' .==. y' Ey))))' is stratified,l
*200 ZEV .).x(3y)(yEV .yEX. (3W)(WEV .WEZ. (x')

(x' EV .): x' EW•==. x' EX. l'..I(y')(y' EV .): y' EX' •== .y' EY))))EV

*100, *123 ). x(3y) (yEV • Y EX .(3w)«X')(X'EV • X'EW .=.
X'EV • x' EX. 1'..1 (y') (y'EV • y' EX' .=. y'EV. y' Ey)) • WEV • WE Z))EV

t191, *123 (& DI0) ). x(3y)(y EX. (3w) «X') (X' E W .==. x' EX.
x' ¢ y). W E z)) E V

t362, *123 (010, 12) ). x(3y)(y EX. ,Xr\LY E z) E V

It is now apparent that 0, 1, 2, etc. are elements.

t611. 0 E V Proof: t359 (& D36).

t612. 1 E V Proof. t610 (& D37) [611 )J612

t613. 2 E V Proof. t610 (& D38) [612 )J613

We can extend this series of theorems as far as we like. Each
natural number is- an element.

The function whose application to any element Z yields the class
expressed by (1), above, will be called the SUCClSJ·or function, S.

D39.2 '5' for '~%x(3Y)(YEX.XI"'\LyEZ)'.

1 Note that the use of numerals in showing stratification does not involve any
circular presupposition of the arithmetic which we are beginning to construct;
for the numerals so used do not enter into the formulte themselves, but belong rather
to syntax (cf. Ch. VII) along with the words 'assignment', 'matrix', etc. The
case is similar with numerical subscripts on Greek letters. Any sort of counters
would indeed serve these purposes; the numerical character is not essential.

J This formulation of the successor function is due essentially to Frege, who is
likewise responsible for the identification of a natural number with the class of all
classes having that number of members. See Grundlagen, pp. 79f, 89f.
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The successor of any element z is the class expressed in (1).

t614. (z) z EV.). S'z = x(3y)(y EX. XI"\LY Ez)
Proof. *100 [610.J Z EV.). Z EV . R610

*541 (& D39) ) R614

In view then of the elementhood of 0, 1, etc., we have the fol
lowing theorems.

t615.

t616.

1 = S'O

2 = S'1

Proof. t614 (& D37)

Proof. t614 (& D38)

[611 )J 615

[612 )J 616

(1)ZR610 = V [.= (z)610J
617 [== IJ

We can extend this series of theorems as far as we like.
Though the terminology 'successor' suggests. interest in S'z

only where Z is a natural number, still the range of functionality
of S embraces not merely the natural numbers but all elements.

t617. rS = V
Proof. *249

*543 (& D39), *224

(1)

x belongs to the successor of an element z just in case x deprived
of one of its members belongs to z.

t618. (1,) (x) Z EV .): x ES'z.= (3y)(y EX. Xl"\ty Ez)

Proof. t190 Xl"\ry EZ .). XI"\LY EV
t363 ).XEV (1)
*100, *163 (3y)([1 .J y EX. XI"\Ly Ez) ). X EV (2)
*230 xExL2.=.XEV.L2
*100 =. L2 [. 2J (3)
t614 Z EV .) R614
*223 ). R618 [== 3J

Two corollaries follow.

t619. Sz)(x) x ES'z .) (3y)(y EX. Xl"\ty E z).

Proof. t535 x ES'z .J. Z EV
*100 [1 • 618 .JJ 619

t620. (1,) (y) (x)

Proof. *135
*100

Y EX. Xl"\ry E Z • Z E V .J. x E S'z

Y EX. XI"\LY EZ.) RR618
[1 • 618 .JJ 620

(1)
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The null class is its own successor.

t621. SIA = A
Proof. t192 XALy EA (1)

*100 [1 )J r-v (y EX. XAry E A) (2)
t614 (& D8) [211 J.J SIA = X r-v (y)2 (3)
*121 (& D16) [(x)«y)2 == 182)).3 ==J 621 1

ohas one and only one member, viz. A.

t622. A EO

Proof. t344 (& D36) [211 ==J 622

t623. (x) x EO. ==. x = A
Proof. t345 (& D36) x E 0 .==. [211 .J x = A

ois not a successor.

t624. (x) 0 ~ SiX

Proof. t192 yEA (1)
*223 0 = SiX .): [622 ==.J A E SiX

t619 ) (3y) (y EA. AALy EX)

*156 (& D8) ). r-v (y) 1 • (3y) (AAty EX) (2)
*100 [2. (y)l .)J 624

1, the class of all one-member classes, has been expressed in two
ways in D37 and t615; and it receives four more expressions in the
course of the following theorems.

t625. 1 = x(3y)(y EX. X eLy)

Proof. t623, *188 (& D37) 1 = x(3y)(y EX. XAL}' =A)
t321, *188 = x(3y)(y EX. X C ry)
t275, *227 = R625

t626. 1 = x(3y) (z)(z EX .==. Z = y)

Proof. t350, *123 626 [== 625J

t627. 1 = x(3y)(y E V . X = LY)

Proof. t349, *123 [626 == J 627

1 This is a striking case of compound bracketing. Its step-by-step resolution
involves no new idea. First we may bracket out' (y)2 == ',then' (x)182 J.', then
'3 =='; or we may follow any of five other orders.
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I.e., 1 is the class of unit classes of elements. Also it is the
range of functionality of the membership relation.

t628. 1 = re
Proof. t626 1 = x(3y)(z)(z = y .=. Z EX)

*245 = x(3y)(z)(z = y.=.XEX(ZEX))
*230, *188 = x(3y)(z)(z = y .=. Z EX. X E V)
t564, *188 (& D32) = re

To have 1 member (or 0, or 2, etc.) is to be a member of 1 (or 0,
or 2, etc.). The following theorem says that if x has one member
then anything y will belong to x if and only if x is LY.

t629. (y)(x) xE1.):YEX.=.X=LY

Proof.t358 ZEV.):y=Z.=.LZ=LY (1)
*100 [1 ):] Z E V • LZ = Ly .=. Z E V . Y = Z

t345 =. Y E LZ (2)
*223 X=LZ.):.ZEV.X=LY.=.YEX[:=2] (3)
*100, *163 (3z) ([3.] Z E V. X = LZ) ) R629 (4)
t627, *224 x E 1 .=. XE xL4
*230 =. x E V • L4 (5)
*100 [4.5.)J629

§ 44. Natural Numbers

THE NATURAL numbers 0,1, and 2 have been defined (D36-38),
and each further natural number is definable by a continuation of
the same method. Given any natural number z, the next is

x(3y)(y EX. XI"'\LY E z)

or more briefly S'z (cf. t611-t616, § 43). But the class Nn of all
natural numbers has yet to be formally defined as a whole.
Roughly, the definition is of course this: Nn comprises 0, 1, 2, etc.,
i.e., 0, S'O, S' (S'O), etc. The problem is to formalize the 'etc.';
and the key is provided by the notion of the ancestral.

S'O is that which bears the relation S to 0; S' (S'O) is that
which bears S to that which bears S to 0; and so on. To be a
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natural number, thus, is to be 0 or to bear S to 0 or to bear S to
something which bears S to 0 or etc. In short, to be a natural
number is to bear *S to 0 (cf. § 39). Thus Nn is definable as the
class of all bearers of *5 to 0; symbolically, *S",O (cf. t478).

D40. 'Nn' for '(*SII,O) '.

Nn is closed with respect to S.

t630. S"Nn C Nn Proof: t520 (& 040).

I.e., successors of natural numbers are natural numbers.

t631. (x)

Proof. t190
t617, *224
t532
t467
*231 (& 021)
*100

X ENn .). SiX ENn

xENn.).xEV
). x E rS
) S(S'x, x)

S(S'x, x) • x ENn .). SiX ESUNn
[630 J:J SiX ESUNn .). SiX ENn

[1 . 2 .3 .)J631

(1)
(2)
(3)

0, 1, etc. are natural numbers.

t632. 0 E Nn

Proof. t511 *S(O,O) [= 611J (1)
t479 (&040) 632[=1J

t633. 1 E Nn

Proof. t631 [632 ).J S'O E Nn (1)

t615, *224 633 [= 1 ]

t634. 2 ENn Proof similar, using t633 and t616.

Any class which is closed with respect to S and contains 0
contains every natural number.

t635. (x) SIIX ex. 0 EX .J. Nn C x

Proof. t510 L635 . *S(y,O) .). y EX (1)
*100, *117 L635) (y)([1.J *S(y,O) .). y EX)
t479, *123 (& 021,40) ). Nn C x

The form of inference which \ve considered in connection with the
ancestral (§ 39) takes on a more familiar aspect when adapted to
the theory of natural numbers. From the premisses:
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(x)(x + x = 2 X x .). (SiX) + (SiX) = 2 X (SiX)),
0+0 = 2 X 0,
17 E Nn,

e.g., we infer that 17 + 17 = 2 X 17. Or, incorporating the third
premiss rather into the conclusion and leaving 17 unspecified, we
infer from the first two of the above premisses that

(y) y E No .). y + Y = 2 X y.

Such inference, called math~matical induction, is afforded by the
following metatheorem.1

*636. If 1/1, cP', and cPo ar~ like cP ~xcept for containing fr~e occur
r~nces r~spectirJely of r, rst a', and '0' wh~re'[J~r cP contains free
occurr~nces of a, th~n

I- r(a)(cP ) cP') • cPo • r E Nn .) t/I'.

Proof. Let {j be new, and let X be formed from q, by putting {j
for all free occurrences of a.
*545 (& D39) J- r S(~,a) ). fJ = S'a'. (1)
*100 I- rei:] (j = S'a.). q, ) X :): S(fJ,a) • cP .) X'. (2)
*101 r r[({j)2 ) .J(fJ)L2 ) (fJ)R2'. (3)
*234a, *123 (& hp) J- reP ) q,' .) (~)R2 [:= 3J'. (4)
*101 f- r[(a)4 ).] (a)(q, ) q,'») (a)({j)R2'
*119 ) (~) (a)R2'. (5)
t479 (& D40) r rr E Nn .= *S(r,O)'. (6)
*100 f- r[5 • 6 .] L636 .). (fJ)(a)R2 • *S(r,O) • cPo'
*521 (& hp) ) t/I'.

Suppose the three premisses in the above example are at hand as
theorems, numbered say t811, t812, t813. Then *636 gives:

[811.812.813.).] 17 + 17 = 2 X 17

and more generally:

(y) [811 • 812 .] y E Nn .). y + Y = 2 X y.

1 Mathematical induction was u~ed and explicitly recognized by Pascal in 1654
(vol. 3, p. 298) and Fermat in 1659 (vol. 2, pp. 431H"). But the principle of mathe
matical induction retained the status of an ultimate arithmetical axiom until 1879,
when Frege defined the ancestral and by its means the class of natural numbers.
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(8)

A stronger form of mathematical induction is provided by the
following metatheorem, which is related to *522 as *636 is related
to *521.

*637. If [etc. as in *636J then
~ r(a)(a E Nn . cP.) cP') • cPo • r E Nn .) 1/;1.

Proof similar, from *522.

Illustrations of the use of *637 will appear in the proofs of
t638 and t641.

It may happen that a class x deprived of a certain member y be
longs to a class z, while x deprived of a different member W does not
belong to z. When z is a natural number, however, this will not
happen; if x deprived of one member belongs to a natural number
z (i.e., has z members) then x deprived of any different member
belongs likewise to z. If removal of Peter leaves eleven Apostles,
removal of John would have had the same effect. This is shown in
the following theorem.

t638. (z) (y) (x)(w) Z E Nn .): y, WEX. Xr"\"W E z .J. Xr"\ry E Z

Proof. *223 W = Y .): Xr"\"W E SIZ .=. xr"\ty E SIZ (1)
*233

(w)(x)R638 J: y, x' E Xr"\"W • (Xr"\"W)r"\LX' E z .J. (Xr"\"W)ALy E Z (2)
*100, *163 (3x') ([2.J x' E Xr"\"W. (xr"\"w )r"\iX' E z)

J: (w)(x)R638 • y E Xr"\"W .J RR2
J: (w)(x)R638 • y EX. W ¢ y .) RR2 (3)t362, *123

t362, *123
WEX. W '¢ Y • RR2 • Z E V .J. W E xr"\ty • RR2 • z E V

t286, *224 ). WE XAty • Xr"\ ("WAry) E Z • Z E V
t286, *224 ). WE XA'Y • (xr"\ry)r"\"w E Z • Z E V
t620 ) RR1 (4)
t619 LR1) L3
*100 J: [3 • 4 .J(W) (x)R638 • y,w EX. W '¢ y. Z E V .JRR1(5)
t190 Z E Nn .). Z E V
*100 ): [5 • 1 .J (w)(x)R638 • y, WEX. LR1 .) RR1 (6)
*100, *117

Z f Nn . (w)(x)R638 .~ (w)(x) ([6.] y, W f X • LR1.~ RRl) (7)
r620 WEX. XA"W EO [. 611J .). x E SIO
t615, *224 ). x E 1
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(3)

(1)
(2)

(3)
(4)

(1)
(2)

Z E Nn .): x, y E z. X C y .J. x = y
WE X.). WE V • LW C X

). LW C X
). X = (Xr-.LW)vLW

Xr-.LW = yALW .):. [1 ==:] W EX.). x = (yr-.LW) vLW
[(x)1 ):] W E Y .). Y = (yr-.LW)vLW

J:: L2 ): W EX .J. x = y [.:= 2J

*100 [8 . 629 .] y, W EX. Xr-.LW EO.). x = Ly
*223 ): [294 =.] xr-.ry = A
*223 ): xr-.ry E 0 [. == 622J (9)
*637 [(z)7. (w)(x)9.] Z E Nn .) (w)(x)R638
*114 ) R638

If z is a natural number and y is any member of x, then x will
have S'z members if and only if x deprived of y has z members. If
on the -other hand y is a member of x (hence any element not be
longing to x), then x will have z members if and only if x with y
thrown in has S'z members. Such is the import of the following
two theorems.

t639. (z)(y)(x) z ENn. y EX.): x ES'z .=. XALY EZ
Proof. t190 Z E Nn .). z E V (1)

*100, *163 (3w) ([638 .] W EX. XALW E z)): L639 ). xr-.ry E z (2)
t619 x E S'z.J L2 (3)
*100 [1.2.3.620.)J639

t640. (z)(y)(x) zENn.YEx.):XEZ.==.XvLYES'Z
Proof. t344 y E V .J. y E Ly

*100 ) : y E X .v. Y E £y
t271 J.yExvLy
t639 Z ENo • R1 .): (xv£Y)r-.LY EZ.=. XvLy ESiZ

t327 Ly ex.). x = (xv£Y)r-.ry
*223 J:. Z E Nn . R1 .) R640 [:= 2J
t342 yEX.=.yEV.LyCX
*100 [1. 3 . 4.)J640

If x and yare finite classes having the same number of members,
in other words if x and y belong to the same natural number, then
the following theorem shows that x coincides with y if included
In y.
t641. (z) (y) (x)

Proof. t342
*100
t326
*223
*103
*223
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t329 x C y .J. Xr"lLW C yr"lLW (4)
*233
(x)(y)R641 J: Xr"ILW, yr"lLW E Z • R4 .J L2
*100 J : [3.] Xr"I LW, Yr"I LW E Z • R4 . W EX. W E Y •J. x = y (5)
t639 zENn.wEy.J:yES'Z.==.yr"lLwEz (6)
*110 (&D21) x(y.J:WEX.J.WEY
*100 J : [5 . 6 .] (x) (y) R641 . x r"I LW E Z • R4 •

W EX. Z E Nn . y E S'z .J. x = y (7)
*100, *163 (3w) ([4 . 7 .] W EX. Xr"ILW E z)J:

(x)(y)R641 • Z E Nn . y E S'z. x C y .J. x = y (8)
t619 x E S'z .J L8 (9)
*100, *117

Z E Nn. (X) (y)R641 .J (X)(y) ([8 . 9.] x, Y E S'z. x C y .J. x = y) (10)
*100 X,yEO.X(y.J.X,yEO
t356 (& D36) J. x = y (11)
*637 [(z)10. (x)(y)ll .] Z E Nn.J Cx)(y)R641
*114 J R641

§ 45. Counter Sets

WHEN WE augment a class x by throwing in the class itself as
additional member, we have x v LX. Thus where x is the class of
the twelve Apostles, x v LX has thirteen members: the twelve
Apostles and the class of them. Where y is this class x v LX of
thirteen, y v Ly in turn has fourteen members: the thirteen mem
bers of y and y itself. In this fashion we can generate an unending
series of classes, each having one more member than its prede
cessor.

x v LX, which will be called the self-augment of x, is an element
whenever x is. This cannot be established by direct appeal to *200,
because the stratification condition is not fulfilled; but it can be
established indirectly, as in the first line of the following proof.
The converse also holds, as the rest of the proof shows. l

1 With help of t363 it is not difficult to prove, more generally, that

(y) (x) X E V •== . x v Ly E V.



§ 45

t650. (x)

Proof. t273
*223
*223
*100

COUNTER SETS

X E V .=. XvIX E V
X E V [. 359J .). XvLX E V
IX = A .:;J : XvLX = x [. == 297J

) 650
[1.2.343.)J650

247

(1)

(2)

The self-augment function, whose value for any element x as
argument is XvIX, will be called Sa.

D41. 'Sa' for 'Ax(XvIX)'.

In view of t650 we have the following theorems.

t651. (x) x E V.). Sa'x = XvLX

t652. r Sa = V
Proofs like those of t614 and t617, using t650 instead of t610.

If x is the class of Apostles, then Sa'x, Sa" (Sa'x), etc. are the
classes of thirteen members, fourteen members, etc. which were
considered above. But if instead of starting with that twelve
member class we take x as the class of zero members, viz. A, then
Sa"x is the class A v LA, i.e. LA, having the one member A;
Sti' (Sa'x) is L1\ v LLA, having the two members A and LA;

Sa' (Sa' (Sa'x)) has the three members i\, LA, and LA v uA; and so on.
The classes making up this series will be called counter sets.! Just
as the class Nn of natural numbers c:>mprises 0, S'O, S' (S'O),
etc., so the class Cs of counter sets comprises A, Sa'A, Sa'(Sa'A),
etc.; and accordingly, just as Nn was definable as *S"LO, so Cs
is definable as *Sa"LA.

D42. 'Cs' for '(*Sa"LA) '.

The interesting feature of Cs is that it contains one member
from each of the natural numbers. The counter set A is a member
of 0, the counter set Sa'A is a member of S'O, the counter set
Sa'(Sa'A) is a member of S'(S'O), and so on (cf. t663). In the
counter sets we have a guarantee that for every natural number z,
no matter how high, there is a class of z members. This conclusion

1 So-called because they are to serve as counters in certain formal developments
rather analogous to the process of counting. The term was suggested, in a different
context, by Ravven. These sets are von Neumann's natural numbers.
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will be drawn formaUy in t664; and from this basis it will be found
possible (§ 46) to proceed to a theorem establishing the infinitude
ofV.

The following six theorems and metatheorems are exactly
analogous to six in § 44.

t663. SallCs C Cs

t6M. (x) XECs.).Sa"xECs

t666. A ECs

t666. (x) Salix ex. A EX.). Cs C x

*667. If y;, eJ>', and eJ>o are like eJ> except for containing free occur
rences respectively of r, rsa ' a l, and 'A' wherever eJ> contains free
occurrences of a, then

~ r(a)(eJ> ) eJ>') • eJ>o • r ECs .) Y;l.

*668. If [etc. as in *657J then

~ r(a) (a E Cs • c/> .) c/>') • c/>o • r E Cs .) y;l.

Proofs like those of t630- t632, t635-*637, using t652, t653,
and t211 instead of t617, t630, and t611.

e is the relation ,vhich an element bears to any element of which
it is a member (cf. § 42). Hence its proper ancestral *e I e is
the relation of an element x to an element y such that x is a mem
ber of y or a member of a member of y or etc. (cf. end of § 39).
Now the following theorem shows that no counter set bears
*€ \ e to itself; i.e., that no counter set is a member of a member
of ... a member of itself.

t669. (x) x E Cs .) ~ (* € I€)(x,x)

Proof. t562 €vI C *€ (1)
t422 [1 ).] (€vl)(y,x) ) *€(y,x) (2)
*100 [650 . 344 :] y E X .v. Y E LX : R650 :):

y EX. X EV .V. Y ELX : x Ex .V. X ELX : R650 (3)
t271, *123
y E XvLX. R650.): y EX. X EV .V. Y ELX : x EXvLX. R650[.:=3J(4)
t564, *123 €(y, XvLX)): €(y,x) v. y E LX : €(X, XvLX)[.:= 4J
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(5)

(6)

(8)
(9)

(10)
(11)
(12)
(13)
(14)
(15)

J. ~(y,x) v I(y,x) • ~(x, XvLX)
J. (~vI)(y,x) • ~ (x, XvLX)

* ~(xvLX, y) • *~ (y,x) .J (* ~ I*~)(xvLX, x)
J *~ (XvLX, x)

tSS4, *123
t424, *123
t487
t517, *224
*100, *163

(3y) ([6 .S.2.J *~(XvLX, y). ~(y, xvLX» J. RRS. R6 (7)
t486, *123 (* ~ I ~)(XvLX, XVLX)J. RRS • R6 [:== 7J
t487 J (~ I * ~)(x,x)

tS24, *224 J (* ~ I ~)(x,x)

*223 Sa'x = XvLX.J: (* ~ I ~)(Sa'x, Sa'x) J R8 [.== 8J
t190 x ECs .J. x EV
*100 [10 • 651 . 9 .] X ECs • R659 .J ~ LR9
t564 ~(x,A) ==.xEA[. 211J
*100 [12 . 192 .JJ ~ (* ~(A,x) • ~(x,A»

*131 ~(3x)(*e(A,x). ~(x,A» [== (x)13J
t486, *123 ~(* ~ I ~)(A,A) [== 14J
*658 [(x)ll. 15.J x ECs.J R659

It follows that no counter set is a member of itself.

t660. (x)

Proof. t512
t422
*100

X E Cs .J. x EX

~ C *~ I ~
[1 J.J ~(x,x) J (* ~ t ~)(x,x)

[2 . 659 • 565 .JJ 660

(1)
(2)

I.e., Cs is included in Russell's class.

t661. Cs C x(x EX)

Proof. *313 [(x)660 =J 661

Thus V is not a counter set.

t662. V ECs
Proof. t660

*100
V E Cs .J. V EV
[1 • 210 .JJ 662

(1)

It is not always true that x v LX has one more member than x.
If x is a member of itself, x, v LX is simply x; for example,
V v LV = V. If x is not an element, x v LX is again simply x
(cf. t343). When x is a counter set, however, we may be sure that
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its self-augment x v l,X (or Sa"x) will have one more member than
x. This is established in the following theorem.

t663. (Y)(x) x ECs • y ENn .): x Ey .==. Sa'x Esty

Proof. t190 x E Cs .). X E V (1)
*100 [1 . 660 . 651 .J x E Cs .). X E V • x EX. R651
*235 (& D20), *123 J. x EX. R651 (2)
t640 YENn.xEx.):xEy.==.xvtXES"y (3)
*223 R651 J:.yENn.xEx.) R663[: == 3J (4)
*100 [2 . 4 .)] 663

It can now be proved that every natural number has a counter
set as member.

t664. (y) y E Nn .) (3x) (x E Cs • X E y)

Proof. *232 [655. 622 .J] (3x) (x E Cs • X E 0) (1)
*100 [654. 663 .] L663 . x E y .J. R654. Sa'x E sty
*232 ) (3x) (x E Cs. X E sty) (2)
*100, *163 (3x) ([2 .] x E Cs • X E y) ): y E Nn .) R2 (3)
*100 [3.] y E Nn .R664.) R2 (4)
*637 [(y)4. 1 .] Y E Nn .) R664

§46. Finite and Infinite

THE FOREGOING theorem shows that for every natural number
y, no matter how high, there is a class (in fact a counter set) having
y members. No natural number is empty.

t670. A ENn

Proof. *100 [192 )] rv (x E Cs • X E A)
t664 (& D8) A E Nn .J rv (x) 1
*100 [2 . (x) 1 .)] 670

(1)
(2)

The classes belonging to the successive natural numbers run
larger and larger without limit, but each is finite. On the other
hand an infinite class belongs to no natural number whatever;
where x is an infinite class there is no natural number y such that
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x has y members. The members of an infinite class are in this sense
literally innumerable.

If a class x were finite and yet not an element, then membership
of x in a natural number would be impossible despite the finitude
of x; for a non-element is incapable of membership. However, we
know there are no finite non-elements (see end of § 35). Member
ship in a natural number thus provides a simple and adequate
formal definition of finitude. The class Fin of all finite classes is
the class of all members of natural numbers, i.e. e"Nn (cf. t567).

D43. 'Fin' for '(e"Nn)'.

A class is finite if and only if it belongs to a natural number.

t671. (x) x E Fin .= (3y) (x E y • Y E Nn)

Proof. t567, *224 (& D43) x E Fin .==. x EX R671
*230 ==. x E V . R671
*158 == (3y)(R191 • y E Nn)
t191, *123 == R671

A class (element or non-element) is infinite if and only if it does
not belong to Fin; i.e., if and only if it belongs to no natural
number. One such class is V.

t672. (x)

Proof. t333
t641
*223
*100, *163
t664
*100

"-I (V EX. X E Nn)

yCV
x E Nn .): y, V E X [. 1J .). y = V
y = V .): y ECs [.== 662J
(3 y) ([2 . 3 .J Y E Cs . Y EX) ) 672
x E Nn.) L4
[4.5.)J672

(1)
(2)
(3)
(4)
(5)

(1)

t673. V EFin

Proof. t671 (& 08) V E Fin .= "-I (x)672
*100 [1 • (x)672 .)J 673

The class V of all elements is thus infinite; In other words,
there are infinitely many elements.

Whereas all finite classes are elements, it is not true conversely
that all elements are finite; for V itself is an element (t210) and
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yet infinite. The class of infinite elements is Fin; and V belongs
to it.

t674. V E Fin

Proof. *235 (& D20) 674 [=.210. 673J

From t673 we see that for every finite class x there is an element
not belonging to x; i.e., there is something belonging to x.
t675. (x) x EFin .) (3y)(y EX)

Proof. *223 x = V .): x EFin [.== 673J (1)
*100 [1 • 335 .J x E Fin .) r'J (V C x)
*100, *123 (& D21, 8) ) (3y)(y E V •Y EX)
*230 (& D20), *123 ) (3y)(y EX)

An important property of the successor function which was not
established in §§ 43-44 is as follows: if x and yare natural numbers
having the same successor then x = y. The successor of a natural
number x determines x uniquely. In fact, if w is the successor of
a natural number x then x is fixed in terms cf w as

y(3z) (z E Y • yvLz E w).

This is established in the following theorem.

t676. (x) x ENn .J. x = y(3z)(z EY • yvLZ ESiX)

Proof.*135 yEx.xENn.) (3X)(yEx.xENn)
t671 ). y E Fin
t675 ) (3z) (z E y) (1)
*100, *117 x E Nn .) (y) ([1 ):] y EX. ==. R1 • Y EX)

*121 J: [189 =.J x = y(RI • y EX)

*158, *123 J. x = y(3z) (z E y . Y E x) (2)
t640 xENn.zEY.):YEX.=.YvLZES'X (3)
*100, *117 xENn.) (y)(z)([3):]ZEy.yEX.=.ZEy.RR3)
*121 ). [2 =] 676 (4)
*100 [4 )J 676

It is now easy to prove that if x and yare natural numbers
having the same successor then x = y.

t677. (y)(x) x, y E Nn . SiX = sty .). x = y

Proof. t676 x E Nn .). x = w(3z)(z E W • Wv6Z E SiX) (1)
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t676 y E Nn .). y = w(3z)(z E W • WvLZ E Sly) (2)
*228 SeX = Sly • Rl . R2 .=. Sex = Sly. X = RR2 . R2
*228 =. Sex = Sly • x = y • R2 (3)
*100 [1. 2 . 3 .) ] 677.

This theorem, despite its elementary appearance, depends for its
truth upon the infinitude of V. For, suppose V had only a finite
number of members - say 93. Suppose, in other words, there
were only 93 elements. Then no class could have 94 or 9S mem
bers; i.e., there would be no classes belonging to 94 or 95. Hence
94 and 95 would both be null; i.e.,

S/93 = S/94 = A.

Despite the identity of S'93 and S/94, however, 93 and 94 would
remain distinct; for 93 would have V as member while 94 would
have no members. Thus t677 would be violated.

Actually, however, V is infinite (t673) and no natural number
reduces to A (t670). Proof of t677 had to be deferred till after
proving these things. Note that the proof of t677 uses t676, whose
proof in turn uses t675, which is a corollary of t673.

§ 47. Powers of Relations

The ancestral *x is, we have seen, the relation of any element z
to any element W such that z is W or bears x to W or bears x to some
thing which bears x to W or etc. The pairs composing the relation
*x are hence classifiable as follows. First, there are the pairs
z;w such that z and ware the same element. The relation com
prising these pairs is I. Second, there are the pairs Z;W such that z
bears x to w. The relation comprising these pairs is x (x itself, if x
is a relation). Third, there are the pairs z;w such that z bears x to
something which bears x to w. The relation comprising these is
the relative product x I x. Fourth, there are the pairs z;w such
that.z bears x to something which bears x to something which bears
x to w. The relation comprising these is (x Ix) I x. The fifth
relation of the series is «x I x) I x) I x; and so on.!

1 The position of the parentheses is of course immaterial; cf. t491.
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These relations are known as the relatz"ve powers of x, sym
bolically xo, xl, x2, x3, etc. If x is the parent relation, then Xo is I
(as always); Xl is the parent relation again;- x2 is the grandparent
relation.; x3 is great-grandparent; and so on. Relative power is
not to be confused with the familiar notion of power which occurs
in arithmetic; the relative power stands rather to the relative
product as the arithmetical power stands to the arithmetical
product. The arithmetical notions of sum, product, and power
will be taken up in § 48; but the present notion of relative power
also has an arithmetical ingredient, in that the y of xY is ordinarily
a number.

Where y is any natural nn-mber, xY is the relation borne by the
first element Zo to the last element Zy of any sequ~nce Zo, Zh ••• ,

Zy such that x(Zo, Zl), X(Zh Z2), ... , X(Zy-b Zy). Where x is the father
relation, e.g.,

x4(Kenan, Methuselah);

for it is written that x(Kenan, Mahalaleel) and x(Mahalaleel,
Jared) and x(Jared, Enoch) and x(Enoch, Methuselah). But the
sequence zo, ZI, ••• , Zy need not always ~e composed, like

Kenan, Mahalaleel, Jared, Enoch, Methuselah,

of distinct elements; where x is the brother relation, e.g., Romulus
will bear x 5 to Remus in view merely of the repetitive sequence

Romulus, Remus, Romulus, Remus, Romulus, Remus.

The intuitive description of xY at the head of the foregoing para
graph turns on numerical subscripts, which must now be elimi
nated if we are to devise a formal definition of x y

• The business of
counting off, accomplished informally by the subscripts, can be
accomplished more formally by pairing the elements Zo, Zh ••• , Zy

with the successive natural numbers from 0 to y in the fashion
Zo;O, Zl; 1, ... ,Zy·;y. The relation which any such pair zi;i bears
to the next following pair Zi+l ; i + 1 will be called bx. This is a
relation of pairs, and hence a class of pairs of pairs; it is the
relation of any pair m;n to any pair m';(S'n) such that n is a
natural number and x(m,m').

To say that Z bears xY to an element w, now, is to say that z;O
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is connected with W;y by a bx-series of pairs; in other words, that
z;O either is W;y (in which case y = 0) or else bears bx to W;y (in
which case y = 1) or else bears bx to something which bears bx to
W;y (in which case y = 2) or else. ... In short, the power xY is the
relation of any element z to any element w such that z.;O bears the
ancestral *bx to w;y.

The auxiliary relation bx admits readily of formal definition.

D44. rbrl for

ra~(3~')(3,8')(3'Y)(a = a';'Y. (3 = ,8';(S''Y) .1' E Nn • r(a',,8'))l.

Finally the power xY is zw(*bx(z;O, w;y)), as remarked.

D45. r(r71)l for ra~(*br(a;O, ,8;rJ))l.

Suppose, e.g., that x is the father relation. Then any father
paired with any natural number will bear bx to his child paired
with the next natural number. Thus in particular

bx (Kenan;O, Mahalaleel;1),
bx (Mahalaleel;1, Jared;2),
bx (Jared ;2, Enoch ;3),
bx (Enoch;3, Methuselah;4).

Accordingly
*bx (Kenan ;0, Methuselah ;4)

and hence
x4(Kenan, Methuselah).

Only the first two theorems make explicit mention of bx.

t680. (z) (y) (x) (w)
WE Nn .). bx(y, z;(S'w)) == (3y')(y = y';w. x(y', z))

Proof. t536 sew E V (1)
t536 Sew' E V (2)
t411 y';WEV (3)
t411 z;(S'w) E V (4)
*223 w=w'.):wENn.==.w'ENn (5)
*226 w = w' .). Sew = Sew' (6)
t677 w, w' E Nn • Sew = Sew' .). W = w' (7)
*100 [5.6.7.] w E Nn .): w = w' .==. Sew = Sew' • W' E Nn (8)
t417 Z'EV[. 2. 1J.): z;(S'w) = z';(S'w') .==. z = z'. Sew = Sew' (9)
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*434 (& D44) LR680 ==. y E V [. 4J. (3y')(3z')(3w')(y = y';w'
LR9. w' E Nn . x(y',z')) (10)

*234b
y = y';w • x(y',z) •== (3z') (y = y';w • x(y' ,z') • z = z')
*234b, *123 == (3z')(3w')(y = y';w'. x(y',z'). z=z'. w=w') (11)
*121 [(y')11 ):] y E V . (3y')R11 .==. y E V . (3y')L11
*158 == (3y') (y E V . L11)
*228, *123 == (3y') ([3 .] Ll1) (12)
*100 (& D24), *117
WE' Nn .) (y') (z') (w') ([8 . 9 .. ):]

LR9. w' E Nn . x(y', z') .==. x(y', z') • z = z' • w = w')
*121 ):. [10 =:J LR680 ==. y E V. (3y') Rll
*122 ).R680[==12]

t681. (y)(x) YEV.). xY = iw(z = w. °= y .v (*bx Ibx)(z;O, w;y))
Proof. t411 z;O E V (1)

t563,*224 *bx(z;O, w;y) == (Iv(bx I*bx)) (z;O, w;y)
t524,*224 == ([v(*bx Ibx)) (z;O, w;y)
t424 ==. I(z;O, w;y) V (*bx Ibx)(z;O, w;y)
t552, *123 ==: [1 .J z;O = w;y.v (*bx Ibx)(z;O, w;y) (2)
t417 y,zEV[.611J.):z;0=w;y.==.z=w.0=y (3)
*100,*117
y E V .) (z) (w) ([2 • 3 .):J z, WE V . L2 .==. z, WE V . RR3 V RR2)
*433 (& D45), *123

) (z)(w)(xY(z,w) == RR681(z,w))
t447 ) R681

The next two are the main theorems on relative powers.

t682. (x)
Proof. t624

t536
t416
*100, *163

*434 (& D44)
*100, *163
t486, *123
t182

XO = I°~ sty' (1)
sty' E V (2)
z E V [.611 • 2J. z;o = z';(S'y') .). °= sty' (3)
(3y)(3z')(3y')([1.3.J w = y;y' • z;o = z';(S'y') •

y' 'E Nn . x(y,z')) ). z EV (4)
bx(w, z;O) =. w, z;o E V . L4 (5)
(3w) ([5 .4.J *bx (y;O, w) • L5) ). z EV (6)
(*bx Ibx)(y;O, z;O) ). z EV [:= 6J (7)
o = 0 (8)
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t681 [611 ).J XO = yz(y = z [. 8J .v L7)
*100 (& D25), *188 = yz(z E V: y = z.v L7)
*100, *188 = yz([7 ).J z E V . y = z)
tS53, *188 (& D26) = j
*437 = I

1"683. (y)(x) y E Nn .). xS'
y = xY Ix

l~roof. t624 0 ¢ Sly (1)
t536 Sly E V (2)
*100 [1)Jrv(z=w.0=S'y) (3)
t681 [2 ).J xS

'
y = zw(z = w • 0 = Sly .v (*bx Ibx)(z;O, w;(S'y)))

*100, *188 = zw([3 )J (*bx Ibx)(z;O, w;(S'y)))
t486, *188 = zw(3y') (*bx(z;O, y') • bx(y', w;(S'y))) (4)
t680, *117

y E Nn .)(z)(w)(y')(bx(y', w;(S'y)):=(3z')(x(z',w). y' = z';y))
*121 ):[4:::.J

xS
'
y

= zw(3y') (*bx(z;O, y') • (3z') (x(z',w) • y' = z';y))
*158,*123 ). xS

•
y = zw(3y') (3z') (*bx(z;O, y') • x(z',w) • y' = z';y)

*138,*123 ). xS
'
y = zw(3z')(3y')( " " ")

*234b,*123 ). xS
'
y

= zw(3z') (*bx(z;O, z';y) • x(z', w))
*100 (& D2S), *123

). xS
'
y = zw(z E V • (3z') (*bx(z;O, z';y) • x(z',w)))

*158, *123 ). xS
'
y = zw(3z')(z E V • *bx(z;O, z';y) • x(z',w))

*100 (& D24), *123 '
). xS

'
y = zw(3z')(z, z' E V. *bx(z;O, z';y) • x(z', w))

*433, *123 (& D45, 29)
) R683

For each natural number y, the above two theorems explain xY
step by step in terms finally of I, x, and relative product.

XO = I,
xI=xolx=Ilx
x2 = Xl IX = (l Ix) IX

x3 = x2 Ix = «l Ix) Ix) Ix

etc. Where y is not a natural number, xY is uninteresting
though of course still defined by D45.

It is next shown, by mathematical induction on the basis of t682
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and t683, that the order of the relative product in t683 is in
essential.

t~. (y)(x)

Proof. *226
t491, *224
*223
*100
t559, *224
t682, *224
*637

t685. (y)(x)

Proof. *223
*100

yENn.J.xl(xY) =xYlx

R684 J. (x I (xY» Ix = (xY Ix) I x
J. x I (xY Ix) = (xY Ix) Ix (1)

R683 J:. R684 J. x I (xs'Y) = xS'Y Ix [:= 1J (2)
[683 • 2 .J Y E Nn • R684.J RR2 (3)
x/I = I/x[.=560J (4)
x I (xO) = xO Ix [. == 4] (5)
[(y)3. 5 .] y E Nn .) R684

y E Nn .). xS
'Y = x I (xY)

R684). 685 [= 683J (1)
[684 . 1 .)J 685

The concluding theorem shows that if the range of a function x
embraces all elements, so do the ranges of the relative powers of x.

t686. (y)(x) y E Nn • rx = V.). r(,xY) = V
Proof. t539 rx = V .J. r(xY) C rex I (xY» (1)

*223 r(xY) = V .):. [1 =:] L1 J. V C r(x I (,xY»
t335, *123 J: L1 ). rex I (xY» = V (2)
*223 R685 ):: r(,xY) = V .): L1 ). r(xs'Y) = V [.:=2J (3)
*100, *117

S'L1 J (y)([685 • 3.J y ENn • r(xY) = V.). rex Y) = V) (4)
t682, *224 r(xO) = V [.= SSlJ (5)
*637 R4 [. 5J • Y E Nn .J. r(xY) = V (6)
*100 [4. 6 .)J 686

Whitehead and Russell (vol. 3, *301) defin~ the relative power by a different and
more complicated method. Between my version of relative power and theirs there
is incidentally a minor divergence analogous to that noted in connection with the
ancestral. This diverg~nce shows itself only in the case of xo, which is not I for
Whitehead and Russell but rather

yz{y = z • (3w) (x(y, w) V x(w, y))).

See the end of § 49 for two more theorems on relative powers.
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WHERE x and yare any natural numbers, their sum x + y is the
number obtained from x by y additions of 1. In other words,
x + y is the successor of the successor ... (y times) of x. Thus
x + y is definable as that which bears the yth relative power of the
successor relation to x; symbolically SY'x.

D46. r(r + .,,)., for r(s'1 'r)".

The product x X y of natural numbers x and y, again, is the
number obtained from 0 by y additions of x. Thus x X y is de
finable as that which bears the yth relative power of Az(x + z) to 0;
symbolically Az(x + z)Y '0.

D47. r(r X .,,)., for r(Aa(r + a)'1 (0)".

The power x I'- y, again, is the number obtained from 1 by y mul
tiplications of x. I It is definable as that which bears the yth
relative power of ~(x X z) to 1.

D4S. r(r I'- .,,)., jor r(Aa(r X a)'" (1)".

t683 and t682 were seen to explain xY step by step in terms
finally of I, x, and relative product, where y is any natural number
(cf. § 47). Analogously the following two theorems explain x + y
step by step in terms finally of x and successor.

t690. (x) x E Nn .). x + 0 = x

Proof. t190 x E Nn .). x E V
t550 ).l'x = x
t682, *224 (& D46) ). x + 0 = x

t691. (y)(x) y E Nn ..). x + (S'y) = S'(x + y)

1 This notation, consisting of a radical sign inverted, is Peano's. I have adopted
it in preference to the usual exponent notation for two reasons: to avoid confusion
with the notion of relative power, and to prepare the way for the attachment of
subscripts's' and 'r' in § 50. Beyond the scope of the present study these con
siderations cease to be relevant, and reversion to the usual exponent notation
becomes possible.
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Proof t190
t538 (& D46)
t533 (& D46)
t533 (& D46)
*223
*223
t686
*223
t685
*223 (& D46)
*100

NUMBER

x E t(Ss'Y) .). x E V
X E t(SY) .). (S I (SY»'x = S'(x + y)
"" L1 ). x +(S'y) = A
"" IJ2 ). x + Y = A

):S'(x+y) =A[.=: 621J
): "" L1 ) R691 [.=: 3J

y E Nn [. 617J .). r(SY) = V
) : L1 ) L2 [. =: 1J

y E Nn .). SS'y = S I (SY)
J: L2 J R691 [.= 2J

[4.5.6.)J691

§ 48

(1)
(2)
(3)

(4)

(5)

(6)

Thus, where x is any natural number,

x + 0 = x,
x + 1 = S'(x + 0) = SiX,
x + 2 = S'(x + 1) = S'(S'x),
x + 3 = S'(x + 2) = S'(S'(S'x», etc.

Analogously the following two theorems explain x X y step by
step in terms finally of 0, x, and sum.

t692. (x) x X 0 = 0
Proof. t5S0 [611 =:.J 1'0 = 0 (1)

t682, *224 (& D47) 692 [=:. 1J

t693. (y)(x) y E Nn .). x X (S'y) = x + (x X y)

Proof. t536 (& D46) x + Z E V (1)
t536 (& D46} x + (x X y) E V (2)
tS36 (& D47) x X y E V (3)
*542 [3 • 2 .J.] Az(X + z) , (x X y) = x + (x X y) (4)
*193 [(z)1 J.J V = i 1
*543 = r Az(X + z) (5)
t686 Y E Nn [. SJ .J. r(A,/x + z)Y) = V
*223 ): 0 E r(Az(x + z)Y) [.= 611J
t538 (& D47) J. (Az(X + z) I (A,; (x + z)Y»'O = L4
*223 ):"""" = R4 [.=: 4J(6)
t685 y E Nn .J. Az(X + z)s'Y == Az(X + z) I (A,;(X + z)Y)
*223 (& D47) J. 693 [= 6J (7)
*100 [7 )J 693
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Thus, where x is any natural number,

x X 0 = 0,
x X 1 = x + (x X 0) = x + 0 = x,
x X 2 = x + (x X 1) = x + x,
x X 3 = x + (x X 2) = x + (x + x), etc.

Analogously the following two theorems explain x I'- y step by
step in terms finally of 1, x, and product.

t694. (x) x I'- 0 = 1

t695. (y)(x) y E Nn .). x I'- (sty) = X X (x I'- y)

Proofs analogous to those of t692 and t693.

Thus, where x is any natural number,

x I'- 0 = 1,
x I'- 1 = x X (x I'- 0) = x X 1 = x,
x I'- 2 = x X (x I'- 1) = x X x,
x I'- 3 = x X (x I'- 2) = x X (x X x),

etc.
Where x and yare not natural numbers, x + y, x X y, and x I'- y

are uninteresting - though of course still defined by D46-48.
So long as x and yare natural numbers, x + y, x X y, and x I'- yare
natural numbers as well; this is established in the following three
theorems. These theorems, and subsequent ones likewise, are
proved from the above six with help of mathematical induction.

t696. (y)(x) x, y ENn .). x + Y ENn

Proof. t631 R696 ). st(x + y) ENo (1)
*223 R691):. R696 ). x + (sty) ENn [:= IJ (2)
*100 [691 • 2 .J Y ENn : x ENo .) R696 :): x ENn .) RR2 (3)
*223 R690):x+OENn.=.xENn (4)
*100 [690 • 4.] X ENn .). x + 0 ENn (5)
*637 [(y)3 • 5 .] Y ENn .): x E Nn .) R696 (6)
*100 [6 )J 696

t697. (y)(x) x, y E Nn .). x X Y ENn

Proof. t696 x, x X Y ENn .). x + (x X y) ENn (1)
*223 R693 ):. Ll ). x X (sty) ENn [:= IJ (2)
*100, *117 x E No .)(y)([693. 2.] y ENn. x X y E Nn .)RR2) (3)
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t692, *224
*637
*100

t69S. (y) (x)

Proof similar.

NUMBER

xXOENn[.=632J
R3 [. 4J. Y ENn .J. x X y ENn
[3.5 .JJ 697

x, y ENn .J. x I'- y ENn

§49

(4)
(5)

§49. Familiar I dentities of Arithmetic

THE FOLLOWING is the associative law of addition.

t710. (z) (y) (.t·) x, y, Z E Nn .J. (x + y) + Z = x + (y + z)

Proof. t690 R696). (x + y) + 0 = x + y (1)
t690 yENn.J.y+O=y
*223 J:. R696 ). (x + y) + 0 = x + (y + 0) [:= 1J (2)
*100 [696. 2 .J L696 .). (x + y) + 0 = x + (y + 0) (3)
t691 Z ENn .J. (x + y) + (S'z) = S'«x + y) + z) (4)
*223 R710 J:. [4 =:J L4). LR4 = S'(x + (y + z)) (5)
t696 y,zENn.J.y+zENn
t691 J. x + (S'(y + z)) = S'(x + (y + z))
*223 ) ::R710): L4 J. LR4 = x + (S'(y + z))[.:=5](6)
t691 L4). y + (S'z) = S'(y + z)
*223 J ::. L6 J:. R710 ): L4 J. LR4 = x + (y + (S'z))

[::= 6J (7)
*100 [7.J L4. L696 J R710.J: L696 J. LR4 = x +(y + (S'z))(8)
*637 [(z)8. 3 .] L4 .J. L696 ) R710 (9)
*100 [9)J 710

The above theorem carries an antecedent which limits the values
of all the variables to natural numbers; and the same is true of the
eight ensuing theorems. Proofs of such theorems can be shortened
by agreeing simply to disregard clauses of the form rr ENn"'.
This course is justified by the fact that any clause rr E Nn'" which
would be required in the full proof of such a theorem is readily
derivable from the antecedent of the theorem with help of t631
and t696-t698 (or perhaps provided outright by t632 or t633).
Shortened in this fashion, the above proof assumes the following
form.
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t690 (x + y) + 0 = x + Y
t690, *227 = x + (y + 0) (1)
*226 R710 ). S'«x + y) + z) = S'(x + (y + z»
t691, *224 ). (x + y) + (S'z) = x + (S'(y + z»
t691, *224 ). (x + y) + (S'r.). = x + (y + (S'z» (2)
*637 [(z)2. 1 .)] R710

The proofs of the next eight theorems are rendered in the same
elliptical fashion; the reader can easily restore the full details on
comparing the above two versions of the proof of t710.

t711. (x) xENn.).xx1=x

Proof. t615, *227 x X 1 = x X (S'O)
t693 = x + (x X 0)
t692, *227 = x + 0
t690 = x

t712. (y)(x) x, y E Nn .). (S'x) + y = S'(x + y)

Proof. t690 (S'x) + 0 = SiX
t690, *227 = S'(x + 0) (1)
*226 R712 ). S'«S'x) + y) = S'(S'(x + y»
t691, *224 ). (S'x) + (S'y) = S'(x + (S'y» (2)
*637 [(y)2. 1 .)] R712

The next is the commutative law of addition.

t713. (y)(x) x,YENn.).x+y=y+x

Proof. *223 R713): [R712 =.] (S'x) + y = S'(y + x)
t691, *224 ). (S'x) + y = y + (S'x) (1)
*231 [(y)1 ):] x + 0 = 0 + x.). (S'x) + 0 = 0 + ( S'x) (2)
t182 0 + 0 = 0 + 0 (3)
*637 [(x)2 • 3 .).] y + 0 = 0 + y (4)
t183 [4 =.] 0 + y = y + 0 (5)
*637 [(x) 1 • 5 .)J R713

The next is the law of distributivity of multiplication into
addition.

t714. (z) (y) (x) x, y, Z E Nn .). x X (y + z) = (x X y) + (x X z)
Proof. t690, *227 x X (y + 0) = x X Y

t690 = (x X y) + 0
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t692, *227
t710
t713, *227
t710
*223
t693, *224
t691, *224
*637

NUMBER §~

=(xXy)+(xXO) (1)
x + «x X y) + (x X z» = (x + (x X y» + (x X z)

= «x X y) + x) + (x X z)
= (x X y) + (x + (x X z» (2)

R714 ): x + (x X (y + z» = R2 [.= 2J
). x X (S'(y + z» = (x X y) + (x X (S'z»
J. x X (y + (S'z» = (x X y) + (x X (S'z» (3)

[(z)3. 1 .)J R714

Next come the associative and commutative laws of multiplica
tion.

t715. (z) (y) (x) x, y, Z E Nn .). (x X y) X z = x X (y X z)

Proof. t692 (x X y) X 0 = 0
t692 = x X 0
t692, *227 = x X (y X 0) (1)
t714 (x X y) + (x X (y X z» = x X (y + (y X z» (2)
*223 R715): (x X y) + «x X y) X z) = R2 [.= 2J
t693, *224 ). (x X y) X (S'z) = x X (y X (S'z» (3)
*637 [(z)3. 1 .)J R715

t716. (y)(x) x,YENn.).xxy=yxx

Proof. t692 (S'x) X 0= 0
t692, t690 = ~x X 0) + 0 (1)
t712 (S'x) + «x X y) + y) = S'(x + «x X y) + y»
t710, *227 = S'«x +(x X y» + y)
t691 = (x+ (x X y» + (S'y) (2)
*223
(S'x) X y = (x X y) + y .): (S'x) + «S'x) X y) = R2 [.E 2J
t693, *224 ). (S'x) X (S'y) = (x X (S'y» + (sty) (3)
*637 [(y)3. 1 .).] (S'x) X y = (x X y) + y (4)
*223 R716): [4 E.] (S'x) X Y = (y X x) + y
t713, *224 ). (S'x) X y = y + (y X x)
t693, *224 ). (S'x) X y = y X (S'x)
Rest of proof like last five lines of proof of t713.

The next two are the familiar laws for breaking up exponents.

t717. (z)(y)(x) x, y, Z E Nn .). x I" (y + z) = (x I" y) X (x;'- z)
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Proof t690, *227 x ~ (y + 0) = x ~ Y
t711 = (x~y) X 1
t694, *227 = (x ~ y) X (x ~ 0) (1)
*226 R717 ). (x ~(y + z)) X x = «x~ y) X (x;\- z)) X x
t71S, *224 ). (x ~(y + z)) X x = (x ~ y) X «x I'- z) X x)
t716, *224 ). x X (x ~(y + z)) = (x ~ y) X (x X (x ~ z))
t695, *224 ). x ~ (S'(y + z)) = (x ~ y) X (x ~ (S'z))
t691, *224 ): x ~ (y + (S'z)) = (x ~ y) X (x I'- (S'z)) (2)
*637 [(z)2. 1 .)J R717

t718. (z)(y)(x) x, y, Z E Nn .). x ~ (y X z) = (x ~ y) I'- z

Proof. t692, *227 x ,f\. (y X 0) = x ~ 0
t694 = 1
t694 = (x ~ y) ;\- 0 (1)
t693, *227 x ;\-(y X (S'z)) = X If\.(y + (y X z))
t717 = (x ~ y) X (x ~(y X z)) (2)
*223 R718 ): [2 =.J L2 = (x I'- y) X «x I'- y) I'- z)
t69S, *224 ). L2 = (x ~ y) ~ (S'z) (3)
*637 [(z)3. 1 .)J R718

Note that laws analogous to the above hold also for "relative
powers.

t719. (z) (y) (x) y, Z E Nn .). xY+% = (xY) I(x%)

t720. (z) (y) (x) y, Z E Nn .). xY x %= (xY)%

Proofs similar, using tS60, t682, t491, t684, t68S, and t719
instead respectively of t711, t694, t71S, t716, t69S, and t717.

Further arithmetical notions which are readily defined are the
notions of greater and less.

r(r ~ 11)1 for r(l1 E Nn • *S(r, 11))1.
r (r > 11)1 for r (r ~ 11. r ~ 11)'.
r(r ~ 11)1 for r(l1 ~ r)l.
r(r < 11)1 for r(l1 > r)l.

If we want to set up the general notation of Arabic numerals in
systematic fashion, we first introduce the digits '0', ... ,' 9' in
the manner begun in D36-38; then we define xy or xAy (not to be
confused with x X y) in such a way that, where x and yare any
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natural numbers, x A y proves to be the number whose designating
numeral under the usual Arabic notation consists of that of x
followed by that of y. A definition to this purpose is as follows:

r(r 11)l or r(t A

11)l for
r (11 + (r X ((S'9) I'- (ux) ({3) ((S '9) I'- {3 > 11 • {3 > 0 . == . (3 ~ a)))) l.

The operation so defined is associative except where' 0' appears in
middle position; e.g. (58)3 and 5(83) are both 583, and (50)3 is
503, but 5(03) is rather 53 (03 being 3). But we may dispense with
further derivation of theorems; the preceding developments
illustrate the foundations of the arithmetic of natural numbers
sufficiently for present purposes.

Proofs of t71D-t718 which proceed by mathematical induction and strongly
resemble the above elliptical proofs in outward appearance have been usual since
Grassmann (1861).

§ 50. Ratios

IN THIS section and the next two the derivation of further notions
of quantitative mathematics will be outlined. The presentation
will be sketchy, and progressively sketchier as it proceeds. No
more theorems will be proved.

Let us first take up the notion of ratio. One natural number is
said to stand in the ratio xlY to another natural number when the
one number multiplied by Y equals the other multiplied by x. The
number 8, e.g., stands in the ratio 7i to 12; and 12 stands in the
ratio ~2 to 8. In general, xlY is the relation of any natural number
z to any natural number w such that Y X z = x X w.!

r(r11])l for r &S(a, {3 € Nn .11 X a = t X (3)l.

Like the natural numbers which they relate, ratios themselves
admit of an obvious ranking in point of greater and less. One
ratio is greater than another if the number which bears the one
ratio to a given number is greater than the number which bears the
other ratio to the given number. To determine the relative rank

1 This version of ratios is essentially Peano's (1901, pp. 54f).
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of two ratios x/y and x' /y' we first find a natural number w be
longing to the converse domain of both ratios; i.e., a natural
number w such that some natural number z bears x/y to wand
some natural number z' bears x' /y' to w. Then we rank x/y as
greater or less than x' /y' according as z is greater or less than z'.

A number w of the required kind is readily found; namely,
y X y'. There are natural numbers z and z' which bear the re
spective ratios x/y and x' /y' to y X y', namely the numbers
x X y' and x' X y. For, by definition, to say that x X y' bears x/y
to y X y' is to say merely that

y X (x X y') :d X X (y X y');

and to say that x' X y bears x' /y' to Y X y' is to say merely that

y' X (x' X y) = x' X (y'x y').

To judge whether x/y is greater or less than x' /y' we have therefore
only to compare these particular numbers z and z', namely x X y'
and x' X y. The ratio x/y is greater than x'/y' if and only if
x X y' > x' X y.

The analogue of '>' for ratios will be rendered '8>'; 1 thus

(x)(y) (x') (y') x/y s> x'/y' .=. xX y' > x' X y.

The following is the formal definition.

r(r s> 1])1 for
r(3a)(3{J)(3,,)(35)(r = a/{J • 1] = ,,/5. a X 0 > " X (J)1.

The ratios 0/1, 1/1, 2/1, 3/1, etc. will be referred to briefly as
80, 81, s2, 83, etc.; thus we define:

rsr1 for r(r/1)1.

All ratios of this sort are functions with the range of functionality
N n. s2 is the function "double of", s3 is "tripIe of", and so on.
sl is simply

xy(x € Nn . x = y),

i.e., identity confined to natural numbers. sO is

1 The choice of the letter's' is arbitrary; 'r' would have been preferable, but it
is reserved for use in the arithmetic of real numbers (§ 51). Whitehead and Russell
afford a precedent for the use of's', in connection with '+' and 'x' (vol. 3, *305).
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v~y(x = 0 . Y E Nn),

i.e., the relation which 0 b~ars to every natural number; in other
words, the "constant function" whose value is 0 for all natural
numbers as arguments. All this is readily seen by checking back
over the definitions and making a few obvious transformations.

The ratios sO, sl, s2, etc. fall into the same order as do the
natural numbers 0, 1, 2, etc.; i.e.,

(x)(y) sx s> sy .=. x > y.

But between each of these ratios sx and the next, viz. s(S'x), in
finitely many further ratios are packed which have no analogues
among the natural numbers; between s2 and s3, e.g., we have
5/2,7/3,8/3,9/4,11/4, etc. without end.

It is apparent from the definition of rr /'YJ1 that 1/0, or indeed
z/O for any natural number z except 0, is simply the relation
xy(x E Nn • y = 0) which every natural number bears to 0; and that
0/0 is the relation xy(x, y E Nn) which holds between all natural
numbers. If we count these as ratios, then 1/0 will be the greatest
of all ratios, whereas % will fall nowhere in the less-to-greater
serIes; for

I.e.
and
I.e.

(x)(y)
(x)(y)
(x)(y)
(x)(y)

x,yENn.y ~ 0.).1 X Y > x X 0,
x, Y E Nn • y ~ 0 .). 1/0 s> x/y,
rov(O X y > x X 0) • rov (x X 0 > 0 X y),
rov(O/O s> x/y) • rov (x/y s> 0/0).

It is more usual, however, not to count 1/0 and % as ratios. The
class Ra of ratios is therefore defined thus:

J'Ra' for 'x(3y)(3z)(yENn.z>0.x=y/z)'.

Pressing the analogy which began with the introduction of
's>'," sO', 'sl', etc., it is easy to define an analogue' s+' of '+'
and an analogue' sX' of 'X '. If z and z' are natural numbers
bearing the respective ratios x/y and x'/y' to a natural number w,
then the rational sum (x/y) s+ (x' /y') is explained as the ratio
which the natural sum z + z' bears to w. Suitable choices of z, z'
and w have already been remarked; we have seen that x X y' and
x' X y bear the respective ratios x/y and x'/y' to Y X y'. Hence
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(X/y) 8+ (X' /y') is describable simply as the ratio of (x X y') +
(x' X y) to Y X y'; in short, as

((x X y') + (x' X y)) / (y X y').

The rational product (x/y) sX (x' /y') is construed yet more
simply, viz. as the ratio borne to y X y' by the product x X x'
itself; in short, as

(x X x') / (y X y').

The formal definitions are as follows.

r (r s+ 11) 1 for r (11') (3a) (3{j) (3a') (3{j') (r = a/{j • 11 = a' / {j' •
l' = ((a X (j') + (a' X (j)) / ({j X {j'))1.

r(r sX 11)1 for r(11')(3a)(3{j)(3a')(3J3')(r = a/J3.11 = a'/J3'.
l' = (a X a') / ({j X (3')) 1.

It turns out that rational addition and multiplication as defined
reproduce the familiar formal laws of natural addition and multi
plication, and it turns out further that they yield parallel results
numerically when applied to the analogues sO, s1, etc. of the
natural numbers. s5 s+ s7 = 812, e.g., and 85 sX 87 = 835. In
general,

(x) (y)
(x) (y)

SX 8 + 8Y = s (x + y),
sX s X sy = s (x X y).

If we disregard the subscripts, we have in rational arithmetic
simply a broader arithmetic of addition and multiplication in which
the arithmetic of natural addition and multiplication is embedded
as an integral part.

One feature which puts rational arithmetic in marked contrast
to natural arithmetic is the efficacy of division. The quotient
x + y could indeed have been defined in natural arithmetic, viz.
as (1Z) (x = Y X z); but it would have been of little use, for there is
no number whose product by y is x except in those relatively rare
cases where x is a multiple of y. Where x and yare ratios, on the
other hand, there is almost always one and only one ratio z such
that x = y sX Z; always, in fact, except where y = sO. Thus it is
that the definition:
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of rational division is useful indeed. We find, in fact, that x s-;

(w/w') is simply x sX (w'/w).
Along with this gain in the matter of division, however, we en

counter a loss in connection with the notion of power. Let us
consider how a rational analogue 'sl'-' of the ',i\-' of natural
arithmetic might appropriately be construed. The suitable version
of (x/)') 81'- 82, in particular, is obvious; just as w I'- 2 is w X w,
so we may appropriately take (x / y) sl'- s2 as (x / y) sX (x/ y).
Thus

(x / y) 81'- 82 = (x / y) sX (x/ y) = (x Xx) / (y X y) = (x I'- 2) / (y 1'. 2).

Similarly
(x/y) 81'- 81 == (x I'- 1) / (y /'\. 1) = x/yo

More generally, we may always explain (x/y) 81'- 8X' as
(x I'- x') / (y I'- x'). This accounts for all rational powers of the
form (x/y) 811\. (x' /1); but it remains to consider (x/y) 81'
(X'/y') where y' ~ 1. Let us then examine the case w 81'-(1/2),
where w is any ratio. We shall want to preserve the familiar laws
of exponents which hold in natural arithmetic; thus

(w sl'- (1/2» 8X (w ~I'-(1/2» = w sl'\. « 1/ 2) s+ (1/2» = w 81'- 81.

But, as just previously decided, w sl'- 81 = w. Hence w s/\. (1/2)
must be explained as the ratio z such that z sX z = w. The diffi
culty is, however, that there will very conlmonly be no such ratio
z. E.g., there is no ratio z such that z sX z = 83; thus s3 sl'- (1/2)
IS missing.

Whereas the notion of power in natural arithmetic works for
2 ny two natural numbers, the analogue for rational arithmetic
fails in the observed fashion for many ratios. When the second
ratio happens to be integral, i.e. of the form sx, the power is indeed
forthcoming; but if the second ratio is not integral, the power is
missing more often than not. Rational arithmetic is fully as de
fective with respect to the notion of power as was natural arith
IT etic with respect to division.
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§ 51. Real Numbers

271

THE MISSING powers in rational arithmetic can nevertheless be
approximated by ratios, to within any preassigned interval of
accuracy. Whereas e.g. there is no ratio 83 8/,-(1/2), in other
words no ratio z such that z sX z = 83, there are nevertheless ratios
z such that z sX z falls within any preassigned neighborhood of s3.

Thus, consider the class of all those ratios zwhich are small enough
so that 83 s> z 8X z. All these ratios are smaller e.g. than 7/4;
but within the class there is no largest. By choosing larger and
larger ratios z from this class we can bring z 8 X z closer and closer to
83, without end.

The class just now referred to has these four features. (1) Its
members are ratios. (2) It does not exhaust the ratios. (3) It
has no greatest member. (4) It contains all ratios except those
which are too large; i.e., a ratio falls outside the class only if it
exceeds all members of the class. These four features can be
formulated together in the following compact fashion: the class is
not the class of all ratios, and anything z belongs to the class if and
only if y s> z for some y belonging to the class. A class of this
kind is called - by caprice, we may for the moment suppose - a
real number. l Thus the class N r of real numbers is definable as
follows:

'Nr' for 'x(x~Ra.x=z(3Y)(YEX.Ys>Z))'.

The class of all ratios less than a given ratio is a real number;
for it obviously has the four features noted above. Corresponding
to each ratio x, thus, we have a real number y(x s> y). The latter
will be referred to briefly as rX.

rrrl for r&(r s> a)l

1 The fact that such classes constitute a model of the traditional real number
system was pointed out by Dedekind (Stetigkeit). The outright identification of
the real numbers with those classes was first explicitly propounded by Russell
(Principles, Ch. XXXIII), though rather hinted previously by Peano (" Sui nu
meri").
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But we also have real numbers which do not thus correspond to
ratios; one such is the real number originally considered above,
viz. i(s3 s> z 8X z). There is no ratio x such that this real number
is rX; in other words, no ratio x which is just next greater than all
ratios belonging to this real number. If there were such a ratio, in-
deed, it would be our missing power 83 s/'- (1/2). Real numbers
which correspond thus to no ratios are called irrationals.

. 'Irrat' for 'x(x E Nr. (y)(x ~ rY)) '.

The others may be called rational real numbers.
An irrational is a real number which, so to speak, corresponds

to a missing ratio. The real number i(s4 a> z 8X z) is a rational
one, for it is rX where x = 82; it corresponds to the ratio 82. On the
other hand the irrational £(83 s> Z aX z) fills in where the series of
ratios exhibited only a lack: the lack of a rational power 83 8/,-(1/2).

A general ranking in point of greater and less is readily imposed
on real numbers, in such a way that any rational reals rX and rY

will follow the same order as the corresponding ratios x and y. We
have merely to reflect that rX will include rY if and only if x is
greater than or equal to y. Thus' r~ , and' r> " the analogues of
~ ~ , and' > ' for real numbers, are defined as follows:

r(r r~ 17)' for r(r, 17 E Nr. 17 C r)',
r(r r> 17)1 for r (r r~ 17 • r ~ 17)".

The series of real numbers, arranged in point of greater and less
in this sense, images the series of ratios except that new numbers,
the irrationals, are squeezed in everywhere. Between the series of
ratios z such that 83 8> Z aX Z and the series of ratios z such that
z aX Z a> 83, for example, there is no further ratio; but between the
real numbers corresponding to the former ratios and the real
numbers corresponding to the latter ratios there is an intermediate
real number, viz. the irrational i(s3 8> Z aX z).

A ratio is called an upper bound of a given class of ratios if no
member of the class exceeds it. A real number is called an upper
bound of a class of real numbers under similar circumstances. Now
a class of ratios may have an upper bound without having a least
upper bound. This is true e.g. of the class i(s3 8> Z aX z) hitherto
discussed; 9/5 is one ratio which no member of the class exceeds,
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but 7/4 is a smaller ratio having the same property, and there are
smaller and smaller ones without end. On the other hand every
class of real numbers which has an upper bound has a least one.
Consider e.g. the class analogous to the above class of ratios,
viz. the class of all real numbers z such that r3 r> Z rX Z; this
class has the irrational number £(s3 s> z sX z) itself as least upper
bound. In general, indeed, it is readily verified that if x is a class
of real numbers which has any upper bound at all then its least
upper bound is simply the class E::"x of all members of members
of x.

The fact that every bounded class of reals has a least bound is
the basic formal difference between the reals and the ratios. It is
in this sense that the series of real numbers is said to be continuous
while the series of ratios is not. On the other hand both series are
dense, in the sense that there is a third number between any two.

If a bounded class x of ratios lacks a least bound, then the class
x' of those real numbers rZ which correspond to the ratios z in x has
an irrational least bound. Conversely, also, every irrational is the
least bound of a class x' of the above kind. This is the strict mean
ing of the earlier loose remark to the effect that an irrational is a
real number which corresponds to a missing ratio.

The irrationals do far more than supply missing powers. One
familiar irrational of another sort is 7r. The irrationals exist in
such variety, indeed, that no notation whatever is capable of
providing a separate name for each of them.! Note in contrast that

1 The individual signs available in any given notation are finite in number
say J.Lb J.L2, ••• ,J.Lk. (In the present notation we have indeed an infinity of vari
ables, but they are made up of the five signs "w', 'x', 'y', 'z', "'.) The infinite
totality of expressions which can be constructed from J.Lh ••• , J.Lk can be ordered
thus: J.Lb .•. , J.Lh rJ.LIJ.Ll1 , ... , rJ.L1J.Lk 1, rJ.L2J.Ll', ••. , rJ.LkJ.Lk', rJ.LIJ.LIJ.Ll', .•• ,
rJ.L1J.L1J.Lk', rJ.LJ}J2J.Ll', . ... Let us refer to them briefly as JJ.h ... , JJ.k, JJ.k+h . ... Con
sider ~ext the unending decimal expansion <x) of a positive real n"Umber x~ 1.
Because unending, <x) must be thought of not as an expression but as a func
tion, such that <x)' n is the number ~ 9 which turns up in nth place on expand
ing x. To say that <x) is unending is to say that for every number there is a larger,
n, such that <x)' n ~ O. We know that every positive real number~ 1 has a unique
unending expansion <x) (as well as sometimes an ending one; e.g.,.43 = .42999 ...).
Conversely, also, each such expansion determines a positive real number ~ 1. Then
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any ratio can be named by putting' /' between numerals.
We turn now to the problem of defining multiplication and addi.

tion for real numbers. Our object will be to maintain the laws:

(1) rX rX rY = rex sX y), rX r+ rY = rex 5+ Y)

for all ratios x and }', just as in defining' r > ' our object was to main
tain the law:

rX r > rY •==. x s > y.

Now clearly the following is true for all ratios (sO and greater):

(2) x sX Y s > z • == (3x') (3y') (x s > x' • y s > y' • z = x' sX y').

I.e., since w s > z •==. Z E rW,

Z E rex sX y) • == (3x')(3y')(x' E" rX • Y' E rY • Z = x' sX y').

In view of (1), then, we are to identify rX rX rY with

z(3x')(3y')(x' E rX. y' E rY • Z = x' sX y').

So, if we treat irrationals on a par with rX and rY,

r(r rX 1])1 for r&(3{j) (31') ({j E r. l' E"1. a = {j sX 1')1.

Addition is more complex, because the analogue of (2) for addi
tion can fail when x or y is sO. What holds in lieu of (2) is this:

x s+ Y 5> Z.=:
x s > Z .v. Y s > z .v (3x')(3y')(x 5> x' • Y 5> Y' • Z = x' 5+ y').

I.e., Z E rex 5+ y) .==:
Z E rX .V. Z E rY .V (3x')(3y')(x' E rX • y' E rY • Z = x' 5+ y').

Recalling (1), then, we are led to a definition of ' rX r+ rY' which,
if extended beyond rX and rY to real numbers generally, runs

consider the real number k which is determined as follows: for each n, <k) 'n is 1
or 2 according as JJ.ra does or does not name a positive real number x ~ 1 such that
<x)'n = 2. Now k has no nameJJ.n; for, ifJJ.n named k, <k)'n would have to satisfy
the self-contradictory condition of being 2 if and only if other than 2. It is thus
established that no notation is adequate to expressi.ng every real number. Since
each rational number is readily expressed with help of the fractional notation,it
follows that no notation is adequate to expressing every irrational. (This argument
is due in essential respects to Cantor.)
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as follows:

rct' r+ rJ) l for rct' v rJ v &(3/3)(3')')(/3 E S. ')' E rJ. a = (3 s+ ')'))1.

The definition of power r(t' rl'- rJ) l for real numbers will be passed
over in this survey.

It was observed that natural arithmetic is virtually, but not
actually, embedded in rational arithmetic. The whole numbers in
rational arithmetic are not 0, 1, 2, etc., but rather the rational
analogues aO, 81, 82, etc. Clearly the relation of rational to real
arithmetic is similar; the rational reals are not ratios, but analogues
rX of ratios x. The whole real numbers, likewise, are not the
natural numbers 0, 1, 2, etc.; they are rather real-number ana
logues raO, ra1, ra2, etc. of the rational analogues aO, a1, a2, etc. of
0, 1, 2, etc. (Note incidentally that raO = A.) But when we are
concerned with using arithmetic or investigating its higher reaches
rather than examining its logical foundations, we of course find it
convenient to leave these distinctions tacit and omit the subscripts.

§ 52. Further Extensions

FOR ALL REAL numbers x and y, there are real numbers x r+ Y,
x rX y, and x rl'- y; in this respect the arithmetic of real numbers
is like that of natural numbers. For all real numbers x and y such
that y =;e raO, moreover, there is a real number x r+ y whose
product by y is x.

r (r r + 17) l for r (1(~) (r = 1] r X a) l .

In this respect the arithmetic of real numbers is like that of ratios.
And the arithmetic of real numbers outdoes both that of natural
numbers and that of ratios in the following respect: for all real
numbers x and y such that y =;e faO there is a yth root of x, symboli
cally y rV x; i.e., a number whose yth power is x._

r(r rV 11) l for r (1a) (11 = a rl'- r)".
This notion of root, which is inverse to power just as quotient is in
verse to product, admits equivalently of definition in terms of quo
tient and power:
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ret rV 71)l for r(71 r~ (rsl r+ t))l.

Since in the arithmetic of real numbers the notions of product
and power thus have inverses which are almost ahvays applicable
(always save in the zero case), we are led to look also for a generally
applicable notion of subtraction inverse to addition; but here the
arithmetic of real numbers, like that of natural numbers and that of
ratios, is found wanting. It is not true in general, given any real
numbers x and y, that there is a real number x r- Y whose addition
to y yields x; there is such a number only if x r ~ y.

Just as the power defect in rational arithmetic was overcome by
passing to real arithmetic, so the subtraction defect in real arith
metic is overcome by a further extension: introduction of negative
numbers. Under this extension every real number x except rsD
gives way to two numbers: a positive one +x and a negative one
-x. Only rsD is left unsplit; + rsD and _ rsD are identified. The
branches +x and _x of a real number x are construed, further, as
distinct from the branches +y and _y of any other real number y.

Entities +x and _x fulfilling the above requirements come readily
to hand; we can take +x as Ay(X r+ y), i.e. as the function of ad
dition of x in the sense of the foregoing arithmetic of real numbers,
and we can take _x as the converse of that function.

r+tl for rAa(t r+ a) l,
r _tl for r.., +tl .

These new numbers, real numbers in a broader sense, may be called
signed real numbers; real numbers in the previous narrower sense
may then be distinguished from these as unsigned real numbers.
The class NR of signed real numbers is definable in obvious
fashion:

'NR' for 'x(3y)(y E Nr : x = +y .v. x = _y)'.1

The integers form a subclass of NR, defined thus:

'Int' for 'x((3Y)(YENn:x = +rsY·V.X = -rsY)'.

1 This construction of the signed reals from the reals is modelled on Peano's
construction (1901, pp. 48-49) of the signed integers from the natural numbers.
Peano urges that the essential idea was entertained more or less clearly by Mac
Laurin and Cauchy.
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Signed real numbers are ranked in point of greater and less in
such a way that those of the form +x follow the same order as the
corresponding unsigned reals, while the others follow the reverse
order and are reckoned as smaller. Thus the series C)f signed real
numbers constitutes an image of the unsigned series and a reverse
image of the same laid end to end, with the zero as their point of
contact. A definition which orders the signed real numbers in the
described fashion is this:

r(s- R> 1])l for r(s-, 1] ENR . (3a) (S-'a r> 1]'a))l.

A signed real number x is called posit'£ve if x R> + rsO; negative
if + rsO R> x. So far as + rsO and the positive signed reals are con
cerned, this new arithmetic is to constitute an exact reproduction of
the previous arithmetic of unsigned reals. Even throughout the
negative signed reals, moreover, the notions of sum, product, and
power are to conform to the same basic arithmetical laws. Defi
nitions of sum and product which prove to meet these requirements
are as follows:

r(r R+ 1])l for r«s- 11]) v (1] I r))l,
r (s- R X 1]) l for

r(1a)(311)(31')(s- = +11.1] = +1' .v. S- = -11.1] = -1': a = +(11 r X 1') :

v: S- = +11 •1] = -1' •v. r = -11 • 1] = +l' : a = - (~ r X 1'))l.

The general applicability of subtraction is achieved. For all
signed real numbers x and y there proves to be a signed real number
x R- )', in the sense:

r(r R- 11)l for r(1a)(S- = 1] R+ a)l.

It turns out, indeed, that x R- y is simply x R+ _z or x R+ +z ac
cording as y is +z or _z. Division survives as in rational and un
signed real arithmetic; for all signed reals x and y such that y ~
+ rsO there is a signed real x R + Y in the sense:

r(S- R+ 1])l for r(,a)(S- = 11 RX a)l.

But the notion of power presents a difficulty. When we passed
from natural numbers to ratios, we found that the gain with regard
to division was offset by a loss with regard to the notion of power;
and in signed real arithmetic the gain with regard to subtraction
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proves to be similarly offset. It turns out that if we define' RI'-'
in the way in which we would have to define it in order to meet the
requirements mentioned above, there will frequently be no such
signed real number as x RI'- y when x is negative and y is not an
integer.

This shor~coming proves to be attributable ultimately to the
fact that there is no signed real number z such that z RX z = _ rs1.
A still further arithmetic is thus prompted, the arithmetic of com
plex numbers, which does contain the analogue of such a number z.
Complex numbers are construed simply as pairs x;y of signed real
numbers; and the notions of sum, product, and power are defined
in such a way that the arithmetic of signed real numbers is imaged
within a part of the new arithmetic. In this arithmetic of complex
numbers, as in that of unsigned reals, the notions of sum, product,
and power all prove applicable without restriction; also, as in the
arithmetic of unsigned reals, the inverse operations of division and
extraction of root prove applicable save in the zero case; and also,
as in the arithmetic of signed reals, subtraction applies without
restriction.

Analysis, which includes the differential and integral calculus,
depends in its basic developments not upon the arithmetic of com
plex numbers but upon that of signed reals. The fundamental
notion of analysis is that of the limit of a function. A (signed real)
number z is said to be the limit of a function x for arguments approach
ing y from below, symbolically lim x, if for every positive number z'

. y

there is a number y' which is less than y and such that the value of
x differs from z by less than z' for any argument between y' and y.
Rendered symbolically, this characterization of z assumes the form:

(z') (z' > 0.) (3y') (y > y'.
(w)(y > w. w > y' .). (x'w) + z' > z. z + z' > x'w))).

Thus

rlim rl for r(,a)({3)({3 > 0.) (31')(7] > 1'.
11

(0)(7] > 0.0> 1'.). (r'o) +{3 > a. a +{3 > r'o)))l.

The signs '>', and '+', and '0' here are of course intended as
'R> " 'R+ " and '+ rsO'; but such subscripts are conv-eniently
dropped in discourse which concerns only one kind of number.
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The limit of x for arguments approaching y from above, sym-
y

bolically lim x, and the so-called limit of x at infinity, sym-
bolically Ii!? x, admit of analogous definitions. For the one we

change '1'/ > 1" in the above definition to '1' > 1'/' and' 1] > o. 0 > 1"

to '1' > 0.0 > 1'/'; for the other we simply drop '1] > 1" and
'1'/ > 0'.

By way of concluding this sketchy survey of the route from logic
into quantitative mathematics, the definition of the derivative Dx of
a function x of one argument is now set down without discussion.

a

rDt l for rAa lim A(3(((t'13) - (t'a)) + (13 - a)) l.

The derivative of the function "square of", e.g., proves to be the·
function" double of".

The derivative of any" constant function" (ef. § 41) proves to be
the constant function whose uniform value is o.

Abstract algebra is one branch of mathematics which lies aside from the direction
of derivation sketched in the latter sections; and geometry would appear to be
another. Actually the piace where abstract algebra fits into the general structure
of logic is farther back, namely within the general theory of relations and functions
whose groundwork was studied in Chapter V. As for geometry, a method of re
duction to logic is ready at hand in the simple expedient of identifying geometrical
entities with those arithmetical entities with which they are correlated through
analytic geometry (cf. Study, pp. 86-92). The more abstract, so-called non
metrical phases of geometry go over into correspondingly general phases of arith
metical analysis - so general, in the extreme case of topology, as to transcend the
specifically arithmetical domain and form part of the general theory of relations
and functions. This view of geometry seems to be the most convenient one in an
account of the application of geometry to nature. A scale of measurement, whether
of distance or of temperature, etc., may be viewed as a scheme for the systematic
assignment of numbers directly to observed objects or events (cf. Carnap, Phys-i
kalische BegrzjJsb-ildung, and Jeffreys, Ch. VI); and then an empirico-geometrical
statement, e.g. to the effect that Boston, Albany, and Buffalo are in line, nlay be
analyzed as attributing a certain arithmetical relationship to the numbers which
have been assigned to given objects under the scheme of distance measurement.





CHAPTER SEVEN

SYNTAX





§5.3. Formality 1

VARIABLES were described earlier (§ 12) as compnsIng just the
letters' w', 'x', 'y', and' z' with or without accents. The atom1'c
logical formula: were described in turn (§ 23) as comprising just the
results of putting such variables in the blanks of ' ( e ) '. Then
the logical formula: were described as comprising, first, the atomic
logical formul£e; second, all results of putting such expressions in
the blanks of ' ( 1 ), or after a parenthesized varia ble; third,
all results of putting expressions of the thus supplemented totality
in the blanks of' ( 1 )' or after a parenthesized variable; and
so on. Now all these characterizations are formal, in that they
speak only of the typographical constitution of the expressions in
question and do not refer to the meanings of those expressions.
But this explanation of 'formal' is vague; we turn now to a more. .
precIse versIon.

Let us use' Sl', 'S2', ... , 'S9' as names of the respective signs or
typographic shapes 'w', 'x', 'y', 'z', "', '(', ')',' 1 " and 'e'; thus

Sl = 'w' = double-yu,
S2 = x = ex,
S3 = 'y' = wye,
S4 = 'z' = zee = zed = izzard,
S5 = '" = accent,
S6 = '(' = left parenthesis,
S7 = ')' = right parenthesis,
S8 = ' l' == do,vn-arrow,
S9 = 'e' = epsilon.

Further, let us use the arch' -, to indicate concatenation of expres
sions. Thus Sl-S5 is the expression' wI' ~hich is formed by writing

1 This concluding chapter will be unintelligible to those readers in whom there
is a lingering tendency to confuse use and mention of expressions (§ 4). I have not
seen how to make the chapter less liable to misunderstanding except at the expense
of a disproportionate,increase in length. Inasmuch as the foregoing six chapters
constitute a self-contained unit, it has seemed best to limit this seventh one to a
modest appendage amputable at discretion.

283
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Sl and then S5; again S;S2 is 'E x'; again (S:S5)-(S;S2) is the
result' W' EX' of writing SI-S5 followed by S9-S2. But parentheses
are not needed in connection with '-', since concatenation is ob
viously associative; thus

Sl-S5-S;S2 = 'w' EX'.

The arch ,-, and the sign names 'SI', 'S2', ... , 'S9' provide
a notation for spelling; 'S:S;S9--S2' may be read 'the expression
consisting of Sl followed by S5 followed by S9 followed by S2', in
other words 'the expression consisting of dou ble-yu followed by
accent followed by epsilon followed by ex'.

Into this rudimentary notation, plus the notation of logic, it is
possible to translate' x is a variable' in the sense verbally defined
above; also' x is an atomic logical formula'; also 'x is a logical
formula'. First it is convenient to introduce a string of preliminary
notions. An expression x constitutes an initial segment of y, or be
gins y, symbolically xBy, if y consists either of x alone or of x
followed by something; thus

(x)(y) xBy .=: x = y .v (3z)(xz = y).

Similarly x is a final segment of y, or ends y, symbolically xEy, if
y consists either of x alone or of x preceded by something.

(x)(y) xEy .=. x = y .v (3z)(zx = y).

Now x is a string of accents, symbolically Ac x, if every initial seg
ment of x ends in an accent.

(x) Ac x == (y)(yBx .J. S5Ey)

The result of writing a left parenthesis followed by x followed by
epsilon followed by y followed by a right parenthesis will be called
xey.

(x)(y) xey = S6-X-S9-y-S 7.

When' 1 ' is used instead of epsilon, the result is called xjy. The
'j' is intended to suggest joint denial.

(x) (y)

The result of putting an expression x in parenthesis and prefixing it
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to Y is called x qu y. The letters' qu' are intended to suggest uni
versal quantification.

(x)(y) x qu y = S6-X-S7-Y.

Now x is a variable, symbolically Vbl x, if x is anyone of S1,
52, S3' or 54 with or without a string of accents attached.

(x) Vbl x == (3y)(y = Sl .v. Y = S2 .v. Y = 53 .v. Y = S4 :
x = y.v (3z)(Ac z. x = y-z)).

Further, where 'LFmlao x' is read 'x is an atomic logical formula',

(x) LFmlao x == (3y)(3z)(Vbl y . Vbl z. x = yez).

If x is formed by prefixing a parenthesized variable to y, x IS

said to be a quantification of y - symbolically xQy.

(x)(y) xQy .== (3z) (\lbl z. x = z qu y).

Now the logical formulce are to comprise the atomic logical formulte
together with all joint denials and quantifications thereof, and all
joint denials and quantifications of the thus supplemented totality,
and so on. By reasoning analogous to that which led to the
definition of the ancestral (§ 39), then, we see that x is describable
as a logical formula just in case it belongs to all classes y of the
following kind: the atomic logical formulce belong to y, and the
joint denials and quantifications of members of y belong to y.
Thus

(1) (x) LFmla x == (y)((z)(w)(LFmlao z .). z E y :
z, w E Y .). zjw E y : z E y . w Q z .). W E y)). X E y)

where'LFmla x' is read' x is a logical formula'.
The so-called formal characterizations of 'variable', 'atomic

logical formula', and 'formula' which appeared in words at the
beginning of the section thus admit of translation into terms of
'51" '52" ... , '59" '-', and our logical notation. Whatever is
"form':!l", in the sense intended by the earlier loose phrase' speak
ing only of the typographical constitution of the expressions in
question', admits of similar translation; though of course the sign
names 'Sl', 'S2', ... , 'S9' have to be reconstrued and perhaps al
tered in num ber to suit the particular notation under discussion.
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We are thus led to the following more rigorous criterion of for
mality: translatability into a notation containing only names of
signs, a connective indicating concatenation, and the notation of
logic.

Disco'urse which is "formal" in this sense, and hence translat
able into the notation just now described, is called metamathematics,
formal syntax, or briefly syntax. Since joint denial, quantifi-
cation, and .the membership notation suffice for logic, these same
three devices plus names of signs plus a notation indicating con
catenation suffice for syntax. (A still more economical notation to
the same purpose will appear in § 54). The fact that 'Vbl',
'LFmlao', and 'LFmla' are definable in this syntactical notation
is perhaps best expressed henceforward by speaking of them as
syntactically definable; the word' formal', having served the pur
pose of providing a first vague indication of our present concerns,
can thus be left unencumbered with technical meaning.

Any definition is stated with help of syntax, as a notational
convention of abbreviation; but to say that an expression is
syntactically definable is to say something more, namely that it is
explicable as an abbreviation of an expression which is itself com
posed of just the notations of syntax.

The general notion of formula was explained in § 13 in terms of
an unspecified notion of atomic formula. Where" Fmla x' means
, x is a formula' and' Fmlao x' means' x is an atomic formula',

(x) Fmlax == (y)((z)(w)(Fmlaoz.).zEy:
z, w EY .). zjw Ey : z Ey . w Q z .). W Ey)). X Ey)

in exact analogy to (1). Thus' Fmla x' is syntactically definable in
ternlS of 'Fmlao'; i.e., it is translatable into a notation comprising
rFmlao a l and nothing further except names of signs, the concatena
tion connective, and logic. As will become apparent in the sequel,
moreover, the notions of matrix, tautology, and theorem intro
duced in foregoing chapters have the same status as the notion of
formula; they are all syntactically definable in terms of rFmlao a l.

If we specify the atomic formulce, so that rFmlao a l is itself syn
tactically defined in one way or another, then all these notions be
come syntactically definable in the absolute sense. If e.g. the
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atomic formulte are taken simply as the atomic logical formulte,
then rFmla a ' reduces to rLFmla a" whose syntactical definability
was observed in (1).

§ 54. 'The Syntactical Primitive

MUCH OF the discussion in previous chapters, including indeed all
metatheorems, belongs to syntax; to logic or mathematics in the
narrower sense belong rather the theorems themselves, some of
which were stated and some of which were syntactically described.
Our medium of syntactical discussion hitherto has been ordinary
language, supplemented with the practical device of Greek letters
and corners. But now we have a syntactical notation which is just
as strict and systematic as the logical notation whereof it treats.
It consists of the logical notation (the very notation whereof it
treats) pIus'Sh 'S2" . . . , 'S 9 " and '-'. 1

Corners thus give way to a more analytic expedient, use of the
concatenation sign; and Greek letters give way to the ordinary
variables' x', 'y', etc., adjuncts of the quantifier (cf. § 12). It is to
be noted that these variables do not need to be reconstrued, for
present purposes, as having the sense which formerly attached to
the Greek letters; rather they are general variables, as always, and
may refer to any entities whatever - expressions included. The
quantification' (x) (x = x)', e.g., has always meant not only that
V = V and 5 = 5 but also that Sg = Sg (i.e., epsilon = epsilon) and
even that S2 = S2 (i.e., 'x' = 'x'); and the quantifier does not need
to depart now from its usual sense. It happens indeed that the
only values of the variables which interest us in syntactical appli
cations are expressions, just as in § 39 the only values of the
variables which interested us were relations and in § 49 natural
numbers.

But our new syntactical scheme is capable of improvement. It

1 This kind of approach, whereby the medium of discourse about a formalism
receives strict formalization in turn, dates from Godel (1931) and Tarski (1933).
The arch notation is Tarski's.
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is possible so to reformulate it that its primitive notation will com
prise no terms beyond variables; and there is an advantage, as ob
served (§ 27), in so doing. The concatenation sign '-', like '+',
, r\', etc., combines terms to form terms; e.g. it combines the
terms '59' and '52' (which are names of 'E' and 'x') to form the
term' 5;52 ' (which is a name of 'E x '). But instead of this we may
take as primitive a concatenation predicate 'C', or more accurately
a primitive form of atomic matrix rCa{3l' l, such that' Cxyz' means
, x is the expression formed by writing the expression y followed by
the expression z'; then yz becomes definable as (1X) Cxyz. Again,
the primitive names' 51' '52" ... , '59' are eliminable by adopting
a primitive form of atomic matrix raA{3l such that ':?CAy' means
'x is the sign which alphabetically just succeeds the sign y'; for
then

51 = (1x)((3y)(yAx) • r-v (3y)(xAy)),
52 = (1X) x A 51, 53 = (1X) x A 52, . . . , 59 = (1X) x A 58,

where the alphabetic order of our signs is taken arbitrarily as
51,52, ... , 59.

But further economy is possible. We can get along with a single
primitive form of atomic matrix rMa{3l'l, if we endow' Mxyz' with
this elaborate meaning: if x is a single sign (Case 1), x alpha
betically just succeeds y (i.e., xAy); if x is a complex expression
(Case 2), x is the result of writing y followed by z (i.e., Cxyz); and
if x is not an expression at all (Case 3, uninteresting for syntax),
x = y. The word' sign' in this explanation is of course understood
as referring exclusively to our chosen signs 51, 52, etc.; and 'ex...
pression' refers exclusively to such signs and finite rows of them.

What z may be is indifferent to Cases 1 and 3; hence if x is not
a comp~ex expression, the above account of 'Mxyz' guarantees
that Mxyz == Mxyx. Hence if on the contrary

(1) Mxyz. r-v Mxyx

we may be sure that x is a complex expression. But then (1) must
be interpreted according to Case' 2; i.e., as meaning that x is -the
result of writing y followed by z, and not the result of writing y
followed by x. But the latter clause imposes no restriction at
all; since an expression is understood as a finite string of signs



§54 THE SYNTACTICAL PRIMITIVE 289

(one or more), an expression x could not be the result of writing an
expression y followed by x again in its entirety. Hence (1) amounts
merely to saying that x is the result of writing y followed by Z;
i.e., Cxyz.

We have seen that, where x is a complex expression, (y) """ Mxyx.
Where x is not an expression at all, Mxxx by Case 3. Hence if

(2) Mxyx • """ Mxxx

we may be sure that x is an expression but not a complex expression;
therefore a sign. But then (2) must be interpreted according to
Case 1; i.e., as meaning that x alphabetically succeeds y and does
not succeed itself. Since the latter clause is clearly vacuous,·
(2) amounts merely to saying that xAy.

We see therefore that both 'Cxyz' and 'xAy' can be paraphrased
in terms of 'M', viz. as (1) and (2). Accordingly yz, which was
(7X) Cxyz, becomes describable in terms of 'M' as

(1X) (Mxyz • """ Mxyx);

and Sh S2' S3' etc. become

(3) (1X) «3y) (Myxy • rev Myyy) • """ (3y) (Mxyx • """ Mxxx)),
(4) (1X) (MXSIX . rev Mxxx),
(5) (1X) (MXS2X • rev Mxxx),

etc.

Actually the' """ Mxxx' in (4) is superfluous. The purpose of
'''"'' Mxxx' in (2) was to rule out Case 3 and thus compel x to be an
expression; but this is already accomplished in (4) by the clause
'MXSIX', since under Case 3 'MXSIX' would identify x with the sign
51 and thus compel x to be an expression after all. Thus (4) reduces
to '(1X) MXSIX'; and the analogous is true of (5) and its suite.

In place of (3), moreover, the simpler description:

(6) (1X) (y) (z)"",,Mxyz

will serve for S1. This is seen as follows. Where x is a complex
expression, it has parts y and z such that x consists of y followed
by Z; therefore' (y)(z)revMxyz' rules out Case 2. It also rules out
Case 3, since' revMxxx , was seen to do so. Therefore x must be a
sign if (y)(z)"'-IMxyz. But then' (y)(z)revMxyz' says, a.ccording to
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Case 1, that the sign x is not an alphabetic successor; In other
words, that it is St.

Our primitive syntactical notation now consists merely of 'M'
and the notation of logic - ultimately 'M' and the notations of
joint denial, quantification, and membership, since these latter are
adequate to the logical matters. Just as the logical formulte
comprised atomic formulte of the form rea E{j)l and all the ex
pressions thence constructible by joint denial and quantification, so
the syntactical formulte comprise atomic formulte of the forms
r (a E B) 1 and rMa{j')'1. and all the expressions thence construct
ible by joint denial and quantification.

When this syntactical notation is used for the discussion of ex
pressions composed of signs other than the particular nine with
which we. have been identifying Sh S2' ... ,Sg, the meaning in
tended for' Mxyz' will of course undergo a corresponding change
in systematic fashion. The change takes place merely in the
notion of alphabetic succession which is used under Case 1 in the
above explanation; the relation of alphabetic succession varies with
the alphabet.

It should be remarked that 'M' and the abbreviations '-', 'Sl',
etc. which are defined in terms of' M' are not a practical substitute
for the former devices of quotation marks, Greek letters, and
corners. The old devices are both more graphic and more con
ducive to brevity. And the new syntactical notation is not conven
ient at all for stating definitions, where signs enter which were not
initially taken into account. The new notation has its value
rather as a subject matter, when we come to talk about syntax
rather than merely using syntax to talk about logic. As a medium
of talking about this refined syntactical notation, in turn, the old
practical devices of quotes, Greek letters, and corners recur; they
have appeared to some extent in the present section and they will
continue to appear in the sequel.
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§55. Protosyntax
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GIVEN ANY expression, we can decide once and for all by a syste
matic procedure of inspection whether or not it is a logical formula.
Similarly, as soon as all the desired non-logical forms of atomic
formulre have been listed, we can decide by a systematic procedure
whether or not a given expression is a formula at all, logical or
otherwise. The systematic recognizability which thus attaches to
the notions of logical formula and formula attaches in similar
fashion to the notions of matrix, tautology, axiom of quantification,
and axiom of membership (cf. §§ 16, 29). The notion of theorem
lacks this feature, though retaining a partial sort of recognizability;
appropriate to each formula which is a theorem there is a device
(a so-called proof), discoverable in general only by luck, which once
discovered enables us to see by a finite amount of inspection that
the formula is a theorem (cf. § 16). Now any syntactical property
which enjoys even this modest sort of recognizability is called
constructive; thus the property of being a theorem, as well as the
quite mechanically recognizable properties of being a formula,
matrix, tautology, or axiom, are constructive.

This account of constructivity, like the notion itself, is vague.
In a sharp formulation it would be necessary to avoid such vague
phrases as 'mechanically recognizable', 'recognizable by a finite
amount of inspection ',etc.; but then there would be an essential
difficulty in establishing any correspondence between this precisely
defined notion and the intuitively intended notion which those
vague phrases help describe. There is a striking feature, however,
which the instances of constructivity cited above have in common:
they are not only syntactically definable, but they are definable
even in that narrower syntax which borrows only joint denial and
quantification from logic and eschews membership. The syn
tactical definition of 'LFmla x' suggested in (1) of § 53 depends
indeed upon the whole of logic, membership included; but an
equivalent definition is possible, as VTe shall see (§ 56), which
involves only the' M' of syntax plus the joint denial and quantifi-
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cation of logic. The same is true of the other constructive notions
mentioned above (cf. §§ 56-58), and presumably equally true of all
syntactical notions which are constructive in the vague sense above
suggested.

The part of syntax which omits membership will be called pro
tosyntax. Just as the logical formulre comprise atomic formulre of
the form r (a E (3)" and the expressions thence constructible by joint
denial and quantification, so the protosyntactical formulre com
prise atomic formulre of the form rMa{3'Y" and all the expressions
thence constructible by joint den,ial and quantification. This
meager protosyntactical notation proves to constitute a sufficient
language for expressing all the metatheorems of foregoing chapters
- provided of course that we do away with the unspecified extra
logical forms of atomic formulre or at least fix upon a definite list
of forms desired.

Protosyntactical definability is intended not as an approximation
to constructivity, but as something more inclusive. The notion
of non....theorem, e.g., is protosyntactically definable, yet pre
sumably not constructive; we know of nothing, discoverable even
by luck, which would enable us to decide that a given logical state
ment </> is not a theorem. We may find that r ~</>., is a theorem;
but this does not exclude the possibility that </> is also a theorem,
unless we assume the consistency for which we of course hope.
Even this channel is closed if it happens, as it well may, that
neither </> nor r ~</>., is a theorem.

Three precise explications of the vague phrase' mechanically recognizable' have
been independently propounded in recent years, and the three have been proved
equivalent to one another. One is the notion of so-called recurs'z'veness (closely
connected with the kind of procedure called recursive on page 86); this was first
formulated in a relatively narrow sense by Godel (" Unentscheidbare Satze,"
pp. 179-180) and afterwards extended by Godel and Herbrand (cf. Godel "Undesid
able Propositions "). The second is Church's notion of X-de/inability (" Unsolvable
Problem," pp. 346ff, 356ff), and the third is Turing's computability. The second was
proved equivalent to the first by Kleene, and to the third by Turing. A derivative
notion, recursive enumerability, corresponds to constructivity; see Kleene, "Recur
sive Predicates." But note that protosyntactical definability is broader.

In defining the notations 'SI,' 'S2', ... , 'Sg', and ,-, in terms
of 'M', in § 54, the notation f('1a)</>" of description was used. This
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device was legitimate for purposes of syntactical definition, since it
reduces through D1-17 to the three logical primitives; but the
device is not immediately available for protosyntactical definition,
because its logical definition depends finally on 'e', which is lacking
in protosyntax. Of the logical definitions presented in the fore
going chapters, only D1-8 can be carried over into protosyntax;
for it is only these that do not presuppose membership.

We find, however, that the logical notion of description, and like
wise that of identity, admit of other definitions within the frame
work of protosyntax. It will first be shown that the appropriate
sense of identity is obtainable by explaining 'x = y' as short for:

(1) (z)(Mzxx == Mzyy).

Suppose, to begin with, that x is not an expression. Then Mxxx,
by Case 3 of § 54; hence, if (1) is true, it follows that Mxyy; but,
by Case 3 of § 54, this identifies x with y. We see therefore that
'x = y' in the intended sense follows from (1) when x is not an
expression. Next suppose that x is an expression, and let w be the
repetitive complex expression formed by writing x followed by x.
Then, by Case 2 of § 54, Mwxx; hence, if (1) is true, Mwyy; but,
by Case 2 of § 54, this makes y the first and last half of the repeti
tive expression w, thus identifying y with x. Regardless of whether
x is an expression or not, therefore, 'x = y' in the intended sense
follows from (1). Conversely, moreover, (1) obviously follows from
'x = y'. The following. definition therefore serves our purpose:

.19. r(a = (3)' for rCy)(M')'aa == M')'{3{3)'.

The protosyntactical definitions will be distinguished thus from the
logical ones by using '.1' instead of 'D'. ~1-8 are understood as

01-8.
Definition of description in protosyntax must proceed con

textually, like that of abstraction in logic (§§ 24, 26). First let us
deal with quasi-atomic contexts rM (,a)4> (3 ')' , having a description
in the first place and variables in the other places. If w is the one
and only entity x such that ... X \0 •• , i.e. if

(x)(x=w.== .... x ... )

(cf. § 27), then we want the quasi-atomic formula:
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(2) M (1X) (. . . x . . .) y z

to be true for any objects y and z if and only if Mwyz; if on the
other hand there is no such unique entity x, then we lose interest
and become content to have (2) turn out in any way that proves
convenient - say as false. All this is obvjously accomplished by
explaining (2) as an abbreviation of:

(3w) (Mwyz • (x)(x = w .== ... x . ..)).
Thus

~10. rM (,a)C/>I1'Y l for r(3o) (Mol1'Y • (a)(a = 0.== c/»)l.

Let us understand terms, for purposes of protosyntax, as com
prising variables together with descriptions r(1a)c/> l (where c/> is a
formula of protosyntax). Let us use' t', '1'/', and' 0' hereafter to
refer to terms in this sense. Then, repeating precisely the method
used in ~10, we can define the further quasi-atomic contexts as
follo\vs:

~11. rM r (7a)c/> 'Y l for r(3o) (Mso'Y • (a)(a = 0 .== c/> ))l.
~12. rM S 7J C,a)c/>l for r(3o) (Mt7JO• (a)(a = 0.== c/»)l.

Now rMS7JOl is explained for all terms t, 7J, and 0, whether
variables or descriptions.

Let us next extend ~9 to apply to terms in general, rather than
simply to variables.

~13. rCt = 7J)l for r('Y)(M'Ytt == M'Y1'/7J)l.

It is convenient also to import Dll.

~14. r(s ~ 7J)l for r"-.J(t = 7J)l.

The definitions of '51" '52" .. " '59" and rtnl suggested In

§ 54 ~an now be set down.

~15. '51' for' (1X) (y) (z) "-.J Mxyz'.
~16. '52' for' (1X) Mx 51 x', '53' for' ('Ix) Mx 52 x', etc. to '59',
~17. r(('7J)l for r(1a) (Matl1 • "-.J Mata)l.

A definition analogous to D6 and D7 is desirable in connection
with the concatenation notation.

~18. rCSl-S2-S3)l for r(CS:-S2)-S3)l,
r (S 1-S2-S3-S4) l for r ((Sl-S213)-S4) l, etc.
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for rcr = 71.V (3a)(r-a = 71))'·
for r(r = ~.v (3a)(ar = 71))'.
for r(3a)(aB71. rEa)'.
for r(a)(aBr .). S5Ea)'.
for. r(S;r-Sg-71-S7)'.
for r(S;r-S;71-S7)'.
for r (S;r'1;7-71)'.
for r(3a)(a = Sl .v. a = S2 .v. a = S3 .v. a= S4 :

r = a .v (3,s)(Ac,s . r = a~))'.
r(rQ71)' for r(3a) (Vbl a . r = a qu 71)'.
rLFmlao r' for r(3a)(3,s)(Vbl a . Vbl,s . r = ae,s)'.

Ll27.
Ll28.

Finally we carryover nine of the ten definitions suggested in
§ 53. In third place among these it is convenient to insert a further
definition introducing the notation 'xPy', in the sense 'X is part
(or all) of y ,.

Ll19. r(rB71)'
Ll20. r (rE71)'
Ll2i. r(rP71) ,
Ll22. rAc r'
Ll23. r (re71) ,
Ll24. r(rj71)'
Ll25. r (r qu 71)'
Ll26. rVbl r'

§ 56. Formula and Matrix Defined

AS REMARKED (§ 55), the definition of rLFmla r' suggested in
(1) of §53 is not available to protosyntax; but a protosyntactical
definition is possible along other lines. The point of departure, in
devising this definition, is the following reflection: x is a logical
formula if and only if it belongs to a series of expressions xl, X2,

X3, ••• , X n such that Xi, for each i, is either an atomic logical form
ula or else a joint denial of earlier expressions of the series or else a
quantification of an earlier expression of the series.

Instead of speaking of a series of expressions XI, X2, ••• , X n, the
device suggests itself of speaking rather of a single long expression
composed of the successive expressions XI, X2, • •• , Xno But we
encounter a difficulty: analysis of the long expression does not
reveal uniquely the intended parts Xl, X2, ••• ,Xno Given the long
expression, we have no way of knowing how much of it was intended
as XI, nor how much of the remainder was intended as X2, and so on.
This difficulty, however, is easily overcome. Instead of taking our
long expression as XI-X2-. o. -Xn, we can take it as
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S6-S7-Xl-S;S7X2-S;S; ... -X;-S6-S7'

thus framing each of XI, X2, ••• , X n with occurrences of the arbitrary
expression S;S7' i.e. '()'. Given this long expression, the parts
XI, X2, ••• ,Xn are uniquely determined as the segments reaching
from one occurrence of S;S7 to the next; for we know that the
ungrammatical combination of signs S6-S7 will not have any addi
tional occurrences inside the formulte XI, X2, ••• ,xn • Thus, if the
segments reaching from one occurrence of S6-S7 to the next in an
expression z be called the framed ingredientJ of z, we can explain a
logical formula as any framed ingredient of an expression z each of
whose framed ingredients is either an atomic logical formula or a
joint denial of previous framed ingredients or a quantification of a
previous framed ingredient. Such an expression z will be essen
tially like the long expression considered above; it may depart
from that pattern only in a couple of inessential respects. Chang
ing S;~S7 to S6-S;S;S7' e.g., would make no difference so far as
framed ingredients are concerned; nor would annexation of further
matter at either end, so long as the added matter contained no
occurrences of S6-S7.

Let us make the above definitions explicit. To say that X is a
framed ingredient of z, symbolically xIng z, is to say that S;S7X
-S6-S7 is part (or all) of z and S6-S7 is not part of x .

.d29. r(r Ing 1])1 for r(S6-S7-r-S6-S7 P 7J • rv(S;S7 P r))'.·

One framed ingredient X of z is prior to another one y, symbolically
X Prz y, if X is a framed ingredient of an initial segment of z where
of y is not a framed ingredient.

.d30. r(r Pr" 8)1 for r(3a) (aB1] • rIng a. 0 lng 1] • rv(O lng a))l.

The formal definition of logical formula, then" is as follows.

(1) rLFmla r1 for r(3a)(r lng a . ({3)({3 lng a .J. LFmlao (3 V

(31') (30) (1'Pra {3 • 0 Pra {3 : (3 = 'Yjo .v. (3Q'Y))) I.

Just as .d28 provides for atomic formul(;C of the form r (a E (3) I,

other analogous protosyntactical definitions will provide for each
further form of atomic formula once these further forms have been
chosen. In preparation for such definitions we would presumably
so reconstrue rMa{3'YI as to allow a longer alphabet, running beyond
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Sg to include such supplementary signs as may be wanted in the
non-logical atomic formul'C (cf. § 54); but even this departure is
not strictly necessary, for we could simply use the novel com
binations 'e", 'e"', etc. in lieu of such supplementary signs and
thus keep within our nine-sign alphabet. If we bring together the
definitions appropriate to the several atomic forms, then, by al
ternation, we obtain a general definition of rFmlao r' . On this
basis, in turn, we can define the general notion of formula in exact
analogy to the definition (1) of logical formula.

~31. rFmla rl for r(3a)(r Ing a • ({j)({j Ing a .J. Fmlao (j V

(31') (30) (1' Pra {j • 0 Pra {j : (j = 1'jo .v. (jQ1'))) I.

Definitions will hereafter be set up in the manner of ~31 rather
than (1), under the fictive assumption that a general definition of
rFmlao r l is at hand in place of ~28. Just as Ll31 then defines the
general notion of formula, logical and otherwise, so in subsequent
definitions the notions of matrix, tautology, and theorem are
defined in their full generality. If in particular the atomic formul'C
are construed simply as the logical atomic formul'C, so that
rFmlao r l comes to be defined by ~28 itself, then ~31 ceases to
differ at all from (1); and correspondingly for the subsequent
definitions.

Definition of the notion of matrix presupposes the notions of
bondage and freedom, basic to which is the notion of bound oc
currence. We have first of all to ask, what is an occurrence? what
kind of thing e.g. is the third occurrence of an expression x in an
expression y~ as distinct from the mere expression or typographic
shape x itself? An answer, artificial but convenient and adequate,
is this: an occurrence of x in y is an initial segment of y ending in
x. The third "occurrence" of x in y, e.g., is construed as that
initial segment of y which remains when (as we should ordinarily
say) everything after the third occurrence of x is lopped off. A
"later occurrence" of x differs from an "earlier" one in being a.
longer initial segment of y.

Thus z may be said to be an occurrence of x in y, symbolically
z Oy x, if zBy and xEz. But it is better to refine the definition in
such a way as to except accented occurrence; in the context
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'z E wl!', e.g., it is desirable to recognize an occurrence of 'wI!' but
to deny any occurrence of the variables' w" and 'w'. This refine
ment is accomplished by supplementing' zBy' and 'xEz' with the
further clause '!"'V(z-So By)'.

~32. r(r Oe 11)' for r(rB8. !"'V(r-S5 B 8) .11Er)'.

To say that x occurs in y, symbolically x In y, is to say that there
is an occurrence of x in y.

,133. r(r In 11)' for r(3a) (0: 0 71 r)'.

Obviously 'x In y' goes beyond 'x P y' only to the extent of
excepting accented occurrence.

An occurrence of a variable is bound in a given formula when it
falls within a formula which forms part (or all) of the given formula
and begins with a quantifier containing the same variable. But
now that an "occurrence" is construed as an initial segment, the
formulation of bondage assumes this form: z is a bound occur
rence of x in y, symbolically z BOy x, if x is a variable and z is an
occurrence of x in y and there is a formula x qu w which begins
somewhere in the segment z and ends at or after the end of z
(but still in y). More rigorously,

z BOy x .=. Vbl x. z Oy x. (3w) (3z') (3x') (Fmla w.
z = z'x. z'x' Oy xquw • !"'V(xquw Ex')).

Thus

~34. r(r BOe11)' for r(Vbl 11. rOe 11 • (3a)(3~)(3"Y)(Fmla a •

r = fj-;' • fj-:Y Oe 11qua • !"'V(11qUO: E "y)))'.

A free occurrence is one which is not bound.

~35. r(r FOe 11)' for r(Vbl 11. r 0 0 11 • !"'Vcr BOo1J'))'.

A variable x is free in y, symbolically xFy, if it has a free occur
rence In y.

~36. r(rF11), for r(3a)(a F071 r)'.

Matrices, finally, are formulce with free variables, and statements
are other formulce.

a37. rMat r' for r(Fmla r • (3a) (0: Fr))'.
a3S. rStat r' for r(Fmla r • !"'V Mat r) '.
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WE TURN next to the problem of defining tautology protosyn
tactically. As an auxiliary we need the notion of truth-functional
component (cf. § 10). An immediate truth-functional component
of x is anything y such that x is yjz or zjy for some formula z; and
w is a truth-functional component of x, symbolically wTCx, if w
belongs to a sequence of expressions each of which is either x or an
immediate truth-functional component of an earlier expression of
the sequence. The notion of sequence involved here can be dealt
with by the same device which was used in defining formula
(§ 56). Thus

~39. r(rTC11)' for r(3~)(r lng a • (~)(~ lng a .): ~ = 11 .v
(31')(30)(1' Pra ~. Fmla 0 : l' = Iljo .V.1' = ojll)))'.

As a further auxiliary in defining tautology we need the notion of
truth set (cf. § 10) - or, since this would involve membership and
thus exceed the bounds of protosyntax, we may avail ourselves
rather of a parallel notion of truth sequence. A truth sequence of x
is any expression whose framed ingredients constitute a class S
fulfilling (I) of page 53. Thus to say that y is a truth sequence of
x, symbolically yTSx, is to say that any joint denial zjw which is a
truth-functional component of x is a framed ingredient of y if and
only if neither z nor w is a framed ingredient of y.

~40. r(r TS 11)' for r(a)(~)(Fmla a • ajll TC 71 .):.

cxjtJ lng r •==: a lng r .!.. tJ lng r)'.

To say that a formula x is tautologous, finally, symbolically
Taut x, is to say that x belongs to each of its truth sets (cf. § 10);
in other words, that x is a framed ingredient of each of its truth
sequences.

~41. rTaut r' for r(Fmla r • (a)(a TS r .). rIng a))'.

In defining tautology we have made some progress towards
definition of the axioms of quantification. For the latter purpose a
second necessary step is definition of the notion of closure; and as
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a preliminary to this, in turn, we need the notion of alphabetic
succession of variables. The alphabet of variables is the infinite
alphabet:

w, x, y, z, w', x', y', Z', w", ... ;

it must not be confused with the finite alphabet of signs:

w, x, y, Z, I, (, ), 1, E.

Thus the alphabetic successor of a variable x, symbolically vs x,
begins with S2 or Sa or S4 or SI-S5 according as x begins with Sl or
52 or S3 or 84 ; and the rest of vs x, if any, is like the rest of x.

~42. rvsr' for r(1a)(3t3)(3')')(t3 = SI.')' = S2.V.t3 = S2.')' = Sa.V•

t3 = Sa • ')' = 54 .V. t3 = S4 • l' = SI-S5 :
r = t3. a = ')' .V (3o)(r = t3-o. a = ,yO))l.

A variable x is alphabetically prior to a variable y, symbolically
x VPr y, if y is vs x or vs vs x or vs vs vs x or etc; or, equivalently,
if vs x or vs vs x or vs vs vs x or vs vs vs vs x is an initial segment
of y.

~43. rer VPr 17)' for r(Vbl r. Vbl 17 / : vs r B '11 .v. vs vs r B '11 .v.
vs vs vs r B '11 .v. vs vs vs vs r B '11)1.

If we had dispensed with' x', 'y', and' z' and limited our variables
to 'w' with and without accents, d42 and d43 would have been
greatly simplified; the successor of a variable would be the same
variable accented, and one variable would be prior to another if
initial to it.

Asa next step towards the notion of cl~sure we must define
, x 1F y', in the sense' x is alphabetically the first free variable of y'.

~44. rer 1F 17)' for ret F'11. rv (3a)(a F 17. a VPr r))'.

Now the closure of x, symbolically cl x, is readily defined in con
formity with § 14.

~45. rclr' for r(,a)(Fmlaa.rEa.
(t3)(Fmla j3 • rEj3 ~ t3Ea.) (')')(Vbl ')' • ')'quj3 E a .=. ')' 1F (3)))'.

We can now define the axioms of quantification of kind A (cf.
§ 15). To say that x is one of these, symbolically AQA x, is to say
that x is the closure of a tautologous formula.
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Ll46. rAQA r' for r(3a) (Taut a. r = cia)'.

Preparatory to defining the other kinds of axioms of quantifica
tion, it is convenient to adopt the following definitions.

Ll47. rnr' for r(rjr)'.
Ll48. r(ral11)' for rn (rj11)'.
Ll49. r(r cd 11)' for r(nr al11)'.

Comparison of Ll47 with Dl shows that, where x is a formula, nx is
the denial of x (in primitive notation, of course). Comparison of
Ll48 with D3 shows similarly that x al y is the alternation formed
from x and y in that order; and comparison of Ll49 with D4 shows
that x cd y is the conditional whose antecedent is x and whose con
sequent is y.

Now the kinds Band C of axioms of quantification are readily
defined.

Ll50. rAQB r' for r(3a)(3~)(31')(Vbl a • Fmla fJ • Fmla l' •

r = cl«a qu (~ cd 1'» cd «a qu fJ) cd (a qu 1'»)))'.
.L\51. rAQc r' for r(3a)(3fJ)(Vbl a. Fmla fJ • ~(aFfJ) •

r = cl (fJ cd (a qu fJ»)'.
Let us write' x' SF~' x' to mean that x' is like x except for con

taining free occurrences of y' wherever x contains free occurrences
of y. (The'S' and' F' here are to suggest the words' substitution'
and' free'.) This must be defined before we can define the quanti
ficational axioms of kind D. Preparatory to defining' x' SF;'x' it
is convenient to define 'x' SF 1~' x', in the sense 'x' is like x except
for containing a free occurrence of y' in place of one free occurrence
of y'.

~52. r(r' SF1~' r)' for r(3a)(3a')(a FOt 11 • a' FOt'11' •

({3)(a = fJ1] .=. a' = fJ1]' : r = a~ .=. r' == a'-fJ»'.

Next let us write 'x' SF?~' x' to mean that x' is like x except for
containing free occurrences of y' at ~ 0 places where x contains
free occurrences of y; in other words, that x' belongs to a sequence
of expressions each of which is either x or else like an earlier ex
pression of the sequence except for containing a free occurrence of

y' in place of a free occurrence of y. The notion of sequence in
volved here can be dealt with as in Ll31 and Ll39.
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~53:. r(r' SF?~' r)' for r(3a)(r' Ing a. (fj)(fj lng a .):fj = r.v
(3")(,, Pra fj • fj SF1~' ,,)))'.

Finally 'x' SFr x' says that x' SF?r x and further that no free
occurrences of yare left standing in x - unless of course y and y'
are the same variable.

M4. r(r' SF~' r)' for r (r' SF ?~' r : 1] F r' .). 1] = 11')'.

Definition of the axioms of quantification of kind D is now easy.

~55. rAQDf' for r(3a)(3a')(3fj)(3fj')(Vbl a. Vbl a' • Fmla fj.
/1' SF~' fj. r = cl «a qu (3) cd fj'))'.

§ 58. 'Theorem Defined

PREPARATORY to defining the axioms of membership, we need
the notion of stratification. The earlier explanation of stratification
(§ 28) involved putting numerals for variables; by way of keeping
within our protosyntactical resources, however, let us now use
strings of arrows instead of numerals - n arrows instead of the
nth positive numeral. Sacrifice of '0' and the negative numerals
is obviously of no consequence; stratification established with help
of non-positive numerals can be established equally well by use of
uniformly higher numerals all of which are positive.

First we adopt three definitions closely analogous to ~52-S4.

M6. r(r' Sl~' r)' for r(3a)(3a')(a Or 1] • a' Or' 1]'.

(/1)(a = (3~ .=. a' = /1~' : r = ;/1.=. r' = a'~))'.

~57,. r (r' S ?~' r)' for r (3a) (r' Ing a • (fj) (fj lng a .) : {3 = r .v
(3")(,, Pra (3. ~ Sl~' ~)))'.

MS. r(r' S~' r)' for r(r' S?~' r. "-I (1] In r'))'.

Where y and y' are any expressions, clearly'x' Sl;' x' says that x'
is like x except for containing y' in place of an occurrence of y. So
long as x, y, and y' are not such that substitution of y' for y in x
gives rise to new occurrences of y, it is clear further that 'x' S?;' x'
holds if and only if x' is like x except for containing y' in place of
~ 0 occurrences of y, and that 'x' Sr x' holds if and only if x' is
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like x except for containing y' in place of all occurrences of y. In
particular these versions are correct in those cases where y is a
variable and y' a string of arrows, since clearly no new occurrence
of a variable y can be generated by putting a string of arrows for
y in any context.

'Ar x' will mean that x is a string of arrows. The definition!
resembles Ll22.

•159. rArr" for .r(a)(aBr.J.S8 Ea)".

Next let us speak of x as an arrow projection of y, symbolically
xAPy, when x is formed from y by putting strings of arrows for all
occurrences of ~ 0 variables (like strings for like variables); in
other words, when x is one of a sequence of expressions each of
which either is y or else is like an earlier expression of the sequence
except for containing some string of arrows in place of all occur
rences of some variable. Thus, using our usual sequence technique,

~60. r(rAPl1)" for r(3a)(r Ing °a • (~)({3 Ing a.J: (3 = 11 .v
(31') (30) (3,s') (Ar l' . Vbl 0 • ~' Pra,s • ~ Sl ,s')))".

Finally, a formula x is stratified if it has an arrow projection
wherein (i) no variables are left unreplaced by strings of arrows
and (ii) a string of arrows following 'E' is always longer by one
than the string preceding.

Ll61. rStrat r" for r(Fmla r • (3a)(a AP r • '""'(3~)(Vbl {3. (3 Pa).
(1') (0) (Ar 'Y. Ar o. 'Yeo Pa .). 0= 'Y-S8)))'.

The following definitions, needed as further preparation for the
axioms of membership, are related to D2, D5, and D8 as Ll47-49
were related to Dl, D3, and D4.

~62. r(r cj 11)' for r(nr j nl1)'.
Ll63. r(r b 11)' for r«r cd 11) cj (11 cd r))'.
AM. r(r qe 11)' for rnCr qu n71)'.

Thus, where x and y are formul~, x cj y is their conjunction and
xby is their biconditional (expanded into primitive notation);
and, where z is a variable, z qe x is the existential quantification of x
with respect to z.

Similarly, where x and yare variables, their identity will be
called x id y. More accurately, x id y is to be the formula (in primi-
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tive notation) whose abbreviation via D1-10 is formed by putting x
and y in the respective blanks of' ( -= )'. The odd bound variable
a of D10 may conveniently be uuaerstood alw.ays as the alphabeti
cally earliest variable other than x and y - hence the alphabetically
earliest variable foreign to xy - in conformity with the plan sug
gested earlier (§ 24). In general, let us speak of the alphabetically
earliest variable foreign to z as fz.

Li65. rfr' for r(1a)('"'-I{a In r) . Vbl a • ({3)({3 VPr a .J. (3 In r))'.

Then, in view of D10,

~66. r(r id 1])' for r(f(r~) qu «f(r~) e r) b (f(r~) e 1] )))'.

When x and y are variables and z is a formula, x e yaz is to be
the formula (in primitive notation) whose abbreviation via D1-9
is formed by putting x in the first blank of '( fA) " z in the
last, and y under the circumflex. The definition is apparent from
D9. The odd variable l' of D9 is taken as the alphabetically
earliest variable other than x, y, and the variables of z - hence as
f(x-yz).

Ll67. r(r e 1]aO)' for
r(f(r~0) qe«r e f(r-1]O)) cj (1] qu «1] e f(r-.qO)) cd 0))))'.

Where x, y, and z are as before, x id yaz is to be the formula
whose abbreviation via D1-10 is form·ed by putting x in the first
blank of '( ~) " z in the last, and y under the circumflex.
Thus, in view of D10,

Li68. r(r id 1]aO)' for r(f(r-1]O) qu«f(r~-O) e r) b (f(r~8) e 1]aO)))'.

Where x and y are variables and z and ware formulte, xaz eyaw
is to be the formula whose abbreviation via D1-12 is formed by
putting z and w in the respective blanks and x and y under the
respective circumflexes of '(A fA ) '. Thus, in view of D12,

Li 69. r (ra1] e r'a1]') , for
r(f(r~-r'~') qe «f(r~r'~') id ra1]) cj (f(r~r'~') e r'a1]')))'.

Where x is a variable, x e v is to be the formula whose abbrevi
ation via D1-15 is formed by putting x in the blank of '( EV) ';
and, where y is a formula, xay e v is to be the formula whose
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abbreviation is formed by putting x under the circumflex and y in
the blank of '(A eV)'. Thus, in view of D15,

~70. f(sev)'" for f(SeS2a(S2idS2))"'.
~71. f (sa7J e v)'" for f (sal1 e S2a(S2 id S2))"'.

Let us write 'Rx' to mean that every quantification which x con
tains is restricted to elements (except for occurrences of quantifi
cations within the definitional expansions of the restricting clauses
themselves).

L 72. fRs' for f(a) (,8) (-y)(Vbl a • Fmla ,8 • l' Or aqu,8 .)

(30)(30')(,8 = (aev) cd 0 .v. Vbl 0 • 1'-0' Or oev • ~ oev Po')) l.

Finally let us write' AMAx' to mean that x is an axiom of mem
bership of the first kind, i.e., an axiom of elementhood. For sim
plicity of definition I shall construe these axioms somewhat more
broadly now than in § 28; but the reader can easily satisfy himself
that this enlargement of the class of axioms of elementhood is
inessential, in the sense of not enlarging the clas.s of the.orems.

d73. fAMAS.., for f(3a)(3,8)(3,,)(Fmla a . Vbl ~ . Strat " . RI' •
(0) (0 F" • 0 ~ ~ .) Taut acd(oev)) . S = cl(a' cd (~a" e v)))"'.

The other two kinds of axioms of membership, described in § 29,
present no difficulty.

d74. fAM B S.., for f(3a) (3a') (3,8) (313') (Vbl a. Vbl a' •
Fmlao 13 .~' Si~' ~ . s = cl«a id a') cd (~cd ~,)))..,.

d75. fAMe S.., for f(3a) (3,8) (3,,) (Vb1a. Vbl ~. Fmla".
~ ~ a • r-v (~F,,) . S = cl({j qe (a qu «a e ~) b «a e v) cj ,,)))))..,.

The general notion of axiom is now definable.

~76. fAx S.., for f(AQA S V AQB S V AQe S V AQn S V

AMAS V AMB S V AMe s)"'.
Now x is a theorem if it belongs to a sequence of expressions each

of which is an axiom or a ponential of earlier expressions of the
sequence.

d77. fThm S.., for f(3a)(s Ing a. (~)(~ Ing a .). Ax ~ V

(],,) (" Pra ~ • "cd~ Pra (3)))"'.
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§ 59. Protosyntax Self-Applied

§59

IN § 55-58 we have considered the protosyntax of logic; let us
now consider the protosyntax of protosyntax itself. Instead of
using the notation of protosyntax to discuss expressions composed
of the alphabet:

w, x, y, z,
,, (, ), 1, E,

we shall now use it to discuss expressions composed of the very
alphabet:

w, x, y, z,
,, (, ),

ln which protosyntax itself is couched. The explanation of
~ Mxyz' in § 54 accordingly needs to be reconstrued to this slight
extent: the alphabet mentioned under Case 1 ceases to have the
typographical shape' E' as its ninth member, and comes to have the
shape'M' instead. In other words, 59 ceases to be 'E' and becomes
'M'.

The protosyntactical definition of protosyntactical formula pro
ceeds just like the protosyntactical definition of logical formula, ex
cept that the atomic formulte are now described as having the form
rMa,91" instead of rea E ,9)'. Thus the definitions ~1-30 are taken
over intact except that ~23 and ~28 give way to:

rm{r,.",o}' for r(59-r-.,,-O)',
rpFmlao r' for

r(3a) (3,9) (31') (Vbl a 41 Vbl ,9 · Vbl1' • r = m {a, (j, l' 1)';
and L131 is taken over with 'Fmlao' and 'Fmla' changed to
'PFmlao' and 'PFmla'.

Just as the theorems of logic comprised the ponentials of ponen
tials of ... axioms of quantification and axioms of membership, so
the theorems of protosyntax would comprise the ponentials of
ponentials of ... axioms of quantification and various axioms
appropriate to 'M'. The protosyntactical definition of protosyn
tactical theorem would thus proceed analogously to the protosyn
tactical definition of theorem hitherto constructed for logic. We
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"vould first define the axioms of quantification as in §57; next,
instead of defining axioms of membership as in § 58, we would
define appropriate axioms governing' M'; and from here we would
proceed to 'PThm x', 'x is a protosyntactical theorem', through
definitions precisely parallel to ~76-77.

What should we choose by way of axioms governing' M '? An
ideal choice would be such that the theorems would come to exhaust
those protosyntactical formulte which are true statements, and of
course exclude all which are false. It turns out, however, that
such a choice is impossible - so long as we insist on its specifi
ability in protosyntactical terms. It turns out that no proto
syntactically definable notion of protosyntactical theorem can
exhaust the protosyntactical truths and exclude the falsehoods.
The remainder of the section will be devoted to establishing this
conclusion, which has far-reaching significance. It will be shown
that if rpThm ~1 is so construed as to be translatable into proto
syntax at all then there is a protosyntactical statement which is
true if and only if it is not a theorem. If the statement in question
is true then it is not a theorem, so that the theorems do not exhaust
the protosyntactical truths; and otherwise it is a theorem, so that
the theorems do not exclude falsehoods.

In a word, then, our problem is to construct a protosyntactical
statenlent to the effect:

(1) (1) is not a theorem.

As it stands, the statement (1) refers to itself by means of a de
monstrative pronoun' (1) '; but we can gain the same effect without
this device. If for purposes of a preliminary venture we allow
appeal to quotation, we can reformulate the self-mentioning state
ment (1) thus:

(2) The result of putting the quotation of 'The result of
putting the quotation of w for 51 in w is not a theorem'
for 5] in 'The result of putting the quotation of w for
SI in w is not a theorem' is'not a theorem.

This is more intelligible than it looks. It says that a certain result
is not a theorem. It says, moreover, how to construct the result
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in question. To construct it we are to substitute a certain quota
tion for S1 (not for 'S1' but for Sh which is the variable 'w') in
the matrix:

(3) The result of putting the quotation of w for S1 in w is
not a theorem.

Moreover, the quotation which we are told to substitute is the quo
tation of (3) itself - i.e., it is (3) plus an enclosing pair of quota
tion marks. When we perform this substitution we come out with
(2) again as our result. So (2) says that (2) is not a theorem.

When we try to put (2) into the notation of protosyntax, the
problem confronts us of somehow translating or eliminating the two
idioms 'result of putting' and' quotation of'. Let us deal with the
former of these first. Imagining '--' to be some expression, and
imagining' ... w . .. ' to be some matrix with free 'w·, we observe
to begin with that the result of putting '--' for S1 (i.e. for 'w')
in ' ... w ...' is equivalent to:

(w)(w = -.J ... w . . .)

(cf. *234a). This observation may, with help of the notations in
troduced in ~25 and ~49 (pp. 295, 301), be rephrased as follows:
the result of putting an expression u for free S1 in a matrix y is equiv
alent to S1qU(Z cd y) where z consists of 'w =' followed by u.
Now if in particular we take u as the quotation of some expression
x, the foregoing observation takes on the following form:

(4) The result of putting the quotation of x for free S1
in y is equivalent to SlqU(Z cd y) where z is 'w = ' fol
lowed by the quotation of x.

Quotation, we know, is extraneous to the notation and subject
matter of protosyntax. Nevertheless it is possible in protosyntax
to construct corresponding to any given expression x a matrix which
as a whole is equivalent to 'w =' followed by the quotation of x.
How this can be done will be seen later; meanwhile let us suppose
it done and get on. The matrix in question will be called the
identity matrix of x, briefly im x. Thus

(5) im x is equivalent to 'w =' followed by the quotation of x.
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By (4), then,

(6) The result of putting the quotation of x for free S1 in y
is equivalent to S1qu(imx cd y).

Accordingly the purpose of (3) will be served just as well by:

(7) ~PThm Slqu(imw cd w).
Then (2) becomes:

(8) The result of putting the quotation of '~PThm SlqU
(imw cd w)' for S1 in '~PThm S1qu(imw cd w)' is not a
theorem.

Now if in turn we translate (8) as a whole in conformity with (6),
we obtain:

(9) ~PThm Slqu(im'~PThm Slqu(imw cd w)' cd
'~PThm Slqu(imw cd w)').

We are imagining that rPThm r1 has some protosyntactical def
inition. Let us also suppose that we have succeeded (as in time we
shall) in devising an appropriate protosyntactical definition for
rim r1 . Then (7) can be expanded into the primitive notation of
protosyntax. The expanded formula can in turn be named in proto
syntax, by spelling (cf. page 284). This name, which we may ab
breviate by the letter' H', is as good as a quotation of (7); so (9)
becomes:

(10) ~PThm Slqu(imH cd H).

Here - pending our remaining task of defining rim r1 - is a pro
tosyntactical analogue of (2) or indeed of (1). Here, under abbre
viation, is a protosyntactical formula which is true if and only if
it is not a protosyntactical theorem. The existence of such a for
mula proves that the theorems either exclude some protosyntactical
truths or include some falsehoods. The argument holds for any
protosyntactically definable concept of protosyntactical theorem.

We have now to fill in the one gap in the argument; namely, to
devise a protosyntactical definition of rim r1 conforming, for every
protosyntactical expression x, to the requirement (5).

Just as in §§ 57-58 we adopted definitions ~47-49, ~62-64, and
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~66 for convenience in referring to those formulte which the .logical
definitions Dl-5, D8 and D10 serve to abbreviate, let us now adopt
definitions which will enable us similarly to refer to those proto
syntactical formulte which the protosyntactical definitions ~1-5,

~8, and ~9 serve to abbreviate. The first six of these new def
initions, introducing rnr1, rr all1', rr cd 111 , rr cj 111, rr b 11', and
rr qe 111

, simply duplicate ~47-49 and ~62-64; for d1-S and d8
are the same as Dl-S and D8. The remaining one of our new
definitions is related to d9 as ~66 is related to D10; ~65 is to be
understood as carried over in preparation.

r(r idp 1]) 1 for r(f(r~) qu (m,{ f(r-1]), t, r} b m {f(r~), 1], 1] }» 1.

Thus, where x and y are variables, x idp y is the protosyntactical
formula whose definitional abbreviation via ~1-9 is '( ) ,
with x and y in the respective blanks.

Now let Zl be the protosyntactical formula' (x)(y) rov Mwxy', or
rather the primitive expansion:

(x)(y)(Mwxy 1 Mwxy)
thereof; i.e.,

'ZI' for '(52 qu (S3 qu n m {51, S2' 53}» '.

Let 'k be the primitive expansion of the result of putting Zl in the
blank of:

(11)

I.e.,

(3x)«3w)(x = w. ). Mwxw);

''4.' for '(52 qe «SI qe «52 idp 51) cj ZI» cj m {5h S2' SI}) '.

Similarly let Z3 be the primitive expansion of the result of putting
Z2 in the blank of (11); and so on to Zg. The definitions of 'Za', ... ,
'Zg' are just like the abo've definition of ''k' except for containing
''k', . · . , 'Zg' in place of 'ZI'.

We have noted (§ 54) that (x)(y) rov Mwxy if and only if w = SI.
Thus the formula ZI is equivalent to 'w = SI" Accordingly, put
ting 'w = Sl' in the blank of (11), we conclude that ~ is equivalent
to:

(3x)«3w)(x = w. w = Sl) • Mwxw),
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which is equivalent in turn (cf. *234b) to 'MWS1W' and hence to
'w = S2' (cf. § 54). Puttin& the latter in the blank of (11), we con-
clude in similar fashion that Za is equivalent to 'w = Sa'; and so
on. Z1, ~, ... ,Z9 are protosyntactical formulte (in primitive
notation) which are equivalent respectively to 'w = S1', 'w = S2',
... , 'w = 59'. It is therefore consonant with (5) to explain im Si
as Zi' for each i from 1 to 9. But there remains the task of formu
lating im x where x is longer than a single sign.

By z cid z', next, will be meant the primitive expansion of the
result of putting z and z' (whatever expressions these may be) in
the respective blanks of:

(12) (3x)(3y)«3w)(x = w • ) • (3w) (y = w • ) • Mwxy.
I"'V Mwxw).

Thus

r(r cid 11)' for r(S2 qe (Sa qe ««S1 qe «S2 idp S1) cj r)) cj
(S1 qe «Sa idp 51) cj 11))) cj m {51, S2' Sa}) cj n m {S1, S2' 51} )))'.

Consider, e.g., Zh cid Zk (supposing hand k chosen from among 1, 2,
... , 9). Since Zh and Zk are equivalent respectively to 'w = SA'
and 'w = Sk', Zh cid Zk is equivalent to the result of putting
'w = Sh' and 'w = Sk' in the respective blanks of (12). But this
reduces to 'MWShSk. ""MWShW' (cf. *234b), which is equivalent
in turn to 'w = Sh-Sk' (cf. § 54). Thus Zh cid Zk is equivalent to
'w = Sh-Sk'.1 By the same reasoning, again, (Zk cid Zk) cid Z". is
seen to be equivalent to 'w = Sk-Sk-Sm'; likewise «Zk cid ZII)
cid Zm) cid Zn is equivalent to 'w = S;Sk-Sm-Sn'; and so on. In
general, (... «Zql cid Zq2) cid Z(3) .•• ) cid ZtJr is a protosyntactic
formula equivalent to 'w = Sq;-Sq;-. .. -Sqr', .and .hence exactly fits
the characterization (5) of im x when x is Sql-Sq,l-' .. -Sqr' Since each
expression in protosyntax is Sgl-Sg2-." -Sgr for one or another
choice of qh q2,." § qr (where r ~ 1 and 1 ~ qi ~ 9 for each i),
we have now succeeded in identifying 1m x with a determinate pro
tosyntactical expression for every determinate choice of x. We ex
plain im Si as Zi for each i, and im(S:Si) as Zi cid Zi for each
i and j, and im(S:Si-Sk) as (Zi cid Zi) cid Zk for each i, j, and

1 The connective 'cid' is supposed to suggest the words 'concatenation' and
"identity.'
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k, and so on.
But there still remains the further task of devising a protosyn

tactical definition of 'im x' where x is unspecified. In seeking this
objective it will be convenient to concentrate not on im x itself
but on imxx, the concatenate of im x with x. From imx-x as a
whole then we can single out im x afterward as the initial proto
syntactical formula thereof; for a survey of our primitive notation
reveals that a string of signs cannot have two formulce as initial
segments, when the full parentheses appropriate to joint denial are
taken into consideration.

Let us write' IMC w' to mean that w is imxx for some x. To see
how to express this in protosyntax, we reflect that 'IMC w' is to
hold if and only if w is either Z:Si for some i, or (Zi cid Zj)-S;--Sj for
some t' and j, or ((Zi cid Zj) cid Zk)-Si-S}~Sk for some i, j, and
k, or etc. In other words, IMC w if and only if w is one of a
sequence of expressions each of which is either Zi-Si for some i or
else (z cid Zi)-Y-Si for some i where z-y is an earlier expression of
the sequence (and z is a formula). Accordingly, applying our usual
sequence technique,

rIMC r 1 for r(3a)(r Ing a. ({3)({3 Ing a.J: {3 = Zl-Sl .v....
.v. {3 = Z;Sg.V (3,.,)(38) (PFmla "'.1'8 Pra {3 : {3 = (,., cid Zl)-8-S1 .v.

. . . .v. {3 -= (,., cid Zg)-<fSg)))l.l

Now the definition of rim r 1 is obvious.

rim r1 for r(1a)(PFmla a. IMC ;r)".

§60. Incompleteness

WE HAVE seen that protosyntax is protosyntactically incompletable,
in the sense that no protosyntactically definable notion of proto
syntactical theorem can exhaust the protosyntactical truths and
exclude the falsehoods. Protosyntactical truth is ·protosyntacti
cally indefinable. Where K is the class of all those statements which

1 Obviously the dots'... ' here mark no breach of rigor. The reader can write
in the fourteen missing clauses.



§60 INCOMPLETENESS 313

are built up of atomic matrices rMa~1'1 by joint denial and quanti
fication and are in fact true under the intended interpretation of
'M' 'I' ." d f h, .J..' etc., no matrIx ... x . .. compose 0 t ose same
materials will fulfill the condition:

(1) (x)(. .. x . ..•=. X E K).

In the course of the present section we shall find that logic itself
is likewise protosyntactically incompletable; that no protosyn
tactically definable notion of logical theorem can exhaust the
logical truths and exclude the falsehoods. Logical truth, like proto
syntactical truth, is protosyntactically indefinable.

'M' was explained (§ 54) in a fashion equivalent to the following:
Mxyz if and only if

(i) x and yare respectively 'x' and 'w', or 'y' and 'x', or ...
(through the nine-sign alphabet), or else

(ii) y and z are expressions (composed of those nine signs) and x
consists of y followed by z, or else

(iii) x is not an expression and y is x.
Now obviously the truth of the statements in K is not contingent
upon geometrical peculiarities of the particular typographical
shapes 'w', 'x', 'y', 'z', "', '(', etc. which were chosen for purposes
of (i); any other shapes, e.g. the numerals '1', '2', ... , '9', would
serve as well. Indeed, we need not even insist upon typographical
shapes. Instead of considering the shapes '1', '2', ... , '9' and
their complexes' 11', '12', ... , '99', '111', etc., we could just as
well consider the corresponding natural numbers, 1, 2, ..., 9, 11,
12, ... ,99, 111, ... themselves.

We are thus led to an arithmetical analogue of the protosyn
tactical 'M'. By way of notation for the analogue, let us use the
letter' E' in place of 'M '. This sense of ' E' has nothing to do with
the membership sense of 'E'; but there is no danger of confusion,
since 'E' in the new sense has contexts of the form r Er1](J1 while 'E ~

in the membership sense has contexts rather of the form r(r E 1])1.

These new contexts are explicable in direct analogy to (i)-(iii)
above: EXYZ if and only if

(iv) x and yare respectively 2 and 1, or 3 and 2, or ... , or 9 and
8, or else
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(v) y and z are perpositive numbers (natural numbers in whose
Arabic numerals '0' does not appear) and x is yAz (cf. end of § 49),
or else

(vi) x is not a perpositive number and y is x.
Where K' is the class of all those true statements which are built up
of matrices rEa{3'Y-, by joint denial and quantification, the only
difference between K' and the previously described class K is that
the statements of the one class contain' E' where the statements of
the other class contain 'M'.

This new idiom 'EXYz' is readily given a logical definition. To
the series of logical definitions Dl-48 we first add the ones sug
gested at the end of § 49, together with the following definition of
the class of perpositive numbers.

D61. ' Pp' for
'x(x E Nn . (y)(x rf; yAQ • (z)(x = (ZAQ)Ay .). Z = 0))) '.

Then we simply reproduce (iv)-(vi) as a formal definition.

D62. rEr1]O' for
r(8 ~ 1] • 1] ~ 1. r = S'1] .v. 1], (J E Pp . r = 1] A O.v. r EPp • r = 1])'.

Let us return now to the protosyntax of logic, begun in §§ 55-58.
The definitions d47-49, ~62-64, and ~66-71 were set up in such a
way as to parallel Dl-S, DB-10, D12, and DiS; and by continuing
the series in obvious fashion we finally reach a protosyntactical
definition:

re {r, 1], o}' for

paralleling D62. Where x, y, and z are any variables, e {x, y, z} is
the logical formula (built up of matrices rea E (3)' by joint denial
and quantification) which Dl-D62 abbreviate as 'E' followed by
the successive variables x, y, and z (whichever ones they may be).

Suppose now that y is a logical formula (in primitive notation, of
course), and that x is an abbreviation of y by Dl-62. It may
happen that x contains only primitive notation plus abbreviations
of the form rEa{3l" explained by D62; x may be devoid of other
abbreviation notation. When all these circumstances obtain, let
us call x an epsilon abbreviate of y; symbolically xEAy. Where
xEAy, thus, x consists only of the alphabet 81) ... , Sg, i.e. 'w',
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,x', ... , ' 1" 'E', whereof the protosyntax of logic speaks; but
this does not make x a logical formula, for the mode of combination
of signs which is essential to a logical formula is departed from in
rEa{3'Y1. At the same time x is an abbreviation, via D1-62, of the
genuine logical formula y.

To say that x is an epsilon abbreviate of y is to say that x is one
of a sequence of expressions each of which either is y or else is
formed from an earlier expression of the sequence by abbreviating a
part e {z, z', z"} as S;z-z'-z" (z, z', and z" being any variables).
The protosyntactical definition of this notion of epsilon abbreviate
is then readily accomplished, following our usual method of dealing
with sequences.

r(rEA7])' for r(3a)(r lng a. (~)({3 lng a .):~ = 7].V (3'Y)(3o)

(3~/) (3~//) (Vbl ~. Vbl ~/ • Vbl ~// • 'Y Pra {j • {j S1:C:.-~:~~:/} 'Y»)'.

Under this definition, 'xEAy' is true also in the limiting case
where x and yare the same expression; but this departure is of no
consequence.

Let us call x a quasi-theorem, symbolically Thm'x, if x is built up
solely of expressions rEa~'Y1 by joint denial and quantification, and
is furthermore an abbreviation by D1-62 of a theorem of logic.
This notion is readily defined in protosyntax, given any proto
syntactical definition of theorem (e.g. that of § 58).

rThm'r' for r«3a)(Thm a. rEAa) • rv(3{3) (Fmla {3 • (jPr))l.

Suppose now that the protosyntactical definition of rThm r' is
such as to include among the theorems all those logical formulre
which are true, and exclude all falsehoods. Then an expression x
will be a quasi-theorem, in the above sense, if and only if it belongs
to the class K' described earlier. Thus if we expand 'Thm'x' into
protosyntactical primitives we have a protosyntactical matrix
, ... x ... ' such that

(2) (x)(. .. x . ..•=. X E K').

Whereas the protosyntactical 'M ' (occurring in ' ... x ... ') has
thus far been construed in the fashion appropriate to the proto
syntax of logic, i.e. in such fashion that S9 = 'E', let us now re-



316 SYNTAX § 60

construe It In the fashion appropriate rather to the protosyntax
of protosyntax (§ 59); i.e., in such fashion that 59 becomes 'M'.
The matrix ' ... x ... ' then comes to satisfy the condition (1)
rather than (2), since the expressions belonging to K' go over into
those of K when 'e' is changed to 'M'. But we know that no
protosyntactical matrix ' ... x ... ' can satisfy (1). The initial
assumption of the preceding paragraph is therefore false; no proto
syntactical definition of theorem can include all true logical
formulte among the theorems and exclude the falsehoods. Logic,
like protosyntax itself, is' protosyntactically incompletable.

It follows in particular that the notion of theorem which was
developed in earlier chapters, and defined protosyntactically in
§ 58, does not accord the status of theorem to all those logical
formulte which are true statements - or else, worse, that it accords
the status of theorem to some falsehoods. And, as the foregoing
argument shows, any alternative notion of theorem which we might
devise will suffer a similar fate, so long as we insist on protosyn
tactical definability. Nor is the demand of protosyntactical
definability easily waived; it seems already to be more liberal than
the normal practical demand of constructivity - the demand that
for each theorem there exist an at least fortuitously discoverable
method of confirming its theoremhood (cf. § 55).

The protosyntactical incompletability of logrc is of more imme
diate concern to us than was the protosyntactical incompletability
of protosyntax; but the latter is more remarkable than the former,
inasmuch as protosyntax has a far more limited subject matter than
logic. Apprised only of the protosyntactical incompletability of
logic, we should probably have blamed the difficulty on the con
nective 'e' of membership and hence questioned the admissibility
of that connective. The notion of membership is a natural object
of suspicion; for it is this notion that imports the whole realm of
classes of higher and higher orders of abstractness, and even calls
for ad hoc measures such as the distinction between element and
non-element for the avoidance of contradiction. Protosyntax
itself, on the other hand, is wholly independent of the notion of
membership and the theory of classes; it calls for no non-elements,
indeed no entities whatever beyond an infinite domain of finite
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expressions each of which is nameable within the notation of proto
syntax in systematic fashion. Alternatively, we have seen, those
entities can be construed as natural numbers. When protosyn
tactical incompletability reasserts itself in as simple a field as this,
we cease to regard such incompletability as a ground of suspicion
and come rather to expect it in every fairly untrivial field.

Protosyntax, though protosyntactically incompletable, can
indeed be shown to be syntactically completable. I.e., whereas no
matrix constructed solely of atomic matrices rMa~'Y1 by joint
denial and quantification will fulfill (1) when put for the blank
' ... x ... ', introduction of additional atomic matrices of the form
r (a e ~) 1 does enable us to construct a matrix which will fulfill
(1) when put for' ... x ... '. On the other hand syntax itself,
embracing membership in addition to the resources of protosyntax,
is not even syntactically completable. This can be shown by
applying syntax to itself just as protosyntax was applied to itself
in § 59. (For this purpose the alphabet implicit in the interpreta
tion of 'M' is of course reconstrued as embracing both 'e' and
'M', as S9 and SlO.) Whereas protosyntactical truth is syntacti
cally but not protosyntactically definable, syntactical truth is not
even syntactically definable.

Protosyntactical definability was thought of as moderately
broader than constructivity, and syntactical definability was
thought of as corresponding to the much broader property of
formality (cf. §§ 53, 55). Insofar as this way of thinking does
justice to the intent of the vague terms' constructive' and' formal',
then, we must conclude that protosyntactical truth is a non
constructive formal notion and that syntactical truth is not formal
at all. Whoever finds the latter conclusion intolerable had best
explain his sense of ' formal'.

The argument from the protosyntactical incompletability of
protosyntax to the protosyntactical incompletability of logic
turned essentially upon the fact that a set of entities behaving like
the objects of protosyntax - in short, a model of protosyntax 
is discoverable among logically definable objects; viz., in the
arithmetic of natural numbers. Now it is possible similarly, by
exhibiting a logical model of syntax, to argue from the syntactical
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incompletability of syntax to the syntactical incompletability of
logic. Logical truth, like syntactical truth, is syntactically inde
finable. Logical truth may, subject to the cautions of the pre
ceding paragraph, be said to be informal.

Thus even if we go so far as to waive the demand of protosyn
tactical definability in order to come by a notion of logical theorem
which will cover all logical truths and exclude all falsehoods, the
outlook remains dark; we should have to renounce syntactical
definability as well. Indeed, a notion of theorem capable of ex
hausting those logical formul(E which are true and excluding those
which are false will be definable only in a medium so rich and
complex as not to admit of a model anywhere in the reaches of
the theory of logic which is under investigation. An exhaus
tive formulation of logical truth which carries general recogniza-
bility with it, even of the most tenuous sort, is not to be aspired to.
We must in practice rest content with one or another notion of
theorem which covers an important subclass of the logical truths
and does not encroac-h upon the falsehoods.

The fact that logic generally and the elementary theory of natural numbers in
particular is incompletable by constructive means (cf. § 55) was discovered and
established by Godel (1931); and it is to him that the essential idea behind the
technique of self-application (§ 59) is due. -The protosyntactical incompletability of
protosyntax and the syntactical incompletability of logic are cases of a more sweep
ing observation which is due to Tarski (" Wahrheitsbegriff," pp. 370ff; also" Unde

cid able Statements").



APPENDIX

'Theorem ?)ersus M etatheorem

Many readers of the first edition have expressed uneasiness over
the informality of the proofs of metatheorems such as *111. Some
have even sensed here a circularity of reasoning. Thus, it is ar
gued, the proof of *111 makes implicit use of the principles of
mathematical induction and the substitutivity of identity; yet
these principles are established only in *222 and *636, on the basis
of *111 itself.

These misgivings turn on a confusion between theorem and meta
theorem which a more careful reading would probably clear up.
The matter has proved troublesome enough, however, .to warrant
some supplementary exposition at this point.

By a formal deductt'on let me be understood to mean any list of
fonnulas such that every formula of the list is either an axiom of
quantification (or of membership, after § 29) or a ponential of two
earlier formulas of the list. Thus each single axiom is itself a short
formal deduction, one line long. But none of the so-called proofs
in the book are formal deductions; indeed the only formal deduction
appearing anywhere in the book, apart from single axioms, is the
sample at the middle of page 86.

Now a theorem, as the term is used in this book, is no more nor
less than a statement that can be reached as a line of a formal de
duction (cf. page 86). To show that a statement is a theorenl it is
sufficient, therefore, to write down a formal deduction which ter
minates with the statement in question.

But we also may know that a statement is a theorem without
ever seeing a formal deduction of it. To know that a statement is a
theorenl is to know that the statement possesses a formal deduction
which could be written down.

Suppose, e.g., that we have two formal deductions before us, and
that their respective last lines have the forms:
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(1)
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(y) (x) (w ) (- - - ) ....), (y ) (x) (- - -)

where the matrix represented as '- - -' is the same in both cases.
Now it is true, but not obvious, that any two such deductions can
be combined and pieced out with a few more lines so as to yield a
third formal deduction whose last line is '(y)(w)( . ...)' - suppos
ing 'y' and' w' to be the free variables of the matrix represented as
, .... '. Once we have assured ourselves of the unobvious fact that
such a third formal deduction is constructible in all such cases, we
can thenceforward always leap directly from a knowledge of the
theoremhood of two statements of type (1) to a knowledge of the
theoremhood of the corresponding statement' (y)(w)( . ...) '. Time
and space are thereby saved.

Now the unobvious fact spoken of above is what *111 affirms.
*111 says of all formul~ c/> and t/; that if the closures of rc/> )1/; land
c/> possess formal deductions, so does the closure 0£.1/;. Because the
fact is not obvious, we have to convince ourselves of it; and this is
the purpose of the so-called proof on pages 90-91. I t is satisfac
tory in this proof to avail ourselves of anything that we know in
fact to be true, such as that the closure of r c/> )t/; l is the closure
of r(a)(c/> )if;)l (where a is alphabetically the earliest free variable),
or such as that if 0 has some property and the number after each
number having the property has the property then every positive
integer has the property. It is satisfactory to avail ourselves thus
of anything we know to be true because we are not seeking a formal
deduction; ·we are lnerely seeking the truth about formal deduc
tions.

The worry over a circular presupposition of *222 or *636, in the
argument of *111, involves a misunderstanding of the content of
*222 and *636. These metatheorenls say that the closures of cer
tain conditionals are theorems, i.e., possess formal deductions.
These facts are not obvious, and no knowledge of them is presup
posed in proving *111. The most that is presu pposed there is that
the closures of conditionals like those concerned in *222 and *636
are true; and this much is too evident to require support.

It must be emphasized that common-sense reasoning is never
smuggled into the formal deductions themselves. Formal deduc-
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tions proceed from axioms by means exclusively of modus ponens.
Metatheorems are informal observations about theoremhood 

hence about the possibility of formal deductions. 13ut it must be
noted that even in the case of actual theorems, e.g. t182-t185, the
"proofs" \vhich are given in the book are on a par with the proofs
of metatheorems; non~ are formal deductions, each is merely an
argument to show that an appropriate formal deduction could be
obtained. This is why metatheorems can quite properly be cited
in the proofs of theorems. In the case of t182, as it happens, a
formal deduction could also very easily be presented, consisting
merely of t182 itself (expanded into primitive notation); for this is
actually an axiom of quantification of kind A (see page 81). In
the case of t183-t185 and most other theorems stated in the book,
however, the formal deductions would run to considerable lengths.

As long as we are interested only in formalizing logic and not in
fornlalizing our discourse about the formalization of logic, the
proofs of metatheorems and theoretns presented are open to no
objection on the score of informality. All these proofs are informal
arguments regarding the existence of fonnal deductions. 13ut
there is reason for interest also in formalizing our discourse about
the fornlalization of logic; and this topic is indeed dealt with, in
certain of its aspects, in Chapter VII.
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The definitions D1-48, introduced in the course of §§ 9-48, are
assembled here for convenience of reference. The n~merous

definitions of §§ 49-59, not having been used in formal proofs, are
omitted from the list. Various definitions which were casually
suggested in the course of earlier discussion (pp. 49, 141, 201, 208,
225, 227) are likewise omitted.
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LIST OF THEOREMS AND METATHEOREMS

Various of the theorems and metatheorems are assembled here
for convenience of reference. A bookmark at this point will prove
useful.

The plan has been to include a theorem or nletatheorem in the
list just in case it is cited by number at least twice in proofs subse
quent to the section in which it made its own appearance. Hence
the reader should not use this list in looking up numbers which are
close to the number of the theorem or metatheorem whose proof
he is examining; instead he should merely glance back over
neighboring pages. In cases where the theorem or metatheorem
sought is missing from the list because of not having been used
twice, the reader will indeed consult the list and be disappointed;
but from the list he will learn the page numbers of neighboring
theorems and metatheorems, thus expediting his consultation of
the text.

Initial universal quantifiers have for brevity been omitted in
listing theorems.

*100.
*101.
*102.
*103.

*110.
*114.
*117.

*118.
*119.
*121.

PAGE

If c/> is tautologous, r-c/>. 88
l-r(a)(c/» 1/;) ). (a)c/> ) (a)1/;'. 88
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If c/>' is like c/> except for containing free occurrences of a'

wherever c/> contains free occurrences of a, l-r(a)c/> ) c/>". 88
l-r(a)c/> ) c/>'. 90
l-r(al) ... (an)c/> ) c/>'. 93
If l-rc/> ) 1/;', and none of ah .•• , an is free 'tn C/>, then
l-rc/> ) (al) .•. (an)1/;'. 95
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l-r(a) (fj)c/> == (fj) (a)c/>'. 95
If 1/1' is like 1/; except for containing c/>' at some places where
1/1 contains C/>, and ah ••• , an (n ~ 0) exhaust the variables
with respect to which those occurrences of c/> and C/>' are bound
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Infinite classes 194, 248, 25Off.
Initial segment 284.
Integer 276. See also Whole num-

ber.
Inverse 27Sf.
Irrational number 272f.
Iteration 30, 32, 41.

Joint 39.
Joint denial 45ff, 284.

Lambda 226ff.
Lambda-definability 292.
Least upper bound 272f.
Less 265ff, 272, 277.
Limit 278f.
Line 136f, 233, 279.
Logic: subject matter of 1ff, 127f;

symbolic 5; traditional 1, 7, 189,
210; universality of 2; vocabu
lary of Iff. See also Mathemati
cal logic.

Logical: formula 124ff, 127f, 283ff,
295f; statement 125.

Looseness 39.

Mathematical formula 128.
Mathematical induction 243f.
Mathematical logic 5, 7f; applica-

tions of 7f; history of 1, 14, also
footnotes and small print passim.

Mathematics: extensionality of 73,
121; its derivabilityfrom logic 5,
73, 126ff, 279.

Matrix: name 152, 226; statement
71ff, 79, 298.

Meaningfulness 146f, 150, 163ff.
Measurement 7, 279.
Membership 119fF, 131ff, 155ff,

185, 316; as relation 232f, 248;
axioms of 155ff, 162, 305.
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Mengenlehre 127, 164ff.
Metamathematics 126, 286. See

also Syntax.
Metatheorem 89ff, 319ff.
Model 271, 31 if.
Modus ponens 85, 88f.
Multiplication, see Product.

Name matrix 152, 226.
Names 32ff, 83f, 119, 125, 149ff,

171, 226.
Natural number 237ff, 247, 250ff.
Negation, see Complement; De-

nial.
Negative number 276f.
Nominalism 121.
Non-element 131, 177, 179, 228,

251, 316.
Notation 34f, 37, 47, 75, 132, 283ff,

2R7ff.
Null class 122, 144f, 163, 183f, 188.
Number: complex 278; natural

237ff, 247, 250ff; rational 25,
266ff, 271ff; real 271ff.

Numbering of theorems and meta
theorems 88, 90, 137.

Occurrence 297f.
Official notation 40f. See also

Primitive notation.
One 237ff, 267, 275.
Ontology 121f, 150f, 162.
Ordinary usage 12ff, 67ff.

Pair, ordered 126, 198ff, 202, 278.
Paradox, see Contradiction.
Parentheses 5, 15f, 37ff, 124, 180,

221, 296; restoration of 40f.
Part 295.
Particular quantification 101ff, 303.
Perpositive 314.
Pi 273.
Plane 136f, 233.
Point 136f, 233.
Polyadic relations 201, 208, 225,

227.

Ponential 85ff.
Positive number 276f.
Potentiality 16.
Power: arithmetical 259, 261f,

264f, 270, 274f, 277f; relative
253ff, 259, 265.

Predecessor 252.
Predicate 27ff, 119, 149, 151.
Predication, relational 200f, 227.
Prefix, see Quantifier.
Primitive notation 40f, 47, 75, 100,

133, 143, 149ff.
Primitives, reduction of 2f, 5ff, 43ff,

49, 72f, 126, 288ff.
Priority 296. See also Alphabetic

order.
Product: arithmetical 259ff, 268ff,

274, 277; logical 179ff; relative
213f.

Projection, see Arro'" projection;
also Image.

Proof Sf, 319ff.
Proof notation () 1ff, 101ff, 129,

138f, 145, 173f, 176f, 182, 204,
262f.

Proper ancestral 220f.
Proper names 149ff.
Property 119f, 237.
Proposition 32. See also State

ment.
Propositional function 121. See

also Property; Statement matrix.
Protasis 14.
Protosyntax 291ff, 306ff, 314(

Quantification 18, 55, 67ff, 285;
axioms of 8Off, 87ff, 300f; ex
istential 101ff, 303; universal
102; vacuous 74, 82, 88, 104.

Quantificational diagrams 70, 76.
Quantifier 67ff, 142; confinement

of 108f; distribution of 82, 88,
105ff; insertion of 139f; permu
tation of 89,95, 104; scope of
76f.
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Quasi-atomic context 140ff, 167,

294.
Quasi-quotation 33ff, 110, 287, 290.
Quasi-theorem 315.
Quotation 23ff, 33ff, 290.
Quotient 269f, 275ff.

Range of functionality 222ff, 228.
Ratio 25, 266ff, 271ff.
Rational 272. See also Ratio.
Real number 271ff.
Real variable, see Free variable.
Recursive 86, 292, 318.
Reduction sentences 33.
Reflexivity 56, 61, 138, 185, 232.
Relational part 205ff.
Relations 197ff; abstraction of 202ff,

208; predication of 200ff, 227;
theory of 61, 127, 279.

Relative: power 253ff, 259, 265;
product 213f.

Relettering 109ff, 159, 177.
Reverse, see Converse.
Root 275f.
Russell's class 128ff, 157, 179, 249.

Scope 16, 40, 190, 217, 227.
Self-augment 246ff.
Self-membership 125, 128ff, 157,

175, 179, 249.
Semantic 24f.
Sequence 295f, 299.
Set 127. See also Class; Counter

set; Truth set.
Sign 283ff, 288; and object 23ff,

283ff.
Signed real numbers 276f.
Single-valuedness 222.
Singulary 13; scope of such oper-

ators 16, 190, 217, 227.
Specification 82ff, 88, 151, 171f.
Spelling 284.
Star, see Asterisk.
Statement 11ff', 71ff', 79, 298;

logical 125.

Statement connective 27ff.
Statement matrix 71ff', 79, 298.
Statement predicate 27ff.
Stratification 155ff, 164, 302f; of

matrices 159f; test of 158, 238,
302[.

Strict irnplication 32.
Subjunctive 16, 29, 33.
Subscripts 35, 67, 254, 269, 275,

278.
Substitution 170ff, 301ff.
Substitutivity: of biconditional

96ff; of identity 160f, 167ff, 174.
Subtraction 276f.
Successor 237ff, 252f, 259ff. See

also Alphabetic order.
Sum, arithmetical 259ff, 268f,

274f, 277; logical 180ff.
Symmetry 138, 232. See also Com

mutativity.
Syntax 3ff, 283ff.

Tautology 5Off, 55, 86ff, 93, 199,
299.

Term 119ff, 135f, 145, 152, 294.
Testability Sf, 81, 86ff, 156, 291 f.
Theorem 6,· 85ff, 127, 155f, 162f,

291f, 318ff; notation of 137, 162;
protosyntactical 306f; proto
syntactical definition of 305, 315f.

Tilde 14, 140.
Total reflexivity 138, 232.
Traditional logic 1, 7, 189, 210.
Transitivity 58, 61, 138, 185, 232.
Transposition 57, 186f.
Truth 1f, 4, 27ff'; logical 1ff', 28,

30, 50, 8Off) 86, 313, 315, 318;
protosyntactical 313, 317; syn
tactical 317.

Truth-functional: component 52ff',
299; composition 11ff, 29, 33,
42ff.

Truth sequence 299.
Truth set 53ff, 299.
Truth table 11ff, 19ff, 42ff, 51ff.
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Truth value 11ff.
Two 237ff, 267, 275.
Types, theory of 163ff.

Unit class 135f, 189ff, 241.
Universal class 144f, 163, 183f,

188, 304f; infinitude of 248, 251ff.
Universal quantification 102. See

also Quantification.
Universal relation 205£.
Unnamable numbers 273f..
Unsigned real numbers 276.
Upper bound 272f.
Use and mention 23ff, 283ff.

Vacuous: occurrence If, 28, 50;
quantification 74, 82, 88, 104.

Value: of a function 222; of a
variable 34f, 287.

Variables 34f, 68ff, 75, 109f, 283ff,
287, 300; as pronouns 3, 5, 68,
71; collision of 74£, 110ff; elimi
nation of 71; rewriting l09ff,
133f, 159, 177; values of 34f, 287.

Whole number 267, 270, 275f. See
also Natural number.

Zero 237ff, 267ff, 275f.


	PREFACE, 1981
	PREFACE TO THE REVISED EDITION
	PREFACE
	CONTENTS
	Introduction
	CHAPTER ONE. Statements
	1. Conjunction, Alternation, and Denial
	2. The Conditional
	3. Iterated Composition
	4. Use versus Mention
	5. Statements about Statements
	6. Quasi-Quotation
	7. Parentheses and Dots
	8. Reduction to Three Primitives
	9. Reduction to One Primitive
	10. Tautology
	11. Selected Tautologous Forms

	CHAPTER TWO. Quantification
	12. The Quantifier
	13. Formulæ
	14. Bondage, Freedom, Closure
	15. Axioms of Quantification
	16. Theorems
	17. Metatheorems
	18. Substitutivity of the Biconditional
	19. Existential Quantification
	20. Distribution of Quantifiers
	21. Alphabetic Variance

	CHAPTER THREE. Terms
	22. Class and Member
	23. Logical Formulæ
	24. Abstraction
	25. Identity
	26. Abstraction Resumed
	27. Descriptions and Names

	CHAPTER FOUR. Extended Theory of Classes
	28. Stratification
	29. Further Axioms of Membership
	30. Substitutivity of Identity
	31. Substitution for Variables
	32. Further Consequences
	33. Logical Product, Sum, Complement
	34. Inclusion
	35. Unit Classes

	CHAPTER FIVE. Relations
	36. Pairs and Relations
	37. Abstraction of Relations
	38. Converse, Image, Relative Product
	39. The Ancestral
	40. Functions
	41. Abstraction of Functions
	42. Identity and Membership as Relations

	CHAPTER SIX. Number
	43. Zero, One, Successor
	44. Natural Numbers
	45. Counter Sets
	46. Finite and Infinite
	47. Powers of Relations
	48. Arithmetical Sum, Product, Power
	49. Familiar Identities of Arithmetic
	50. Ratios
	51. Real Numbers
	52. Further Extensions

	CHAPTER SEVEN. Syntax
	53. Formality
	54. The Syntactical Primitive
	55. Protosyntax
	56. Formula and Matrix Defined
	57. Axioms of Quantification Defined
	58. Theorem Defined
	59. Protosyntax Self-Applied
	60. Incompleteness

	APPENDIX. Theorem versus Metatheorem
	List of Definitions
	List of Theorems and Metatheorems
	Bibliographical References
	Index of Proper Names
	Index of Subjects



